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The Eye as a Target Organ for Stem

Cell Therapy

Mark A. Fields, John Hwang, Jie Gong, Hui Cai, and Lucian V. Del Priore

Abstract Retinal degenerations are a heterogeneous group of disorders that are

characterized by progressive cellular dysfunction, cellular disarray, and eventually

cell death. Early in the course of disease therapeutic intervention consists of pharma-

ceutical treatment to prevent cell death or gene therapy to correct the underlying

mutation. Due to the nature of pathologies involving these disorders, particularly in

late stage of disease, cell replacement therapy or electric stimulation of remaining cells

by artificial retinal prosthesis is the only viable option. Stem cell therapies for retinal

degenerative diseases such as age-related macular degeneration (AMD) and retinitis

pigmentosa (RP) are a promising therapeutic option and will require replacement of

lost photoreceptor cells and retinal pigment epithelium (RPE). Current clinical trials

are underway to evaluate the potential of stem cell therapy in humans. The use of

induced pluripotent stem (iPS) cells hold great promise as a potential reservoir of cells

for the treatment of retinal disorders as well as a clinical tool to help understand disease

pathology. Advances in stem cell technology will translate these therapies into viable

clinical options for the treatment of retinal degenerative diseases and other disorders.

Introduction

Retinal degenerations are a heterogeneous group of disorders that are characterized

by progressive cellular dysfunction, cellular disarray, and eventually cell death.

Numerous classification systems exist for these disorders, but no one classification

M.A. Fields • J. Gong • L.V. Del Priore (*)

Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of

South Carolina, Charleston, SC, USA

e-mail: ldelpriore@yahoo.com

J. Hwang

Doheny Eye Institute, Keck School of Medicine, University of Southern California,

Los Angeles, CA, USA

H. Cai

Harkness Eye Institute, Columbia University, New York, NY, USA

S.H. Tsang (ed.), Stem Cell Biology and Regenerative Medicine in Ophthalmology,
Stem Cell Biology and Regenerative Medicine, DOI 10.1007/978-1-4614-5493-9_1,
# Springer Science+Business Media New York 2013

1

mailto:ldelpriore@yahoo.com


system captures the complexity of the disease processes, the diversity of their

pathology, and the common themes in treatment that underlie these diseases.

Many current classifications distinguish between macular diseases and peripheral

retinal degenerations, but this classification system does not represent the complex-

ity of the disease process in a complete fashion. Prior to the discovery of gene

mutations that increase the risk profile for age-related macular degeneration

(AMD), retinal degenerations were often classified as either hereditary or nonhe-

reditary diseases, but the simplicity of this classification has been called into

question based on the observation that certain alleles increased the risk of AMD

[1–4]. Thus, for the purpose of this discussion, retinal degenerations will be

classified by whether they are Mendelian disorders (e.g., most if not all forms of

retinitis pigmentosa (RP), Leber’s congenital amaurosis, and Best’s disease) or

non-Mendelian retinal disorders, including AMD.

Because of the complexity of the disease processes, it is possible to dedicate an

entire chapter of this book to each disease and still not cover all the details of each

condition. However, regardless of the cause of the retinal disorder, it is important to

recognize that severe vision loss is typically associated with cellular dysfunction or

death. Early in the course of many diseases there is cell dysfunction without cell

death. In these early stages, gene therapy, pharmacological treatment to manipulate

the cell death pathway, and/or treatment with locally administered growth factors,

such as ciliary neurotrophic growth factor, may all prove to be useful. However, late

stages of retinal disease, which are usually accompanied by severe vision loss, will

require a different approach. For example, in advanced stages of many forms of RP,

severe vision loss is due to death of photoreceptors, loss of the native retinal pigment

epithelium (RPE) monolayer on Bruch’s membrane, migration of pigmented cells

into the retina, and transsynaptic degeneration leading to inner retinal disturbance.

In advanced geographic atrophy in AMD, there is loss of RPE and photoreceptors

and secondary atrophy of the choriocapillaris. Reversal of vision loss in these late

stages of disease, after cell loss has occurred, will likely require cell therapy with

transplantation of photoreceptors, RPE and/or choriocapillaris cells; or direct electri-

cal stimulation of the inner neural retina with multi-electrode arrays.

In this review we will discuss the clinical and pathological features of retinal

degenerations that are important to their potential treatment with stem cell therapy;

the unique combination of eye anatomy and imaging capabilities that makes it an

excellent target organ for early stem cell therapy in humans; and the status of

human trials.

Clinical and Pathological Features of Retinal Degenerations

Retinitis Pigmentosa

Retinitis pigmentosa (RP) is a group of Mendelian hereditary disorders

characterized clinically by bilateral progressive loss of peripheral vision, a marked

ring-like constriction of the visual field, night blindness, and late loss of central
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vision. As a group the population prevalence of RP is about 1:4,000, so the

estimates are that approximately 100,000 in the USA have this disease. Inves-

tigators have identified at least 45 loci for mutations that can cause retinitis

pigmentosa, and these genes collectively account for disease in a little over half

of all patients [5–7]. Of the cloned genes for retinitis pigmentosa it is estimated

that dominant retinitis pigmentosa account for about 50 %, recessive retinitis

pigmentosa account for about 40 % and X-linked retinitis pigmentosa account for

approximately 80 % of cases, indicating that many genes remain to be identified

[6, 8]. Rods are the predominantly affected photoreceptors and dysfunction causes

night blindness and peripheral field loss beginning as early as the teenage years [9].

Disease progression leads to central acuity loss and legal blindness in the majority

of patients [10]. Classic findings on funduscopic exam include perivascular bony

spicule pigmentation, attenuated arterioles, and waxy optic disc pallor, typically

associated with vitreous cells and posterior subcapsular cataracts. However, many

of these findings may be absent in early stages of disease [11, 12]. Electroretino-

gram (ERG) testing is important for diagnosis and may provide prognostic infor-

mation [10]. The genetics of retinitis pigmentosa are extremely complex with

diverse modes of inheritance [12]. Potential interventions include vitamin A ther-

apy and carbonic anhydrase inhibitors, but treatment options are extremely limited

in the majority of cases with no effective form of therapy. Results evaluating

vitamin A efficacy have shown limited benefit but potential risks exist with oral

vitamin A supplementation, including the risk of hepatotoxicity [13]. Carbonic

anhydrase inhibitors have shown clinical benefit in reducing macular edema and

improving visual acuity in some patients with retinitis pigmentosa [14].

Genetics

The genetics of retinitis pigmentosa are extremely complex with diverse modes of

inheritance including dominant, recessive, X-linked, mitochondrial, and digenic

forms [12]. The disease may manifest solely with visual symptoms or may be

accompanied by a constellation of systemic findings in patients with syndromic

retinitis pigmentosa. The diversity in genetic transmission and clinical presentation

is not entirely surprising given that retinitis pigmentosa constitutes a broad group of

diseases that arises from diverse biological pathways.

Retinitis pigmentosa demonstrates multiple modes of segregation [15]. Autoso-

mal dominant transmission occurs most frequently and accounts for 20% of retinitis

pigmentosa cases. Symptoms are generally less severe with adult-onset with vari-

able penetrance of symptoms. Autosomal recessive disease occurs in 13 % of cases

and is characterized by earlier onset of symptoms and severe vision loss. X-linked

recessive disease accounts for 8 % of cases and has the poorest visual prognosis with

early onset and rapid progression of symptoms [12]. Visual deficits typically present

within the first decade of life and progress to partial or complete blindness by the

third or fourth decade. In approximately 20 % of nonsyndromic cases, the mode of
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transmission cannot be established because of an unclear family history. These cases

are termed simplex retinitis pigmentosa and presumed to arise from autosomal

recessive or X-linked transmission. Syndromic retinitis pigmentosa, in which vision

loss occurs in the settings of extraocular disease manifestations, constitutes 25 % of

cases with Usher (10 %) and Bardet–Biedl (5 %) syndromes occurring most

frequently [15].

Mutations in 53 genes are known to cause nonsyndromic retinitis pigmentosa or

Leber’s congenital amaurosis (LCA), which may be indistinguishable from early

onset retinitis pigmentosa. This includes 25 genes in autosomal recessive retinitis

pigmentosa (arRP), 17 genes in autosomal dominant retinitis pigmentosa (adRP),

13 genes in recessive LCA, 2 genes in dominant LCA, and 6 gene mutations in

X-linked retinitis pigmentosa (xlRP) [15]. Mutations in a single gene, such as

rhodopsin or neural retina-specific leucine zipper (NRL), may result in multiple

forms of disease such as adRP and arRP. The proportion of disease caused by

mutations in a particular gene is highly variable [15]. The largest proportion of

retinitis pigmentosa is caused by mutations in rhodopsin (RHO) in adRP (26.5 %),

Usher syndrome 2A (USH2A) in arRP (10.0 %), retinal guanylate cyclase 2D

(GUCY2D) in recessive LCA (21.2 %), and retinitis pigmentosa GTPase regulator

(RPGR) in xlRP (74.2 %). A significant proportion of the molecular defects

underlying retinitis pigmentosa are known to affect the phototransduction cascade,

visual cycle, outer segment structure, cilium-mediated protein trafficking, cellular

interaction/adhesion, transcription factors, and RNA-intron splicing factors.

Symptoms and Clinical Findings

Retinitis pigmentosa is phenotypically heterogeneous with wide variation in sever-

ity, age of onset, and progression. Classically, retinitis pigmentosa manifests with

early night blindness (nyctalopia) beginning in teenage years followed by loss of

peripheral visual field. The majority of patients are classified as legally blind by

age 60 with central visual field diameters less than 20� [9]. Defects in blue–yellow

color perception may occur in advanced stages when visual acuity is 20/40 or worse

[16].

Syndromic retinitis pigmentosa is a term used to describe cases of retinitis

pigmentosa associated with extraocular symptoms. Approximately 25 % of retinitis

pigmentosa cases are syndromic and over 30 forms have been identified [17]. Usher

syndrome is the most common form and is associated with sensorineural deafness.

It accounts for about 10 % of retinitis pigmentosa cases and is divided into three

major groups. Type 1 demonstrates profound congenital deafness, vestibular

symptoms, and childhood-onset retinopathy [18]. Type 2 manifests with congenital

partial, nonprogressive deafness, absence of vestibular symptoms, and mild later-

onset retinopathy [19, 20]. Type 3, the least common form, demonstrates progres-

sive deafness beginning in the third decade and adult-onset retinopathy [21].

Bardet–Biedl syndrome is the second most common form of syndromic retinitis

4 M.A. Fields et al.



pigmentosa and accounts for 5 % of retinitis pigmentosa cases [15]. It is associated

with polydactyly, obesity, renal dysfunction, and mental retardation. Other forms of

syndromic retinitis pigmentosa account for 10 % of all retinitis pigmentosa cases

and include Refsum’s disease, Bassen–Kornzweig syndrome, Kearne–Sayre syn-

drome, Batten’s disease, and Senior–Loken disease. A complete listing of genes

implicated in retinitis pigmentosa can be found on the Retinal Information Network

web site http://www.sph.uth.tmc.edu/retnet/.

Retinitis pigmentosa classically leads to fundus changes with accumulation of

bony spicule pigmentation. Lesions are generally perivascular and localized to the

mid-periphery where rods are concentrated. However, pigment distribution is often

variable and may be diffuse, sectoral, or even be absent in certain subtypes of

retinitis pigmentosa. Other signs include abnormal retinal pigmentation changes,

attenuated arterioles, vitreous cells, waxy optic disc pallor, and blue–yellow color

vision deficiency. Vitreous cells and opacities are the most consistent characteristics

across all forms of retinitis pigmentosa. Notably, early stages of retinitis pigmentosa

may lack appreciable funduscopic findings [5, 11, 12]. Retinitis pigmentosa patients,

particularly those over age 40, may demonstrate cystoid macular edema, epiretinal

membranes, diffuse retinal vascular leakage, macular preretinal fibrosis, macular

RPE defects, and posterior subcapsular cataracts. Other associated findings include

myopia and astigmatism [5, 11, 12, 22–24].

Treatment

Treatment options are extremely limited for most retinitis pigmentosa subtypes

with no effective approach for prevention, stabilization, or reversal of visual loss.

The efficacy of vitamin A and E supplements on slowing retinitis pigmentosa

progression was examined in a randomized, double-masked, prospective study [13].

About 601 patients with non-syndromic retinitis pigmentosa and Usher syndrome

(type 2) were randomized into four treatment groups receiving 15,000 IU/d of

vitamin A, 400 IU/d of vitamin E, 15,000 IU/d of vitamin A plus 400 IU/d of

vitamin E, or trace amounts of both vitamins and followed for 4–6 years. The trial

concluded that (1) vitamin A groups demonstrated slower rates of decline in cone

ERG amplitudes (2) vitamin A groups were 32 % less likely to have a decline in

ERG amplitude of 50 % or more from baseline (3) vitamin E groups were 42 %

more likely to have a decline in ERG amplitude of 50 % or more from baseline, and

(4) there was no significant difference in visual acuity and field loss. The reduction

of ERG decline in patients receiving vitamin A was limited to the 30 Hz and 0.5 Hz

flash amplitudes. Significantly, these patients did not demonstrate any improvement

in psychophysical visual parameters [25, 26].

Thus, these results suggest that benefits of vitamin A therapy are limited and

must be weighed against potential risks such as teratogenic effects in pregnant

women, elevated intracranial pressure, hepatomegaly, bone disease in young

individuals, and elevated serum lipids [27–29]. Currently many practitioners do
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not use vitamin A supplementation routinely due to the small treatment effect and

the need for monitoring of vitamin A toxicity. In addition, the mixed molecular

etiology of retinitis pigmentosa suggests that response to vitamin Amay vary across

retinitis pigmentosa subtypes. Studies in ABCA4 knockout mice demonstrated

increased rates of lipofuscin deposition and photoreceptor degeneration in mice

on vitamin A supplementation. These results suggest that if vitamin A supplemen-

tation is employed, it should be done so selectively [30, 31] as it may have a

deleterious effect on certain subsets of retinitis pigmentosa patients. Because of the

small magnitude of the effect on ERG, lack of improvement in psychophysical

parameters, concerns about toxicity, and the varied genetics of retinitis pigmentosa,

the use of vitamin A supplementation to slow retinitis pigmentosa progression has

not been universally adopted. If patients are placed on oral vitamin A therapy, they

should undergo periodic liver function testing, osteoporosis screening, and fasting

serum vitamin A measurements to avoid toxicity.

Other therapies have also been advocated as potentially effective in retinitis

pigmentosa. To date, however, there is no evidence of clinical visual improvement

with lutein supplements [32], docosahexaenoic acid supplements [33–35], light

deprivation [36], therapeutic bee stings [37], vasodilators [38], or placental tissue

injections [39]. Interestingly, repeat intravitreal injections and/or pars plana vitrec-

tomy are not currently used to treat patients with retinal degenerations, despite the

fact that there is a well-known rescue effect of vitreous and subretinal surgery on

retinal degeneration. Subretinal insertion of a dry needle results in a degree of

photoreceptor rescue similar to that of intravitreal or subretinal basic fibroblast

growth factor injection in the Royal College of Surgeons rat [40]. Anterior chamber

injection of placebo and brain-derived neurotrophic growth factor produces similar

rescue effects in axotomized rat ganglion cells [41]. Lensectomy and vitrectomy

alone rescue degenerating photoreceptors in the P347L transgenic pig, which

contains a rhodopsin mutation known to cause retinitis pigmentosa in humans

[42]. Subretinal saline injection produces a rescue effect in the Royal College of

Surgeons rat [43]. These studies demonstrate clearly that vitreous and subretinal

surgery alone may produce some rescue effect in retinal degenerations, but long-

term demonstration of their efficacy awaits additional preclinical and clinical trials.

There is some therapeutic benefit of dietary modifications and nutritional

supplements for two rare forms of syndromic retinitis pigmentosa. Phytanic acid

oxidase deficiency (Refsum’s disease) arises from failure of phytanic acid degrada-

tion and consequent elevation of serum phytanic acid. Clinical manifestations

include ataxia, peripheral neuropathy, deafness, and cardiac conduction defects

[44–46]. Dietary restriction of phytanic acid may halt or reduce progression of

retinitis pigmentosa. Abetalipoproteinemia (Bassen–Kornzweig syndrome) is

characterized by low serum levels of apolipoprotein B, resulting in fat malabsorp-

tion and low plasma concentrations of fat-soluble vitamins. Systemic signs gener-

ally manifest in childhood and include diarrhea, cerebellar ataxia, and

acanthocytosis. Therapy with high doses of vitamin A may allow rapid restoration

of visual function in early stages of disease [47–49]. Laboratory studies of serum

phytanic acid levels and serum lipoprotein electrophoresis can assist in the diagno-

sis of Refsum’s disease and Bassen–Kornzweig syndrome, respectively.
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Visual function in retinitis pigmentosa may be improved by monitoring for and

treating associated conditions such as cystoid macular edema, posterior subcapsular

cataract, and epiretinal membranes. In addition, referral to low vision clinics can

help optimize remaining visual function.

The Argus II Retinal Prosthesis System developed by Second Sight Medical

Products, Inc. is intended to provide electrical stimulation of the retina to elicit visual

perception in blind subjects with retinitis pigmentosa [50]. The technology is cur-

rently being evaluated in a clinical study conducted in the USA and recently received

a CE (European Conformity) mark in Europe which is a key indicator of a product’s

compliance with European Union legislation. The device consists of a surgically

implanted 60-electrode stimulating microelectrode array consisting of 200 mm diam-

eter disc electrodes, an inductive coil link used to transmit power and data to the

internal portion of the implant, an external belt-worn video processing unit and a

miniature camera mounted on a pair of glasses [51, 52]. The video camera is designed

to capture a portion of the visual field and relay the information to the video

processing unit. The video processing unit then digitizes the signal in real time,

applies a series of image processing filters, down-samples the image to a 6 � 10

pixelized grid, and creates a series of stimulus pulses based on pixel brightness values

and look-up tables customized for each subject [51]. The stimulus pulses are deliv-

ered to the microelectrode array via application-specific circuitry and a superior-

temporally placed inductive radio frequency coil link allowing for wireless forward

and reverse telemetry between intra and extra-ocular portions of the system [51]. The

prosthesis is expected to generate limited amounts of vision in patients with severe to

profound vision loss in the range of hand motions or light perception vision.

Age-Related Macular Degeneration

Age-related macular degeneration (AMD) affects 30–50 million elderly people

worldwide and is the leading cause of blindness in individuals over the age of 50

in theWestern world [53, 54]. It is estimated that approximately 30 % of adults over

the age of 75 have some signs of AMD and that at least 10 % develop the advanced

or late stage of disease [55, 56]. AMD as a disease entity primarily exists in two

forms, nonexudative (atrophic or dry) AMD and exudative (neovascular or wet)

AMD. Although the vast majority of patients with AMD are of the nonexudative

type, approximately 90 % of significant vision loss due to AMD is secondary to

central vision deterioration from the exudative type [56, 57]. Early in the course of

disease there is cellular dysfunctional without cell death. In late-stage disease,

AMD is characterized by extensive cell death, as with late-stage RP.

Genetics of AMD

Age-related macular degeneration is a complex disease that results from a combi-

nation of genetic and environmental factors. Many of these factors have been
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identified, but some remain unknown. Because AMD occurs late in life, it has been

very difficult to elucidate the genetic factors correlated with the disease. AMD’s

heterogenicity in phenotypes presents a challenge as well [58]. It also may be

discovered that each individual’s susceptibility is due to multiple genetic and

environmental effects and interactions [58–62].

Symptoms and Clinical Findings

Patients with advanced AMD typically present with blurry central vision,

metamorphopsia, and reduced vision. These symptoms can then evolve to a central

scotoma and severe loss of vision [63]. Ophthalmoscopic examination of the fundus

at late stages of disease demonstrates patchy chorioretinal atrophy in the dry type

and exudation in the wet variety, often manifested by the presence of retinal

hemorrhages and lipid exudate in and around the macula [63].

One of the earliest clinical findings associated with AMD is the presence of

drusen, which represent accumulation of extracellular material beneath the RPE

[64]. In the case of dry AMD, loss of vision develops due to loss of the RPE,

photoreceptors, and/or choriocapillaris; this can lead to patches of atrophy which

are manifest clinically by central and paracentral scotomas [64]. In the case of wet

AMD overexpression or loss of normal apical–basal polarity in the expression of

angiogenic factors such as vascular endothelial growth factor (VEGF) can cause

neovascularization to arise from the neural retina (retinal angiomatous prolifera-

tion) or choriocapillaris. In early stages of the disease patients experience minimal

vision loss but some symptoms may occur such as blurred vision, visual scotomas,

decreased contrast sensitivity, abnormal dark adaptation, and the need for bright

light or magnification to decipher images [64]. In the late stages of advanced non-

neovascular disease, patients typically present with a gradual loss of vision that

becomes more severe and affects central or pericentral vision [64]. This form

usually progresses and leads to irreversible vision loss. In patients with neovascular

disease, loss of vision can be much more sudden with loss occurring within days to

weeks due to subretinal hemorrhage or fluid accumulation secondary to choroidal

neovascularization [64, 65].

Treatment

While the last decade has brought about a revolution in the treatment of exudative

AMD, there are currently no approved therapies for geographic atrophy. Numerous

investigational therapies are in various stages of clinical trials. These include ciliary

neurotrophic factor, complement inhibitors, weekly vaccination with glatiramer

acetate, fenretinide and OT-551 [66–70]. These therapies are promising, but none

have progressed beyond clinical trials, leaving a large void in the current therapy of

geographic atrophy.
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Ninety percent of AMD patients who experience severe vision loss do so as a

result of choroidal or intraretinal neovascularization [71]. Choroidal neovascu-

larization represents growth of neovascular tissue from the choriocapillaris, within

Bruch’s membrane, and eventually in the subretinal pigment epithelium and/or

subretinal space. Retinal angiomatous proliferation is a form of wet AMD in which

the abnormal vessels arise from the neural retina [72, 73]. Developing new

treatments that prevent or reverse vision loss in AMD are of paramount importance

due to the severe visual deficits that occur with this condition and the knowledge

that disease prevalence will increase with shifting demographics of an aging

western population.

Treatments for the wet form of this disease involve intravitreal antiangiogenic

therapy, photocoagulation and photodynamic therapy, and vitreoretinal surgery.

Intravitreal antiangiogenic treatment is currently the primary therapy for wet AMD

and delivered directly to the vitreous. Treatment with intravitreal injection of anti-

VEGF agents improves vision in patients with wet AMD but maintenance of the

therapeutic effect requires continued administration of intravitreal agents, and this

can be associated with potentially serious side effects such as endophthalmitis,

retinal detachment, intraocular hemorrhage, increased intraocular pressure, and, in

some cases, retinal detachment [74]. Photodynamic therapy uses light sensitive

medicine that identifies abnormal vessel growth under the macula. Laser light then

activates the light sensitive dye which can then decrease exudation from the

neovascularization.

Despite these significant advances in the management of exudative AMD, there

is a large unmet need for many patients with this condition. More than 50 % of

patients do not respond to therapy with anti-VEGF drugs, and many patients with

advanced disease have loss of vision due to scar formation and altered subretinal

architecture. These limitations have led to the investigation of alternative treatment

modalities for subfoveal exudative AMD, including subfoveal membranectomy

with and without RPE transplantation or translocation [75–79] and macular trans-

location [80]. Initial efforts to improve vision with cell transplantation alone have

not been met with success; reconstitution of the normal subretinal architecture is

necessary for visual improvement in these individuals. Ultimately this will require

reconstruction of macular anatomy in patients with advanced vision loss in exuda-

tive AMD [81]. Successful maculoplasty will require replacing or repairing dam-

aged cells (using transplantation, translocation or stimulation of autologous cell

proliferation); immune suppression (if allografts are used to replace damaged cells);

and reconstruction or replacement of Bruch’s membrane (to restore the integrity of

the substrate for proper cell attachment). Successful maculoplasty will build on

prior development of surgical techniques for managing severe vision loss in AMD

patients with advanced subfoveal exudation. These techniques include surgical

excision of choroidal neovascularization; [75–79, 82–84] surgical excision com-

bined with allograft transplantation of adult or fetal RPE [85–96] or iris pigment

epithelium [97–108] or macular translocation with or without choroidal membrane

excision [109–127].
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Simple excision of the subfoveal neovascular membrane in AMD leaves a large

RPE defect under the fovea due to the removal of native RPE along with the

surgically removed neovascular complex [128]. Resulting persistent RPE defects

lead to the development of progressive choriocapillaris and photoreceptor atrophy

[129]. Histopathology after subfoveal membranectomy alone shows absence of

large swatches of native RPE, combined with damage to the outer retina, chorioca-

pillaris atrophy and absence and/or damage to the inner aspects of native Bruch’s

membrane [130, 131]. The status of host Bruch’s membrane has a profound effect on

the behavior of RPE transplanted after subfoveal membranectomy [81, 132–139].

Thus reconstruction of Bruch’s membrane is a necessary component for successful

maculoplasty [140]. Given the issues with the status of host Bruch’s membrane, and

the paucity or absence of native RPE and/or photoreceptors in advanced disease

states, there is a need for a combined approach with cell replacement therapy and

Bruch’s membrane reconstruction that will be required to reverse vision loss in these

advanced disorders. There are significant logistical challenges to cell replacement

therapy in this disease, including the need for large numbers of cells needed for

cell replacement, and the need for immune suppression if allo grafts are used for

transplantation. Transplantation of intact sheets and suspensions of primary RPE

cells have been previously attempted in humans, with mixed results in terms of graft

survival and improvement in vision [85, 91, 141–144]. Stem cells are an ideal

replacement source for these lost or damaged cells, since stem cells have a signifi-

cant ability to proliferate in vitro prior to transplantation and in vivo after subretinal

transplantation.

Unique Combination of Anatomy and Imaging Capabilities that

Make the Eye an Excellent Choice for Stem Cell Therapy

It is no accident that the eye has become one of the first organs to be treated with stem

cell therapy in humans, as the eye is an excellent target organ for stem cell therapy

[141]. There are several reasons for this, including the facts that retinal degenerations

are well characterized, and excellent animal models exist for many of these diseases.

In addition, the eye is optically transparent, so that the transplant site can be

monitored directly with slit lamp biomicroscopy, indirect ophthalmoscopy, fundus

photography, auto fluorescence imaging, fluorescein angiography, and optical coher-

ence tomography, which gives us advantages of in vivo “histological sections”

through a transplant area. In addition there is excellent function testing, including

visual fields testing, multifocal electroretinogram (ERG), and microperimetry.

Autofluorescence imaging is a technique that allows for topographic mapping of

fluorescence emanating from the retina, retinal pigment epithelium, and choroid in

health and disease [145, 146]. In this technique fluorescence-based images of the

human fundus are captured using different combinations of excitation and barrier

filters, allowing the ophthalmologist to discern the topographic distribution of

various fluorophores in the retina and deeper layers (Fig. 1.1). Many fluorophores
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are contained within RPE cells, and thus the retinal pigment epithelium will

fluoresce using this type of imaging, allowing for determination of areas of RPE

absence and areas of atrophic patches consistent with areas of geographic atrophy

(Fig. 1.1). As these techniques develop further, it is important to recognize a priori

that there is no reason to think that all fluorophores will be contained within the

RPE. For example, we have previously demonstrated the presence of nitro-A2E

within human Bruch’s membrane in elderly individuals [147], and several authors

have reported decoupling of the auto fluorescent signature of A2E from the overall

autofluorescent signature emanating from the human RPE. It is likely that the

information obtained from autofluorescence imaging of the human retina will

increase dramatically with improvement in the excitation sources and detection

systems. For stem cell transplantation, autofluorescence imaging may allow us to

detect the reconstruction of the RPE monolayer, if the transplanted stems cells

incorporate A2E or other fluorophores after subretinal transplantation.

Fluorescein angiography (FA) is a technique used to image blood flow of the

retina and choroid by using sequential fluorescence imaging following the intrave-

nous injection of sodium fluorescein (Fig. 1.2). Histopathology studies have

revealed that there is an accumulation of autofluorescent material in the retinal

pigment epithelium as well as autofluorescent deposits of extracellular material in

macular and retinal disease [146]. Use of fluorescein angiography allows for the

Fig. 1.1 Autofluorescence imaging of the retinal pigment epithelium (RPE), demonstrating the

topographic distribution of fluorescence in the posterior segment of the human eye. Many

fluorophores are contained within RPE, so that areas of normal RPE may exhibit autofluorescence

compared to dark areas of patchy RPE atrophy
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visualization of atrophic patches that appear well-demarcated, hyperfluorescent

areas due to loss of retinal pigment epithelium [148]. These cells, if intact, would

otherwise weaken transmission.

Indocyanine green (ICG) is a cyanine dye that allows for enhanced imaging

patterns of circulation when compared to fluorescein dye given a spectral absorp-

tion between 805 and 835 nm [149]. As with fluorescein dye, indocyanine allows

for the visualization of atrophic areas of degeneration. Indocyanine green has

primarily been used in the diagnosis and interpretation of occult choroidal

neovascularization in age-related macular degeneration and for identification of

angiomatous lesions of the retina and polyps in the choroid [150]. The unique

properties of indocynanine green allows for visualization of macular dystrophies

through overlying pathologic conditions such as hemorrhage, serous fluid, lipid,

and pigment [151]. Indocyanine green has been utilized as an adjunct tool along

with fluorescein angiography for the diagnosis of age-related macular degeneration

[151].

Angiography allows the ophthalmologist to discern the perfusion status of the

retina and choroid, as diseases that impair perfusion can be diagnosed on the basis

of abnormalities in the dye filling pattern on sequential angiogram photos. In

addition to monitoring for non-perfusion, FA and ICG angiography can be used

Fig. 1.2 Wide field retinal angiography to image blood flow of the retina and choroid obtained

after intravenous injection of sodium fluorescein. In addition to monitoring for non-perfusion,

angiography can be used to detect angioma (shown here) or vascular leakage, which can be a sign

of graft rejection
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to monitor for vascular leakage, which can be diagnosed on the basis of accumula-

tion of extracellular dye due to increased vascular leakage. There are several

reasons why this is particularly useful to the field of stem cell transplantation.

First and foremost, in the absence of native RPE there is secondary non-perfusion of

the choriocapillaris, and this non-perfusion is evident on both fluorescein and ICG

angiography. Animal studies suggest that the choriocapillaris can reperfuse after

replacement of the RPE, and thus angiography can be used to monitor the outer

retinal blood supply for the success of transplanted cells. Both techiques allow for

the monitoring of vascular integrity (Fig. 1.2) [150, 152]. In addition ICG and FA

allow the ophthalmologist to detect leakage of dye, which can be a sign of graft

rejection.

Optical coherence tomography (OCT) is an imaging method currently in wide-

spread clinical use that provides in vivo images from the human retina. OCT relies

on differences in the index of refraction of ocular tissue to generate a cross-

sectional image of the retina and the vitreoretinal interface. OCT can be used to

measure foveal and extrafoveal retinal thickness and can be used to determine the

thickness of the outer nuclear layer and integrity of the outer segment–inner

segment junction. OCT can be used to detect RPE atrophy and outer retinal atrophy

and to determine the thickness of the nerve fiber layer. In geographic atrophy, OCT

can reveal atrophy of the choriocapillaris, particularly with enhanced depth choroid

imaging. In the study done by Neurotech on ciliary neurotrophic factor (CNTF),

OCT was used to demonstrate increasing thickness of the outer retina in patients

with nonexudative AMD who received the CNTF-releasing implant [66]. In princi-

ple, OCT can be used to monitor the ability of transplanted stems cells to repopulate

Bruch’s membrane, the return of retinal thickness back to normal, and reestablish-

ment of choroid thickness in patients with atrophy. OCT can also be used to

determine adverse events after transplantation, including the development of retinal

edema, after treatment of patients with exudative and nonexudative age-related

macular degeneration (Fig. 1.3) [141, 153, 154].

In addition to these structural studies, there are several excellent functional tools

for determining retinal function in eyes of retinal degenerations treated with stem

cells. Microperimetry can assess macular sensitivity and retinal fixation by

providing a retinal visual function map on a selected, localized fundus location

with preset or customized scan patterns (Fig. 1.4a, b) [155]. In this technique, the

retina is stimulated by illumination with small spot sizes under direct visualization;

this allows the examiner to discern the retinal sensitivity as a function of illumina-

tion level and spot size in areas of the retina affected by retinal degenerations, and

in treated and control regions. In principle, a beneficial effect of transplantation

would be manifested by increasing retinal sensitivity on microperimetry.

Similarly, multifocal ERG can also be used to determine a decrease in retinal

function due to disease, and an improvement in dysfunction after retinal transplants.

Multifocal ERG allows for a topographical measure of electrical activity in distinct

areas of the retina (Fig. 1.4c) [156]. Multifocal ERG can stimulate multiple retinal

areas at the same time and detect each response independently [157]. In retinal
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degenerations, there is typically a decrease in amplitude, or absent ERG signal, in

areas of retinal dysfunction; this change is often present only in an area of

dysfunction. There is an improvement in the global ERG in animals with retinal

degenerations receiving transplants of stem cells (Fig. 1.5) [158]. In principle,

improvement in retinal function after stem cell transplantation should be topo-

graphic and result in a focal improvement in ERG in the area of the transplant.

These advantages in imaging and focal detection of function should not be

overlooked, since cell transplants in other areas of the body do not have similar

advantages. These advantages present a unique opportunity to detect the beneficial

effects of stem cells in the treatment of retinal diseases. Their use also makes

diseases such as age-related macular degeneration an attractive option to begin

clinical trials with stem cells. The ranges of clinical and diagnostic tools also help

provide the necessary efficacy and safety data to move trials forward [159].

Status of Efforts to Differentiate Stem Cells into

Photoreceptors and RPE

As a general principle, patients who could directly benefit from cell-based therapies

with retinal degenerative disease such as RP and AMD will require replacement of

lost photoreceptor cells, RPE, and possibly choriocapillaris [160]. Korte et al. have

shown the choriocapillaris can regenerate if areas of absent RPE can be repopulated

with new RPE. Thus the clinical need here is to promote the differentiation of stem

cells into photoreceptors (rods and cones) and RPE.

Fig. 1.3 Optical coherence tomography (OCT) reveals a small pocket of subretinal fluid in an

asymptomatic patient with age-related macular degeneration. OCT can be used to measure the

thickness of the outer nuclear layer and integrity of the outer segment–inner segment junction after

successful cell transplantation
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In dry AMD, loss of vision arises from loss of RPE and photoreceptors with

secondary atrophy of choriocapillaris. A potential treatment for AMD and inherited

disease that affect the RPE and photoreceptors would be cell replacement therapy,

but one significant hindrance to the clinical use of cell transplantation for treatment

of retinal degenerations is the availability of a source of replacement cells.

Although RPE derived from prenatal and postnatal tissue has been isolated and

induced to grow in vitro, such sources are limited and vary in terms of quality and

expansion capacity [141, 161–163]. Moreover, it has been demonstrated that

postmitotic photoreceptor precursor cells can be derived from tissue of the early

postnatal mouse retina (P1–P5) [164, 165]. However, equivalent retinal cells in

humans would have to be derived from second-trimester fetuses. While these

studies provide solid evidence that transplantation strategies show great potential,

an approach such as this would have ethical implications as well as the problem of a

limited reservoir of donor cells [165].

Fig. 1.4 (a) Microperimetry can be used to assess macular sensitivity and retinal fixation in

normal and atrophic areas of retina by providing a retinal visual function map on a selected,

localized fundus location with preset or customized scan patterns. (b) In this technique, the retina

is illuminated with small spot sizes under direct visualization; this allows the examiner to

demonstrate decreased retinal sensitivity in regions of geographic atrophy (Right panel, black
circles) and normal sensitivity in adjacent regions (Right panel, red circles). (c) Multifocal

electroretinography (mERG), which allows for topographical measure of electrical activity in

distinct areas of the retina, can be used to monitor disease progression and efficacy of therapy. In

retinal degenerations, there is typically a decrease in amplitude, or absent ERG signal, in areas of

retinal dysfunction (black tracings)
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Stem cells are an excellent source of cells for replacement therapy given the

limited reservoir of donor cells for RPE replacement strategies, lack of regeneration

of photoreceptors, and variation in success of autografts. Stem cells have been

isolated from a variety of sources including embryo and adult eye [164, 166].

Human embryonic stem cells (hESC) are being investigated as a potential source

of photoreceptors and RPE and are promising candidates for therapeutic use.

As mentioned, the strategy in cell replacement therapy using stem cells is to

differentiate these cells into photoreceptors or RPE. The extracellular environment

plays a critical role in the differentiation of stem cells into the target cell type and

extracellular matrix can differentiate cells into the adjacent cell layer. For example,

hESCs cultured on a monolayer of cells derived from mouse calverium can be

induced to a neural fate and express neural progenitor markers such as paired

boxed protein (PAX)-6, neurofilament, and glial fibrillary acidic protein (GFAP)

(Fig. 1.6) [167]. Similarly, hESCs cultured on a monolayer of RPE (ARPE19) cells

Fig. 1.5 ERGs of Rpe65rd12/Rpe65rd12 mice after subretinal transplantation with ES cell-derived

retinal pigment epithelial (RPE)-like cells confirm functional rescue. (a) ERG from mice after

3 months transplantation. Eyes transplanted with ES cell-derived RPE-like cells (upper) showed
higher b-wave amplitudes compared with control fellow eyes (lower). Traces represent readings
from different mice. (b) b-wave enhancement in mice 1–7 months post-transplantation, as

indicated by black solid bars. b-wave enhancement is defined as the difference in maximum

ERG responses of transplanted and control fellow eyes (mV). Unpaired t tests were performed for

paired differences in b-wave peaks between transplanted and control eyes. At 3 and 6 months post-

transplantation, ERGs from transplanted eyes show a statistically significant rescue effect

(**P ¼ 0.001 and *P ¼ 0.038, respectively). Although the difference was not statistically signifi-

cant at 4, 5, and 7 months after transplantation, the b-wave amplitudes in the transplanted eyes

were consistently higher than the control fellow eyes. The number of mice analyzed per time point

is indicated. ERGs were performed on both eyes (injected and control) simultaneously. There is no

statistically significant difference between injected and control eyes in the other three control

groups.White bar, b-wave enhancement in PBS injected mice; light-shaded bar, b-wave enhance-
ment in mitomycin-C treated PA6 cell transplanted mice; and dark-shaded bar, b-wave enhance-
ment in mitomycin-C treated undifferentiated ES cell transplanted mice. ES-RPE ES cell-derived

RPE-like cells, Mit-C mitomycin-C, ES embryonic stem, PBS phosphate-buffered saline.

Reproduced from Wang et al. [158]
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can be induced to express neural retinal markers such as vimentin, neurofilament, and

cone–rod homeobox (CRX), which is essential in early photoreceptor development

(Fig. 1.7) [167]. Varying extracellular matrix environs such as laminin, matrigel, and/

or vitronectin and fibronectin can also induce embryonic stem cells toward a neural

progenitor or RPE fate. Embryonic stem cells cultured on laminin, vitronectin, and

fibronectin can be induced to express neural progenitor markers such as

neurofilament and neural retina-specific leucine zipper (NRL), an intrinsic regulator

of photoreceptor development (Fig. 1.8). These cells can also be induced to express

RPE markers such as tight junction protein ZO-1 and bestrophin when cultured on

Fig. 1.6 Expression of neural progenitor markers after culturing human embryonic stem cells on

mouse PA6. (a) Human embryonic stem cells became multilayered and formed pigmented spheres

after culturing on mouse PA6 cells for 13 days. Immunofluorescence staining of the spheres

demonstrated the presence of several neural progenitor markers including b-tubulin III (>88%)

(b), GFAP (c), neural filament NF200 (>90%) (d), PAX6 (>88%) (e) and vimentin (f).

Bar ¼ 100 mm
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matrigel (Fig. 1.9). Stem cells grown on human Bruch’s membrane have also been

induced to differentiate to RPE (Fig. 1.10) [167].

Current Status of Human Stem Cells in Clinical Trials

Current clinical trials are underway to evaluate the potential of stem cell therapy in

humans. Advanced Cell Technology, Inc. initiated a phase 1 clinical trial in humans

in 2011 for the treatment of retinal degenerative disorders [141]. This is the first

FDA approved trial for the treatment of macular degeneration using RPE derived

from human embryonic stem cells. RPE cells were derived from a single donor

human embryonic stem cell line. The preliminary report details the phase 1 trial

being conducted to test the safety and tolerability of hESC-RPE in patients with

advanced-stage Stargardt’s macular dystrophy and dry age-related macular degen-

eration. Briefly, a human embryonic stem cell (MA09) line was first used to

generate hESC-derived RPE, which were then characterized and tested for patho-

gen contamination. After pars plana vitrectomy, submacular injections of 50,000

cells were used to treat the patient. Patients were immune suppressed with low-dose

Fig. 1.7 Generation of retinal precursors from neural progenitors after culturing human embry-

onic stem cells on ARPE19 cells for 10 days. Top row, phase-contrast micrographs; middle row,
nuclei in both ARPE19 and progenitors stained with DAPI. Progenitors expressed neural progeni-

tor marker vimentin (C) and neural filament 200 (F) and photoreceptor-specific protein CRX (I),

which is essential during early photoreceptor development. Bar ¼ 50 mm
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tacrolimus and mycophenolate mofetil 1 week before surgery and continued for 6

weeks postsurgery. After 6 weeks patients discontinued tacromilus and continued a

mycophenolate regimen for 6 more weeks. Both patients tolerated the injection

without signs of postoperative inflammation, rejection, or tumorigenicity at time of

the report (4 months follow-up). In the patient with Stargardt’s macular dystrophy,

transplanted cells attached to Bruch’s membrane and persisted throughout the

observation period; there was possible visual improvement in the injected eye as

shown by visual acuity and Goldmann visual field test. In the AMD patient no

clinically detectable sign of successful transplantation was observed, although the

patient did not comply with the immunosuppressive drug regimen [168]. Interest-

ingly, there was mild visual improvement in both eyes of the patient with AMD as

Fig. 1.8 Expression of neural progenitor markers after culturing mouse embryonic stem cells on

poly-D-lysine, laminin, vitronectin, and fibronectin. Cells expressed photoreceptor marker NRL

(a) and neural progenitor markers b-tubulin (b) neurofilament 200 (c) and vimentin (d)

Fig. 1.9 Expression of retinal pigment epithelium (RPE) markers after culturing mouse embry-

onic stem cells on matrigel. Cells expressed RPE makers Z0-1 (a) and Bestrophin (b)
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shown by visual acuity and Goldmann visual field test. It is unclear whether these

visual improvements are due directly to the cell transplant or a secondary cause

such as the immunosuppressive drugs or a placebo effect [141]. Nevertheless, these

important studies demonstrate that stem cells can be transplanted into the subretinal

space in humans without abnormal proliferation, teratoma formation, graft rejec-

tion, or other untoward pathological reaction or safety signal.

These short-term results in only two patients, are preliminary but provide valu-

able proof-of-concept evidence for future treatment of macular degeneration and

Stargardt’s disease in humans. Long-term follow-up in a larger cohort of patients is

needed to draw more meaningful conclusions from this trial [168]. Further trials are

also needed to determine the optimal number of transplanted cells, immunosuppres-

sion regimens, and disease stage for transplantation [168].

Induced Pluripotent Stem Cells as a Therapeutic Option

The recent development of induced pluripotent stem (iPS) cells holds great promise

as a potential reservoir of cells for the treatment of age-related macular degeneration

and other disorders. Induced pluripotent stem cells were initially generated in 2006

by the Yamanaka group and the technology has had dramatic implications both from

an ethical and scientific standpoint [169]. The technology is a significant advance-

ment over prior technology, as it allows researchers to generate pluripotent cells for

Fig. 1.10 Induction of RPE markers in human embryonic stem cells cultured on human Bruch’s

membrane. (a) Cluster of pigmented human embryonic stem cells 4 days after growing on human

Bruch’s membrane explants (arrow). (b) Phase-contrast micrograph of flattened pigmented

epithelium-like cells on human Bruch’s membrane. (c)–(e) hESC-derived RPE under phase

contrast, DAPI and Bestrophin staining, respectively. Bar ¼ 50 mm in (a), (c)–(e); bar ¼ 20 mm
in (b)
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potential therapeutic use without the controversial use of embryos. These cells are

generated by reprogramming adult somatic cells using transcriptional regulators

such as SOX2, OCT3/4, and Klf4 [169, 170]. These cells are then reprogrammed

with similar potential as embryonic stem cells and are capable of differentiating into

three germ layer cell types (mesoderm, ectoderm, and endoderm) [169, 171, 172].

These iPS cells hold great promise for the generation of RPE and photoreceptors for

cell replacement therapy and create a new paradigm as a novel reservoir. Tsang et al.

have generated RPE-like cells from human iPS (Fig. 1.11). Several other groups

have used iPS technology to generate photoreceptors and then transplant these cells

into animal models of retinal degeneration [173–175].

Induced pluripotent stem cells can also provide a platform to study disease

through the use of patient-specific iPS cells. Through the generation of iPS cells

from patients with specific diseases, models can be developed to express particular

disease phenotypes which can then be used to understand pathophysiology of

disease and determine the efficacy of therapeutic interventions [176]. These models

can also be developed to help understand human inherited diseases given their

clinical and genetic heterogeneity [177]. Cells derived from a particular patient can

be used as a biological tool for drug discovery and toxicity testing of therapeutic

agents, providing a new paradigm for personalized medicine [176].

Utilizing iPS cells as a tool for cell replacement therapy could also reduce the

possibility of immune rejection given their autologous nature. Use of patient-

specific iPS-derived RPE, generated from somatic cells of the potential transplant

recipient with geographic atrophy, has one major and important theoretic advantage

over other potential cell sources, namely, the avoidance of graft rejection. This is an

important advantage, since long-term systemic immune suppression is poorly

tolerated in elderly patients. Although the presence of anterior chamber-associated

immune deviation (ACAID) confers some immune privilege in the subretinal space,

Fig. 1.11 Generation of RPE-like cells from human-induced pluripotent stem (iPS) cells. RPE

derived from iPS grown on PA6 feeder cells (a, b). PA6 feeder cells exhibit stromal-derived

inducing activity (SDIA), which promotes differentiation into RPE (Image courtesy of Stephen

Tsang)
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allogeneic RPE will undergo graft rejection after subretinal transplantation unless

immune suppression is used [178, 179]. Use of patient-specific iPS may circumvent

graft rejection, which is one of the major challenges to ensuring graft survival in the

subretinal space.

Challenges remain to the successful use of iPS cells. Induced pluripotent cells

derived from the affected patient contain the predisposing mutation that caused the

disease. This can provide a unique disease model but the mutation may also impede

the function of the transplanted cells. These stem cells may have to first be repaired

by targeted gene therapy or other techniques prior to transplantation. Additional

work is also needed to translate the advances of iPS cells into clinical trials to assess

safety and efficacy. Better understanding of iPS cell technology and refining the

methodology of their generation will have a significant impact on retinal

degenerations and regenerative medicine.
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