
Chapter 2
Robust Statistics

Peter Bühlmann

2.1 Introduction to Three Papers on Robustness

2.1.1 General Introduction

This is a short introduction to three papers on robustness, published by Peter Bickel
as single author in the period 1975–1984: “One-step Huber estimates in the linear
model” (Bickel 1975), “Parametric robustness: small biases can be worthwhile”
(Bickel 1984a), and “Robust regression based on infinitesimal neighbourhoods”
(Bickel 1984b). It was the time when fundamental developments and understanding
in robustness took place, and Peter Bickel has made deep contributions in this area.
I am trying to place the results of the three papers in a new context of contemporary
statistics.

2.1.2 One-Step Huber Estimates in the Linear Model

The paper by Bickel (1975) about the following procedure. Given a
√

n-consistent
initial estimator θ̃ for an unknown parameter θ , performing one Gauss-Newton
iteration with respect to the objective function to be optimized leads to an asymptot-
ically efficient estimator. Interestingly, this results holds even when the MLE is not
efficient, and it is equivalent to the MLE if the latter is efficient. Such a result was
known for the case where the loss function corresponds to the maximum likelihood
estimator (Le Cam 1956). Bickel (1975) extends this result to much more general
loss functions and models.
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The idea of a computational short-cut without sacrificing statistical was relevant
more than 30 years ago (summary point 5 in Sect. 3 of Bickel 1975). Yet, the idea
is still very important in large scale and high-dimensional applications nowadays.
Two issues emerge.

In some large-scale problems, one is willing to pay a price in terms of statistical
accuracy while gaining substantially with respect to computing power. Peter Bickel
has recently co-authored a paper on this subject (Meinshausen et al. 2009): having
some sort of guarantee on statistical accuracy is then highly desirable. Results as
in Bickel (1975), probably of weaker form which do not touch on the concept of
efficiency, are underdeveloped for large-scale problems.

The other issue concerns the fact that iterations in algorithms correspond to some
form of (algorithmic) regularization which is often very effective for large datasets.
A prominent example of this is with boosting: instead of a Gauss-Newton step,
boosting proceeds with Gauss-Southwell iterations which are coordinatewise up-
dates based on an n-dimensional approximate gradient vector (where n denotes
sample size). It is known, at least for some cases, that boosting with such Gauss-
Southwell iterations achieves minimax convergence rate optimality (Bissantz et al.
2007; Bühlmann and Yu 2003) while being computationally attractive. Furthermore,
in view of robustness, boosting can be easily modified such that each Gauss-
Southwell up-date is performed in a robust way and hence, the overall procedure
has desirable robustness properties (Lutz et al. 2008). As discussed in Sect. 3 of
Bickel (1975), the starting value (i.e., the initial estimator) matters also in robustified
boosting.

2.1.3 Parametric Robustness: Small Biases Can Be Worthwhile

The following problem is studied in Bickel (1984a): construct an estimator that
performs well for a particular parametric model M0 while its risk is upper-bounded
for another larger parametric model M1 ⊃M0. As an interpretation, one believes
that M0 is adequate but one wants to guard against deviations coming from M1. It
is shown in the paper that the corresponding optimality problem has not an explicit
solution: however, approximate answers are presented and interesting connections
are developed to the Efron-Morris (Efron and Morris 1971) family of translation
estimates, i.e., adding a soft-thresholded additional correction term to the optimal
estimator under M0. (The reference Efron and Morris (1971) is appearing in the text
but is missing in the list of references in Bickel’s paper).

The notion of parametric robustness could be interesting in high-dimensional
problems. Guarding against specific deviations (which may be easier to specify
in some applications than in others) can be more powerful than trying to protect
nonparametrically against point-mass distributions in any direction. In this sense,
this paper is a key reference for developing effective high-dimensional robust
inference.
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2.1.4 Robust Regression Based on Infinitesimal
Neighbourhoods

Robust regression is analyzed in Bickel (1984b) using a nice mathematical frame-
work where the perturbation is within a 1/

√
n-neighbourhood of the uncon-

taminated ideal model. The presented results in Bickel (1984b) give a clear
(mathematical) interpretation of various procedures and suggest new robust methods
for regression.

A major issue in robust regression is to guard against contaminations in X-space.
Bickel (1984b) gives nice insights for the classical case where the dimension of X
is relatively small: a new challenge is to deal with robustness in high-dimensional
regression problems where the dimension of X can be much larger than sample
size. One attempt has been to robustify high-dimensional estimators such as the
Lasso (Khan et al. 2007) or L2Boosting (Lutz et al. 2008), in particular with respect
to contaminations in X-space. An interesting and different path has been initiated
by Friedman (2001) with tree-based procedures which are robust in X-space (in
connection with a robust loss function for the error). There is clearly a need of
a unifying theory, in the spirit of Bickel (1984b), for robust regression when the
dimension of X is large.
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