
Chapter 8

New Developments in Retinal Cell

Transplantation and the Impact of Stem Cells

Peter Gouras

Abstract Retinal cell transplantation, especially transplantation of retinal epithe-

lium, could provide a method to cure age-related macular degeneration but major

hurdles have hampered its advance, such as rejection and surgical technique. The

possibility to use autologous fibroblasts from the potential transplant recipient to

convert these fibroblasts into pluri-potential cells in culture and then to transform

them into retinal epithelium, including checks on their appropriate gene expression

offers the possibility of eliminating the hurdle of host graft rejection. A new surgical

technique that sections the neural retina for 180� at the temporal ora serrata and folds

it nasally to expose the macula and its degenerate epithelial layer can improve the

delicate microsurgery. It eliminates jet stream trauma that produces a hole in the

equatorial retina and the poor visibility of the epithelium seen through a detached,

opaque neural retina. It allows the surgeon to use both hands in removing degenerate

epithelium and replacing it with a patch of pristine epithelium. The neural retina can

then be folded back to its original location and laser secured at the ora serrata.

Transplantation of photoreceptors has greater hurdles, the major one being a guar-

antee of sufficient synaptic connectivity of transplanted cones to host cone bipolars.

Introduction

The possibility of replacing senescent or defective retinal cells with pristine new

ones is an intriguing concept in the field of regenerative medicine. Of all the retinal

cells most amenable to transplantation are the retinal pigmented epithelial cells

(RPE). These cells form a single monolayer that functions as an independent unit

designed to do a number of tasks that affect both the highly specialized
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photoreceptors and the neural retina. The RPE layer forms the blood/retinal barrier,

transports isomers of vitamin A to and from the photoreceptors, ingests and digests

the growing tips of the outer segments, and regulates the transport of ions and

metabolites to and from the retina. In addition, the RPE synthesizes melanin to

reduce the effects of light scatter in the visual image and also counteract oxidative

stress. The RPE is post-mitotic with each cell formed at birth continuing to function

into old age. This long-term status of a highly active layer of cells leads to senescent

changes that compromise optimal function. This affects the macula in particular,

probably because of higher energy demands, which is undoubtedly at the root of

age-related macular degeneration (AMD), a leading cause of blindness in the

elderly. If these senescent cells could be replaced by a youthful epithelium, the

defects associated with aging of this epithelial layer could be prevented. In addition

diseases that uniquely affect the RPE in younger subjects could also be treated.

RPE Transplantation

RPE transplantation began decades ago facilitated by the ability to dissociate,

culture and re-culture RPE cells [1–3]. Culturing not only facilitated transplanting

RPE but also allowed labeling the cells in vitro, essential for identifying them in a

foreign retina. The first attempt was performed in owl monkeys, primates with a

liquid vitreous which can be rapidly removed. An “open sky” procedure was used.

The host RPE layer was removed locally in order to put the transplant directly on

Bruch’s membrane. This could be done by gently wiping the epithelial layer but

detecting this change was impossible at the time of surgery. It was only revealed by

postmortem histology. Improvements in optics should allow better visibility of RPE

removal. Cultured adult human RPE cells that were dividing in vitro were labeled

with tritiated thymidine. The cells were dissociated, sucked into a glass pipette, and

slowly injected over the area denuded of host RPE. The monkey’s head was

positioned to allow the transplant cells to gravitate toward this area. The eye was

closed by suturing the sclera without repairing the retinal incision. Postmortem

histology revealed areas of Bruch’s membrane that had been denuded of RPE and

other areas where cells resembling cultured human RPE were found. Autoradiogra-

phy confirmed that the suspected transplants were the tritiated thymidine labeled

human RPE. In these early attempts, the neural retina was left detached and with a

large retinotomy (Fig. 8.1).

We then sought to reattach the photoreceptors over the transplanted area by

working within a bleb detachment of the neural retina in rabbits and monkeys [4].

The bleb detachment was produced by jet stream force from the transplant micro-

pipette. Dissociated, labeled RPE cells were injected over the host RPE. Such

transplants survived and phagocytized outer segments. These results prompted

us [5] and Turner’s group [6] to use RPE transplantation to treat the Royal

College of Surgeons (RCS) strain of rats known to have a defect preventing their

RPE from phagocytizing outer segments leading to photoreceptor degeneration.
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Transplantation of normal RPE did prevent this degeneration from occurring in the

area where the transplants were located. Electron microscopy revealed that the

transplants contained phagosomes and therefore capable of phagocytosis. This

result proved that transplantation of RPE could stop the progression of a degenera-

tive retinal disease (Fig. 8.2).

This success prompted the idea that RPE transplantation might have a useful

impact on choroidal neovascularization (CNV) that occurs in age-related macular

degeneration (AMD). At that time attempts were being made to surgically remove

CNV membranes from the macula, but this produced a loss of the adjacent host

RPE that was being removed simultaneously. We [7–9] and others [10–12] tried to

restore this RPE layer by transplantation after removal of a CNV membrane using

either cultured patches of fetal human RPE or dissociated cells. Although some

patients maintained foveal function after such surgery, this result was transient

lasting less than a month at most (Fig. 8.3).

Fig. 8.1 Shows an EM autoradiogram revealing tritiated thymidine grains (TT) present in the

nuclei of transplanted human RPE in owl monkey retina several days after surgery

Fig. 8.2 Shows how transplanted normal RPE (arrow) can rescue an adjacent group of

photoreceptors from degenerating in the RCS rat
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There was a consensus among those using this methodology that host/graft

rejection was destroying the transplant. It is interesting that not all such transplants

degenerated, however. Figure 8.4 shows an RPE transplant that slid away from an

area of geographic atrophy after transplantation and relocated under a vessel

adjacent to the optic nerve where it has remained unchanged for at least 3 years

(Fig. 8.4). We have found similar results with human RPE patch transplants to

monkey retina. When we transplant a patch to the fovea area versus the peripheral

retina, we found a greater chance that a rejection-like picture occurred in foveal

transplants (Fig. 8.5). Some RPE xenografts can survive for long periods of time

without rejection. We found that foveal transplants are more prone to rejection than

peripheral ones [13].

Fig. 8.3 Shows fundus photographs (upper left) and scanning laser micro-perimetry (upper right)
of the macular area at 1 week after transplantation of a fetal human RPE patch following removal

of a neovascular membrane. The small white spots show light detection over the fovea, the dark

spots show scotomas. The lower photographs show how foveation is lost at 3 months

Fig. 8.4 Shows a transplanted patch of heterologous human fetal RPE which floated away after

being transplanted to the macula of a patient with geographic atrophy and remained unchanged

(arrows) for at least 3 years
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Rejection of RPE transplants in the RCS rat has also not been very obvious.

There is only one report of host/graft rejection of heterologous RPE transplants in

the RCS rat, and this was atypical, being humoral rather than cellular [14]. There-

fore the poor success of RPE transplantation may not be due only to rejection but to

other factors such as surgical technique.

Autologous RPE Transplants

A new approach emerged that eliminated the problem of host/graft rejection by

excising a patch of peripheral RPE together with the choroid from the patient’s own

retina and transposing this patch to the macular area after a CNV membrane had

been surgically removed [15–18]. What is remarkable about this method is that the

choroidal vessels in the transplanted patch re-vascularize [19]. But this method has

some drawbacks. One is that the host’s peripheral RPE patch is senescent and

probably less viable than embryonic tissue. The second is that it requires two

surgical procedures, the removal of the peripheral RPE patch with its choroid and

the macula surgery. Another consideration is the difficulty of working within a

macular bleb detachment, which is now being altered by a new surgical technique

that exposes the macula.

Exposing the Macula

Surgical manipulation within a bleb detachment is awkward. It restricts the micro-

surgery, obscures the visibility, and tears the paramacular neural retinal opening

needed to enter the bleb detachment. An improvement has been introduced to

Fig. 8.5 Shows on the left a fundus photograph of a rhesus monkey that received two human fetal

RPE xenografts, one in the periphery (upper arrow) and the other in the fovea (lower arrow). The
demarcation line of the detachment is larger in the periphery. On the right is an example of such a

xenograft, more peripherally located that shows no sign of rejection in monkey retina 5 months

after surgery. This transplant and host photoreceptors survive even though the transplant rests on

the host RPE layer
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facilitate such surgery, which allows better access to the RPE by folding the neural

retina away from the macula. This approach uses 1800 retinotomy at the temporal

ora serrata in order to fold the neural retina nasally exposing the macular RPE

(Fig. 8.6). I have often considered this approach to be advantageous for macular

transplantation and surgery. This approach has now been used in human subjects by

groups in Italy [20] and China (in press). This allows the surgeon to use both hands

in removing a CNV membrane and/or a degenerate RPE layer, in dissecting a

peripheral RPE-choroid patch and in placing it properly in the macula.

Removing Degenerate RPE

Reconstructing a new RPE layer should ideally include removing any degenerate

RPE cells and if necessary, any CNV membrane. Exposing the macula RPE is

important because it allows visualization of the RPE layer directly. With such

visibility, the host’s macula RPE can be removed more easily as it was using the

“open sky” procedure in the owl monkey. Wiping may be more traumatic than

using more precisely controlled methods such as an ultra-sonic or a femto-laser

probe. Because the femto-laser’s pulses are so brief, they do not heat up adjacent

tissue keeping their ablation effects localized. Better control of the debridement of

the host RPE might be facilitated by robotic surgery where movements of a few

microns are possible.

Delivery of the Transplant

Delivering a mono-layer patch of RPE with the proper orientation and flatness

presents another problem for transplantation. One method suggested, but not

pursued consistently, is encasing a segment of cultured cells in a gel that is rigid

Fig. 8.6 Shows how the neural retina is cut at the ora serrata (crosses) and folded nasally to

expose the macula

126 P. Gouras



at room temperature but fluid at body temperature. This could facilitate delivering

an undamaged, flat transplant with appropriate polarity. If the sclera port were too

small to introduce the patch, it could be delivered in separate segments. A

supporting scaffold, natural or artificial, may be required to facilitate RPE cell

delivery to the eye. Research to improve the biomimetic properties of such

materials is being pursued [21–26]. A 3-dimensional scaffold may be effective in

growing a 3-dimensional structure such as the entire retina but for therapeutic

transplantation a 2-dimensional RPE monolayer seems more appropriate. All

manipulations would be facilitated by exposing the macula RPE and Bruch’s

membrane by folding of the neural retina nasally. Such exposure might even

allow transferring an un-encased patch of RPE using a micro-spatula. But reattach-

ment of a folded neural retina is a drawback to the proposed surgery since it is a

large detachment including the macula. But if one is attempting to reconstruct a

blind fovea, it might be worthwhile.

Iris Pigment Epithelium Transplants

Iris epithelium is closely related to RPE and is readily available by biopsy from

potential recipients. But research by several groups [27–29] has not achieved

success therapeutically even though it eliminates host/graft rejection. It indicates

that there are other factors than rejection affecting epithelial transplantation, such as

surgical technique, full exposure and preparation of the site, establishment of the

proper flatness of the transplant as a monolayer, the virility of the transplant and its

ability to interact in many unique ways with the photoreceptor layer.

RPE Derived from Stem Cells

The concept of using embryonic stem cells to treat disease has been complicated

politically because it implied the use and destruction of human fetuses. Embryonic

RPE cells have an advantage compared to adult RPE, however, in being very viable

in culture and lacking any of the senescent changes that accumulate in adult RPE.

Nevertheless they are heterologus and therefore subject to rejection. In 2006 a new

era in stem cell research occurred with the demonstration that adult differentiated

cells could be induced to become pluripotential by transducing them with unique

combinations of transcription factors, Oct3/4, Sox2, Myc, and Klf4 [30], and these

pluripotent cells could be further transformed into tissue specific cells such as RPE.

This breakthrough meant that human embryos were unnecessary for obtaining stem

cells and autologous cells could be obtained from the recipient obviating host/graft

rejection although host/graft rejection may still occur [31]. These adult-induced

pluripotential cells express similar genes to embryonic stem cells [32]. Recent

reports indicate that differentiated adult fibroblasts can be transformed directly
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into neural cells by also using a unique combination of transcription factors but

without going through a prior pluripotential stage [33–35]. Such transformed

fibroblasts can be cultured, transformed into RPE, and tested for the presence of

RPE-specific proteins, such as RPE 65, bestrophin 1, CRALP. These transformed

cells would be pristine new without the waste products that accumulate in senescent

RPE. Such cells could be easily cultured providing the option of genetically

engineering them in vitro to express proteins that counteract genetic defects or

which are trophic factors that promote survival [36–38].

Prophylactic RPE Transplantation

Will RPE transplantation continue to evolve and become a therapeutic method to

treat blinding degenerations such as AMD? Optimists think it can but to do so it has

to be performed before there is massive destruction of the photoreceptors in the

fovea, as occurs in the late complication of CNV or geographic atrophy. This would

then require prophylactic surgery while the patient still has foveal vision, which is

the ultimate challenge for this methodology. This cannot be done at present but

there is continued research trying to improve it so the method cannot be discarded.

What may supersede the simple replacement of degenerate with healthy RPE,

however, is the possibility to reconstruct the fovea after total loss of the

photoreceptors has occurred by transplanting new photoreceptors, especially

cones, together with new RPE. This would allow the reconstruction of the fovea

to take place in an already blind eye making any potential failure trivial. This may

be the most promising future of cell transplantation in the retina.

Photoreceptor Transplantation

By comparison with RPE transplantation successful transplantation of

photoreceptors is much more difficult. But it is sensational since it could restore

sight to a blind eye rather than merely saving residual sight, the hope of RPE

transplantation. Because it is so sensational it has had a complex history of

exaggeration and confabulation. The major difficulty with the approach stems

from a key problem, the inability of such transplants to form synapses with host

neurons which is essential for proper visual function. There are several reasons for

this problem, one obvious and the others arcane. The obvious problem is to obtain

photoreceptors devoid of their contacts with their own second order neurons, which

block any contacts of the receptors with host second order neurons. The arcane

problems involve our inability to control and direct synapse formation from

photoreceptors to natural second order retinal neurons.
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Whole Retinal Sheets

Many ways have evolved in the many attempts to transplant photoreceptors. One has

been to use a sheet of neural retina that is placed between the host RPE layer and the

host neural retina [39]. This creates two retinas, one from the transplant and the other

from the host, the latter usually with either degenerate or absent photoreceptors. The

hope has been that the transplant will extend neural processes that can make synapses

with second and/or third order neurons in the degenerate host retina, which could

provide a functional connection from transplanted photoreceptors to host ganglion

cells and ultimately the brain. Those championing this method have evidence that

such synapses can form between the two retinas [40, 41]. Attempts using this method

have been tried in both animals and blind human subjects with reports of success. But

the approach has not been taken up by the ophthalmic community, undoubtedly

because of its relatively minimal effects on vision. The number of synapses that form

between these two retinas must not be plentiful enough for any useful vision. This

approach seems to be an awkward way to restore retinal function because it does not

try to reconstruct the retina in the natural way. Connecting what is the ganglion cell

layer of the transplant with the outer nuclear layer of the host retina seems less

rational than trying to connect transplanted isolated photoreceptors to their logical

second order neurons, bipolar and horizontal cells.

Transplantation of Retinal Micro-aggregates

Small micro-aggregates from mature retina or from 3 to 4 days old mice, an age

when photoreceptors are just developing outer segments, have been used as

transplants [42–44]. Some of these micro-aggregates contain photoreceptors

separated from their second order neurons making them potentially able to form

new synaptic contacts with host bipolar cells but such synaptic reconnections

have been difficult to find [46]. We have transplanted micro-aggregates into the

subretinal space of rdmutant mice, at a stage where these mice have lost all of their

rods and most of their cones. In early studies we only labeled the donor rods. In later

ones both the donor rods and the host rod bipolar cells were labeled [45, 46]

(Fig. 8.7). Transplanted, undifferentiated photoreceptors develop normal outer

segments which survive for long periods of time, perhaps years, in the degenerate

mouse retina. We have learned much from these experiments.

Outer segments only develop if they are oriented in the proper direction, i.e. with

the outer segments contacting the RPE layer. Second, the external limiting mem-

brane remains a significant obstacle that blocks contacts between the transplant and

host second order neurons. Third and most important we have been unable to detect

many synaptic contacts between labeled donor rods and labeled host rod bipolar

cells by electron microscopy. Figure 8.8 shows a rare example of lacZ reaction

particles labeling a transplanted rod spherule in an adult rd mouse retina in which
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only the host rod bipolar cells were also labeled. There is a lacZ particle present on

the postsynaptic side of this synapse implying that it belongs to a host rod bipolar

cell which suggests that synaptic communication exists between the host and the

transplant via a canonical synapse. But this is our only good example among many

attempts. We also found membrane-to-membrane contacts between labeled rods

and labeled rod bipolar cells, which could allow ephaptic transmission between

transplant and host, i.e. K+ release from the rod could depolarize the host bipolar

cell and generate a signal between the transplant and the host retina. Classic

synaptic transmission between donor rods and rod bipolar cells that were labeled

to be recognizable at the electron microscopic level was extremely rare.

The one shown in Fig. 8.8 is the only convincing sample of such an event we

found. The rarity of either canonical synaptic as well as ephaptic contacts between

the transplant and host retina indicates that such occurrences are too rare with

current techniques. Fourth, we have not seen host/graft rejection, which implies that

such neural tissue within the subretinal space may be tolerated or perhaps not

detected by the immune system, although there is evidence against such a conclu-

sion [47–49]. It is interesting that the latter study, which transplanted neural

progenitor cells from humans into pigs, used laser photocoagulation to promote

integration. The rejection encountered might be due to the prior laser treatment that

could cause a considerable local inflammatory reaction. It is our impression that

rejection is variable and can depend on the local inflammation produced by the

surgery. In experiments with subretinal injection of viral solutions that led consis-

tently to cellular rejection, immune-suppression for only a month prevented rejec-

tion permanently [50] suggesting that after the initial inflammatory response to the

retinal surgery dissipates, the foreign material within the subretinal space may no

longer be detected by the immune system.

Fig. 8.7 Murine photoreceptors in a micro-aggregate labeled with the lacZ reporter gene (blue
transplant) and transplanted to the subretinal space of an rd mouse where all of the host rods and

most of the cones have degenerated. This transplantation occurred 11 months previously, and there

is no evidence of host/graft rejection
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Transplantation of Dissociated Photoreceptors

Townes-Anderson et al. [51] first reported a method to dissociate isolated rods. We

have used this method to isolate photoreceptors for transplantation in rats [52] and

mice [42, 43, 52]. Mature as well as progenitor photoreceptors can survive when

transplanted to these retinas [53]. Recently cell suspensions of enzymatically

dissociated retinas of 1- to 4-day-old mice have been used to obtain isolated

photoreceptor cells with similar success [54]. Using a similar approach [55] one

group concluded that such transplanted photoreceptors seem to integrate more

consistently into the outer nuclear layer and showed more evidence of functional

communication between transplant and host retina. The evidence for synaptic

mediated function, the key challenge in this field, has been examined by both

immunohistochemical and functional methods; the latter including pupillary

responses and electrical field potentials from the ganglion cell layer. The ganglion

cell recordings indicated increased activity and greater sensitivity in mice with

retinal degeneration that had received such transplants than control mice. Curi-

ously, prenatal and later postnatal transplants were less effective. The overall gain

in visual function was small, however, most likely because the numbers of

integrated and communicating transplanted photoreceptors were few. Attempts

are being made to increase the amount of integration by disrupting the blocking

outer limiting membrane [56, 57], by enzymatically degrading the inhibitory

extracellular matrix (ECM) and cell adhesion molecules, such as CD44 and

neurocan [38, 58, 59], by immune suppression [48, 49] by anti-apoptotic treatment

of donor cells [38], by enrichment of labeled cells by flow cytometry [60] or by

Fig. 8.8 LacZ labeled rod spherule transplanted to the subretina of an rd mouse whose rod bipolar

where also labeled by LacZ. The lower two arrows indicate Lac Z reaction particles within the

spherule. One label (uppermost arrow) is in a post-synaptic structure implying that it is a host rod

bipolar cell
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magnetic-assisted cell sorting [61]. The latter method appears to be the most

successful in increasing the integration of young rods enzymatically disassociated

from normal murine retina using magnetic beads with antibodies to a surface

protein, called cluster of differentiation (CD73) expressed in young rods. This

procedure significantly increased the number of transplanted rods integrating into

murine retina. This method has the advantage of not requiring genetic modification

of the photoreceptors in order to uniquely detect and concentrate them.

Retinal Progenitor Cells

This method involves selecting so-called progenitor cells that exist in the young

murine retina especially at the ciliary margin and the optic nerve head [62]. Such

cells are undifferentiated, express developmental markers, and can be distinguished

by their organization in cultures. Transplantation of such cells into degenerate

mouse retina shows that they can express photoreceptor proteins and improve visual

performance in behavioral tests of vision. Visual improvement could also be due to

trophic influences the transplant exerts on the residual host photoreceptors. This

approach has a handicap that the progenitor cells are heterologous and therefore

subject to rejection. This method is being eclipsed by recent attempts to transform

the host’s own differentiated cells into pluripotential cells that should eliminate

host/graft rejection.

Transforming Fibroblasts into Photoreceptors

Takahashi and Yamanaka’s demonstration [30] that differentiated cells can be re-

programmed into pluripotential cells has had vast confirmation and now involves a

variety of techniques [63–77]. This has influenced photoreceptor transplantation

[78, 79]. The latter have transformed fibroblasts into pluripotential cells and

selected cells that expressed visual proteins for transplantation into the subretinal

space of degenerate murine retinas. They obtained integration and expression of

photoreceptor genes in these transplants and in addition evidence of visually

evoked responses from the mice. This offers the opportunity to take skin biopsies

from patients with genetic defects that lead to retinal degenerations and produce

photoreceptors that express the deleterious mutation in vitro, which can facilitate

studying the pathogenesis of such diseases. The approach is being intensely pur-

sued. It is possible to use only one and not several viral vectors to reprogram these

cells [63] or to eliminate the viral vector completely by using nucleo-fection of a

polycistronic construct co-expressing Oct4, Sox2, Klf4, and Myc [80] or only one

transcription factor [66].
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Cone Versus Rod Photoreceptors

So far most attention has been given to transforming pluripotent cells into rods

rather than cones. But for useful vision cones are critical. If one loses all rod

function, the handicap is mild with patients only being unable to see in dim

illumination; they are not considered blind. If cone vision is lost one is legally

blind being unable to read, drive, see colors or recognize faces. It would be

important to obtain fine foveal cones that provide us with high resolution vision.

One way to obtain embryonic foveal cones is to use human fetal tissue obtained

from abortions. Here the fovea and macula can be identified and dissected; the inner

layers of the neural retina can be removed from the cone terminals using an excimer

laser [81]. Perhaps a less controversial way would be to transform pluripotent cells

into fine foveal cones but this is not yet possible. A great experimental advantage of

transplanting cones rather than rods is that it would be possible to produce a change

in the action spectrum of vision as a result of transplantation, i.e. transplanting

ultra-violet sensitive cones into an animal without them would drastically alter the

host’s vision action spectrum. Using rod transplants the final result can only be

based on a stronger or more sensitive response from the animal receiving the

transplants which is a quantitative change. Altering the action spectrum of vision

would be a stronger qualitative change that would strongly support the conclusion

that there was communication of the transplanted cones with the rest of the brain.

Therapy from Photoreceptor Transplantation

It is currently impossible to use photoreceptor transplantation to restore vision in man

[82, 83]. Will it ever be? This is a reasonable question to ask because the difficulty in

doing this is enormous. The possibility of transforming cells into embryonic cones is

on the horizon but the surgical approach to this problem does not exist and is not easy

to envision. The major barriers facing the approach are formidable. It requires a way

to promote synapse formation from the transplanted photoreceptors and a way to

direct them to very specific sites. This is a very difficult problem that may be best

pursued by in vitro techniques. An additional problem is being able to facilitate the

migration of the cone pedicles to penetrate the external limiting membrane formed by

Müller cells, which appears to expand after host photoreceptor degenerate. These are

difficult barriers but success with this would be extraordinary.
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