Chapter 1
Rank-Based Nonparametrics

Willem R. van Zwet

1.1 Introduction to Two Papers on Higher Order
Asymptotics

1.1.1 Introduction

Peter Bickel has contributed substantially to the study of rank-based nonparametric
statistics. Of his many contributions to research in this area I shall discuss his work
on second order asymptotics that yielded surprising results and set off more than a
decade of research that deepened our understanding of asymptotic statistics. I shall
restrict my discussion to two papers, which are Albers et al. (1976) “Asymptotic
expansions for the power of distribution free tests in the one-sample problem” and
Bickel (1974) “Edgeworth expansions in nonparametric statistics” where the entire
area is reviewed.

1.1.2 Asymptotic Expansions for the Power of Distribution
Free Tests in the One-Sample Problem

Let X;,X5,--- be i.i.d. random variables with a common distribution function Fy
for some real-valued parameter 6. For N = 1,2,---, let Ay and By be two tests of
level o € (0,1) based on X;,X3,- -+, Xy for the null-hypothesis H : 6 = 0 against a
contiguous sequence of alternatives Ky . : 0 = cN ~1/2 for a fixed ¢ > 0. Let man(cC)
and g y(c) denote the powers of Ay and By for this testing problem and suppose
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that Ay performs at least as well as By, i.e. my y(c) > mp y(c). Then we may look
for a sample size k = ky > N such that By performs as well against alternative Ky .
as Ay does for sample size N, i.e. m(c(k/N)'/?) = ma n(c). For finite sample
size N it is generally impossible to find a usable expression for k = ky, so one
resorts to large sample theory and defines the asymptotic relative efficiency (ARE)
of sequence {By} with respect to {Ay} as

e=e(B,A) = A}ile/kN'

If o n(c) = ma(c) and 7 v(c) — mp(c) uniformly for bounded c, and 74 and g
are continuous, then e is the solution of

mp(ce™ /%) = ma(c).

Since we assumed that Ay performs at least as well as By, we have e < 1.

If e < 1, the ARE provides a useful indication of the quality of the sequence
{Bn} as compared to {Ay}. To mimic the performance of Ay by B; we need
ky —N = N(1 —e)/e+ o(N) additional observations where the remainder term
o(N) is relatively unimportant. If e = 1, however, all we know is that the number of
additional observations needed is o(N), which may be of any order of magnitude,
such as 1 or N/loglogN. Hence in Hodges and Lehmann (1970) the authors
considered the case e = 1 and proposed to investigate the asymptotic behavior of
what they named the deficiency of B with respect to A

dy =ky —N,

rather than ky/N. Of course this is a much harder problem than determining the
ARE. To compute e, all we have to show is that ky = N/e + o(N), and only the
limiting powers 74 and 7 enter into the solution. If ¢ = 1, then ky = N + o(N),
but for determining the deficiency, we need to evaluate ky to the next lower order,
which may well be O(1) in which case we have to evaluate ky with an error of
the order o(1). To do this, one will typically need asymptotic expansions for the
power functions 74 y and 7p y with remainder term o(N 1. For this we need similar
expansions for the distribution functions of the test statistics of the two tests under
the hypothesis as well as under the alternative.

In their paper Hodges and Lehmann computed deficiencies for some parametric
tests and estimators, but they clearly had a more challenging problem in mind.
When Frank Wilcoxon introduced his one- and two-sample rank tests (Wilcoxon
1945) most people thought that replacing the observations by ranks would lead to a
considerable loss of power compared to the best parametric procedures. Since then,
research had consistently shown that this is not the case. Many rank tests have ARE
1 when compared to the optimal test for a particular parametric problem, so it was
not surprising that the first question that Hodges and Lehmann raised for further
research was: “What is the deficiency (for contiguous normal shift alternatives) of
the normal scores test or of van der Waerden’s X-test with respect to the t-test?”.
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In the paper under discussion this question is generalized to other distributions
than the normal and answered for the appropriate one-sample rank test as compared
with the optimal parametric test. Let X;,X>,---,Xy be i.id. with a common
distribution function G and density g, and let Z; < Z, < --- < Zy be the order
statistics of the absolute values [Xi[,[Xa|,---,[Xn|. If Z; = [Xg(;)|, define V; =1
if Xg(j) > 0 and V; = 0 otherwise. Let a = (ay,az,- - ,ay) be a vector of scores and
define

T= Y ajV, (1.1)
1<j<N
T is the linear rank statistic for testing the hypothesis that g is symmetric about
zero. Note that the dependence of G, g and a on N is suppressed in the notation.
Conditionally on Z, the random variables Vi, V5, - -- ,Vy are independent with

Pi=P\V;=1|2)=g(Z;)/{8(Z;) +8(-Z))}. (1.2)

Under the null hypothesis, V;,V,, -+, Vy are i.i.d. with P(V; = 1) = 1/2. Hence
the obvious strategy for obtaining an expansion for the distribution function of T
is to introduce independent random variables Wi, Ws,--- , Wy with p; = P(W; =
1) =1—P(W; = 0) and obtain an expansion for the distribution function of
Y1<j<na;W;. In this expansion we substitute the random vector P = (P, P>, -+, Py)
for p = (p1,p2,---,pn). The expected value of the resulting expression will then
yield an expansion for the distribution function of 7'.

This approach is not without problems. Consider i.i.d. random variables Y7,
Y>,---,Yy with a common continuous distribution with mean EY; = 0, variance
EY jz = 1, third and fourth moments u3 = E Yj3 and Uy =EY ;‘, and third and fourth
cumulants k3 = pt3 and k3 = py — 3u3. Let Sy = N-V/2¥,_;yY; denote the
normalized sum of these variables. In Edgeworth (1905) the author provided a
formal series expansion of the distribution function Fy(x) = P(Sy < x) in powers
of N~'/2. Up to and including the terms of order 1, N~!/2 and N~!, Edgeworth’s
expansion of Fy(x) reads

Fy(x) = ®(x) = 9(x) - [(k3/6) (x> = )N '/
+{(14/24) (x* = 3x) + (15 /72) (x° — 10x° + 15x) }N 1]
(1.3)

We shall call this the three-term Edgeworth expansion. Though it was a purely
formal series expansion, the Edgeworth expansion caught on and became a popular
tool to approximate the distribution function of any sequence of continuous random
variables Uy with expected value 0 and variance 1 that was asymptotically standard
normal. As A3y = 3N ~1/2 and My = KN —1 are the third and fourth cumulants
of the random variable Sy under discussion, one merely replaced these quantities
by the cumulants of Uy in (1.3). Incidentally, I recently learned from Professor
Ibragimov that the Edgeworth expansion was first proposed in Chebyshev (1890),
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which predates Edgeworth’s paper by 15 years. Apparently this is one more example
of Stigler’s law of eponymy, which states that no scientific discovery — including
Stigler’s law — is named after its original discoverer (Stigler 1980).

A proof of the validity of the Edgeworth expansion for normalized sums Sy
was given by Cramér (cf. 1937; Feller 1966). He showed that for the three-term
Edgeworth expansion (1.3), the error Fy(x) — Fy(x) = o(N~!) uniformly in x,
provided that 14 < eo and the characteristic function y(r) = Eexp{itY;} satisfies
Cramér’s condition

limsup |y (2)| < 1. (1.4)
lr]—

Assumption (1.4) can not be satisfied if Y] is a discrete random variable as then its
characteristic function is almost periodic and the limsup equals 1. In the case we
are discussing, the summands a;W; of the statistic 3;< j<ya;W; are independent
discrete variables taking only two values 0 and a;. However, the summands are not
identically distributed unless the a; as well as the p; are equal. Hence the only case
where the summands are i.i.d. is that of the sign test under the null-hypothesis, where
aj =1 for all j, and the values 0 and 1 are assumed with probability 1/2. In that
case the statistic 3 < j<y @;W; has a binomial distribution with point probabilities of
the order N~'/? and it is obviously not possible to approximate a function Fy with
jumps of order N -1/2 by a continuous function Fy with error o(N -,

In all other cases the summands a;W; of 3 < ;<ya;W; are independent but not
identically distributed. Cramér has also studied the validity of the Edgeworth expan-
sion for the case that the Y; are independent by not identically distributed. Assume
again that £Y; = 0 and define Sy as the normalized sum Sy = o! 2i<j<nY; with
02 =Y <j<nE sz. As before Fy(x) = P(Sy < x) and in the three-term Edgeworth
expansion Fy (x) we replace 3N ~1/2 and iuN ! by the third and fourth cumulants
of Sy. Cramér’s conditions to ensure that Fy;(x) — Fy(x) = o(N~!) uniformly in x,
are uniform versions of the earlier ones for the i.i.d. case: EYJ-2 >c>0, EYf <C<oo
for j=1,2,--- N, and for every & > 0 there exists g5 < 1 such that the characteristic
functions y;(r) = Eexp{itY;} satisfy

sup |y;(1)| < gs forall j. (1.5)

[t|=6

As the a;W; are lattice variables (1.5) does not hold for even a single j
and the plan of attack of this problem is beginning to look somewhat dubious.
However, Feller points out, condition (1.5) is “extravagantly luxurious” for val-
idating the three-term Edgeworth expansion and can obviously be replaced by
supy s Ti<j<ny;(t)| = o(N~1) (cf. Feller 1966, Theorem XVI.7.2 and Prob-
lem XVI1.8.12). This, in turn, is slightly too optimistic but it is true that the condition

sup [ITy<j<ny;j(1)| = o((NlogN)™") (1.6)

o<lr|<N
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is sufficient and the presence of log/N is not going to make any difference. Hence
(1.6) has to be proved for the case where ¥; = a;(W; —p;) and Sy = ¥ < jey a;(W; —
pj)/t(p) with ©(p)* = Xi<jcnpj(l — pjla; and p(1) = Ii<j<y Wj(1) is the
characteristic function of Sy.

This problem is solved in Lemma 2.2 of the paper. The moment assumptions
(2.15) of this lemma simply state that N~ '7(p)*> > ¢ >0 and N '3 ;ya} <
C < o, and assumption (2.16) ensures the desired behavior of |[T;<;<y y;(t)| by
requiring that there exist > 0 and 0 < € < 1/2 such that

AMx:3jilx—aj| <, e<p;<1—e}>0ON{ forsomeCZN%/zlogN7 (1.7)

where A is Lebesgue measure. This assumption ensures that the set of the scores a;
for which p; is bounded away from 0 and 1, does not cluster too much about too
few points. As is shown in the proof of Lemma 2.2 and Theorem 2.1 of the paper,
assumptions (2.15) and (2.16) imply

sup | [T wit)l < exp{—d(logN)*} = N~41oe, (1.8)
O<[t|<N 1< j<N

which obviously implies (1.6). Hence the three-term Edgeworth expansion for Sy =
Si<jenaj(W;—p;)/(p) is valid with remainder o(N~"), and in fact O(N—/%).
This was a very real extension of the existing theory at the time.

To obtain an expansion for the distribution of the rank statistic T = ¥, < j<n a;V},
the next step is to replace the probabilities p; by the random quantities P; in (1.2)
and take the expectation. Under the null-hypothesis that the density g of the X;
is symmetric this is straightforward because P; = 1/2 for all j. The alternatives
discussed in the paper are contiguous location alternatives where G(x) = F(x— 0)
for a specific known F with symmetric density f and 0 < 8 < CN ~1/2 for a fixed
C > 0. Finding an expansion for the distribution of 7 under these alternatives is
highly technical and laborious, but fairly straightforward under the assumptions
N'Scjenai > e, NS jaya) <C,

AMx:3j:jx—aj| <} > 8N forsome § >N 3logN (1.9)

and some technical assumptions concerning f and its first four derivatives. Among
many other things, the latter ensure that ¢ < P; < 1 — ¢ for a substantial proportion
of the P;. Having obtained expansions for the distribution function of (2T —
Ya;)/(%a?)"/? both under the hypothesis and the alternative, an expansion for the
power is now immediate.

It remains to discuss the choice of the scores a; = a; . For a comparison between
best rank tests and best parametric tests we choose a distribution function F* with a
symmetric smooth density f and consider the locally most powerful (LMP) rank
test based on the scores

ajy=EY¥Y(Ujy) where ¥(t) = —fF ((1+1)/2)/fF ((1+1)/2) (1.10)
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and Uj.y denotes the j-th order statistic of a sample of size N from the uniform
distribution on (0, 1). Since F~!((1+1)/2) is the inverse function of the distribution
function (2F — 1) on (0,%), F~1((1+Uj)/2) is distributed as the j-th order
statistic V; of the absolute values |X;|,|X>|,--- ,|Xy| of a sample X;,X>,--- , Xy from
F.Hence aj=—Ef'(V;)/f(V;). As f is symmetric, the function f’/f can only be
constant on the positive half-line if f is the density f(x) = 1/2ye~ "l of a Laplace
distribution on R' for which the sign test is the LMP rank test. We already concluded
that this test can not be handled with the tools of this paper, but for every other
symmetric four times differentiable f, the important condition (1.9) will hold.

If, instead of the so-called exact scores a;y = E lI’(U ,-;N), one uses the approx-
imate scores aj y = ¥(j/(N+ 1)), then the power expansions remain unchanged.
This is generally not the case for other score generating functions than V.

The most powerful parametric test for the null-hypothesis F against the contigu-
ous shift alternative F'(x — 0) with 8 = ¢N'/2 for fixed ¢ > 0 will serve as a basis for
comparison of the LMP rank test. Its test statistic is simply ¥, < ;<y{log f(X; — 6) —
log f(X;)} which is a sum of ii.d. random variables and therefore its distribution
function under the hypothesis and the alternative admit Edgeworth expansions under
the usual assumptions, and so does the power. Explicit expressions are found for the
deficiency of the LMP rank test and some examples are:

Normal distribution (Hodges-Lehmann problem). For normal location alterna-
tives the one-sample normal scores test as well as van der Waerden’s one-sample
rank test with respect to the most powerful parametric test based on the sample
mean equals

dy = 1/2loglogN +1/2(u, — 1)+ 1/2y+0(1),

where @(uy) = 1— o and y = 0.577216 is Euler’s constant. Note that in the paper
there is an error in the constant (cf. Albers et al. 1978). In this case the deficiency
does tend to infinity, but no one is likely to notice as 1/2loglogN = 1.568--- for
N =10 (logarithms to base e).

It is also shown that the deficiency of the permutation test based on the sample
mean with respect to Student’s one-sample test tends to zero as O(N -1/ 2).

Logistic distribution. For logistic location alternatives the deficiency of Wilcoxon’s
one-sample test with respect to the most powerful test for testing F(x) = (1+e¢ ) ~!
against F (x — bN~'/?) tends to a finite limit and equals

dy = {18+ 12u% + (48)"?bug + b*} /60 + o(1).

It came as somewhat of a surprise that Wilcoxon’s test statistic admits a three-term
Edgeworth expansion, as it is a purely lattice random variable. As we pointed out
above, the reason that this is possible is that its conditional distribution is that of a
sum of independent but not identically distributed random variables. Intuitively the
reason is that the point probabilities of the Wilcoxon statistic are of the order N —3/2
which is allowed as the error of the expansion is o(N~1).
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The final section of the paper discusses deficiencies of estimators of location.
It is shown that the deficiency of the Hodges-Lehmann type of location estimator
associated with the LMP rank test for location alternatives with respect to the
maximum likelihood estimator for location, differs by O(N~!/4) from the deficiency
of the parent tests.

The paper deals with a technically highly complicated subject and is therefore not
easy to read. At the time of appearance it had the dubious distinction of being the
second longest paper published in the Annals. With 49 pages it was second only to
Larry Brown’s 50 pages on the admissibility of invariant estimators (Brown 1966).
However, for those interested in expansions and higher order asymptotics it contains
a veritable treasure of technical achievements that improve our understanding of
asymptotic statistics. I hope this review will facilitate the reading. While I’'m about
it, let me also recommend reading the companion paper (Bickel and van Zwet 1978)
where the same program is carried out for two-sample rank tests. With its 68 pages
it was regrettably the longest paper in the Annals at the time it was published, but
don’t let that deter you! Understanding the technical tricks in this area will come in
handy in all sorts of applications.

1.1.3 Edgeworth Expansions in Nonparametric Statistics

This paper is a very readable review of the state of the art at the time in the area
of Edgeworth expansions. It discusses the extension of Cramér’s work to sums of
i.i.d. random vectors, as well as expansions for M-estimators. It also gives a preview
of the results of the paper we have just discussed on one-sample rank tests and the
paper we just mentioned on two-sample rank tests. There is also a new result of
Bickel on U-statistics that may be viewed as the precursor of a move towards a
general theory of expansions for functions of independent random variables. As we
have already discussed Cramér’s work as well as rank statistics, let me restrict the
discussion of the present paper to the result on U-statistics.

First of all, recall the classical Berry-Esseen inequality for normalized sums Sy =
N~1/2 Yi<j<nXjof i.i.d. random variables X, - -- , Xy, with EX; =0 and EX12 =1.
If E|X;|* < o, and @ denotes the standard normal distribution function, then there
exists a constant C such that for all N,

sup |P(Sy < x) — @ (x)| < CE|x;’N~'/2. (1.11)
X

In the present paper a bound of Berry-Esseen-type is proved for U-statistics.
Let X;,X5,--- be i.i.d. random variables with a common distribution function F
and let y be a measurable, real-valued function on R? where it is bounded, say
|y| <M < e, and symmetric, i.e. y(x,y) = y(y,x). Define

Y(x) = E(y(X1,X2) X1 = x) =! 0.y ¥ (x,y) dF (y)
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and suppose that Ey(X,X,) = Ey(X;) = 0. Define a normalized U-statistic Ty by

Tv=oy' Y wX.X;) withoy=E{ Y w(X.X)}* (1.12)

1<i<j<N 1<i<j<N

and hence ETy = 0 and ET; = 1. In the paper it is proved that if E*(X;) > 0, then
there exists a constant C depending on y but not on N such that

sup |P(Ty < x) — ®(x)| <CN /2, (1.13)

When comparing this result with the Berry-Esseen bound for the normalized
sum Sy, one gets the feeling that the assumption that y is bounded is perhaps
a bit too restrictive and that it should be possible to replace it by one or more
moment conditions. But it was a good start and improvements were made in
quick succession. The boundedness assumption for y was dropped and Chan and
Wierman (1977) proved the result under the conditions that E yz(Xl) > 0 and
E{w(X1,X2)}* < oo. Next Callaert and Janssen (1978) showed that Ey*(X;) > 0
and E|y(X1,X2)]> < o suffice. Finally Helmers and van Zwet (1982) proved the
bound under the assumptions EY*(X;) > 0, E|y(X;)|? < oo and Ey(X;,X3)? < co.

Why is this development of interest? The U-statistics discussed so far are a
special case of U-statistics of order k which are of the form

T= 3 wXu.X@ X (1.14)

1<j(1)<j(2)<
<J()<N

where  is a symmetric function of k variables with Eyy(X;,X2,---,X;) = 0 and
the summation is over all distinct k-tuples chosen from X, X5, --- ,Xy. Clearly the
U-statistics discussed above have degree k = 2, but extension of the Berry-Esseen
inequality to U-statistics of fixed finite degree k is straightforward. In an unpublished
technical report (Hoeffding 1961) Wassily Hoeffding showed that any symmetric
function T =#(Xj,---,Xy) of N i.i.d. random variables Xj,--- , Xy that has ET =0
and finite variance 62 = ET? — {ET}? < oo can be written as a sum of U-statistics
of orders k = 1,2,--- N in such a way that all terms involved in this decomposition
are uncorrelated and have several additional desirable properties. Hence it seems
that it might be possible to obtain results for symmetric functions of N i.i.d. random
variables through a study of U-statistics. For the Berry-Esseen theorem this was
done in van Zwet (1984) where the result was obtained under fairly mild moment
conditions that reduce to the best conditions for U-statistics when specialized to
this case. A first step for obtaining Edgeworth expansions for symmetric functions
of i.i.d. random variables was taken in Bickel et al. (1986) where the case of U-
statistics of degree k = 2 was treated. More work is needed here.
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ASYMPTOTIC EXPANSIONS FOR THE POWER
OF DISTRIBUTION FREE TESTS IN
THE ONE-SAMPLE PROBLEM!

By W. ALBERS, P. J. BICKEL? AND W. R. VAN ZWET?
University of Leiden and University of California, Berkeley

Asymptotic expansions are established for the power of distribution
free tests in the one-sample problem. These expansions are then used to
obtain deficiencies in the sense of Hodges and Lehmann (1970) for distribu-
tion free tests with respect to their parametric competitors and for the esti-
mators of location associated with these tests.

1. Introduction. Let X, ..., X, be independent and identically distributed
random variables with a common absolutely continuous distribution. For N =
1,2, ..., consider the problem of testing the hypothesis that this distribution is
symmetric about zero against a sequence of alternatives that is contiguous to
the hypothesis as N — oo. The level « of the sequence of tests is fixed in (0, 1).
Standard tests for this problem are linear rank tests and linear permutation tests
and expressions for the limiting powers of such tests are of course well-known.
In this paper we shall be concerned with obtaining asymptotic expansions to
order N-* for the powers =, of these tests, i.e. expressions of the form r, =
¢+ Nt + ¢y N7 + o(N7"). Of course this involves establishing similar
expansions for the distribution function of the test statistic under the hypothesis
as well as under contiguous alternatives. For simplicity we shall eventually limit
our discussion to contiguous location alternatives and in this case terms of order
N-% do not occur in the expansions.

One reason to consider these problems would be to obtain better numerical
approximations for the critical value of the test statistic and the power of the
test than can be provided by the usual normal approximation. A number of
authors have investigated this possibility, usually dealing only with the hypothesis
in order to obtain critical values and more often for the two-sample case than
for the one-sample tests we are concerned with here. For an account of this
work we refer to a review paper of Bickel (1974), which incidentally also contains
a preview of the present study. Here we merely note that, with the exception of
a recent paper of Rogers (1971), all previous work is based on formal Edgeworth
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expansions. One of the purposes of the present paper is to give a rigorous
proof of the validity of such expansions. Rogers (1971) has given such a proof
for the two-sample Wilcoxon test under the hypothesis. In a companion paper
(Bickel and van Zwet (1975)) expansions will be derived for the general two-
sample linear rank test under the hypothesis as well as under contiguous location
alternatives.

Here we shall not dwell on the numerical aspects of the expansions we obtain.
Numerical results are contained in the Ph. D. thesis of Albers (1974). We only
mention that the expansions for the power seem to behave as might be expected.
In those cases where the normal approximation already produces reasonably
good results, the expansions perform even better and often much better. On
the other hand, in cases where the normal approximation is known to be disas-
trous—the Wilcoxon test for Cauchy alternatives for instance—the expansion
is as bad or even worse.

We shall concentrate on a different aspect of the expansions for the power.
Consider two sequences of tests {Ty} and {T,’} for the same hypothesis at the
same fixed level @. Let m,(6,) and 7,'(6) denote the powers of these tests against
the same sequence of contiguous alternatives parametrized by a parameter 6.
If T, is more powerful than T’ we search for a number ky = N 4 d, such that
my(fy) = 7}, (0y). Here k, and d, are treated as continuous variables, the power
' being defined for real N by linear interpolation between consecutive integers.
The quantity d, was named the deficiency of {T,'} with respect to Ty by Hodges
and Lehmann (1970), who introduced this concept and initiated its study. Of
course, in many cases of interest, d, is analytically intractable and one can only
study its asymptotic behavior as N tends to infinity.

Suppose that for N — oo, the ratio Nk, tends to a limit e, the asymptotic
relative efficiency of {T,'} with respect to {T}. If0 < e < 1, we have d, ~
(e=* — 1)N and further asymptotic information about d,, is not particularly re-
vealing. On the other hand, if e = 1, the asymptotic behavior of d,,, which may
now be anything from o(1) to o(N), does provide important additional informa-
tion. Of special interest is the case where d,, tends to a finite limit, the asymptotic
deficiency of {T'y'} with respect to {T'y} (cf. Hodges and Lehmann (1970)).

Of course, an asymptotic evaluation of d,, is a more delicate matter than show-
ing that e = 1. What is needed is an expansion for the power of the type we
discussed above. With the aid of such expansions we arrive at the following
results. Let F be a distribution function with a density f that is symmetric about
zero and let b be a positive real number. Consider the problem of testing the
hypothesis F against the sequence of alternatives F(x — bN~?) at level a. Let
d, denote the deficiency of the locally most powerful rank test with respect to
the most powerful test for this problem. Under certain regularity conditions
on F we establish an expression for d,, with remainder o (1) and show that this
expression remains unchanged if the exact scores in the locally most powerful
rank test are replaced by the corresponding approximate scores. The asymptotic

11
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behavior of d, is found to be governed by that of

(1.1) 1= s (S (o (M) = s

in the sense that dy, = O(I) as N — co. By taking F to be the normal distribu-
tion we find that the deficiency of both Fraser’s normal scores test and van der
Waerden’s test with respect to the X-test for contiguous normal alternatives
tends to co at the rate of 4 loglog N. For logistic alternatives the deficiency of
Wilcoxon’s signed rank test with respect to the most powerful parametric test
tends to a finite limit. Another typical result is that for contiguous normal
alternatives the deficiency of the permutation test based on }; X, with respect
to Student’s test tends to zero for N — co.

Combining numerical and Monte Carlo methods, Albers (1974) has evaluated
the deficiency of the normal scores test with respect to the X-test for N = 5 —
(1) — 10, 20 and 50. The results agree reasonably well with the asymptotic
expression for d,.

To every linear rank test with nonnegative and nondecreasing scores, there
corresponds an estimator of location due to Hodges and Lehmann (1963). A
similar correspondence exists between the locally most powerful parametric test
and the maximum likelihood estimator. We shall exploit this correspondence
to obtain asymptotic expansions for the distribution functions of these estimators.
We shall show that, when suitably defined, the deficiency of the Hodges-Lehmann
estimator associated with the locally most powerful rank test with respect to
the maximum likelihood estimator is asymptotically equivalent to the deficiency
of the parent tests.

In Section 2 we establish an asymptotic expansion for the distribution function
of the general linear rank statistic for the one-sample problem under the hy-
pothesis as well as under alternatives. We specialize to contiguous location
alternatives in Section 3 and derive an expansion for the power of the linear
rank test. In Section 4 we deal with the important case where the scores are
exact or approximate scores generated by a smooth function J. Linear permuta-
tion tests are discussed in Section 5. The results on deficiencies of distribution
free tests are contained in Section 6. Final'ly, Section 7 is devoted to estimators.

Although the basic ideas underlying this paper are simple, the proofs are a high-
ly technical matter. The most laborious parts are dealt with in two appendices.
We have omitted the proofs of Theorem 5.1 and Lemma 6.1 because we felt
that their inclusion would entail much repetition without essentially new ideas.
Some relevant results have been left out altogether for much the same reasons.
We are referring to a treatment of contiguous alternatives other than location
alternatives for linear rank tests, to expansions for the power of locally most
powerful parametric tests, most powerful permutation tests and randomized rank
score tests. These missing parts may all be found in the Ph. D. thesis of Albers
(1974).

12



ASYMPTOTIC EXPANSIONS FQR ONE-SAMPLE TESTS

2. The basic expansion. Let X, - .-, X, be independent and identically dis-
tributed (i.i.d.) random variables (rv’s) with common distribution (df) G and
density g, and let 0 < Z, < Z, < --- < Z, denote the order statistics of the

absolute values of X;, - - -, Xy. If [ X, | = Z;, define
(2.1 V,=1 if X >0
=0 otherwise.

We introduce a vector of scores @ = (a,, - - -, a,) and define the statistic

(2.2) T=X",a,V,.

g=1"3 " j
We shall be concerned with obtaining an asymptotic expansion for the distribu-
tion of T as N — co.

Our notation strongly suggests that we are considering a fixed underlying df
G and perhaps also a fixed infinite sequence of scores as N — co. However, this
is merely a matter of notational convenience and our main concern will in fact
be the case where the df depends on N and the scores form a triangular array
a;y,j=1,---,N,N=1,2, -... Since we are suppressing the index N through-
out our notation we shall formally present our results in terms of error bounds
for a fixed, but arbitrary, value of N. However, as we shall point out following
the proof of Theorem 2.2, these results are really asymptotic expansions in
disguise.

The rv T is of course the general linear rank statistic for testing the hypothesis
that g is symmetric about zero. Under this hypothesis, V,, ..., ¥, are i.i.d.
with P(V; = 1) = 4. For general G, V}, - - -, Vy are not independent. However,
one easily verifies that, conditional on Z = (Z,, .-, Zy), the rv’s V, ..., V},
are independent with

Z)
2.3 P,=pPWV,=112)=__ 9%)
) ;= PV;=1]|2) WZ) + 9(=Z)
As independence allows us to obtain expansions of Edgeworth type, we shall

carry out the following program to arrive at an expansion for the distribution
of T. First we obtain an Edgeworth expansion for the distribution of )] a; W,

where W,, - .., W, are independent with p, = P(W; =1) =1 — P(W; = 0).
Having done this we substitute the random vector P = (P, - - -, Py) defined in
(2.3) for p = (py, - - -, py) in this expansion. The expected value of the resulting

expression will then give us an expansion for the distribution of T.
In carrying out the first part of this program we shall indicate any dependence

onp = (py «++, py) in our notation. Consider the rv

(2.4) i=19(W; — pj) ,
«(p)

where

(2-3) ?(p) = Bipi(l — pyaj

13
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denotes the variance of 3} a; W,;. Obviously (2.4) has expectation 0 and variance
1; its third and fourth cumulants, multiplied by N* and N respectively, are

2.6 — _Nt 2pi(1 —py)2p; — 1a;? ,
(2:6) 5(p) s
2.7 £(p) =N 2 pi1 = p)(1 — 6p; + 6p,)aj .
()
Let R and p denote the df and the characteristic function (ch.f.) of (2.4), thus
(2.8) R(x, p) = P(M’Mﬁ < x),
«(p)

(2.9) ot p) = 11 l:pj exp {i(l —Pj) :(’;)} + (1 — p;)exp {‘""P:‘ :(i;) }] :

A formal Edgeworth expansion to order N-* for the df R is given by (Cramér
(1946), page 229)

(2-10) R(x, p) = ©(x) + $(x){NQ\(x, p) + N7Qy(x, p)} »

where @ and ¢ denote the df and the density of the standard normal distribution,
and

@1) oy = 2D 1y,
Oy(x, p) = —féTp)(xa — 3x) — ——”3;(2” ) (x* — 10x° + 15x) .

Let #(x, p) be the derivative of R(x, p) with respect to x. In what follows we
shall need an expression for the Fourier transform g(z, p) = § exp (itx)#(x, p) dx
of 7 and one easily verifies that

- — ot __ ki(pit® 3k (p)tt — £2(p)t°
2.12) ot p) = e {1 AL+ e }

To justify a formal Edgeworth expansion like (2.10), i.e. to show that |[R — R|
is indeed o (N~"), one usually invokes the following result (Feller (1966), page 512).

LeEmMMA 2.1. Let R be a df with vanishing expectation and ch.f. p. Suppose that
R — R vanishes at 4+ oo and that R has a derivative ¥ such that |F| £ m. Finally,
suppose that ¥ has a continuously differentiable Fourier transform p such that $(0) = 1
and ¢'(0) = 0. Then for all x and T > 0,

(2.13) IRG) — R(9| < — §7

) = 60 g 4. 24m
t T
To prove that |[R — R| = o(N~Y), it therefore suffices to show that e.g. for
T = bN?, the integral in (2.13) is o(N-%). For the case we are considering this
may be done in the standard manner (Feller (1966), Chapter 16) with one impor-
tant modification at the point where it is shown that |o(z, p)/t| is sufficiently small

14
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when |¢| is of the order ¢(p) or larger. Here one usually makes what Feller
calls the extravagantly luxurious assumption that the ch.f.’s of all summands
are uniformly bounded away from 1 in absolute value outside every neighborhood
of 0. Obviously this condition is not satisfied in our case where the summands
a; W; are lattice rv’s. Weaker sufficient conditions of this type are known, but
all seem to imply at the very least that the sum itself is nonlattice. In our case
this would exclude for instance both the sign test and the Wilcoxon test.

Although the assumptions mentioned above may be unnecessarily strong, it
is clear that one has to exclude cases where the sum (2.4) can only assume rela-
tively few different values. As R is continuous, one can not allow R to have
jumps of order N-* or larger. Thus the sign test where jumps of order N-* occur,
will certainly have to be excluded. However, it is exactly the simple lattice
character of this statistic that makes it easily amenable to other methods of ex-
pansion (see for instance Albers (1974)). For the Wilcoxon statistic on the other
hand, all jumps are O(N-?) and the assumptions we shall make will not rule out
this case.

For 0 < ¢ < } and { > 0 consider the set of those a; for which the corre-
sponding p; satisfies ¢ < p; < 1 — ¢, and let y(¢, {, p) denote the Lebesgue meas-
ure 2 of the {-neighborhood of this set, thus

(2.14) 7 lp) = x| —a) <Ce<p <1 —¢f.
LEMMA 2.2. Suppose that positive numbers c, C, § and ¢ exist such that
1 1
(2.15) N 2iap(l —pja=zc, N 2iaat=C,

(2.16) (e, &, p) = ONC  for some { = N-ilogN.

Then there exist positive numbers b, B and (3 depending on N, a and p only through
¢, C, 0 and ¢, such that

Slogvsnsiisont

1 p(” P) —_ ﬁ(t, P) \d, < BN-B8logN |
_—t =

PRrooF. Since (2.15) implies that |r,(p)] < (Cc~?? and |x,(p)| < Cc?,

S It|21og(N +1)

16(1" P)l dt < BIN—ﬁllogN ,
P =

where B, 8, > 0 depend only on ¢ and C. Also, for all ¢,

lo(t, p)| = TI7= {1 - 2p,(1 —Pa-)<1 — cos 220 )F

=(p)
am sz 3G ()

15
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For |f| < 4cC-iNt this is < exp(—*/3). Hence, if & = 4c¢C-?}, there exist posi-
tive constants B, and B, such that

$togw+nsiss nt

p(t,p)ldt < BzN_ﬁzlogN .
—t =

As 7(s, §, p)/C is nonincreasing in {, we may assume that { < 1 in (2.16).
Because of (2.15), for any M > { the number of |a;/ = M — { can be at most
CN(M — §)™; choosing M = (8C/d)t + 1 we have CN(M — ()~ < dN/8 <
7(s, €, p)/8C. It follows that

Mx[3jla) =2 M-, |x —a| <=2 T(e’sg ) - 7(5’f’P) )

Together with (2.16) this implies that for every real ¢

la, — _ 4t gl <1 — ¢} >3 Cp)
Z{ZlgalaaléM C?lz T(P) < T(P) yES P = 1 5} 42_(]7)

Take b = d[(32M]xct) + (16/b)]~*. Then, for every |1 € [6'Nt, bN?]

3
A {z| lz] £ M, |z — kx| £ ZC(L];] for some integer k}
=P

=(p)
< <2M|fl + 1) 40Nt ( 2M]1| I7| )41’1\” 1 8p) _ (S p)
— \7z(p) ©(p) — \m(cN)t = U'N*/ =(p)  ON 4z(p)
and hence

M g —¢ |z — Gt | o Cl <1

z{z||z| = e <M — ¢,z sl <y eSS 1—g
|z — kn| > 2 206N g every integer k} > (s S p)
o(p 2z(p)

As (|t < {bN?E, this implies that the number of indices j for which |(a, t/z(p)) —
kx| > (bNi[z(p) for every integer k and ¢ < p; < 1 — ¢, is at least equal to

“«p) . l1r(s 8, p) 5 ON
28t 22'(17? — 4

For such an index j we have for all |¢| € [6'N%, bN?],

{1 —2p,1 —pj)(l — cos it >}* < {1 _2¢(1 — o) N }

=(p) (zz(p))*
e(1 — &)*p°N?®
= A S o
<o { =)
and hence, as 47%(p) < Ct!Nand { = N-%log N,
lo(, p)| < exp {_%ﬁ} = eXP{ L (log N)’}
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This implies that for some B,, 8; > 0 depending on ¢, C, § and ¢,

Sorntzisont @}dt =< BN #slosV |

which completes the proof. []
We now justify expansion (2.10).

THEOREM 2.1. Suppose that positive numbers c, C, ¢ and ¢ exist such that (2.15)
and (2.16) are satisfied. Then there exists A > O depending on N, a and p only
through ¢, C, ¢ and ¢ such that

(2.18) sup, |R(x, p) — R(x, p)| < AN-1.

Proor. For 0 <y <1 and —7/2 <z < 7/2, Re[yexp{i(l —y)z} + (1 —
y)exp{—iyz}] =2 4, and hence we have the following Taylor expansion
(mod. 27i)

log (ye'=n% + (1 — y)e=™*)

(2.19) = =3yl = )2 + 5yl = )2y = Dzt
+ #oy(1 = )1 = 6y + 69z + My(y, 2)

where |M,(y, z)| < C,|z|° for some fixed C; > 0. If |a,;t/z(p)| < =/2 for all j, we
can apply this expansion to the logarithm of every factor in (2.9) which yields
2.2 - _ip _ B(PIC e (pt b,
@220)  plp) = exp{—grr — SO 4 SO pr, )]
where [My(1, p)| < Gilt/<(p)* 3 |a-

Condition (2.15) implies that max |a;| < (CN)t and hence that |a;1/z(p)| <
(Cc™*IN4t| for all j. We have already seen that |r,(p)| < (Cc~?)t and [x,(p)| <
Cc™% because max |a;| < (CN)t we also have z7%(p) 3] |a;)® < (Ce™®)IN-L It
follows from these remarks that there exists ¢, > 0, depending only on ¢ and C,
such that for |f| < ¢, Nt expansion (2.20) is valid and also

l _ky(p)it®
| 6Nt

+

t4
D] L 1Mo, p) < 40

Hence, for |f| < ¢, N*, Taylor expansion of (2.20) yields
(2.21) o(t, p) = o(t, p) + My(t, p) »

where g is given by (2.12), [My(t, p)| < (N1 + N4 3 [a,[)|PQ(l]) exp (—r4),
and Q is a polynomial with coefficients depending on ¢ and C. This implies the
existence of 4, > 0 depending on ¢ and C and such that

(2.22) Sitise vt ﬁ(ﬁw dt < AN°E.

As ¢, depends only on ¢ and C we may assume without loss of generality that
N is so large that log (N + 1) < ¢,N*. The theorem is now proved by combining
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(2.22) and Lemma 2.2, noting that #(x, f) = (3/dx)R(x, ) is bounded by a number
depending only on ¢ and C and applying Lemma 2.1. []

It will be clear that by requiring that 3} |a, < CN in Theorem 2.1 one ob-
tains |[R — R| < AN-? which is the “natural” order of the remainder.

Before we replace p by the random vector P = (P,, - - -, Py) defined in (2.3)
and compute the unconditional distribution of T by taking the expected value,
we first have to change the standardization of Y a; W; into one that does not
involve p. As before, let W, - .-, W, be independent with P(W; = 1) =1 —
P(W, =0) = p; let p=(p,, ---,Py) be a vector with 0 < p; < 1 for all j, and
consider the df R*(x, p, p) of the rv z=%(p) >} a(W; — p;), thus

(2.23) R¥(x, p, p) = P <___._Z a(W; —P;) < x) .

7(P)
Here %(p) = X, pi(1 — p;)a;* in accordance with (2.5); similarly xy(p), £(p),
Q.(x, p), Qu(x, p) and R(x, p) are defined by replacing p by p in (2.6), (2.7), (2.11)
and (2.10).

For reasons that will become clear in the sequel we shall also at this stage
expand ¢(p)/c(p) in powers of (z*(p) — 7*(p))/<*(p); at the same time the numer-
ators of &y p) and «,(p) will be expanded about the point p = p. Later on, when
p; is replaced by P;, we shall e.g. take p, = EP; thus ensuring that P; — p, is
roughly speaking a rv of order N-%t. At the moment, however, we do not make
any assumptions about p — p and as a result Lemma 2.3 provides only a formal
expansion in the sense that we do not claim that the remainder term is at all
small.

The expansion for R*(x, p, p) that we shall establish is

R¥(x, p, p) = Rix — . p) — 9 — ) {5 OB ()

(P)
(2.24) + % 2 (ps — pj)(l-ﬁ(—pfpj + 6p,))a; [(x — up? — 1]
L (220) = PV 1(x — uy® — 3(x —
g (RS2 16— 0 = 30— w
(D) H(P) = TP 1(x — uy — 6(x — u)?
+ P PP [ — = 6t — o+ 3]
where R is given by (2.10) and
(2.25) u = L(P;%)P,)a, :

LemMA 2.3. Let p = (py, - - -, Py) be a vector of real numbers in [0, 1] and sup-
pose that positive numbers ¢, C, 6 and ¢ exist such that (2.15) and (2.16) are satisfied
and that

1 _ _
(2.26) v 2¥ap(l —pjat=c.
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Then there exists A > 0 depending on N, a, p and p only through ¢, C, 0 and ¢ and
such that
(2.27)  sup, [R*(x, p, p) — R*(x, p, p)|
< ANt + N 30 (p; — B)las® 4+ N7 (p) — ()} -
Proor. Changing the standardization in Theorem 2.1 we find

* _ _ =(p) -
228)  sup,|R¥(x,p, p) R((x 00, p){ < AN-t.

The assumptions of the lemma ensure that t%(p)/c(p) = cC¥, 73(p)/z%(p) = cC-H,
(P < (7O, [ei(p)] < (cCF, k()] < ¢~C and [e(p)] < ¢*C. Tt follows
that the derivatives of R((x — )y, p) with respect to y are bounded for y* > ¢C-*
and all x — u, and hence

R((x - u)f(l) p)

(p)’
(2.29) = R(x — u, p) + R(x — u, p) (% - 1) (x — u)
+ 3R"(x — u, p) (:E—f’; — 1)2(x —u)? 4 0((23?; — 1>3) ,

where R'(x, p) and R”(x, p) denote first and second derivatives of R(x, p) with

respect to x. Since (7*(p) — 7X(P))/c}(p) = —1 + cC-,

(2.30) z(p)- -1_ _1_ 7*(p) 2—~ (p) + i (TB(P) 2—~ Tz(p)>2 .
«(p) 2 2P 8 7(P)

where the remainder is of the order of the first term omitted. As x,(p) and £,(p)

are bounded, we obtain the following one and two term expansions with remain-
der for £4(p) and £,(p).

r(p) = [Icg(P)—N* 2 {pi(1=p)2p;—1)—p;(1—p,)(2p,— 1)}aja:| <E@>3

3

(p) )
= 5(p) + ON-12(p) — (B + N3 |p; — p,llasf)
~ 3 2(p) — ()] . s (05— Py)(L — 6, + 6p,)a
2.31 = Ky 1 — =2\ = "\ Nt J i )%
@31 @[1-3 ot (p)

+ OWNHeX(p) — <(P)* + N7 X (p; — pi)’lasf
+ N7(p) — (D) Z |ps — pillayl) »
(2:32)  wdp) = w(p) + ONTeX(p) — X(P)| + N7 X |p; — pilaf) .

In (2.29) we may now replace R, R’ and R” by explicit expressions and sub-
stitute (2.32) and appropriate versions of (2.31) and (2.30). The algebra is
straightforward and will be omitted. Combining the result with (2.28) we find
that (2.27) holds if a term

OWNT X |p; = Pilasf* + a) + NH<Hp) — 2P| I |p; — pillaf*
+ N7 (p) — (D) + N7H((p) — =(p)))
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is added to the right-hand side. Here, as well as above, the order symbol is
uniform for fixed ¢ and C. The lemma is now proved by noting that

N2 3 ps — pillasl* < N2 3 |ayf + N2 X (p; — py)layl®s
N X |p; — pila < N7E 3 |l + N7t 35 (p; — p,)la,f°,
N=He¥(p) — «(p)| 20 |p; — PillajP < N2 3 (p; — p,)la,l*
+ N (p) — (p)* I lajl’ s
N7 (p) — 7(p)| + N7H = (p) — 7%(p))* = Nt 4 N=%|2%(p) — 2(p)°,
and that }7'|a,;]* < CIN and }] |¢,]° < (CN)L. []
We shall now replace p by P = (P, ---, P,) in R*(x, p, P) and take expecta-

tions. Define the vector = = (xy, - - -, 7y) by
(2.33) r; = EP,, j=1,...,N;
it will play the role of p. Furthermore, for { > 0 we let 7(€) denote the Lebesgue
measure 2 of the {-neighborhood of the set {a,, - - -, ay}, thus
(2.34) Q) = Hx|3,lx —a) < Q.

THEOREM 2.2. Let X, ---, X}, be i.i.d. with common df G and density g, and

let T, P and n be defined by (2.2), (2.3) and (2.33). Suppose that positive numbers
¢, C, 0,9 and ¢ exist with ¢’ < min (9/2, ¢*C~") and such that

(2.35) Y Ifmetze, L RLafscC,

(2.36) 7() = 0N for some { = N-tlogN,

(2.37) P<e§_€ﬁlﬁﬁg1_e>g1_5'.
9(X) + 9(—X)

Then there exists A > 0 depending on N, a and G only through ¢, C, 8, ¢’ and ¢, and
such that

(2.38) sup,

P(M < x) — ER*(x, P, n){
z(7)

= AN+ NI[ZAEP; — =)'V + N3 {EIP; — o,

Proor. We start by showing that a, P and = satisfy the conditions for a, p
and p in Lemma 2.3 with large probability.

The number of P; that lie in [¢, 1 — ¢] is equal to the number of g(X,)/(9(X;) +
g(—X;)) in that interval. Applying an exponential bound for binomial prob-
abilities (Okamoto (1958)) we find that for §” ¢ (&', min (9/2, cCYy), (2.37)
implies

P(e = P; <1 —¢ foratleast (I — ¢”)N indices j) > 1 — e~W¢"'-32

Suppose thate < P; < 1 — ¢ for atleast (1 — §”)N values of j. It then follows
from (2.36) that a and P satisfy condition (2.16) if 4 is replaced by 6 — 26" > 0.
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For 5 e (0, 1), suppose that a;* < 5c for exactly k indices j and let )}’ indicate
summation over the remaining N — k indices. Because of (2.35)

1 k 1 o, N—k( 1 AN

L R L L R ()
N —k &

< 7yc C),

<7+ ("%

and hence the number of a;? > 7c is at least (1 — 5)*c*C'N. By choosing 5
sufficiently small we can ensure that (1 — #)*c*C~* > ¢”. This implies that
N-12%P) = ¢, where ¢ = ((1 — 7)*c*C~* — §")¢(1 — e)yc > 0. This in turn en-
sures that N-z%(r) = N7E7*(P) = c*, where ¢* = ¢(1 — exp{—2(¢" — 9')’})> 0.

Thus we have shown that if ¢, C, § and ¢ are replaced by positive numbers
¢*, C,5 — 20" and ¢ depending only on ¢, C, §, ¢’ and ¢, then a and 7 satisfy
(2.26) and the second part of (2.15), whereas a and P satisfy (2.16) and the first
part of (2.15) except on a set E with P(E) < exp{—2N(3" — d')’} = O(N7?).
Hence a, P and = satisfy the assumptions of Lemma 2.3 on the complement of
E. In dealing with the set E it will suffice to note that R*(x, P, r) is bounded
since (2.26) and the second part of (2.15) ensure the boundedness of ky(7), £,(7),
(z*(P) — 7X(x))/r*(z) and 3] |a;|*/¥(x). Of course R*(x, P, 7), being a probability,
is also bounded.

As

p(f% < x) — ER*(x, P, ),

the left-hand side of (2.38) is bounded above by
(2.39) E sup, |R*(x, P, 1) — R*(x, P, )| .
Applying Lemma 2.3 on the complement of E and using the boundedness of
|R*(x, P, 1) — R*(x, P, )| together with P(E) = O(N~!) we find that (2.39) is
O(N-t + N} 3 E(P; — mfla;|* + NE[Z'(P) — #(@)]) ,
where the order symbol is uniform for fixed ¢, C, 9, 0’ and e. Now
N1 ¥ E(P; — m;)la;)* < N T {EQP; — 7)) PI(X la,)?
N=E[%(P) — <X(x)]* < NE[Z |P; — 7;]a;"] < NT[T {EIP; — 7,f}a/F
< N[ D {EIP; — mFIH(E a )t
and since Y] |a;]* < (CN)? and J] a;* < CN, this completes the proof. [J

We note that the boundedness of R*(x, P, 7) on E plays an important role in
the above proof. Because t(P) may be arbitrarily small on E, this explains why
we had to remove 7(p) from the denominator of the expansion in Lemma 2.3 by
means of (2.30).

Although Theorem 2.2 is formally stated as a result for a fixed, but arbitrary
value of N, it is of course meaningless for fixed N because we do not investigate
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the way in which 4 depends on ¢, C, 4, ¢’ and ¢. In fact the theorem is a purely
asymptotic result. Let us for a moment indicate dependence on N by a super-
script. Thus, for N =1, 2, ..., consider the distribution of the statistic 7
based on a vector of scores a = (a,", - .-, ay™) when the underlying df is
G™. Fix positive values of ¢, C, §, ¢ and ¢ with ¢’ < min (3/2, ¢*C™"). The
theorem asserts that if for every N, a and G satisfy (2.35)—(2.37) for these
fixed ¢, C, 4, 6’ and ¢, then the error of the approximation ER*(x, P™, ™) is

O(N—§ + N—%[Z {E(Pj‘”’ _ nj(zv))ﬂ}i]é + N—%[Z {Ele(N) — ﬂj<1v>|a}§]§)

as N — co. Moreover, the order of the remainder is uniform for all such se-
quences a®, GM, N=1,2, .- ..

Assumption (2.36) may need some clarification. It is clear from the proof of
Lemma 2.2 that the role of conditions (2.16) and (2.36) in Theorems 2.1 and 2.2
is to ensure that the a; do not cluster too much around too few points. Assump-
tion (2.36) is certainly satisfied if for some k > 0N/2, indices j, ji, - - -, j, exXist
such that a;  —a; = 2N-tlogNfori =1, ...,k — 1. Under condition (2.35)
this will typically be the case. Consider for instance the important case a; =
EJ(U,.y), where U,y < U,y < -+ < Uy.y are order statistics from the uniform
distribution on (0, 1) and J is a continuously differentiable, nonconstant function
on (0, 1) with § J* < co. Here both (2.35) and (2.36) are satisfied for all N with
fixed ¢, C and . The same is true if a; = J(j/(N + 1)) provided that J is mono-
tone near 0 and 1.

For a large class of underlying df’s G, the right-hand side of (2.38) is uniformly
o(N-Y). Still Theorem 2.2 does not yet provide an explicit expansion to order
N-1 for the distribution of T since we are still left with the task of computing
the expected value of R*(x, P, m). This is of course a trivial matter under the
hypothesis that g is symmetric about zero and, more generally, in the case where,
for some 5 > 0, g(x)/g9(—x) = nfor all x > 0. In this case P; = p(1 4 »)~* with
probability 1 for all j and an expansion for the distribution of T is already con-
tained in Theorem 2.1. For fixed alternatives in general, however, the computa-
tion of ER*(x, P, «) presents a formidable problem that we shall not attempt to
solve here. It would seem that what is needed, is an expansion for the distribu-
tion of a linear combination of functions of order statistics.

In the remaining part of this paper we shall restrict attention to sequences of
alternatives that are contiguous to the hypothesis. Heuristically the situation
is now as follows. Since g(x)/(9(x) + g(—x)) =%+ O(N%),P; — tandzn; — }
will be O(N-%), whereas P; — x; will be O(N~") instead of O(N~*) as before. In
the first place this allows us to simplify ER*(x, P, z) considerably as a number
of terms may now be relegated to the remainder and functions of z; may be
expanded about the point 7; = 3. Much more important, however, is the fact
that U* = t~Y(n) 3} (P; — n;)a; will now be O(N-*) and that we may therefore
expand R*(x, P, @) in powers of U*. This means that we shall be dealing with
low moments of linear combinations of functions of order statistics rather than
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with their distributions. We need hardly point out that a heuristic argument
like this can be entirely misleading and that the actual order of the remainder
in our expansion will of course have to be investigated. The unduly complicated
form of the remainder terms in the preceeding theorem is, of course, preparatory
to such further expansion.
Define
@40)  R() = O(x) + g(y { B UECL = RGP
2% a?

2 ar; — 1) 1 a 3—3x},

-(~———3(Z N & =1)+ 2y a 2)2( )
where ¢%(Z) denotes the variance ofarv Z. Carrying out the type of computation
outlined above we arrive at the following simplified version of Theorem 2.2.

THEOREM 2.3. Theorem 2.2 continues to hold if (2.38) is replaced by

p<2T — 29 ~ x> _ K(x _ 2 a2 — 1))‘
(Za) — (Za)
= AN+ DAEQP; — 1)) + N D AEIP; — =P}

Proor. The proof of this theorem becomes somewhat shorter if we use a
modification of Theorem 2.2 as a starting point rather than Theorem 2.2 itself.
We recall that Theorem 2.2 was proved by an application of Lemma 2.3 for
p = =. However, the proof clearly goes through for any other choice of p that
satisfies (2.26). Because of (2.35), we may therefore replace « in (2.38) by a
vector p with p, = { for all j. Noting that for this choice of p, £y(p) =0,
£(P) = —2N 3 af)(5 a)s ©(P) — ©(p) = —4 X (2P; — 1a;’, and adding
the last two terms in R*(x, P, p) to the remamder we obtain

P(iT__;ﬁ gx)

(2.41) sup,

(X2 a)t
— E®(x — U) + Ed(x — U) {12(22" e Oy — 3(x — U)]
2.42 _.___Z" 2P, — 1)
(2.42) T34, (x—10)
L Dafer,— 1) -
S o (6= 0P =11} ‘

+ O(N"t + N[ D A{EQP; — 1)} 4 NI {E[2P; — 1]
+ NZE[Z af(2P; — 1)'T + N ¥ a/EQP; — 1)),
where U = 3] a;(2P; — 1)/(3] a;*)t. All order symbols in this proof are uniform
for fixed ¢, C, 9, 6’ and e. The remainder in (2.42) may be simplified by noting that
NS {BQP; — 11} + N[ (E[2P, — 1]%]}
< Nt Y {EQ2P; — 1)} 4 N 3 E2P, — 1
SN N4 2 F{EQP; — 1),

23



W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

NE[Y a2P; — 1)’ + N¥ 3] a’E(2P; — 1)’
< 2N-E[ Y a 2P, — 1T + N}
< 2N-1 Y af ¥ EQ2P, — 1)t + N}
< 2C ¥ {EQP; — 1) + (2C + 1)N-*.

Define U= 3] ayP;—n,;)/(F a/)}, sox —U=x— 3 a;,2n; —1)/(3 a)—2U.
By expanding in powers of U under the expectation sign in (2.42) we find

2T — Y a;
P(Cmam =)
2.43) - K<x - L‘Z:%%;J) + O(N-t + ¥ (EQ2P; — 1)}t + E|UP

+ E|U[{N" + N7' X a2P; — 1) 4 N7* T |a,['12P; — 1]}) .
Now
N1 3 [a, 2P, — 1| < N 5 at + N X af2P; — 1),
N-E|U| < N-¥ + E|UF,
N-E|U| " a*(2P; — 1)* < N-EU* + N-¥E[Y a(2P; — 1)’
< N L E|UP + C X {EQP; — 1))} + CN-#,
where the last inequality is based on a bound obtained earlier in this proof. It

follows that the remainder in (2.43) is of the order of the sum of its first three
terms. The proof is completed by noting that

E|UP < (eN)2E[ 3] |a,||P; — m)|] < (eN) T |a;[{EIP; — m,{*P]*
< (eN)yHX e[ X {EIP; — =) [
Theorem 2.3 provides the basic expansion for the distribution of T under
contiguous alternatives. In Section 3 we shall be concerned with a further

simplification of this expansion and a precise evaluation of the order of the
remainder term.

3. Contiguous location alternatives. The analysis in this section will be car-
ried out for contiguous location alternatives rather than for contiguous alterna-
tives in general. The general case can be treated in much the same way as the
location case but the conditions as well as the results become more involved.
The interested reader is referred to Albers (1974).

Let F be a df with a density f that is positive on R!, symmetric about zero

and four times differentiable with derivatives f, i = 1, - . ., 4. Define functions
(%)

(3'1) ¢z=f s i:15""4a
f

and suppose that positive numbers ¢ and C exist such that for

3.2) m =6, m,=3, m;=4%, m =1,
SUP{S:"mlsl)i(x—i—y)lmff(x)dxl l.yl ée}éca i= 1’ ,4
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Let X, ---, X be i.i.d. with common df G(x) = F(x — 6) where
(3.3) 0<60<CNH

for some positive C. Note that (3.2) and (3.3) together imply contiguity. Let
0< Z, < Z,< --- < Zy denote the order statistics of |X|, ---, |X,] and let T
be defined by (2.2). Probabilities, expected values and variances under G will
be denoted by P,, E, and ¢,% under F they will be indicated by P,, E, and ¢/
Define

Ko<x>=®<x)+¢(x>{ 24" (o 3x) — g BULEAZ) oy

12(% a)? 3T ap)
(3.4) + e Z L[ 4P EGHZ,) — 0T a;9(Z;)]x
6(2 60 a5 WELNZ) — SH(Z)Z) + oz}
and
3.5) g = —o L%GENZ)

(Z a7t
We shall show that K,(x — ) is an expansion to order N~ for the df of
(2T — X a;)/(3 a*)t. The expansion will be established in Theorem 3.1 and
an evaluation of the order of the remainder will be given in Theorem 3.2.

Let n(f) denote the power of the one-sided level « test based on T for the
hypothesis of symmetry against the alternative G(x) = F(x — ¢). Suppose that
for some ¢ > 0,

(3.6) esasl—e.

We prove that an expansion for z(6) is given by
3.7 #0) = 1 — K,(u, — uy— ) 2% s 3y,
a1 #0) e = 1) + e = 1) B )
where u, = ®-}(1 — a) denotes the upper a-point of the standard normal
distribution.
THEOREM 3.1. Suppose that positive numbers, ¢, C, 0 and ¢ exist such that (2.35),

(2.36), (3.2) and (3.3) are satisfied. Then there exists A > 0 depending on N, a, F
and 0 only through ¢, C, & and ¢ and such that

0.8 sup. |y (=B < x) — Kl — )

2);
< AN+ N {E|S(Z;) — E(Z)IFT}
(3.9) <4,
3.10) 0| BGEAZ) o yna, g BB o
(Z a’)t 2 af

(Z T ayp |2 a;E[30:4(Z;) — 64U(Z)9A(Z;) + ¢ Z))]] = ANT".
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If, in addition, (3.6) is satisfied there exists A’ > 0 depending on N, a, F, 6 and «
only through ¢, C, ¢ and ¢ and such that

G11)  [#(0) — #(O)| = AN + NHO[EAE|P(Z;) — EPu(Z)I'} T} -
Proor. We begin by checking assumption (2.37). One easily verifies that

0 flx =0) = flx +0) _ 4 _ 1
3 fx —0) + fix + 8) = 2O~ Ol Hdlx + O

Hence the symmetry of f and an application of Markov’s inequality and Fubini’s
theorem yield

P, <s < 9X) g €>
= 9(X) + 9(— X))

= P,,( [ —0) — fX, + 6)' -1 26)

[ —0) + (X, 4 0)l =

= Py(§8 {|9(Xs — O] + [4u(X; + D]} dr < 2(1 — 2¢))

1 , -
g B A0 — ]+ 19X+ )
0

1 — 2¢

Take ¢ < 4 and choose ' = 4 min (9/2, ¢®*C-?). Because of (3.3) there exists
N, > 0 depending only on ¢, C, 6 and ¢ such that for N = N,, 260 < ¢ and 4 <
(1 — 2¢)C-#d'. Then (3.2) implies that (2.37) is satisfied for N > N,. This is of
course sufficient to ensure that the conclusion of Theorem 2.3 holds.

The passage from (2.41) to (3.8) is achieved by Taylor expansion with respect
to §. Since this part of the proof is highly technical and laborious it will not
be given in the body of the text. Instead we refer the interested reader to Ap-
pendix 1 where the results we shall need are stated in Corollary Al.1. Using
parts (A1.27), (A1.31) and (A1.32) of Corollary Al.1 together with the inequality
2 AE,(2P; — 1)}t < 3] Ey|2P; — 1]’ we see that the left-hand side of (3.8) is
bounded by the right-hand side of (3.8) plus a term

(3-12)  OO¥E| X ai$d(Z;) — E;(Z))IP + N0 X(F a;4(Z)))) -
Here, and later in this proof all order symbols are uniform for fixed ¢, C,  and
¢e. Now
OHE| D al(9(Z;) — EP(Z))F + N0 (X a;4(Z;))
S 0% + O°F| 3 a)(P(Z)) — E(Z))P
+ N720° + N740°0 (3 a;44(Z;))
= ON* + NWPE| 3 a(9(Z;) — Esd(Z))
E| T ai(9(Z;) — E(Z))))° = [T |a,{Eo|¢u(Z;) — Eydu(Z )PP
< (CNIZAE|SU(Z)) — B Z)I} ]

A

v

[\%

1 —

SUpy, <o £y do(X: + 7] -
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which proves (3.8). In view of (2.35) and (3.3) it is clear that (3.9) and (3.10)
are merely restating parts (A1.28)—(A1.30) of Corollary Al.1.

The one-sided level a test based on T rejects the hypothesis if (27 —
Y a;) (> af)t = &, with possible randomization if equality occurs. Taking
6 = 0 in (3.8) we find that

= BE) — () pyiais (67 = 3D = a + OV,
and hence because of (2.35) and (3.6),
(3.13) €, = u, — 1_2%:.2_”‘2_2); (4 — 3u,) + O(N-1).
The power of this test against the alternative F(x — ) is
(3.14)  7(0) = 1 — K€, — 7)
+ ONt + NPT AEN(Z,) — Eh(Z)IHT) -
In (3.14) we expand K,(§, — 5) around u, — ». Noting that|§, — #,| = O(N™?)

and using (2.35) and (3.10) we arrive at the conclusion that the left-hand side
of (3.11) is bounded by the right-hand side of (3.11) plus a term

O(N=*¢% (% a;9:(Z;))) = O(N~* + NWPE| L aj(u(Z;) — Eu(Z))) -

As we have already shown earlier in this proof that such a term does not change
the order of the remainder in (3.11), the proof of Theorem 3.1 is completed. []

For i = 1, 2, 3, define functions ¥, on (0, 1) by

(" ()

() F 1
(7 (5

()
F 1

(55

THEOREM 3.2. Suppose that positive numbers C and 0 exist such that (3.3) is

satisfied and that |¥/(f)] < C(t(1 — 1))7¥*? for all 0 < t < 1. Then there exists
A" > 0 depending on N, F and 0 only through C and o and such that

N[ {E\|9(Z,) — B Z;)}]F < 4"N-F .

(3.15) T = ¢, (F-l (ﬂ)) -

For the highly technical proof of this result the reader is referred to Appendix
2. Theorem 3.2 follows at once from Corollary A2.1 in this appendix by taking
h="1,.

4. Exact and approximate scores. The expansions given in Section 3 can be
simplified further if we make certain smoothness assumptions about the scores
a;. Consider a continuous functionJon (0, I)andlet U,y < U,y < -+ < Uy.y
denote order statistics of a sample of size N from the uniform distribution on
(0, 1). For N=1,2, ... we define the exact scores generated by J by

(4.1) ajzaj’NzEJ(Uj:N), ]: l, ...’N’
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and the approximate scores generated by J by

4.2) aJ.:aM:J( I ) j=1,--,N.

For almost all well-known linear rank tests the scores are of one of these two
types. The locally most powerful rank test against location alternatives of type
F is based on exact scores generated by the function — U, where ¥, is defined
in (3.15).

So far, we have systematically kept the order of the remainder in our expan-
sions down to O(N-%). From this point on, however, we shall be content with
a remainder that is o (N~'), because otherwise we would have to impose rather
restrictive conditions. In the previous sections we have also consistently stressed
the fact that the remainder depends on a and F only through certain constants
occurring in our conditions, thus in effect indicating classes of scores and dis-
tributions for which the expansion holds uniformly. As the number of these
constants is becoming rather large, we prefer to formulate our results from here
on for a fixed score function J and a fixed df F. The reader can easily construct
uniformity classes for himself by using the results of Section 3 and tracing the
development of Appendix 2.

DEerINITION 4.1. _Z is the class of functions J on (0, 1) that are twice con-
tinuously differentiable and nonconstant on (0, 1), and satisfy

4.3) V) dt < oo .
(4.4) lim sup, , , (1 — ')IJJ,' '((t’))! <3.

Z" is the class of df’s F on R' with positive densities f that are symmetric
about zero, four times differentiable and such that, for ¢, = f@/f, U (1) =
‘/)i(F_l((l =+ t)/2)), m, = 6, m, = 3; m; = %, m, = 1’

(4.5) lim sup,_, §=,, |¢(x 4+ y)|™f(x) dx < oo, i=1,...,4,
. _ wl”(t)
(4.6) lim sup, ., 1(1 — 1) —_111'1'(:)' <3.
ForJe # and Fe .7, let
_ o e JH ) dt s _
Ky(x) = D(x) + ¢(x) {N T2(339%(0) i (x* — 3x)

g SPOV @0, 6
*7) N S rmay & D T3 VI T(r) dt

X [P0 dt — §3 53 I(5) (D)W, ()(s At — st) ds di]x

NG ) 8
Sy ay OO — STOT + W)}
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(48)  Kou() = K@) + 6() N7} {Sél(t)‘lﬁ(t)df N

(5 P@ydot U 3 (nyde = 7Vs)
— 2 54, Cov (U(Usn), TV}

N-ig { 0 J() W, (1) dt

(4.9) K, o(x) = Ry(x) + 6(x) 20 Py dot U L) dr

W™ @Oyl —r)de

— 2§ VOO — e}

. (O (1) dt
(4.10) 7 = — N0 ——(Séﬁ(t) iy R
. . v ) dt s
(1) w(0) = 1= Kohe = 1) + 9l — DN 0 (0 — 30,

fori = 1,2. Then, in the notation of Section 3, we have for contiguous location
alternatives and exact scores

THEOREM 4.1. Let Fe %, Je _/Z, a; = EJ(U,.y) for j=1, ---, N, and let
0< 60 <CN*% e<ax1l—c¢forpositive C and e. Then, for every fixedJ, F, C
and ¢, there exist positive numbers A, 0,, 0,, - - - such that lim,__d, = 0 and for
every N

2T — > a; - -
(4.12) sup, |P, <W < x) — Ky (x — 77)* < 5,N-1,
2T — > a; .
(4.13) sup, Py (———“—(Z aj): 1< X) — Ky o(x — W)l
S Oy N7+ AN IO O] + [T @D — o)t e,
(4.14) |7(0) — m(0)] < oy N7

(4.15)  [7(6) — m(0)]
S O N7 AN OV (O] + [ 0D — n)tdt.

Proor. For fixed Je _Z#, positive constants ¢, C and ¢ exist for which (2.35)
and (2.36) hold for all N (cf. one of the remarks following the proof of Theorem
2.2). Similarly, for fixed F e &, (3.2) is satisfied and it follows that the con-
clusions of Theorem 3.1 hold with 4 and 4’ depending only on F, J, C and «.
Also (4.5) ensures that ¥,° is summable and together with (4.6) and the second
part of Corollary A2.1, this implies that the conclusion of Theorem 3.2 holds
with A4” depending only on F and C.

To complete the proof we now apply the results collected in Corollary A2.2
to the expansions K,(x — 5) and #(¢) in Theorem 3.1 and then expand these
functions of » around the point » = 7, while noting that » — 7 = o(N~}) by
(A2.22) and (A2.23). [

In general, the expansions given in Theorem 4.1 will not hold if the exact
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scores are replaced by approximate scores a; = J(j/(N + 1)), because  — 7 will
then give rise to a different term of order N-'. If J = —¥,, however, it is clear
from Corollary A2.2 and the proof of Theorem 4.1 that expansions (4.13) and
(4.15) are valid for approximate as well as exact scores. Also for J = —U,,
these expansions may be simplified because Fe.&# implies that by partial
integration

53 55 W)W/ () T()T/(1)(s A 1 — stydsdr = 3 UM dr — 353 T2 (0) dry?
B COOT()Yo(r) — Ws(n] dt = 1§ Wi(e) dr + T3 Wi (r) dr .

It follows that in this case 7}, K, ,(x — 7) and m,(¢) reduce to

(4.16) 7% = NHO(\ W) di)t

L) = O(x — 1) + LE—T)

§o Wyk(r) at s_ K2 — 1) ApkEy _ 6 k3
(4.17) X {W[6(x 3x) + 6p*(x* — 1) — 3p*2x — Sy*]
2 BCX0dt yo | o sae
F@wgay T
36 (LY (W) (1 — 1y dr
T e ar 7}
0 = 1 — _ p¥ 7 P, — 7*)
0 = 1 — O, — 7 + L~
WA dr e a % .
(4.18) X {W[ 6(u, 1) + 3n*u, 4+ 59**]
C R2GWAOAt . ooy ok
@y dy T e T
36 S (W) — ) dt}
§o W,(r) dt '

Finally we note that for F ¢ %, — ¥, can not be constant on (0, 1) because the
density f(x) = 44e~%" of the double exponential distribution is not differentiable
at zero. It follows that — W, e # for every Fe .5 . We have proved

THEOREM 4.2. Let Fe % and let either a; = —EW (U, ) forj=1,---,N
ora; = =W (j/(N+ 1)) forj=1, ---, N. Suppose that0 < 6 < CN~*ande <
a < 1 — ¢ for positive C and e. Then, for every fixed F, C and ¢, there exist positive
numbers A, 0, d,, - -+ such that lim,_,, 0y, = O and for every N

2T — 3 a;
4.19)  sup,|P, <.__ < x) — Ly(x)
(X af)}t

< Oy N7+ ANTE Y (WL ()1 — 1)t dt,
(4.20)  [x(8) — 7¥(O)] < oy N7+ ANTH G (W) (1 — 1))t dr .
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At this point it may be useful to make some remarks concerning the assump-
tions in Theorems 4.1 and 4.2. Conditions (4.4) and (4.6) ensure that J’ and
¥/ do not oscillate too wildly near 0 and 1. They also limit the growth of these
functions near 0 and 1, but in this respect conditions (4.3) and (4.5) for i =1
are typically much stronger. Together with (4.4) and (4.6) they imply that
J(t) = o((#(1 — 1))~?) and ¥/(f) = o((¢(1 — £))~%) near 0 and 1 (cf. the proof of
Corollary A2.1).

For expansions (4.13), (4.15), (4.19) and (4.20) to be meaningful rather than
just formally correct, even stronger growth conditions have to be imposed.
Consider, for example, expansion (4.20) and suppose, as is typically the case,
that ¥,/ remains bounded near 0. If ¥/(f) = o((1 — #)~!) near 1, then the right-
hand side in (4.20) is o(N~?*) and the expansion makes sense. However, if ¥,/(7)
is of exact order (1 — )7, the expansion reduces to

—1_ — oy — 1P — 7%) ST (W (1)1 — o) dt -1

7(6) = 1 — Ou, — 7%) - o
Finally, if ¥,/(f) ~ (1 — £)~*~? for t — 1 and some 0 < d < }, then all we have
left in (4.20) is 7(f) = 1 — ®(u, — n*) + O(N-***). Of course, in these cases
too, more exact results can be obtained by paying careful attention to the be-
havior of the extreme order statistics.

We conclude this section with a few applications of Theorems 4.1 and 4.2.
The tedious computations will be omitted. First we consider the power 7, y(6)
and 7, ,(6) of Wilcoxon’s signed rank test (W) against normal (N) and logistic
(L) location alternatives G(x) = ®(x — 6) and G(x) = (1 + exp{—(x — )P~
respectively, where § = O(N-t). We find

Tyn(0) = 1 — O, — ) — Pl =D lso 21— gpu;
2(3)¢ . 2(3)t .
wa (2 (225
:
+ _____12ar;:tn2 (=1 4 w2 — 2u5 + 772)} + o(N7Y),
where 7 = (3N/x)6, and
420 w0 = 1— O — 79 =TT 0 4 30 g+ )

+ o(N7Y),
where n* = (N/3)0.
As a second example we consider the one-sample normal scores test which is
based on the scores a; = EQ-Y((1 + U;.y)/2). Its power myg y(0) and myg ()
against the normal and logistic location alternatives described above satisfies

(423)  musnll) = 1 — O, — p7) = LT 1 4y

®—1(1-1/2N) (2(D(x) —_ 1)(1 - (D(x)) -1
4 2 jemta-y i dx} £ o(N-Y),
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where now »* = N4, and
Ty, () = 1 — @u, — %)
(4.24) - ﬂ(';_;;_ﬂ) {23 — 12Q2) + u? + (27 — S)u7

+ (72 arctn 2t — 227 + 1)7?
— 6 (o tamam (20(x) — DH(1 — O(x)) dx} + o(N7Y),
$(x)
where now 7 = (N/x)}¢. We note that Theorem 4.2 ensures that (4.23) will
also hold for van der Waerden’s one-sample test which is based on the ap-
proximate scores a; = ®-Y((N + j + 1)/2(N + 1)). To evaluate the integral in
(4.23) and (4.24) we write

jota=iam (20(x) — I)(1 — D(x)) dx

$(x)
(4.25) = }loglog N 4 $log2 — 2 {7 log x ¢(x) dx
4 (5 20() = Dix(l — () = (9} 4, | o(1)

xp(x)
= % loglog N + {log2 + 0.05832... + o(1),

where the final result is obtained by numerical integration.

5. Permutation tests. In this section we consider distribution free tests other
than rank tests, viz. permutation tests. We limit our discussion to linear permu-
tation tests that reject the hypothesis of symmetry if

(5.1) T h(X) 2 8,(2)

with possible randomization if equality occurs. Here % is a function on R!,
Z = (Z,, - - -, Zy) denotes the vector of order statistics of [X]|, - - -, | X},| as before
and &, is chosen in such a way that under the hypothesis of symmetry

(5.2) P(TIL H(X) 2 £(2)2) = a as.

with an obvious modification if there is randomization.

Since (5.1) is equivalent to } {h(X)) — A(— X))} = 26,(Z) — ¥ {M(Z,) +
h(—Z;)}, we assume without loss of generality that % is antisymmetric about
the origin, i.e.

(5.3) h(x) = —h(—x) for all x.

But then, under G and conditional on Z, 3] A(X)) is distributed as 2 3] a(V; — 1)
with V; as in (2.3) and a; = A(Z;). This means that we can obtain an expansion
for this conditional distribution of 3 A(X;) if we can apply Theorem 2.1.
Under the hypothesis of symmetry, P; = £ in (2.3) for allj. Hence in this case
Theorem 2.1 yields an expansion for the conditional df of 3 A(X,)/(3] #*(Z)))*
that holds uniformly on the set of all values of Z for which the a; = h(Z)) satisfy
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(2.35) and (2.36) for fixed ¢, C and 8. If « satisfies (3.6), this immediately leads
to an expansion for £,(Z). We find (cf. (3.13))

5.4 _&Z) gy ZR(Z) s 3u,) 4 o

CH ey T ey T O

uniformly on the set E,° where, for fixed positive ¢, C and 6, }; #%(Z;) = cN,
¥ hY(Z;) < CNand 2{x|3,|x — k(Z;)| < {} = ON{ for some { = N-¥log N.

Next we consider the contiguous location alternatives G(x) = F(x — ¢) of
Section 3. Under these alternatives, Theorem 2.1 yields an expansion for the
conditional df of }{ 3" A(X,) — 37 (2P; — DA(Z,)}{ X P,(1 — P,)K*(Z,)}t uniformly
on the set E,° where, for fixed positive ¢, C and 6, }; P,(1 — P))k*(Z;) = cN,
D h(Z;) < CN and 2Ax|3x — h(Z;)| < {,e £ P; <1 — ¢} = 0N{ for some
{ = N-tlogN.

Since E, C E, it suffices to show that P,(E,) = O(N-%) in order to obtain an
expansion to O(N-1) for the conditional power given Z of the permutation test.
The unconditional power is then obtained by taking the expectation. This is
done in very much the same way as in Sections 2 and 3 for linear rank tests, the
only difference being that now not only the P; but also the a; depend on Z.

This program is carried out in Albers (1974) for the special case of the locally
most powerful permutation test where h = —¢; = —f’/f. In Theorem 5.1 we
reproduce a version of this result without further proof. Of course a similar
result may be obtained for the general linear permutation test (5.1) with
h# —¢,.

Suppose that F is a df with a density f that is positive, symmetric about zero
and five times differentiable. Define ¢, and ¥, by (3.1) and (3.15) and take
h = —¢,. Let m,(f) be the power of the permutation test (5.1) against the al-
ternative F(x — ) and define

mp*(0) = 1 — O(u, — 7%)

* — * llI]‘4t dt
5 ¥, — %) [ 5 ¥i4() —6ud — 3 4 3y p* 4 Sp*?
(5-5) + e ﬁsswm Gl 0w = 3 B 4 57
—_ 12 Ss lI!.22(1‘) dt *2 9 1 — * *2
ey 20—t )

where 7* is given by (4.16).

THEOREM 5.1. Let F satisfy (4.5) fori=1,...,5and my = 10, m, = §, my = §,
m, = §, my = 1 and suppose that positive numbers C and ¢ exist such that 0 < § <
CN-tande < a <1 —e. Take h = —¢,. Then there exists A > 0 depending on
N, F, 0 and « only through F, C and ¢ and such that

|7a(6) — m,*(0)] < AN

For F = ®, we have —¢,(x) = x and Theorem 5.1 provides an expansion for
the power of the permutation test based on J; X; against normal shift alternatives
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D(x — f)with0 < § < CN~tande < o < 1 — e. Wefind that this power equals

(5.6) 1 — O, — Ni6) — Oulp(u, — N9) O(N-1).
4N

But (5.6) is also the power of Student’s one-sided one-sample test for @ against
@(x — 6) (cf. Hodges and Lehmann (1970)). It follows that for testing the hy-
pothesis @ against contiguous normal shift alternatives for fixed 0 < a < 1, the
powers of the permutation test based on }; X; and of Student’s test differ by
only O(N-%) as N — oo. In fact, this difference is O(N-?), since @ satisfies the
stronger regularity conditions needed to replace N-* by N-# in Theorem 5.1.

The remainder of this section will be devoted to a further investigation of this
rather striking phenomenon. Roughly speaking, we shall show that for testing
any given symmetric distribution against near alternatives, the permutation test
(5.1) is almost equivalent to Student’s test applied to A(X)), - - -, h(X,) with the
correct level of significance for the given null-distribution. Our proof differs
from the one outlined above in that we do not use power expansions to establish
the near equivalence of the two tests. Instead, we show that the critical regions
of the tests are almost identical. This more direct approach has the additional
advantage of providing a simple explanation of our result.

Let F be the df of a distribution that is symmetric about zero and consider the
problem of testing the hypothesis that X, - .., X, have df F against the alternative
that they have another df G. For this testing problem and an arbitrary & satisfy-
ing (5.3) we compare the permutation test (5.1) with Student’s test applied to
h(X)), - -, h(Xy) that rejects the hypothesis if

5.7 T = 2 (X)) (I =Nt >z,
[Z A(Xs) — N(Z A(X)T

with possible randomization if equality occurs. Here , depends on «, &, F and
N and is chosen in such a way that the test (5.7) has level a.

THEOREM 5.2. Suppose there exist positive numbers ¢, C, ¢, 1, 0;, 0,, + -+ with
limy_,, 0y = 0 and m > 8, such that hF~* and hG=* are monotone and differentiable
on intervals I, and I; of length at least y where

(5.8) [Lwrm|ze, [ Luem|ze,

and such that e < a < 1 — ¢, and
(5.9 {2 [A(x)|" dF(x) < C, (% [(x)|" dG(x) < C,
(5.10) |2, B*(x) dF(x) — {=, h**(x) dG(x)| < dy for k=1,2.

Then there exist A > 0 depending on N, F, G, h and « only through ¢, C, 7 and e,
and B > 0 depending only on m, such that the powers of the tests (5.1) and (5.7) for
F against G differ by at most A(N=# + 0,)N*.
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Proor. We denote probabilities and expected values under G(F) by Py(P;)
and Ey(E;). By (5.9) and (5.8) we have

(5.11) 0 (h(X)) < EGh(X,) < [Esh(X)]t < C¥™,
(512) 0 (X)) 2 2§ ety de = 5T,

so that these moments are bounded away from 0 and co. For positive integer
k < 4, Markov’s inequality, the Marcinkievitz-Zygmund-Chung inequality
(Chung (1951)) and (5.9) yield

Py|Z (B*(X:) — Egh*(X)))| = N)

(5.13) < Eol X (X)) — Egh"(X))|™*
(cN)™/*
S Bu(*N)TVOVEG R (X,) — Egh*(X,)[™*

2 m/k
< B,C <_> N-mab |

T

where B,, depends only on m. Choose

. m— 8 1
(5.14) g = mm<m, 4_>.
Taking r = N~# in (5.13) and using (5.3) we find that
(5.15) % I RH(Z,) = % THHX) = E,hH(X) + ON-F),  k=1,2,
1 . 1 2 2 _
G16) L EEe - [ L D] = o) + oo,

uniformly on a set with probability 1 — O(N~'~#) under G.
Assumption (5.3) implies that

Mx|34]x — K(Zy)| < &} = $A{x|3|x — A(X;)| < &},
and under G the right-hand side is distributed like
$A{x|35lx — H(G™H(U;w))| < C} s

where U,y < -+ < Uy.y are order statistics from a uniform distribution on
(0, 1). Now forn =1

PU;ipy — Ujy = 2)

= (Sococect,tmes: G=1)! (n—llv)!! (N_j_n)'!»sj_l(t — 81 — Y -i-ndsdt
= (Nz)”l‘l' § Socactc — w -'_ "+ l)' ; _gJ’-l(] — t)N—j—n ds dt
(n = 1)! G—DI(N—=j—n)
_ (Nz)n—l
T (n=1!"
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Taking n = 6 and z = 2c¢"!N~%log N we see that

P (Vs — Ui 2 267N-Hog N forall 1<k < [%] - 1)
=1-— % (2c!N-tlog NP = 1 — O(N-'7#) .

Together with (5.8) this implies that for { = N-log N
(-17) Ax[3;lx — H(Z;)| < &} = $7NC
with probability 1 — O(N-1-#) under G.

Now (5.11), (5.12), (5.15) and (5.17) ensure that expansion (5.4) holds uni-
formly except on a set E, with Py(E,) = O(N-*-#). Simplifying this expansion
by using (5.11), (5.12) and (5.15) once more, we arrive at the conclusion that
the power against G of the test (5.1) is given by

oy p( DX o ERCG) s
(5.18) #G) = P, ((Z (X)) = = Up— m(ua 3u,) + O(N ﬂ))
+ O(N-1-7) |

Here the first remainder term depends on Z but may now be taken to be uni-
formly O(N-1-#).
The inequality 33 A(X;)/(X (X))} = a is algebraically equivalent with

5 h(X,) > a
[Z A& — NT(Z A(X))]E — (1 — @’/N)?
on the set where 3] #*(X;) — N~} 3 h(X;))* + 0 and provided that a* < N. We
may apply this to (5.18) in view of the condition ¢ < a < 1 — ¢, (5.11), (5.12)
and (5.16). At the same time we may replace E, by E, in (5.18), and by (5.10)
this only involves adding O(dy N~?) to the first remainder term in (5.18). In this
way we obtain

7 : — E, k(X))
5.19 GY=P, (T > Uy uﬂ_ F 1 3 _ 3
( ) ”P( ) G( = ua + 2N 12N(EF,12(X1))2 (ua ua)
+0<N o))+ o),
where T is the statistic in (5.7).
By (5.11), (5.12) and (5.16) we have for B > 0,
sup, Po(t < T < t + BN-Y(N-? + 5,))
N~ 3 (X)) i N~
5.20 = P <t+2BNY(N* 49
(5.20) < sup, Py (15 0 B0 < o 2BV 1 0y)
+ O(N-1-%) .

Now (5.8) ensures that under G the distribution of 4(X;) has an absolutely con-
tinuous part; in fact, this distribution may be written as a mixture Q = 30, +
(1 — )0, where 0, is an absolutely continuous distribution with density ¢, <

(e)™*. Moreover, (5.9) and Markov’s inequality imply that §,([—C,, C,]) = %
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where C, = max (1, (2C/p)}). It follows that Q = (»/2)Q, + (1 — 7/2)Q, where
Q.([—C,, C,])) = 1and Q, is absolutely continuous with density ¢, < ¢, = 2(cp)™".

Let p, be the ch.f. of Q,. Obviously, for any fixed ¢ = 0, |o,(f)| < |5,(f)| where
p, is the ch.f. of the distribution with density

3 2
a(y) =¢,  for yeug=o[—cl+_2]lt‘|1,_cl+2_k”T;T_§]

=0 elsewhere,
with n = [C}|¢|/=] and (n + 1)c,2¢/|f| = 1. An easy calculation yields |5 (¢)] =
(sin §)/&; for |tf| = =/C, we have § = =n/(4c,C,). It follows that there exists 5 > 0
depending only on 7, ¢ and C, such that the ch.f. of A(X;) under G satisfies

(5.21) |Egeih ] < 1 — b for || =x.

Because of (5.9), (5.12), (5.21) and Lemma 1 in Cramér (1962), page 27, the
df of o,7(h(X,))N-* 3 (A(X,) — Egzh(X,)) under G has an Edgeworth expansion;
uniformly for all G satisfying (5.8) and (5.9) for fixed ¢, C and 7, the derivative
of this expansion is bounded and its remainder term is O(N-%). Applying this
result and (5.20) to (5.19) we find

(5.22) 7p(G) = PT = i,) + O(N-Y(N~* + d))

uniformly for fixed ¢, C, » and ¢, where

. s H(X))
5.23 t,=u, o = o Ep (X, u® — 3u,) .
(5-23) TGN 12NM(E, (X)) (®e )

Let ¢, be as defined in (5.7). Since F satisfies all assumptions imposed on G,
(5.22) will hold under F as well as under G. We have r,(F) = a and hence
t, = t; where |@ — a| = O(N"{(N~* 4 4,)) uniformly fore < @ < 1 — ¢, but of
course also uniformly for ¢/2 < @ < 1 — ¢/2. Because ¢, is decreasing in @ and
i, has a bounded derivative with respect to « for ¢/2 < a < 1 — ¢/2, it follows
that

(5:24) ta = iy + O(N(N? + 3,))

uniformly for ¢ < @« < 1 — ¢. In view of (5.22) and the preceding part of the
proof this implies that '

(5.25) 75(G) = PoT = 1,) + O(N-N? + 3,))
uniformly for fixed ¢, C, » and ¢. This completes the proof. []

It may be useful to comment briefly on assumption (5.10) in Theorem 5.2.
Of course this assumption is satisfied for a sequence of alternatives G that tends
to Fin an appropriate manner. It is easy to see, for instance, that if the sequence
G," is contiguous to F¥, (5.9) implies (5.10) with 6, = O(N~%). Similarly, (5.9)

will imply (5.10) for some sequence d, = o(1) if & is continuous and G, con-
verges weakly to F.
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6. Deficiencies of distribution free tests. Let F be a fixed df with density f
that is positive, symmetric about zero and five times differentiable. Consider
the problem of testing, on the basis of X, - - -, X}, the hypothesis G = F against
the alternative G(x) = F(x — 0) at level «. For any particular 4, the maximum
power 7*(f) is attained by the test based on the statistic 3] {log f(X; — 0) —
log f(X;)}. This statistic is a sum of i.i.d. random variables and therefore its df
admits an Edgeworth expansion under the usual conditions. By expanding the
cumulants of the statistic Albers (1974) obtains an expansion for z+(¢). Define
¥, by (3.15) and take

#+(0) = 1 — @u, — 77%)

T = 7%) (WA 3,0 ) gy 2w
(6.1) + T ST i v g 130 = 1) = 37 207
3§ W,3(r) dt

BEGL EOr A 7}

where 7* is given by (4.16). Lemma 6.1 is a version of Albers’ result.

LEMMA 6.1. Let F satisfy (4.5) for m; =5[i, i =1, ..., 5, and suppose that
positive numbers C and ¢ exist such that 0 < § < CN“tande < a <1 — . Then
there exists A > 0 depending on N, F, 6 and & only through F, C and ¢ and such
that

(6.2) |z+(0) — #+(8)] < AN-3.

For the same testing problem Theorem 4.2 provides an expansion for the
power (0) of the locally most powerful rank test. Together, Theorem 4.2 and
Lemma 6.1 will enable us to find the deficiency d,, of the locally most powerful
rank test with respect to the most powerful parametric test. To ensure that F
satisfies the assumptions of both Theorem 4.2 and Lemma 6.1, we require that
Fe &, where

DEFINITION 6.1. & is the class of df’s F on R! with positive densities f that
are symmetric about zero, five times differentiable and such that (4.5) is satisfied
fori=1,..-,5 with m, =6, my = 3, my = §, m, = §, my = 1, and such that
(4.6) holds.

Furthermore, define

; 1 §s WA(r) dt 31\ dky
b= ia sy PO D = e =)

(6.3) + ——fsfip‘{ff)’{,;’)i 7% — 3w — 1) — 2%, + 7*]
SR (W (001 — 1) dr
R Aramt

with 7* as in (4.16).

THEOREM 6.1. Let d,, be the deficiency of the locally most powerful rank test
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with respect to the most powerful parametric test for testing G = F against G(x) =
F(x — 0) on the basis of X, - - -, Xy and at level a. Suppose that F € % | and that
¢cNP <0 < CNY e < a <1 — e for positive ¢, C and e. Then, for every fixed

F, ¢, C and ¢, there exist positive numbers A, 0y, 0,, - - - such that lim,_ 6, =0
and for every N
(6.4) ldy — dy| < 8y + AN=F G (W) (1(1 — 1))2 dr .

This result continues to hold if the locally most powerful rank test is replaced by the
rank test with the corresponding approximate scores a; = —W,(j/(N + 1)).

PrROOF. As &, C &, the remark following Theorem 4.2 shows that
(6.5) Y (W () (e(1 — 1))* dt = o(N*) for v=1,%.

Theorem 4.2 and Lemma 6.1 provide expansions for z(f) and z+(#). In view of
(6.5), the boundedness of u, and the fact that ¢ < N*¢ < C, it is clear from these
expansions that d, = o(N?%). To find d, we replace N by N + d, and »* by
7*(1 + dyN~')* in the expansion for x(f) and equate the result to the expansion
for z+(#). Taylor expansion with respect to dy N=* in (4.18) yields
M{]Zd §o ¥'(r) at —3uz?—1 2n*u *2
Y, +(g;11r2(t)dr)2[ (' — 1) + 29*u, + 7*7
3 §3 W,%(e) dt
6.6 — 0 T2 A7 ¥ 4 3wt — 1) — 6p*u, + 3p*?
(6.6) (sz(t)dt)zri + 3(u, ) — 67*u, + 37
_ 12 G (W)l — 1) dt }
§o Wi(r) dt
= o(N) + O(N-1 {174 (T ()(K(1 — D)} di),

uniformly for fixed Fe. .5, ¢, C ande. Asp*¢(u, — 7*) is bounded away from
zero, (6.4) follows. The last assertion of the theorem is an immediate con-
sequence of Theorem 4.2. []

Obviously (6.3) and (6.4) imply that under the conditions of Theorem 6.1
(6.7) dy = O(\iw™ (T ()1 — 1) di)

for N — . Hence d, remains bounded as N — oo if {} (¥,(¢))*(1 — f) dt con-
verges. Fortunately, in most cases of interest Theorem 6.1 provides more detailed
information than (6.7) and remarks similar to those following Theorem 4.2 apply.
Typically ¥’ will be bounded near 0 and the asymptotic behavior of d, will be
determined by the rate of growth of ¥, near 1. If ¥/(f) = o((1 — £)"!) near 1,
then dy, = d, + o(1). If W/(¢) is of exact order (1 — #)~', then

W (W ()1 — 1) dr

§o Wi(r) dt

and d,, will be of the order log N. Finally, if ¥ /(f) ~ (1 — £)~'~% for t — 1 and

some 0 < 0 < %, then the expansion (6.4) reduces to d, = O(N%*), which is
nothing but (6.7).

dy = + 0(1)
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We shall give two applications of Theorem 6.1. First we consider the problem
of testing the hypothesis G = @ against the alternative G(x) = ®(x — 6), where
cN-t < 0 < CN-t. Letd, be the deficiency of the normal scores test (or van der
Waerden’s test) with respect to the most powerful parametric test based on X.
Computations similar to those in Section 4 yield

(6.8) dy = Ju2 — 1) + (o-ta-vam (20(x) — (1 — P(x)) dx + o(1)
‘ $(x)
= }loglog N + 3(u,> — 1) + }log2 + 0.05832... 4 o(1).

In this case dy ~ }loglog N— co for N— co. Note that there is no dependence

on ¢ in this expansion for d, and that the leading term is also independent of a.
As a second example we take the logistic df F(x) = (1 + e~*)~* and consider

the testing problem G = F against G(x) = F(x — bN—t), where b > 0 is fixed.

Now d,, is the deficiency of Wilcoxon’s signed rank test with respect to the most

powerful parametric test for this problem. We find

(6.9) dy = {18 + 12u,* 4 4(3)*bu, + b% + o(1)

and here d,, tends to a finite limit for N — co.

Having shown that the deficiency of a distribution free test with respect to
the best parametric test may tend to a finite limit, we now address ourselves to
the intriguing question whether this limit can be zero. To answer this question
we first have to decide what is meant by the best parametric test. So far, we
have compared the performance of a distribution free test with that of the most
powerful parametric test for known scale against a simple location alternative,
thus in effect comparing with envelope power. Of course this comparison is not
quite fair. Computed in this way, the deficiency of a distribution free test reflects
the losses incurred by using (i) the same test against every location alternative
6 > 0; (ii) a scale invariant test; (iii) a distribution free test. Since our main
interest is the deficiency due to (iii), it is more appropriate to compare with the
uniformly most powerful scale invariant test, if such a test exists. Unfortu-
nately, invariant tests are in general rather intractable, the main exception being
Student’s test for the normal location case. We note that Hodges and Lehmann
(1970) have shown that the deficiency of Student’s test with respect to the most
powerful parametric test based on X tends to a finite but positive limit, so that
it does indeed matter whether one compares with Student’s test or with envelope
power.

We are thus led to consider the normal location case with Student’s test as
the best parametric test. To establish the existence of a distribution free test
with deficiency tending to zero, the obvious candidate is the permutation test
based on 3] X;. Theorem 6.2 is an immediate consequence of Theorem 5.1 and
the remark following it.

THEOREM 6.2. Let dy be the deficiency of the permutation test based on Y X,
with respect to Student’s test for testing G = @ against G(x) = O(x — 6) on the
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basis of X,, - -+, Xy, and at level «. Suppose that positive numbers ¢, C and ¢ exist
suchthat cN-* < 0 < CN~tande¢ < a < 1 — ¢. Then there exists A > 0 depending
on N, 0 and a only through c, C and ¢ and such that

(6.10) dy < AN,

Hence in this case we do find that d, tends to zero for N — co. Perhaps the
most surprising thing about this example is that asymptotically one has to pay
a certain price for scale invariance, but that once this price has been paid, there
is no additional penalty for using a distribution free test. We note that the
remark following Theorem 5.1 implies that (6.10) may be replaced by d,, < AN~

Theorem 6.2 may of course be generalized considerably by taking Theorem
5.2 for h(x) = x as a starting point instead of Theorem 5.1. For d, as in Theo-
rem 6.2, it is clear that d, = o(1) for a much larger class of testing problems
than the normal location problem of Theorem 6.2. Although Student’s test is
generally not optimal for these problems, this shows how closely the two tests
resemble one another.

7. Expansions and deficiencies for related estimators. Let T = T(X,, - - -, X})
be given by (2.2) and suppose that the scores a; are nonnegative and nondecreas-
inginj=1, ..., N. Define the statistic M by
(7.1)  M(X, -, Xy) = dsup{t: 2T(X, — 1, - -+, Xy — 1) > X a;)

+ $inf {£: 2T(X, — ¢, .- -, Xy — 1) < X a;} .

Suppose that X, - - -, X, are i.i.d. with common df G(x) = F(x — p), where F
has a density f that is symmetric about zero. Then M is the midpoint of the
interval between the upper and lower 0.5 confidence bounds for x induced by
the statistic 7. Hodges and Lehmann (1963) proposed M as an estimator for g
and studied its connection with T. They showed that the normal approximation
to the power of the level } test based on T for contiguous location alternatives
could be used to establish asymptotic normality of M. We shall show that,
similarly, power expansions for level  yield expansions for the df of N(M — p).
We restrict attention to the case where the scores are generated by a smooth
function J.

Let # and % be given by Definition 4.1, let (¢, ) denote the power of
the level 4 right-sided test based on T against the alternative F(x — ) and define
K, . and 7 as in (4.8)—(4.10).

THEOREM 7.1. Let Fe &, Je 7, suppose that J is nonnegative and nondecreas-
ing and let a; = EJ(U;.y). Take 6 = EN~}. Then, for every fixed J, F and C > 0,

(7.2) SUPizo [PUNYM — p) < §) — (0, })| = O(N~T),
(7.3) SUPeiso [PUNYM — 1) < §) — {1 — Ko (=D} = o(N7),

(7-4)  SUPgze [PUANYM — p) < &) — {1 — K, o(=D)}|
= o(N7) + O(N= §@™ (I ()] + [T (OI)(e(1 — 1))t dr) .
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Proor. It follows from Hodges and Lehmann (1963) that M is translation
invariant and that its distribution is absolutely continuous and symmetric about
p. Thus, for § = EN-4,

(7.5) P(NYM — p) < &) = Py(M = 0),
and, in view of (7.1),
(7.6) P,2T > Y a) < P(M 2 0) < P,2T = Y a;) .

According to the proof of Theorem 4.1, the conclusions of Theorems 3.1 and
3.2 hold, which implies that P,(2T = }; a;) = O(N~) uniformly for || < CN-%.
This proves (7.2). The remaining part of Theorem 7.1 is now an immediate
consequence of Theorem 4.1. [J

The case where J = — ¥, with ¥, as in (3.15), is of course of special interest.
Theorem 7.2 deals with this case for exact as well as approximate scores. Note
that for Fe &, the condition that —W, is nonnegative and nondecreasing is
equivalent to concavity of log f, i.e. to strong unimodality of f.

THEOREM 7.2. Let Fe &, suppose that f is strongly unimodal and let either

a;= —E¥,(U;.y)forj=1,...,Nora;, = W (j/(N+ 1)) forj=1, ..., N.
Then, for every fixed F and C > 0,
(7.7) SUPi<o [PUNHM — p) < &) — n(§N7H, 3)| = O(NTH),
P (N § ¥\ X(r) di}(M — p) < x)
N xP(x) { [ 5§ 1Fl‘(t) dt . 12§} IIf;(t) dt
% =00 + T i e dy T

(1 W 3(r) dr)? Vo Wii(r) dt
+ o(N7Y) + O(N-F (179 (W (0))*(1(1 — 1))} dr)
uniformly for |x| < C.

6 §s Wit dr 36§y (W ()1 — 1) d’}

Proor. The proof of (7.7) is identical to the proof of (7.2) in Theorem 7.1.
Expansion (7.8) follows from (7.7) and Theorem 4.2. []

The estimators in Theorem 7.2 are efficient and their natural competitor is
the maximum likelihood estimator M’ which solves

(7.9) ZLia (X, — M) =0

with ¢, as in (3.1). The performance of M’ is connected with that of the lo-
cally most powerful test for F against F(x — 6), which is based on the statistic
— 22 $i(X;). Let #'(, %) be the power of the level } right-sided test based on
— 21 $(X;) for F against F(x — 6).

Lemma 7.1. Suppose that f is positive, symmetric about zero and strongly unimodal
and that (4.5) is satisfied for m; = 5[i, i = 1, ..., 5. Then, for every fixed F and
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c>0,
(7.10) SUPgiso [PUNHM' — p) < &) — a'(EN4, )| = O(N?),
PN SE X0 dip (M — ) < %)
_ xp() (o S BTN 12 (3 Wx0) e
(7.11) =0 + 2% {x [(sgw,z(r) dty (WA diyp 9]
IR XOY _
T o + )+ OO

uniformly for |x| < C.

Proor. The estimator M’ is translation invariant and its distribution is sym-
metric about g. Thus, for # = £N-3, (7.5) holds with M replaced by M’, and
in view of (7.9),

(7:12)  Py(— 2 $:(X5) > 0) S PNYM' — p) < §) < Py(— 3] 9(X;) 2 0).

Since f is everywhere positive and ¢, is everywhere differentiable, the distribu-
tion of ¢,(X;) under ¢ contains a fixed absolutely continuous component for all
6 in a neighborhood of zero. Together with (4.5) for m;, = 5, this ensures that
the df of }; ¢,(X;) under 6 possesses an Edgeworth expansion with remainder
O(N-*) uniformly for [#| < CN-t. This implies that P,(— 3] ¢,(X;) = 0) = O(N-1)
uniformly for |#| < CN-%, which proves (7.10).

The expansion for the df of 3] ¢,(X,) is used in Albers (1974) to establish an
expansion for the power of the locally most powerful test under the conditions
of Lemma 6.1. Specializing to the case where @ = 4 and using (7.10) we obtain
(7.11). O

There is no unique natural measure of scale to assess the performance of an
estimator /2 admitting an expansion of the form (7.8) or (7.11). One possibility
is to consider a family of measures determined by the quantiles of 4. We can
define o(4, 5) to be the s-quantile of (2 — x) divided by u,_, = ®-(s). As we
are only considering estimators that are distributed symmetrically about y, ¢(4, 5)
may serve as a measure of scale for any § < s < 1. If we fix a value of 5, we
can define the deficiency D,(s) of ‘a sequence of estimators {4, ,} with respect
to an estimator /4, , by equating o(#, v,y 5) and o(4, y, s), with the usual con-
vention that ¢ is determined by linear interpolation for nonintegral values of
N 4 D,. Similarly, for two sequences of level « tests, d,(a, s5) will denote the
deficiency as defined in Section 1 for the case where the alternative 6 is chosen
in such a way that the common power equals s.

Let &, be given by Definition 6.1.

THEOREM 7.3. Let dy(}, s) be the deficiency for level  and power s of the locally
most powerful rank test with respect to the locally most powerful test for testing F
against F(x — 6). Let Dy(s) be the deficiency of the Hodges—Lehmann estimator as-
sociated with the locally most powerful rank test with respect to the maximum likeli-
hood estimator for estimating p1 in F(x — p). Suppose that F ¢ & and that f is
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strongly unimodal. Then, for fixed F and L < 5 < 1,
(7.13) 1Da(s) = du(h, 5)| = OV,

WYYl — t)dt 1 W) de
7.14 D _ W (Y I T2
(19 Dl V) di & (530 oy

+ 1+ o(l) + O} ™ (WY () (e(1 — 1))b dr) .

This result continues to hold if in the locally most powerful rank test and the asso-
ciated estimator, the exact scores are replaced by the approximate scores a; =

—T(JI(N+1)).

Proor. The conditions of Theorem 7.2 and Lemma 7.1 are satisfied. Writing
M, and M,’ for M and M’, we see that for some &

(7.15) P,(NHM,/ — 1) < &) = s + O(NY)
(7.16) PN My ay — 1) < ) = s + O(N).

By the remark following Theorem 4.2 we have W/(f) = o((#(1 — 7))~%) near 0
and 1, and combining this with (7.8) and (7.11) we find that (7.15) and (7.16)
imply (7.13). The proof of (7.14) is now the same as that of Theorem 6.1. []

An interesting property of the expansion (7.14) is that it is independent of s.
Thus, to the order considered, the deficiency D (s) is asymptotically independent
of the particular choice of the quantile used to measure the performance of the
estimators. Of course, this reflects the fact that the deficiency d,(%, s) is inde-
pendent of the power in the same asymptotic sense. Algebraically, the reason
for this phenomenon is that the term involving x*p(x) is the same in (7.8) and
(7.11).

We also note that upon formal substitution of « = 4 and § = 0 in (6.3), the
expansion for dy in Theorem 6.1 reduces to the expansion for D,(s) in Theorem
7.3. This shows that if the remainder in (7.14) is o(1), then D,(s) will tend to
a nonnegative but possibly infinite limit.

In Section 6 we have already pointed out that an expansion like (7.14) may
or may not be of interest, depending on the behavior of the remainder term.
We should stress that, even if the expansion (7.14) is useless, (7.13) still estab-
lishes the asymptotic equivalence of D,(s) and d(}, s).

We conclude our discussion with one example of Theorem 7.3. For estimat-
ing normal location, the deficiency of either one of the Hodges-Lehmann esti-
mators associated with the normal scores test and with van der Waerden’s test
with respect to X is asymptotic to § loglog N. The deficiency of one of these
Hodges-Lehmann estimators with respect to the other tends to zero for N — co.

APPENDIX
1. Expansions for the contiguous case. Our purpose in this appendix will be
the justification of the passage from (2.41) to (3.8) under the assumptions stated
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in Section 3. Thus we shall suppose throughout that f is positive and symmetric
about 0 and that g(x) = f(x — 6).

Begin by defining a function &(x, ) for x > 0, t = 0, by
(A1.1) F(&(x, t) — 1) + F(&(x, 1) + 1) = 2F(x) .

Introduce also two other functions of two variables, p and p, by

_ fx—1)
(B12) Ay
(AL.3) Plx, t) = p(§(x, 1), 1) .

The basic property of the function ¢ is, of course, that the joint distribution
of (§(Z,, 0), - - -, &(Zy, 0)) under F is the same as the joint distribution of (Z,, - - -,
Z,) under G. It follows that the joint distribution of (p(Z,, ), - - -, p(Zy, 0))
under F is the same as the joint distribution of (P, - - -, Py) under G. It is evident
therefore that our task is essentially that of expanding p(x, f) around 0 as a func-
tion of ¢ and giving suitable estimates of the remainder terms. We begin by
differentiating formally. For convenience we shall, for any function of two
variables g(x, ¢), write

9 iq(x, 1)
p X ) = ———~—=—.
e N M T
Differentiating (A1.1) with respect to t we get
(Al.4) §a=2p—1.

It is now easy though tedious to obtain p, ;(x, ) in terms of the p, ,(§(x, ?), #) by
replacing &,, by 2p — 1 after each differentiation. Thus, for example,

(ALS) Pos(*s 1) = [Poy + Pro(Zp — DIEC 1), 1),
(AL6)  Poa(x, 1) = [Pos + 2p1(2p — 1) + Pao(2p — 1)* + 2p10p0s
+ 2p12p — DIE 1), 1) -
Calculation of the p, ; is also tedious. Again we list the first few. Define
(AL7) Pl 1) = Pulx — 1), u(x, 1) = dx + 1),
where ¢, = f*/f as defined in (3.1), and let
(AL8)  Jux, )=l 1) — 1) fulx 1) = hE(x 1) + 1) -
Then
(A1.9) Por = —p(1 = Pl + 24115 Pro=p(1 = p)lify — 2411 s
Por = P(1 = Py — oy — 2p - 191" + 21 — phgy’
+ 2(1 - 2P)1¢1 <2l
(AL10)  piy=p(l = p)—1fs — oo + 2P - 14" + 2(1 — Pl
Peo = p(1 — P)us — 32 — 2p - 190" + 2(1 — phdy?
—2(1 = 2p)r - o] -

45



W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

Substituting (A1.9) and (A1.10) into (A1.5) and (A1.6) at t = 0 and employing
similar manipulations with the third order derivatives we obtain
(AL.11) px,0) =%, Poa(x, 0) = —3d(x), Pox(x,0) =0,
Poa(x, 0) = —345(x) + 34(¥)¢a(x) — 34°(x) -

Moreover, from (A1.9), (A1.10) and the boundedness of p it is easy to see that
constants b, and b, exist such that

(A1.12) [Poal < by Tl s [ Poal < 00 Dioa {lifal + 917} -

Similarly bounding first the p, , and expressing p, ; appropriately, and invoking
the inequality |ab| < r'a|” + s7'|b]*, r* + s7' = 1, we obtain for suitable b,
and b,
(Al.13) |osl < b T {ldl + [l + 11}
2ol = b Tica {ldd] + |Gl + o + i}
We need the following application of Taylor’s formula with Cauchy’s form
of the remainder.

LemmA Al.1. Let g(x, t) be a function of two variables possessing derivatives of
order < k + 1 in t in a neighborhood of 0. Then if S is any rvand m = 1,

(AL Ela(S. )~ Zhea g, 0

bs + m
< [(kl * 1)J SUP {Elgo ,o(S, v1)[: 0 < v < 1} .
Suppose moreover that for 1 =0, .-+, k, Eq, S, 0) exists and is finite. Then

(ALIS)  E[ig, 1) = Ba(S. 0] = Ehea 405, 0) — Fgu 5,00 12|

k+1 m
< 2n [(kli 1)J SUP (Elgo xnr(S, v)|™: 0 < v < 1} .

Proor. Wehave (cf. Dieudonné (1960), page 186, Titchmarsh (1939), page 368)
(AL16)  g(S,0) = Diougu (S, 0)

tk
S (k 1)! SO (k + 1)(1 — v)eqy 44o(S, vt) dv
provided that the integral converges. Hence the left-hand side of (A1.14) is
bounded by

[ T EIR G (1 = )85, vr) bl

This obviously remains true even if the integral diverges for some values of S.

An application of Ljapunov’s inequality and Fubini’s theorem complete the
proof of (A1.14) and a similar argument disposes of (A1.15). [J

46



ASYMPTOTIC EXPANSIONS FOR ONE-SAMPLE TESTS

Note that by using the same device one can show that the left-hand side of
(A1.14) and (A1.15) is o (|t]|™*) for ¢ — 0 if ¢ is k times continuously differentiable
and

(A1.17) lim,_y E|q (S, D)|™ = E|g,,(S, 0)|™
Of course (A1.17) holds if g, (S, «) is continuous at 0 and
(A1.18) sup {E|¢o, (S, D™+ : 1] < 0} <

for some ¢ > 0.
We introduce two final pieces of notation. If d,, --.,d, is a sequence of
numbers we write

(AL.19) lldll = Z -1l -

If x is a function of one variable and ¢ > 0 is fixed we define

(A1.20) llxll = sup {§2e [x(x + p)If(x) dx: |y] = ¢} .

THEOREM Al.l. Suppose that f is four times differentiable, that E,¢y(]X,]),
E (1 X)) ¢a(|Xy]) and Ey.%(| X)) exist and are finite and that 0 < 20 < e. Then if
r=1, r* 4+ 57! = 1, there exists a constant B such that

23102 — 1) = =0 2i., a;E,(Z;) — Zy 16, E[¢(Z))

(AL.21) — 64(Z)¢(Z;) + 3¢13(Zj)] + M,,
IM,| < BNO*|a" (" TlI¢2N + [l 4 1™l + a1 5
(A122) 1 145 (27: - 1) = —0 ZJ =1 gaE ¢1(Z) + MZ’
[Ms| < BNO"||a™ |7 [||¢o"[] + |1ga™1] + [1(11 5
(A1.23) Y a2E 2P, — 1y = 0* YV, ajE,(Z,) + M, ,

|My| < BNG®||a™ || [1|¢s"[] + [Is™"(] + llpa™[[1" 5
7 (X5-19;F;5) = —%”(Z” 14;9(Z5) + M,

(AL.24) M, = BN*0¥||a%|[||¢]] + [I¢2°0] + [1¢4°]]] + BNO¥||a||*

X [N+ 11920 + N1P0FLEN X a($(Zs) — Epu(Z))] -
Moreover, for m = 1 and p > O there exist B’ and B" depending only on m and on
m and p respectively, and such that

(A1.25) 21 Eo|2P; — 1™ < B'NO™|¢y"] 5
DY {Eg| Py — mym}]e
(A1.26) S 0" X AE|$(Z;) — Ep(ZIm) 17

+ BlINl/p02m[“¢2m(pV1)|| + H(/,lzm(pvl)” + 1]1/p s
where p V 1 denotes the larger of p and 1.

Proor. In (Al.14) we take E = E,, ¢(Z,0) = X a,2p(Z;,0) — 1), k = 3,
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m = 1, and find
4
M| < 25 sup (B2 3 a,puZy )| 0 S v < 1)

< ]‘IL'; ][ sup {[% ¥ E|podZ;, ue)r]”’: 0<v< 1} ,

by Hblder’s and Ljapunov’s inequalities. Since ] |, (Z;, v0)|* is symmetric in
Z, .-+, Z,, we have

1 _
N 2 E|pol(Z;, vO)|* = Ey| po (| X, vO)° -

Now we apply (A1.13) and use the fact that the distribution of ,J (| X,|, v6) under
F(x) is the same as that of ,¢,(|X;|, v0) under F(x — vf) to obtain
Ey| po. (| %], vO)* = B2E, [ Ziica {:fu(1 X, ¥0)| + |iho(| Xal, v0)]?
+ (| X0, v0) + (X, v0)}]
Because s > 1 and 0 < 2v0 < ¢ for 0 < v < 1, this implies that
Eo| po. (| X, vO)|" < 8720[||92]| + 11"l + [I™]] + [18:*I1]
which proves (A1.21).

The proof of (A1.22), (A1.23) and (A1.25) is similar. Ineach case we can apply
(Al.14), taking ¢(Z, 0) = ] a*(2p(Z;, 0) — 1), k = 2, m = 1to prove (A1.22),
and ¢(Z, 0) = 3 a*(2p(Z;, 0) — 1)*, k = 2, m = 1 to prove (A1.23). In (A1.25)
the symmetry in Z,, - .., Z,, is already present from the start, so here we use
(A1.14) with ¢(|X,|, 0) = 2p(|X,|, 6) — 1, k = 0 and the value of m as in (A1.25).

A rather delicate argument is needed to deal with (A1.24). Because
Pos(x, 0) = 0,

(pe ) =3+ 5 o))
= | 252010 = pstr v ]
< #1355 201 — v)poa(s vr) df* + [ §53(1 — )%y, vi) bt
< 1% 54 {Puales ) + [Boal w0t} b,
and similarly,

t
L R3(1 — 2, vty ds

; ‘
1) = 5+ 5000 S 9 SRl 0P + sl w0l b
By now familiar manipulations yield

oE a;P) — T 0% a,4.Z)

< 02 (D a{ P2 0) + 5 9.2))})

+ 6 lCovo(Z a; {p(zj, 6) + % ¢1(Zj)} » X ajsbl(Zf))‘
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< N E [P, 0) — 3 + 2 gu D} + Nl [,

(X, 0) — %

+ 20030 [ EIZ ai0(2) — EnZ)Pp

< BN¥||@|[ll¢t]] + llga®l] + [1¢1] + BNO¥| ||
X (1]l + 1157 + I¢LIPLEN X a5(P(Zy) — Eopo(Z))IT -

It remains to consider (A1.26). Since
KZ;, 0) — EP(Z;, 0) = 0[Pox(Z;, 0) — Eopo(Z;, 0)]
+ L S8010s(Z; v0)] + B us(Z )21 — ) b,

and m = 1, we have

Eg|P; — mj|™ < 2"0™Eo|Po,((Z;5 0) — EoPos(Z;5 0)™
0—;‘ Ey §5 {|Pos(Z;, v0)| + Eo| Pos(Z;, v0)[™}2(1 — v) dv
< T EI0(Z;) - B Z)I"

+ 271 3 Eg| Po.o( £, vO)|™2(1 — v) dv .

+

Hence
ZAE)P; — =™} = 0™ D AE|P(Z;) — Ep(Z))|™)

+ 2meNG*™[1 + sup {Ey|p,q(| X, vO)|™eP: 0 < v < 1}
Proceeding as before we prove (A1.26) and the theorem. [J

CoRrOLLARY Al.1. Suppose that positive numbers c, C and ¢ exist such that (2.35),
(3.2) and (3.3) are satisfied. Let K, K, and 7 be defined by (2.40), (3.4) and (3.5). Then
there exists A > 0O depending on N, a, F and 0 only through c, C and ¢, and such that

_2a(2r; — 1)\ _ _
K<x (% a9} > Ky(x 7/)‘
< AN + 0¥[E| T a,(4(Z;) — Ep(Z))I]

+ N-a}(3] a; $(Z;))}»

(A1.27) sup,

(A1.28) |3 a"E,y(Z;)| < AN for m=1,3,
(A1.29) | aEudX(Z;)| < AN,

(AL30)  |Z aE[$(Z) — 66(Z)4iZ)) + 3¢(Z))] < AN,

(A1.31) 3 E2P; — 1™ < AN'-™2 for tlsm<e,

(AL32) [T {EJP; — m,fP] < OIS (EJPAZ) — Eodi(Z)PP] + AN

ProoF. Since the corollary is trivially true for N < (2C/e)?, we may assume
that 260 < 2CN-t < ¢ and use the results in Theorem Al.1. We note that (2.35)
implies that ||a"|| < [C” max (1, N"=%)]t. In the notation of this appendix (3.2)
asserts that ||¢,™|| < C for m; = 6, m, = 3, my = 4 and m, = 1. All order sym-
bols in this proof are uniform for fixed ¢, C and e.
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(A1.28)—(A1.30) follow from (2.35) and (3.2) by Holder’s and Ljapunov’s

inequalities, e.g.
|2 6 Ecpi(Z;)] = O(N 'a' 2 (ff)f) = O(N) .

(A1.31) and (A1.32) are immediate consequences of (A1.25) and (A1.26).

Taking r = 4, s = 4 in (A1.22)—(A1.24) we find
(A1.33) M, =0(l), M, = O(N-}),

M, = O(N~F + NO¥[E| L ai($(Z;) — Ep(Z))I']) -

Hence, uniformly in x,

— ®(x 2 a 3 __ _ Z__ajan¢1(Zjl X —
R(x) = O(x) + ¢(x) {m(x 3x) -0 3(‘—2 a)t ( 1)

6 2 2 — g2 . .
(A1.34) + 2_2_{;[2 a;"EcpN(Z;) — a( 2 a; ¢1(ZJ))]X}

+ O(NTF + O¥[E| T aj($(Z;) — Espu(Z))P) -
Taking r = oo, s = 1 in (A1.21) we have
Sa;2x;, — 1) _ 0°
(A1.35) _W =TS 2 a; Ef$(Z;)

— 64(Z;)¢n(Z;) + 34:(Z;)] + O(N*0Y),
where the second term on the right is O(N%6% by (A1.30). Now we substitute
x — (2 a)t 3 a;(2x; — 1) for x in (Al1.34) and expand the right-hand side
around x — 7. It follows from (A1.35), (A1.28) for m = 3 and (A1.29) that in
this way we obtain (A1.27).

2. Asymptotic behavior of moments of functions of order statistics. Our
aim in this appendix is twofold. In the first place we provide a proof of Theorem
3.2 where the order of the remainder in expansion (3.8) is evaluated. Secondly,
we obtain asymptotic expressions for the leading terms in the expansion for the
case where exact or approximate scores are used, thus in effect proving Theorems
4.1 and 4.2.

Let U,y < U,y < +-+ < Uy, be order statistics of a sample of size N from
the uniform distribution on (0, 1).

LemMMA A2.1. If 2 = j/(N + 1) thenforall N = L2,...,j=1,...,Nandt > 0,

P<IU’”” - u(ﬁ)* = t> = ZeXp{_etsj: 8} '

PRrooF. The probability on the left is equal to
(A2.1) B (j, N, 2 — t<x(—l—;_&>i)

+B<N_j+1,N,1_x—z<L;Z)>*>

where
B(j, N, p) = Zi_; GHp*(1 — p)¥-*.
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For j > Np Bernstein’s inequality (cf. Hoeffding (1963) page 17) yields
. i — N, j — N,
B(j, N, p) < {_ J=Np (1 P )}
(G Nop) < exp{— L= n (L
with k(s) = 3s(2s + 6)~*. Application of this result gives after some algebra

2w =1(C5))

sep{-2 [t + RN — )T ¥
= 2 3+ N + ((NA(L — 2))7H[A(5 + N7) — 2] — 2N'#2
Noting that 2 < NN 4 1)7' and (NA(1 — )" <1 4 N7', we see that
exp {—3¢%6t 4 8)~'} is an upper bound for the first term in (A2.1). By inter-
changing j and (N — j 4 1) we find that the same is true for the second term
in (A2.1) which proves the lemma. (]

LemMa A2.2. If 2 = j/(N + 1), k is a positive real number, v, is the kth absolute
moment of the standard normal distribution and I, ,, is the indicator of (a, b), then
uniformly forj =1, ---, N and n = }A(1 — 1) we have for N — oo,

N ik . L .
(2(1 _ 2)) E(2 — Us.y) 1(1—:;,1)(Uj:1v) = $v, + O((N2(1 )ty

N ¥
() B = Dlarea(Us) = o OV = D))
PrOOF. Let f be the density of Z = (N/2(1 — 2))}(U;.y, — ). Application of
Stirling’s formula in the form log n! = (n 4 §)log(n 4+ 1) — (n 4 1) 4 $log 2z +
O(n™) followed by expansion of logarithms yields
22 — 1 1[1_23+(1—2)3]22

logf(z):—%logZ;r-}-(_Nm—_T))_iz—7 m

|° 1
+0 ((Nl(l — 2))} + NA(1 — ,2)>
for z* < Nmin(4/(1 — 2), (1 — 2)/2). Hence, for |z] £ (NA(1 — )<
[Nmin (2/(1 — 2), (1 — 2)/A)]},

1 lz| + |2° 1
@22 fo) = et 140 (s + =)

uniformly in j. Since p(N/A(1 — 2))} = J3(NA(1 — A))¢, (A2.2) and Lemma A2.1
imply that

k _ 1 FNA1=2NE Lk —%=2|: L+ |z| + J2]°
EZ ](1.)+1;)(U:‘:1v) = (27)! i} zve 1+0 <W 2)E )] dz

+ O(§5ivaa-ant 274 dz) = v, + O((NA(1 — 2))7H),
which proves the second part of the lemma. The first part now follows by noting
that U;,y and 1 — U, _;,,., have the same distribution. []

REMARK. One easily verifies that Lemma A2.2 continues to hold when 7 is
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taken as small as [¢(4(1 — 2)/N)|log NA(1 — 2)|]t for any ¢ > 1. It should also
be noted that when j or (N — j + 1) remains bounded as N — oo, Lemma A2.2
merely states that E|U;,, — 4|* = O(N7¥).

Condition R,. For real r > 0, a function % on (0, 1) is said to satisfy condition
R, if k is twice continuously differentiable on (0, 1) and

r'(1) 1

h'(t)[ <+

LemMMmA A2.3. Letr, ---,r,, ky, ---,k, be positive real numbers,j = 1, ..., N,
A = j/(N 4 1) and v, the kth absolute moment of the standard normal distribution.
Suppose that hy, ---, h, satisfy conditions R,, ---, R, respectively and that

3 ky/r, < 1. Define
M = (2(1]; 2) )n:k,- {<2(1; 2) )i + (NA(L — )t 11, lh/(z)lki} )

Then, uniformly in j, we have for N — co
AL — 2)\t 2k
L2 U) — mP = (A2 g THs (@) <+ O(M)
and for integer ky, - .-, k

s fm

E [ (h(Uj.y) — hy(2))*
= O(M) if Xk, isodd,

:<£(1_N:Q>m‘iuz,,i n (/) + O(M)  if Xk, iseven.

Proor. For reasons of symmetry it is sufficient to consider only j < (N 4 1)/2,
i.e. 2 < . Since k, satisfies condition R,, there exists 0 < e < &, > 1 and
C>O0suchthatfori=1,...,m

lim sup,_,, #(1 — ?)

R (1) 1y

A2.3 SO (14 L)

(A2.3) ot =< +m)t for 0<1< 3,
(A2.4) |h."(t)| <C for e<i<l1—c¢,

(A2.5) "’,((’))l_ (1_t)1 for 1—3e<rt<l.

Suppose first that 2 < 25. Integratlon of (A2.3) shows that for 0 < t < 2

andi=1, ..., m, .
(L)1+1/rir S hi’(tl S (i>1+1/rir ’
2 = B =

merr -G s s () )

It follows that
hy(2) — k(1)

A2.6 —Gd_n+o (=0 1 2
( ) o) ( t) + < 3 ) for Aigt<4,
hy(2) — hi(t)\ 2 \Vree
Mo s e (T) for 0<1<4a.

52
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Application of Lemma A2.2 with » = 14 yields

hy(2) — B (U, »)\*
E H?=1 <L’l'(,{)(__l_1!_)) ‘ I(o,l)(U:i:N)
i
1 /21 — 2)\i=ki )
(A2.7) = 5 (22 ot + o@ia — )+
+ 0 (= ( 2 % Toan(Us))
Uj:N
where we have made use of 3} k;/r, < 1. For2 <j < {(N + 1),
1/7
24 () ha i (Us) = 20 N BULZS LU
N -
(A2.8) S 285MP(U;_yy-1 < 34)

— 1Zk
=0 (('Z(ITXU v — z))—%)
by Lemma A2.1. Forj =1 we have
Sk 2 1/
2 () Lo (Us)
(A2.9) = (N + 1)—Zki—l/1N Sé/z(NH) u—l/r(l — u)N—l du

= O(N-3*) = 0 (<i(~1_]\.jﬁ>izk" (Na(L = )).

Together, (A2.8) and (A2.9) ensure that the second remainder term in (A2.7)
may be omitted.

A similar analysis based on (A2.3)—(A2.5) shows that for 2 < 2¢ but ¢ > 2,
(A2.6) holds for 2 < ¢ < 32/2 and

h() — 1A < 4 22 (%)“”"" for 3_; <t

A

3e,

hi(2) 1
= O(A~1-Vrir(1 — 1)=Vrir) for 3egtr<1.
Hence by Lemmas A2.2 and A2.1 and a change from U, to U,,,_, as in (A2.8),

m hi(U:':N) _ hi(x) ki
E Hi:l <—_h_l‘,"(’2)—h‘> 11(2,1)(U.7':N)

= 5 (P 1 ova — )

2 N
(A2.10) + O(2=*i exp {—}(N2)}}
+ A~Tkfp(1 — UJ‘:N-—l)l_l/tl(ae,l)(UfiN—l))
= 5 (L)t 1 ovaa - .

Combining (A2.7)—(A2.10) and noting that (A2.7) and (A2.10) remain valid
when absolute values are taken inside the expectation signs, we see that the
lemma is proved for 1 < 2e.
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If 2¢ < 2 < , (A2.3)—(A2.5) imply that
ht) — h(A) = B)(A)(t — A) + O((t — ®) for e<t<1—c¢,
|h(t) — h(R)) = O((1(1 — 0))™r)  for t<e or t>1—c¢,
and the proof of the lemma for 2¢ < 2 < } follows by noting that A/(2) is
bounded and arguing as e.g. in (A2.10). [J

REMARK. Although the remainder M in Lemma A2.3 consists of two terms,
only one of these plays a role for any particular value of 2. For 2¢ < 1 <
1 — 2¢, h/(2) and (A(1 — 2))* are bounded and we need only retain the first
term of M. It follows from (A2.7)—(A2.10) that for 4 < 2eor 4 = 1 — 2e only
the second term of M is needed.

LEMMA A2.4. Lemma A2.3 continues to hold for central moments, i.e. if hy(A) is
replaced by Eh(U,.y) fori = 1, - - ., m, provided only thatr, = 1 fori =1, -- -, m.

ProOOF. Asr; = 1, Lemma A2.3 contains as a special case

(A2.11) |ER(U;.y) — k()| = O (1(1 - 2)N+ Ihi’(1)|> .

The lemma is proved by expanding the central moments in terms of moments
centered at the 4,(2) and applying (A2.11), Lemma A2.3 and the remark follow-
ing it. []

We also note the following extension of a result of Hoeffding (1953).

LemMA A2.5. Let hy, .-, h, be continuous functions on (0, 1), g a continuous
function on R™ and Q a convex function on R™ such that |q| < Q. Suppose that
(5 |hi(t)] dt < oo fori=1, ..., mand that \} Q(h(t), -- -, h,(t))dt < co. Then

liqux-lﬁ 2 9(ER(Ujiy)s - - o5 Ebg(Usiy)) = $3 (1), - -5 ha(0)) dt .

Proor. Because A, is continuous and summable, Lemma 2.2 of Bickel (1967)
implies that for any ¢ >0, Eh(U;,.y) — h(jy(N + 1)7*) — 0 uniformly for
e<jyN+ 1)< 1 —cas N— oo. Since g is continuous and g(4,, - - -, h,) is
summable, the lemma is proved if we show that

. . 1 .
lim, , lim sup, N (ZFE + P ratowso)|9(ER(U.y)s « -5 Eby(Ujx))] = 0.

It is obviously sufficient to prove this for Q instead of ¢, but as Q has the same
properties as ¢ and is moreover nonnegative, this is equivalent to showing that

lim supy — T Q(ER(Us), « -1 Bha(Usx)) = $3Q(R(0), -+ ha(0) di .

As Q is convex this follows from Jensen’s inequality. []

LeMMA A2.6. Letk,, ---,k, be positive integers and r,, - - -, r, positive real
numbers such that Y k,r, < 1. Suppose that h, - - -, h, are continuous functions
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on (0, 1) for which \j |h(t)["idt < oo fori =1, ..., m. Then
limy e s T (B = § T2 (A0
If, in addition, h, is monotone in neighborhoods of 0 and 1, then also

timy . S (A w ) T (BR(Usn))e = T2 (B0

Proor. The first part of the lemma is a special case of Lemma A2.5, obtained
by taking g(x,, - - -, x,,) = [[ x¥:and Q(x,, -+ -, x,,) = 1 + 3 |x,]"i. To establish
the second part we follow the proof of Lemma A2.5 for these choices of ¢ and
Q but with Eh(U;.,) replaced by A (j(N + 1)7%), until we arrive at the point
where it suffices to show that

k()
N+ 1
As |h|™ is continuous and summable, its monotonicity near 0 and 1 amply

guarantees that N=* 37 |h,(j(N + 1)7)|"1 — §}|h(r)|"1dt. Application of Jensen’s
inequality to the remaining terms completes the proof. []

R lEhf(Uj:N)I”J < B xn, h(ofedr .

. 1
lim sup,, ~ §Y=1[

We now state the results needed to prove Theorems 3.2, 4.1 and 4.2 in the
form of two corollaries.

CoROLLARY A2.1. Suppose that positive numbers C and 3 exist such that [F(t)] <
C(t(1 — )™ for all 0 < t < 1. Then there exists A > O depending on N and h
only through C and ¢ and such that

YA {EIMU;.y) — ER(U; )P} < ANY.
The above condition is fulfilled if h satisfies condition R, and \} K(f) dt < co.

ProoF. Define 2 = j/(N + 1). Forall 0 < t < 1, |A(f) — A(%)| is maximized
by taking #'(f) = C(¢(1 — 1))~**? and for this particular choice of /’ the function
h satisfies condition R,. Hence, by Lemma A2.3, we have in general

A1 — 2)\#* .
Eh(U;.y) — Q)| = O((%) a1 — ,z))—km—w)
for 0 < k < 3. It follows that

T {Elh(Us.y) — ER(U;op)[} = O(Z I ANTHA(L — 2)71})
= O(N# {147 (#(1 — 1))~¥ df) = O(NY).

Condition R, ensures that for ¢ as in (A2.3)and 0 < 1 < Lu < ¢, |A(f) — h(2¢)| =
1u|W' ()| and hence for u — 0,

W) < 29 {3 (h() — h(2¢))*dt — 0.

In the same way one shows that |#’(u)| = o((1 — #)~%) for u — 1, which completes
the proof. []
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Fori=1,2,3,let ¢, = f?/f and W,(r) = ¢,(F((1 + 1)/2)) as in (3.1) and
(3.15). Let J be a function on (0, 1).

COROLLARY A2.2. Suppose that (3.2) holds, that 0 < {}Ji(f) dt < oo and that
both J and W, satisfy condition R,. Let either a; = a; , = EJ(U;.y)forj=1,---,N
ora; =a; y=J(G/(N+ 1)) forj=1,---,N. Then, as N — oo,

(A2.12) —>:J Liait = 30+ o(1),
(A2.13) - ZJ VaFEW S HU,,) = (SIHO TR de 4 o(1),
k=1,...,4,

(A214) L T aEE U W(Us) = SIOEOY0) de + o(1),
(A2.15) % T 4, EV(Uyy) = BIOW,(0) di + o(1)

(A2.16) Z(Z 214, ¥y(U;.y))
= {5 SJIE)IOT/ )T/ ()[s At — st]dsdt + o(1) .
If a; = EJ(U,;.y) forj =1, ..., N, then also

Nt Za =19; EWI(UJ N)

(Z: =1 12)é
_ SOJ(t)ll"l(t) dt _ 1 Z;ﬁ’:lCov J(U;.»)s 1Ifl(U,-_lQ)_
I HEOY (83 J7(t) )}

(A2.17) + L SWIORO oy s, + o (N

2N (V3 J(1) dr)?
IOV 1§ I — b) dr
(i@ dyt N (§57°(1) diyt
1 Sl‘](t)wl(t) dt 1-1/N ( 2 _ 1
I (o S OO — e (v
+ O Y OO + [T ONE( — 1)t di) .
If ] = — V¥, and either a; = —EW,(U; ) forj=1,---,Nora; = —W,(j/(N + 1))
forj=1,..., N, then

N—& ZJ =1 JE]F (U] N)

(Xia)?
(e ™ (WY (0))'e(1 — 1) dt
(AZ' 18) - (SU IIJ‘1 (t) dt)i + 2N(S(1) ]IfIZ(t) dt)i

+ O(N"Y) + ON=H S (W/()(e(1 — 1))} di) .
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Proor. The assumptions imply that ¥,, ¥,, ¥, and J are continuous, that
Te, W2, |, and J* are summable and that J is monotone near 0 and 1. Hence
(A2.12)—(A2.15) follow from Lemma A2.6.

For a; = J(j/(N + 1)) a proof of (A2.16) is essentially contained in Stigler
(1969). Our condition R, for ¥, ensures that ¥’ will satisfy Stigler’s condition
Tat0Oand 1. Asin the proof of Corollary A2.1, one can argue that near 0 and 1
(A2.19) V@) =o(((1 =)™,  J@) =o((t(l =)™
Inspection of Stigler’s conditions for (A2.16) shows that in our case the only
missing ingredient is that ¥, is not necessarily increasing on (0, 1). However, ¥,
is monotone where it matters, that is in a neighborhood of 0 and 1.

To prove that (A2.16) remains valid for a; = EJ(U,.,) we note that by Lemma
A2.4 and (A2.19)

a"’( (EJ(U] N) — J<N {F i >> l15'1(Uj:1v)>
<[l — 1 (g e

= o(NT[Siw™ (1(1 — 0) " di]) = o(N¥) .
For a; = EJ(U]- ~) we have

(A2.20) — 21 Lat = BNy dt — — Z ~10%(J(U;.%)) »

(azz2l) ZJ 14, EY\(Uj.y)
= GJ(O¥(0) dt — "]\7 i=1Cov (J(U;.x)s ¥y (Uj.n) -
By Lemma A2.4, condition R, for J, and (A2.19)
Z L10°(J(U.0))

= g oyt — 1 dr + O ST @)y di 4 N
(A2.22) NS O — ) d)
- % S ((0)(1 — £) dt
+ O(N1 + N4 §1 () (e(1 — 1)} di) = o (V).
Similarly
& T CoV (I(Usa), WilUs)
(A2.23) = % (Y P (U ()1 — 1) d

+ O(NTE 4 N3G ()W ()] ((1 — 1)t dr) = o(N7F) .
Together (A2.20)—(A2.23) are sufficient to prove (A2.17).
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If/ = —V¥, and a; = —EV¥(U,.), then (A2.17) reduces to (A2.18). To prove
that (A2.18) also holds if a; = —W,(j/(N + 1)), it suffices to show that

L () EOW)

(A2.24) _[ yﬂllfﬁ(Fi—l) i (E‘Fl(Uf:N))ZT

=o(l) + O(N=* {3 (¥ ()(r(1 — 1))t dr) .
It follows from Lemma A2.3 and condition R, for ¥, that

i 2
N v(U..,)—-T J — -1 N-1 {108 (W ()2 d
LBV = W (g )} = o 4 N s (o

= O(N™! 4 Nt (107 (W)t (1 — 1)t dr),
which suffices to establish (A2.24) and complete the proof. []
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EDGEWORTH EXPANSIONS IN NONPARAMETRIC STATISTICS!

By P. J. BICKEL
University of California, Berkeley

This is a survey of recent work on Edgeworth expansions for (M) esti-
mates, rank tests and some other statistics arising in nonparametric models.
A Berry-Esséen theorem for U-statistics which seems to be new is also
proved.

1. Introduction. During the past 25 years various procedures which are not
sensitive to certain departures from normality have been evolved and investigated.
The study of such methods is loosely referred to as nonparametric statistics. One
broad category of such procedures is that of the distribution free tests such as
the permutation ¢ test, the rank tests of Wilcoxon, Kruskal-Wallis, Spearman
and Kendall, and the omnibus tests such as the two sample Smirnov test. All
of these are discussed in the monograph of Hajek and Sidak [26]. Another major
category is that of the various robust estimates such as those discussed in the
recent Princeton study [2].

Most of the theoretical work done on these procedures has been devoted to
obtaining large sample properties by establishing first order limit theorems for
the statistics on which these procedures are based. In this paper I intend to
discuss what is known about higher order approximations to the distribution of
these statistics. In the main I'shall limit myself to discussion of results obtained
since the general review paper by D. Wallace which appeared in this journal in
1958, [57].

Suppose that we are given a sequence of statistics {Ty}, N > 1, where N usually
denotes sample size. In accordance with [57] we shall say that the distribution
function F,; of T, possesses an asymptotic expansion valid to (r + 1) terms if
there exist functions A, - -, 4, such that

A;(x) |

(1.1 [FN(X) — Afx) — 21, = o(N-"1).
If,
(1.2) Supx FN(X) - Ao(x) - Zgzl A]G]x?.)Al = o(N—r,’Z)

! This research was supported by the Office of Naval Research, Contract N00014-69-A-0200-
1038.

AMS 1970 subject classifications. Primary 62G05, 10, 20, 30, 35; Secondary 60F05.

Key words and phrases. Edgeworth, Cornish-Fisher, expansions, Berry-Esseen bounds, rank
tests, (M) estimates, goodness of fit tests, U-statistics, deficiency.
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we shall say the expansion is uniformly valid to (r + 1) terms. (This is not quite
in accord with Wallace who requires the remainder to be O(N~"+V7%) but is more
convenient and in accord with [19].) An expansion valid to one term is just an
ordinary limit theorem. It is sometimes convenient to consider expansions in
which the A4; also depend on N. They are then, of course, no longer uniquely
defined.

These higher order terms are of interest on various grounds.

(1) Taking one or two terms of the expansion frequently improves the basic
approximation A, strikingly. Examples of this phenomenon may be found in
Hodges and Fix [28] and Thompson, Govindarajulu and Doksum [55].

(2) The higher order terms give some qualitative insight into regions of un-
reliability of first order results. For instance, when the limit A4, is normal the
higher order terms 4, and 4, typically correct for skewness and kurtosis.

(3) The expansions can be used to discriminate between procedures equiva-
lent to first order, as for example in Hodges and Lehmann’s work on deficiency
[30].

(4) Last but not least the probabilistic problems involved are very challenging.

Expansions of the type (1.1) and (1.2) are not the only ones of interest. Density
functions and frequency functions of lattice random variables can sometimes be
expanded. Extreme and intermediate tail probabilities can also sometimes be
expanded (see for example [21], pages 517-520, [13]and [37]), and as P. Huber
pointed out to me, the approximation to the power function of tests so obtained
can be much more satisfactory than that based on the Edgeworth expansion.
However, at least to date, the principal method used has been that of saddle
point approximation which seems to require more intimate knowledge of the
characteristic function of F, than is usually available. In any case few if any
such expansions appear to be available in nonparametric problems. Thus, we
limit ourselves to discussion of expansions of types (1.1) (“Edgeworth”) and the
related expansions of £,~' (“Cornish-Fisher”). We shall deal primarily with
expansions in which A, is the normal distribution. General results are available
here for linear rank statistics (Section 2) and M estimates (Section 3) and partial
results for linear combinations of order statistics and U-statistics (Section 4).
What is known in nonnormal limiting situations is discussed briefly in Section 5.

2. The Berry-Esséen method and linear rank statistics. Suppose that a se-
quence {T'y}, N > 1, of random variables tends to a standard normal distribution.
If we let

2.1) ox(t) = E(e“T)
then we are asserting that there is a version of log p, such that as N — oo,
tZ

(2.2) log py(1) — ~5 -
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Suppose that we have an asymptotic expansion of log p, of the form,

P (lt) +o(N-,

IS P(it)

2.3 lo ) = —— 7 ST
(2.3) gou) = =5 + 00 4
where the P; are polynomials of order < j + 2 which vanish at 0. Such a devel-
opment is plausible if the T, have cumulants X ,, such that X, , =0, K, , = 1,
K,y = O(N-=27, j> 3, and which themselves admit asymptotic expansions
in powers of N=¢. Thus if

. K )
(2.4) K, y= 23" T o(N="%)
we should have,
k+2—3
(2.5) pyiny = 2 BT (i

This is typically true although it sometimes requires a separate proof. The proto-
typical such T, are, of course, standardized sums of independent identically
distributed random variables. For more on expansions of the log characteristic
function in terms of cumulants we refer the reader to the discussion in [57]
and on pages 221-230 of [12]. Now, (2.3) corresponds to

(2.6) ex(t) = e*'”( + Z, 1- Q (”)> + o(N~" 2)

where
Q,(ir) = Py(i)

oy(it) = Pyir) + LB (”)]

and so on.
Normal Fourier inversion suggests that if

0,(it) = Y au(it)*
then

@7 ) =00 = 09| Tiar 1 Deer @ M) |+ 0(N7)

NI 32
where @ is the standard normal cdf, ¢ is the standard normal density and the
N, are Hermite polynomials defined by

2.8) LI — (1N

This formal step cannot, of course, be justified in general. It fails for instance
if T is the standardized sum of independent identically distributed lattice ran-
dom variables. The passage is valid if the weak (2.6) can be replaced by

@9 suin] joa — e (1 + 252 B 1} ar = oy
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for every M < co. An equivalent useful form of (2.9) is

@10)  §y ]

and

outt) = e (14 55, 20 i} ar = o=

t /!
$ienvisinsmnrrz ﬂ%— dt = o(N™?)

for some ¢ > 0 and every M < co. That (2.9) suffices follows from a famous
lemma of Berry and Esséen whose statement and proof may be found in Feller
[21], Chapter 16, page 510.

The validity of (2.9) and hence of (2.7) to order 1/N (r = 2) has been estab-
lished for linear rank statistics both under the hypothesis of symmetry and under
contiguous location alternatives by Albers, Bickel, and van Zwet [1]. A similar
expansion for the two sample Wilcoxon statistic under the null hypothesis was
established earlier by Rogers [48]. Expansions for general two sample rank
statistics to order 1/N both under the hypothesis and contiguous location alter-
natives are in preparation [6]. Here is a selection of the results of these papers.

Let X,, ---, X, be independent identically distributed with common cdf G
and density g. Let Z,; < --- < Z,,, denote the ordered |X,|. Define ranks
R,, ---, R, by

X, = Zi -
Let
Ej = 1 lf XR], > 0
= -1 otherwise ,
and suppose that a,,, - - -, a,, are given constants.
Define
(2.11) T, =y, 4iné
.
where
(2.12) o =YV aky.
For simplicity suppose there exists a function J on (0, 1) such that
(2.13) a;y = E(J(U;.y))
where U,., < ... < Uy, are the order statistics of a sample of size N from the

uniform distribution on (0, 1). All of the usual statistics for testing the hypothe-
sis that g is symmetric about 0, including the sign, Wilcoxon and normal scores
tests can be put in this form. Hajek and Sidék [26] provide an extensive discus-
sion of these procedures as well as the two sample tests we shall mention.

If g is symmetric about 0 the ¢; are independent with P[e; = 1] = 4. The
statistic T, is then a sum of independent nonidentically distributed random
variables, and
(2.14) pult) = TV cos 22ix

Iy
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If §3J4(#) dt < oo, Taylor expansion of (2.14) yields
I (ity* a, 1
2.15) log pu() = —5 — 20 L D% 40 <N>

_ (@) §indr +0(1>.

T2 12N (R 0(n) diy N

If J is in addition continuously differentiable and nonconstant it is shown in
[1] that (2.10) holds and hence that

§o J(r) dt
(D(X) + EN(SE?z@) dl‘)2 ¢(X)H3(X)

is a uniformly valid expansion for F, to three terms. In particular this proves
the validity of the expansions used by Fellingham and Stoker [22] for the
Wilcoxon test and by Thompson ez al. [55] for the normal scores test up to terms
of order smaller than 1/N. Thompson er al. noted that the approximation using
exact cumulants suggested by the first identity in (2.15) is better than the expan-
sion suggested by the second identity while Fellingham and Stoker only con-
sidered the approximation using exact cumulants, with continuity correction.
The exact cumulant Edgeworth expansion in both cases did provide substantial
improvement over the normal approximation for N = 10 — 20 although the
latter seems satisfactory for all practical purposes. It is not yet known whether
the Edgeworth expansion for statistics such as the normal scores is valid to more
than three terms. It seems clear that the expansion to order 1/N* for the
Wilcoxon with continuity correction used by Fellingham and Stoker can be
justified by a local limit expansion and application of the Euler-Maclaurin
formula. Local limit theorems for the two sample Wilcoxon statistic were de-
veloped by Rogers [48].

If g is not symmetric about 0 the ¢; are no longer independent. However by
conditioning on |X)|, - - -, |X,| Albers, Bickel and van Zwet arrive at the following

representation for p,,
(2.16) ox(t) = E{T] ), [P;y explita;yjo,] + (1 — P;,) exp[—ita;y/o,]]}
where
oz
9 Z;.y) + 9(—Z;.4)

From this representation it may be shown that if §}J4(r)dt < oo and J is con-
tinuously differentiable and nonconstant then

§2355 {lox(t) — py(0)/le]} dr < cN-

for b, ¢ depending on g where

iN

@17 ps() = E{exp| ik — LK | (14 @'k, W'k, 4 s )]
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and
K,y = J' 1— (2P 1)

N

,ady
Ky =4 Z:;'\':l ﬁ PjN(l - Pj:v)
N

>
Il

-
8 T3 Pis(l = Poy)(1 = 2Pyy)
N

Il

4

16 Ty 97 Pi(l = Piy)(1 = 6P,y + 6P})
N

are the cumulants of T,.

Further expansion for fixed alternatives appears to depend on the development
of the theory of Edgeworth expansion for linear combinations of order statistics.
However, if we permit g to depend on N in such a way that g is contiguous to
a symmetric density, then K, is to first order a constant, and further expansion
is possible. Specifically suppose that

(2.18) gn(x) = flx — 0y)

where f is a fixed density symmetric about 0 and ¢, = #/N*. It is then shown
in [1] under some regularity conditions on f, as well as the previously specified
conditions on J, that for some b, ¢ depending on f and J

(2.19) §50 [184() — 7011} di < eN-i
where

N P (in® (' ¢
(220) 70 = expliRy = £ Ry (14 Ry + EV R,
and

Ry = =0y D1 4% E((Z;.4))

.‘\r

0 <~
- 3; Lvasy B39 Z55) — 3919u(Z58) + 39°(Z5:0)]

Ry = 1= 02 Bl S BQUZ,00 + 7 Var (D0 (Z,.0)

.wk'
Il

2, B Y E(Z,0)

il
Il

at,

Ny JN

-2 Z P \
gy

where

di(x) = l}i) (x)

and the subscript 0 indicates that calculation is carried out under f. The K,
may be shown to be the leading terms in the expansion of the cumulants of T,
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under g,. Berry’s lemma can be applied to yield as a uniformly valid expansion
for F,(1) to three terms

@.21) (1) — o) {520 M) + 5 M)} where
_t—K,
TR

This is not strictly speaking an expansion of the type we have been considering
since N enters into the approximation in a complicated fashion. However, the
expansion can be used in this form, for instance, to study power under normal
alternatives since in this case

$i(x) = (—1)7H(x)
and moments of order statistics from the half normal distribution are available
(cf. [34]).

If J’ is defined and continuous on [0, 1] and [ satisfies some mild regularity
conditions, integral approximations to the Kﬂ can be shown to hold, and a uni-
formly valid expansion to three terms as defined in Section 1 can be provided.
This is adequate for the Wilcoxon but not the normal scores test. If we consider
the distribution of the latter under normal alternatives it turns out that the K,
term does not admit an expansion of the form A4 4+ B/N with A4, B fixed, but
rather requires a term of the form (Bloglog N)/N. As noted by Wallace, ex-
pansions of the type (2.7) can validly be inverted to yield expansions for percen-
tiles (Cornish-Fisher) and hence expansions for the power functions of the rank
statistics 7y,. Agreement between the power function expansions for the normal
scores and Wilcoxon tests obtained from (2.21) and (2.15) for normal and logistic
alternatives appears to agree well with the Monte Carlo figures of Thompson
et al. [55]. However, agreement with the Monte Carlo figures of Arnold [3]
for the power function of the Wilcoxon test under Cauchy alternatives seems
unsatisfactory.

In [30] Hodges and Lehmann introduced the notion of deficiency of a procedure
with respect to an equally efficient competitor. For tests of equal level a, the
deficiency is crudely defined as the limit of the difference in sample sizes required
to reach equal power for the same alternative. The power functions expansions
obtained in [1] are used to calculate the deficiency of the normal scores test with
respect to the ¢ test for normal alternatives. This turns out to be infinite but of the
order of log log N. The results of [1] can also be used to establish that the permu-
tation  test has deficiency 0 with respect to the ¢ test under normal alternatives.

Suppose now that we have two samples X,, ---, X,., Y,, ---, Y,, N = m + n,
the first sample being distributed with common density f, the second with com-
mon density g. Let Z,, < --- < Z,., be the order statistics of the pooled
sample and define

e; =1 if Z,,=Y, forsome k

=0 otherwise.
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A two sample linear rank statistic standardized under the null hypothesis is then
given by

(2.22) Ty =24y (ei - —]r':/‘)/fzv’
where the a;, are specified scores
(2:23) o = (D @ = ] s
and

ay = — Z], 145 -

Suppose again that the a;, are given by (2.13). Using a representation of the
characteristic function p, of T, related to one due to Erdos and Rényi [20] and
the Berry lemma, Bickel and van Zwet [6] obtain a uniformly valid expansion
for the distribution function F, of T, to three terms if f = g, n/N stays bounded
away from 0 and 1, {jJ*() dt < o, and J is nonconstant and has continuous
derivative. In this case,

@24 Fy0) = 00) — (9 {53 B + S i + U h )

1
+o(3)

where the K}, are the cumulants of T,,. Essentially this result was obtained by
Rogers in [48] for the Wilcoxon statistic. Formal expansions were previously
considered by Hodges and Fix [28]. A Berry-Esséen bound was obtained by
Stoker [53]. Expansions of the power function and deficiency calculations are
in progress [6]. Formal expansions of the power function were considered by
Witting [ 58] using moment expansions due to Sundrum [54]. More Monte Carlo
studies of the power functions of the two sample tests are desirable. Figures
are available for the Savage test [17] when fand g are exponential densities and for
the Wilcoxon and normal scores test under normal alternatives [34], [35], [41].

There are several open problems in thisarea. Two which I find interesting are:

(1) The extension of these results to tests of independence such as Spearman’s
p and Kendall’s .

(2) The establishment of valid expansions for fixed alternatives.

3. Multivariate Edgeworth expansions and (M) estimates. A significant de-
velopment in the theory of asymptotic expansions occurred in 1961 with the
appearance of Ranga Rao’s thesis on Edgeworth expansions and Berry-Esséen
bounds for sums of independent random vectors. Since then there has been con-
siderable development in the field. Some results typical of the most recent state
of the art and many references to older work may be found in Bhattacharya’s
paper [5] in which the following theorem is announced.
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Let {X = (X, ---, X,'")} be a sequence of independent identically distri-
buted k dimensional random vectors. Suppose that

(3.1 EX™") =0, i=1, J k

E(X‘”X“’)——ﬁu, 1§i§j§k.
Let
(3.2) o) = E(e**)
where u = (u, - - -, ,) and uX is the inner product of u and X®. As usual
consider the formal expansion of p¥(u/Nt)e™*? where |u|* = 3%, u?, as a power
series in Nt

117}

(3-3) ewnPN(M) b+ 25 "N(;;z)

where the P; are polynomials whose coefficients depend on the cumulants of
X, Define polynomials P; on R* by the property that (2z)~*2~"*2P () has
e~"**2P (ju) as its Fourier transform. For any A4 C R*, let (94)° be the set of
all points within a distance ¢ of the boundary of 4, i.e.,

(3.4) 04y ={xeR*:3yec A, z¢Ad|x — )| < ¢ |x — 2| < ¢}.
Let &7(D: d, ¢,) be the class of all Borel sets A4 such that
D((04)) < de, 0<e<e

where @ is the standard multivariate normal product probability measure on R*.
We need Cramér’s condition

©) lim sup,, ., |Jo(u)| < 1.

THEOREM (Remark 1, page 255 of [S]). Suppose that E|X;V < oo, 1 < j <k,
for some s > 3, the X7 are as above and that condition (C) holds. Let S, =
L X9, Then, for everyd > 0,

3.5) sup .P[ SN e A} — (2”)“"/23 L el

P, (t)}dt, Ae 7 (D: d, eo)} = o(NeV7%) .

x[1+ o5

By making a linear transformation of the variables this result can obviously
be extended to the case that X has a specified nonsingular covariance matrix.
These results have been applied in a variety of problems involving expansions
of multivariate distributions connected with normal variables. An interesting
paper along these lines which also faces the problem of computation of the 2 (1)
is that of Chambers [10].

In this section we review the work of Linnik and Mitrofanova [38], [56] and
Cibisov [11] who employed results of this type to obtain asymptotic expansions
for maximum likelihood estimates, and the related work of Pfanzagl [45], [46]
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and Michel and Pfanzagl [40]. The work is of interest from the point of view
of robust estimation since the same technique yields expansions for Huber’s (M)
estimates [32], [33].
Let

X, =0+ E;, I1<j<N
where the E; are independent identically distributed with density f. An (M)
estimate (scale known) of 6, for given ¢, is by definition, any solution 6 of the
equation

(3.6) L, —6)=0.
For the estimation to make sense we suppose
3.7 E(o(X, — 0)=0.

Condition for consistency and asymptotic normality of such estimates are given
in [32] and [33].

Linnik and Mitrofanova [38], in the tradition of Cramér [12], obtained ex-
pansions for a solution of (3.6) when ¢ = —f'/f. It is easy to see in the light
of [33] how their conditions should be modified to yield expansions for (M)
estimates. It should be noted that [38] has many obscure points and, in par-
ticular, it seems to me that the appeal to Ranga Rao’s theorem [47] at a crucial
point in [38] is inadequate. However, I believe application of the more so-
phisticated theorem of Bhattacharya that was stated above will carry the proof
through.

The main idea which was already used by Haldane and Smith [27] and
Shenton and Bowman [9] for formal cumulant expansions of maximum likeli-
hood estimates is to expand the likelihood equation beyond the customary two
terms.

(8 0= NITL G -0 — LU T g - o MG -0+ -

L

—de—nyz (— 1)
N (k—1)/2 (___»__ {
+ k! N

(X, = O N¥(0 — 0 + Ry,
Using the expansion to two terms and suitable conditions on the derivatives of
¢ the first step is to show that large deviations of a suitable root of (3.6) are
very unlikely and hence that R,, which is governed by N*@# — 6)*+! can be
bounded by something only slightly larger than N=*?2. The next step is to con-
sider the equation

1

(3.9)  0=N? XY X, — 0) — {_N_ VL g(X, — 0)} NYt — ) 4 - ..

+ N-tk-ns2 g:;'l_)k {A]i} Z:i_v=1 [(k)(Xj _ 0)} Nk/z(, _ g)k .

The solution ¢ = §, of this equation can be expanded in an asymptotic expansion
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in N-t whose leading term is N~ 3% (X, — 0)/E)(¢'(X, — 6)) and whose

i=1
coefficients are polynomials in &, - - -, §, where

(3.10) = oy Zhal97(X, = 0) = B0, = 6)].

Then one shows that # and §,®, the sum of the first k terms in the expan-
sion of 91, differ to an order that matters only on a set of relatively negligible
probability. Then one applies a theorem such as Bhattacharya’s to the event
[N¥@,® — ) < x] which indeed depends only on (&, ---, &,). Finally there is
the problem of expanding the multivariate integrals appearing in the multivariate
Edgeworth theorem since these depend on N (since 6, is a polynomial in
powers of N=* as well as in the §;). The result is an expansion of the type (2.7).
It is formally clear that the coefficients should agree with those obtained by
using the formal expansions of the cumulants in powers of N=* from [27] and
then proceeding to get a formal Edgeworth expansion from the formal Charlier
expansion as in (2.4) and (2.5). However, this has not been checked to my
knowledge.

Mitrofanova [42] extended the work of [38] to maximum likelihood estimates
of a vector parameter. Unfortunately, as was noted by Pfanzagl [46], her proof
contains very serious gaps. A salvage operation however seems both possible
and worthwhile. In particular this should yield valid expansions for (M) esti-
mates when scale is estimated (as it normally would be). Cibisov’s announce-
ment [11] is essentially an extension of the work of [38] to maximum likelihood
estimation of a single parameter under rather simple conditions.

Pfanzagl [46] and Michel and Pfanzagl [40] have used a different approach
which though much simpler for the case of a single parameter does not appear
to generalize. The idea similar to that used by Huber in [32] and earlier by
H. E. Daniels [14] is to compare the events [# < x] and [, ¢(X; — x) < 0].
For increasing ¢ the two events are essentially the same. In general even for
functions of the form ¢(x, #), under suitable conditions, one can argue that the
difference of the two events has negligible probability for x = 6 + a/N* with
|a| bounded. Butto P[} Y., ¢(X; — x) < 0] one can apply the classical univari-
ate expansions for sums of independent identically distributed random variables
and then use suitable expansions in (x — #)/N* of the cumulants of ¢(X; — x).
This method has the advantage of enabling one to deal with ¢ functions which
are not very smooth such as those introduced by Huber [32]. There seems at
present, however, to be no way of dealing with (M) estimates in which scale is
estimated simultaneously when the functions defining the estimates cannot be
expanded along the lines of [33].

Pfanzagl [46] gives a variety of applications to parametric models of the uni-
variate expansions mentioned above. There have been hardly any numerical
studies of the applicability of these expansions. An interesting example, however,
is Barnett’s work [4] in which he shows that the (formal) expansion is relatively
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poor when applied to the maximum likelihood estimate of location for a Cauchy
sample.

4. Other classes of asymptotically normal statistics. There has been little
success so far in validating expansions or even establishing Berry-Esséen bounds
of order 1/N? for general classes of statistics known to be asymptotically nor-
mally distributed, other than the ones we have discussed.

Mr. S. Bjerve in work towards a Berkeley thesis has shown that trimmed
means admit valid Edgeworth expansions and is in the process of explicitly
calculating the coefficients for comparison with the published distributions of
the Princeton project [2]. His method employs special properties of the trimmed
means and does not carry over to more general estimates. Further work on
systematic statistics which can also be handled by elementary means is intended.
Even formal work seems surprisingly scarce here. In this connection I would
like to mention [16] in which expansions are obtained for the cumulants of single
order statistics.

The only theoretical result on rates of convergence for general linear combi-
nations of order statistics known to me is due to Rosenkrantz and O’Reilly [43]
who establish various bounds of Berry-Esséen type for the error committed by
using the normal approximation to the distribution of a linear combination of
order statistics. None of these bounds is of smaller order than Nt where N is
the sample size. This limitation appears due to the Skorokhod embedding method
which they employ. This order is, of course, incorrect for all cases in which sharp
bounds are available, i.e., trimmed means (including the mean) and systematic
statistics. I conjecture that under mild conditions the “right” order is N-1.

In 1948 Hoeffding [31] introduced the interesting class of U-statistics, which
includes among its members the Wilcoxon two sample statistic. As another
illustration of the power of the Fourier technique in a nonstandard situation
we shall prove under rather strong conditions that the normal approximation
to the distribution of a U-statistic of order 2 is valid to order N-*. Our method
can be adapted to yield the N~* bound for the one and two sample Wilcoxon
statistic as well as Kendall’s r. (In fact fixed alternative asymptotic expansions
for these statistics can be obtained using a combination of the methods of the
appendix and those of [1].) The method should also extend to von Mises statis-
tics [56] of order 1 and hence to linear combinations of order statistics. How-
ever we are unable to get N~ bounds for U-statistics with unbounded kernels.
Bounds of order N~7%, r < 1, have been obtained by Grams and Serfling in [25]
by a different technique. Asymptotic expansions in general seem out of reach.
Here is the statement of our theorem. The proof is given in an appendix.

Let R,, - -+, Ry be a sample from the uniform distribution on (0, 1). Let ¢
be a measurable real-valued function on the closed unit square such that |¢| <
M < oo (say). Suppose moreover that ¢ is symmetric, ¢(u, v) = ¢(v, 1) and that

(4.1) §3 58 (u, v)dudv = 0.
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Let

(42) Ty =L Lo #(Ra Ry)

where ’

@3 o =MD g v dudo + NV - DOV - 2) 53770 da
and

(44) 1) = §39(u, ) dv

TuEOREM 4.1. If the preceding assumptions hold and y does not vanish identically,
then there exists a constant C depending on ¢ but not N such that

sup, |P[Ty < 5] — O(x)| < <

where @ is the standard normal cumulative distribution function.

A new approach has recently been advanced by Stein [52] which does not rely
on Fourier analytic methods. Using his method he is able to show that the error
committed in applying the normal approximation to the sum of the first N of a
stationary sequence of bounded m dependent random variables is of order N-t,
The possibility of applying his method to some of the classes we have considered
should be investigated.

5. Expansions for statistics with nonnormal limiting distributions. The omni-
bus goodness of fit and two sample tests such as those of Kolmogorov-Smirnov
and Cramér-von Mises and the Pearson j* test do not have limiting normal
distributions. The Russian school of probability theorists has had considerable
success in obtaining expansions for the distribution of the Kolmogorov-Smirnov
test statistics under the null hypothesis. The methods employed at first used
explicit representations of the null distribution. An account of results of this
type due to Chan Li-Tsien may be found in Gnedenko, Korolyuk, Skorokhod
[23]. The most definitive expansion for the one-sided goodness of fit statistic
was given by Lauwerier [36]. Subsequently, the problems were treated as special
cases of more general problems of first passage times of random walks (cf. for
example Borovkov [7] in which the two sample Smirnov statistic is treated). An
account of the latest results and extensive references may be found in Borovkov
[8]. Since none of the first order limiting distributions under contiguous alter-
natives for these statistics have been tabled or extensively studied it is not sur-
prising that there has been no work on asymptotic expansions for the power.

There has recently been some interest in obtaining Berry-Esséen type bounds
for the difference between the distribution of the Cramér-von Mises goodness of
fit statistic under the null hypothesis and its well known limit distribution. How-
ever, the methods used by Rosenkrantz in [49]and Sawyer in [50] (cf. also Orlov
[44]) use the Skorokhod embedding and not surprisingly obtain bounds which
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are of order strictly worse than N~ where N is the sample size. In an announce-
ment of results without proofs [15] D. Darling obtained a representation for the
characteristic function of the von Mises statistic which he employed to get an
asymptotic expansion of the characteristic function to two terms for fixed argu-
ment. Ido not know whether this approach can be refined to yield the kind of
estimates which permit us to apply Berry’s lemma.

Finally, I want to mention the recent Chicago thesis of Yarnold [59] in which
he obtained asymptotic expansions for the distribution of Pearson’s y* statistic.
Since y* is a smooth function of the multinomial frequencies we might expect that
the theorems on multivariate Edgeworth series should apply. Unfortunately the
vector of multinomial frequencies is a normalized sum of independent identically
distributed random vectors taking their values in a lattice, Cramér’s condition
(C) does not hold and in fact the formal Edgeworth expansion is invalid. How-
ever, it is possible to use the well-known local limit expansion for the multi-
nomial probability and then sum up over all points in the appropriate region.
This is an improvement over the y* approximation but almost as complicated as
calculation of the exact probabilities. Moreover, it does not yield a form which
is sufficiently tractable analytically to settle long outstanding questions about
the relative performance of the y* and likelihood ratio tests. Results which are
manageable in this area would be interesting but seem hard.

6. Appendix (Proof of Theorem 4.1). Let

(6.1) sy=N=Dyy yr)
(6.2) Ay =T, —S,

(6.3) by(1) = E(eT)

(6.4) 7(1) = E(etria)

(6.5) Bu(t) = B = (20,

N

The crux of the argument is to show that there exists ¢, > 0 and a constant
D, both independent of N such that

(6.6) fart, l@(f)_l?t]ﬂ@l dt < DN},
Since it is well known that there exists ¢, > 0 and a constant D, both inde-
pendent of N such that

§iih &’@_—“" e < DN,
it follows that if ¢ = min (¢, ¢,), D = D, + D,,
6.7) ey 12200 = € " " ar < DN,

and the theorem follows from (6.6) and the usual Berry-Esséen argument.
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To prove (6.6) we need the following lemmas.

LEMMA 6.1. Let [£,}, | < j < n be a sequence of martingale summands, i.e.,

E;16, -5 €6;.) =0, l1gj<n.
Let W, = 33.,§;. Definem,, = max,;., E(£*), k = 1. Then, fork < n,
(6-8) E(W, %) < rbm, ,(4ek)t .

REMARKs. (1) Anestimatesimilar to(6.8) has been obtained by Dharmadhikari,
Fabian and Jogdeo [18] with m, , replaced by (1/n) 312_, E(¢,*). However, their
bound grows with k as 2** which is quite inadequate for our purposes. We note
that our technique readily establishes,

E( W’nzk) § nkm'n,k(k)n

for all k, n but even this is inadequate.
(2) The example of &, i.i.d. normal random variables with mean 0 shows that
our bound is comparatively sharp. Also see the remark on Lemma 6.2.

Our main interest in Lemma 6.1 is in its application to

LEMMA 6.2. Under the conditions of Theorem 4.1, if k < N,

(6.9) E(Ay™) < 0,7 *N*(3M)*(4ek)™ .
REmARK. The order of magnitude of the coefficient of o¥-*N?* in (6.9) is
quite sharp. Thus if ¢(x, y) =  if x and y are both = 4, = —1 otherwise
1 N
(6.10) oyldy = Tic;nin; = 7[(25\;1 7, — T:l

where the 7, are independent and equal +4 with equal probability . It is easy
to see that

(611) E(UN AN)zk z 8—2k{2—2k+1E(UN4k) — Nzk}
where U, = 3%, ¢, and ¢, = +1 with probability {. Since,
4k!
E(UN“‘) = Zt1+-~~+m=2k m ’
2k 2k
E(U, ) > <N> A S kN (1 - M) (i)
2k/ 2% N e

for some universal constant 4 and hence,
(kN)*E(o; Ay)* = co*

for all N and k < aN, a < } where ¢ and p depend on a but not on k and N.
Then the ratio between E(s, A,)* and the estimate given by (6.9) is (relatively)
negligible.

ProoF oF LEMMA 6.1. The proof is by induction on n for fixed k. Note first that
(6.12) E@G + - + &) = Kmy,

73



P. J. BICKEL

and hence the induction hypothesis holds for n = k. Suppose it is true for
n=12>= k. Then

(6.13) E(Wi) = EW™) + Lin (DEW™ )
by the martingale hypothesis. By induction and the Holder inequality we obtain
(6.14) E(W™-ig],,) < [ omy (J =3 my )

< (cp oy W) (e k)3

where ¢, = (4ek)*. By elementary estimates (6.13) and (6.14) yield

EWi) < Ckl"m1+1,k< 1 Tk 22 (47 (e 12k )= >

(6.15) <l (1 k(1 Ly
. s ¢ m — -
< eutmi (14 (14 2(ek1)5> )

Selimy,, (1 + —11(—>

for k < 1. Since (1 4 k/I) < ((I 4 1)/I)* the hypothesis is verified forn =1 4 1
and the result follows.

Proor oF LEMMA 6.2. Begin by noting that

(6.16) oydy = TV where
(6.17) £, = DiZ [¢(R;, Ry) — r(R) — 1(Ry)]

and that the &; are martingale summands. Moreover, note that

(6.18) E(§ ) = E(E[ Xz ($(Ry R)) — 1(R) — 1(R;)* | R,])

and that given R; the summands 7, = (¢(R;, R;) — 7(R)) — r(Ry), i =1,
Jj — 1 are also martingale summands (in fact i.i.d.). Since

(6.19) E($(Ryy Ry) — 7(R)) — 1(Ry))™ < (3M)*
we can apply Lemma 6.1 twice in succession to obtain Lemma 6.2.

LEMMA 6.3. Under the conditions of the theorem,

(6.20) [E(eis¥A )| < 3M312 |>7|N 2(UL (N — 1))

(6.21) |E(esvA )| < <04V> (3i‘4> [p|¥- ((N-— 1)_> for j=1.

Proor. To prove (6.20) we calculate
itSN) — N(N“ 1) vz ¢ _
(6.22) E(AyeitSy) = .._,___27N_,7 (_ (N 1)>
x B (exp| "= (R + (R |
X (@(Ry R) = 7(R) = 1(Ry)).
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Since ¢(Ry, R,) — 7(R,) — 7(R,) and 7(R)), r(R,) are uncorrelated we can write

£ (e[ M= (R) + 1R [ @i R) = 1(R) = 1(R))

= [E[(exp [ " =D rmy + 1)) | - 1)

N

(6.23) X @(R, R) = 1(R) = 1(R) |
= = =0 BGR) + rR)IR R) = 1(R) = 1(R)]
e V=17

and (6.20) follows.
Similarly,

(6.24) o, E(A,7€"SN)
= Z((ul,hl),m,(uj,b,')) E(e“SN[HLl (¢(Rni7 Rbi) - T(Ra,-) - T(Rbt))]) .
Applying elementary inequalities we obtain

lon'E(Ay "e"s”)l

(6.25) 5 0 (O = 1) ) Blo(R R) = 1(R) = (R

IMN o oi s (N — 1)t
< (7 N2J N 23( )
< ( 5 ) 7] 5
The lemma follows.

We proceed with the proof of (6.6). Since
85(1) — Bu(1)] = |E(e"SH(ety — 1))

we have for any k,

_Z 2%-1 (”) Sy A j 1 2%
626) i) = 4u01 5 | CF Bemna | + s ma,
From (6.26), (6.9) and (6.20),
627) 160 — $u(0)] < (W (v =)o+ e M) e,

Since there exists § > 0 such that ¢ N’ > 6*N3 for all N we conclude that
(6.28) e [85(1) — Gu(1)] dt
- Il

< M ks (N2 ) ar 4 BV -

< FN-}

where F is a constant depending on ¢ but not N.
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Let

(6.29) e=_0P p<l

24Me’

([

If |f| < eN*t, by Lemma 6.2 for this k and N sufficiently large,

(6.30) gy < SN

eﬁka N2k

ke (12eM Y2+

(2k)! (2k)! o,

< (@2t <N

To complete the argument note that for p sufficiently small, there exists = > 0
such that for |1] < eN?,

2
(6.31) log |7] <ﬂ:9£> <1,
gy N
Applying (6.31) and (6.21) we conclude that for Nt < |1] < N}, j < 2k,
. . R IMN\J 4k
. itS < G- /2 il _ 3 1 I .
o s e (Y op oo (1 - 4]

Hence for Nt < |1] < «N* with k, ¢ given by (6.29),

(6.33) w07 plenswp
].

< eN?%* <37]g>2k exp [—rNi <l - %)]

°(x)

Il

uniformly for || as above. Combining (6.28), (6.30) and (6.33), (6.6) and the
theorem follows.
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