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Abstract The formation of lens progenitor cells and differentiated lens tissue in

cell culture conditions presents a number of experimental challenges, even though

lens lineage formation and lens fiber cell differentiation are among the best

characterized model systems at both genetic and molecular levels. Lens differenti-

ation from ES cells in vitro appears to be a feasible goal. This chapter describes the

significance of using ES and iPS cells for better understanding of embryonic lens

development and formation of congenital cataracts. A discussion of how iPS cells

can help studies of age-related cataract is also included. The chapter summarizes

the current data on lentoid body formation from human and primate ES cells, and

the molecular basis of directed differentiation of human ES cells into lens progeni-

tor cells and lentoid bodies. Finally, current gaps in lens research and future

directions to address these problems are discussed.
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Introduction

The central premise of embryonic stem (ES) cell biology is an unlimited

potential of ES cells to form every cell type of the whole organism [33, 42,

91, 120]. The potential is fulfilled during ontogenesis. The major question is if it

is possible to differentiate ES cells into all transient (embryonic germ cell layers

and common cell progenitors) and terminally differentiated cell types in vitro. A

large body of work using mostly human and mouse ES cells conducted during

the last decade has shown that it is a generally feasible goal with major

implications for our understanding of embryonic development; modeling of

human disease and treatment of a wide range of diseases that require cell-

based therapeutics [50].

The human eye is an excellent organ for in vitro studies of its organogenesis,

modeling of human eye diseases through the generation of disease-specific-induced

pluripotent stem (iPS) cells via nuclear reprogramming [121], and for cell replace-

ment and paracrine rescue therapies [66]. To harness the power of ES- and iPS-cell-

based ideas of treating human eye diseases, the essential first step is to develop

procedures to form ocular cells and tissues using in vitro conditions. The main

challenge for this research originates from our limited knowledge of cell fate

specification processes that occur normally in a three-dimensional (3-D) context

in developing embryos and what specific cell culture conditions may favor simul-

taneous formation of multiple cell types that might both positively and negatively

influence the development of the desired cell type. While the cells can achieve the

desired cell type, their terminal differentiation into a status comparable with tissues

generated during ontogenesis often requires additional conditions that have to be

determined empirically.

The formation of lens progenitor cells and differentiated lens in cell culture

conditions presents a number of experimental challenges, even though lens lineage

formation and lens fiber cell differentiation are among the best characterized model

systems at both genetic and molecular levels [16, 18, 20, 23, 35, 59, 69, 82]. It has

been shown that cultured lens epithelial cells can be differentiated into primitive

lens-like structures termed “lentoid bodies.” Lentoid bodies are 3-D structures that

resemble the lens as they are both transparent and refract light. They can be

generated in vitro either from primary, spontaneously transformed or viral

oncogene-transformed lens epithelial cells [8, 45, 46, 51, 75, 76, 87, 112, 119].

Lentoid body formation can also be found in vivo in vertebrate embryos as a result

of spontaneous or genetically engineered mutations in genes that operate in the

pathways that control lens formation [56, 61, 101]. Finally, it is possible to

transdifferentiate lentoids from retinal pigmented epithelium (RPE) cells [68, 72].

The formation of lentoid bodies in different experimental settings shows that the

basic program to establish the 3-D structure of the lens is functional independently

on the local environment such as in the absence of optic cup/retinal tissue [106].

Thus, lens differentiation from ES cells in vitro appears to be a feasible goal. This

chapter first describes the significance of using ES and iPS cells for better
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understanding of embryonic lens development and formation of congenital

cataracts. A discussion of how iPS cells can help studies of age-related cataract is

also included in “New Model Systems Based on ES and iPS Cell Differentiation to

Understand Lens Development and Disease,” section of this chapter. “Differentia-

tion of ES Cells into Lens” summarizes the current data on lentoid body formation

from human and primate ES cells, and the molecular basis of directed differentia-

tion of human ES cells into lens progenitor cells and lentoid bodies. Finally,

“Conclusions and Future Directions” provides a summary of current gaps in lens

research and future directions to address these problems.

New Model Systems Based on ES and iPS Cell Differentiation

to Understand Lens Development and Disease

Use of ES and iPS cells differentiated into lens cells offers a wide range of experi-

mental approaches to better understand embryonic lens formation and lens fiber cell

differentiation. Similarly, cataract-specific iPS cells offer a new array of approaches

to evaluate various aspects of human lens homeostasis and identification of novel

relationships between cellular processes and their impact on lens transparency.

Modeling of Embryonic Development

Although embryological studies on lens morphogenesis date to the beginning of the

twentieth century, and have resulted in a comprehensive understanding of the origin

of lens cell lineage, formation of the lens placode, formation of the lens vesicle, cell

cycle exit regulation in the posterior compartment of the lens vesicle, lens fiber cell

terminal differentiation, lens regeneration in specific amphibians, transdiffer-

entiation of lens from other ocular and non-ocular tissues, and lens evolution in

animal kingdom ([18–20, 30, 35–38, 48, 59, 63, 69, 82]), a number of important

questions remain to be addressed, with three examples described below.

Based on studies in chicks and zebrafish, it has been proposed that lens progeni-

tor cells originate from a common pool of pre-placodal cells [1, 38, 105]. Data to

support this attractive model on mammalian lens development are still missing. A

large body of data exists to support the role of FGF signaling at multiple stages of

lens development [88]; however, little is known how the specificity of this signaling

is established in the embryo in a 3-D space crowded with many signaling

molecules, their agonists and antagonists [102]. The lens is also a unique tissue in

terms of its terminal differentiation. To achieve transparency, lens fiber cells lose

their subcellular organelles including the nuclei in a highly controlled process that

ultimately preserves the lens fiber cells for the rest of the life [3, 4]. These questions
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can be addressed through the use of ES cell differentiation as described in “Differ-

entiation of ES Cells into Lens” and future experiments outlined in “Conclusions

and Future Directions” of this chapter.

Congenital Cataracts

Congenital cataracts are typically caused by mutations in genes that control lens

development and by mutations in genes encoding key lens structural proteins [36,

40, 98]. Although molecular mechanisms for many of these genes were established

using mouse models, the power to produce lens cells from human patients that carry

these mutations is unique. The advantage of this system is that one can prepare

human lens cell extracts from genetically defined material and study protein–protein

interactions of mutant crystallins and lens membrane proteins in their native envi-

ronment [17]. Similarly, it is possible to derive lens cells from patients with

mutations in DNA-binding transcription factors such as FOXE3 [69], HSF4 [11,

26, 100], MAF [17, 123], PAX6 [43], and PITX3 [7, 10, 96] to study molecular

mechanisms of these mutations in their native biological environment. This

approach should identify those specific genes with disrupted expression due to

specific missense mutations and/or by their haploinsufficiency [17].

Age-Related Cataract

Age-related cataract is a disease of the ocular lens that is responsible for just under

half of blindness worldwide, and is expected to increase as a result of extended life

spans in industrialized, emerging-market, and underdeveloped countries [71]. Age-

onset cataract develops between the age of 40–50 years as a result of the progressive

breakdown of the lens microarchitecture [97]. Age-onset cataract is a complex

disease involving both genetic and environmental factors that affect 42 % of the

population between the ages of 52–64, and 91 % of the population for ages 75–85

[54, 103]. Genetic studies of age-related cataract point to both multiple genes and

environmental factors influencing the phenotype [71, 97]. The Beaver Dam Eye

Study suggests that mutations in a single gene/locus could be responsible for as

much as 35 % of nuclear and up to 75 % of cortical cataract incidence [39, 47, 55].

Other studies using siblings and twins also demonstrate significant genetic influ-

ence on age-onset cataract [41, 97].

Age-related (or senile) cataract is defined as cataract occurring in people over

the age of 50 in the absence of known mechanical, chemical, or radiation trauma.

At the molecular level of age-related cataract, lens structural proteins, the

crystallins, become oxidized and water-insoluble, and form high molecular weight

aggregates. The continual accumulation of crystallin aggregates and other lens

proteins causes opacification and loss of lens transparency. The current treatment
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of senile cataract is surgery that replaces the opaque lens with an artificial intra-

ocular lens. Although the surgery is routinely performed in the USA, numbering

1.5–2 million patients treated annually, it represents a major Medicare reimburse-

ment category. It has been estimated that a 10-year delay in the onset of senile

cataract could decrease the number of surgeries needed by almost one half, thus

significantly decreasing vision care costs ([58]; www.nei.nih.gov/strategicplanning/

np_lens.asp). Progress in human cataract research is hampered by the lack of

genetically defined and abundant experimental materials as well as the absence

of relevant animal models [6, 41]. The use of cataract-specific iPS cells offers a

unique opportunity to develop well-defined human cell culture models to study

cataract as a disease of lens protein homeostasis.

Differentiation of ES Cells into Lens

In this section, we will first summarize our knowledge about mammalian lens

formation that is relevant to the design of experiments to differentiate lens cells

from ES cells (“Mammalian Lens Development and Lessons for a Rational Design

of ES Cell-Based Differentiation Systems”). We then provide examples of lentoid

body formation in various ES culture systems (“Formation of Lentoid Bodies”) and

describe a procedure to produce highly enriched lens progenitor cells and “imma-

ture” lentoid bodies from human ES cells (“Lens Differentiation from Human ES

Cells in Chemically-Defined Conditions”). Finally, we will discuss different

strategies to improve the differentiation of human lentoid bodies (“3-D Cultures

of Lentoid Bodies to Improve Their Differentiation Status”).

Mammalian Lens Development and Lessons for a Rational Design
of ES Cell-Based Differentiation Systems

Multiple signal transduction systems including BMP (bone receptor protein), FGF,

Notch, TGF-b, and Wnt have been identified to control various stages of lens

morphogenesis [18, 38, 59, 64, 102]. In addition, the origin of lens lineage from

the pre-placodal region shown in chicken and zebrafish models suggests that early

stages of the differentiation process require the formation of neuroectoderm and its

subsequent “by-product,” the pre-placodal ectoderm [105].

Neuroectoderm formation in cell cultures can be induced by a variety of growth

factors, inhibitors of BMP signaling including noggin, follistatin, cerberus, chordin,

ventropin, and gremlin [2, 92] as well as small drugs such as SB431542 [15]. It has

been found recently that noggin is produced by a subpopulation of MyoD-positive

cells in the epiblast; their immunologically mediated ablation interfered with lens

and optic cup morphogenesis [31].
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Loss-of-function studies of BMP4 in mouse established a critical role of this

growth factor for lens placode formation [27]. BMP7 knockout mice also develop

ocular abnormalities that were linked to the abnormal lens induction [65, 116]. In

addition, studies of lens formation through conditional knockouts of two BMP

receptor genes, Acvr1 and Bmpr1a, further confirmed the essential roles of BMP

signaling in lens induction, as reduced lens placode thickening and failure of lens

invagination were observed [86]. In ex vivo explant assays using chicken embry-

onic tissues, BMPs have been shown to specify the formation of lens and olfactory

placodes [80, 99]. BMP signaling not only plays a role in the formation of lens

placode but also participates in lens fiber cell differentiation. BMP2, BMP4, and

BMP7 have been shown to induce the expression of markers of fiber differentiation

in primary chick lens cell cultures. In addition, expression of noggin, an inhibitor of

BMP signaling, in the lenses of transgenic mice resulted in a postnatal block of

epithelial-to-secondary fiber differentiation [9].

Numerous studies have shown multiple functions of the FGF (fibroblast growth

factor) signaling pathway for the formation of the lens placode [105]. FGF signaling

is well known as the key trigger for lens fiber cell differentiation [63]. The

pioneering work conducted more than two decades ago showed that FGF2/bFGF

is a potent inducer of lens fiber cell differentiation in vitro [14]. A recent study using

conditional triple knockout mice with deletion of FGF receptors, Fgfr1, Fgfr2, and
Fgfr3, provided evidence for the essential role of FGF signaling in lens fiber cell

differentiation in vivo. The specific inactivation of these three FGF receptors at lens

pit stage totally abrogated lens fiber cell differentiation, resulting in a hollow lens

[126]. Transgenic mice expressing a dominant-negative Fgfr1 in the presumptive

lens ectoderm showed many early stage defects including reduced lens placode

thickness and delayed lens placode invagination [25]. Studies on two genes, Frs2
and Ndst1, also revealed that FGF signaling is critical for lens placode formation.

Frs2a encodes a docking protein for linking FGFRs with a variety of intracellular

signaling pathways. A mutation of this gene Frs2a2F/2F led to the halt of the

lens development at lens placode stage in severely affected mutant eyes [32].

Ndst1 (N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 enzyme) encodes

an enzyme for biosynthesis of heparan sulfate proteoglycans, which is low affinity

co-receptor of FGFRs. Inactivation of Ndst1 in mouse resulted in invagination

defects of the early lens [79]. The most recent study showed that inactivation of

Fgfr1 and Fgfr2 at lens placode stage led to increased cell death and the formation

of a thinner lens placode, suggesting that the primary role of autocrine or paracrine

FGF signaling is to provide essential survival signals to lens placode cells [29].

Recent genetic experiments, lens-specific inactivation of Jag1 [60], Notch2 [93]
and RBP-J [90] have established role of Notch signaling in primary lens fiber cell

differentiation.

Both canonical Wnt signaling, via b-catenin, and planar cell polarity (PCP/Wnt)

non-canonical Wnt signaling play a range of roles in lens morphogenesis [64, 67].

Wnt/PCP signaling is required for organization of lens fiber cell cytoskeleton and

lens 3-D architecture.
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In summary, studies of lens development suggest that active BMP and FGF

signaling are required for lens cell formation. FGF signaling is sufficient to induce

lens fiber cell differentiation in in vitro cultures, and modulation of this process via

Notch, Wnt/b-catenin and Wnt/PCP signaling pathways could provide additional

tools to recapitulate lens ontogenesis from ES cell cultures.

Formation of Lentoid Bodies

Three earlier procedures identified lentoid body formation in primate and murine

ES cells cultures. These methods were limited to a production of a small percentage

of lentoid bodies along with a number of other cells types such as retinal pigmented

epithelium (RPE) [44, 77, 107]. The protocols used in these earlier studies

employed mouse feeder cells, and differentiation was induced by co-culture with

mouse PA6 stromal cells (“SDIA, or cultures”). External FGF2 was added to some

cultures [77]. The yield of lentoid bodies was between 200 and 300 colonies/10-cm

dish after 30 days in culture. Formation of lentoid bodies was also detected when

both mouse and human ES cells were cultured on matrix components of the human

amniotic membrane (“AMED system”) together with many other cell types includ-

ing dopaminergic neurons, motor neurons, and RPE cells [111]. These experiments

provided the “proof-of-principle” of lens cell formation from mammalian ES cells;

nevertheless, they are not suitable for the standardized production of enriched lens

cells and lentoid bodies.

Lens Differentiation from Human ES Cells in Chemically
Defined Conditions

Using the information on normal lens formation (“Mammalian Lens Development

and Lessons for a Rational Design of ES Cell-Based Differentiation Systems”), we

established a new experimental three-stage protocol with defined growth factors to

generate large quantities of lens progenitor cells and lentoid bodies from human ES

cells as shown in Fig. 4.1. Inhibition of BMP signaling by recombinant noggin

triggered differentiation of ES cells towards neuroectoderm. Subsequent reactiva-

tion of BMP and activation of FGF signaling elicited robust formation of lens

progenitor cells marked by the expression of PAX6 and aA- and aB-crystallins
(CRYAA and CRYAB). The formation of lentoid bodies required the presence of

FGF2 and the total number of the lentoids increased in the presence of Wnt3a

yielding approximately 1,000 lentoid bodies per a 30 mm well. Lentoid bodies

expressed and accumulated lens-specific markers including aA-, aB-, b-, and
g-crystallins, filensin/BFSP1, BFSP2/CP49, and MIP/aquaporin 0 [122]. Neverthe-

less, morphological and scanning and transmission electron microscopic analysis of

these lentoid bodies identified nucleated lens cells and only moderately elongated
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lens fiber cells. These data indicated that while specific pathways of the lens fiber

cell differentiation program such as synthesis and accumulation of both aA- and
aB-crystallins were turned on in the “immature” lentoid bodies; however, activa-

tion of the denucleation pathway was not achieved. We conclude that this procedure

can be immediately used to probe various aspects of human lens lineage cell

formation focusing on the function of specific DNA-binding transcription factors,

chromatin remodellers, and extracellular signaling; nevertheless, follow-up studies

are necessary to address the culture conditions to achieve formation of “mature”

lentoid bodies comprised of elongated enucleated lens fiber cells.

3-D Cultures of Lentoid Bodies to Improve Their
Differentiation Status

A number of potential improvements of the differentiation procedure described

above should be considered and empirically tested. In principle, the system can be

improved through testing of different 3-D gels and extracellular matrix proteins that

are found in the lens capsule, growth of lentoid bodies on lens capsule, specific

activators and inhibitors of differentiation, chemical libraries, 3-D scaffolds to

generate a gradient of growth factor(s), and any combination of these procedures.

In addition, genetically engineered human and mouse ES cells that carry fluorescent

a

0 3 6 9 12 15 18 21 24 27 30 33 35 day

noggin BMP4/BMP7/FGF2 FGF2 (Wnt3a)

ESCs PPR (?), NC (?)
Neuroectoderm Lens progenitors

(PAX6+,CRYAA+)

Lentoid bodies

b
PAX6

aB-crystallin (CRYAB)

aA-crystallin (CRYAA)

Fig. 4.1 Diagrammatic summary of a three-step procedure to differentiate human ES cells into

lens progenitor-like cells and lentoid bodies. (a) Diagram of three steps: noggin treatment (days

0–6), BMP4/BMP7/FGF2 treatment (days 7–18), and differentiation in the presence of FGF2

(essential factor) and Wnt3a (modulatory factor) (days 22–35). Formation of putative cell

populations including the neuroectoderm, pre-placodal region (PPR) and neural crest (NC) cells

is indicated. (b) Sequential activation of PAX6, aB-crystallin (CRYAB) and aA-crystallin
(CRYAA) indicates establishment of the lens progenitor-like cells around day 14 of the culture.

At this time, the number of PAX6+ and CRYAA+ cells was 65 and 41 %, respectively [122]. Both

aA- and aB-crystallins accumulate during the differentiation of lentoid bodies
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reporter genes, under the control of lens regulatory elements, can be used to aid in

the analysis of the differentiation process.

There are at least three commercially available 3-D systems: ExtraCel hydrogel

(Glycosan Biosystems), HyStem-C Cell Culture Scaffold kit (Sigma), and Cultrex

3-D Culture Matrix Extract (R&D Systems). Each system allows for the

incorporation of variable amounts/ratios of laminin, collagen IV, entactin/nidogen,

perlecan, fibronectin, collagen XVIII and sparc/osteonectin, extracellular matrix

(ECM) proteins found in the lens [21, 117].

A number of drugs have been shown to promote cellular differentiation with

some of the tested in lens cell cultures. These include specific inhibitors of DNA

methylation such as 5-azacytidine and 5-deazacytidine [12, 49, 94], inhibitors of

histone methyltransferases (cytarabine and decitabine [84]), inhibitors of histone

deacetylases (valproic acid and sodium butyrate [22, 24, 34, 74, 78]), and inhibitors

of cyclin-dependent kinases (olomoucine and roscovitine [70, 73, 89, 115]). Of

particular interest are the rho-kinase (ROCK) inhibitors, Y27632 and PP-1, as the

PP-1 drug has been successfully used to promote cell cycle withdrawal and com-

mitment of lens cells to differentiate [113, 114].

Considering the specific roles of Notch andWnt signaling pathways for lens fiber

cell differentiation, and the role of Wnt signaling in the differentiation of lens

epithelial cells described above (“Mammalian Lens Development and Lessons for

a Rational Design of ES Cell-Based Differentiation Systems”), stimulation of ES

cell differentiation may be considered. Recombinant Notch ligands, Jagged 1 and 2,

can be added transiently during the thirds stage of the differentiation procedure.

ConcerningWnt signaling, the situation is more complex as multiple Wnts and their

receptors, the frizzled proteins, can regulate lens development both in the epithelial

and fiber cell compartments. Nevertheless, inclusion of Wnt3a improved the quan-

titative parameters of the current procedure of lentoid body formation [122].

Ongoing experiments in the laboratory are aimed to improve differentiation of

lentoid bodies using a combinatorial approach as outlined above. The procedure can

be improved via genetically engineered ES cells [5] that carry fluorescent markers

under the control of lens regulatory regions from genes known to control different

stages of the lens lineage formation, cell cycle exit, and terminal differentiation. For

this purpose, the EGFP, or enhanced green fluorescent protein marker can be

inserted into a specific BAC clone with PAX6 (early marker), HSF4 (late marker),

b-/g-crystallins, DNase IIb, MIP/aquaporin 0, paralemmin, and other genes

expressed in terminally differentiated lens fiber cells as established for similar

differentiation systems [83, 110].

iPS Cells and Cataract Research

For the first time in human lens research, we are about to establish a general strategy

to model human lens development and diseases with an unlimited supply of lens

cells that originate from genetically and phenotypically defined human source(s).
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In addition, these materials can be shared between multiple laboratories to acceler-

ate research. The pioneering work of S. Yamanaka at the Institute for Frontier

Medical Sciences, Kyoto University, Japan, to establish the reprogramming proce-

dure using skin fibroblasts provided proof-of-principle that the iPS cell can be

established from somatic terminally differentiated cells, and these iPS cells

behaved like authentic ES cells in a series of functional tests [108, 109]. A large

follow-up effort in a number of laboratories worldwide resulted in expansion of the

reprogramming procedures and cell types suitable for these manipulations. The

majority of currently existing procedures are summarized in Table 4.1. It has been

shown recently that iPS cells can be produced from a cataract patient using lens

epithelial cells as the starting material [85]. Most importantly, these iPS cells were

differentiated into lentoid bodies using the procedure described here (see Fig. 4.1)

[85]. Nevertheless, whether iPS cells, generated through other reprogramming

protocols and cell types, are capable of producing lentoid bodies similar to those

generated from human ES cells, remains to be formally proven.

Table 4.1 A representative list of distinct nuclear reprogramming procedures to generate human

iPS cells

Starting cell type Treatment Abbreviation References

Skin fibroblasts [Oct3/4,Sox2,Klf4,Myc]-retroviruses iPS [108]

IMR90 cells, newborn

foreskin fibroblasts

[Oct4,Sox2,Nanog,Lin28]-
lentiviruses

iPS [125]

Fetal, neonatal, and adult

fibroblasts

[Oct4,Sox2,Klf4,Myc]-
retroviruses + hTERT + SV40LT

iPS [81]

Fibroblasts, liver cells [Oct4,Sox2,Myc,Klf4]-adenoviruses Adeno-iPS [104]

Terminally differentiated

amniotic fluid cells

[Oct4,Sox2,Klf4,Myc]-retroviruses AF-iPS [28]

Amnion-derived cells [Oct4,Sox2,Nanog]-lentiviruses hADC-iPS [127]

Neural stem cells [Oct4]-inducible lentivirus NiPS [53]

Peripheral blood

mononuclear cells

(PB-MNCs)

[Oct4,Sox2,Klf4,Myc]-
retroviruses + Htert + SV40LT

BM-iPS [57]

Umbilical cord matrix and

amniotic membrane

[Oct4,Sox2,Klf4,Myc]-retroviruses,
vitamin C, valproic acid

[13]

Human newborn fibroblasts

(HNFs)

Proteins [52]

Human foreskin fibroblasts Episomal vector [124]

Human embryonic fibroblasts

(HEF)

piggybac transposon [118]

Human peripheral circulating

T cells

Sendai virus TiPS [95]
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Conclusions and Future Directions

One of the most pressing objectives of medical research today is to develop novel

approaches to model formation of human organs, tissues and diseases. Use of

human ES and iPS cells differentiated into individual tissues provides the highest

possible promise to achieve this objective as it is now possible to understand the

contribution of genetic and environmental factors in various diseases including

those related to aging such as age-onset cataract.

Thus, the present cell culture system can be used to modulate these common

signaling pathways during lens formation [62] via siRNA technology and through

the use of small drug molecules, inhibitors of FGF and BMP signaling (e.g.,

SB431542—an inhibitor of the Alk1 receptor, SU5402—an inhibitor of FGFR

and U0126—an inhibitor of MEK) to study formation of lens lineage and formation

of alternate cell fates that originate from the common pre-placodal region [105].

It is now possible to produce iPS cells from human patients that carry heterozy-

gous mutations in regulatory genes such as PAX6, FOXE3, MAF, HSF4, PITX3, and
others and to identify those genes that are not properly regulated during early stages

of lens development. In contrast, studies of cataractogenesis using the system of ES/

iPS cells seems be premature until procedures to generate enucleated lentoid bodies

with distinct epithelium/fiber cell compartments are established. The long-term

benefits of the research to model human cataract using iPS cells should stimulate

our efforts to achieve this challenging goal.
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