Chapter 2
Robust Statistics

Peter Biihlmann

2.1 Introduction to Three Papers on Robustness

2.1.1 General Introduction

This is a short introduction to three papers on robustness, published by Peter Bickel
as single author in the period 1975-1984: “One-step Huber estimates in the linear
model” (Bickel 1975), “Parametric robustness: small biases can be worthwhile”
(Bickel 1984a), and “Robust regression based on infinitesimal neighbourhoods”
(Bickel 1984b). It was the time when fundamental developments and understanding
in robustness took place, and Peter Bickel has made deep contributions in this area.
I am trying to place the results of the three papers in a new context of contemporary
statistics.

2.1.2 One-Step Huber Estimates in the Linear Model

The paper by Bickel (1975) about the following procedure. Given a \/n-consistent
initial estimator § for an unknown parameter 6, performing one Gauss-Newton
iteration with respect to the objective function to be optimized leads to an asymptot-
ically efficient estimator. Interestingly, this results holds even when the MLE is not
efficient, and it is equivalent to the MLE if the latter is efficient. Such a result was
known for the case where the loss function corresponds to the maximum likelihood
estimator (Le Cam 1956). Bickel (1975) extends this result to much more general
loss functions and models.
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The idea of a computational short-cut without sacrificing statistical was relevant
more than 30 years ago (summary point 5 in Sect. 3 of Bickel 1975). Yet, the idea
is still very important in large scale and high-dimensional applications nowadays.
Two issues emerge.

In some large-scale problems, one is willing to pay a price in terms of statistical
accuracy while gaining substantially with respect to computing power. Peter Bickel
has recently co-authored a paper on this subject (Meinshausen et al. 2009): having
some sort of guarantee on statistical accuracy is then highly desirable. Results as
in Bickel (1975), probably of weaker form which do not touch on the concept of
efficiency, are underdeveloped for large-scale problems.

The other issue concerns the fact that iterations in algorithms correspond to some
form of (algorithmic) regularization which is often very effective for large datasets.
A prominent example of this is with boosting: instead of a Gauss-Newton step,
boosting proceeds with Gauss-Southwell iterations which are coordinatewise up-
dates based on an n-dimensional approximate gradient vector (where n denotes
sample size). It is known, at least for some cases, that boosting with such Gauss-
Southwell iterations achieves minimax convergence rate optimality (Bissantz et al.
2007; Biihlmann and Yu 2003) while being computationally attractive. Furthermore,
in view of robustness, boosting can be easily modified such that each Gauss-
Southwell up-date is performed in a robust way and hence, the overall procedure
has desirable robustness properties (Lutz et al. 2008). As discussed in Sect.3 of
Bickel (1975), the starting value (i.e., the initial estimator) matters also in robustified
boosting.

2.1.3 Parametric Robustness: Small Biases Can Be Worthwhile

The following problem is studied in Bickel (1984a): construct an estimator that
performs well for a particular parametric model .# while its risk is upper-bounded
for another larger parametric model .#; D .#j. As an interpretation, one believes
that .Z is adequate but one wants to guard against deviations coming from .. It
is shown in the paper that the corresponding optimality problem has not an explicit
solution: however, approximate answers are presented and interesting connections
are developed to the Efron-Morris (Efron and Morris 1971) family of translation
estimates, i.e., adding a soft-thresholded additional correction term to the optimal
estimator under .#. (The reference Efron and Morris (1971) is appearing in the text
but is missing in the list of references in Bickel’s paper).

The notion of parametric robustness could be interesting in high-dimensional
problems. Guarding against specific deviations (which may be easier to specify
in some applications than in others) can be more powerful than trying to protect
nonparametrically against point-mass distributions in any direction. In this sense,
this paper is a key reference for developing effective high-dimensional robust
inference.
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2.1.4 Robust Regression Based on Infinitesimal
Neighbourhoods

Robust regression is analyzed in Bickel (1984b) using a nice mathematical frame-
work where the perturbation is within a 1/y/n-neighbourhood of the uncon-
taminated ideal model. The presented results in Bickel (1984b) give a clear
(mathematical) interpretation of various procedures and suggest new robust methods
for regression.

A major issue in robust regression is to guard against contaminations in X-space.
Bickel (1984b) gives nice insights for the classical case where the dimension of X
is relatively small: a new challenge is to deal with robustness in high-dimensional
regression problems where the dimension of X can be much larger than sample
size. One attempt has been to robustify high-dimensional estimators such as the
Lasso (Khan et al. 2007) or L,Boosting (Lutz et al. 2008), in particular with respect
to contaminations in X-space. An interesting and different path has been initiated
by Friedman (2001) with tree-based procedures which are robust in X-space (in
connection with a robust loss function for the error). There is clearly a need of
a unifying theory, in the spirit of Bickel (1984b), for robust regression when the
dimension of X is large.
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One-Step Huber Estimates in the Linear Model

P. J. BICKEL*

Simple *‘one-step” versions of Huber's (M) estimates for the linear
model are introduced. Some relevant Monte Carlo results obtained
in the Princeton project [1] are singled out and discussed. The large
sample behavior of these p d is ined under very mild
regularity conditions.

1. INTRODUCTION

In 1964 Huber [7] introduced a class of estimates
(referred to as (M)) in the location problem, studied their
asymptotic behavior and identified robust members of
the group. These procedures are the solutions 6 of equa-
tions of the form,

TYX:i—6) =0,
=l
where X1 =0+ E,, -+, X, =0+ E,and Ey, -+, E,
are unknown independent, identically distributed errors
which have a distribution F which is symmetric about 0.
If F has a density f which is smooth and if fis known,
then maximum likelihood estimates if they exist satisfy

(1.1) withy = —f/f.

Under successively milder regularity conditions on ¢
and F, Huber showed in [7] and [8] that such 8 were
consistent and asymptotically normal with mean 8 and
variance K (¢, F)/n where

(1.1)

xkw.p = [ vosoa/[ [ sowo]. a2

If F is unknown but close to a normal distribution with
mean 0 and known variance in a suitable sense, Huber
in [7] further showed that (M) estimates based on

¥e(t) =1t if |t] <K

=Ksgnt if |t| >K 3

have a desirable minimax robustness property. If K is
finite these estimates can only be calculated iteratively.
It has, however, been observed by Fisher, Neyman and
others that if F is known and ¢ = (—f'/f), the estimate
obtained by starting with a +/n consistent estimate §
and performing one Gauss-Newton iteration of (1.1) is
asymptotically efficient even when the MLE is not and
is equivalent to it when it is (cf. [13]). One purpose of
this note is to show that under mild conditions this

*P.J. Bickel is professor, D of Statistics, Uni of Californis,
Berkeley, Cs. 94720. This research was performed with partial support of the
O.N.R. under Contract N00014-67-A-D151-0017 with Princeton University, snd
N00014-67-A0114-0004 with the University of Californis at Berkeley, as well as
that of the John Simon Guggenheim Foundation. The suthor would like to thank
P.J. Huber, C. Kraft and C. Van Eeden and D. Relles for providing him with
reprints of their work on this subject; W. Rogers III for programming the Monte
Carlo computations of Section 3, which appesred in the Princeton project; and &
referee who made Tables 1 and 2 reflect numerical realities.

equivalence holds in the more general context of the
linear model for general ¢.

Typically the estimates obtained from (1.1) are not
scale equivariant.! To obtain acceptable procedures a
scale equivariant and location invariant estimate of scale
¢ must be calculated from the data and 8 be obtained as
the solution of

_Z”: vi(X,— 6 =0, (1.4)
where
Vo(2) = ¥(z/0) . (1.5)

The resulting § is then both location and scale equi-
variant. The estimate ¢ can be obtained simultaneously
with 8 by solving a system of equations such as those of
Huber’s Proposal 2 [8, p. 96] or the “likelihood
equations”

(1.6)

where X(t) = t¢(t) — 1. Or, we may choose ¢ indepen-
dently. For instance, in this article, the normalized inter-
quartile range,

61 = (Xa-torareny — Xnan)/22713/4) , (1.7)
and the symmetrized interquartile range,
¢, = median {|X; — m|}/8'(3), (1.8)

are used where X(;) < -+ < X(n are the order statistics,
& is the standard normal cdf and m is the sample median.
If ¢ > o(F) at rate 1/v/n and F is symmetric as hy-
pothesized, then the asymptotic theory for the location
model continues to be valid with K (¢, F) replaced by
KW(Gw), F). (E.g., cf. [7].) We shall show (in the con-
text of the linear model) under mild conditions that the
one-step ‘“‘Gauss-Newton” approximation to (1.4)—6
being the only unknown—behaves asymptotically like
the root.

The estimates corresponding to ¥x have a rather ap-
pealing form and, of course, all of these Gauss-Newton

1In this article location (scale) invariance refers to procedures which remain
unchanged when the data are shifted (rescaled). The term “‘equivariant” is in ac-
cord with its ussge in [2]. Thus, § location and scale equivariant means that

8@X1+4b, -+, aXn +b) = ab (X1, -++, aXa) + b and & scale equivariant mesas
that & (aXy, - -+, aXa) = |a|8(Xy, +++, Xn).
© Journal of the A
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procedures have the virtue of being simple and easily
amenable to hand calculation for simple linear models.
An analogous remark was made by Kraft and Van Eeden
[11, 12]in connection with estimates based on rank tests.

Details of the model and the estimates are to be found
in Section 2. Some Monte Carlo calculations are given in
Section 3. Statements and proofs of the asymptotic be-
havior of the one-steps are given in Section 4. Finally,
the proofs of some of the lemmas of Section 4 appear in
an appendix.

2. THE MODEL AND ESTIMATES

The class of (M) estimates was extended to the general
linear model by Relles [15] and Huber [9]. Here we
observe X = (X4, - -+, X») where

»
X;=Xcpi+E, 1<j<n,

im=1

2.1)

the E; are as previously, the 8; unknown regression
parameters and C = ||c;j||, the design matrix. An (M)
estimate (scale equivariance not required) is defined quite
naturally as a solution § = (8, - - -, B,) of the system of
equations

TewT,@) =0, 1<i<p, (22
j=1

where R
Yi(t) = X; — Leits if t=(t,
-l
Again, if ¢ = —f'/f, these are the likelihood equations,
and if ¢(t) = t, § = XC'[CC'T", the least squares esti-
mate. To obtain scale equivariance, we again need a
scale equivariant estimate ¢ which is “shift” invariant,
ie.,

sete) o (23)

¢(x + tC) = ¢(x) . (2.4)

The (scale equivariant) (M) estimates are now defined
as the solutions of the system,

T epa(V,) =0, i

je1

1,4, p. (2.5)
Under various regularity conditions Relles and Huber
[15, 9] have shown that § is asymptotically normal with
mean @ and covariance matrix K (¢, F)[CC']™ for the
nonequivariant case and K (¥ (), F)[CC’]™* otherwise.
The efficiencies are independent of the design matrix and
Huber’s robustness results carry through. Let g* be a
given estimate of § which is shift equivariant, i.e.,

B*(x +tC) =8*(x) +t . (2.6)

We shall say @ is a one-step (M) estimate of Type 1 if ¢
is absolutely continuous with derivative ' and § satisfies
the equations

T e (Y;(8*) = ﬁ Br — Bk.)'i exici’ (Y5(B%),
i= -1 i=
1<i<p. @7

This system of equations is the linear approximation to
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the system (2.2) if we use B* as an initial estimate. In the
situations we are interested in, X}, cejci/ (Y;(8%)) is
well approximated by its asymptotic expectation
Yho1 ceici; A (¢, F), where

ag P = [ vowro =- [ jowo . @9

(The second equality holds only under mild regularity
conditions.) The term on the right makes sense even
when ¢ is just of bounded variation on intervals. We
shall use a slightly more general definition of 4 (¢, F) in
(4.6). If A(y, F) is a consistent estimate of A(y, F), we
therefore define a one-step (M) estimate of Type 2 as the
solution § of the equations

T et (Yi(8*)) = T B — B)NE cre) AW, ), (29)
j=1 k=1 j=1
or equivalently,

§=0+

A, F)
W18, -, $(YR(B*NICTCC'T (2.10)

when CC’ is nonsingular. Similarly we shall speak of
scale equivariant one-step (¥) estimates defined as pre-
viously, save that ¢ is replaced by ¥; where ¢ is “shift”
invariant throughout.

Our principal aim in introducing the one steps was to
provide a version of Huber’s estimate which is readily
computable by hand in the location problem and other
simple models. The ¢ function of (2.2) here is given by
(1.3). For a given scale estimate ¢ and the location model,
the Type 1 one-step estimate may be written

B =[{ X::i € So} + K[Ny — N_JI/No , (2.11)
where So = {i: |X: — 8*| < K¢}, Sy = {i: (Xi — 8%
> Ké}, S- = {¢: (X; — p*) < —Ké} and No, Ny, N_
are the cardinalities of So, Sy and S_. If S, is empty the
estimate is undefined. In the general case, let

b
So = {j: | X; — X ciib*| < Ké}
=]

etc. Then the Type 1 estimate is obtained as follows.

Replace any residual X; — ¥ 2., c;;8:* by K¢ ifj € S+
and by —K¢ if j € S-. If j & S,, replace c;; by 0 for
i =1, .-+, p. If we denote the resulting vector of modified
residuals by R* and the resulting matrix of modified ¢;;
by C*, then

(8 — 8% = R*C'[C*C¥]™ . (2.12)

Alternatively, it is easy to see that if we define N, as

before then under the conditions given in Section 4,

(No/n) > AWe, F) (2.13)
and thus an alternative estimate (Type 2) would be
8 = 6%+ (n/NoR*C'[CC'T (2.14)
Other possibilities are discussed in [9].



3. SOME MONTE CARLO RESULTS

As part of a larger study, [1], one-step estimates (for
¥x) were considered as estimates for location under a
variety of distributions and sample sizes. The following
one-step procedures were considered. Let m denote the
median, M the mean.

1 M15; 6=061; B=M
2) D15; ¢ =4y; B=m
(3) D20; é¢=¢; B=m
(4) P15; ¢ =0 =m

These were compared to the following Huber iterative
estimates proposed by Hampel.

(5) A15;

(6) A20;
Note that comparison of A15 and 420 to D15 and M15
and D20, respectively, is reasonable since ¢, and ¢, are
asymptotically equivalent to order 1/+/n under mild
regularity conditions, provided that F is symmetric.?

The sample sizes considered were n = 5, 10, 20 and 40.

The distributions considered (not all being represented
for each n) were:

K = 1.5;
K =20;

¢ = éda
¢ = ¢da

(1) N—the normal

(2) C—the Cauchy

(3) 25 percent (NU)—a mixture of a standard normal distribu-
tion with the distribution of a standard normal variate
divided by an independent variate having a uniform dis-
tribution on the interval (0, 1). The proportions were 75
percent normal, 25 percent of the latter distribution.

(4) t—the ¢ distribution with three degrees of freedom.

(5) DE—the double exponential distribution.

(6) Pseudo-samples in which & observations were drawn from a
normal distribution with variance nine (or 100) and the
remaining n — & were standard normal deviates. These are
denoted by the notation

@N) |

E
2y ¢
(n 00) Pereent  1owy

Tables 1 and 2 were calculated using Exhibits 5.4-5.8
of [1] as well as measures of accuracy of these exhibits.?
We refer to [1] for details of the Monte Carlo sampling
procedure, a discussion of the accuracy of the results and
other material of interest. Using between 640 and 1,000
replicates for each sample and some devices discussed in
[1], essentially two-figure accuracy was obtained. We
use the notation z/y to denote the efficiency of z with
respect to y, i.e., the ratio Var y/Var z. Entries are 0 in
cases such as those involving M or M15 under the C or
25 percent (NU) distribution in which the variances of
these estimates are known to be infinite.

The asymptotic theory of Section 4 leads us to expect
that P15 and D15 will behave like A15 and D20 like
A20 in all of these cases. On the other hand, M15 should

11t is easy to show under symmetry that if F* = fis finite at F~1(}) then &; and
& are asymptotically both Gsussisn with mean F-1(1)/271(1) and variance
(427 (1)/(F-1 ()] 7% These as well as i ivale may be
argued by replacing the quantile process by the empirical process as in Pyke-
Shorack [14] or in the genersl linear model as in Bickel [4].

# Measures of accuracy of these exhibits do not appear in [1] but are available
from Andrews et al.

Journal of the American Statistical Association, June 1975

1. Efficiencies of One Steps and Starting Points
Versus lterates for Sample Size 20

Distributions
Efficiencies 25% 10% 25%
N (3N) (10N) DE t, (NU) C
P15/A15 1.00 1.0 1.00 99 1.0 1.0 1.0
m/A15 .70 9 .83 1.13 9 9 1.5
D15/A15 1.00 1.0 99 96 1.0 1.0 9
m/A20 .68 1.0 .92 122 1.0 1.0 1.9
D20/A20 1.00 1.0 .98 97 1.0 1.0 9
M/m 1.50 1.0 16 .65 6 0 0
M15/D15 1.00 1.0 1-3  1.01 8 0 [}

NOTE: For n =20, the last significant figure is reliable at least up to =1 for shapes
other than 10 percent (10N) and up to =2 for 10 percent (10N) uniess
a range is shown.

behave like A15 in Cases (1), (4), (5) and (6) only. What
actually happened can be summarized as follows.

1. The difference between the one-step P15 and the
iterate A15 set to the same scale is negligible across the
whole range of distributions. However, the efficiency of
the starting point m to A15 in this case is never less than
.68.

2. If the starting point is too poor for the population
at hand the loss in efficiency can be substantial. An ex-
ample in point is ¢; where M/m = .6, M15/D15 = .8.
Unfortunately, too few shapes and starting points were
considered to see if there is a reasonable relation between
the efficiency of the starting point to the iterate and that
of the one step to the iterate.

3. The choice of scale has quite significant effects as
the P15/A15, D15/A15 comparisons indicate. Unfor-
tunately, the iterated forms of D15, D20 were not in-
cluded in the study. Of course this has no bearing on the
question of whether the one step is a good substitute for
the iterated estimate.

4. Figures not included in this article but available in
[1] indicate that the general qualitative nature of Tables
1 and 2 is unchanged if measures of spread other than the
variance are used. However, the effect of a nonrobust
starting point as in M15 is less severe.

5. The difference in computation time between iterate
and one step can be substantial. In the Princeton study
the average time of computation per estimate was re-
corded. From these figures it can be seen that the average
percent increase in time for A15 versus P15 was of the
order of 25 percent to 30 percent. (This is a percentage of
the time required after all constants such as ¢, have been
computed.) Preliminary computations for one steps with
scale known for a standard Gaussian population (n = 20)
indicate that the one-step starting at the median agrees
with the iterate (up to two decimal places) between 80
(K = 1.0) and 60 (K = 2.0) percent of the time.

6. More extensive Monte Carlo computations need
to be carried out to get a clear idea of the relationship
between one-steps and iterates. This is particularly true
for the smaller sample sizes for which the Princeton proj-
ect figures are essentially unreliable.
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2. Efficiencies of One Steps and Starting Points Versus Iterates for Sample Sizes 5, 10 and 40

n=5 n=10 n=40
N 25% NU Cc N 20% 3N 25% NU o] N 25%NU (o]
P15/A15 1.00 .8-1.2 .8-1.2 1.00 1.0 9-1.0 9-1.1 1.00 1.0 1.0
m/A15 76 1.1-13 1.0-1.6 a7 1.0 9-1.0 1.4-19 .68 8 1.5
D15/A15 1.04 6-.8 5-1.1 1.02 9 2- 9 -6 1.01 1.0 9
m/A20 .73 1.0-15 1.1-1.9 75 1.0 9-1.0 1.8-23 .67 .8 1.9
D20/A20 1.02 6-.9 .6-1.0 1.01 9 2- 9 1- 6 1.06 1.0 9
M/m 1.47 0 0 1.37 7 0 0 1.63 0 0
M15/D15 .96 0 0 1.00 1.0 0 0 1.00 0 0

NOTE: For n = 5, 10 and shape N the last significant figure is reliable at least up to =2. Otherwise unless a range is shown the last significant figure is reliable at least up to x1.

4. THE LARGE SAMPLE BEHAVIOR OF ONE-STEPS

We shall prove asymptotic normality of the one-step
estimates under the following simple conditions.

Condition G: The matrices CC’'/n tend as n — «© to
a limit C, which is positive definite. Further,

lim max |ci;|/+/n =0 . 4.1
P

We shall also need some smoothness conditions on ¢ in

addition to a consistency Condition A. The first set,

labeled C, is appropriate for simple estimates while the

second, S, is needed for scale equivariant estimates.
Condition A: f YOAFE) = 0 .

Clearly A holds if F is symmetric and y is antisymmetric.

Condition C1. The function ¢ is of bounded variation
in every interval, i.e., it may be written as

Y=yt -y

where ¢* is monotone increasing and further,

(4.2)

/.,, W@ + k) — ¥:(z — h)'dF(@) = O(1) as h—0 .
- *3)

s | [ 0t g+ 1) — e+ pare
il q Vi + )P (2):

lgl ¢ || = e} <o forsomee>0. (4.4)

Condition C2: Suppose that there exists A (y*, F) such
that

[ @i+~ v @)ir @
- = hA(Y%, F) + O(h) . (4.5)
In this case define
AW, F) = AW+ F) — Ay, F) . (4.6)

Condition S;: (a) The function ¢ is as in (4.2) and

sup ((1/0) [ @ +2+ 0@ +1)
=¥ +N(= +h)VdF@): |h] S ¢

M =elglse <= &7

for some ¢ > 0.

sup {1/ 01| [ @204+ 0)z +0) = 2 + 0z — MaFG

hSonlse <= @8
for some ¢ > 0.
Condition S, : There exists A (¢, F) such that

Jws@ 0z 40 - vr@1F @

= AW Ph +o([A]) + O(IM]) +00) . (49)

Condition 8, is satisfied if we can formally differentiate
under the integral sign, ¢ is antisymmetric and F is
symmetric (about zero).

Finally we require further conditions on g* and o.

Condition B: If 3 = 0,

g* = 0,(n7%) (4.10)
which by (2.6) implies that * — 8 = O(n~%) in prob-
ability if § is true.

Condition D: There exists a positive functional o(F)

such that
¢ =0o(F) 4+ Op(n?) . (4.11)

(Because of the invariance assumption (2.4), Assertion
(4.11) holds whatever be 8 if it holds for § = 0.)
Moreover, writing ¢ for o(F), we shall suppose that
As, F) > Ao, F) (4.12)
in probability whatever be 3.

In the definitions and arguments which follow we shall
assume that all probabilities and expectations are cal-
culated under the assumption that 8 = 0 unless the
contrary is specifically indicated. Also let M be a generic
constant. Define

Talt) = = ZZ ly(Y;1) — EQ(Y5(t)] , (413)
Vn o

where we write ¢; for ¢;;.

Lemma 4.1:If G and C, hold, then

sup {|Ta(t) — Ta(0)|: [t| < M/v/n} D0 . (4.14)

(We use |[t| to denote the maximum of the absolute
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values of the coordinates of t.) Let

Ta(t, N = 5— T ol + Y1)
S T CE R CONE
Lemma 4.2: If G and S; hold, then
sup {|Ta(t,\) — T'(0,0)|:
It] < M/v/n, N < e} 50 (4.16)

(4.15)

where ¢, | 0 in any way whatever.
The proofs of these lemmas are given in the appendix.

From these lemmas we immediately get:
Proposition 4:1: (a) If G, C, and C. hold, then

sup {; 1C z @ ®) - (X))
+( 2 ): ayei) Ay, F)]1: It <

il

(b) If G, Sy and S; hold, then

\/l}_’.o . @1

sup {— IC Z e (1 +NY;0) — v(X))

\/
Il s—n}~o . (418)

+( L L Z ayei) AW, F)]|: t] < —
i

Proof: Immediate upon expanding E(¢((1 + N Y;(t))
= ¥(Xy).

As an immediate consequence of this proposition we
obtain

Theorem 4.1:If G, A, Cy, C3, Sy, Sz, B and D hold and
[ve0iF@ <=

and § is one step of Type 2, then under the model (2.1),

vVl = 8) — We(Ey), -+,

Vo (E))C'[CC' T [AWs, )T} =0 (419)
in probability. A similar assertion holds when scale is not
estimated. Hence, v/n(3 — 8) has a limiting Gaussian
distribution with mean zero and covariance matrix
K (Yo, F)Co' where K is defined by (1.2) with the
denominator in general given by [4 (¢, F) .

Proof: By invariance reduce to the case § = 0. Apply
(4.18) with ¢ = ¢,. Substitute g8.* — g for &;, (¢ — 1)
for N, c; for ci. Since oy (8% — 8:) L= ciscis is
bﬂounded in probability we can replace A(y,, F) by
A (Y3, F). The final result follows by Lindeberg’s form of
the central limit theorem.

Estimates of Type 1 satisfy the conclusion of Theorem
4.1 iff
¥ (Ya(69)CC" 3 AW, F)Co .
(4.20)

1
— W (Y1(6%), -
né
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It is easy to show that this is true if, in addition to our
other conditions, either

Condition Ey: ¢/ is uniformly continuous, or

Condition E.: ¢’ is of bounded variation in every
interval and

E|[¥]#(aX: +b) — [¥I*(Xn)| = o(1)

as a—1,b—0 .

Condition E; applies to smooth ¢ while E, applies to
Huber’s yx function. These conditions are far from
necessary.

Although we have for completeness indicated the
theory for the general linear model, in that context our
theorem is best viewed as support for the feeling that a
few iterations in solving a system of equations such as
(2.5) lead to estimates whose behavior is much like that
of the root. The reasons are:

1) For a multilinear regression, one usually employs a computer
in any case and then solving the system (2.5) is not appreci-
ably more difficult than obtaining the least squares estimates.

2) In such a case the only candidate for 3* is the least squares

_ estimate, and as we shall see, even for moderately heavy
tailed distributions the resulting one-step estimate can be
poor.

However, for situations such as location, regression
through the origin, and the ¢ sample problem, where
simple robust starting points such as the median or its
analogues exist, the one-step estimates are easy to com-
pute, and, as we have seen for location, quite satisfactory,
at least if ¢ is chosen properly and the starting point is
not too bad. Similar results hold if we replace Condition
@G by the more general

b (n)CC" — C, (4.21)

where b(n) — 0, C, is positive definite,

b(n) max |ei;| —0 , (4.22)
)

#* is b'(n) consistent and all other conditions are

unchanged.

If ¢ is monotone rather than just of bounded variation
it may be shown (see [16]) that these conditions guaran-
tee convergence of the iterate as well as the one-step (M)
estimate. If ¢ is smooth and scale is known, it was shown
by Huber [9] that a version of Theorem 4.1 holds for
both iterates and one steps if p — « as well as n. The
approach of this article does not extend readily to that
case.

APPENDIX

Proof of Lemma 4.1: Without loss of generality take ¢ = ¢*/.
Begin by noting that for fixed t with [t| < M,

To(t/+/n) — Ta(0) 50 . (A1)
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To see this, calculate

t LI G t
£(r. (W) -1.0) = - T var (v (% (7;))
S oy
- W(Xf)) <z :');: Ci'f_u (s&(s - ,):_. cam)
2 1 * -
—v) s < {5 % orpma{ [ @ +n
— y())*f(s)ds: |h| < pM maxi,; Ic.'il/\/n} —0 (A2
by Condition G and (4.3). Decompose the cube K = {t: |t| < ([1/5]
+ 1)8M/+/n} as the union of cubes with vertices on the grid of
points (ji6M/+/n, -+, j6M/+/n) where the ji=0, =*1,---,
+[1/6] + 1. If |t| < M/+/n, let P(t) be (say) the lowest vertex
of the cube containing t. For fixed 5, by (A.2)
max {|Ta(P®) — Ta(0)|: [t] < M/+/n} 50 .  (A3)

On the other hand, let K, be any cube of the partition and let Py
be its lowest vertex. Then, by the monotonicity of ¥,

s (1720~ TPt K < 1 % ol {[v (v
sj)] +e[v (v
S,')]} (A4)

Y %=1 [eij|. By arguing as for (A.2) it is easy to see that

+ 32s) —v(neo - 7

+3028) v (vero - 7

where S; =
v {Z i (ner + 7s)

—o(rer - 2s) 0. @y

It follows that to establish the lemma we need only check that
max {7 % o1 [£ (v (v + ))

- E(w(wn(m - %s,-))]: <X

uniformly in 8, as n — «.
Again using the monotonicity of ¢, it is clear that the expression
in (A.6) is bounded by

\%;l[,% |c;,-|max{E[¢(X. +q+%$s,-)

5)]:1al s%}]

which by (4.4) is 0(8/n X:,; |cjci; |) uniformly in 3, for fixed M. The
lemma follows.

Proof of Lemma 4.2: The estimate of (A.2) shows that if (4.16)
holds,

=350(1) (A.6)

—%(X.+q—-%‘s

Ta(ts, M) = Ta(0,0) + 0,(1) (A7)

whenever ta, Ao, — 0. Arguing as in Lemma 2.1 it is easy to see that
it suffices to prove that

sup {|Ta(t/v/n, \) — Talto/v/m M) |2t — to] <5, A < en)

=380,(1) (A8)

uniformly in 3, and
sup { |Tn(to/v/n, N)
for each t,.

= Tato/v/m, 0)]: N| S ea} = 0p(1)  (A9)

Now write

Ta(t/vVn,N) = Talte/v/n, M) + [Talt/v/n,N)
= Talte/v/n, V] -

Bound the last term, using the monotonicity of y as before, by

7 E iy =)
+oE |c,|[w(x,—"£"—'
oo (oo S)]
o & bl [ (o 50 v (3 - 50)]
+$>:. e [v (@ +n (x+ ‘SM))
D] ww

Let W.® (7, 8), 1 <17 <3, be the stochastic processes obtained
by centering the preceding first three sums at their expectation. By
(4.17) and Condition G,

EWa® (N, 8)

(A.10)

zSSM

—v(x+

—v(a+n(x-

= Wa® (3, 8) S Ki(i — M) (AI2)

where K is independent of n, A;, and & for all \; sufficiently small, n
large. Hence, by [5, p. 95],
max { [ Wa® 0, 8)[: A S ea) 50 . (A.13)

A similar argument works for W,®, while W,® may be taken
care of as in the proof of Lemma 2.1. Similarly,

max {[Ta(te/v/n,N) = Talta/v/n, 0)|: A < ea} >0 (A14)

uniformly in [to| < M. In view of (A.13) and (A.14), to prove (A.8)
we need only bound

g il (e (o 23)
~e(v(a+n (x-2NT]

by |6|0(1) for |A| < en. But this can be done using (4.18) as (4.14)
was used m Lemma 2.1. Flnally, (A.9) follows by using the same
as we employed for (A.13).

[Received September 1971. Revised July 1974.]
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ROBUST REGRESSION BASED ON INFINITESIMAL
NEIGHBOURHOODS?

By P. J. BICKEL
University of California, Berkeley

We study robust estimation in the general normal regression model with
random carriers permitting small departures from the model. The framework
is that of Bickel (1981). We obtain solutions of Huber (1982), Krasker-
Hampel (1980) and Krasker-Welsch (1982) as special cases as well as some
new procedures. Our calculations indicate that the optimality properties of
these estimates are more limited than suggested by Krasker and Welsch.

1. Introduction. Our aim in this paper is to compare and contrast robust
regression estimates proposed by Huber (1973, 1982), Hampel (1978), Krasker
(1978) and Krasker and Welsch (1982) as well as to derive and motivate other
estimates using infinitesimal neighbourhood models as in Rieder (1978), Bickel
(1981) for instance. Some of the results are stated in the discussion to Huber
(1982) while others were presented at the 1979 Regression Special Topics Meeting
in Boulder. '

We consider a “stochastic” regression model. We observe (x;,y:),i=1,---,n
independent with common distribution P where the x; are 1 X p, y; scalar. We
think of these observations as being obtained by contamination or some other
stochastic perturbation from ideal but unobservable (x¥, y}) which follow an
ordinary Gaussian regression,

= o *gT : —
yf=a¥"+uf, i=1---,n

where the u} are independent _# (0, ¢%). Our aim is to estimate 6 using the
(x;, ;). For this formulation to make sense we must either:

(a) Specify P so that @ is identifiable. For instance let
x=x* and y; = x0T + u;

where the u; are independent of x; with common distribution symmetric about 0.
This is the usual generalization of the linear model discussed e. g. in Huber
(1973). For less drastic alternatives see Sacks and Ylvisaker (1978). This has the
disadvantage of implicitly assuming that contamination conforms to the linear
structure of the original model.

(b) Suppose that P is so close to the distribution P, of (x¥, y¥) that biases
necessarily imposed by the lack of identifiability of 8 are of the same order of
magnitude as the standard deviations of good estimates. That is we assume P is
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in “an order 1/vn neighbourhood” about P,. By suitably choosing the metric
defining the neighbourhood we can make precise our ideas about what departures
we want to guard against as well as gauge the best that we can do against such
departures in terms of classical decision theoretic measures such as M.S.E. For
a general discussion of this point of view see Bickel (1981), hereafter [B]. This is
the approach we take in this paper.

We apply this point of view to several types of neighbourhoods below and
derive the optimal solutions. For regression through the origin we recapture the
by now classical estimate of Hampel as well as Huber’s (1982) MIA:A solution.
For the general regression model we derive various natural extensions of the
MIA:A procedure as well as the Hampel-Krasker and Krasker-Welsch proce-
dures. Finally, we derive some negative results suggesting that the (1982) Krasker-
Welsch conjecture is false. .

Specifically, let u; = y; — x67, i = 1, ..., n. Suppose ¢ = 1. Write F =
(G, H(- | -)), Fo = (Go, ®) where G, respectively Gy, is the marginal distribution
of x;, H(- | x) is the conditional distribution of u; given x; = x and ® is the
standard normal distribution (of u}). Since P and F determine each other we can
describe neighbourhoods through conditions on F, H(- | -). Such neighbourhoods,
which will depend on n, will be denoted by % (t) (with subscripts) where tn /2
is the size of the neighbourhood, ¢ = 0.

Error-free x neighbourhoods: G = G, (or x = x*).

Contamination: We suppose we can represent
H(- |x) =1 —e(x)2(-) + e(x)M(- | x)

where M(- | x) is an arbitrary probability distribution. The contamination neigh-
bourhoods Zx(t), Fio(t) are completely specified by:

Foo(t): sup;, e(x) < tnV2,  F(t): f e(x)Go(dx) < tn™V2.

That is, for both neighbourhoods the type of contamination of y for each x can
be arbitrary. But under %, the conditional probability of contamination for each
x is at most tn~"2 while under % only the marginal (or “average”) probability
of contamination is restricted. These are the types of departures considered by
Huber (1982), Section 5.

Closely related are the metric neighbourhoods,

Fao(t): sup; d(H(- | x), ®) < tn™2, Faolt): f d(H(- | x), ®)Go(dx) < tn™'?

where d is a metric on the space of probability distributions on R. Of particular
interest are the variational and Kolmogorov metrics given respectively by

v(P, @) = sup{| P(4) — Q(A) |: A Borel},

k(P, Q) = sup,| P(—, x] — Q(—, x]|.

Recall that contamination neighbourhoods are contained in the corresponding
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variational neighbourhoods which are contained in the corresponding Kolmogo-
rov neighbourhoods. The variational neighbourhoods can be interpreted as con-
tamination neighbourhoods where ¢ can be a function not only of x but also of
u* and H is the conditional distribution of u; given x; and u}. The complements
of Kolmogorov neighbourhoods are identifiable in the sense of [B] at least if G,
has finite support.

Errors in variables models: We drop the requirement that G = G, and proceed

naturally, defining
_%'1“): F= (1 - C)Fo +eM
where M is an arbitrary probability distribution on RP*?, ¢ = tn~'/2,
Falt): d(F, Fo) < tn™"

where d is a metric on the probability distributions on R”*!, Here v extends
naturally and is of particular interest.

We consider estimates T, of 8 which are regression equivariant and asymptot-
ically linear and consistent under the normal model. That is, for all X;.x,, ¥, b1xp,
T, which is 1 X p satisfies:

(1.1) T.(X,y + XbT) = To(X,y) + b (equivariance)
and there exists ¢: R°*! — RP square integrable under F, such that

(1.2) f ¥(x, v)®(dv)Go(dx) = 0

(1.3) f Y7(x, v)xv®(dv)Go(dx) = I, the p X p identity,
andifu=(u1, e ,u,.),X=(x1T, e ’x?l)’];
14) TuX,u) =n"'3TE ¢(x;, w) + 0,(n"*?) (linearity and consistency)

under F,. Let ¥ = {¢: ¢ square integrable function from RP*! to RP satisfying
(1.2) and (1.3)}.

All the usual consistent asymptotically normal estimates have this structure.
In particular, under regularity conditions, the general (M) estimate T),, solving

(1.5) Tha Y, yi — %xTE) =0

with ¢ € ¥ satisfies (1.1) and (1.4). For members F of % leading to models
contiguous to that given by F,, (1.1)-(1.4) imply that n*(T, — 8) is asymptoti-
cally normal with mean

(1.6) b, G, H) = n'? f ¥(x, u)H(du| x)G(dx)
and variance-covariance matrix,
(1.7) V) = f VT(x, u (x, u)B(du)Gol(dx).

Note that b depends on n through G, H but for “regular” G, H stabilizes as

n— o,
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In the univariate case, p = 1, we argue in [B] that we can characterize estimates
which asymptotically minimize maximum (asymptotic) mean square error over
& by minimizing V(¢) + sup{b®(¢, G, H): F € ¥} over ¥. More generally, the
maximum risk of T, as above, is for any reasonable symmetric loss function
determined by V(¢) and sup{| b(y, G, H)|: F € F}.

In Section 2 we study the univariate case as follows.

(1) We evaluate
(1.8) b(y) = lim sup,sup{| by, G, H)|: F € ¥}

for the ¥ we have introduced. Subscripts on b indicate which & we are
considering.

(2) We solve the variational problem of minimizing V(¢) subject to b(y) < m.
This is just Hampel’s variational problem or a variation thereof.

The family of extremal {y,,:m = 0} correspond formally via (1.5) to (M)
estimates which are candidates for solutions to asymptotic min max problems.
Checking that the (M) estimate or 1-step approximation to it actually is asymp-
totically minmax requires a uniformity argument such as that of Theorem 5,
page 25 of [B] for the putative solution. These arguments are straightforward,
requiring standard appeals to Huber (1967) or Bickel (1975) or Maronna and
Yohai (1978). We therefore focus exclusively on the variational problems. No
new procedures are obtained in this section. However, Theorem 2.1 formally
gives some optimality properties of the Hampel and MIA:A estimates.

In Section 3 we consider the general multiple regression model and introduce
WLS procedures and equivariance under change of basis in the independent
variable space.

We derive various procedures on the basis of the optimality criteria we have
advanced:

1) the Hampel-Krasker (nonequivariant) estimates;

2) the natural nonequivariant extension of Huber’'s MIA:A estimates (Theorem
3.1);

3) nonequivariant procedures which are also not WLS but are optimal for
estimating one parameter at a time under Z; )

4) an equivariant estimate which minimizes the maximum M.S.E. of prediction
under F (Theorem 3.2);

5) the natural equivariant extension of Huber’s MIA:A estimates which mini-
mizes the maximum M.S.E. of prediction under %.

Finally we show that the optimality of the Hampel-Krasker and of the
equivariant estimate minimizing the maximum M.S.E. of prediction depends on
the quadratic form used in the loss function. This casts some doubt on a
conjecture of Krasker and Welsch (1982). The doubt is confirmed by a recent
counterexample of D. Ruppert.
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2. Regression through the origin (p = 1). As we indicated, if b(y) is
given by (1.8), we want, for each % to solve the variational problem:

(\2) f V3(x, u)®(du)Go(dx) = min!

subject to (1.2), (1.3) énd
by) =m.

For each # we actually have a one-parameter family of variational problems
as m varies and in principle each family could generate its own family of solutions.
Fortunately there are only two families of solutions which we describe below.

It will be shown in Theorem 3.1 that for % which are of interest to us, only
¥ which are Huber functions for each fixed x need be considered. That is, we can
write ¢ in the form:

¥(x, u) = (a(x)/c(x)h(y, c(x)), c(x) >0
2.1)
= a(x)sgn u, c(x) =0

for given functions a; ¢ = 0 satisfying (1.3) and h(u, ¢) = max(—c, min(c, u)).
For such y condition (1.2) is always satisfied and (1.3) becomes

2.2) f a(x)xB(c(x))Go(dx) = 1
where
(2.3) B(c) = (2®(c) — 1)/c with B(0) = 2¢(0).

The two basic solution families of ¥ which we denote {Y}, {+} will be defined
by corresponding {ax, cx}, {Gx, ¢} as follows:
ForO<k<olet

(2.4) cx(x) = R/| x|, ax(x) =sgnx / f (28(ck(x)) — 1)x%Go(dx).

We add two limiting cases

(2.5) Ylx, u) = xu / f x22Go(dx)

(2.6) Yo(x, w) = sgn(xu)/2¢(0) f | x| Go(dx).

These are just the influence functions of the Hampel-Krasker-Welsch family
of estimates. The extremal cases (2.5), (2.6) correspond to least squares,
T.= 3 xy/Y x? and T, = median (y;/x;) respectively.

For 0 <t < 2¢(0) let 0 < ¢(t) < » be the unique solution of

2.7 2(¢(q) — q®(—q)) =t.
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Let [21_((15(0)]‘1 be the (Go) ess sup of | x|. For k < k < « define

G(x) = q(1/k|x])

Gr(x) = x / f 222G (x)) — DI(| x| = [2k¢(0)]™)Go(dx)
if |x| = [2k¢(0)]"

= 0 otherwise.

(2.8)

The limiting cases are:

(2.9) Vel , ¥) = Yaula, W)
Tale, u) = ZEBE ) < [2kg(O)
(2.10) Y
=0 otherwise

if v = Gofx: | x| = [2ke(0)]71} > 0.

THEOREM 2.1. Solutions to (V) are provided by
(i) Family {Yr}: Faco, Favoy Faxor Fo1, For, Fa
(ii) Family {§} Feo, Foo, Fio

where we have substituted d = v, k as appropriate in our notation. For given m, t
the optimal k depends on m/t only and

(iii) The solutions for Fuo, Faxos o1, Fia coincide.
(iv) The solutions for S, S0 coincide.
(v) The solutions for F are solutions for o with m/t replaced by m/2t.

The key to Theorem 2.1 is evaluation of b(y) for the different neighbourhoods.
The proof of a typical subset of the following assertions is given in the appendix.
If b is defined by (1.6), (1.8) then

(2.11) bo(¥) =t f ess sup, | ¢ (x, u) | Go(dx)
(2.12) bo(Y) =t f [ess sup, ¢¥(x, u) — ess inf, ¥ (x, u)]Go(dx)

(2.13) bo(¥) =t f I1¥(x, -) | Go(dx)

where “ess” refers to Lebesgue measure and || - || is the variational norm of
¥(x, -) viewed as a distribution function.
On the other hand,
(2.14) bei(y) = t ess sup.u| ¥(x, u)|
(2.15) b,1(¥) = tless sup,.¥(x, u) — ess inf, .Y (x, u)]
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(2.16) bi(y) = t ess sup. || ¢/(x, ).
The “average” models behave like “errors in variables”.
(2.17) ba-o(¥) = ba(¥).
If ¥ is antisymmetric in u
(2.18) ba(y) = 2bai(y¥), i=0,1
If, in addition, ¥ is monotone in u, then
(2.19) bi(¥) = bui(¥), i=0,1.

PrROOF OF THEOREM. From (2.11)-(2.19) it is clear the solutions of (V)
depend on m, t through m/t only and we can take ¢t = 1. We claim it is enough
to show (i) for %, (ii) for Z. Since all members of both familes {,} and (¥, )
are antisymmetric and monotone in u, we can apply (2.18), (2.19) and the
inclusion relations between the neighbourhoods to derive (iii)-(iv). From (iii)-
(iv), (i) and (ii) follow for all neighbourhoods and (v) is immediate.

Problem (V) for % is just Hampel’s variational problem. Existence of a
solution follows from standard weak compactness arguments. For these and the
derivation of the family of solutions by a standard Lagrange multiplier argument,
see, for example, [B].

Problem (V) for % is a little less standard. Huber (1982) essentially derives
the solution indirectly from his finite minimax robust testing theory.

We will give another proof which relies on a “conditional on x” Lagrange
multiplier argument for the p-variate case. See the proof of Theorem 3.1 and
note (2) following it. 0

Discussion.

(1) Unknown Go. In practice G, is unknown. Strictly speaking it is not
required for the calculation of any particular estimate of the families {1}, {Vs}.
However, in order to pick out a member on optimality grounds, say, minimizing
maximum M.S.E., and to estimate maximum M.S.E., G, is required. Estimating
G, by the empirical distribution of the x; gives the same asymptotic results.

(2) Unknown scale. In practice the scale o2 of the u} is unknown. As we
indicate in [B] under mild conditions, the estimate T, solving

(2.20) Yy (i, (vi — xTn)/s) =0

where s is a consistent estimate of o (over %) and ¢ is antisymmetric in u for
fixed x will have influence function oy(x, u/s). It follows that the optimal ¢
functions derived under the assumption ¢ known can be modified as in (2.20) to
yield estimates optimal whatever be o. There are serious questions of computation
and existence of solutions when scale is estimated simultaneously. See Maronna
(1976) and Krasker and Welsch (1982).

(3) The agreement between the errors in variables and average ¢ or v models
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is interesting though, in retrospect, not surprising. As Huber (1982) reveals for
the average ¢ model, Nature can be thought of as using most of her allocated ¢ of
contamination to create very skew conditional given x distributions of u for the
largest x and this can certainly also be done for errors in variables.

(4) The qualitative behaviour for %, (and %) is surprising as noted by Huber
(1982). Small x’s which are relatively uninformative are cut out by the  estimates
and on the other hand the ¥ are not bounded. (However if G, is estimated as it
must be by the empirical d.f. of the x;, sup;,, | ¥(%:;, u)| < o for each n.) In this
case since Nature is required to spread her contamination evenly, it pays to take
chances and use c large at the large values of x which are informative if they are
not contaminated and it does not pay to take any chances at the small and
uninformative values of x. '

(5) Interestingly enough, the same behaviour is exhibited the Hellinger
metric neighbourhoods %, where h*(P, @) = [ (VdP/du — v dQ/du)2 du. Here it

may be shown
1/2
bro(y) = 2¢ f ( VA(x, u)<I>(du)> Go(dx)

and the resulting optimal ¢ are of the form
Vi, u) = alx)u
where
a(x) =0, |x] <k
=u(x—ksgnx), |x|>k,

where u is determined by (1.3).
These solutions do not agree with the unique solution y.(x, u) (essentially
least squares), appropriate for %o, -

3. The general case. For p > 1 we face the usual problem of choosing
adequate scalar summaries (measures of loss) of the vector b(y, F) and the matrix
V(¥) on which to optimize.

Again ¢’s which are Huber functions for each x play a special role,

(3.1) ¥(x, u) = (a(x)/c(x))h(u, c(x))

where a is now a vector, ¢ = 0. For such ¢, (1.2) is satisfied, (1.3) becomes

(3.2) f x7a(x)B(c(x))Goldx) =
and
(3.3) Vi) = f a”a(x)A(c(x))Go(dx)
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where

(3.4) Al) = 3‘10)—"%“”“) +28(-0), A0) =1

Also natural are ¥ corresponding to weighted least squares estimates (WLS)
definable in the multivariate case by
T = Tk wiyixi (T wixlx)™
with
w; = w(x;, yi — %TY)

scalars defined up to a proportionality constant. Note that ¥ corresponds to a
WLS estimate < the direction of y is that of a linear transformation of x, i.e.,

(3.5) ¥(x, u) = w(x, u)uxR
with .
R1'= f xTow (x, u)u?®(du)Go(dx).

We classify solutions to the p-variate problem according as they do or do not
possess equivariance under changes of basis in the X-space. An estimate T, is
equivariant under change of basis if and only if

T.(XB, y) = T.(X, y)[B"T™.
(a) Nonequivariant solutions.

(i) The Hampel-Krasker solution. Perhaps the most natural choice of objec-
tive function is the total M.S.E. of the components, tr V(¢) + bb7(y, F). If we
let | - | denote the Euclidean norm, this leads to the following p-variate version

of (V),
(V) f | ¥ |%(x, u)®(du)Go(dx) = min!
for ¢ € ¥ and sup#| b | (¥, F) < m. Holmes (1982) has shown that for i, Z1,

sup#| b| (¢, F) =t ess sup.. | ¥ (x, u) |

so that (V) is just the problem of Krasker, Hampel (1978) whose solution is of
the form, for Ao < A < oo,

¥(x, u, A) = xQh(u, \/| xQ|)
where @ is symmetric positive definite and by (3.2)

Q= f xTx<2tI><|x—2“‘> - 1)Go(dx).
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Here
A = ess sup,, | ¥(x, u, A\)|

and
0< Ao = inf‘supx.u l ¢('xy u) I: ¢ € ‘Il}‘

The solution to (V) has A = mt. Krasker and Hampel (see also [B]) show that
whenever there exists Y with ess sup,, | ¢/(x, u)| = XA > X\, then ¢(-, -, ) exists

and is unique.
Note that ¢(-, -, A) is of the form (3.1) and also WLS with

a(x) =NxQ/|2Q]), c(x) =7/|x2Q], w(x,u) x h(y, c(x))/u.
NOTES.

(1) Calculations along the lines of Maronna (1976) show that A — Q, is
decreasing (in the order on positive definite symmetric matrices).

(2) It may be shown that Ao = p/2¢(0) [ | x|Go(dx).

(ii) A generalization of Huber’s approach. For Z it seems difficult to evaluate
sup#| b | (¢, F) exactly. However, it is easy to show that (see appendix)

sup{|b|(¥, F): FE F} <t f sup, | ¥ (x, u) | Go(dx).

As in the 1-dimensional case [ sup,|y¥(x, u)|Go(dx) can be interpreted as an
average sensitivity. The solution of the resulting problem,

V') f | ¥(x, u) |*®(du)Go(dx) = min!
subject to (1.2), (1.3) and
f sup, | ¥ (x, u)| Go(dx) < A
for A = m/t, yields what should be a reasonable approximation to (V).

THEOREM 3.1. For every A > \; there exists a unique pair (s(\), Q(\)) such
that

¥, N = p(-, Q(N), s(N))

is an influence function and

(3.6) f sup. | ¥ (x, u, A)| Go(dx) = A
and ¥(-, \) solves (V’).
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The solutions to (V') are describable as follows: Define, for s > 0, @ symmetric
positive definite, ¢ as in (2.7),

o(x, Q, s) = xQh(u, q([s| 2Q|]™)), |xQ]| > [25¢(0)]™*

=0 otherwise.
Let

A= inf<|r f sup, | ¥(x, w)| Go(dx): ¢ G\Il}.

¥(-, A) can be written in the form (3.1) with corresponding functions defined
for s = s(\), @ = Q(\) by

é(x, N) = q(] sx@Q|™)
d(x, A\) = xQé(x, \)  for |xQ| > [25¢(0)]™
=0 otherwise.
Preliminary calculations along the lines of Maronna (1976) and Maronna-

Yohai (1981) indicate that at least if G, does not place mass on hyperplanes,
then Q is uniquely determined by s through (3.2), i.e.

(3.7) Q"' = J; .o xTx(22(q(] sxQ ™)) — 1)Go(dx)

where S(s, Q) = {x:|sxQ|> 2¢(0)} and then s is determined by A through (3.6)

3.8) f | Q1 q(] sxQ | ™)Go(dx) = A.
S(5,Q)

Moreover if we write @, for the solution of (3.7), s — @, is nondecreasing
and hence A — s(\) is also. So we can reparametrize ¥(-, A) by s for
s> inf{s(X) : A > \,}. If, for p = 1, we take k = sQ,, then we obtain the family ¥
of Theorem 2.1. Since k is an increasing function of A we obtain the conclusions
of Theorem 2.1.

PROOF. In the appendix we show by standard optimization theory arguments
that a solution to (V') exists and is also the solution to a Lagrangian problem

f { | ¥ 13(x, u) — 2 f ud(x, u)QxT + %I v (x, u)}@(du)Go(dx) = min!

for Qpxp, s > 0.
If Yo is the solution we can minimize

f | ¥ [2(x, w)(du) — 2 f uy (x, u)Qx"®(du)
subject to sup, | ¥ (x, w)| < sup.y¥o(x, u) and conclude that y, is of the form (3.1)
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with the corresponding vector ao(x) and co(x) minimizing

f {la?(x)A(c(x)) — 2xQa"(x)B(c(x)) + s7'| a | (x)}Go(dx).
Minimizing pointwise we obtain as necessary conditions for ay, co
(3.9) a0A(co) = x@B(co) + 57 (ao/| a0 |) =0, ao#0
lao|? = xQafco
(3.10)
= xQalc, if co > 0.
From (3.10), ap # 0 = ¢, > 0. Then by (3.9)
a0 = | ao| (xQ/]2Q1) = coxQ
by (3.10). Again by (3.9)
coA(co) — Bco) + (1/s]xQ|) =0

which implies |xQ| = [25¢(0)]", ¢o = q([s|xQ|]™"). Conversely, if |x| >
[256(0)]7%, G(x, X), é(x, A) yield

|a|?4 — 2xQa™B(c) + s'|a| <0
and hence 0 # a, = @ by our previous reasoning. Since ¥ must satisfy (1.2), @
must satisfy (3.9) and be positive definite symmetric. The theorem is proved. O

(iii) One at a time optimality. Another nonequivariant solution of interest is
obtained by minimizing the maximum M.S.E. of each component of 8 separately.
That is, we seek ¢* = (Y, -- - , ¥5) € ¥ which simultaneously minimizes

f [P (x, u)®(du)Go(dx)
fory = (Y1, -+, ¥p) € ¥and
sup{| b;(Y, F)|: FE Fl=m;

where b(y, F) = (bi(¥, F), ---, by,(¥)). For neighbourhoods of the “average”
or errors in variables types, the solutions y*, indexed by the vector m =
(my, - -+, m,), are not of the WLS form. They are given by

(811)  YMx, u; m) = uxalh(u, mi/|xaf]), j=1,...,p

where (1.2) and (1.3) hold. Existence of y*(-, mo) and their form as
solutions of a Lagrange problem are guaranteed. for m, an interior point of

{m:tsup,.|¥i(x,w)| <m;,j=1, ..., p}. The limiting case corresponding to the
median is, for x = (x1, -+ , %p),

(3.12) Vi(x, w) = cisgn[(x; — ey bixa)u]

where

9\ /2 -1
¢ = [(;) f | % = T brje | Go(dx)]
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where B = || b; | is determined by

(3.13) f sgn(xj - Zk;sj bijk)xiGo(dx) = 0, 17 ]

If (21, -+, %ip, yi); i=1, - - -, p are the observations, 1, cee, é,, are the estimates,
and & = y; — Y°_, x;0; are the residuals, then 6y, - - -, 6, are characterized by the
property that

mediang 3,/ (xij - Ek;éj bk,-x,-k) =0

forj=1, ---, p.In view of (3.13) the b;; can be interpreted as the coefficients of
a least absolute residuals fit of ¥, b.xx to x;, ie.,

(3.14) f |xj - Zk;éj bijk | Go(dx) = min f Ix,- - zk;ej bkx,, l Go(dx)

This characterization guarantees the existence of this influence function at least
if G, is absolutely continuous. Of course, there may be difficulties for a sample
where we replace G, by the empirical d.f. of the X;.

At first glance this solution appears to render the Hampel-Krasker solution
inadmissible. This is, however, not the case. y* here minimizes (for suitable m;),

R(Y) = Xk f Vi(x, u)®(du)Go(dx) + Ti maxsbi(y, F)

while the Hampel-Krasker solution minimizes

SW) = X f Vi(x, u)®(du)Go(dx) + maxs Y2107, F).

Of course, S < R but the optimal solutions are not related.

(b) Equivariant solutions. When translated to influence functions this equi-
variance becomes

(3.15) (%, u, Go) = Y (xB, u, GoB™)BT

where ¥/(x, u, G) is the influence curve if X; ~ G.
(i) Equivariant best MSE of prediction. Suppose that X is error free so that
G = Gy and that [ | x|?Go(dx) < . The most natural way of obtaining invariant

¥ with local optimality properties is to use as objective function the expected
mean square error of prediction

f {xV)x"G(dx) + xb"(Y)b(¥)x"}Go(dx).

We can rewrite this as

f ¥2¢7(x, wP(dw)Goldx) + b(y, F)Zb7(Y, F)
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where

(3.16) = j xTxGo(dx).
As in the noninvariant case we can deal easily with % since
3.17)  supi{b(y, F)ZbT(y, F): F € Fio} = ess sup..¥(x, u)Z¢ T (x, w).

Minimizing the maximum of our objective function over . is easy once we
have solved

(V1) f VY 7(x, u)®(du)Go(dx) = min!
for ¢ € ¥ such that )
ess sup,,,. ¥ 2y T(x, u) < A.
Let
Ao = inf ess{sup,.¢Z¢7(x, u): ¥ € ¥}
d*(x, 2) = x2x7. ‘
For A > Ao let

(3'18) ¢I(x’ u, A) = th(uy A/d(ny 2))
where @ is positive definite symmetric,

A _
(3.19) f xTx(2<I><m) - I)Go(dx) =QL

THEOREM 3.2. If A > Ay, ¥i(+, -, ) uniquely solves (Vy).

PROOF. Again by standard arguments we can establish existence of a mini-
mizing ¥, which solves an equivalent Lagrangian problem

f WSy T(x, u) — 2 f uxQZ Y7 (x, u)}®(du)G,(dx) = min!

subject to | ¥Z¢”| < . A direct minimization of Yy Z¢T — 2uxQZ¢” under the
side condition yields (3.18) and (3.2) implies (3.19). 0

Note that the uniquenéss of y; and (3.19) imply the equivariance property
(3.15).

(ii) An equivariant Huber solution. As in the nonequivariant case we can
bound the maximum expected squared bias of the predictor

sup{ f xbTb(y, F)xTGo(dx): F € 5{0}
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above by
¢ f {sup.¥ (x, ) ZY7(x, u)}Go(dx).

The resulting variational problem

f Y27 (x, u)®(du)Go(dx) = min!

subject to
(3.20) f sup.¥ (x, u)ZY7(x, u)Go(dx) < X
has solutions of the form
(3.21) V(x, u, s) = %”3 h(u, é(x, s))
where
ér(x, N) = q(1/sd(xQ, Z)), di(x, s) = xQCi(x, s)
if

d(xQ, Z) = [2s¢(0)]*
=0 otherwise.
and Q, s are determined by the requirement that y; is an influence function
satisfying equality in (3.20).
" Reparametrizations are possible for the procedures of this section as for the
Hampel-Krasker and Huber solutions.

(iii) The Krasker-Welsch (1982) solution. Based on sensitivity considerations,
Krasker and Welsch proposed estimates given by

(3.22) Yw(x, u, A) = xQh(x, \/d(xQ, V1), > p
where
A _
S orlolgivms) - t)osen - @
and
(3.23) Va= f VY (x, u, \)®(du)Go(dx).

Equivalently if A™* = QV'Q, (3.23) becomes

A= f 2Tx28(N/d(x, A™)) — 1 — 2Ad " (x, A™)P(Ad (x, A7))]Go(dx)

and @ may be obtained directly from (3.22). Existence of the K-W solution for
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A> ‘/5 is guaranteed by results of Maronna (1976). The K-W solution is also
equivariant. It evidently has the property (by arguing as for Theorem 3.2) of
uniquely minimizing [ ¢ V"' (yxw)¢ T subject to sup ¢ V" (Yxw)y¢ ™ = A% Krasker
and Welsch conjecture a strong optimality property (see below).

(iv) More general optimality properties. Whatever be p, least squares esti-
mates do not minimize only trace V(¢) but the matrix itself or equivalently
[ yMyT for all M positive definite, symmetric. It is fairly easy to see (see also
Stahel, 1981) that once we bound the vector influence curve as we have in this
section, no such conclusion is possible. Thus yMy7(x, u) — 2uy (x, u)@MxT is
minimized subject to || = Aby ¢ = uxQ if |[u| = N\/|xQ]|, but, unless M = I,
by a boundary value other than A(xQ/| xQ|) if [u| > X/|xQ].

Krasker and Welsch seek to remedy this failing by restricting ¢ to the WLS
form, i.e., forcing the direction of ¢ to coincide with a linear transformation of x.
They conjecture that their solution minimizes V(¢) among all WLS estimates
with sup ¢ V-}(y)¢T < 5. Our methods do not readily give a counterexample to
their conjecture but we show below that neither the Hampel-Krasker estimate
nor the equivariant estimate of section (i) possess the analogous optimality
property, thus casting some doubt on the conjecture. (David Ruppert has recently
discovered a counterexample to the conjecture.) Suppose G, is spherically sym-
metric, its support is bounded, has a nonempty interior, and does not contain 0.
Then, by symmetry, the Hampel-Krasker, section (i) and Krasker-Welsch solu-
tions are of the same form. For suitable A,

Yo(x, u) = rxh(u, A/r|x])

r= [ f |x |2<2q><ﬁ*x—l) - 1>Go(dx)]m_l.

If Yo were a universally optimal solution for the Hampel-Krasker or MSE of
prediction problems among WLS estimates, it would solve, for all S,

where

(Vs) f vSYT(x, u)®(du)Go(dx) = min!

subject to | ¢ | = \, ¥ € ¥ and y WLS as in (3.5).

By conditioning as in the proof of Theorem 3.1 and restricting to
A h(y, cx))
c(x) u|xR| "’

we see that Ry = rl, co(x) = A/r| x | minimizes

f )\2<M>A(c(x))00(dx)

w(x, u) =

| %R |?
among all ¢ > 0, R symmetric positive definite such that
T,
f N \B (c(x))Go(dx) = I.
| xR |
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If we let ¢ range over the Banach space of continuous functions vanishing at
oo with supremum norm, it can be shown that if p > 3 the map

T,
@R — [ 2R G
2K

has a nonsingular differential at ¢ = ¢y, R = R, where r is given in the definition
of ¢. Therefore by Luenberger (1969, page 243) there exists a Lagrange multiplier
matrix WsS such that Ry, ¢, minimize

d*(xR, S)
[xR|*
among all R symmetric positive definite, ¢ = 0, ¢’s vanishing at . But minimi-

zation over c leads as in Theorem 3.1 to
(3.25) ¢ = tr(RSRxx)/tr(WsSRx"x) | xR |.

If we set ¢ = co, R = R,, we deduce that Ws = Ro/\. If we now substitute (3.25)
back into (3.24), find the differential of the resulting map from the set of
symmetric matrices to the real line and set it equal to 0 at R = R,, we obtain the
equation

tr(WsSRxTx)

(3.24) A(c(x))Go(dx) — 2 f —W B(c(x))Go(dx)

(3.26) f a(co(x))((SRo + RoS) — 2B(x, S)Ro)xTxGo(dx) = 0
where

ale) = 2(c®(—c) — ¢(c),  B(x, S) = d*(xRo, S)/| xR, |
Simplifying, we get

T
@2 S f a(—"—>xTxGo(dx) - f a(l) B T Goldx)
rix| lx]) x|

for all positive definite symmetric S. Passing to the limit, the relationship must
hold for nonnegative definite S as well. Put

10 -0
s={o -0
0 .. 0

to obtain a contradiction since by symmetry of Go, [ a(M/r|x])x"xGo(dx) is a
multiple of I and G, has a nonempty interior.

NoOTES.

(1) For p > 1 as in the univariate case we would typically need to estimate G,
and ¢ in order to implement adequate scale equivariant estimates. No new
theoretical issues arise from optimality considerations. However the computa-
tional solution and existence of problems which arise with simultaneous estima-
tion of scale become more serious.
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(2) Our discussion in this section is essentially limited to the contamination
neighbourhood since the maximum bias (as measured by different norms) in the
p-variate case can only be easily calculated for these. However, these solutions
are also adequate for variational and Kolmogorov neighbourhoods provided ¢ is
taken as double its value for contamination. Thus, for %o, .,

(3.28) sup | b(y¥, F)| =< 2t sup.. | ¥(x, u)|

while for %,

(3.29) sup | b(y, F)| = 2t f sup, | ¥ (x, u) | Go(dx)

and for o, HAx

(3.30) sup.5, | b(¥, F)| =t sups| | ¥(x, )| |

where || ¢/(x, -) | = (I ¥a(x, )Il, -, I¥p(x, ) |I) and || ¥i(x, -) | is the variational

norm of y;(x, -).

(3) The invariant estimates based on minimizing MSE of prediction are
appealing and seem reasonable for the error free x models. They are seriously
compromised for errors in variables, however, since the matrix | xTxGo(dx) is not
robustly estimated by replacing G, by the empirical distribution. A fairly artificial
way out is to down weight extreme values of x. That is, let u, satisfy conditions
of Maronna (1976), and Z(Go) be the robust covariance determined by that u,.

(3.31) f us(d(x, 7))xTxGo(dx) = =.

Then we can easily see that the estimate which minimizes the downweighted
MSE of prediction

sup & { f up(d(x, Z7NxV)x" + be(nI/)b('l/)xT}Go(dx)}

is given by (3.19) with = given by (3.31) for both % and %,. The estimate is
clearly equivariant. This is essentially equivalent to a proposal of Maronna,
Bustos, and Yohai (1979).

APPENDIX

PROOF OF (2.11)-(2.19). For the errors in variables models these claims are
proved in [B]. For the other neighbourhoods the arguments are similar. As an
example here is the proof of (2.11).

Since G = Gy, by (1.2),

(A1) by, G,H) =t f f ¥ (x, w)M(du| x)Go(dx).

Since M is arbitrary (2.11) follows. As a second example we prove (2.17) for %,.
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Write

b, G, H) = f f ¥(x, w)[H(du | x) — $(du)]Go(dx)
(A.2)
= f f ¥ (x, w)M*(du|x) — M~ (du | x)]a(x)Go(dx)

where a(x) is the common total mass of the positive and negative parts of the
measure H(- | x) — ®(-) and M*, M~ are the probability measures obtained by
normalizing these positive and negative parts. F € %,; means [ a(x)Go(dx) <
tn~Y/2, Since M*, M~ are arbitrary, (2.17) follows. 00

PROOF OF (3.7). By definition

2)1/2
16|, F) = t{zf.1<ff ¥i(x, WM (du | x)Go(dx)) }
2)1/2
=<t f {Z‘,‘L‘ < f ¥i(x, WM (dulx)) } Go(dx)

by Jensen’s inequality applied to the random vector

(f i(Xa, WM(du| Xy), ---, f ¥n(Xi, u)M(dulX:))-

(A.3)

Existence of solutions in Theorem 3.1.

Sketch of argument. Consider ¢ as elements of Ly(F,; RP), square integrable
p-variate functions. Define the following maps from L, to R or R”’

a: Y — f | ¢ [2(x, u)®(du)Go(dx)
a:y— f sup, | ¥(x, w) | Go(dx)

a: Y — f ux Y (x, u)®(dw)Go(dx)

az: ¥ — supy. | ¥ (x, u)|.
Then ay, a; are convex, a; is linear. Let
Ay = inf{)\:'l/ E VY, a1(¢) <A, aa(lll) = M}.

It is easy to see that A1y | Ay if M — . Suppose A > Ayp. Then by problem 7,
page 236 of Luenberger (1969) there exist Qu, Sy such that

inflao(¥): a1(¥) =<\, a2(¢) = I, as(y) = M}

(a4 = infao(y) — 2 tr Qa(¥) — I1 + (2/9)ac(¥) — A}
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Moreover since {y: az(¢) < M} is weakly compact and g, is lower semicontinuous,
the infima in (A.4) are assumed by, say, y# € V. By arguing as in the proof of
the theorem

Yirdx, w) = p(x, u, sm, Qu) if | p(x, u, sm, Qu)| = M.

It readily follows by considering sy and Qu/tr(Quy) that we can extract a
subsequence {M,} such that y3; converges pointwise to a limit y* as M, — .
Since by the optimality of y3;, the sequence ao(¥3;) is uniformly bounded, we
can conclude that ax(¥3,) — a=(¥*), i.e. y* € ¥ and a,(¥3;,) — a:1(y*). By lower
semicontinuity of ao, ¢* is the solution to (V’). Applying (A.5) with M = « we
obtain (s()), @())) such that p(x, u, @(X\), s(\)) = ¢*. Unicity of (Q, s) follows
from the strict convexity of a,. 0
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PARAMETRIC ROBUSTNESS: SMALL BIASES
CAN BE WORTHWHILE!

By P. J. BICKEL
University of California, Berkeley

We study estimation of the parameters of a Gaussian linear model _#,
when we entertain the possibility that .4 is invalid and a larger model .#;
should be assumed. Estimates are robust if their maximum risk over .#; is
finite and the most robust estimate is the least squares estimate under .#;.
We apply notions of Hodges and Lehmann (1952) and Efron and Morris
(1971) to obtain (biased) estimates which do well under .4, at a small price in
robustness. Extensions to confidence intervals, simultaneous estimation of
several parameters and large sample approximations applying to nested
parametric models are also discussed.

1. Introduction. The basic aim of robust inference as developed by Huber,
Hampel and others has been the production and study of statistical procedures
which

(a) perform reasonably well when the parametric assumptions are perfectly
satisfied; and

(b) are relatively insensitive to nonparametric departures from parametric
assumptions which a given data set is believed to satisfy.

The main parametric model considered has been the Gaussian linear model and
the departures, outliers and gross errors in the variables, have been modeled by
assuming non-Gaussian error distributions and, where suitable, dependence
between the independent and error variables.

An important aspect of this point of view is a focus on inference about
parameters of interest rather than on deciding whether the parametric model
provides an adequate fit. This is in contrast to the older approach of estimation
and testing after a goodness of fit test or more generally rejection of outliers.

The same point of view makes sense in a purely parametric context. We have
two possible parametric models in mind, %, .# with # C _#,. Our primary
interest is in estimating parameters which are identifiable in .#;.

Again,

(i) we believe that #, is adequate and want estimates or confidence regions
based on estimates that perform well under that assumption. However

(ii) we wish to guard against the possible departures presented by .#;.
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Here is the main situation we are thinking of with some specific examples.

Nested linear models. We observe y,x;, where
y=0+e.

e is an n-variate normal vector with mean 0 and covariance matrix =. 6 ranges
freely over an r-dimensional linear space @, under .4, and over an s-dimensional
linear space ©, D 0, under .#, where r < s < n. We suppose £ known. Our
asymptotic analysis in Section 5 will permit us as usual to substitute a consistent
estimate 3 for =. We are interested in inference about wu(0) where u is a linear
function of 6. Special cases are:

1(a) Pooling means (Mosteller, 1948). We are given two samples X, --- , X,
independent _# (u, ¢?); Yy, ---, Y, independent _# (u + A, ¢%). We want to
estimate or set a confidence interval on u. We believe A = 0 (.#;) but want to
guard against arbitrary A (). Plausible examples, e.g. measurements in a
current and previous survey, are discussed by Mosteller.

1(b) Additive effects with possible interactions. Suppose _#; is an ANOVA
model in the sense of Scheffé (1959), possibly including random effects, which
contains some interaction terms as well as main effects, and .4, is purely additive
specifying all interactions to be 0. We take the variances of all random effects as
well as measurement errors to be known. We want to study some or all of the
main effects. An interesting special case is the crossover design discussed by B.
W. Brown (1980). Here two groups of subjects I and II which for simplicity we
take of equal size n/2 are each administered two drugs A, B in succesion and
responses measured. The second drug is administered after response to the first
has been measured and a time deemed sufficient for the effect of the first to wear
off has elapsed. The order of administration of the drugs is AB in group 1, BA
in group 2. Model .#, here is that the response Y, of the jth subject in group i
during period k who is administered drug u during that period is

Yirw =+ me + ¢u + A + & + i

where m, k = 1, 2, is the period effect, ¢, u = A, B is the drug effect, and A,.is
the interaction of drug u and period k with A\,; = 0. These are all fixed. As usual,
identifiability requires further linear restrictions. On the other hand, &;, the
effect of the jth subject in group i, is considered random _# (0, o;), and e, the
within subject deviation for the kth period (including measurement error), is
modeled as _# (0, ¢%). All are modeled as independent of each other. We assume
0%, o2 known. .4, specifies that, as we hope, there is no interaction, A\., = 0. We
are interested in estimating ¢, — ¢,, the difference in effectiveness of the drugs.

1(c) Nested regression models. Write § = X8, Bex1, X = (x1, ---, %) an
n X s matrix of rank s and think of the s columns of X as corresponding to s
independent variables. Suppose (8 ranges freely over R® under .# but s — r
coordinates of 3 are set equal to 0 under .4, i.e. s — r of the independent variables
are irrelevant. Various linear functions u(6) are of interest, for instance the
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vector of expectations 6 itself or one or more predicted values x3, at various
values x.

From this special case we will proceed (under regularity conditions) by an
asymptotic analysis to the general case of

Nested parametric models. We observe (X;, ---, X,) with joint density
pn(x, 8) (with respect to some measure »,). Under .4, § € ©,, an open subset of
s-dimensional space. Under #,, § € ©, C 0y, a (locally) r-dimensional subsurface
of ©;, and u is a smooth vector-valued function of 6. This of course covers all
previous situations as well as many others including Example 1 with ¢ unknown,
nested loglinear models, etc.

Our point of view, essentially already suggested by Hodges and Lehmann
(1952), page 402, is that procedures should be judged by their maximum risks
under .#, and _#,. So, in the context of nested parametric models, if M (6, §) is
the risk of a decision rule § when 6 is true we should look at

m(8) = sup{M(8, 6): 0 € 0y}, M(5) = sup{M(6, 8): § € 6,}.

M can be thought of as a measure of robustness of § and we should be interested
in procedures which make m small subject to a bound on M.

In the basic linear model example the solutions we end up with are necessarily
biased under .#;. Robustness requires that the biases be bounded through M.
The worthwhile gains are in reduction of m over the unbiased minimax estimate.

In Section 2 we apply this theory to the linear model example for quadratic
loss when y is one dimensional. The optimal procedures are difficult to compute.
We motivate a family of reasonable approximately optimal solutions, compare
them numerically to the optimum and other competitors and also briefly discuss
the crucial question of selection within the family.

In Section 3 we discuss confidence intervals based on these estimates. In
Section 4, we derive, using results of Berger (1982) and Huber (1977), some
procedures for the multivariate case. In Section 5, we show how these ideas
generalize to yield reasonable procedures in nested parametric models and, finally,
in Section 6, give conclusions and propose open questions.

2. The nested linear models: dim(x) = 1, quadratic loss.

a) Optimality theory. We specializé to estimation of u with quadratic loss.
That is, we assume that p is real, linear, and if 6(x) is an estimate

(2.1) M6, 8) = Eo(6(X) — u(6))

Since we assume T known, we can, by taking Y* = YI V2, _#Ff = #4272,
reduce our problem to one in which the observation Y* has covariance matrix
o’I, the standard linear model.

Let 4; = u(8), i = 0, 1, be the least squares estimates of u under %4, .#
respectively. Then, for i = 0, 1, ji; has constant risk and is minmax under .#;. Let
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o7 be the variance of 4, so that
infsM(8) = ¢%, infym(s) = o2.

Let 4} minimize m(8) subject to M(8)/02 < 1/c so that o = 4, i = 0, 1. Note
that M(gy) = o and g, is certainly not robust. Let

(2.2) p = corr(go, fi1) = go/0;

which is independent of the error variance o2,

N

(2.3) - A= — fio
and
(2.4) ok = oi(1 - p?),

its variance.

PROPOSITION 1. The estimate u¥ may be written

(2.5) i¥ = o + oawi(A/as)
where
(2.6) ¢?=(1-c)el - p?

w¥ is odd and obtained by minimizing Ew*(Z) subject to

2.7)
supaEw(Z + A) — A2 <1+ q*for Z ~ _7(0, 1).

Note. Evidently w} is the solution of the special case u =0, r=0,s =1, ¢*
= 1. We call this problem (P).

PROOF. By sufficiency reduce to 6; and without loss of generality choose a
canonical basis so that f, consists of the first r components of 6, and all
components of 6, are independent normal variables with variance o2 Moreover
we can arrange that fio/oo is the first component of §; and A/a (1 — p?)Y2is the
(r+1)st component. Note by Hodges and Lehmann (1952) that gk
is unrestrictedly minimax for the “mixed” model: for suitable A(c) aAnd 0 =
©®P, ..., 09, 6, has density (1 — \)p; + Ap, where p, is the density of §; under
, and 6, while p, is the density of 6, under (6%, ..., 6%, 0, ---, 0), i.e. under
M#y. We can reduce this unrestricted problem by invariance, using for instance
Kiefer’s (1957) general results. Since we want to estimate

000(1) + (1 — p2)1/20_10(r+1)’

the problem is invariant under arbitrary translations of 8, i % 1, r + 1, and we
can reduce to fio, A. The problem is also invariant under translations of fo,
keeping A fixed. Since ji¥ is unique it therefore must be of the form uo + w(A).
Claims (2.7) and (2.6) follow by calculation. 0

Unfortunately calculation of w} is difficult. See Bickel (1983) for its rather
unpleasant qualitative features.
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In view of these unpleasant features, it is natural to seek other families of
robust estimates with more satisfactory behaviour. By invariance it seems
reasonable to look for i of the form

(2.8) fio + aiw(A/a3).

For any such estimate
(2.9) M(i) = oi(p® + (1 — p?)sups Ew(Z + A) — 4)?)
(2100 m(i) = ot(p® + (1 — p?)Ew*(2)).

Abusing notation, let us call the coefficients of (1 — p?) inside parentheses in
these expressions M,(w), mo(w). They correspond to M and m in problem (P).

b) “Approximate” optimality in problem (P). From (2.9) and (2.10) reasonable
w in problem (P) correspond to reasonable . In problem (P) we observe X = Z
+ A, Z ~_7(0, 1) and we want to minimize m,(w) subject to a bound on M,(w).
Three approximate optimality principles lead to the same family, the limited
translation estimates of Efron and Morris (1971) defined by

e,(x) =0, lx| =g¢q
=x—gsgnyx |x|>g,
which leads to My(e;) =1 + g%
1. Optimality in a related problem (Bickel, 1983, Marazzi, 1980). Suppose =

is a prior distribution, r(w) the Bayes risk, w, the Bayes estimate, and G, =
« + ®, where * denotes convolution, is the marginal distribution of X. Then,

(2.11) r(r) =1 - I(G,)
(2.12) w(x) = x + (g+/8x)(x)

where g, is the density of G,, I(G) is the Fisher information where
712
1@) = f % (x) dz, if the integral is defined

= otherwise.

By Hodges and Lehmann (1952) and (2.11), the optimal w{ corresponds to G
which for some A(¢) minimizes I(G) over % = {G = (1 — \)® + A®+H, H
arbitrary}. If we “approximate” %, by 4 = {G = (1 — A\)® + AH, H arbitrary} we
arrive at Huber’s (1964) problem with solution G, where

(g1/81) (x) = —x, x| =¢

—gsgnx, |x|>gq.

Substituting into (2.12), we get the Efron-Morris family.
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II. Bounding unbiased estimate of risk (Berger, 1982). If
(2.13) Yix) =x— wk)
under mild conditions
M(4, w) =1 + Es(¥*(x) — 2¢'(x))

so that 1 + ¢2(x) — 2¢’(x) is the UMVU estimate of M (5, w). Berger (in a more
general context) proposes minimizing m,(w) subject to Y2(x) — 2¢’(x) < q2 The
solution is easily seen to be e,.

In fact Berger’s approach must yield the same results as approach I both in
our context and his more general restricted Bayes models. To see this in our
model, note that

inf, {(1 — N)mo(w) + A sup.(1 + ¥2(x) — 2¢/(x))}

1+ inf\bsup{f (Y3(x) — 2y’ (x))G(dx): G € %}

1 — min{I(G): G € ¥}
by a minmax argument.

III. Bounding unbiased estimate of bias. Note that y¥(X) is the UMVU
estimate of the bias of w(X). Thus it seems reasonable to minimize m,(w) subject
tosup, | ¥ (x) | < q. This is the exact analogue of Hampel’s robustness formulation.

The solution is again e,.
For further optimality properties of Efron-Morris estimates, see Bickel (1983).

¢) Performance of Efron-Morris (E-M) estimates and competitors. We
measure the relative performance of estimates £ by their relative savings and
losses in risk with respect to 4,

S@) =1-m()/ma), L@)=M®@)/M(i,) - 1.
For estimates of the form (2.8),
S() = (1 - pHA = mew)), L) =1 — p)(Mo(w) — 1).

Table 1 gives 1 — mo(w) as a function of g2 = My(w) — 1 for the E-M estimates,
for w¥ (calculated by Dr. A. Marazzi) and for some competitors which we now
discuss.

Pretesting estimates. A type of procedure long advocated by Bancroft and
others (see Bancroft and Han, 1977, for a review) are estimates
&= fio, |51—éo| =co
= ji;, otherwise

with ¢ chosen to produce an appropriate level for the test of H: .#, vs. _#, based
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TABLE 1
Gain at 0, g = 1 — mo(w), as a function of the increase in maximum risk q¢* = Mo(w) — 1.

9 g & A & q d(q)
1 413 085 — — 316 715
2 538 155 — .330 447 .903
3 619 225 — 438 548 1.053
4 676 .290 — 523 632 1.175
5 721 350 11 592 707 1.281
6 1158 405 7153 648 175 1.370
7 1186 455 788 695 837 1.461
8 811 500 816 135 894 1.538
9 832 540 840 768 949 1.608

1.0 850 58 859 796 1.000 1.679

Note: g, is the increase for the E-M estimate, g, for the pretest, g, for the Sacks family, g, for
Jeffreys’ type of generalized Bayes estimate. ¢ and d(q) are the critical values for the E-M and pretest
estimates.

on (|6, — 6o|)/a. If | i — fio| # | 61 — Bo], this estimate is not of the form (2.8).
A version of that form can be based on testing H: EA = 0 vs. EA # 0 and is given

by
. . A
ie = o + a&bq<;z>
with
b, =0, <d
2.14) q (%) | x| (q)

%, |x|>d(q)
and d chosen so that
Mo(bq) =1+ q2.

The y function corresponding to b, via (2.13) corresponds to hard rejection which
is known not to work well. This seems true here too. The Bancroft-Han estimate
is even worse. (See also Sclove et al. (1972).

Another interesting and desirable feature of the E-M family is monotonicity
of M(A, e,) as a function of | A |, i.e. My(e,) is assumed at | A| = o. This is not
true of the pretest estimates and more generally estimates which correspond to
redescending y functions. Nevertheless we can expect smooth versions of such
estimates to perform reasonably well. Motivated by Sacks and Ylvisaker (1978),
J. Sacks has proposed a family of such y,

Yyl(x) =22 + (x| — v)3) .

Another natural family consists of the Jeffreys’ type estimates which are gener-
alized Bayes with respect to a prior distribution placing mass p at 0 and
corresponding to Lebesgue measure otherwise.

d(x) = 2((1/p — DP(x) + 17

Table 1 shows very substantial gains in m, for small payments in M,. Small
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biases can be very worthwhile. The pretest estimates are clearly poor and the
Jeffreys type estimates are inferior to both the E-M and Sacks estimates.

There is, of course, a serious question as to which E-M estimate to use. The
natural way is to calibrate by the maximum L(z) we are willing to tolerate. This
of course depends both on p* and M,(w). For instance, if n, = n, in the pooling
example p? = V. If we are willing to accept a 10% loss we would take g = .2 and
obtain a gain of (.5) (.538) = 26.9%.

Another idea is to bound the maximum squared bias of i standardized by the
variance of 4. For the E-M estimates this equals L(x). The remaining approach
of choosing d according to a reasonable level for the test of H: A = 0 based on A
yields unreasonably high values of L(g) and is not recommended.

The performance of E-M is markedly better than that of the “Jeffreys” or
pretest procedures for small g2. This is in accordance with the asymptotic results
of Bickel (1983). Since the Sacks’ procedures which are on the whole comparable
with E-M cannot be extended over the whole g? range, we are left with E-M as
the candidate of choice.

The best we can do in terms of mo(w) for given My(w) cannot be calculated
exactly. However effective numerical procedures have been derived in Marazzi
(1980, 1982). Here is a table of the optimal g based on results he has supplied.

g .06 .12 .19 .29 .44 .70
8o .39 .49 .57 66 .74 .82

3. Nested linear models: x univariate.

Confidence intervals and other loss functions. In univariate estimation prob-
lems, we usually want confidence intervals as well as point estimates. Since,
given our assumed knowledge of o, we can form fixed width confidence intervals
based on 4, it seems reasonable to ask how intervals of the same width based
on estimates g perform. This boils down to fixing a width 220, and using the loss
function

Z(0,d) =1if |d — p(0)| = 20,

(3.1) = 0 otherwise

(3.2) M®, 2) = P[la— p0)] = 2z01] =1 — Po[u(d) € i + 201].

From the argument of Proposition 1 it is easy to see that for any loss function of
the form #(| u(8) — d|), equivariant estimates are of the form (2.8). Calculation
of the optimal procedures is even more hopeless for this loss function. However,
it is easy to see that approximate optimality approach III continues to yield the
E-M estimate. More generally

PROPOSITION 2. Suppose 7 (0, d) = Z(| n(8) — d|) and Z is nondecreasing.
Then m (i) is minimized among all equivariant ji of the form (2.8) with |¢(x) | <
q by an E-M estimate

3.3) S = fio + cie,(A/oz).
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ProOOF. Without loss of generality, suppose ci = 1. If § € 0, and 4 is given
by (2.8)

m() =EZ(1U + w(V)|)

where U, V are independent normal with mean 0. By Anderson’s theorem
(Anderson, 1955) E(Z (|U + w(V)|)| V) is monotone increasing in |w(V)].
The proposition follows. 0

The risk of an E-M estimate (3.3) for a loss function #(| 8 — d|) is given by

Mo, i) = f {/(aou - A)ed - &) - @(=g - B)]

(3.4) + f ;£ (oou + (1 — pH)V(w — q))¢(w) dw

+ J:_ ) Z(oou + a1(1 — p?) 2w + q))p(w) dW}d)(u) du

where A = pu(6) — u(6o), A = A/a1(1 — p2)V2 Evidently M depends on 6 through
A only, as it must, and moreover,

PROPOSITION 3. IfZ is as in Proposition 2, then M is a nondecreasing function
of | A| for the estimator u¢.

PrOOF. It is enough to consider # such that #’ exists and is bounded since

we can then obtain the general case by approximation. Differentiate M with
respect to A and interchange limits to get

oM
ﬁ (0y He
= o1(1 = p)"d(q — &) — B(—q — A)] f_ 7"(oou — A)p(w) du = 0. O

NoOTE. This establishes monotonicity of risk for an arbitrary monotone loss
function in the original problem considered by Efron and Morris. Thus

m(gg) = ( f _ /(o)) du>(2<I>(q) -1
(3.5) o
+2 I J; Z(oou + a1(1 = p*)*(v — ) (V)¢ (u) du dv

0

(36) M) = Im Z(o1(u — (1 = p)%q))p(u) du.
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TABLE 2
Minimum probabilities of coverage of fixed length intervals centered at E-
M estimates: z = 1.960.

q° 2 A 6 8
2 982 978 972 962
932 936 941 945
4 988 985 977 965
912 922 932 941
6 992 989 980 966
894 908 922 936
8 994 991 982 968
874 894 913 932

Note: For each table, the first entry in each box is the minimum
probability of coverage on .#, given by (3.7), the second the minimum on
#, given by (3.8).

If we specialize to confidence intervals as in (3.1), we obtained minimum
probabilities of coverage,

1 —m(ag) = (22(z/p) — 1(22(q) — 1)

(3.7)
+2P[-z—(1—p)%q<A<z—(1-p)"d,B=q]

where (A, B) are bivariate standard normal with correlation (1 — p2)'/2
(8.78) 1—- M) =®(z— (1 —-pH)") + 2z + (1 —-p)"%) — L

We give these probabilities for z = 1.96 (corresponding to a 95% confidence level)
and selected ¢ in Table 2. The results are similar for the 90% and 99% levels.
Again the cost benefit structure seems attractive.

Brown (1980) essentially uses pretest estimate based confidence intervals on
a data set to illustrate the dangers of the crossover method. If we treat ¢%, o? as
equal to their estimated values so that p? = .48 for these data and say select ¢ =
.2 in Table 1 so that L(a$) = .10 we obtain significant results for all (.#;)
confidence levels tabled and a fortiori all corresponding (.#,) levels, which is
consistent with an analysis of the data based on first period results only.

4. Nested linear models: Quadratic loss in the multivariate case.
Suppose dim(u) = p. Then i, ~ A, (u(8), Z1), fio ~ #5(1(6o), Z,) where 6, is the
projection of 6 on @,. If # (0, d) is a function of 1 () — d, invariance considerations
lead as before to estimates

(4.1) fi = fio + w(A)

where A = ji; — jio is independent of ji, with an (4, 2y — Z,) distribution,
A = u(0) — u(by). Specialize further to,

Z(u(@) — d) = (u(8) — d)A(u(8) — d)”, A positive definite.
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Then,
m(ii) = tr(AZ) + tr(AE;(wTw(A)))
M(ii) = tr(AZo) + supatr(AEs((w(A) — A)Tw(A) — A)))

and in minimizing m (i) subject to a bound on M we need only consider the
second terms above. That is, it is enough to consider the special case r = 0,
s = p. Exact solution is impossible. However we can attempt approximations.

We can always reduce to the case A = | a?$;| diagonal, =, — Z, the identity.
That is, we observe X = A + Z, Z ~ _#4,(0, I), A = (A, -+ -, Ay). The risk of an
estimate w = (w1, - -+, wp) = x — ¥(x) is

M(A, w) = T2, a?Ewi(X) — A)?

W
o (x»}

under mild conditions. If = is a Bayes prior distribution with Bayes risk r(x),
Bayes estimate w,, and marginal density g, then

= 3L af + E{ PaafiX) - 2

w,(x) = x + V log g.(x)

“2) rx) = $ha a? — I(G,)
where V is the gradient ((8/dx,), - - -, (8/3xy))
(4.9 1o-sa [ (g—f (x))Zg-%x) dx

(and = o if the quantity on the right is undefined). Again the original problem
is to minimize I(G) over % and approximation (I) is to minimize over ¥ (with
& now the p-variate standard normal). By the argument given for one dimension,
this yields the same solution as does approximation (II) which minimizes
M (0, w) subject to a bound on [ a?(Y?(x) — 2 (8¥:i/0x:)(x))] < ¢? for suitable
q> Unfortunately this approximation is also difficult to compute (but see Chen,
1983), unless all the a? are equal, say to 1/p. In this case the solution is given for
p = 3 by Huber (1977) and for general p by Berger (1981), Theorem 3. Here

w(x) =0 x| =gq
(4.5)
=p(lx|9x, |x|>gq
with p a ratio of Bessel functions with parameters depending on p and scale
depending on ¢ and p(|q|? = 0. For p = 3 we can take ¢ = 0, i.e., find the
minimax estimate in this class which minimizes M (0, w). The answer is the
Stein positive part estimate, g2 = 2(p — 2),

_[,_2p—-2)
p(r) = (1 — )
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As Berger points out, M (0, w) for this estimate drops very sharply from .296
when p = 3 to .07 for p = 5. Although ths solution is appealing we face the usual
ambiguities of the multivariate case. For p = 3 we could, for instance, also reduce
M8, u) for | u(6y) | small by applying Steinian shrinking to g,. Moreover, the
effect of the choice of loss function on the suitability of the estimate is difficult
to make precise.

For a? = 1/p, it seems reasonable to consider average squared bias and,

minimize E{Y2; w?(X)} subject to p~! 32, ¢? < ¢
The solution is as in the one-dimensional case,
b(x) = 0, lx]*=q*
=@ - (q/lxDx |x]*>q*

If we define M as in the introduction then for fixed M(w) = 1 + ¢? estimate
(~4‘5) improves (4.6) at A = 0. This follows since the estimates (4.6) also have, if
Y corresponds to w,

(4.6)

N N,
(4.7) M@)=1+p*sup, Y [ﬁ(x) -2 5‘3;5_, (x)] =1+q%
The difference is substantial and despite its attractive feature of computability
for more general loss functions, this analogue to Hampel robustness seems
unsatisfactory for this application.

5. Nested parametric models: Asymptotics. We extend the approaches
of Sections 3 and 4 to general nested parametric models by using large sample
approximations. Related results are given by Sen (1979) for pretesting estimates.
For simplicity we consider estimation of u(6) where p is a smooth real-valued
function of 4.

Suppose 0;, 0, are as we described previously, respectively an open subset of
R* and a (locally) r-dimensional submanifold of ©;. Suppose that the models are
approximable locally in the sense of Le Cam, to scale n~Y2, by nested Gaussian
linear models and admit estimates o, 61, (typically M.L.E.’s under .#,, .#;)
which are efficient and locally sufficient uniformly on compact subsets of @y, 0,
respectively. See Le Cam (1969), Chapters 3, 4 for a detailed description of these
concepts and suitable conditions.

Fix 6y € 0y and reparametrize ® by 8, + an™"/? in Pitman form. Locally ©
permits arbitrary a while @, specifies a € V (8,) an r-dimensional subspace of R*.
Also u(6o + an™?) = u(fo) + ai(6o) + O(n™"?) where 4 is the differential of u.
Finally, nY/2{(0o, — 60), (f1n — 6,)} is asymptotically normal uniformly on compact
sets of (6o, @) with means (all(6y), a) and covariance matrix Z(6,) where II1(6,)
is the projection matrix of V (6,).

These approximations suggest that in order to minimize maximum M.S.E. of
estimates of n(f) over large Pitman neighbourhoods of 6, in @,, subject to a
bound on the maximum M.S.E. over large Pitman neighbourhoods of 6, in ©, we

-1/2
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use asymptotically equivariant estimates as follows. Let
T

Bo= w(On) = p(l), o3(00) = ;ﬂ(%)('})z(oo)('}) (00

denote the asymptotic variance of n'/2A, under 8, + an "2,

A = a(l — 11(60))(6o)
denote its asymptotic mean, and ¢,,, be a consistent estimate of o,, e.g.
&A,, = U'A(éln)~
Then, an asymptotically equivariant estimate is one of the form
(5.1) w(lon) + Ga,0(An/3s,)

and n times the M.S.E. at 6, + an~?of such an estimate is (under mild conditions)
approximated by

(5.2)  M(bo, a, w) = ai(80)(p*(f) + (1 — p*(60))E(w(Z + A) — A)?)
where o2(6,) is the asymptotic variance of n?u(f;,) and,
02(90) = 00(90)/6§(00)~

From (5.2), given a bound 1/c on sup.M (6, a, w)/c%(6;), we minimize
SUpaeviey M (0o, @, w) by taking w = w§. As in Section 2, we obtain reasonable
results by taking w = e,, with g related to c via (2.6) and p = p(ao). The asymptotic
sufficiency and efficiency properties of 8, i = 0, 1, enable us to formulate
asymptotic optimality and near optimality properties of these estimates in the
class of all estimates. For simplicity, we omit these.

We give a simple illustration of this approach by applying it to the case of
nested linear models with £ = 62, ¢ unknown, and x a linear function of the
mean 6. Then our prescription is merely to replace ai. in (2.8) by

(5.2a) 6% = 1ol = 0f)]

where 72 = | Y — 6,]|%/(n — 2), the usual estimate of ¢2. The ratio in parentheses
in (5.2) depends on the models only. For general Z, given a consistent estimate
E of 2, we can calculate f,, ; by generalized least squares using £ and then plug
$ into o3 appropriately calculated.

As a second illustration, consider pooling two binomial samples. Let p; =
Ni/n;, i =1, 2, where N; is bin(n;, p;), 0 <p; < 1, ni/na = A\, 0 < A < 1. We want
to estimate p,. #, prescribes p; = p,. So, if we use n = n; + n, as an index,

éln = (ijly ﬁZ)y éOn = (ﬁr ﬁ)

where
= (N1 + Ny)/n = (\p1 + p2)/(1 + N).
1£0 = (p, p),
1 A A
40 =p( - p), ot0) =p(t —p) TN g = 2
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Thenif 7/, =1—p;, i = 1, 2, putting w = ¢, in (5.1),

N LA ((xn)lﬂ(ﬁl —m)
Re=P T \\n) N\ + N

or

53 s = pif [(\n)Y3(py — po)/(Prif) V(1 + N)| < ¢

= Py — g sgn(p: — P2)(An) "V3(p,71) "2 otherwise.

This yields, by (5.1), for quadratic loss, a relative loss in risk of

(5.4) 01%(6) sup.M (8, a, w) — 1 = ¢*/(1 + A)
while the relative savings in risk are
(5.5) 1 = ¢7%(8) supvM (6, a, w) = (1 — mo(e;))/(1 + N).

Clearly we can extend this approach to confidence intervals and the p-variate
case. What we are doing should be clear from the examples. We essentially
interpolate between the M.L.E.’s of x(#) under .#, and .#; using weights which
are functions of Wald’s form of the test statistic for H: u(0) € n(0,) vs. K: n(8)
€ u(0,).

When we consider the limit of ordinary risks M (8, {,}) we find that procedures
(5.1) generally exhibit a discontinuity at points of ,, i.e. convergence of the risk
is not uniform. This is reminiscent of Hodges’ example of a super efficient
estimate which is essentially a pretest estimate corresponding to a sequence of
levels tending to 0. However the Hodges procedure has infinite relative loss in
risk whereas we propose to pay a small price in the relative loss in exchange for
improved behaviour on 0.

6. Conclusions: Open questions.

(1) We have applied robustness ideas to derive what we judge are useful biased
estimates in the estimation of single parameters under a simple model .#, when
we want to guard against deviations towards a larger model .#;. The solutions
involve both an approximation to the optimality principle and in general a large
sample approximation. Tables 1 and 2 show that the first approximation is not
serious for quadratic loss and the solutions give reasonable confidence intervals.
The adequacy of the large sample approximation remains to be assessed in
different models by obtaining approximate solutions of the Berger-Bickel type to
the exact model, where possible.

(2) In the p-variate case, even approximate solutions can only be calculated
in special cases and their structure depends on the loss function. It may be
appropriate to apply Steinian “pulling in” within the simple model towards a yet
simpler model as well as further “pulling in” towards the simple model itself.
Alternatively, if we do not believe that losses from errors made in estimation of
different components of u should be combined it may still make sense to apply
pulling in towards .#, on each component individually.
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(3) This approach is applicable, in principle, to large sample problems when
M, is nonparametric. For example, suppose we want to estimate features of
distributions such as medians, means, or even the whole distribution or its
density. Our approach suggests reasonable ways of interpolating between esti-
mates based on parametric assumptions and nonparametric estimates.

(4) Typically we have more than one simple candidate model .#,. It would be
very interesting to obtain reasonable estimates of u(f) which do well at each
member of a set of simple models while still performing adequately at a super
model 7.

(5) This work is closely connected with the recent studies of Marazzi (1980)
and Berger (1982) on robust Bayesian inference. See also the thesis of Y. Ritov
(1982) and Masreliez and Martin (1977). Problem (P) is precisely of that form,
minimize the Bayes risk for a prior degenerate at {0} subject to a bound on the
maximum risk—interpreted as the worst that misspecification of the prior can
do. On the other hand, if in our original problem we replace the maximum risk
over .#, by an average, we are again in the robust Bayesian framework. We prefer
not to try to specify prior distributions. Our point is just that a possibly naive
belief in a simpler model can be catered to with reasonable safety.
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