
Chapter 7

Future Trends and Perspectives

Abstract New methodologies have been proposed to be incorporated in predictive

microbiology in foods and quantitative microbial risk assessment (QMRA) to

achieve more reliable models and facilitate predictive model applications. The

meta-analysis is one of the proposed strategies focused on a systematic analysis

of a large collection of data with the intention of generating standardized and

summarized information to produce a global estimate. This data analysis approach

can be applied to better understand the relationship between environmental factors

and kinetic parameters or to input QMRA studies to assess the effect of a particular

intervention or treatment concerning food safety. The emergence of systems biol-

ogy is also affecting predictive microbiology, offering new and more mechanistic

approaches to yield more reliable and robust predictive models. The so-called

genomic-scale models are built on a molecular and genomic basis supported by

experimental data obtained from the genomic, proteomic, and metabolomic

research areas. Although the existing gene-scale models are promising regarding

prediction capacity, they are still few and limited to specific model microorganisms

and situations. Further research is needed, in the coming decades, to complete

omics information and thus to produce more suitable models to be applied to real-

world situations in food safety and quality.
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7.1 Introduction

7.1.1 Meta-Analysis Approach and Benchmarking Data

As previously explained, Quantitative Microbial Risk Assessment (QMRA) is an

iterative process that gives insight into setting microbiological criteria and
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identifying the most relevant factors along the food chain. However, it is recognized

that the great amount of data required is the most important drawback to be

implemented. Also, as a multidisciplinary area, data processing is becoming more

difficult as information is reported in a heterogeneous form. The need to account for

variability and uncertainty sources together with the characterization of the main

statistical distributions to describe the data leads to the creation of alternative tools

to integrate these findings and provide a global estimate. A meta-analysis is a

systematic analysis of a large collection of data from individual studies aiming to

integrate the information generated in a QMRA study and to produce a global

estimate of the effect of a particular intervention or treatment (van Besten and

Zwietering 2012). This technique has been more extensively used in food microbi-

ology and can give an improved understanding of main and side effects on

microbiological kinetics (Ross et al. 2008).

To start the application of a meta-analysis approach, a sufficient number of data

should be generated. Gonzales-Barron and Butler (2011) suggested a stepwise

procedure to meta-analysis consisting of (1) systematic review; (2) data extraction

to collate quantitative and qualitative information from the primary studies; (3)

selection of the appropriate effect size parameter to describe, summarize, and com-

pare the data of the primary studies, and when needed, subsequent translation of

the reported findings of the individual studies into the parameter; (4) estimation of

the overall effect size by combining the primary studies; (5) assessment of heteroge-

neity among the studies; and, finally, (6) the presentation of the meta-analysis results.

Selection of data coming from primary studies can begin with experimental data

from research institutions or extra data available in scientific data bases. However,

individual results must be incorporated into the meta-analysis when they are

properly defined, structured, and transparently reported.

In the systematic review process the information to be included in the meta-

analysis has to be sufficiently accurate to answer the embedded question of a given

case study. For instance, in a lettuce disinfection process, one can measure several

heads of lettuce to see if there is contamination by Escherichia. coli. The data

introduced in the meta-analysis approach should justify if the intervention (disin-

fection) makes a causal inference on the outcome (presence/absence of E. coli) and,
if so, how large the effect is.

The data extraction from the primary studies should provide the information

necessary for summarizing and synthesizing the results and include both numeric

and nonnumeric data.

Effect size refers to the degree to which the phenomenon is present in the

population (reduction of E. coli numbers by disinfection). For the primary studies,

meta-analysis converts the effect size into a ‘parameter’ that allows direct compari-

son and summation of the primary studies. There are many types of effect size

parameters: (1) binary or dichotomous, for example, indicating the presence or

absence of the event of interest in each subject, (2) continuous, and (3) ordinal,

where the outcome is measured on an ordered categorical scale.

For the estimation of the overall size effect, primary studies may be weighted to

reflect sample size, quality of research design, or other factors influencing their
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reliability. A relevant factor in precision is the sample size, with larger samples

yielding more precise estimates than smaller samples. Another factor affecting

precision is the study design, with matched groups yielding more precise estimates

(as compared with independent groups) and clustered groups yielding less precise

estimates. This consideration can also imply that the obtaining of a lower variance

in the primary studies leads to a more accurate global estimate.

On the other hand, it is necessary to make a heterogeneity test among the

primary samples to assess the extra-variation in the meta-analysis approach. Gen-

erally speaking, individual samples are weighted and statistically compared with

aiming at quantifying the variability associated to heterogeneity. In food microbi-

ology, most of the microbial data have been generated in culture media and the

effect of environmental factors may not necessarily reflect what might happen in an

actual food. Also, results of different studies on factors influencing microbial

kinetics are not always similar or may be even contradictory. Variations among

microbial strains, individual cell studies, or model estimations contribute positively

to increase variability in results. Therefore, quantitative information about the

influence of various factors on microbial kinetics is often not adequate under

specific conditions, and also often is not available in the published literature.

Finally, results coming from the meta-analysis are presented into several graph

types, such as bubble plots, which display point estimates and confidence intervals

of each primary study and the overall effects in the global estimate.

The use of data bases in predictive microbiology can provide thousands of

records of microbial growth or inactivation kinetics under a wide range of environ-

mental conditions. A systematic and critical analysis of the literature followed by

integration of the gathered data results in global estimates of kinetic parameters

with their variability, and these can be used to benchmark the latest published data

(van Asselt and Zwietering 2006). Meta-analysis has been used in various QMRA

studies for relating the microbial concentration of a given hazard to a public health

outcome (Pérez-Rodrı́guez et al. 2007b). However, large variability sources are

expected in some cases, mainly because of heterogeneity in primary data. Addi-

tionally, overlapping problems are generated when the same information of one

variable is obtained from different studies. In spite of these disadvantages, when a

large dataset is manipulated, meta-analysis can provide useful links to discern

between explanatory variables on the global estimate. The construction of updated

data bases on the reviewed question or parameter can also reveal the present

knowledge, can highlight default areas where there is a lack of information on

factors that might affect the parameter of interest, and can therefore provide

direction for future research.

7.2 Mechanistic Predictive Models

Advances in molecular biology, particularly in genome sequencing and high-

throughput measurements, enable us to obtain comprehensive data on the cellular

system and gain information on the underlying molecules (Kitano 2002).
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This genomics revolution has in the past years provided researchers with the option

to look genome wide for cellular responses at the level of gene expression (Keijser

et al. 2007) and protein presence (Wolff et al. 2006; Hahne et al. 2010). The need

of integrating all this complex information has contributed to an emerging scien-

tific field, so-called systems biology, aimed at understanding complex biological

systems at the systems level (Kitano 2001). The fundamental idea behind the

systems biology approach is that biological systems are hierarchically organized

with influences going both up and down through the hierarchy (Brul et al. 2008).

The great avalanche of ‘omics’ data (i.e., genomic and proteomic data) in

systems biology necessitates applying mathematical methods to better understand

the interactions and relationships among the different elements within the studied

system (Fig. 7.1). Stelling (2004) classified mathematical models applied in

systems biology in interaction-based models, constraint-based models, and

mechanism-based models. The interaction-based models refer to network topology

analysis in which interactions between the different elements in the system, for

example, metabolic reactions, protein–protein interactions, and gene regulation, are

accounted for by graphical networks. In constraint-based models, physicochemical

properties such as reaction stoichiometries and reversibilities impose constraints on

network function in addition to network topology. This network reconstruction

process ultimately results in the generation of a biochemically, genomically, and

genetically (BiGG) structured data base that can be further utilized for both

mathematical computation and analysis of high-throughput data sets. The network

spans the set of metabolic reactions taking place in a specific biological system,

assuming a stationary state (Hertog et al. 2011) in which each reaction is referred to

as a flux. The methodologies developed in metabolic engineering such as metabolic

control analysis and metabolic flux analysis are applied to analyze steady-state

fluxes, although these may also be used to explain oscillatory systems so long as

average fluxes are considered (Schuster et al. 2002). More quantitative models can

be addressed based on kinetic rates of metabolic reactions included in the biological

networks. In this approach, a system of linear differential equations is used to

account for reactions rate of the quasi-dynamic or dynamic state fluxes (Hertog

et al. 2011). As new genomic data become available, these may aid in the parame-

terization of metabolic models (Voit 2002). However, one weakness of this

approach is that it ignores the variability and noise found in biological networks,

which may have important implications in their function (Heath and Kavraki 2009).

To overcome this limitation, a stochastic approach has been proposed that basically

consists of adding a noise term to the differential equations. Similarly, gene

expression regulation (i.e., transcription and translation) and signaling networks

have a probabilistic nature that should be accounted for by applying a stochastic

approach (Treviño Santa Cruz et al. 2005; McAdams and Arkin 1997).

The latter type of model mentioned by Stelling (2004) refers to mechanism-

based models. The author means that with this type of model, models can predict

the system dynamics by integrating detailed mechanisms operating in metabolism,

signal processing, and gene regulation. The success of this mechanistic approach,
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that is, integrated modeling, relies largely on the availability of information about

the complete mechanism and attendant parameters.

Traditionally, in the field of predictive microbiology applied to foods, the scarce

information on the mechanisms involved in the cellular functions has hampered

microbiologists from undertaking more mechanistic models, albeit some mecha-

nistic parameters has been introduced in specific cases (Baranyi and Roberts 1995).

The emergence of systems biology is creating a new path for microbiologists in

predictive microbiology, offering new and more mechanistic approaches to give

rise to more reliable and robust models (Brul et al. 2008). In so doing, predictive

microbiology will be able to move from the most used empirical modeling, that is,

black box models, toward so-called white or gray box models, based on an better
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Fig. 7.1 Scheme of the workflow applied to systems biology
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understanding of the biological functions in cells, enabling providing more accurate

predictions under specific physical and chemical changes and even extending the

model outside the range of space bounded by observations. Such data not only

allow for a better fine-tuning of growth/no growth boundaries but will also begin to

strengthen die-off/survival models (Brul et al. 2008). Several computer models

have been developed on the basis of information derived from systems biology

studies and wealthy databases. However, many of the mechanistic studies have

been done under conditions and in model microorganisms with relatively low

practical relevance (Brul et al. 2008). One of the most studied microorganisms is

E. coli, as much is known about its metabolism, regulation, and genome, enabling

the development of more mechanistic and reliable in silico models for this model

microorganism (Reed and Palsson 2003). The experience obtained with E. coli has
served to be applied to other microorganisms such as Haemophilus influenzae
(Edward and Palsson 1999), Helicobacter pylori, and Saccharomyces cerevisiae
(Petranovic and Vemuri 2009).

To date, few systems biology-based models have been explored or developed

within the area of predictive microbiology in foods (Brul et al. 2008). However,

constraint-based models seem to be the first choice by microbiologists to under-

stand the behavior of microorganisms in food-related environments (Métris et al.

2011; Peck et al. 2011). The most significant kinetic reactions constituting the

metabolism of the model bacterium are modeled and simulated to know which

specific metabolic processes are related to a determined bacterial response (e.g.,

outgrowth, adaptation, survival). These models consist of describing the fluxes

that make up a metabolic network in which each flux accounts for a metabolic

reaction as concentration change per time unit for the substrate and product.

The reactions can be described by a system of linear differential equations in

which stoichiometric coefficient of equations are assumed to be constant because

the model represents

dx

dt
¼ Sv ¼ 0 (7.1)

Here, x defines a vector of the intermediate concentrations of metabolites at a

specific time, S is the stoichiometric matrix describing all the metabolic reactions,

and Sij corresponds to the ith stoichiometric coefficient in the jth reaction.

The thermodynamic constraints and enzyme capacity constraints are represented

by vector v ¼ [v1, . . . vj], which includes the reaction rates of each metabolic

reaction or flux. Setting Eq. (7.1) to 0 means that conservation laws apply in the

production and consumption rates (i.e., rateconsumption ¼ rateproduction). A simplified

example of the steady-state flux might be the well-known coenzyme nicotinamide

adenine dinucleotide (NAD), involved in many metabolic routes as an electron

donator. In this case, the reaction would be

NADþ þ H ! NADH

104 7 Future Trends and Perspectives



According to the law of conservation, NAD + NADH ¼ a constant, which

means that the sum of concentrations of NAD andNADHdoes not change with time.

The derivation of the reaction rate equations is another important aspect and

should be based on an appropriate metabolic network, which should be completely

known and closed. The quasi-steady-state and rapid equilibrium approaches can be

used to obtain the reaction rate equations. With regard to the kinetic parameters,

these might be estimated by using sources such as literature data, electronic data

bases, experimental data for dependencies between initial reactions rates and

products, inhibitors, substrates, and activators, and finally time-series data for

enzyme kinetics and whole pathways (Demin et al. 2005).

Because the system of equations has more fluxes than metabolites, the system is

underdetermined (Kauffman et al. 2003), which means that the system has multiple

solutions. To reduce the solution space of the system, the model is constrained by

imposing different rules, which are often related to thermodynamic feasibility,

enzymatic capacity, and mass balance. Model solutions that do not comply with

such criteria are excluded from the solution space of the model (Reed and Palsson

2003). Once constraints are defined for the model, the corresponding solution space

should be determined. To this end, several mathematical approaches can be taken

such as linear optimization, elementary modes and extreme pathways, phenotypic

phase plane analysis, gene deletions, or finding objective functions. The linear

optimization, which is referred to as flux balance analysis (FBA), is based on an

objective function, which is utilized to define the solution space by maximizing or

minimizing the defined objective function (Feist and Palsson 2010; Varma and

Palsson 1994). The most used objective functions include ATP production, produc-

tion of a specific by-product, and biomass production (i.e., growth rate) (Van Impe

et al. 2011; Reed and Palsson 2003). In this respect, using a biomass production

objective function can accurately estimate the growth rate of E. coli, as evidenced
by the work by Feist et al. (2007).

Métris et al. (2011) performed in silico simulations based on the model of E. coli
K12 MG1655 previously developed by Feist et al. (2007) considering 1,387 meta-

bolic reactions and 1,260 genes. This study can be considered as one of the first

approaches of predictive microbiology in the foods area to systems biology

modeling. This model applied the most often used objective function based on

optimizing the biomass production, which is associated with growth-associated

maintenance (GAM) energy and non-growth-associated maintenance (NGAM)

energy. Their values were derived from experiments in a chemostat without added

NaCl, which we refer to as the control conditions (Feist et al. 2007). The model was

modified to consider exposure to osmotic stress by including changes of concentra-

tions in an osmoprotectant associated with osmolarity changes. The work did not find

definitive results relating the changes of these substances with a decrease of the

growth rate. Similarly, the model was tested to ascertain if biomass composition

derived from osmotic stress might explain the decrease of growth rates observed in

experiments; however, again the results were not conclusive. Finally, the authors

suggested that more specific objective functions should be developed to explain the

chemicophysical limitations of the growth rate. For that, authors suggested including
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gene regulation, crowding, and other additional cell resources such as ribosomal

content and some tradeoff observed under osmotic stress. This work and its results

provide evidence that a new modeling approach is emerging, although still with

important gaps and limitations. Nonetheless, it might provide the necessary theoreti-

cal basis to develop more mechanistic predictive models in foods (Fig. 7.1).
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