
Chapter 16
Addressing the Challenge
of Autoimmunity in the Treatment
of Diabetes with Stem Cells

Karen English and Kathryn J. Wood

Abstract Type 1 diabetes mellitus is a complex autoimmune disease process
encompassing a number of stages, the most significant of which is the loss of
immunological tolerance and the initiation of immune dysfunction resulting in the
selective destruction of pancreatic b cells. Although exogenous insulin therapy has
proven efficacious, it does not address the underlying cause of the disease.
A treatment strategy encompassing immunosuppressive and b cell replacement
therapy that will promote immunological tolerance, without toxicity or the
induction of lymphopenia is required for treatment of patients with hypoglycaemic
unawareness. Importantly, this combination strategy must harness a therapy that
provides a replacement source of insulin-producing b cells without toxic side
effects associated with long-term immunosuppression and induces tolerance to the
replacement b cells in order to prevent destruction by allo- and autoreactive
T cells. Here, we discuss the current immunosuppressive therapies and potential
sources of replacement b cells and review the pitfalls in current combined
immunosuppression and islet transplant therapy. Finally, we examine possible
combination strategies including stem cells that are likely to succeed in fulfiling
the above criteria for the treatment of diabetes in the future.
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16.1 Introduction

Type I diabetes mellitus (T1DM) is an autoimmune disease in which autoreactive
T cells target the pancreatic insulin-producing b cells. Destruction of b cells leads
to insulin paucity, blood glucose dysregulation and subsequent hyperglycaemia
which in turn result in a number of long-term micro and macro-vascular com-
plications [1]. Diabetes is fast becoming a common childhood disease with the
incidence set to double in children under the age of 5 by 2020 [2]. On a global
scale, the World Health Organisation (WHO) estimate that 220 million people
suffer from diabetes worldwide, a number which is set to increase twofold by
2030. The costs of treatment and the clinical management of the associated
complications are substantial. The need for a preventative or regenerative therapy
is perhaps at its most urgent since the discovery and development of insulin in the
1920s by Banting, Best, Collip and Macleod. Existing therapies include insulin
therapy, cell-based therapy and solid organ transplantation as well as immuno-
therapy [3]. Although insulin therapy revolutionised the treatment of diabetes,
there are limitations, particularly in the group of patients with hypoglycaemic
unawareness. As insulin therapy does not address the cause of the disease, there is
need for a therapy which has the capacity to address the autoimmune response, the
replacement of insulin producing b cells and, if necessary, the problem of
alloreactivity evoked by the replacement therapy.

A combination of genetic susceptibility [4] and environmental factors trigger
changes in the immune system leading to immune dysregulation and subsequent
autoimmunity accompanied by the development of islet specific autoantibodies
and autoreactive T cells. The disease process starts with genetic susceptibility [4]
(stage 1) followed by triggering events (stage 2). Immune dysregulation and
environmental triggering (stage 3) are followed by the loss of b cell function
detected by abnormal glucose tolerance test (stage 4). At diabetes onset (stage 5)
almost 80 % of the beta cells are already lost. The final stage of this process
(stage 6) is the total loss of b cells with patients dependent on insulin therapy for
survival [5] (Fig. 16.1).

16.2 Current Therapeutic Strategies for Type 1 Diabetes
Mellitus

A number of potential therapeutics have been investigated in pre-clinical models
of diabetes with many demonstrating efficacy in prevention or reversal of T1DM,
however, in the majority of cases, these results do not extrapolate to humans.
Factors including variations in genetic predisposition, environmental triggers as
well as inter-individual heterogeneity in disease pathogenesis all effect therapeutic
outcomes [6–8]. Additionally, a major issue concerning the current replacement
therapy for T1DM, namely islet or pancreas transplantation, is the problem of
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recurrent autoreactive T cells [9] which seem to be resistant to suppression by
conventional immunosuppressive drugs. Here, we discuss the immunotherapies
and potential sources of b cells for the treatment of diabetes patients focussing on
the possibility of combination therapies of immunosuppressive agents that will
effectively address autoimmunity and alloreactivity (Fig. 16.2).

16.3 Immunotherapy

16.3.1 Global Immunosuppression

Randomised trials initiated in the 1980s tested the effects of global immunosup-
pressive drugs in modulating autoimmune diabetes, including cyclosporine [10, 11],
azathioprine alone [12], or in combination with prednisone [13], anti-thymocyte
globulin and prednisone [14] and rituximab (humanised monoclonal antibody (mAb)
specific for CD20) [15]. All of these strategies led to improved endogenous b cell
function and a decrease in insulin requirements in patients with new onset diabetes.
However, the beneficial effects were limited to the duration of the treatment and the

Fig. 16.1 Stages of Type 1 Diabetes. Diabetes is thought to be initiated by interactions between
genetic susceptibility and environmental factors (1). Evidence suggests that triggering events
such as enterovirus infection contribute to the pathogenesis of T1DM (2). Loss of immunological
tolerance coincides with immune dysregulation (3) resulting in the activation of autoreactive
T cells and subsequent destruction of b cells leading to loss of b cell function (4) and significantly
decreased b cell mass signifying the onset of diabetes (5) which inevitably results in insulin
dependence (6). Treatments are specifically targeted to stage (3) using immunosuppressive
tolerance induction strategies and importantly stage (4/5) utilising b cell replacement therapy in
an attempt to prevent insulin dependence
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side effects associated with cyclosporine in particular [16] suggested that global
immunosuppressive therapy alone was unsuitable for treatment of T1DM.

The standard immunosuppression used in whole pancreas transplantation can
vary between different centres, however, a protocol involving thymoglobulin as
induction, with tacrolimus, mycophenolate mofetil (MMF) and prednisone for
maintenance therapy, results in 80–85 % of grafts maintaining function after
1 year [17]. In contrast, utilisation of the Edmonton immunosuppressive protocol
(optimised over a number of years) in conjunction with transplantation of allo-
geneic human islets has proven successful in rendering 100 % of patients (n = 7)
with T1DM insulin independent for at least 1 year and provides a prime example
of the potential of immunosuppressive drugs (discussed in more detail below) [18].
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Fig. 16.2 Strategies of combination therapy for T1DM. The onset of diabetes is thought to be
initiated by multiple factors involving genetic and environmental factors as well as triggering
events which induce b cell death, initiating the process of autoimmunity—in which autoantigen
and autoreactive T cells play a key role. Current therapy consisting of donor allogeneic islet
transplant and conventional immunosuppressive drugs induce a state of leukopenia and promotes
the homeostatic expansion and activation of pre-existing autoreactive T cells that target the
transplanted islets for destruction and result in graft failure. Future therapy involving an ES cell,
iPS cell or adult stem cell-derived b cell source in conjunction with a combination
immunotherapy consisting of anti-CD3, MSCs, Treg, autoantigen therapy or non-depleting
immunosuppressive drugs may provide a more successful outcome through avoidance of
leukopenia and induction of tolerance
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16.3.2 Antigen-Specific Therapies

A number of diabetes related autoantigens including insulin, pro-insulin, insulin
peptides, glutamic acid decarboxylase (GAD) and hsp60 and hsp peptides p277
have been utilised in tolerance induction strategies. The NOD mouse has provided
a useful platform to test the efficacy of antigen-specific therapy in diabetes. Studies
have demonstrated the ability of exogenous insulin, pro-insulin or insulin peptides
delivered orally, subcutaneously, or intranasally to prevent or suppress diabetes
[19–23]. Delivery of GAD [24–27] or hsp60 and hsp60 p277 peptide [28, 29]
through similar routes, also revealed promising results in NOD mice. Extrapola-
tion of these antigen-specific therapies from the NOD mouse into human clinical
trials has, however, proven difficult. Trials performed in new onset diabetes
patients using oral insulin or an altered peptide ligand of the 9–23 insulin B chain
peptide (NBI-6,024) demonstrated no effect [30, 31].

16.3.3 T cell and Co-Stimulation Targeting Agents

A number of monoclonal antibodies targeting CD3, CD4, CD8 and ab T cells as
well as major histocompatibility complex (MHC) class II, CD28 and CD154 have
been examined for their capacity to prevent or reverse T1DM [32–38]. However,
among these; anti-CD3 therapy has prevailed as the most promising so far.

16.3.4 Anti-CD3 Therapy

Anti-CD3 mAb therapy has successfully induced a permanent state of disease
remission in a rodent model of T1DM. In these studies antigen-specific tolerance was
induced with mice regaining full immune competence after a few weeks of treatment
[33, 39]. Clinical trials tested the efficacy of two humanised Fc engineered mono-
clonal anti-CD3 antibodies called teplizumab (Hokt3c1 (Ala-Ala)) [40, 41] and
otelixizumab (ChAglyCD3) [42, 43]. A multi-centre, Phase II placebo-controlled
trial consisting of 80 patients with new onset T1DM receiving a 6-day treatment of
either otelixizumab or placebo was carried out. This trial demonstrated that the anti-
CD3 antibody preserved b cell function. Patients receiving the antibody maintained
significantly higher levels of endogenous insulin secretion than placebo controls at 6,
12, 18 and 48 months after treatment [42, 43]. However, after 24 months, the ben-
eficial effect diminished over time with a decline in b cell function and increase in
insulin dependence [43]. Similar results were observed in the teplizumab trail which
entailed a 12 or 14 day mAb treatment with 2–4 days of incremental dose escalation
to 10 days of a full dose of drug mAb. There were significant improvements
in C-peptide responses accompanied by reduced haemoglobin A1c (HbA1c) and
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insulin requirements in patients receiving the mAb, however, the effects waned after
2 years [40]. Furthermore a small open labelled phase IIb clinical trial demonstrated
that a higher dose (40 % higher) of teplizumab resulted in increased adverse events
without an improved efficacy of the drug [44].

It seems likely that autoreactivity was only transiently suppressed in these trials
leading to the subsequent loss of additional b cells and the increased requirement
for exogenous insulin with time after cessation of the therapy. A study carried out
by Albamunits et al. clearly demonstrated that b cell replication is reduced after
immune therapy using an anti-CD3 mAb resulting in progressive loss of b cell
mass [45], similar to the functional decline observed in humans after treatment
with anti-CD3 [43]. The mode of action of the anti-CD3 mAb remains unclear but
alteration of lymphocyte migration or trafficking, rather than depletion, has been
suggested [44].

Although this therapy has been the most promising to date, it is likely that a
combination of immunomodulatory agents coupled with a b cell replacement
strategy (or b cell regeneration strategy in patients with a small but sufficient b cell
mass) will be more efficacious in addressing the multiple factors associated with
current allogeneic islet transplantation and future b cell replacement providing a
more successful outcome.

16.3.5 Regulatory T cell Therapy

Autoimmune diabetes manifests from the loss of immunological tolerance. T1DM
patients as well as NOD mice, exhibit a decreased frequency of regulatory T cells
(Treg) with alterations in function [46–49] and IL-2/IL-2R signalling pathway
[50]. There is evidence to suggest that NOD mice have Treg that prevent diabetes
development early on, but the functional capacity of the Treg is lost over time [51],
allowing dysregulated autoimmune attack of insulin producing b cells [52, 53].
Similarly, Treg cells taken from peripheral blood of T1DM patients also exhibit
defective suppressive functions in vitro [54].

Although it seems likely that endogenous naturally occurring Treg are func-
tionally defective in diabetic mice, adaptive Treg present in NOD mice have been
shown to suppress autoreactive T cells mediated by TGF-b [51] and therefore
represent a possible target for tolerance induction in vivo. Treatment with anti-
CD3e antibody induced tolerance in NOD mice through the activation of adaptive
Treg in a TGF-b-dependent manner [55], highlighting the possibility of driving a
tolerance induction pathway through mAbs. TGF-b-producing Treg have also been
implicated in tolerance induction strategies involving immunisation with plasmid
DNA encoding GAD65, IL-4 and IL-10 [56] in a NOD mouse model.

The other option available involving Treg therapy, is the selective ex vivo
expansion of polyclonal or antigen-specific Treg [57]. Tang et al. [58] have
demonstrated that in vitro expanded antigen-specific Treg cells suppress
autoimmune diabetes in the NOD mouse with greater potency than expanded
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polyclonal Treg. Utilising a humanised mouse model, our lab has demonstrated the
capacity of ex vivo expanded human Treg to prevent rejection of a life sustaining
human islet allograft in streptozotocin induced diabetic mice (Wu, Wieckiewicz
and Wood unpublished results). The data from animal models of diabetes supports
the use of human Treg in the treatment of autoimmune diabetes, however, the
major discrepancy is the ability to generate human antigen-specific Treg directed
against autoantigen. Additionally, although Treg have proven efficacious in the
NOD mouse, extrapolation to the clinic will not be without difficulty and it is
likely that a combination therapy of Treg and a short-acting immunosuppressive
drug like anti-CD3 may be efficacious in breaking autoimmunity or preventing
islet/stem cell-derived b cell rejection.

16.3.6 Mesenchymal Stem Cells

Mesenchymal Stem Cells (MSCs) are adult stem cells found within the bone
marrow (as well as many other tissues and organs) whose primary functions are to
provide stromal support for hematopoietic stem cells and to act as a reservoir for
the continuous turnover of mesenchymal lineages under regular conditions.
Moreover, MSCs possess immunosuppressive characteristics which make these
cells an attractive source for cellular immunotherapy both in transplantation and
autoimmunity settings.

In the context of autoimmunity, MSCs have been shown to be efficacious in
suppressing autoreactive T cell responses in mouse models of colitis [59],
experimental autoimmune encephalomyelitis (EAE) [60] and collagen induced
arthritis (CIA) [61] among others.

Furthermore, MSCs have proven therapeutically beneficial in a mouse model of
T1DM [62, 63]. Administration of MSCs derived from BALB/c or non-obese
resistant strain but not non-obese diabetic (NOD) mice, delayed diabetes onset in
pre-diabetic recipients. This delay in disease onset was thought to be associated
with the expression of PD-L1 by MSCs and the promotion of a Th2 type response
in treated NOD mice [62]. Importantly, this study highlights the important fact that
MSCs isolated from diabetic patients may not have the same immunosuppressive
capacity as MSCs from healthy patients and, therefore, use of allogeneic MSCs
may need to be considered in this case.

Considerable evidence supports the ability of MSCs to prevent allogeneic graft
rejection [64]. A number of in vivo studies demonstrate the ability of MSCs to
suppress alloreactive responses both in skin and heart allograft models [65, 66]. In
a fully MHC-mismatched baboon skin transplant model, a single dose of donor
MSCs administered intravenously resulted in prolonged skin graft survival
(11.3 ± 0.3 days compared to 7.0 days in untreated controls). However, this effect
was non-specific as third party grafts were also prolonged in a similar time scale
[65]. Casiraghi and colleagues report that both donor and recipient derived MSCs
have the capacity to prolong cardiac allograft survival in a semi-allogeneic but not
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a fully MHC-mismatched cardiac allograft model. Protection of cardiac allografts
was associated with the expansion of Treg cells and the abrogation of anti-donor
Th1 activity. Significantly, this study highlighted the differences between donor
and recipient derived MSCs and shows that pre-transplant intraportal adminis-
tration of a single dose of MSCs proved more efficacious than the intravenous
route [66]. Unfortunately, this is not something that we can test in human subjects
and therefore we must learn what we can from the successful use of MSCs in
steroid refractory graft versus host disease (GvHD) patients, which involves
intravenous administration of MSCs of autologous or allogeneic origin [67].

The capacity of MSCs to prevent donor allogeneic islet graft rejection was
investigated utilising a life-preserving mouse islet allograft model. This strepto-
zotocin induced diabetes model allowed us to examine the effect of MSCs in
suppressing an alloreactive effector T cell attack on transplanted allogeneic islets
in an immunodeficient mouse. In the absence of MSCs, donor allogeneic islet grafts
were rejected with a mean survival time of 30 days, however, in the presence of
MSCs islet grafts were maintained long term with stable normoglycemia. The
ability of MSCs to prevent rejection in this study is likely an attribute of co-
localisation of MSCs with the islet graft associated with the provision of a local
immunosuppressive milieu by MSCs in the locality of the islet graft. In this local
microenvironment MSCs produce soluble factors, in particular MMP-2 and 9 which
impair alloreactive T cell activation and expansion [68].

In addition to suppression of autoreactivity, MSCs also potently modulate
alloantigen specific responses and thus provide a promising therapeutic strategy
for the treatment of type 1 diabetes. MSCs are unique as a cellular therapy in that
they have the capacity to address both the problem of autoimmunity and allore-
activity against a cell replacement therapy for diabetes patients. However,
although MSC therapy has shown much promise in controlling both allo- and
autoreactivity, there is little doubt that MSCS therapy alone will not be sufficient
and will likely be more efficacious as a combination therapy; with a single dose of,
for example, anti-CD3.

16.4 b Cell Replacement Therapy

16.4.1 Islet Transplantation

By far the most forward moving of the cell replacement therapies is allogeneic islet
therapy, which involves the transplantation of deceased donor-derived islets per-
cutaneously into the portal vein of the liver, combined with immunosuppressive
drugs. Islet therapy has recently improved in efficacy through introduction of the
Edmonton protocol [18]. The success of the Edmonton team involved an improved
islet isolation technique combined with infusion of large numbers of freshly isolated
islets. In addition, an altered immunosuppressive regimen avoiding steroids

320 K. English and K. J. Wood



(glucocorticoid therapy), and combining a reduced dose of tacrolimus (a calcineurin
inhibitor which can inhibit insulin secretion) with the addition of sirolimus (mTOR
inhibitor) [18] was implemented. Under this regimen, 68 % of patients receiving
islet allografts maintained insulin independence at year 1. Unfortunately, insulin
independence was not sustained long term with less than 10 % of patients remaining
insulin independent at year 5. However, 80 % of patients had measurable levels of
C-peptide indicating the continuous low level production of insulin [69], which
allows improved glycemic control. The benefits associated with islet transplantation
although small, supports the utility of this procedure in a select group of patients
experiencing hypoglycaemic unawareness (patients who have lost significant b cell
mass). Problems associated with this therapy are the inefficient isolation procedure
and the requirement of at least two pancreatic donors, for which there are simply not
enough donors available. This lack of islet tissue has lead to the proposed use of adult,
embryonic or induced pluripotent stem (iPS) cells for replacement therapy.

16.4.2 Embryonic Stem Cells

Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of
the blastocyst with the capacity for unlimited self-renewal in an undifferentiated
state, and the ability to undergo induced differentiation into all three germ layers in
vitro and in vivo. The ability of mouse ES cells to differentiate in vitro into
functional insulin producing cells or islet like clusters which can recover and
maintain normoglycemia in streptozotocin-induced diabetic mice has been demon-
strated by a number of groups [70, 71]. Human ES cell differentiation into insulin
producing cells has proven more difficult due to an inability of ES cells to generate
definitive endoderm. However, Baetge’s group have generated a protocol that
promotes differentiation of human ES cell derived endodermal cells into cells
expressing pancreatic markers [72]. Although this protocol did not lead to glucose
responsive insulin producing cells in vitro, implantation of human ESC derived—
endodermal derived—insulin positive cells in immunodeficient mice resulted in
the production of insulin in response to glucose several months after transplan-
tation [73]. This study was the first of its kind to demonstrate that insulin pro-
ducing cells derived from human ES cells could maintain normoglycemia in a
mouse model of streptozotocin-induced diabetes. However, this study also high-
lights the fact that further research is required in order to fully optimise the
differentiation protocol and to ensure phenotypically and functionally stable
insulin producing cells are induced.

Importantly, the issues that these studies do not address is that of autoimmune
and alloreactive attack. In the case of alloreactivity against ES cell-derived tissue,
it is likely that these cells/tissues will be recognised as foreign and subsequently
rejected by the immune response. The immune response directed against fully
differentiated insulin producing tissue derived from mouse ES cells was examined
using a mouse model of streptozotocin-induced diabetes. In this study, functional
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insulin producing cells were rejected in immunocompetent hosts and this response
was mediated primarily by T cells [74] with evidence for involvement of both
innate and adaptive components of the immune system [75–77] .

16.4.3 Induced Pluripotent Stem cells

Ground breaking research describing the factors required to reprogram adult cells
back into iPS cells in 2006 [78] has paved the way for tissue engineering and
therapeutic application. Initial problems concerning homogeneity and efficiency of
the reprogramming process are now being addressed promptly by a number of
groups. However, clinical application of iPS cell-derived tissue remains a long
way off with safety concerns regarding the stability of the cells in vivo and the
possibility of tumour formation. Recently Tateishi et al. reported that human iPS
cells derived from skin fibroblasts could be differentiated into islet like clusters,
which expressed insulin. Of four iPS cell lines, two differentiated into islet like cell
clusters and one of these released low levels of C-peptide in response to glucose
stimulation [79]. iPS cells have also been derived from adult cells from patients
with disease and one group have reported the differentiation of skin biopsy-derived
iPS cells into insulin producing cells. This study was more convincing with evi-
dence that cells released human C-peptide (5 fold increase) in response to glucose
stimulation, suggesting that insulin producing cells were functional [80].

16.4.4 Adult Stem Cells

Bone marrow-derived cells can differentiate into a number of lineages and have
been demonstrated to play a role in regeneration and repair and therefore represent
an attractive source for tissue engineering in T1DM. Transplantation of bone
marrow-derived cells into streptozotocin-treated mice led to the instigation of
endogenous pancreatic tissue regeneration resulting in insulin production and
improved survival [81]. In contrast, a number of studies have suggested that bone
marrow-derived cells differentiated into insulin positive cells, however, the stem
cell community is still not convinced that this lineage switch is possible. None-
theless, two studies in particular have demonstrated that bone marrow-derived
islet-like clusters transplanted into streptozotocin-induced diabetic rodents have
the capacity to control blood glucose and maintain normoglycemia which was
reversed after removal of the graft [82, 83].

Umbilical cord blood has stimulated interest both as an immunomodulatory
therapy and as a potential source of insulin-producing cells for use in T1DM. Islet-
like clusters derived from human Wharton’s jelly MSCs in umbilical cord matrix
produced low levels of insulin and have some effect in controlling blood glucose
and maintaining normoglycemia in vivo [84]. Overall, it seems likely that adult
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stem cells may have the capacity to differentiate into insulin producing islet like
cells, however, the process of trans-differentiation is as yet an unproven phe-
nomenon and therefore it is unlikely that adult cells will provide the most useful/
optimal source of replacement b cells.

16.5 Strategies to Address Autoimmunity in b Cell
Replacement Therapy

The prevailing issues that need to be addressed in the treatment of T1DM with b
cell replacement therapy are the presence of autoreactive T and B cells specific for
islet cell antigens (autoantigens), as well as lymphocytes with the capacity to
respond to mismatched MHC antigens (alloantigens) of the b cell donor.
Additionally, depending on the source of b cells, there may be other antigens, as in
the case of ES cell-derived b cells which could evoke immune activation; for
example ES and iPS cells express surface antigens that disappear at later stages of
development and which are not expressed by adult cells [85, 86]. Graft failure has
been reported in a minority of transplant patients and has been attributed to chronic
rejection. However, another reason for graft failure is the recurrence of autoim-
munity which was initially described in patients receiving pancreas graft from
HLA-identical siblings with no or reduced immunosuppression [87, 88]. A large
study examining 100 grafts described autoimmune diabetes recurrence in *10 %
of patients receiving donor grafts with immunosuppression [89]. More recently,
the recurrence of T1DM after simultaneous pancreas-kidney transplantation,
despite the use of immunosuppressive drugs, was reported to be associated with
both autoantibodies and autoreactive T cells [9]. Furthermore, conventional
immunosuppressive drugs currently used in allogeneic donor islet transplantation
prevent rejection through the depletion of leukocytes. The immune system
responds to this through production of common c chain cytokines IL-7 and IL-15
which stimulate the expansion of any remaining lymphocytes in an effort to restore
homeostasis [90–92]. This effect also results in the expansion of pre-existing
autoreactive cells and can lead to destruction of transplanted islets [93, 94].
Indeed, the production of IL-7 was shown to promote the expansion of auto-
reactive T cells in response to a lymphopenic environment [93]. Moreover,
examination of the serum from T1DM patients after islet transplant, revealed the
presence of increased concentrations of IL-7 and IL-15 [95]. There is some
evidence to suggest that certain immunosuppressive drugs will promote homeo-
static proliferation while others may inhibit it. Two patients receiving MMF plus
tacrolimus in place of sirolimus plus tacrolimus (due to sirolimus intolerance)
displayed reduced proliferation with no change in IL-7 expression, indicative of
the capacity of MMF, but not sirolimus, to block cell proliferation [95]. This
phenomenon was also observed in 3 patients who received kidney-pancreas
transplant with anti-thymocyte globulin induction therapy followed by MMF plus
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cyclosporine A (CyA) or FK506 maintenance therapy [95], demonstrating that the
immunosuppressive therapy utilised may impact on the outcome of islet or b cell
replacement therapy [96].

A poor clinical outcome has also been associated with the presence of islet
specific autoantibodies [97] indicating that assessment of autoantibodies present
before transplant of replacement b cells will be important in the choice of (patient
tailored) immunosuppressive therapy.

16.6 Conclusion

Although significant progress has been made in the field of immunotherapy to halt
autoimmune T1DM, the development for a combination therapy encompassing
both immunotherapy and b cell replacement therapy (currently donor islet trans-
plantation but stem cell-derived b cell tissue in the future) has been somewhat
elusive. Encouragingly, there are already a number of promising therapies avail-
able targeted at autoimmune diabetes, which, if combined, could provide a very
successful therapy, the key to which is undoubtedly a tolerance induction strategy.

In summary, the issues which need to be addressed in the quest for this optimal
therapy are (1) evaluation of the presence and scale of pre-existing autoreactive T
cells in patients before transplant of replacement b cells; (2) examination of the
effect of new immunosuppressive regimens on the activation and expansion of
pre-existing autoreactive T cells after transplant and (3) development of new
therapeutic agents that have the capacity to prevent rejection and regulate the pre-
existing autoimmune response without inducing profound leukopenia.
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