Chapter 4
Function Estimation

Hans-Georg Miiller

4.1 Introduction to Three Papers on Nonparametric
Curve Estimation

4.1.1 Introduction

The following is a brief review of three landmark papers of Peter Bickel on
theoretical and methodological aspects of nonparametric density and regression
estimation and the related topic of goodness-of-fit testing, including a class of
semiparametric goodness-of-fit tests. We consider the context of these papers, their
contribution and their impact. Bickel’s first work on density estimation was carried
out when this area was still in its infancy and proved to be highly influential for the
subsequent wide-spread development of density and curve estimation and goodness-
of-fit testing.

The first of Peter Bickel’s contributions to kernel density estimation was
published in 1973, nearly 40 years ago, when the field of nonparametric curve
estimation was still in its infancy and was poised for the subsequent rapid expansion,
which occurred later in the 1970s and 1980s. Bickel’s work opened fundamental
new perspectives, that were not fully developed until much later. Kernel density
estimation was formalized in Rosenblatt (1956) and then developed further in
Parzen (1962), where bias expansions and other basic techniques for the analysis
of these nonparametric estimators were showcased.

Expanding upon an older literature on spectral density estimation, this work set
the stage for substantial developments in nonparametric curve estimation that began
in the later 1960s. This earlier literature on curve estimation is nicely surveyed
in Rosenblatt (1971) and it defined the state of the field when Peter Bickel made
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the first highly influential contribution to nonparametric curve estimation in Bickel
and Rosenblatt (1973). This work not only connected for the first time kernel
density estimation with goodness-of-fit testing, but also did so in a mathematically
elegant way.

A deep study of the connection between smoothness and rates of convergence
and improved estimators of functionals of densities, corresponding to integrals of
squared derivatives, is the hallmark of Bickel and Ritov (1988). Estimation of
these density functionals has applications in determining the asymptotic variance
of nonparametric location statistics. Functional of this type also appear as a factor
in the asymptotic leading bias squared term for the mean integrated squared error.
Thus the estimation of these functional has applications for the important problem
of bandwidth choice for nonparametric kernel density estimates.

In the third article covered in this brief review, Bickel and Li (2007) introduce a
new perspective to the well-known curse of dimensionality that affects any form of
smoothing and nonparametric function estimation in high dimension: It is shown
that for local linear smoothers in a nonparametric regression setting where the
predictors at least locally lie on an unknown manifold, the curse of dimensionality
effectively is not driven by the ostensible dimensionality of the predictors but rather
by the dimensionality of the predictors, which might be much lower. In the case of
relatively low-dimensional underlying manifolds, the good news is that the curse
would then not be as severe as it initially appears, and one may obtain unexpectedly
fast rates of convergence.

The first two papers that are briefly discussed here create a bridge between den-
sity estimation and goodness-of-fit. The goodness-of-fit aspect is central to Bickel
and Rosenblatt (1973), while a fundamental transition phenomenon and improved
estimation of density functionals are key aspects of Bickel and Ritov (1988). Both
papers had a major impact in the field of nonparametric curve estimation. The third
paper (Bickel and Li 2007) creates a fresh outlook on nonparametric regression and
will continue to inspire new approaches. Some remarks on Bickel and Rosenblatt
(1973) can be found in Sect. 2, on Bickel and Ritov (1988) Sect. 3, and on Bickel
and Li (2007) in Sect. 4.

4.1.2 Density Estimation and Goodness-of-Fit

Nonparametric curve estimation originated in spectral density estimation, where
it had been long known that smoothing was mandatory to improve the properties
of such estimates (Daniell 1946; Einstein 1914). The smoothing field expanded to
become a major field in nonparametric statistics around the time the paper Bickel
and Rosenblatt (1973) appeared. At that time, kernel density estimation and other
basic nonparametric estimators of density functions such as orthogonal least squares
(éencov 1962) were established. While many results were available in 1973 about
local properties of these estimates, there had been no in-depth investigation yet of
their global behavior.
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This is where Bickel’s influential contribution came in. Starting with the
Rosenblatt-Parzen kernel density estimator

where b(n) is a sequence of bandwidths that converges to 0, but not too fast, w a
kernel function and dF; stands for the empirical measure, Bickel and Rosenblatt
(1973) consider the functionals

Dy = sup [ n6) = F )1/ (£, 4.2)
@ x) — f(x))?
- [ Ll w5

The asymptotic behavior of these two functionals proves to be quite different.
Functional D; corresponds to a maximal deviation on the interval, while functional
D» is an integral and can be interpreted as a weighted integrated absolute deviation.
While D,, properly scaled, converges to a Gaussian limit, D; converges to an
extreme value distribution. Harnessing the maximal deviation embodied in D
was the first serious attempt to obtain global inference in nonparametric density
estimation. As Bickel and Rosenblatt (1973) state, the statistical interest in this
functional is twofold, as (i) a convenient way of getting a confidence band for f. (ii)
A test statistic for the hypothesis Hy : f = fo. They thereby introduce the goodness-
of-fit theme, that constitutes one major motivation for density estimation and has
spawned much research to this day. Motivation (i) leads to Theorem 3.1, and (ii) to
Theorem 3.2 in Bickel and Rosenblatt (1973).

In their proofs, Bickel and Rosenblatt (1973) use a strong embedding technique,
which was quite recent at the time. Theorem 3.1 is a remarkable achievement. If
one employs a rectangular kernel function w = 1[7 11 and a bandwidth sequence

b(n) = n"s, 0<o0< %, then the result in Theorem 3.1 is for centered processes

P [(26logn>1/2 <[nb(n)f1(t)]1/2 sup £ (1) ~ E(fu(1))] —dn) < ] e,

ap,ap
where

1
dy = pn— Ep”’l[log(n—l- 8)+loglogn], p. = (28logn)'/?.

The slow convergence to the limit that is indicated by the rate (logn)l/ 2 is typical

for maximal deviation results in curve estimation, of which Theorem 3.1 is the first.
A multivariate version of this result appeared in Rosenblatt (1976).
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A practical problem that has been discussed by many authors in the 1980s and
1990s has been how to handle the bias for the construction of confidence intervals
and density-estimation based inference in general. This is a difficult problem. It is
also related to the question how one should choose bandwidths when constructing
confidence intervals, even pointwise rather than global ones, in relation to choosing
the bandwidth for the original curve estimate for which the confidence region is
desired (Hall 1992; Miiller et al. 1987). For instance, undersmoothing has been
advocated and also other specifically designed bias corrections. This is of special
relevance when the maximal deviation is to be constructed over intervals that include
endpoints of the density, where bias is a particularly notorious problem.

For inference and goodness-of-fit testing, Bickel and Rosenblatt (1973), based
on the deviation D; as in (4.3), propose the test statistic

= [ ()= E(ful)Pato dx

with a weight function a for testing the hypothesis Hy. Compared to classical
goodness-of-fit tests, this test is shown to be better than the y test and incorporates
nuisance parameters as needed. This Bickel-Rosenblatt test has encountered much
interest; an example is an application for testing independence (Rosenblatt 1975).

Recent extensions and results under weaker conditions include extensions to the
case of an error density for stationary linear autoregressive processes that were
developed in Lee and Na (2002) and Bachmann and Dette (2005), and for GARCH
processes in Koul and Mimoto (2010). A related L!-distance based goodnes-of-
fit test was proposed in Cao and Lugosi (2005), while a very general class of
semiparametric tests targeting composite hypotheses was introduced in Bickel et al.
(2006).

4.1.3 Estimating Functionals of a Density

Kernel density estimators (4.1) require specification of a kernel function w and of a
bandwidth or smoothing parameter b = b(n). If one uses a kernel function that is a
symmetric density, this selection can be made based on the asymptotically leading
term of mean integrated squared error (MISE),

" [wndu (O P+ (] [ wia? du,

which leads to the asymptotically optimal bandwidth

b (n) = c ( Jur® <x>12dx) )
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where ¢ is a known constant. In order to determine this optimal bandwidth, one
is therefore confronted with the problem of estimating integrated squared density
derivatives

[irPwpax, @4

where cases k > 2 are of interest when choosing bandwidths for density estimates
with higher order kernels. These have faster converging bias at the cost of increasing
variance but are well known to have rates of convergence that are faster in terms of
MISE, if the underlying density is sufficiently smooth and optimal bandwidths are
used. Moreover, the case k = 0 plays a role in the asymptotic variance of rank-based
estimators (Schweder 1975).

The relevance of the problem of estimating density functionals of type (4.4)
had been recognized by various authors, including Hall and Marron (1987), at the
time the work Bickel and Ritov (1988) was published. The results of Bickel and
Ritov however are not a direct continuation of the previous line of research; rather,
they constitute a surprising turn of affairs. First, the problem is positioned within
a more general semiparametric framework. Second, it is established that the /i of
convergence that one expects for functionals of type (4.4) holds if ") is Holder
continuous of order o with m+ o > 2k + %, and, with an element of surprise, that it
does not hold in a fairly strong sense when this condition is violated.

The upper bound for this result is demonstrated by utilizing kernel density
estimates (4.1), employing a kernel function of order max(k,m — k) + 1 and then
using plug-in estimators. However, straightforward plug-in estimators suffer from
bias that is severe enough to prevent optimal results. Instead, Bickel and Ritov
employ a clever bias correction term (that appears in their equation (2.2) after
the plug-in estimator is introduced) and then proceed to split the sample into two
separate parts, combining two resulting estimators.

An amazing part of the paper is the proof that an unexpected and surprising
phase transition occurs at oo = 1/4. This early example for such a phase transition
hinges on an ingenious construction of a sequence of measures and the Bayes risk
for estimating the functional. For less smooth densities, where the transition point
has not been reached, Bickel and Rosenblatt (1973) provide the optimal rate of
convergence, a rate slower than y/n. The arguments are connected more generally
with semiparametric information bounds in the precursor paper Bickel (1982).

Bickel and Ritov (1988) is a landmark paper on estimating density functionals
that inspired various subsequent works by other authors. These include further
study of aspects that had been left open, such as adaptivity of the estimators
(Efromovich and Low 1996), extensions to more general density functionals with
broad applications (Birgé and Massart 1995) and the study of similar problems
for other curve functionals, for example integrated second derivative estimation in
nonparametric regression (Efromovich and Samarov 2000).
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4.1.4 Curse of Dimensionality for Nonparametric Regression
on Manifolds

It has been well known since Stone (1980) that all nonparametric curve estima-
tion methods, including nonparametric regression and density estimation, suffer
severely in terms of rates of convergence in high-dimensional or even moderately
dimensioned situations. This is born out in statistical practice, where unrestricted
nonparametric curve estimation is known to make little sense if moderately sized
data have predictors with dimensions say D > 4. Assuming the function to be
estimated is in a Sobolev space of smoothness p, optimal rates of convergence of
Mean Squared Error and similar measures are n=2r/@r+D) for samples of size n. To
circumvent the curse of dimensionality, alternatives to unrestricted nonparametric
regression have been developed, ranging from additive, to single index, to additive
partial linear models. Due to their inherent structural constraints, such approaches
come at the cost of reduced flexibility with the associated risk of increased bias.

The cause of the curse of dimensionality is the trade-off between bias and
variance in nonparametric curve estimation. Bias control demands to consider data
in a small neighbourhood around the target predictor levels x, where the curve
estimate is desired, while variance control requires large neighbourhoods containing
many predictor-response pairs. For increasing dimensions, the predictor locations
become increasingly sparse, with larger average distances between predictor loca-
tions, moving the variance-bias trade-off and resulting rate of convergence in an
unfavorable direction.

Using an example where p = 2 and the local linear regression method, Bickel
and Li (2007) analyze what happens if the predictors are in fact not only located on
a compact subset of Z”, where D is potentially large, but in fact are, at least locally
around X, located on a lower-dimensional manifold with intrinsic dimension d < D.
They derive that in this situation, one obtains the better rate n—2r/ (2”+d), where
the manifold is assumed to satisfy some local regularity conditions, but otherwise
is unknown. This can lead to dramatic gains in rates of convergence, especially if
d = 1,2 while D is large.

This nice result can be interpreted as a consequence of the denser packing of
the predictors on the lower-dimensional manifold with smaller average distances as
compared to the average distances one would expect for the ostensible dimension
D of the space, when the respective densities are not degenerate. A key feature is
that knowledge of the manifold is not needed to take advantage of its presence.
The data do not even have to be located precisely on the manifold, as long as their
deviation from the manifold becomes small asymptotically. Bickel and Li (2007)
also provide thoughtful approaches to bandwidth choices for this situation and for
determining the intrinsic dimension of the unknown manifold, and thus the rate of
effective convergence that is determined by d.

This approach likely will play an important role in the ongoing intensive quest for
flexible yet fast converging dimension reduction and regression models. Methods
for variable selection, dimension reduction and for handling collinearity among
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predictors, as well as extensions to “large p, small n” situations are in high demand.
The idea of exploiting underlying manifold structure in the predictor space for these
purposes is powerful, as has been recently demonstrated in Mukherjee et al. (2010)
and Aswani et al. (2011). These promising approaches define a new line of research
for high-dimensional regression modeling.

Acknowledgements Supported in part by NSF grant DMS-1104426.
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ON SOME GLOBAL MEASURES OF THE DEVIATIONS
OF DENSITY FUNCTION ESTIMATES

By P. J. BICKEL! AND M. ROSENBLATT?

University of California, Berkeley;
University of California, San Diego
We consider density estimates of the usual type generated by a weight
function. Limt theorems are obtained for the maximum of the normalized
deviation of the estimate from its expected value, and for quadratic norms
of the same quantity. Using these results we study the behavior of tests
of goodness-of-fit and confidence regions based on these statistics. In par-
ticular, we obtain a procedure which uniformly improves the chi-square
goodness-of-fit test when the number of observations and cells is large and
yet remains insensitive to the estimation of nuisance parameters. A new
limit theorem for the maximum absolute value of a type of nonstationary
Gaussian process is also proved.

1. Introduction. Let X, X,, - - -, X, beindependent and identically distributed
random variables with continuous density function f{x). By now there are a
goodly number of papers on estimation of the density function (see [13] for a
bibliography). The class of estimates f,(x) that we consider are determined by
a bounded integrable weight function w,

(1.1) A x4

Tbl(:) Z?“”(W)")

§ r w (x_:—_s) dF,(s) .

b(n) \ b(n)
In formula (1.1), F, is the sample distribution function. Also 6(n)is a bandwidth
that tends to zero as n — oo but is such that n=! = o(b(n)).

The local properties of such estimates have been discussed extensively. Our
object will be to get global measures of how good f,(x) is as an estimate of f{(x).
In particular, the asymptotic distribution of the functionals

max,...., |£,(0) — A(f)!
o L) = O 4,

J%)

are evaluated under appropriate conditions as n — co.

and
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We shall state two results, one concerned with absolute deviation of the esti-
mate f,(x) from f{x) and the other with integrated quadratic deviation. They
will give some insight into the type of result that is obtained. However, in order
to give the result on absolute deviation it is convenient to introduce at this point
certain convenient assumptions which we shall refer to as Al, A2, A3, and A4.

Al. The weight function w also assigns mass one to the line and either (a)
vanishes outside an interval [— A4, 4] and is absolutely continuous on [— A4, A4]
with derivative w’ or (b) is absolutely continuous on (— oo, co) with derivative
w’ such that { |w'(1)|kdr < o0, k =1, 2.

A2. The density fis continuous, positive and bounded.

A3. The function f? is absolutely continuous and its derivative }f'/f* is
bounded in absolute value. Moreover,

Smzn [2/'[log log [2[F[1w'(2)] + w(2)[] dz < o .
A4. The second derivative f” of f exists and is bounded. Moreover w is
symmetric (about 0) and z*w(z) is integrable.
We shall simply state a corollary of a main result on absolute deviations which

is appealing because it is phrased in a form that is convenient if one wishes to
set up a confidence band for the density function.

COROLLARY. Let assumptions A1—A4 be satisfied with b(n) = n~°, + < 0 < $.
Then

lim,_. P [fn(X) - (f"f:;)(i()w) >§ < (25 lf)g O d">

Sa¥)A(w) \! z
(1) =92 A0+ ( o ) ((2(3 e a.) forall 05 x<1]
where -
Aw) = § wX(1) dt

and

Kiw)

N 1 S
= (241 3 - S | 1
d, = (20 logn)* + (26 log ny { 0g< L ) + {[logo + log logn]}

if (a) of Al holds and
K(w) = wi(A) +2w2(—A)/1(w) >0,

and otherwise

Kyw) = 3 §2a [W(O] dt/a(w) -
The following result for a quadratic functional is also of some interest. The

function a(x) used in the theorem is assumed to be a bounded piece-wise smooth
integrable function.

with
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THEOREM. Let A1—A4 hold. Then if b(n) = o(n~%), n~#(log n)}(log log n)} =
o(b(n)) as n — oo,

b(n)=¥nb(n) § [ fo(x) — fix)Pa(x) dx — § f(x)a(x) dx § w¥(z) dz]
is asymptotically normally distributed with mean zero and variance

2§ (§ w(x + yyw(x) dx)* dy § a*(x)f*(x) dx
asn— co.

The basic technique in obtaining the results is that of approximating the nor-
malized and centered sample distribution function by an appropriate Brownian
motion process on a convenient probability space by using a Skorohod-like im-
bedding due to Brillinger and Breiman. The details of this approximation and
remarks on approximation of other functionals are given in Section 2. The as-
ymptotic theory of the maximal deviation and that of quadratic deviations are
developed in Sections 3 and 4 respectively. Some computations on the power
of these procedures are also carried out. In particular, we show thata goodness-
of-fit test based on a quadratic functional is strictly better than the y* test. There
is also an appendix on the asymptotic distribution of the maximal deviation for
a type of nonstationary Gaussian process.

2. Approximations. As has been indicated in the introduction our technique
is to consider the statistics of interest as functionals of certain stochastic processes
on the interval [0, 1] and then to substitute Gaussian processes with the same
covariance structure for the latter where possible.

It is convenient to introduce Z,°(+) given by

(2.1) Z5t) = ni(F,*(1) — 1), 0<r<1

where F* = F,(F~") is the empirical distribution of F(X,), - - -, F(X,). This will
be approximated by Z°(+), the Brownian bridge, given by
(2.2) Z°(ty = Z(1) — tZ(1)

where Z is a standard Wiener process on [0, 1].
The process [nb(n)f~(1)]}(f,(+) — E(f,(+))) is central to our discussion. It can
be written as

@3) Yty = 670 §maw (50 ) dZAF ()
b(n)
Approximations ,Y, and ,Y, to this process are obtained by substituting Z°(F(.))
and Z(F(+)) respectively for the random measure in (2.3). The resulting processes
are well defined, at least if {=_ w*(¢) dF(r) < oo.
Two other processes which also arise naturally are given by

t— s

24 Ya) = [bfO1 §w (5057) (ot a2
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and

(2.5) Y(0) = [b(m)] §w ’b;,;) dz(s)

where Z is a two-sided Wiener process on (—co, o) (dZ is Wiener measure).
The process Y, is well defined if § w?(¢) dr < oo, and all the integrals with respect
to dZ°(F(+)), dZ(F(+)), dZ(+), dZ°(+) are taken in the L* sense (cf. Doob [6]
page 426). For convenience, suppose all our processes are realized as random
elements taking their values in the space D[0, 1] (cf. [3]). For xe D[O0, 1] let
[|x|]| = sup{|x(?)]: 0 < ¢ < 1}. Ourapproximations rest on the following theorem
of Brillinger (1969). (A similar argument appeared simultaneously in Breiman
1969).)

THEOREM. There exists a probability space (Q, A, P) on which one can construct
versions of Z,° and Z such that

(2.6) 12,0 — Z°|| = O0,(n~*(log n)}(log log n)?) .
From this we can derive

PRrOPOSITION 2.1. If the processes Z,°, Z° are constructed as above and Al and
A2 hold, then

2.7) 1Y, = oYall = O,(b7}(m)n?(log n)i(log log m)?) .
Proor. Write, using Al,

(2.8 Y.(q) = [6AQ)] H—w(A)Z,(F(g — Ab(n)))
+ w(=A)Z,(F(q + Ab(n)))}

+ b7 (m)fH(g) §=0 ZF ()W (qb"(-n_)s> -

(The first two terms inside the curly brackets are taken to be 0 in the event
Al(b) holds but Al(a) does not.) A similar representation is valid for ,Y, and
(2.7) follows.

PROPOSITION 2.2. If A2 holds then
(2.9) [lo¥a — 1Yall = O, (b4(n)) .
If A2 and A3 hold then
(2.10) (1Yo — 3Y.l] = O,(6}n)) .
Proor. From the representation (2.2),
(2.11) [oYa(@) — 1 Ya(@)] = [Z(D|[b(n)f(9)]
U —
i ( o ) 1) ds = | Z()]0@Hm)) .
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Applying (2.8) and its analogues, if Al(a) holds,

LYu(9) — YA (9)l
< b7 (m){[12(Ab(n) + 9IILf(4b(n) + /] — 1]
(2.12) + 12(= Ab(n) + IILA—Ab(n) + 9)/f(9)]* — 1]]sup. [w(1)]
+ §12(sb(r) + DIILAG + dE)/fAg)] — 1I|w'(s)] ds
+ 3(b(m) § 1Z(sb(n) + 9IS (g + sbEIASG + sb(m)]*|w(s)| ds}
= 0,(b6%(n)
by using A3 and the law of the iterated logarithm for the Wiener process. If

Al(b) holds the first two terms vanish and the same argument applies.
To apply these propositions we make the elementary

ReMARrK. If {g,} is a sequence of functionals on D[0, 1] satisfying Lipschitz
conditions such that

(2.13) 19.0¥) — 9.(D) = M,|[x — yl|

and 4,, B, are stochastic processes realizable in D such that |4, — B,|| = o,(1/M,),
then g,(A,) converges in law if and only if g,(B,) does, and to the same limit.
We shall apply this proposition in the next two sections to the functionals

Y.l . _ o
1 (2|log b(n))? [max {'(T(W»a 0<r< 1} B([b(n)] )]
where B is defined in Theorem Al and,
11 b¥(n)[§=. Y, X(0)f(Da(t) dt — §=,, w(?) dt]

where a is an integrable weight function. Evidently, since ,Y, and,Y, have the
same joint laws, we can substitute Y, for Y, in I if A1—A3 hold and

b(n) _

2.14 ——L ) = n~tlog n(log log n)}
14 0<|logb(n)|) n*logn(log log n)

and ,Y, can be substituted for Y, in IT if Al and A2 hold and,
(2.15) o(b(n)) = n~¥(log n)}(log log n)t .

Although we do not pursue this it is clear that the same technique can be
applied to other functionals, e.g., a normalized version of the total time in [0, 1]
spent by Y, above a high level (cf. Berman (1971) [2]).

3. The maximum absolute deviation. The first measure of global deviation
that we consider is M, = max {|Y,(#)]: 0 < ¢t < 1}. (There is no loss in consider-
ing [0, 1] rather than any other interval on which the density is bounded away
from 0 and oo.) The statistical interest of this functional is twofold as

(i) A convenient way of getting a confidence band for f.
(ii) A test statistic for the hypothesis H: [ = f;.
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Under (ii) we shall also consider the possibility of testing composite hypotheses,
for example, that f is Gaussian. The asymptotic theorem we need to discuss
(i), and the behavior of (ii) under the null hypothesis is a consequence of our
remarks in Section 2 and Theorem Al of the appendix.

THEOREM 3.1. Let w satisfy assumptions A1—A3 and

b(n) =n7?, 0<d<d.
Then,
M, -
G.1) P[(Z& log n)} ((](w))é —d) < x] e,
where
3.2) Aw) = § wi(1) dt
and

1

. = (201 LI
G d=@ilognt

{10g £:0) _ 41106 + toglogm}
T
where
k(o) = "D [y,
if K,(w) > 0, and otherwise
1 1 K(w)]
d, = (26 log n)} _—|:lo 1 k)
n = Q0log )+ gy L% e 2
where
Ky(w) = 3§ [W'(OT dr]/A(w) .

REMARK 1. The natural weight function w(r) = §, [¢| < 1, = 0 otherwise,
falls under the first case, while the “optimal” weight function of Epanechnikov
(1969) w(r) = 3/(4(5)})(1 — (v¥/5)) if |v| < 5%, = 0 otherwise, falls under the
second.

REMARK 2. A similar result holds if one considers the maximum deviation
(rather than absolute deviation) of a density function estimate as in Rosenblatt
(1971). However, since one-sided deviations for density functions are unnatural
the present result seems more interesting.

REmaRK 3. The techniques of proof of this result may readily be adapted to
prove limit theorems such as that of Woodroofe (1967) for the maximum deviation
observed at an increasing finite number of points.

Proor. It follows from Propositions 2.1 and 2.2 and the following remark
that the limiting behavior of (24 log n)![(M,/(A(w))}) — d,] is the same as that of
(2 log b(n))¥(max {|,Y,()|/(A(w))}: 0 < 1 < 1} — d,). By the similarity transform
for the Wiener process, the law

(G4) LY. ):0=<1<1)= L(g w<b(’”) - s) dZ(s): 0 <1 < 1>.
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Since 1/(A(w))} § w(t — s) dZ(s) is a stationary Gaussian process with mean 0 and
covariance
ds

3.5 riy = LPEEOwE ds

(3.9) 0 o
Theorem 3.1 follows from Corollary A.1 provided we show that r satisfies condi-
tion (v) and (vi) of Theorem Al with @ = 1, 2. That (v) is satisfied is equivalent
to Theorem B1. Moreover,

1 1
3.6 )y dt = — ([F(]Pdt = ——— §|w(r)|* dt
(3.6) § 70 di = 5§ O de = s S190)
where ~ denotes Fourier transformation. Since w is integrable and bounded w
is square integrable and bounded and (vi) must hold.

AppLICATIONS. (i) To obtain a confidence band for fthat is simple and ex-
plicit it is natural to consider ¢ such that E(f,) can be replaced by f. This is
true if 6 > 1 and A4 holds. Then,

1 t—s _ 2
(3.7 i 3 (o O &5 = 10 + 0
with 0 independent of 7. If we now define Y, * by replacing E(f,(f)) with f(7)
we conclude that

(3.8) 1Yy = Y5 = o([nb*(m)]}) -

Using the usual approximations we conclude that max {|Y,*(r)|: 0 < ¢ < 1} be-
haves like M, if A4 holds and 6 > L. In this case inverting as usual we obtain
the confidence band

Ly “@ Y, c@
(3.9) ffi+ <;b(n)> c(“)(l + 4,,/,(,,%) + 2nb(n)
A cHa) \} c*(a)

f=rf (nb(n)-> c(a)(l + 4nb(n)f,.) + 2nb(n)

where c(a) is given by (3.11). A simpler band is obtained if we further substitute
f. for fin the denominator of Y,. The resulting process Y, ** (say) has

(3.10) |Y,* — Y,**|| = 0, (%%’(%l)ii )

-o, < logn )
(nb(m))*
if Al—A4 hold and 1 < 6 < 4. The approximate confidence band obtained by
looking at the maximum of |Y,**| is given in the introduction (1.2).
There is no choice of 6 which asymptotically makes this simple band as thin
as possible, i.e. one should choose d as small as possible. This of course ignores

the obvious—the speed with which bias disappears asymptotically depends on ¢
as does the speed of convergence to the asymptote. However, for fixed n there
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is an optimal d(n) (depending on a) > 0 which for moderate n and small a« may
be the right thing to use if the choice of bandwidth is free.

(i) To test H: f = f, it is natural to compute M, with f = f; and reject for
large values of the statistic. According to the theorem to obtain approximate
level & we should use as cutoff point,

- — o) — (A(w))! )
(11) el = —[log log (1 — a)] — log2] ;WD - ()’
Under some assumptions the same cutoff point may be used for testing composite
hypotheses of the form H: f = fi(+, ¢) where § is an unknown vector parameter
by using M, with an estimate @ substituted for the unknown parameter 6. We
need the following assumption.

AS. The estimate 8 is such that if 6 = 6,, for every 6,

(3.12)  sup{|§ [folt + sb(n), B) — fi(t 4 sb(n), 6)]w(s)ds|: 0 < ¢ < 1)
= 0,([nb(n) log b(n)]™*)

1o+ 00 = £+ Dl = 0,((log b(n)| ™) .
Typically for maximum likelihood and method of moments estimates
(3.13) 16 — 6, = O, (n}).
If, moreover, 6 = (87, - .-, 8'%), of,/06'" is bounded for 6 in a neighborhood
of 6,, all x, and 1 < j <k, it is easy to see that AS holds. To see that AS is

the needed assumption again introduce a process ¥, with E,(f,) replaced by
Ej(f,) and (f(-, 6))* replaced in the denominator of Y, by (f(-, 6))}. Then

(3.14) 1Y, = V.|| = o,([logb(m)]™)

and the result follows.

To make local power calculations on the test of the simple hypothesis described
above we need to consider the behavior of M, (calculated under f;) for a sequence
of alternatives of the form,

(3.15) 9a(%) = fol¥) + 127(x) + 0(12)

where g, satisfy A2—A3 uniformly in n, y, | 0 at a suitable rate, and o(y,) is
uniform in x on [0, 1]. (Note that » must be continuous on [0, 1].) Denote
probabilities calculated under g, by P,. Our basic result is,

and

THEOREM 3.2. Suppose that g, are as above. Let w satisfy A1—A3 and define
M, in terms of f,. Let
7. = n"t0?25 logn]t.

Then,

M, -
(3.16) P, [(25 log n)* <W)7 —d)< x:| — exp[—s(7)e]
where

G17) () = Se{exp [n()/(fu(DAW)] + exp[—7(D)/(fu()A(w))]} dt .
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This result follows from Theorem Al quite readily.

One interesting consequence of this formula is that our test is asymptotically
strictly unbiased for such alternatives. The reason is that s() = 2 with s(3) > 2
unless 7 = 0 and the family of distributions e=?*"* is an exponential family in 6.

Unfortunately these tests are asymptotically inadmissible (have Pitman effi-
ciency 0) when compared to the test based on the quadratic functional of the
next section based on the same w and &#(n). The reason is that alternatives there
may be permitted to come in to f; at rate n~#*? rather than n~#**2, However,
this test for moderate sample sizes and some alternatives may well be preferable.

In analogy to the confidence band situation it would appear that maximum
power is achieved by taking d as small as possible. However, consideration of
the approximation arguments suggests that s(»,) is a better measure of the “true
shift” than s(y) where,

(3.18) 7n = (9n — [o)(2nb(n) log b(n))* .

Of course, s(z,) may well be maximized for § > 0. In all of these questions it
would be desirable to have some small sample Monte Carlo explorations.

4. Quadratic functionals. We are interested in the behavior of the functional,
(4.1) T, =nb(n) §=. [f.(x) — E(f,(x)[a(x) dx = §=., L} (x)a(x) dx ,

where L, = f!Y, and a is integrable. We have already remarked that if Al and
A2 hold and (say) b, = n~%, ¢ < %, then.

4.2) 1T = § oL} (x)a(x) dx| = o(b¥(n)) .

Moreover, if a is bounded as well as integrable and w and f are bounded, we
can replace ,L, by ,L, = f*,Y, and hence by ,L, = f*,Y,. To see this note that,

I§ GLAH(x) — oL, (x))a(x) dx|
gy {20804

4.3) —27(1) §w ( 'b(—n)5> dZ(F(s)) § w ( rb(_n)s)f(s) ds} a() dt%
< Z(1)b(n) sup, | f(x)] § |a(r) di|

+ 21Z(1)[b(n)| § (§ w(y)e(s + b(n)y)a(s + b(n)y) dy) dZ(F(s))|
c(f) = S wy)f(t — b(n)y) dy .

where
But,

@4 E(§ (S wO)e(s + b(n)y)a(s + b(n)y) dy) dZ(F(s)))*

= § (§ w)e(s + b(m)y)a(s + b(n)y) dy)* dF(s)
is bounded.
By (4.3) and (4.4),

4.5) ITw — § 2Ly (x)a(x) dx| = O,(b(n)) -
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(The infinite range poses no problem since we are approximating L, rather than
the normalized Y,.)

The following lemma lets us determine the characteristic function of a quad-
ratic functional

(4.6) Z = § Y(x)'a(x) dx
of a Gaussian process Y(x) under appropriate conditions.
LeEmMMA 4.1. Let Y(x), EY(x) = 0, be a Gaussian process with bounded, uniformly

continuous covariance function r(x, y). If a(x) is a piecewise smooth integrable func-
tion, the quadratic functional (4.6) has characteristic function formally given by

@.7) E(e"?) = exp (5, 247(ir)c, k)
with
=8 oo §r(xy, X )r(xg, Xg) - e (X, X)a(x)a(x,) - - - a(x,) dx, - - dx, .
The representation (4.6) is valid for |¢] < 1/2M where M = ||r]| { |a(r)| dt. The

quantities (k — 1)! 2¥-1¢, are of course the cumulants of (4.6).
The lemma is obtained by considering the form

(4.8) X1 Yja,
in jointly Gaussian random variables Y;, EY; = 0 with the a,’s constants. Let
R be the covariance matrix of the Y,’s with 4 the diagonal matrix with diagonal
entries a;. The characteristic function of (4.8) is then
|1 — 2iRA|™ = [[7, (1 — 22;in)~F = exp { X5, 271(if)* tr (RA)/k} ,

at least if |f| < 1/2 tr (RA).
Here tr (M) denotes the trace of M, |M| its determinant and 4, ---, 4, are the
eigenvalues of R4. Lemma 4.1 is then obtained by going through an appropriate
limiting operation.

The covariance function of the Gaussian process ,L,(x) can be written
4.9) r(x, y) = § w2)w(a + 2)f(x — b(n)z) dz

= f(x) § w(@w(a + 2) dz + O(b(n))

a = (y — x)/(b(m)
and O(b(n)) is independent of x if f is bounded and has a uniformly bounded
derivative and w*(z)(1 + |z]) is integrable. Then

(4.10) E(§ ;L (x)a(x) dx) = § f(x)a(x) dx § w(z)’ dz 4 O(b(n)) .

where

Similarly if a is bounded as well as integrable and w is bounded and f'is as above,
the variance of § ,L,*(x)a(x) dx is 2b(n) § [w = w(u)]* du § a*(x)f*(x) dx to first order
as n — oo, where w(f) = w(—1) and * denotes convolution. A similar argument
shows that under the same conditions the kth cumulant of § ,L *(x)a(x) dx equals
to first order (k — 1)! 2k-3b*~Y(n)[w x w]®(0) § a*(x)f*(x) dx as n — co where the
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superscript (k) indicates that w x w is convoluted with itself k times. As a result
we have the following theorem which actually holds under the weaker assump-
tions indicated above.

THEOREM 4.1. Let A1—A3 hold and suppose that a is integrable piecewise
continuous and bounded. Suppose moreover that (2.16) holds. Then b=}(n)(T, —
(§ f(x)a(x) dx) § w¥(z) dz) is asymptotically normally distributed with mean 0 and
variance 2(w x w)?(0) § a*(x)f*(x) dx as n — oco.

A particular case of interest for the application of the theorem is that in which
as in Section 3, a(x) vanishes off an interval, say [0, 1], and one sets a(x) = f(x)™*
on [0, 1]. In this case under Al—A3, T, is asymptotically Gaussian with mean
§ w(z) dz and variance 2b(n)(w x w)*(0).

The statistic
4.11) T, = nb(n) § [ fu(x) — f(x)Pa(x) dx
is probably of greater interest than that considered in Theorem 4.1. However,
let us expand T, in the form

nb(n){§ [fu(x) — Efu(x)a(x) dx
(4.12) + 2§ [fa(0) — EfLIEL() — fin)]a(x) dx
+ S [Efu(x) — fix)Pa(x) dx}.
Let w be positive and symmetric about zero with
(4.13) c= §wuudu < oo .

Then if n=' = O(b(n)), b(n) — 0 as n — oo, Al holds and f has a continuous
bounded second derivative, the second term of (4.12) may, by the usual ap-
proximation arguments, be shown to be asymptotically normal with mean zero
and variance

(4.14) n7tb(n)'c? § f''(x)a(x)*f(x) dx

to the first order. Also, under the same conditions, the last term of (4.12) can
be shown to be

(4.15) b(n)*c* § f"(x)%a(x) dx
to the first order. Then [b(n)] ¥[T, — T,] = 0,(1) if and only if b(n) = o(n~F).

(The term (4.14) is then negligible.) The theorem quoted in the introduction
follows.

APPLICATIONS. An explicit confidence band is hard to obtain from Theorem
4.1 and the theorem of the introduction. However we can test H: f = f; at
(approximate) level a by calculating T, for f = f; and rejecting when T,, > d(a)
where by Theorem 4.1
(4.16) d(a) = [ fy(x)a(x) dx][§ w¥(z) dz]

+ bY@ (1 — a)/[2(w * w)®(0) § a*(x)fX(x) dx]t .
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As in Section 3 it is easy to see that in testing H: f = f(-, #) where ¢ is an
unknown vector parameter we may use T, with freplaced by f(+, §) and d(a)
with f, replaced by fi(+, §), provided that A6 below holds.

A6. For each 6, (0*f(x, 8)/06?96'7") is bounded in absolute value for all § in
a neighborhood of ¢, and all x, i, j. Moreover, if 4, is true,

(4.17) 10 — 6, = o,([nb(n)]?) .

To see this, taking k = 1 for simplicity, expand as in (4.12) and note that it
suffices to show that

(4.18) S [fa(®) — Ep(fuCDIEs(fa()) — Ei(fa(x))]a(x) dx = o,([nb}(m)]™)

and
(4.19) §[E)(fa(x) — Ei(fu(x))Ta(x) dx = o,([nb}(n)]™") .

Taylor expanding the integral in (4.18) about 6, we obtain a first term

0= 00§ 1109 = Eq (e[ § PEFIORD] i) e o)

which is 0,(|f — 6,jn~*), and a second term which is OP([nb(n)]‘*(ﬁ — 6,)%), and
(4.18) follows. A similar argument yields (4.19).

To make local power calculations we again suppose g, is as in (3.15) with g,
satisfying A2—A3 uniformly in n and o(y,) uniform in x and » is bounded.

THEOREM 4.2. Let g, be as above, w satisfy A1—A4, a be integrable piecewise
continuous and bounded, b(n) = n~’, 6 < %, y, = n~4**. Define T, in termsof f,.
Then,

(4.20) 674 n)(T,, — [§ fo(x)a(x) dx] § w(z) dz)
is asymptotically normally distributed with mean § 7*(x)a(x) dx and variance
2(w = w)®(0) § a*(x)fe}(x) dx .

The proof is straightforward. As in Section 3 it follows that the test which
rejects when T, is > d(a) is locally strictly unbiased if a(x) > 0 for all x.

Also as before the asymptotics lead to choosing ¢ as large as possible and again
this conclusion is shaken if one uses the better approximation to the asymptotic
mean, § 7,*(x)a(x) dx where

(4.21) 7.(X) = § W@)[gu(x + b(n)2) — fu(x + b(n)z)] dz .

It is also clear that for fixed § we can let 2, — 0 more quickly than for the
sup functional and still get power. Thus the Pitman efficiency of the T, test to
the M, test for the same 4 is oo.

Suppose that f, is the uniform density on [0, 1] an effect we can always achieve
by applying the probability integral transformation to our observations before
making the test. Leta(x) = 1on [0, 1]and 0 otherwise, w be the uniform density
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on [—3, 4]. Neglecting fringe effects we may then write

(4.22) T, = gy (VL= 36(0), £ + 3b(m)] = b(n)* 4,
nb(n)

where N[x, y] is the number of observations falling in the interval [x, y]. A
related statistic for testing uniformity on the circle was considered by Watson
in[15]. Thisis, of course, very similar to the y* statistic for the problem based
on the cells [0, 6(n)], [6(n), 2b(n)], - - -, [(K — 1)3b(n), (K + 1)}b(n)] given by,

(4.23) x 2 — Z*J\‘ (N[%kb(n) — %b(n)’ %kb(") + %b(")] _ nb(”))z
" k= nb(n)
where (K + 1)3b(n) < 1 < (K + 2)4b(n) and 3 * is a sum over odd index.
Now we can write,

(4.24) 1K = nb(n) §o (fu(t) — E(fo(1)))* dA()

where A, places mass 1/K at each of the points 3b(n), - - -, Kib(n). It is easy to
see that the arguments leading to Theorem 4.2 apply to functionals of this type
also and that under the conditions of that theorem, if b(n) = n?, ¢ < &, x,}/K
is asymptotically normal with the natural parameters E(y,’/K) and Var (y,*/K).

This result is, of course, known. A rigorous proof under milder conditions
but using a different method may be found in Steck (1957). Now

@25) E(%) =1+ L mrnnee) (1 - Lo gitao, ax)

b(n)
=1+ byt 3| b(‘n) SR 000 dx [+ o (nbnyr.)
a0 () = L) (1) =2 ()

Thus if we take y, = n~#*%* as in Theorem 4.2, under g, the statistics
2
(4.27) W, = b-in) <7f7 - 1)

have a limiting Gaussian distribution with mean {; *(x) dx and variance 2. Under
the same circumstances the asymptotic mean of 6~#(n)(T, — 1) with T, given by
(4.22) is also {; »*(x) dx while its asymptotic variance is,

(4.28) 2w90) = 2§, (1 — |f))Pdr = § .

The Pitman efficiency of the tests based on T, to those based on W, is thus
by the usual calculations,

(4.29) «T,, W,) = (3

and thus at least (3)} = 1.217 on the range 6 > 0. For the Mann-Wald (1942)
prescription ¢ = 2 we get an efficiency of 1.292.
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Although as we have seen these asymptotic calculations are to be taken with
a grain of salt we feel that the procedure 7T, has promise as a competitor to the
«* test, at least for moderate sample sizes.

Acknowledgment. We are grateful to S. Berman and J. Pickands, III for
providing us with preprints of some of the papers cited in the list of references.

5. Appendix A. On the extrema of some nonstationary Gaussian processes.
Let Y,(+) be a sequence of separable Gaussian processes with mean y,(+) such
that Y, (+) — () is stationary. Let r(+) be the covariance function of Y,

M, =max{Y,(): 0=t < T}, my; =min{Y,(): 0=t < T}.
Let b,(t) = p(1)(2 log T)t.
THEOREM Al. Suppose that,

(i) by(t) is uniformly bounded in t and T on [0, T] as T — .

(ii) by(t) — b(t) uniformly on [0, T] as T — co.

(iii) T-12[1: b(1) < x,0 < 1t < T]— 5(x) the cdf of a probability measure as
T — oo. (4 as usual denotes Lebesgue measure.)

(iv) b(+) is uniformly continuous on R.

V) ()=1—=Clt|* +0o(f]), 0 < a £ 2, a5t —> oo.

(vi) §& () dt < oo.
Let

1
B(r) = (2lognt + @loghy

X {(% - %)log logt + log (Zn)‘*(C”"Ha2‘2""/”“)}

where
1

H, = lim,_, T §& e P[supoc,<r Y(1) > 5] ds

and Y is a Gaussian process with,
(A.1) E(Y(t)) = —|{", Cov (Y(1,), Y(t,)) = |t|" + || — |t — 8.
Then,

U, = (2logT)\M, — B(T)) and  V, = —(2log T)(m, + B(T))

are asymptotically independent with,

(A.2) PlU; < 7] » e hr 7 PV, < z] > e %,
where,
(A.3) L=Sedn(z),  h={edy).

An immediate consequence of Theorem Al is,
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CoroLLARY Al. If M, = max{|Y,(1)]: 0 < t < T} then under the conditions
of the theorem,

(A.4) P[(2 log T)*(A?T — B(T)) < x] > exp[—(4 + 4)e~"].
Note. A, + 4, = 2 with strict inequality unless » concentrates at 0.

COROLLARY A2. Let Y (1) — p(t) be a stationary mean O Gaussian process with
covariance function r(t) satisfying the conditions of the theorem. Suppose that b(t) =
(2log (1 + 2)}u(r) is a bounded uniformly continuous function of t and that b(+)
satisfies condition (iii) of the theorem. Then,

(A.5)  P[(2log T)(max{Y,(s): 0 < s < T} — B(T)) < x] — e~2r™*,

Similar assertions hold about the independence of maximum and minimum
and the asymptotic distribution of the minimum.

This corollary may be viewed as complementing Theorem 4.1 of Qualls and
Watanabe (1971) which deals with the extrema of a mean 0 process whose
covariance function is asymptotically locally approximated by that of a station-
ary process while we deal with a process which is stationary when centered and
asymptotically stationary.

The constants H, and H, are the only ones known explicitly. They are given
by H, =1, H, = ==% (cf. [11]).

PRrOOF OF COROLLARY A2. Define,
(A6) Y ()=Y() on [T),T]
= Y (1) + ([log(t + 2)/log (T + 2)]* — l)p(r) otherwise
where ¢(T) = o(T), loge(T) ~ log T. Evidently, (2 log T)E(Y (1)) — b(7) uni-

formly and

%P[max{YT(s): 0<s<T)< m + B(T)]

. X
(A7) - P[max{Yo(s). 0<s<T)< GlogT) + B(T)]l

< 2P| max (V) ~ EOW9): 05 5 5 4T 2 s

— K+ B(T)]

where K = max {u(r): 0 < r < ¢(f)}. Since B(¢(T)) — B(T) — — oo the term on
the right of (A.7) tends to 0 by the theorem. [J

Proor oF THEOREM Al. The theorem is argued much as Theorem 3.1 of
Pickands (1969). We refer the reader to this paper and Berman (1971) for the
details of the argument.
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LeEMMA Al. Let{(x) = @(x)/x where ¢ is the standard normal density. Let C =1,
x = x(T) = B(T) + z,/(2log T)}. Then fora > 0,
Plmax{Y,(t + akx*),0 < k < n} > x]
P(x)e Hy(n, @) + 0($(x))
< n)p < —x]
= ¢(x)e™""H (n, @) + 0(¢(x))
as T — oo uniformly in 0 < t < T where

(A.9) H,(n,a) = (=, e P[max {Y(ka): 0 < k < n} > s]ds.

(A.8)

||

Plmin{Y, (¢t + kax*"),0 <

Moreover, if v = W(T) = B(T) + z,/(2 log T)} then
(A.10) Plmax (Y, (¢t + kax*"):0 < k < n} > x,
min{Y,(t + kax*): 0 £ k < n} < —y]
= 0($(x)) = o(¢(»)

uniformly in 0 < t < T. (Throughout, k may take on integer values only.)

PrOOF. As in [11] consider the “local” process
(A.11) Yo(s) = x(Yy(t + sx72%) — (1) — x) .
(A.12) Plmax {Y,(t + akx?"): 0 < k < n} < x]

= (=, r(z2)P[max (¥, (ka): 0 < k < n} > —xp,(1)| Y,(0) = z]dz

where 7 is the density of ¥,(0),

(A.13) 7(2) = _)1?96(,\* + é) = ¢(x)exp[—z — 2*/2x*] .

It is easy to see using (ii) and (iv) that the finite dimensional conditional distri-
butions of Y,(s) given Y,(0) = z converge uniformly in ¢ to those of the process
Y(s) + z where Y is given by (A.1). Arguing as in [11] the first part of (A.8)
follows since xy,(r) — b(¢) uniformly as required. By considering — Y, we obtain
the second part. To prove (A.10) let 4 be the event whose probability is being
estimated. Then,

P(A Y20 > x = L+ )

< §=u7(@)P[min{Y (ka): 0 < k < n} — 2
< —z—x(y + x4+ p ()| Y(0) = 2] dz
(A.14) < ¢(x) {2 e Plmin {Y (ka) + z: 0 < k < n}
<z —xX(y+ x4 p ()| ¥(0) = —z]dz
= O(x) Zi-o (2w P[¥r(ka) + 2 <z
—x(y 4+ x + p(0)| Y1(0) = —2]dz
+ xtexp xt max {P[ Y (ka) + z
<xt—x(y + x4 ()| Y1(0) = —2]: 0 < 2 < X))
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Applying the usual estimate ®(z) < ¢(|z|) for z < 0 we conclude that the left-
hand side of (A.14) is o(¢(x)). Similarly,
1
(A.15) P<A, Yot) — m() < —v + ?> = o0(d(¥)) .
Finally, '

P(A, v+ LSV = ) < x — ‘)
ST o

(A.16) < §2# y(2)P[max (¥, (ka): 0 < k < n) > —xp ()| Y(0) = z] dz
< ¢(x) §7erPlmax {Y, (ka): 0 < k < n} > z]dz
for every 4 < co.

The final statement of the lemma follows.

LEMMA A2. The assertion of Lemma Al remains valid if a = 1, k is permitted
to range over all values in [0, n] and H (n, a) is replaced by

(A.17) H(n) = - {=. e P[max{Y(s): 0 < s < n} > ] dr

Proor. We prove the analogue of (A.8); the other assertions follow similarly.
We need to check that uniformly in 7,

(a) The conditional distributions of the continuous processes Y, (1) — z given
Y,(0) = z converge weakly (in the sense of Prohorov) to that of Y(.),

(b) Plmax {Y,(k): 0 < k < n} > xp (1) Y,(0) = 2] < ¢(2)
where § e7?g(z) dz < 0.
To see that (a) holds it suffices to note that,
(A.18) Var[(Y,(s) — Y7(s,))| Y2(0) = 2] < C|s; — 5"

and then apply Billingsley [3] page 95. To see that (b) is valid use the estimate
of Fernique (1970) given below on the tails of max {|Y,(k)|: 0 < k < n).

LEMMA. Let Z(+) be a Gaussian processon (0, 1). Let a be such that P[||Z|| < a] =
3, Pl||Z]| =z a] = L. Then, forz>a

PllIZ)| > 2] < exp{—,.z_:;z. log 3} .

LEMMA A3. Fix t >0 such that inf{s~*(1 — r(s)): 0 < s <t} = A(r) > 0.
Define x and y as before. Let,

(A.19) H.(a) = lim, . (" @)
n

n—o0

(A.20) 0< H, = lim,_, 7@ _ jim_ Heln)
a n

(See the note at the end of the lemma.)

239



P. J. BICKEL AND M. ROSENBLATT

Then,
—%/ay - x¥e
(A.21) P[max {Yo(v + kaxv): 0 s k < [T :]} > x]
= x¥eg(x) ”_‘f_"l §r+t exp b(s) ds + 0 (xV"g(x)) ,
(A.22) Plmax{Y,(v + 5): 0 < s < 1} > x]

= XV P)[§3* exp b(s) ds]H, + o(x""¢(x)) ,
uniformly in0 < v < T. Similar assertions hold for Plmin{Y,(v+ 5): 0< s < 1} <
—x] with —b replacing b. Finally,

(A.23) Pmax{Y, (v + 8):0<s<f}>x,min{Y, (v + 5): 0 s < 1} < —y]
= o(xX**¢(x)) .

Note. The existence of the limit in (A.19) was first proved in [11]. An in-

correct proof of (A.20) was also given. Subsequently, a correct proof was com-

municated to the author by J. Pickands and another is included in [12]. We
provide yet a third in Appendix B.

Proor. We prove (A.22); (A.21) is argued similarly. Begin by bounding the
left-hand side of (A.22) from above by,

(A.24) o P[max{Y,(v + knx™%* 4+ 5): 0 < s < nx~¥"} > x]

where M = [tx**/n]. By Lemma A2 the expression above is asymptotic to
A25) a0 yaey ) [_1_ S exp b(v + knx“/")]
n M+ 1

— A (n) xed(x)[§i+t exp b(s) ds 4 o(1)]

n

since b is assumed uniformly continuous and bounded. On the other hand we
can bound from below by the left-hand side of (A.21) which in turn is bounded
from below by,

(A.26) 7o, P(A,) — Dosressug (A, 4,)

where A, = [{max{Y,(v + kax~**), rn < k < (r + I)n} > x], M, = [x~*"t/na].
If we apply Lemma A.1 to the first term on the right of (A.26) we obtain that,

(A.27) vay P(A,) ~ Hal @) jumga[go+t e ds] .
na
Finally,
(A.28) P(4,4) < P(C,C)
where
(A29) C, = [max (¥, (kax~ 4 v) — py(kax=""): rn < k < (r + 1)n}
K
>x= (2log T)*]
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where K = sup {(2 log T)}|p,(f)| : 0 < t < T}. Now applying Lemma 2.3 of [11]
and arguing as in Lemma 2.5 of the same paper we see that,
(A.30) Z P(C,.C) = o(x¥"¢(x)) .
Applying (A.20) we see that (A.22) follows. To prove (A.23) it suffices to show
that,
P{{max{Y,(v+ 5):0 < s <1} > x]
(A.31) Umin{Y,(v +5):0<s <1} < —y]}
= x""P(0)H, § [exp b(§)] d€
+ YOOIH, § [exp —b(6)] dE + o (x"¢(x)) -

But we can bound the expression on the left of (A.31) from above by
Pimax{Y,(v+ $):0<s< 1} > x] 4+ Pmin{Y,(v + 5: 0 < s < 1} < —y]
and from below as in (A.26) where we add A, .., ---, 4y, With 4, . =

{min{Y,(v 4+ kax7**): (j — )n < k < jn}} < —y}. Now by (A.10)

1 /
(A.32) v ;’ﬁu P(Ainl,,+j+1) = o(x2'"</J(x)) .

Finally, again arguing as for the previous case,

1 1
(A'33) 7;1_ Z‘Jsj#k§.lla P(A] Ak) ’ 'n7 Zl§j¢k§ﬂla+l P(Aj+ﬁla Ak+Ma) a’nd

1 ;
Py Diosisksug P(A; Ay iisr) areall o(x¥*¢(x)). [0

The rest of the proof goes much as in Berman [1]. Neglecting fringe effects
break the interval [0, T'] up into 2N intervals of which half, W, ..., W, are of
length rand the others V,, - - -, ¥, of length ¢ so that ¥, follows W, which follows
Viwi=2,...,N. Of course, N ~ T/(t + ¢). Define x and y as in Lemma Al
and note that,

(A.34) xVeh(x)H, ~ 77]; e~1,
Then, by Lemma A3,
Plmax{Y,(z): ce Ui, V) = x] = T}, Plmax {Y,(7): eV} = x]

(A.35) ~ (S Svy exp (s ds] <

N
~:0 <T> — :0(1)
where the O term is independent of ¢ and the V,. A similar assertion holds for
min{Y,(z): =€ U}, V;} and hence we need only show that,
lim,_ lim,_, P[max {Y,(): e Uy, W,;} < x,
(A.36) min{Y,(r): re Ui, W;} = —y]
= exp _{Zleql + 128"2} )
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where 2,, 4, are defined in (A.3) and the bars above and below the limit sign
indicate lim sup and lim inf respectively. Nextchoosea > 0. If W, =[a;,a; + 1),
j=1,---, N

Plmax(Y,(0): v e U W) = ]

— P[Y,.(aj + kax7¥) < x: 0 < k §[1X“], 1</ N]

(A.37) < 3 Plmax (Y (c): te W)
|

A
=,

_ P[max{Y.,.(a]. + kax?"): 0 < k < [.’_’f’_"]} < x]l
a !

~ (S S, 0xp () delo g [ H, — 2ol T,

by Lemma A3.

A similar argument holds for P[min {Y,(): r € U}., W;} = —y]and by simple
probability manipulations it follows that to prove the theorem we need only
show,

lim, _, lim, _, lim, P[-—y < Yi(a, + kax*") < x: 1 < j < N,

a—0

(A.38) 0<k< [’ﬁ_ﬂ

a
= exp{—[4e7*1 4 Ae %]} .

Now in view of Lemma A3 it is easy to show that,

(A.39) _lim.,. Z?’:, (I —_ PI:——}/ < Y,,.(ﬂj -+ kax* 'r) < x: 0 < k < ]:1X2>ujH>
a

= Mol pim S lexplb) — 211 + exp —[8() + 2] ds

Since, by the boundedness of b, T-'[ 3%, §i, exp b(s) ds — " exp b(s) ds] = Ofe)
uniformly in 7" it follows from (A.39) and (A.20) that

«

(A40)  lim,_,lim,_, lim, Z;ﬂ(l - Pi:—y < Yo(a, + kax—*v)

ok ™))
- - " Loa
= Ae "+ de .
Let E;, j=1, .-, N be the events whose probabilities are being summed in

(A.40). The assertion (A.38) corresponds to a limiting statement about
P(E,---Ey). If the E; were independent assertion (A.38) would follow readily
from (A.40). Let P be the measure which makes the vectors (Y, (a), Yy(a, +
ax~¥7), ..., Y, (a, + ax*"[1x*"[a])), (Yi(ay), -, Yy(a, + ax~*"[tx**[a])), - - -,
(Yr(ay), - -+, Yi(ay 4+ ax~*[tx*/a]) independent and otherwise agrees with P.
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To conclude the proof of the theorem we need to show that.

(A.41) lim,_, lim, |(P — P)(E, ---Ey)| = 0.

To do this apply the following modification of Lemma 4.1 of [1].
LemMMA A4, Let

(= 2pxy 4+ ¥

A.42 (X, Vv, p) = . ex

(A.42) ¢(x, y» p) 22(i — iy P 20— )

Let L, = |r;|, Z, = |s;;] be k x k nonnegative semi-definite matrices with r,; = s, = 1
foralli. Let X = (X, -- -, X,) be a mean 0 Gaussian vector with covariance matrix
Z,orZ, Letu, ---,u, be nonnegative numbers and u = min; u;. Then,

(M43 |PLY, Suu 1SSk = PyY, S w1 S5 S K)
<43, o 1 2) 3]

Proor. By the usual argument (see [1] page 931) the left-hand side of (A.43)
is bounded by, 4 77, ; |§%ii ¢(u,, u;3 4) dA]. But, by an elementary inequality

(A.44) ¥ = 2pxy +yr = ;Jf)_ (x + v
Thus,
(A.45) Py ) = 6 (T8 A7) < pu ). 0

Take X, = Y (a)) — pr(a), X, = —Y,(a) + pp(a,) ete., k = 2N[tx*[a], |r
corresponding to the distribution of X under P, |s,;| corresponding to P, u, =
x — pp(ay), uy = y + p2,(a) etc. Evidently,

(A.46) u=(2logT)t + O((log T)~}) .

It is clear now that we can apply to the bound of (A.43) exactly the same analysis
as that given by Berman on pages 933-936 of [1] to arrive at the conclusion of
the theorem.

Note. By applying the more refined analysis of Pickands [11] pages 64-72 we
can show that the conclusion of the theorem also holds if (vi) is replaced by,

(A.47) lim,_, r(r)logt =0.

Unfortunately, the analysis of Berman appears to only yield the conclusion under
the stronger

(A.48) r()[log 7'« — 0.

We do not enter into this further since (vi) is what we need for Theorems 1.1
and 1.2.

5. Appendix B. Miscellanea.

THEOREM Bl. Let w be an absolutely continuous square integrable function with
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a square integrable derivative w'. Let,

(B.1) r(t) = § w(t + syw(s) ds .
Then r is twice differentiable and
(B.2) r') = —§ wi(t + syw'(s) ds .

Proor. We first show that
(B.3) r'(t) = § Wt + syw(s)ds = § w(s — )w'(s) ds .
Let w, W' be the Fourier transforms of w, w’. Then by Parseval,
(B.4) UG B %r { _(_e'___“”’"h— ) () du

Applying the dominated convergence theorem we obtain the existence of r’
given by
r(t = _ZL § et ulw(u)|? du = § w'(1 + s)w(s) ds .
v

Similarly
AL =P =t =P = e =0y
_ i eittthin _ oitu R 9
(®B.5) = § <—h_> u|w(u)|* du
o § R = —§ W5 — W) .
4

The theorem follows. Note that +/(0) = 0 from (B4) since || is symmetric.

THEOREM B2. Let w be absolutely continuous on [ — A, A] and O otherwise. Then
r has left and right derivatives at 0 and

(B.6) r(0) = —r(0) = —}(W¥(A) + wH(—A)).
ProoF. Write, for & > 0,

§ w(s + hz — w(s) w(s) ds

(B.7) = §aoh [% §o+h w(2) dz} w(s) ds — % §4_, wi(s) ds

= §LaW(S)w(s) ds — Wi (A) = —H(W(A) + w(—4))

by arguing as in Theorem Al and using Lebesgue’s theorem. Since r(—1) = r(f)
the result follows.

TueoreM B3. (Pickands) If H,(n,a), H (n) are defined as in (A.17), (A.19)
then (A.20) holds.

ProoF. Suppose first that 0 < « < 2. Let for y > 0,
(B8) H(n, 1) = {20 e[maxyg,, Y(1) > s + 1]ds = e TH,(n) .
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Then
|, (1 @) — T, (na. 1)
< _:l- [§2. e P[max,g,c,, Y(1) > 5 + 7, max,g, g, Y(ka) < s]ds
(B.9) + 1% € P[s < MaXog g, Y(0) £ 5 + 7] ds]
<

2z $Ze e P[Y(ka) < 5, MaXyogicuine Y(O) > s+ 7] ds

x|

1 .~ _
+ — [A,(na) — A (na 7)] .
If the summands on the right of the first term of (B.9) are denoted by A(k, 7, a)
then,
(B.10) Ak, 7,a) = (=, e {* 7(z, ka)

X P[max,,,, Y(t + ka) > s + y| Y(ka) = z]dz ds
where 7(z, ka) is the density of Y(ka). After some manipulation we obtain
(B.11)  A(k,7r,a) = (2. d(w) {5 e P[max,, ., (Y(t + ka) — Y(ka)) > s + 1| Y(ka)

=w + (ka)*]dsdw .
As k — oo, the finite dimensional conditional distributions of Y(t + ka) — Y(ka)
given Y(ka) = w + (ka)* tend for each w to those of Y(f), 0 <t < a. Arguing
as in Lemma Al we conclude that,
(B.12) lim, A(k, 7, @) = A(y, a) = {7 e*P[max,_,, Y(f) > s + y]ds.
Let Y*(t) = Y(1) + |7|*. Then,
A(r, a) < (7 e P[max,g,c, Y*(1) > s + 7] ds
(B.13) = {reP[max,,., Y*(t) > (s + r)a~**]ds
= a™%e™7 { %o e Plmax,g,o, Y¥(1) > wldw .

Applying Fernique’s estimate the right-hand side of (B.13) is O(exp —a~*"*) for
every r > 0. We conclude that,

(B.14)  limsup, lim sup, 1 |Hy(n, a) — H,(na,7)|
na

< (I — e77) lim sup, lim sup, i‘;l(aﬁ‘ﬁ

for every y > 0. Since,
P[max,g, g, Y(1) > 5]

Zo P[max, g, qppy Y(1) > 5]

(B.15) T
TE5 (PLY(K) < 5, MaXiass Y() > 5] + PIY(R) > s},

=<
=
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it is easy to see that,

(B.16) Sup,s, H (%) <
X
Hence,
(B.17) lim, lim sup, - |H,(n, a) — H (na)| = 0.
nha

But from the argument of Lemma A3 it is clear that for every a > 0,

H (na) .

(B.18) tim sup, 7" 9. < lim inf,
na na

The theorem follows for 0 < a < 2. For a = 2 we can use the representation
Y(f) = 2%tZ — 1* where Z is a standard normal deviate. Evidently,

2
(B.19) MXgcran YO = 5 i 05250
= naZ — na otherwise .

It follows that,

7 na a
(5) - ”=("’27)\

< nl_a §7 P[5t < Z < (s + @) ds ~ 2(1 — e~

(B.20)

1
na

by standard arguments. The theorem now follows generally.
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ESTIMATING INTEGRATED SQUARED DENSITY
DERIVATIVES : SHARP BEST ORDER OF
CONVERGENCE ESTIMATES"

By P. J. BICKEL

University of California at Berkeley
and
Y. RITOV

The Hebrew University of Jerusalem

SUMMARY. Estimation of the integral of the square of a derivative of the probability
density function is considered. The estimators we propose and their properties are a function
of the amount of smoothness assumed. The rate of convergence of the appropriate estimator
is shown to be optimal given the amount of smoothness assumed. In particular the appropriate
estimator achieves the information bound when estimation at an n~1/? rate is possible.

1. INTRODUCTION

Suppose X, X,, ..., X,, are iid., each with distribution function F.
Let f(.) be the probability density function of F, f® its k-th derivative and
Ox(F) = [ {f®)(x)}> dw. These functionals appear in the asymptotic variance
of the Wilcoxon statistic and in the asymptotics of the integrated M.S.E.
for kernel density estimates. Discussion of the estimation of and similar
parameters appear in Schweder (1975), Hasminskii and Ibragimov (1978),
Pfanzagl (1982), Prakasa Rao (1983), Donoho and Liu (1987) and Hall and
Marron (1987).

Ritov and Bickel (1987) show that the standard semiparametric informa-
tion bound for the estimation of §,(F) fails to give an achievable rate of con-
vergence. In fact, the information is strictly positive when f is bounded,
promising that the n~'/2 rate is achievable. Nevertheless, there is no rate
that can be achieved uniformly in small compact neighborhoods (in the total
variation norm) of a given distribution. Moreover, even if the uniformity
requirement is dropped then for any sequence of estimates {81} there exists an
(unknown) point F such that (@ —Ok(F)) doesn’t converge to 0 for any y > 0.

In this paper we consider classes of F which satisfy Holder conditions
on fm for suitable m. We establish the rate achievable under these condi-

*Research supported by Office of Naval Research N00014-80-C-0163.
AMS (1980) subject classification : 62G05, 62G20,
Key words and phras:s : estimation, density derivatives, semiparametrio information
bound, sharp rate convergence.
*Ap invited paper to Commemorate the 50-th volume of Sankhya.
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tions and exhibit estimators that achieve these rates. Our estimators con-
verge uniformly and when improvement is possible faster than similar esti-
mators suggested by Schweder (1975), Hasminskii and Ibragimov (1978),
and Hall and Marron (1987). In particular we need to assume weaker Holder
conditions to obtain n-1/2 rates and efficient estimators.

We believe that our proof of the best achievable rates is novel in that it
cannot be reduced to considering a sequence of simple vs. simple testing
problems and in effect requires the use of composite hypotheses of growing
sizo. Note that 0y can be estimated at the n—1/2 rate in any fixed regular finite
dimensional submodel.

2. MAIN RESULTS : THE ESTIMATORS AND THEIR PROPERTIES
Let Ox(F) = [ {f®(x)}* du where f is the (continuous) density of the dis-
tribution F. (In general we denote distribution functions by F or F, and
their densities by f or f, respectively.) Let o > 0, m be a nonnegative integer
and ¢(-) € Ly () L,. Suppose X;, ..., X, is a random sample from F. How
well can x(F) be estimated if it is known a priori only that F ¢ F,, , , where
Fppag={F: |f™@)—f" @+8)] < g @)]£]* for all x real |£] <1} ?
Wo begin by suggesting a family of estimators. Let %,(x) = o~ h(x/o)
where 4 is a kernel with the following properties :
h is symmetric about zero,
h(z) = 0 for |z| > 1,
[ h(x)dx = 1,
{a'h(z)dx = 0, i=1,2,..., max{k, m—k}
and A has 2k-1 derivatives.

Divide the sample into two subsamples X,, ..., X and anﬂ, . 4

n1
with comparable sizes (i.e. n,/n is bounded away from 0 and 1). Let if‘l and
17’2 be the empirical distribution functions of each subsample respectively.
Define, fix) = jh,(x—y)dfi(y), i1 =1,2. The dependence of f{ on o is left
implicit. Consider the following estimator of 6.
03Xy ..., Xy 5 0) =%951+%2 0, @1
where n = n;+n,
931(X1» iy X3 0)
o (TN N 1
= [Ji@de+t2nit 2 (fo (Xo)— [ fi(x)de)+— [ hi(z)de
2

= 2 [ hy(e—b)dF () dFyx)—n32 T 0 [ R (e—Xoh,(x—Xy)dz
nm+1l<iEj<n
(2.2)
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and 8%, is obtained by interchanging the roles of the two subsamples in bs,.-
The first two terms of 83, can be recgonized as Hasminskii and Ibragimov’s
estimate of this parameter which they show is efficient in R, , if « > 1/2.
This is the, by now, familiar one step estimate (see Bickel, 1982 ; Schick,
1986) using the estimated influence function 2(fy— | f¥x)dx). The last term
n
in (2.2) removes the pure known bias component, n;2 % [hX(x— X;)dz from
t=ny+1
[ fa@)de = ny2 2 [ hy(e—X)hy(x—X)dz. .. (23)
%]

Curiously enough this simpie debiasing leads to efficient estimation in
Fy, , fora>1/4 and (uriformly) +/n consistent estimation on Fy 1/ .
Moreover, 4/n consistent estimation is shown to be impossible for oo < 1/4.
More generally, if f has 2k consinuous derivatives,
Op(F) = (—1)¥[ fOR(@)f(x)de
= (—1)EEp(f*(X)).

This suggests, by the same process as above, estimates 87, 87, and ;. For
convenience we replace 85, by 8,; where n;2in (2.2) is replaced by [n,(n,— 1)}
and similar replacements are made in 85, and more generally 8. So the
estimate we study is

0u(X,, ..., X3 0) = 2(— 1)k [A20 (w—t)d P, (t)dFy(x)

—mo[n ny(n—1)]77 T [RP (@)= X AP (x— X;)dx
1I<i<j<n,

—n[n ny(ng—1)]72 > [ EP(@—X)hF(x—X)dv. ... (2.4)
m+1<IiLn
Our main results are summarized in the following two theorems. In
the first we describe the performance of 8 in terms of the assumed family
F, ., The rate of convergence of By to Ox(F) is a function of m—+a and
0y is “efficient” when m-4-a > 2k+-1/4. In the second theorem we show that
the rates given in the first theorem are, essentially, the best possible.
Theorem 1: Let {Fy, F,, ...} CF,, o where 0 < o < 1, m+a >k and
g €Ly () Lo Let Xpyy ..., Xy be id.d., Xpy~F, and let Op==0(Xpy, ..., X3 0)
where o, = n21+imtde)
(i) If m4o > 2k+1/4 then
—i 2
\/nl_ Or—Op(F,)— "

%

B (1 (Ku)—OuF, )] =0 (29)
=1

Let Iy(F,) = [Var{f# X )}172. Then, n Ix(F,)E {Or—Ok(F,))2> 1 and
L{y/n IY¥F,) (0 —Ox(F,))}— N(O, 1) provided lim sup Iy(F,) < co.
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(i) If k< mta 2k+1/4 then n*E{0r—6y(F,) is bounded when
v = 4(m+-a—k)/(1+4m+4a).

We conjecture, but have not checked the details, that it is possible to
estimate o by cross validation to obtain an estimate 8} = 8x(Xny, ..., X ; 60)
which does not depend on m and « but is equivalent to §; which does so depend
through o, given in the statement of Theorem 1.

Theorem 2 : (i) The information bound (in the sense of Khoshevnik and
Levit (1976)) for non parametric estimation of Ox(F), F € Fay 44 is given by
Ix(F) as defined in Theorem 1.

(i) Suppose k < m+a < 2k+1/4. Then there is a small compact set
F*C F,, o, such that for any c,— oo and any sequence of estimators Ty, T,..., T',
=T,X, ... X,), X;,X,, ..., X, @d, X;~F:

lem inf sup Ppic, n'|T,—0k(F)| > 1} =1 ... (2.6)
n FeF*

where y = 4(m+o—k)/(1+4m+4e). Moreover F* can be constructed so that
its only accumulation point is any specified Fye Fy 4 .

The proof of the first part of Theorem 2 is quite standard and follows
essentially the discussion in Hasminskii and Ibragimov (1978). The proof
of the second part of the Theorem is an extension of the ideas presented in
Ritov and Bickel (1987). In our problem, 6§, can be estimated at the n—1/2
rate in any one dimensional sub model of F, ,, and the information bound
of Theorem 2i) is the best bound that can be achieved using these techniques.
Yet for m+a < 2k-+1/4 this bound is unachievable by uniformly »!/2 con-
sistent estimates. In fact, for m+a < 2k+1/4 no uniformly n'/2 consistent
estimate exists. Even uniformity can be dropped—see Ritov and Bickel
(1987), Theorem 1. Our proof is based on the demonstration of a sequence
of difficult multiparameter Bayesian problems.

3. Proors

We begin the proofs with the following technical lemma whose own
proof is postponed to the end of the section.

Lemma 1 : Let o, m and g be suchthatoa > O0m > Oand g € Ly,. Then
sup{|fP(@)| : 2, F € Fp gt <00, i=0,1,...,m.
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Proof of Theorem 1: Evidently to establish Theorem 1 it is enough to
consider the asymmetric estimate

Bip = 2(—1)E [ [ h@0 (x—1) dF(t) dFy().
— 2{ny(n,—1)}* > [ B (x—Xpi) BE (€— Xpg) dev.

1si<jsny

We begin by estimating the conditional bias
BB ) —0(F,) = A1) | FE @) f(2) do

79 i-1
—2 {ny(n; —1)}71 21 S AP (2—Xp) AP (x— X pg) de— [ {fP()}? dev.

i=17=1
But
(=1 [fED@)f, (2)de = [ fP@)f® @)z
= n! nZI § B (22— X pi)f ®(cc)dae
i=1
= {ny(n,— 1)} s S EP@—X ) ®(x)de.
=1 1<j2IS ny

Hence

E(9k2|FA1)——0k(Fn) = —2{n,y(n,—1)}1 El ;éi J{PB (2 — X ) —f ) (2)}
{hﬁ,"’(x—Xn;)—ff,"’ (z)}dz. .. (38.1)

We obtain from (3.1) that

B Opy—Ok(F,) = [ {f¥(@)—fP(e)}dx .. (8.2
where f,, = fu* h,.
But
FB@)—fFB (@) = [ k() {fP(et0t)—fP(x)}de
m—k— (k+1)
= [hof Ellfﬂ_ﬁ(”—)— ottt . (33)

1) gy R+ )Pt

where 0 < 0* < o. The first term in the RHS of (8.3) is null by the construc-
tion of k. Since F, ¢ F,, ,, we can bound the integrand in the second term
and obtain :

[f8@)—fB(x)| < g @)omta [|¢]mta~k|h()|dt. e (34)
A 3-13
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Combine (3.2) and (3.4) to conclude that
| B Oio—0k(F,) | < |lglg n—tOnta-bitimita (Flg|mba=k|h(t) [dt)%. ... (3.5)
Next we estimate var (B(fiz|F)). Note that E(fs|F,) was written in

n, 1—1
(3.1) as a U-statistic, B(fiz | F1)—6k(F,) = 2{ny(n,—1)}* % 21 U(Xni, Xag*)

i=1j=
say.
By standard U-statistic theory,
var (BB | F1)} = n= {O(var[E (U (X1, Xpa) | Xa))
+0 (n! var U(X,;, X))} ... (3.6)
Now
B U (x, X,) = [ {BPt—2)—fPO} {fEO—fF @) dt
= [ 8(t) {hP—a)—fP @)t
say. Hence,

var [B{U(X , X,5)| Xpi}] = B[[8(w) {(HP(x— X 0) —fi2 (@)} do]?
= B [ [ 8(y) 8(x) {hP(y—X ) —f2 W)} (AP (@— X 1) —fD (@)} dz dy
< [§0y) () [ (y—t)hP(e—1)f,, () di dx dy
= [{[o@)hP(@—t)da}f, (£) dt
L 1812 o= {[| h® (z) | da}? = O(g>m+a=28) e (8.7)

by (3.4). At the same time, the random variable (B (@— X )W (e — X, )d
is bounded by o—%-1||h®)|2 and is equal to zero unless |X,;—X,,| < 20.
Since f, is bounded this last event has probability of the same order as o.

Hence
var {{ B (@— X, )i (x—X . )dx} = O (0. o~4-2).

Since |[f®(x) . b (x—X )| < | fPllo o~ § |A¥ ()] da we conclude that
var {U (Xpy, Xpo)}
= var[] (M (w— X ;)0 e— X ) — [P @I @ — X 1) — [P@ID(@— X )} div)]
= O(o—*+-1). (3.8)
We obtain from (3.1), (3.4), (3.6), (3.7), and (3.8) that
var {£ (3k2|ﬁ1)} = O(n-10%m+a~2) { p—25-4k-1)

= O(n=8(m+a=k)|(1+em+sa))
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for o given in the statement of Theorem 1. Hence (3.5) implies that
E{E (9k2|ﬁ’1)—0k(Fn)}2 = O (n-8(mta—k)/(1+4m-+da)) . (3.9)

We have proved that F (9k2]f‘1)—6k (F,) is of the right order (in parti-
cular it is op(n~/2) if m+a > 2k+-1/4). We turn to the investigation of the

behaviour of 8, — B (8,| ;). This will be carried on separately for the two
cases : 2k+4-1/4 < m+aand k < m4o < 2k+1/4.

(i) Suppose 2k+1/4 < m-+a. In the light of (3.9) we need only to
consider the conditional variance of 8, given the first sub sample. But,
8,5 is just a sum of 4.i.d. random variables, hence

given Xy, ..., erl’

2(— 1)k % l'f'('Zk) (Xng)+0x(F,)| 1711 }

var{ i, —
B n—m i=ny+

< A1 @S @S, @) de.

n—1"ny
So E var {§,—2 (— 1)k [ f& (2) dFy(0)+Ox(F,) | F}}
< e T U @180 @ faet 2 [ (var S0 (0)da.
= op(n7l). ... (3.10)

Now (3.9) and (3.10) imply the validity of (2.5). Since by Lemma 1, f, is
uniformly bounded, the first part of Theorem 1 follows.

(ii) Suppose k < m+a < 2k+1/4. We separate into two cases, 2k < m,
2k >m. If 2k < m,
| BfE () —f9 ()| = | [ B (e—0)f,, (Ot —f ()|
= | [/ (x—t)ho(O)dt—f) ()|
= | [/ (x—ot)—f2 (z))h(t)dt|

= 0(1)
so that R
Ef&® (x) = O(1). ... (3.11)
Also,

var ({0 (o)} < % [ (B2 (@— ), (1)t

1
< o Malle o1 ||RERE. .. (312)
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Then,

L 1 B @) ifa(e)e

0 (n—Z 0-—414:—1 + ’ﬂ_l )

E var 9| F) <

= O (n-8mia-R/atamisa), .. (3.13)
If 2k > m we compute,

|BfE0@)| = | B @—tf, O]

— | [ HE @— ]

— gkbm | [ R0 (o — o) |

= g=sm | [ REm() () (o —ot)— (@)t |

< glw) omta—tk [| h@-m)(t) | dt .. (3.14)

Again, by (3.12) and (3.14)
E var (O | ,) = O (n-2 o=kt -1 gmota=th)

= O (n-8tm+a—k)(1+4m-+42)) .. (3.15)

The result follows by (3.13), (3.15) and (3.9). [

Proof of Theorem 2 : (i) Let {F,} be a sequence of distributions with
densities f, and square root of densities s,. Suppose |s,—slf— 0 and

F{FR @) —f @) fo(@)da — 0.

Write, with some abuse of notation, Ox(s,) = Ox(F,). Then,

Ox(s,) = [ {f§P (@) dz+-2 [ fP@ff @) —f§ @) e+ {fiP @) —f@)f da.

(3.16)
Now
§ [ (@) {f® (@) —fP(@)de = (—1)F [ fE(@)f(x)de—Or(s,)
and = [{(—=1} f§P@)—Ou(so)}f (@), ... (3.17)

HfP ) —f() P de

= (= D¥f{f (@) —fo(@)} {f*(2)—fE(@)}d

= (—D)Ef{s,(x)—so(@)}* {f$* (@) =[P (@)}dw

+2(—1)*[so(@){s, (@) —so(@)} {P(2) —f§P(@)}dw

K IfEB+HF P llsy —soll3+2lls, —solla [J{F(x) —f 0 @) fo(w)dar]'/2

= 0(|[sy—5ollz)- . (8.18)
(8.16), (3.17) and (3.18) imply that

Ok(s,) = O(s0)+2[{(—1)EfF0(2)— Ok(Fo)} fy(@)dz+O(ls,—Soll2)-
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This means that Ox(s) is Fréchet differentiable along such paths with
derivative 4{(—1)¥ f&—@y(F,)}s, and the result follows by standard theory.

(ii) Here, as in Ritov and Bickel (1987) we prove the assertion by
presenting a sequence of Bayes problems. In the nth problem we observe
X5, X, iid, X; ~ FeF,, , ,. The loss function is L,(0, d) = 1{|6—d1> Iy,
F is picked according to a measure II, to be described next. Note that the
sequence II;, II,,... is constructed such that the union of their supports F* is
compact with F, its only accumulation point. Let F.eF,,,, be arbitrary.
Clearly, f, is bounded away from zero on some interval. For simplicity we

take this interval to be [0, 1]. To simplify the notation we assume also that

sup g(#) < 1.
z€[0, 1]
We now describe IT,. Let Ay, ¢ =0, 1,..., v—1 be a sequence of

1
functions such that [ Ay(x)de =0, AD0)=AP(1)=0, j=0,.., m+l,
0

G+

J{Fo(x)® dz = 1 and ' [ MPe—i)f®x)de = 0. Let § equal 0,1,..,r—1

iy
with probability 1/r and let A,,..., A,_; be iid, independent of £ and each equal
to+1 with probability 1/2. Let F be the random measure with density

f@) = fol@)+ pr—m+® Aghy(va—3) on [ifv, (i+1)/v).

The measure that governs the selection of F isII,. Clearly, for any F in the
support of IT, by our assumptions of 7;,

Ou(F) = Op(Fg)+pov=2m+artzk,

That is Ox(F) equals Ox(Fg)-jr=2mte-B if g = j.,
We show that if
nPy=Wmttatl_y O .. (3.19)

then the variational distance between the probability measures of X, ..., X,
under =1 and f = jtends to 0. Assume that this is the case and F is
distributed according to II,, IT, satisfies (3.19) and

y=2m+a=-kg nY 5 00 ... (3.20)

where
v = 4m~+a—k)[(1+4m-4e).

This is possible if k < m+a. If

Ang = {|Tn—0k (Fj)| <l[e, 0]}
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then by construction for » sufficiently large the 4,; are disjoint. The Bayes
risk for estimating 6y () using our loss function is

l r
R, = PP (45)

r j=1
LS poa
= 1—; Pt i ( nj).

But, by the equivalence of P[.|8 = ¢] and P[.|8 = j] we have observed
P (Ans)— P§ (Ang)—> O for each j.

So,
. 1 — I
lim, R, > 1—— lim 3% P{ (Ang)
— j=1
1— 4 1
=1—""1 (1) —_
= 1— Fim Py (ng,,j) >1—.
Finally

inf sup Prlc, n'[Tp—0k(F)| > 11 > R,.
T, FeF*
Hence, since r is arbitrary,
lim inf sup Pglc, »'|T,—O0k(F)| > 1]1=1
7 T, FeF*
as advertised. This combines ideas of Hasminskii (1979) and Stone (1983).

We turn to the proof that (3.22) implies convergence of the variational
distance. Let Ny, ¢ =0, ...,v—1 be the number of X’s in [i/v, (¢+1)/v) and
let X,..., XiN; be the set of observations in that interval. Note that the
random vector (N, ..., N,_;) is independent of £ and (A,,..., A,_,), and that
the blocks (X, ..., X,.Ni) and (Xy, ..., Xij)’ ¢ #j are independent given
N,; and N;. Without loss of generality consider § = 0 and g = 1.

v—1
The likelihood ratio of § = 1 to § = 0is L = II L; where

=0

N, N,
L= 12T {1t U f Ui} 112 T (1= ms U (Ui}

LNy12) (U
=1+ ‘Z p-2émtall 3 Y hi(Uth) 4 Uﬂ)
1=1 1seees o fo(U“l) fo(Ui'Jal)

all different

where Uy = vX¢—i and [z] is the greatest integer not larger than z.
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Note that, fi(@) : = | » {Fo (FE1)—F, (iy)}] o ) s the density of

14

Uy under f,,. We show that L 5 1 under F,, which implies that the varia-
tional distance between the two conditional distribution tends to 0.

1
Since | hy(z)dx = 0,
0
E(Li—1|Ny) = 0. .. (8.21)
Since ||f,| < co by the lemma and the infimum of f, on [0, 1] is > 0 by
construction we obtain

I?Z(ZL))f“ wdu = § ;((Z) [{Fo(Hvl)‘“(é)}]_1<[z€i3fj]fo(x)12 < .

Let 4 = s_up;[ fo7%(u) fi(w) B2(u) du. Then

[¥312] N;
var (Li—1|N) < X v—4<m+=>l( )Azt,
ey 2l

and

— v— y—1 [¥¢/2]
Va,r{:_2: (L,—l)}=E{i_E: (L-17)< EE: Tyt (1\;‘)1421 . (3.22)

Let ps = Fy ((i+1)/v)—Fo(ifv). Straightforward calculations give

[&4/2] N
—amia)l (2 ga
B El 4 (21) 4

J=2
— [zm (dy-2mso n! oo 1 il—pyni
l)' soz (§—20) L n—j) ! :
[n/2] n2l  (p—2I)! .
—_ —2(m+a))21 —_—_ J+21 (1 — n—2l—7
T (dyrm) (o ),,o Tn—zi—j1 P =)

{n/2]
— —2(m+a))2l
=% @prmert ()

[n/zzl
)T
= (140(1 ))Aznzp;; y-dmia) = O(n v—(2@+2a+1))2

' S (nd pg v2m0)2l L exp{ndp; vHmHOP 1 ... (3.23)

since v Py < ||folleo-
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We obtain from (3.22) and (3.23) that
v=1
var {'T (Li—1)} = O(u—2y-umsssn)
i=0
Therefore, from (3.19) and (3.21) we obtain :
v=1 v=1
3 (Li—1) = op(1) and T (L;—1)? = 0p(1)
i=0 i=0
both under F,. Hence
v—1 v—1 P
log L = & (Li—1)+0 (= (L;—1)2) 5o
=0 i=0

under F, proving the assertion. [

Proof of Lemma 1: It is enough to prove that for any o; > 0 and dy < o,

sup {1 D@ —fO@) | [1e—y|"} < ds . (3.24)
0<izyls 1
implies that
If e < e ... (3.25)

where ¢; < oois a function of &; and d; only. Suppose (3.24) implies (3.25) then
|f-D(@)—f4 V()| = |fP@N)] [e—y| < ale—y] for 0 < [o—y| <1

and the lemma follows by backward induction from m.

Suppose (3.1) holds. Let b; be an arbitrary number lying in (0, 1] and
assume that f@(z) > d¢(b¢/2)"‘ for a point xe R. Then

Fy) > ap = fO(x)—dy(bi/2)™ > 0 .. (3.26)
for all y € [x—b4/2, x-+bs/2] = Js.

Then f4-1(«) is monotone on J; and |f¢1(y)|, y e J4, can be smaller than
a;_1 = 1/4a;b; only on an interval of length smaller than 1/2b;. This leaves
an interval J,_; of length b;_; > 1/4b; on which either inf {f42(y)} > a;_4

yeJo-y
or sup {f%V(y)} < —a;_;. Continue this line of argument inductively and
yeJi-y

obtain that (3.26) entails that f(y) > @ > a;b}/2!¢*") on the interval J, whose
length is b, > 4~ b;. But f() is a probability density function and hence

1> aghy > 27149 g bitt,
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Therefore,
fO@) = ar4-dy(by/2)™
< 20D L dy(b;/2)™.

Hence f® is bounded and the lemma follows. [

Acknowledgment. P. Hall and S. Marron pointed out a gap in our
original proof of Theorem 2 which we have corrected.
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Abstract: We reveal the phenomenon that “naive” multivariate local polyno-
mial regression can adapt to local smooth lower dimensional structure in the
sense that it achieves the optimal convergence rate for nonparametric estima-
tion of regression functions belonging to a Sobolev space when the predictor
variables live on or close to a lower dimensional manifold.

1. Introduction

It is well known that worst case analysis of multivariate nonparametric regression
procedures shows that performance deteriorates sharply as dimension increases.
This is sometimes refered to as the curse of dimensionality. In particular, as initially
demonstrated by [19, 20], if the regression function, m(z), belongs to a Sobolev
space with smoothness p, there is no nonparametric estimator that can achieve a
faster convergence rate than n™ Tr’%l’, where D is the dimensionality of the predictor
vector X.

On the other hand, there has recently been a surge in research on identifying
intrinsic low dimensional structure from a seemingly high dimensional source, see
[1, 5, 15, 21] for instance. In these settings, it is assumed that the observed high-
dimensional data are lying on a low dimensional smooth manifold. Examples of
this situation are given in all of these papers — see also [14]. If we can estimate
the manifold, we can expect that we should be able to construct procedures which
perform as well as if we know the structure. Even if the low dimensional structure
obtains only in a neighborhood of a point, estimation at that point should be gov-
erned by actual rather than ostensible dimension. In this paper, we shall study this
situation in the context of nonparametric regression, assuming the predictor vec-
tor has a lower dimensional smooth structure. We shall demonstrate the somewhat
surprising phenomenon, suggested by Bickel in his 2004 Rietz lecture, that the pro-
cedures used with the expectation that the ostensible dimension D is correct will,
with appropriate adaptation not involving manifold estimation, achieve the optimal
rate for manifold dimension d.

Bickel conjectured in his 2004 Rietz lecture that, in predicting Y from X on the
basis of a training sample, one could automatically adapt to the possibility that
the apparently high dimensional X that one observed, in fact, lived on a much
smaller dimensional manifold and that the regression function was smooth on that
manifold. The degree of adaptation here means that the worst case analyses for
prediction are governed by smoothness of the function on the manifold and not on
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the space in which X ostensibly dwells, and that purely data dependent procedures
can be constructed which achieve the lower bounds in all cases.

In this paper, we make this statement precise with local polynomial regression.
Local polynomial regression has been shown to be a useful nonparametric technique
in various local modelling, see [8, 9]. We shall sketch in Section 2 that local linear
regression achieves this phenomenon for local smoothness p = 2, and will also argue
that our procedure attains the global IMSE if global smoothness is assumed. We
shall also sketch how polynomial regression can achieve the appropriate higher rate
if more smoothness is assumed.

A critical issue that needs to be faced is regularization since the correct choice
of bandwidth will depend on the unknown local dimension d(z). Equivalently, we
need to adapt to d(z). We apply local generalized cross validation, with the help of
an estimate of d(z) due to [14]. We discuss this issue in Section 3. Finally we give
some simulations in Section 4.

A closely related technical report, [2] came to our attention while this paper was
in preparation. Binev et al consider in a very general way, the construction of non-
parametric estimation of regression where the predictor variables are distributed
according to a fixed completely unknown distribution. In particular, although they
did not consider this possibility, their method covers the case where the distribution
of the predictor variables is concentrated on a manifold. However, their method is,
for the moment, restricted to smoothness p < 1 and their criterion of performance
is the integral of pointwise mean square error with respect to the underlying dis-
tribution of the variables. Their approach is based on a tree construction which
implicitly estimates the underlying measure as well as the regression. Our discus-
sion is considerably more restrictive by applying only to predictors taking values
in a low dimensional manifold but more general in discussing estimation of the
regression function at a point. Binev et al promise a further paper where functions
of general Lipschitz order are considered.

Our point in this paper is mainly a philosophical one. We can unwittingly take
advantage of low dimensional structure without knowing it. We do not give careful
minimax arguments, but rather, partly out of laziness, employ the semi heuristic
calculations present in much of the smoothing literature.

Here is our setup. Let (X;,Y;), (i = 1,2, ...,n) be i.i.d RP*! valued random vec-
tors, where X is a D-dimensional predictor vector, Y is the corresponding univariate
response variable. We aim to estimate the conditional mean mo(z) = E(Y|X = z)
nonparametrically. Our crucial assumption is the existence of a local chart, i.e.,
each small patch of X' (a neighborhood around z) is isomorphic to a ball in a d-
dimensional Euclidean space, where d = d(z) < D may vary with z. Since we fix
our working point z, we will use d for the sake of simplicity. The same rule applies
to other notations which may also depend on z.) More precisely, let Bf,r denote
the ball in R¢, centered at z with radius 7. A similar definition applies to Bg - For
small R > 0, we consider the neighborhood of z, X, := 3 g N X within X. We
suppose there is a continuously differentiable bijective map ¢ : Bg‘, +— X;. Under
this assumption with d < D, the distribution of X degenerates in the sense that it
does not have positive density around z with respect to Lebesgue measure on RP.
However, the induced measure Q on Bg’r defined below, can have a non-degenerate
density with respect to Lebesgue measure on R%. Let S be an open subset of X,
and ¢~1(S) be its preimage in Bgff). Then Q(Z € ¢~1(S)) = P(X € S). We assume
throughout that Q admits a continuous positive density function f(-). We proceed
to our main result whose proof is given in the Appendix.
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2. Local linear regression

[17] develop the general theory for multivariate local polynomial regression in the
usual context, i.e., the predictor vector has a D dimensional compact support in
RD. We shall modify their proof to show the "naive” (brute-force) multivariate local
linear regression achieves the ”oracle” convergence rate for the function m(¢(z)) on
BE..

Local linear regression estimates the population regression function by &, where
(&, B) minimize

n

3 (Y- o~ B7(X: ~ 2)) Kn(X; - ).

i=1

Here Ki(-) is a D—variate kernel function. For the sake of simplicity, we choose the
same bandwidth h for each coordinate. Let

1 (X1 _il‘)T
x-lop ]
1(Xp —2)T

and W, = diag{Kn(X1—z), ..., Kn(Xn—z)}. Then the estimator of the regression
function can be written as

m(z, h) = T (XITW, X,) 1 XIW,Y

where e; is the (D + 1) x 1 vector having 1 in the first entry and 0 elsewhere.

2.1. Decomposition of the conditional MSE

We enumerate the assumptions we need for establishing the main result. Let M be
a canonical finite positive constant,

(i) The kernel function K (-) is continuous and radially symmetric, hence bound-

(ii) There exists an €(0 < € < 1) such that the following asymptotic irrelevance
conditions hold.

X — .
BK" (T2 w(01(X € (BEj-c 1 X)°)| = o(h*?)
for vy = 1,2 and |w(z)| < M(1 + |z|?).
(iil) v(z) = Var(Y|X =z) < M.
(iv) The regression function m(z) is twice differentiable, and ||3%||oo < M for
alll1<a<b< Difz=(z4,...,ZD).
(v) The density f(-) is continuously differentiable and strictly positive at 0 in
d

0,r*

Condition (ii) is satisfied if K has exponential tails since if V = X 7%, the conditions
can be written as

E[KY(V)w(z + hV)1(V € (BP)pi-c)°] = o(h*+?).
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Theorem 2.1. Let x be an interior point in X. Then under assumptions (3)-(v),
there exist some Ji(z) and Jo(z) such that

E{m(z,h) — m(z)|X1,..., Xpn} = B2J1(z)(1 + 0p(1)),

Var{m(z,h) — m(@)|X1,- .., Xn} = n7 A" a(z)(1 + 0p(1)).

Remark 1. The predictor vector doesn’t need to lie on a perfect smooth manifold.
The same conclusion still holds as long as the predictor vector is “close” to a
smooth manifold. Here “close” means the noise will not affect the first order of our
asymptotics. That is, we think of X,...,X,, as being drawn from a probability
distribution P on R concentrated on the set

X ={y:|p(u) —y| < e, for some u € BE,}

and €, — 0 with n. It is easy to see from our arguments below that if €, = o(h),
then our results still hold.

Remark 2. When the point of interest z is on the boundary of the support X, we
can show that the bias and variance have similar asymptotic expansions, following
the Theorem 2.2 in [17]. But, given the extra complication of the embedding, the
proof would be messier, and would not, we believe, add any insight. So we omit it.

2.2. Eztensions

It’s somewhat surprising but not hard to show that if we assume the regression
function m to be p times differentiable with all partial derivatives of order p bounded
(p > 2, an integer), we can construct estimates 7 such that,

E{m(z,h) — m(z)|X1,...,Xn} = h?J1(z)(1 + 0p(1)),
Var{m(z,h) —m(z)| X1, ..., Xn} = n A" (x)(1 + op(1))

yielding the usual rate of n~ %% for the conditional MSE of m(z, h) if h is chosen
optimal, h = An~ ¥, This requires replacing local linear regression with local
polynomial regression with a polynomial of order p — 1. We do not need to estimate
the manifold as we might expect since the rate at which the bias term goes to 0
is derived by first applying Taylor expansion with respect to the original predictor
components, then obtaining the same rate in the lower dimensional space by a first
order approximation of the manifold map. Essentially all we need is that, locally,
the geodesic distance is roughly proportionate to the Euclidean distance.

3. Bandwidth selection

As usual this tells us, for p = 2, that we should use bandwidth A~ 7 to achieve
the best rate of n~%7. This requires knowledge of the local dimension as well as
the usual difficult choice of A\. More generally, dropping the requirement that the
bandwidth for all components be the same we need to estimate d and choose the
constants corresponding to each component in a simple data determined way.
There is an enormous literature on bandwidth selection. There are three main
approaches: plug-in ([7, 16, 18], etc); the bootstrap ([3, 11, 12], etc) and cross
validation ([6, 10, 22], etc). The first has always seemed logically inconsistent to
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us since it requires higher order smoothness of m than is assumed and if this
higher order smoothness holds we would not use linear regression but a higher
order polynomial. See also the discussion of [23].

We propose to use a blockwise cross-validation procedure defined as follows. Let
the data be (X;,Y;),1 <4 < n. We consider a block of data points {(X;,Y;):j €
J}, with |J| = n;. Assuming the covariates have been standardized, we choose the
same bandwidth h for all the points and all coordinates within the block. A leave-
one-out cross validation with respect to the block while using the whole data set
is defined as following. For each j € J, let 7i_; ,(X) be the estimated regression
function (evaluated at X;) via local linear regression with the whole data set except
X;. In contrast to the usual leave-one-out cross-validation procedure, our modified
leave-one-out cross-validation criterion is defined as mCV(k) = L 3. 75 —

1 J
m_jn(X;))?. Using a result from [23], it can be shown that

Ly O
mOV (k) = - Z.:'I (f ~ Sn(4,4))?

where Sy (j, j) is the diagonal element of the smoothing matrix S,. We adopt the
GCYV idea proposed by [4] and replace the Si(j,j) by their average atrs(Sh) =
n% Zje 7Sh(4,3)- Thereby our modified generalized cross-validation criterion is,

(¥ — 1 (X;))?
mGCV (h) = Z 1—atT;(Sh))2

The bandwidth h is chosen to minimize this criterion function.
We give some heuristics for the justifying the (blockwise homoscedastic) mGCV.
In a manner analogous to [23], we can show

Sn(5,3) = eT (XTW,Xz) " e1 Kn(0)|z=x,-

In view of (A.2) in the Appendix, we see Sy (j, ) = n " h 2K (0)(A1(X;) + op(1)).
Thus as n~1h~%¢ = 0,

atr7(Sp) =" hTAK(0)(ny " ) Ai(X;) + 0p(1))
jET
=0,(n" h%) = 0,(1).

Then, as is discussed in [22], using the approximation (1 —z)~2 = 1 + 2z for small
z, we can rewrite mGCV (h) as

mGCV (k) = ! — (¥ - mn(X;))? + —tTJ(Sh) Z(Yj — 1 (X;))%
Ry ™ je7

Now regarding ;- 3, 7(Yj — 7 (X;))? in the second term as an estimator of the
constant variance for the focused block, the mGCV is approximately the same as
the C, criterion, which is an estimator of the prediction error up to a constant.

In practice, we first use [14]’s approach to estimate the local dimension d, which
yields a consistent estimate d of d. Based on the estimated intrinsic dimensionality
d, a set of candidate bandwidths CB = {)\ln_-’fh, .. .,/\Bn_'d'h} (A1 <+ <2AB)
are chosen . We pick the one minimizing the mGCV (h) function.
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4. Numerical experiments

The data generating process is as following. The predictor vector X = (X(1), X(2),
X(3)), where X(1y will be sampled from a standard normal distribution, X)) =
X(1) + sin(X(y)) — 1, and X3y = log(X?l) + 1) — X(1). The regression function
m(z) = m(x(y,T(2),T(3) = cos(zM) + T(9) — z%s). The response variable Y is
generated via the mechanism Y = m(X) + €, where € has a standard normal
distribution. By definition, the 3-dimensional regression function m(z) is essentially
a 1-dimensional function of z(;). n = 200 samples are drawn. The predictors are
standardized before estimation. We estimate the regression function m(z) by both
the "oracle” univariate local linear (ull) regression with a single predictor X(;) and
our blind 3-variate local linear regression with all predictors X (), X(2), X(3)-

We focus on the middle block with 100 data points, with the number of neighbor
parameter k, needed for Levina and Bickel’s estimate, set to be 15. The intrinsic
dimension estimator is d = 1.023, which is close to the true dimension, d = 1.
‘We use the Epanechnikov kernel in our simulation. Our proposed modified GCV
procedure is applied to both the ull and mll procedures. The estimation results are
displayed in Figure 1. The x — axis is the standardized X(;). From the right panel,
we see the blind mll indeed performs almost as well as the “oracle” ull.

Next, we allow the predictor vector to only lie close to a manifold. Specifically,
we sample X (1) = X{;) +€7, X(2) = Xg) +sin(X(’1)) —146,X@3) = 10g(Xﬁ) +1)—
X (’1) + €4, where X(’l) is sampled from a standard normal distribution, and €}, €
and € are sampled from N(0,5'2). The noise scale is hence governed by o¢’. In
our experiment, o’ is set to be 0.02,0.04,...,0.18,0.20 respectively. The predictor
vector samples are visualized in the left panel of Figure 2 with ¢/ = 0.20. In the
maximum noise scale case, the pattern of the predictor vector is somewhat vague.
Again, a blind “mll” estimation is done with respect to new data generated in the
aforementioned way. We plot the MSEs associated with different noise scales in the
right panel of Figure 2. The moderate noise scales we’ve considered indeed don’t

have a significant influence on the performance of the “mll” estimator in terms of
MSE.

, .
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Fi1G 1. The case with perfect embedding. The left panel shows the complete data and fitting of
the middle block by both univariate local linear (ull) regression and multivariate local linear (mll)
regression with bandwidths chosen via our modified GCV. The focused block is amplified in the
right panel.
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FiG 2. The case with “imperfect” embedding. The left panel shows the predictor vector in a 3-D
fashion with the noise scale ' = 0.2. The right panel gives the MSEs with respect to increasing
noise scales.

Appendix

Proof of Theorem 2.1. Using the notation of [17], H,,(z) is the D x D Hessian
matrix of m(z) at z, and

Qm(2) = (X1 = 2) " Hm(2) (X1 — ), , (Xn — 2) Hin(2) (X5 — )]
Ruppert and Wand have obtained the bias term.
E(Tﬁ(m h’) TTL(IL‘)IXl, o an)

(A1)
_el 1 (Xg WeXa) ™' Xg Wo{Qm(2) + Rm(2)}

where if | - | denotes Euclidean norm, |R,,(z)| is of lower order than |Q,(z)|. Also
we have

nIXITW, X,

_[ n~tYr ) Ki(X; — ) Y Kn(Xo —2)(X; — )T ]
T T Y Kn(X —2)(X —2) n Tt 1 Kn(X - 2) (X — o)X —2)T ]

The difference in our context lies in the following asymptotics.
EKp(X;—z) = E[Kh(X- — 1) I(X € Bz hi-c ﬂX)]
+E[Kh(X'—:L'1(X E( z,h1- eﬁX) )]

@) h-D(/N,, (W—_)f(z’)dz’ + OP(hd))

0,nl—¢

= w=P(5(0) /})t K(V4(0pu)du +0p(1))
= h® P (Ai(z) + 0p(1)).
Thus, by the LLN, we have

-lth i — ) = h*P(A1(z) +0p(1)).
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Similarly, there exist some As(z) and As(z) such that
n7! Y Kn(X; — z)(Xi — z) = h?T47P (Ay(z) + op(1))
i=1

and
n Y Kn(Xi — 2)(X; — z)(Xi — 2)T = B*4P(A3(z) + 0p(1))

i=1
where we used assumption (i) to remove the term of order A't4~L in deriving
the asymptotic behavior of n=1 Y"1 | Kx(X; — z)(X; — z). Invoking Woodbury’s
formula, as in the proof of Lemma 5.1 in [13], leads us to

13T -1 _,;p_q[Ai(z)' +op(1) Op(1)
(A.2) (' XTW,X,) " =h [ sty h20, (1)]
On the other hand,

n-leW:ch(x)
[ L ) e 2)
n Y KR (X — 2)(Xi — 2)THon (2) (X — 2)}(Xi — 2) ]

In a similar fashion, we can deduce that for some Bj(z), B2(z),
n! En:Kh(Xi —2)(Xi — 2) T Hum(2)(X; — z) = h*Y4P(By(z) + 0p(1))
i=1
and
n~! i{Kh(Xi —z)(Xi — 2)THm(z)(Xi —2)}(Xi — ) = h3+d_D(Bz(x) +op(1)).
i=1

‘We have

(A.3) T X WeQm(z) = 4P [Zzgigg i Zigg; ]

It follows from (A.1),(A.2) and (A.3) that the bias admits the following approxi-
mation.

(A.4) E(f(z, h) — m(z)| X1, ..., Xn) = h2A;(z) "By (z) + op(h?).
Next, we move to the variance term.

Var{m(z,h)|X1,...,Xn}

A5
(A-5) = T (XTW, X,) " XTW, VW, X, (XTW, X,) ey

The upper-left entry of n_‘X;r W, VW, X, is
n
n1Y " Kn(Xi — 2)%0(X;) = h47?PCy()(1 + 0p(1)).
i=1

The upper-right block is

nt Zn: Kn(Xi — 2)*(Xi — 2)Tv(X;) = h'+972PCa(2) (1 + 0p(1))

i=1
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and the lower-right block is

n! iKh(Xi —2)3(X; — 2)(Xi — )Tu(X;) = h2H4-2DCy(z) (1 4 0p(1)).

i=1
In light of (A.2), we arrive at
(A.6) Var{i(z,h)|X1,...,Xn} = n " h™4A;(z) "2C1(z)(1 + op(1)).

The proof is complete. O
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