
Chapter 4
Function Estimation

Hans-Georg Müller

4.1 Introduction to Three Papers on Nonparametric
Curve Estimation

4.1.1 Introduction

The following is a brief review of three landmark papers of Peter Bickel on
theoretical and methodological aspects of nonparametric density and regression
estimation and the related topic of goodness-of-fit testing, including a class of
semiparametric goodness-of-fit tests. We consider the context of these papers, their
contribution and their impact. Bickel’s first work on density estimation was carried
out when this area was still in its infancy and proved to be highly influential for the
subsequent wide-spread development of density and curve estimation and goodness-
of-fit testing.

The first of Peter Bickel’s contributions to kernel density estimation was
published in 1973, nearly 40 years ago, when the field of nonparametric curve
estimation was still in its infancy and was poised for the subsequent rapid expansion,
which occurred later in the 1970s and 1980s. Bickel’s work opened fundamental
new perspectives, that were not fully developed until much later. Kernel density
estimation was formalized in Rosenblatt (1956) and then developed further in
Parzen (1962), where bias expansions and other basic techniques for the analysis
of these nonparametric estimators were showcased.

Expanding upon an older literature on spectral density estimation, this work set
the stage for substantial developments in nonparametric curve estimation that began
in the later 1960s. This earlier literature on curve estimation is nicely surveyed
in Rosenblatt (1971) and it defined the state of the field when Peter Bickel made
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the first highly influential contribution to nonparametric curve estimation in Bickel
and Rosenblatt (1973). This work not only connected for the first time kernel
density estimation with goodness-of-fit testing, but also did so in a mathematically
elegant way.

A deep study of the connection between smoothness and rates of convergence
and improved estimators of functionals of densities, corresponding to integrals of
squared derivatives, is the hallmark of Bickel and Ritov (1988). Estimation of
these density functionals has applications in determining the asymptotic variance
of nonparametric location statistics. Functional of this type also appear as a factor
in the asymptotic leading bias squared term for the mean integrated squared error.
Thus the estimation of these functional has applications for the important problem
of bandwidth choice for nonparametric kernel density estimates.

In the third article covered in this brief review, Bickel and Li (2007) introduce a
new perspective to the well-known curse of dimensionality that affects any form of
smoothing and nonparametric function estimation in high dimension: It is shown
that for local linear smoothers in a nonparametric regression setting where the
predictors at least locally lie on an unknown manifold, the curse of dimensionality
effectively is not driven by the ostensible dimensionality of the predictors but rather
by the dimensionality of the predictors, which might be much lower. In the case of
relatively low-dimensional underlying manifolds, the good news is that the curse
would then not be as severe as it initially appears, and one may obtain unexpectedly
fast rates of convergence.

The first two papers that are briefly discussed here create a bridge between den-
sity estimation and goodness-of-fit. The goodness-of-fit aspect is central to Bickel
and Rosenblatt (1973), while a fundamental transition phenomenon and improved
estimation of density functionals are key aspects of Bickel and Ritov (1988). Both
papers had a major impact in the field of nonparametric curve estimation. The third
paper (Bickel and Li 2007) creates a fresh outlook on nonparametric regression and
will continue to inspire new approaches. Some remarks on Bickel and Rosenblatt
(1973) can be found in Sect. 2, on Bickel and Ritov (1988) Sect. 3, and on Bickel
and Li (2007) in Sect. 4.

4.1.2 Density Estimation and Goodness-of-Fit

Nonparametric curve estimation originated in spectral density estimation, where
it had been long known that smoothing was mandatory to improve the properties
of such estimates (Daniell 1946; Einstein 1914). The smoothing field expanded to
become a major field in nonparametric statistics around the time the paper Bickel
and Rosenblatt (1973) appeared. At that time, kernel density estimation and other
basic nonparametric estimators of density functions such as orthogonal least squares
(Čencov 1962) were established. While many results were available in 1973 about
local properties of these estimates, there had been no in-depth investigation yet of
their global behavior.



4 Function Estimation 217

This is where Bickel’s influential contribution came in. Starting with the
Rosenblatt-Parzen kernel density estimator

fn(x) =
1

nb(n)

n

∑
i=1

w
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b(n)

)
=

∫
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b(n)
w

(
x− u
b(n)

)
dFn(u), (4.1)

where b(n) is a sequence of bandwidths that converges to 0, but not too fast, w a
kernel function and dFn stands for the empirical measure, Bickel and Rosenblatt
(1973) consider the functionals

D1 = sup
a1≤x≤a2

| fn(x)− f (x)|/( f (x))1/2, (4.2)

D2 =

∫ a2

a1

[ fn(x)− f (x)]2

f (x)
. (4.3)

The asymptotic behavior of these two functionals proves to be quite different.
Functional D1 corresponds to a maximal deviation on the interval, while functional
D2 is an integral and can be interpreted as a weighted integrated absolute deviation.
While D2, properly scaled, converges to a Gaussian limit, D1 converges to an
extreme value distribution. Harnessing the maximal deviation embodied in D1

was the first serious attempt to obtain global inference in nonparametric density
estimation. As Bickel and Rosenblatt (1973) state, the statistical interest in this
functional is twofold, as (i) a convenient way of getting a confidence band for f . (ii)
A test statistic for the hypothesis H0 : f = f0. They thereby introduce the goodness-
of-fit theme, that constitutes one major motivation for density estimation and has
spawned much research to this day. Motivation (i) leads to Theorem 3.1, and (ii) to
Theorem 3.2 in Bickel and Rosenblatt (1973).

In their proofs, Bickel and Rosenblatt (1973) use a strong embedding technique,
which was quite recent at the time. Theorem 3.1 is a remarkable achievement. If
one employs a rectangular kernel function w = 1[− 1

2 ,
1
2 ]

and a bandwidth sequence

b(n) = n−δ , 0 < δ < 1
2 , then the result in Theorem 3.1 is for centered processes

P

[
(2δ logn)1/2

(
[nb(n) f−1(t)]1/2 sup

a1,a2

[ fn(t)−E( fn(t))]− dn

)
< x

]
→ e−2e−x

,

where

dn = ρn − 1
2

ρ−1
n [log(π + δ )+ loglogn], ρn = (2δ logn)1/2.

The slow convergence to the limit that is indicated by the rate (logn)1/2 is typical
for maximal deviation results in curve estimation, of which Theorem 3.1 is the first.
A multivariate version of this result appeared in Rosenblatt (1976).
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A practical problem that has been discussed by many authors in the 1980s and
1990s has been how to handle the bias for the construction of confidence intervals
and density-estimation based inference in general. This is a difficult problem. It is
also related to the question how one should choose bandwidths when constructing
confidence intervals, even pointwise rather than global ones, in relation to choosing
the bandwidth for the original curve estimate for which the confidence region is
desired (Hall 1992; Müller et al. 1987). For instance, undersmoothing has been
advocated and also other specifically designed bias corrections. This is of special
relevance when the maximal deviation is to be constructed over intervals that include
endpoints of the density, where bias is a particularly notorious problem.

For inference and goodness-of-fit testing, Bickel and Rosenblatt (1973), based
on the deviation D2 as in (4.3), propose the test statistic

Tn =

∫
[ fn(x)−E( fn(x))]

2a(x)dx

with a weight function a for testing the hypothesis H0. Compared to classical
goodness-of-fit tests, this test is shown to be better than the χ2 test and incorporates
nuisance parameters as needed. This Bickel-Rosenblatt test has encountered much
interest; an example is an application for testing independence (Rosenblatt 1975).

Recent extensions and results under weaker conditions include extensions to the
case of an error density for stationary linear autoregressive processes that were
developed in Lee and Na (2002) and Bachmann and Dette (2005), and for GARCH
processes in Koul and Mimoto (2010). A related L1-distance based goodnes-of-
fit test was proposed in Cao and Lugosi (2005), while a very general class of
semiparametric tests targeting composite hypotheses was introduced in Bickel et al.
(2006).

4.1.3 Estimating Functionals of a Density

Kernel density estimators (4.1) require specification of a kernel function w and of a
bandwidth or smoothing parameter b = b(n). If one uses a kernel function that is a
symmetric density, this selection can be made based on the asymptotically leading
term of mean integrated squared error (MISE),

1
4

b(n)4
∫

w(u)u2 du
∫
[ f (2)(x)]2 dx + [nb(n)]−1

∫
w(u)2 du,

which leads to the asymptotically optimal bandwidth

b∗(n) = c

(
n
∫
[ f (2)(x)]2 dx

)−1/5

,
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where c is a known constant. In order to determine this optimal bandwidth, one
is therefore confronted with the problem of estimating integrated squared density
derivatives

∫
[ f (k)(x)]2 dx, (4.4)

where cases k > 2 are of interest when choosing bandwidths for density estimates
with higher order kernels. These have faster converging bias at the cost of increasing
variance but are well known to have rates of convergence that are faster in terms of
MISE, if the underlying density is sufficiently smooth and optimal bandwidths are
used. Moreover, the case k = 0 plays a role in the asymptotic variance of rank-based
estimators (Schweder 1975).

The relevance of the problem of estimating density functionals of type (4.4)
had been recognized by various authors, including Hall and Marron (1987), at the
time the work Bickel and Ritov (1988) was published. The results of Bickel and
Ritov however are not a direct continuation of the previous line of research; rather,
they constitute a surprising turn of affairs. First, the problem is positioned within
a more general semiparametric framework. Second, it is established that the

√
n of

convergence that one expects for functionals of type (4.4) holds if f (m) is Hölder
continuous of order α with m+α > 2k+ 1

4 , and, with an element of surprise, that it
does not hold in a fairly strong sense when this condition is violated.

The upper bound for this result is demonstrated by utilizing kernel density
estimates (4.1), employing a kernel function of order max(k,m− k) + 1 and then
using plug-in estimators. However, straightforward plug-in estimators suffer from
bias that is severe enough to prevent optimal results. Instead, Bickel and Ritov
employ a clever bias correction term (that appears in their equation (2.2) after
the plug-in estimator is introduced) and then proceed to split the sample into two
separate parts, combining two resulting estimators.

An amazing part of the paper is the proof that an unexpected and surprising
phase transition occurs at α = 1/4. This early example for such a phase transition
hinges on an ingenious construction of a sequence of measures and the Bayes risk
for estimating the functional. For less smooth densities, where the transition point
has not been reached, Bickel and Rosenblatt (1973) provide the optimal rate of
convergence, a rate slower than

√
n. The arguments are connected more generally

with semiparametric information bounds in the precursor paper Bickel (1982).
Bickel and Ritov (1988) is a landmark paper on estimating density functionals

that inspired various subsequent works by other authors. These include further
study of aspects that had been left open, such as adaptivity of the estimators
(Efromovich and Low 1996), extensions to more general density functionals with
broad applications (Birgé and Massart 1995) and the study of similar problems
for other curve functionals, for example integrated second derivative estimation in
nonparametric regression (Efromovich and Samarov 2000).
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4.1.4 Curse of Dimensionality for Nonparametric Regression
on Manifolds

It has been well known since Stone (1980) that all nonparametric curve estima-
tion methods, including nonparametric regression and density estimation, suffer
severely in terms of rates of convergence in high-dimensional or even moderately
dimensioned situations. This is born out in statistical practice, where unrestricted
nonparametric curve estimation is known to make little sense if moderately sized
data have predictors with dimensions say D ≥ 4. Assuming the function to be
estimated is in a Sobolev space of smoothness p, optimal rates of convergence of
Mean Squared Error and similar measures are n−2p/(2p+D) for samples of size n. To
circumvent the curse of dimensionality, alternatives to unrestricted nonparametric
regression have been developed, ranging from additive, to single index, to additive
partial linear models. Due to their inherent structural constraints, such approaches
come at the cost of reduced flexibility with the associated risk of increased bias.

The cause of the curse of dimensionality is the trade-off between bias and
variance in nonparametric curve estimation. Bias control demands to consider data
in a small neighbourhood around the target predictor levels x, where the curve
estimate is desired, while variance control requires large neighbourhoods containing
many predictor-response pairs. For increasing dimensions, the predictor locations
become increasingly sparse, with larger average distances between predictor loca-
tions, moving the variance-bias trade-off and resulting rate of convergence in an
unfavorable direction.

Using an example where p = 2 and the local linear regression method, Bickel
and Li (2007) analyze what happens if the predictors are in fact not only located on
a compact subset of RD, where D is potentially large, but in fact are, at least locally
around x, located on a lower-dimensional manifold with intrinsic dimension d < D.
They derive that in this situation, one obtains the better rate n−2p/(2p+d), where
the manifold is assumed to satisfy some local regularity conditions, but otherwise
is unknown. This can lead to dramatic gains in rates of convergence, especially if
d = 1,2 while D is large.

This nice result can be interpreted as a consequence of the denser packing of
the predictors on the lower-dimensional manifold with smaller average distances as
compared to the average distances one would expect for the ostensible dimension
D of the space, when the respective densities are not degenerate. A key feature is
that knowledge of the manifold is not needed to take advantage of its presence.
The data do not even have to be located precisely on the manifold, as long as their
deviation from the manifold becomes small asymptotically. Bickel and Li (2007)
also provide thoughtful approaches to bandwidth choices for this situation and for
determining the intrinsic dimension of the unknown manifold, and thus the rate of
effective convergence that is determined by d.

This approach likely will play an important role in the ongoing intensive quest for
flexible yet fast converging dimension reduction and regression models. Methods
for variable selection, dimension reduction and for handling collinearity among
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predictors, as well as extensions to “large p, small n” situations are in high demand.
The idea of exploiting underlying manifold structure in the predictor space for these
purposes is powerful, as has been recently demonstrated in Mukherjee et al. (2010)
and Aswani et al. (2011). These promising approaches define a new line of research
for high-dimensional regression modeling.
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Birgé L, Massart P (1995) Estimation of integral functionals of a density. Ann Stat 23:11–29
Cao R, Lugosi G (2005) Goodness-of-fit tests based on kernel density estimator. Scand J Stat

32:599–616
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