
Chapter 1
Rank-Based Nonparametrics

Willem R. van Zwet

1.1 Introduction to Two Papers on Higher Order
Asymptotics

1.1.1 Introduction

Peter Bickel has contributed substantially to the study of rank-based nonparametric
statistics. Of his many contributions to research in this area I shall discuss his work
on second order asymptotics that yielded surprising results and set off more than a
decade of research that deepened our understanding of asymptotic statistics. I shall
restrict my discussion to two papers, which are Albers et al. (1976) “Asymptotic
expansions for the power of distribution free tests in the one-sample problem” and
Bickel (1974) “Edgeworth expansions in nonparametric statistics” where the entire
area is reviewed.

1.1.2 Asymptotic Expansions for the Power of Distribution
Free Tests in the One-Sample Problem

Let X1,X2, · · · be i.i.d. random variables with a common distribution function Fθ
for some real-valued parameter θ . For N = 1,2, · · · , let AN and BN be two tests of
level α ∈ (0,1) based on X1,X2, · · · ,XN for the null-hypothesis H : θ = 0 against a
contiguous sequence of alternatives KN,c : θ = cN−1/2 for a fixed c > 0. Let πA,N(c)
and πB,N(c) denote the powers of AN and BN for this testing problem and suppose
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that AN performs at least as well as BN , i.e. πA,N(c) ≥ πB,N(c). Then we may look
for a sample size k = kN ≥ N such that Bk performs as well against alternative KN,c

as AN does for sample size N, i.e. πB,k(c(k/N)1/2) = πA,N(c). For finite sample
size N it is generally impossible to find a usable expression for k = kN , so one
resorts to large sample theory and defines the asymptotic relative efficiency (ARE)
of sequence {BN} with respect to {AN} as

e = e(B,A) = lim
N→∞

N/kN .

If πA,N(c) → πA(c) and πB,N(c) → πB(c) uniformly for bounded c, and πA and πB

are continuous, then e is the solution of

πB(ce−1/2) = πA(c).

Since we assumed that AN performs at least as well as BN , we have e ≤ 1.
If e < 1, the ARE provides a useful indication of the quality of the sequence

{BN} as compared to {AN}. To mimic the performance of AN by Bk we need
kN − N = N(1 − e)/e + o(N) additional observations where the remainder term
o(N) is relatively unimportant. If e = 1, however, all we know is that the number of
additional observations needed is o(N), which may be of any order of magnitude,
such as 1 or N/ log logN. Hence in Hodges and Lehmann (1970) the authors
considered the case e = 1 and proposed to investigate the asymptotic behavior of
what they named the deficiency of B with respect to A

dN = kN −N,

rather than kN/N. Of course this is a much harder problem than determining the
ARE. To compute e, all we have to show is that kN = N/e+ o(N), and only the
limiting powers πA and πB enter into the solution. If e = 1, then kN = N + o(N),
but for determining the deficiency, we need to evaluate kN to the next lower order,
which may well be O(1) in which case we have to evaluate kN with an error of
the order o(1). To do this, one will typically need asymptotic expansions for the
power functionsπA,N and πB,N with remainder term o(N−1). For this we need similar
expansions for the distribution functions of the test statistics of the two tests under
the hypothesis as well as under the alternative.

In their paper Hodges and Lehmann computed deficiencies for some parametric
tests and estimators, but they clearly had a more challenging problem in mind.
When Frank Wilcoxon introduced his one- and two-sample rank tests (Wilcoxon
1945) most people thought that replacing the observations by ranks would lead to a
considerable loss of power compared to the best parametric procedures. Since then,
research had consistently shown that this is not the case. Many rank tests have ARE
1 when compared to the optimal test for a particular parametric problem, so it was
not surprising that the first question that Hodges and Lehmann raised for further
research was: “What is the deficiency (for contiguous normal shift alternatives) of
the normal scores test or of van der Waerden’s X-test with respect to the t-test?”.
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In the paper under discussion this question is generalized to other distributions
than the normal and answered for the appropriate one-sample rank test as compared
with the optimal parametric test. Let X1,X2, · · · ,XN be i.i.d. with a common
distribution function G and density g, and let Z1 < Z2 < · · · < ZN be the order
statistics of the absolute values |X1|, |X2|, · · · , |XN |. If Zj = |XR( j)|, define Vj = 1
if XR( j) > 0 and Vj = 0 otherwise. Let a = (a1,a2, · · · ,aN) be a vector of scores and
define

T = ∑
1≤ j≤N

a jVj. (1.1)

T is the linear rank statistic for testing the hypothesis that g is symmetric about
zero. Note that the dependence of G, g and a on N is suppressed in the notation.
Conditionally on Z, the random variables V1,V2, · · · ,VN are independent with

Pj = P(Vj = 1|Z) = g(Zj)/{g(Zj)+ g(−Zj)}. (1.2)

Under the null hypothesis, V1,V2, · · · ,VN are i.i.d. with P(Vj = 1) = 1/2. Hence
the obvious strategy for obtaining an expansion for the distribution function of T
is to introduce independent random variables W1,W2, · · · ,WN with p j = P(Wj =
1) = 1 − P(Wj = 0) and obtain an expansion for the distribution function of
∑1≤ j≤N a jWj. In this expansion we substitute the random vector P=(P1,P2, · · · ,PN)
for p = (p1, p2, · · · , pN). The expected value of the resulting expression will then
yield an expansion for the distribution function of T .

This approach is not without problems. Consider i.i.d. random variables Y1,
Y2, · · · ,YN with a common continuous distribution with mean EYj = 0, variance
EY 2

j = 1, third and fourth moments μ3 = EY 3
j and μ4 = EY 4

j , and third and fourth

cumulants κ3 = μ3 and κ4 = μ4 − 3μ2
2 . Let SN = N−1/2∑1≤ j≤N Yj denote the

normalized sum of these variables. In Edgeworth (1905) the author provided a
formal series expansion of the distribution function FN(x) = P(SN ≤ x) in powers
of N−1/2. Up to and including the terms of order 1, N−1/2 and N−1, Edgeworth’s
expansion of FN(x) reads

F∗
N(x) = Φ(x)−φ(x) · [(κ3/6)(x2 − 1)N−1/2

+{(κ4/24)(x3 − 3x)+ (κ2
3/72)(x5 − 10x3 + 15x)}N−1].

(1.3)

We shall call this the three-term Edgeworth expansion. Though it was a purely
formal series expansion, the Edgeworth expansion caught on and became a popular
tool to approximate the distribution function of any sequence of continuous random
variables UN with expected value 0 and variance 1 that was asymptotically standard
normal. As λ3,N = κ3N−1/2 and λ4,N = κ4N−1 are the third and fourth cumulants
of the random variable SN under discussion, one merely replaced these quantities
by the cumulants of UN in (1.3). Incidentally, I recently learned from Professor
Ibragimov that the Edgeworth expansion was first proposed in Chebyshev (1890),
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which predates Edgeworth’s paper by 15 years. Apparently this is one more example
of Stigler’s law of eponymy, which states that no scientific discovery – including
Stigler’s law – is named after its original discoverer (Stigler 1980).

A proof of the validity of the Edgeworth expansion for normalized sums SN

was given by Cramér (cf. 1937; Feller 1966). He showed that for the three-term
Edgeworth expansion (1.3), the error F∗

N(x)− FN(x) = o(N−1) uniformly in x,
provided that μ4 < ∞ and the characteristic function ψ(t) = E exp{itYj} satisfies
Cramér’s condition

limsup
|t|→∞

|ψ(t)|< 1. (1.4)

Assumption (1.4) can not be satisfied if Y1 is a discrete random variable as then its
characteristic function is almost periodic and the limsup equals 1. In the case we
are discussing, the summands a jWj of the statistic ∑1≤ j≤N a jWj are independent
discrete variables taking only two values 0 and a j. However, the summands are not
identically distributed unless the a j as well as the p j are equal. Hence the only case
where the summands are i.i.d. is that of the sign test under the null-hypothesis, where
a j = 1 for all j, and the values 0 and 1 are assumed with probability 1/2. In that
case the statistic ∑1≤ j≤N a jWj has a binomial distribution with point probabilities of
the order N−1/2 and it is obviously not possible to approximate a function FN with
jumps of order N−1/2 by a continuous function F∗

N with error o(N−1).
In all other cases the summands a jWj of ∑1≤ j≤N a jWj are independent but not

identically distributed. Cramér has also studied the validity of the Edgeworth expan-
sion for the case that the Yj are independent by not identically distributed. Assume
again that EYj = 0 and define SN as the normalized sum SN = σ−1∑1≤ j≤N Yj with
σ2 = ∑1≤ j≤N EY 2

j . As before FN(x) = P(SN ≤ x) and in the three-term Edgeworth

expansion F∗
N(x) we replace κ3N−1/2 and κ4N−1 by the third and fourth cumulants

of SN . Cramér’s conditions to ensure that F∗
N(x)−FN(x) = o(N−1) uniformly in x,

are uniform versions of the earlier ones for the i.i.d. case: EY 2
j ≥ c> 0,EY 4

j ≤C <∞
for j = 1,2, · · · ,N, and for every δ > 0 there exists qδ < 1 such that the characteristic
functions ψ j(t) = E exp{itYj} satisfy

sup
|t|≥δ

|ψ j(t)|< qδ for all j. (1.5)

As the a jWj are lattice variables (1.5) does not hold for even a single j
and the plan of attack of this problem is beginning to look somewhat dubious.
However, Feller points out, condition (1.5) is “extravagantly luxurious” for val-
idating the three-term Edgeworth expansion and can obviously be replaced by
sup|t|≥δ |Π1≤ j≤Nψ j(t)| = o(N−1) (cf. Feller 1966, Theorem XVI.7.2 and Prob-
lem XVI.8.12). This, in turn, is slightly too optimistic but it is true that the condition

sup
δ≤|t|≤N

|Π1≤ j≤Nψ j(t)|= o((N logN)−1) (1.6)

W.R. van Zwet
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is sufficient and the presence of logN is not going to make any difference. Hence
(1.6) has to be proved for the case where Yj = a j(Wj− p j) and SN =∑1≤ j≤N a j(Wj−
p j)/τ(p) with τ(p)2 = ∑1≤ j≤N p j(1 − p j)a2

j and ρ(t) = ∏1≤ j≤N ψ j(t) is the
characteristic function of SN .

This problem is solved in Lemma 2.2 of the paper. The moment assumptions
(2.15) of this lemma simply state that N−1τ(p)2 ≥ c > 0 and N−1∑1≤ j≤N a4

j ≤
C < ∞, and assumption (2.16) ensures the desired behavior of |∏1≤ j≤N ψ j(t)| by
requiring that there exist δ > 0 and 0 < ε < 1/2 such that

λ{x : ∃ j : |x−a j|< ζ , ε ≤ p j ≤ 1−ε}≥ δNζ for some ζ ≥ N−3/2 logN, (1.7)

where λ is Lebesgue measure. This assumption ensures that the set of the scores a j

for which p j is bounded away from 0 and 1, does not cluster too much about too
few points. As is shown in the proof of Lemma 2.2 and Theorem 2.1 of the paper,
assumptions (2.15) and (2.16) imply

sup
δ≤|t|≤N

| ∏
1≤ j≤N

ψ j(t)| ≤ exp{−d(logN)2}= N−d logN , (1.8)

which obviously implies (1.6). Hence the three-term Edgeworth expansion for SN =

∑1≤ j≤N a j(Wj − p j)/τ(p) is valid with remainder o(N−1), and in fact O(N−5/4).
This was a very real extension of the existing theory at the time.

To obtain an expansion for the distribution of the rank statistic T =∑1≤ j≤N a jVj,
the next step is to replace the probabilities p j by the random quantities Pj in (1.2)
and take the expectation. Under the null-hypothesis that the density g of the Xj

is symmetric this is straightforward because Pj = 1/2 for all j. The alternatives
discussed in the paper are contiguous location alternatives where G(x) = F(x−θ )
for a specific known F with symmetric density f and 0 ≤ θ ≤ CN−1/2 for a fixed
C > 0. Finding an expansion for the distribution of T under these alternatives is
highly technical and laborious, but fairly straightforward under the assumptions
N−1∑1≤ j≤N a2

j ≥ c, N−1 ∑1≤ j≤N a4
j ≤C,

λ{x : ∃ j : |x− a j|< ζ} ≥ δNζ for some ζ ≥ N−3/2 logN (1.9)

and some technical assumptions concerning f and its first four derivatives. Among
many other things, the latter ensure that ε ≤ Pj ≤ 1− ε for a substantial proportion
of the Pj. Having obtained expansions for the distribution function of (2T −
∑a j)/(∑a2

j)
1/2 both under the hypothesis and the alternative, an expansion for the

power is now immediate.
It remains to discuss the choice of the scores a j = a j,N . For a comparison between

best rank tests and best parametric tests we choose a distribution function F with a
symmetric smooth density f and consider the locally most powerful (LMP) rank
test based on the scores

a j,N = EΨ(Uj:N) whereΨ(t) =− f ′F−1((1+ t)/2)/ f F−1((1+ t)/2) (1.10)
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and Uj:N denotes the j-th order statistic of a sample of size N from the uniform
distribution on (0,1). Since F−1((1+t)/2) is the inverse function of the distribution
function (2F − 1) on (0,∞), F−1((1 +Uj:N)/2) is distributed as the j-th order
statistic Vj of the absolute values |X1|, |X2|, · · · , |XN | of a sample X1,X2, · · · ,XN from
F . Hence a j = −E f ′(Vj)/ f (Vj). As f is symmetric, the function f ′/ f can only be
constant on the positive half-line if f is the density f (x) = 1/2γe−γ|x| of a Laplace
distribution on R1 for which the sign test is the LMP rank test. We already concluded
that this test can not be handled with the tools of this paper, but for every other
symmetric four times differentiable f , the important condition (1.9) will hold.

If, instead of the so-called exact scores a j,N = EΨ(Uj:N), one uses the approx-
imate scores a j,N =Ψ( j/(N + 1)), then the power expansions remain unchanged.
This is generally not the case for other score generating functions thanΨ .

The most powerful parametric test for the null-hypothesis F against the contigu-
ous shift alternative F(x−θ ) with θ = cN1/2 for fixed c > 0 will serve as a basis for
comparison of the LMP rank test. Its test statistic is simply ∑1≤ j≤N{log f (Xj −θ )−
log f (Xj)} which is a sum of i.i.d. random variables and therefore its distribution
function under the hypothesis and the alternative admit Edgeworth expansions under
the usual assumptions, and so does the power. Explicit expressions are found for the
deficiency of the LMP rank test and some examples are:

Normal distribution (Hodges-Lehmann problem). For normal location alterna-
tives the one-sample normal scores test as well as van der Waerden’s one-sample
rank test with respect to the most powerful parametric test based on the sample
mean equals

dN = 1/2loglogN + 1/2(u2
α − 1)+ 1/2γ+ o(1),

where Φ(uα) = 1−α and γ = 0.577216 is Euler’s constant. Note that in the paper
there is an error in the constant (cf. Albers et al. 1978). In this case the deficiency
does tend to infinity, but no one is likely to notice as 1/2loglogN = 1.568 · · · for
N = 1010 (logarithms to base e).

It is also shown that the deficiency of the permutation test based on the sample
mean with respect to Student’s one-sample test tends to zero as O(N−1/2).

Logistic distribution. For logistic location alternatives the deficiency of Wilcoxon’s
one-sample test with respect to the most powerful test for testing F(x) = (1+e−x)−1

against F(x− bN−1/2) tends to a finite limit and equals

dN = {18+ 12u2
α+(48)1/2buα + b2}/60+ o(1).

It came as somewhat of a surprise that Wilcoxon’s test statistic admits a three-term
Edgeworth expansion, as it is a purely lattice random variable. As we pointed out
above, the reason that this is possible is that its conditional distribution is that of a
sum of independent but not identically distributed random variables. Intuitively the
reason is that the point probabilities of the Wilcoxon statistic are of the order N−3/2

which is allowed as the error of the expansion is o(N−1).

W.R. van Zwet
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The final section of the paper discusses deficiencies of estimators of location.
It is shown that the deficiency of the Hodges-Lehmann type of location estimator
associated with the LMP rank test for location alternatives with respect to the
maximum likelihood estimator for location, differs by O(N−1/4) from the deficiency
of the parent tests.

The paper deals with a technically highly complicated subject and is therefore not
easy to read. At the time of appearance it had the dubious distinction of being the
second longest paper published in the Annals. With 49 pages it was second only to
Larry Brown’s 50 pages on the admissibility of invariant estimators (Brown 1966).
However, for those interested in expansions and higher order asymptotics it contains
a veritable treasure of technical achievements that improve our understanding of
asymptotic statistics. I hope this review will facilitate the reading. While I’m about
it, let me also recommend reading the companion paper (Bickel and van Zwet 1978)
where the same program is carried out for two-sample rank tests. With its 68 pages
it was regrettably the longest paper in the Annals at the time it was published, but
don’t let that deter you! Understanding the technical tricks in this area will come in
handy in all sorts of applications.

1.1.3 Edgeworth Expansions in Nonparametric Statistics

This paper is a very readable review of the state of the art at the time in the area
of Edgeworth expansions. It discusses the extension of Cramér’s work to sums of
i.i.d. random vectors, as well as expansions for M-estimators. It also gives a preview
of the results of the paper we have just discussed on one-sample rank tests and the
paper we just mentioned on two-sample rank tests. There is also a new result of
Bickel on U-statistics that may be viewed as the precursor of a move towards a
general theory of expansions for functions of independent random variables. As we
have already discussed Cramér’s work as well as rank statistics, let me restrict the
discussion of the present paper to the result on U-statistics.

First of all, recall the classical Berry-Esseen inequality for normalized sums SN =
N−1/2 ·∑1≤ j≤N Xj of i.i.d. random variables X1, · · · ,XN , with EX1 = 0 and EX2

1 = 1.
If E|X1|3 < ∞, and Φ denotes the standard normal distribution function, then there
exists a constant C such that for all N,

sup
x
|P(SN ≤ x)−Φ(x)| ≤CE|X1|3N−1/2. (1.11)

In the present paper a bound of Berry-Esseen-type is proved for U-statistics.
Let X1,X2, · · · be i.i.d. random variables with a common distribution function F
and let ψ be a measurable, real-valued function on R2 where it is bounded, say
|ψ | ≤ M < ∞, and symmetric, i.e. ψ(x,y) = ψ(y,x). Define

γ(x) = E(ψ(X1,X2)|X1 = x) =! (0,1)ψ(x,y) dF(y)
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and suppose that Eψ(X1,X2) = Eγ(X1) = 0. Define a normalized U-statistic TN by

TN = σ−1
N ∑

1≤i< j≤N

ψ(Xi,Xj) with σ2
N = E{ ∑

1≤i< j≤N

ψ(Xi,Xj)}2, (1.12)

and hence ETN = 0 and ET 2
N = 1. In the paper it is proved that if Eγ2(X1)> 0, then

there exists a constant C depending on ψ but not on N such that

sup
x
|P(TN ≤ x)−Φ(x)| ≤CN−1/2. (1.13)

When comparing this result with the Berry-Esseen bound for the normalized
sum SN , one gets the feeling that the assumption that ψ is bounded is perhaps
a bit too restrictive and that it should be possible to replace it by one or more
moment conditions. But it was a good start and improvements were made in
quick succession. The boundedness assumption for ψ was dropped and Chan and
Wierman (1977) proved the result under the conditions that Eγ2(X1) > 0 and
E{ψ(X1,X2)}4 < ∞. Next Callaert and Janssen (1978) showed that Eγ2(X1) > 0
and E|ψ(X1,X2)|3 < ∞ suffice. Finally Helmers and van Zwet (1982) proved the
bound under the assumptions Eγ2(X1)> 0, E|γ(X1)|3 <∞ and Eψ(X1,X2)

2 < ∞.
Why is this development of interest? The U-statistics discussed so far are a

special case of U-statistics of order k which are of the form

T = ∑
1≤ j(1)< j(2)<
···< j(k)≤N

ψk(Xj(1),Xj(2), · · · ,Xj(k)), (1.14)

where ψk is a symmetric function of k variables with Eψk(X1,X2, · · · ,Xk) = 0 and
the summation is over all distinct k-tuples chosen from X1,X2, · · · ,XN . Clearly the
U-statistics discussed above have degree k = 2, but extension of the Berry-Esseen
inequality to U-statistics of fixed finite degree k is straightforward. In an unpublished
technical report (Hoeffding 1961) Wassily Hoeffding showed that any symmetric
function T = t(X1, · · · ,XN) of N i.i.d. random variables X1, · · · ,XN that has ET = 0
and finite variance σ2 = ET 2 −{ET}2 < ∞ can be written as a sum of U-statistics
of orders k = 1,2, · · · ,N in such a way that all terms involved in this decomposition
are uncorrelated and have several additional desirable properties. Hence it seems
that it might be possible to obtain results for symmetric functions of N i.i.d. random
variables through a study of U-statistics. For the Berry-Esseen theorem this was
done in van Zwet (1984) where the result was obtained under fairly mild moment
conditions that reduce to the best conditions for U-statistics when specialized to
this case. A first step for obtaining Edgeworth expansions for symmetric functions
of i.i.d. random variables was taken in Bickel et al. (1986) where the case of U-
statistics of degree k = 2 was treated. More work is needed here.

W.R. van Zwet
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