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Abstract The past few years have seen the development of a suite of extended
epidemic models that take into account the “active” nature of individuals and/or
population. Many models start from the natural premise that individuals are not
“passive” but, on the contrary, receive and process information about potential
or ongoing epidemics. Therefore, risk perception and behaviour change play a
major role in shaping and changing the outcome of an epidemic. Incorporating
such aspects into classical epidemic models poses many challenges. First of all,
there are many open questions about how information is generated, its availability
locally and globally, its routes of dissemination and diminishing returns of “old”
information. All these factors lead to a significantly extended state space with
many more variables and parameters compared to standard epidemic models.
Thus, apart from issues around measuring and quantifying risk perception and/or
behaviour change driven by information, a major modelling challenge revolves
around model complexity. More precisely, how to achieve an optimal balance
between model accuracy and tractability. In this chapter, starting from a pairwise
model that accounts for the concurrent spread of an epidemic and information,
modelling complexity and results are discussed by (1) evaluating the effectiveness
of various information generating and transmitting mechanisms followed by (2) the
deconstruction of the pairwise model to a simpler variant and by (3) discussing
concrete modelling alternatives (i.e., pairwise and effective degree models for
dynamic networks) and potential future modelling trends in the area of coupled
models of human behaviour and disease transmission.
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1 Introduction

Classical epidemic models operate on the assumption of a “passive” population
where neither individuals nor population can absorb and process information arising
from a potential or an ongoing epidemic [1, 4]. This is a strong and unrealistic
assumption since for most diseases (e.g., sexually transmitted infections (STIs),
SARS, pandemic influenza, childhood diseases) the heightened risk of an outbreak
or ongoing epidemic leads to a series of measures aimed at preventing or limiting
the negative impact of an epidemic. These can be broadly divided into two classes:
(1) information generation and dissemination and (2) concrete measures taken by
individuals or groups to prevent infection or limit onward spread. While measures
of the first type can range from centrally driven population-wide campaigns and
dissemination of news via different mass-media to more local interactions in
acquaintance circles, measures of the second type include concrete pre-emptive or
reactive measures such as vaccination [2], limiting exposure via altering contact
patterns [9], seeking early treatment or taking medication (e.g., antiviral drugs) [6].

In this context and probably against intuition, information is not always bene-
ficial. For example, the risk associated with vaccination has been documented to
lead to limited uptake to the extent where herd-immunity thresholds have been
breached [2]. To capture such counterintuitive effects various game theoretical
models have been developed to combine epidemic dynamics with risk perception
and model different strategies of vaccine uptake or avoidance [18]. Such models
first and foremost are determined by the type of disease, e.g., SIS (susceptible-
infected-susceptible) or different versions of it for STIs [17] and SIR (susceptible-
infected-recovered) for childhood disease and influenza, and these are then modified
to account for information generation and transmission together with modelling the
benefits or penalties of having the information and choosing to act on or ignore it.
For example, for STIs, Chen [3] formulated an economic/game-theoretic epidemic
model to capture the interplay between the quality of information and its availability,
the prevalence of the infection and disease dynamics.

A more traditional, population dynamics type approach has been proposed by
Funk et al. [7] where information about the disease generates awareness which
in turn can lead to discounted infection rates. The model is based on an extended
version of the SIR combined with results based on individual-based simulation. As a
result of the added complexity imposed by the awareness, the S, I and R classes were
further divided to reflect both disease and awareness status. They have found that
for the compartmental ODE model the spread of awareness has no effect on the
basic reproduction number R0 but leads to a reduction in the number of infecteds.
The consideration of the same model on theoretical network models has revealed
that if the disease transmission is not too fast, the generation and transmission of
awareness can stop the outbreak, i.e., R0 < 1.

In this chapter a coupled model of information and disease transmission in the
context of STIs [10, 17] is revisited and this model is used to discuss issues around
the efficacy of various information generating and transmitting mechanisms and
modelling complexity. The results and discussion from the analysis of the model



Incorporating Human Behaviour in Epidemic Dynamics: A Modelling Perspective 127

are followed by a deconstruction of the model into its simpler components by first
relaxing assumptions about the population contact structure and then about the
way in which information is generated and transmitted. This helps to pinpoint and
discuss model assumptions along with identifying alternative modelling approaches
which account for evolving or adaptive contact networks that link naturally to
aspects around the concurrent spread of disease and information.

2 Model

The model presented here is based on that formulated by Hatzopoulos et al. [10]
but with some new aspects on interpretation of results and calculation of R0. This
pairwise model captures both disease and information transmission where evolution
equations are written down for the expected number of individuals of various types
which in turn depend on the expected number of pairs. The dependency of singles
on pairs and then of pairs on triples is curtailed by using a closure relation where
triples are approximated in terms of singles and pairs [11]. This framework allows us
to take the population contact structure explicitly into account and thus produce an
accurate description of the problem where, as an added advantage, multiple routes
of information transmission (e.g., local and global) can also be accounted for.

Following on from [10, 12], individuals can be divided into one of five different
classes that specify the individuals’ status with respect to disease and information.
These are susceptible non-responsive (Snr), susceptible responsive (Sr), infected
non-responsive (Inr), infected responsive (Ir) and in treatment (T ). The term
responsiveness denotes the willingness to act or respond to information and is
key in trying to avoid infection or halting further spread [17]. The important
components of the model relate to the generation and transmission of information
as well as the benefits of possessing and acting on information. In the model,
information or responsiveness is generated in three ways: (1) Inr → Ir as a result
of symptoms, (2) Ix → T , where x ∈ {nr,r}, as a result of being diagnosed and
moving to the treatment class and (3) Xnr →Xr, where X ∈{S, I} as a result of global
information transmission. While the first two are intuitive, the latter is used to model
the effect of mass-media campaigns which act as a single-source of information
with its strength and duration often linked to the prevalence of infection in the
population. Information transmission is possible in two different ways: (1) local or
individual to individual and (2) mean-field. While information dissemination locally
captures circles of close friends or acquaintances, the mean-field type transmission
accounts for a less clear-cut interaction at the population level, often centrally
lead or orchestrated. Many of these mechanisms of information generation and
transmission pathways can be easily linked to various ways in which information is
disseminated in real life. The model also accounts for the depreciation or decay of
responsiveness over time and this is achieved by allowing Xr → Xnr-type transitions
at rate dX , where X ∈ {S, I}. The main benefits of being informed and responding
to information amount to reduced susceptibility, reduced infectivity and/or faster
recovery if infected. To keep the model as general as possible, all the above factors
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Table 1 All transitions allowed by the coupled infection/information system, where
X ,Y ∈ {S, I} with individuals in treatment acting as members of the responsive classes
(i.e., Xr ∈ {Sr, Ir,T}). Individuals in the treatment class return to being susceptible non-
responsive and responsive at rate pr and r(1 − p) with 0 ≤ p ≤ 1, respectively. The
reduced susceptibility, infectivity and faster recovery, as a result of acting on information,
is captured by the discount factors σs,σi ∈ (0,1] and σr > 1. To model the mean-
field transmission of information it is assumed that per unit time an individual may
momentarily come into contact with kMF others not in their social network. Along such
links information flows at a rate mX . The function GX ([Inr], [Ir]) maps the prevalence of
infection to the unit interval and is subsequently multiplied by the constant rate δX . This
form models the saturating effect of media on individual behavioural response

Transition Rate Contact Type

Inr +Snr → 2Inr τ Gd Infection
Inr +Sr → Inr + Ir σsτ Gd Infection
Ir +Snr → Ir + Inr σiτ Gd Infection
Ir +Sr → 2Ir σsσiτ Gd Infection
Inr → T γnr Independent Infection
Ir → T σrγnr Independent Infection
T → Snr r · p Independent Infection
T → Sr r · (1− p) Independent Infection
Xr +Ynr → Xr +Yr αX Gi Information transmission
Xr +Ynr → Xr +Yr mX kMF Mean-field Information transmission
Xnr → Xr δX GX([Inr ], [Ir]) Independent Information transmission
Inr → Ir ω Independent Information generation
Xr → Xnr dX Independent Information generation

are accounted for, but their presence or absence will be determined by the precise
modelling context and should be used accordingly. The full suite of transitions are
given in Table 1.

3 Results

Using the pairwise model (for a sample, see group of equations given in Eq. (1)),
the efficacy of different information generating and transmitting mechanisms in
slowing or stopping disease spread is investigated. Results are followed by a close
scrutiny of model complexity including a model deconstruction and discussion
around alternative modelling directions in the area of modelling the concurrent
spread of disease and information.

3.1 Pairwise Model: Impact and Efficacy of Different
Information Generating and Transmitting Mechanisms

Pairwise ODE models [11] represent an improvement upon standard compartmental
models as they allow us to capture the local nature of contacts. They also interpolate
with success between simple and full simulation models allowing for some degree
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of analytical tractability and transparency. Similarly to contact tracing models [5],
for information transmission it is important to represent the network of contacts
and be able to represent the formation of clusters of responsive individuals that
are difficult to capture via simple compartmental models. The resulting pairwise
model has 20 equations, 5 for singles and 15 for pairs (see Eq. (1) for a sample).
The dimensionality of the system can be further reduced by taking into account that
the population is closed and that all pairs add up to 〈k〉N, where 〈k〉 is the average
node degree and N is the population size. The sample equations are:

˙[Snr] = −τ[SnrInr]− τσi[SnrIr]+ pr[T ]−λCαs([SnrSr]+ [SnrIr]+ [SnrT ])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[Snr]/N −λGGs([Inr], [Ir])[Snr]+ ds[Sr],

˙[Sr] = −τσs[SrInr]−τσiσs[SrIr]+(1− p)r[T ]+λCαs([SnrSr]+[SnrIr]+[SnrT ])

+λMFmskMF ([Sr]+ [Ir]+ [T ])[Snr]/N +λGGs([Inr], [Ir])[Snr]− ds[Sr],

˙[Inr] = +τ[SnrInr]+ τσi[SnrIr]− γ[Inr]−λCαi([InrSr]+ [InrIr]+ [InrT ])

−λMFmikMF([Sr]+[Ir]+[T ])[Inr]/N−λGGi([Inr],[Ir])[Inr]+di[Ir]−ω [Inr],

˙[Ir] = +τσs[SrInr]+ τσiσs[SrIr]− γσr[Ir]+λCαi([InrSr]+ [InrIr]+ [InrT ])

+λMFmikMF([Sr]+[Ir]+[T ])[Inr]/N+λGGi([Inr],[Ir])[Inr]−di[Ir]+ω [Inr],

˙[T ] = +γ[Inr]+γσr[Ir]−r[T ], (1)

˙[SnrInr] = +τ[SnrSnrInr]+ τσi[SnrSnrIr]− τ[InrSnrInr]− τσi[IrSnrInr]− τ[SnrInr]

−λCαs([SrSnrInr]+ [IrSnrInr]+ [TSnrInr])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGs([Inr], [Ir])[SnrInr]

−λCαi([SnrInrSr]+ [SnrInrIr]+ [SnrInrT ])

−λMFmikMF([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGi([Inr], [Ir])[SnrInr]

−γ[SnrInr]+ rp[TInr]+ di[SnrIr]+ ds[SrInr]−ω [SnrInr],

˙[SnrIr] = +τσs[SnrSrInr]+ τσiσs[SnrSrIr]− τ[InrSnrIr]− τσi[IrSnrIr]− τσi[SnrIr]

+λCαi([SnrInrSr]+ [SnrInrIr]+ [SnrInrT ])

+λMFmikMF([Sr]+ [Ir]+ [T ])[SnrInr]/N +λGGi([Inr], [Ir])[SnrInr]

−λCαs([SrSnrIr]+ [IrSnrIr]+ [TSnrIr])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGs([Inr], [Ir])[SnrInr]

−γσr[SnrIr]− di[SnrIr]+ ds[SrIr]−λCαs[SnrIr]+ pr[TIr]+ω [SnrInr].

To integrate the equations numerically, the standard closure proposed in [11] is used.
This amounts to approximating all triples in terms of singles and pairs with the
general closure relation given by
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[ABC] =
〈k〉− 1
〈k〉

[AB][BC]
[B]

. (2)

This approximation closes the system and numerical integration can be performed.
Parameter values are based on those used in [10] and, for simplicity, it is assumed
that αs = αi = α , ds = di = d and δs = δi = δ . λ s are binary and are used to
switch on and off various information transmission routes. The system exhibits three
qualitatively different behaviours: (1) neither disease nor responsiveness can spread,
(2) only responsiveness spreads and a state of endemic-responsiveness is reached
and (3) both responsiveness and infection are endemic.

The system accounts for disease transmission through a static network of contacts
with information generated either by individuals in treatment or by those that
are infected and likely to self-diagnose. The model accounts for three different
routes of responsiveness transmission. The first overlaps completely with the disease
transmission route, while the second and third account for mean-field and global
transmission of information, respectively. The analysis compares the potential of
different sources and pathways of information generation and transmission to reduce
prevalence or stop infection. These desirable outcomes can be achieved due to
fractions of the population moving to the responsive class. As a result, these
informed individuals will experience decreases in their levels of susceptibility and
infectivity and a faster recovery if infected.

The system is seeded with a small number of individuals of type Inr and Sr and
then it is numerically integrated to identify the smallest or critical rate that will lead
to the desired prevalence level Ieq = 0.01. This is repeated for a range of τ values
to determine the relative capacities of α , ω and δ to deliver a state of low infection
prevalence. A value of p = 0.9 was used as this approaches a worse-case scenario
limit whereby no information is generated by the individuals themselves through
past experience. This setup allows us to examine the effects of α , ω and δ in relative
isolation (peer-to-peer transmission at rate α relies on the presence of informed or
responsive individuals via self-diagnosis or via treatment). According to Fig. 1a,
contact-based transmission of information is by far the most potent pathway to
generating a responsive population. Similarly to disease transmission, every receiver
of information (Inr or Snr) immediately becomes a transmitter, in contrast to global
transmission of information that acts in isolation and remains singular at all times.
The mean-field type transmission of information, not shown in Fig. 1a, is equally
effective and produces an outcome that is similar to the contact-based transmission
case, especially if the network is densely connected. For smaller values of 〈k〉, and as
expected, the mean-field transmission performs better than the purely contact-based
but with small differences.

The transition to the responsive class due to media exposure is assumed to happen
at a rate given by the function

Gs([Inr], [Ir]) = Gi([Inr], [Ir]) =
δ ([Inr]+ [Ir])

n

K +([Inr]+ [Ir])n ,
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Fig. 1 (a) Critical information rates resulting in a prevalence of Ieq = 0.01 as a function of the per-
contact infection transmission rate τ (computed via the pairwise model). For τ > 0.42 and in the
absence of information, the prevalence equilibrates at Ieq > 0.01. At and beyond this point different
amounts of each information rate are needed to lower the prevalence to Ieq = 0.01. In this case, the
effect of each transmission route is investigated in the absence of all others. Solid and thick solid
line correspond to αc and ωc, respectively. The four dashed lines represent δ c for different values
of the population inertia parameter K = [0,5,20,100] increasing from right towards the left. The
values for αc are denoted on the right y axis and all the others on the left y axis. (b) The effect of
combining different sources of information. On the top left panel the endemic infection prevalence
is shown for a range of α and τ values. In the remaining panels, for each combination of α and τ ,
either global information or self-diagnosis or both are added with the same constant rate equal to
12. Other parameters are p = 0.9, σs = σi = 0.5, σr = 2, γnr = 2, γr = σrγnr , d = γr , N = 104, and
〈k〉 = 6, from [10]. c© Elsevier Science

where in this chapter, n = 1 at all times. The efficacy of global information (acting
on Inr or Snr) strongly depends on the value of the K which controls the growth of
G(·, ·), for low prevalence the function grows like 1

K (Inr+ Ir)
n. The parameter K can

be thought of as a measure of population’s willingness in responding to information.
Populations that resist behavioural change correlate with high values of K, and if it
could be measured or inferred could act as an indicator for the quality of global
information campaigns. For example, high values of K will simply translate to
observing vanishingly small returns from global information campaigns. The critical
rates for self-diagnosis are at best similar to those for global information, especially
for diseases with low transmissibility. As is the case for global information, self-
diagnosis lags behind the front of infection and will only produce benefits once
infected individuals are present. This is made even worse given that ω can only act
on Inr.

Information generation depends heavily on the precise type of the disease. The
self-diagnosis rate correlates directly with the disease being symptomatic. Diseases
with mild symptoms or the slow generation of new sources of information trans-
mission requires an efficient peer-to-peer communication and a population which is
responsive and is ready to adapt. Finally, where the population’s behavioural inertia
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is high, self-diagnosis can be more effective than global information dissemination.
This is illustrated by comparing the appropriate curves in Fig. 1a. The figure also
shows that as τ increases it is less and less likely that information generation and/or
transmission can prevent an epidemic. More precisely at large but finite values of τ ,
the rates of information generation and/or transmission needed to prevent the spread
will tend to unfeasibly large values.

In reality information generation and transmission will not operate singly. Mass-
media campaigns increase awareness which can bring forth behavioural change.
Infected members of the population are likely to learn from experience and share
their knowledge with their acquaintances. The model presented here is able to
accommodate these elements as it is shown in Fig. 1b for various combinations of
α , δ and ω . As indicated, the α and δ combination is the most effective, while
the combination of all three is capable of preventing a significant proportion of
epidemics, especially for large τ . Contact-based transmission of information is by
far the most efficient as it generates new information transmitters. When epidemics
are successfully halted, the responsive and non-responsive susceptible individuals
form clusters that can resist infection invasions [10]. Such desirable endemic
steady states, with no disease but with informed and/or aware individuals, provide
an illustration of optimal dissemination of information that can prevent disease
invasion and calculating the basic reproduction number at such an equilibrium can
provide valuable insight into how disease, information and contact structure interact
and determine the outcome of potential invasions. The basic reproduction number
for such a setup, and with taking into account the heterogeneity in individuals’
connectivity, can be written as

R0 = ∑
x,k

W k
x (k− 1)∑

y,l

P(Sl
y|Ik

x )P(I
k
x → Sl

y), (3)

where W k
x = kSk

x/〈k〉N is the probability that an initial index case chosen uni-
formly at random reaches an individual of type Sk

x with x,y ∈ {nr,r} and k, l ∈
{kmin, . . . ,kmax} with minimal an maximal nodal degree. P(Sl

y|Ik
x ) incapsulates the

neighbourhood composition, e.g., the extent to which non-responsive or responsive
individuals are surrounded by responsive individuals. The final component, P(Ik

x →
Sl

y), simply denotes the probability of infection being passed across a link with
infectious and susceptible individuals of different types and can be challenging to
compute, see [10]. In this individual-based framework, R0 involves the information
generation and transmission components and provides a better representation when
compared to simple ODE models and it can be used to explore the optimal
arrangement that minimises the likelihood of an outbreak [8, 10].
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3.2 Model Deconstruction

The pairwise model above can be deconstructed by relaxing the assumption about
the mixing pattern in the population. Furthermore, applying it strictly under the
assumption of asymptomatic disease [17] (i.e., ω = 0), the model becomes [12]:

˙snr = −βnr(inr + ir)snr −αs(sr + ir +ϕ)snr − gs(inr, ir)snr + dssr + prϕ , (4)

ṡr = −βr(inr + ir)sr +αs(sr + ir +ϕ)snr + gs(inr, ir)snr − dssr +(1− p)rϕ , (5)

˙inr = βnr(inr + ir)snr −αi(sr + ir +ϕ)inr − gi(inr, ir)inr − γnrinr + diir, (6)

i̇r = βr(inr + ir)sr +αi(sr + ir +ϕ)inr + gi(inr, ir)inr − γrir − diir, (7)

ϕ̇ = γnrinr + γrir − rϕ , (8)

where gx(·, ·) = δx(inr + ir)/(k+(inr + ir)) with x ∈ {s, i}. A standard dynamical
system analysis of the model above reveals two steady states ((1,0,0,0,0) and (1−
s0 = ds/αs),s0,0,0,0) with two important threshold parameters (Rr

0 = αs/ds for the
responsiveness and Ri

0 = βnr/γnr for the disease) and an analytical relation between
the two determining the bifurcation picture of the system. In summary, the trivial
disease-free steady state is locally stable if and only if Rr

0 < 1 and Ri
0 < 1 and the

non-trivial disease-free steady state is locally stable if and only if Rr
0 > 1 and

Ri
0−1< A(Rr

0−1) with A=
(γr −βr)(αi + γnr)+B(γnr −βr)

γnr(αi + γr +B)
, B= di− αi

Rr
0
. (9)

This is illustrated in Fig. 2a and highlights that information at the right level can
prevent an epidemic. However, it is important to note that in this simplified model,
Ri

0 does not depend on the information, as it was the case in [7]. This means that
information cannot halt an epidemic at the onset but it can do so once information
generation and transmission is quick started. In an SIR model this amounts to always
experiencing a small epidemic whereas for an SIS model, the system can be driven
back to full susceptibility and with a proportion of the population “infected” by
awareness or responsiveness.

3.3 Alternative Modelling Approaches: Pairwise Models
for Evolving Contact Structures

The principal aim of any pre-emptive or reactive interventions is to reduce the
number of those affected by the disease. The reduction in onward spread can be
achieved by either limiting or reducing the number of potentially infectious contacts,
in network language amounting to cutting links, or keeping the connectivity but
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Fig. 2 (a) Illustration of the long-term behaviour of the system as a function of Rr
0 and Ri

0 for
increasing values of αi = 0.05 j ( j = 0,1,2,3,4) and di = 1/(52 weeks) with other parameters
being γnr = 1/(26 weeks), γr = 1/(13 weeks) and βr = γnr. (b) The parameter space is divided
into three regions: the disease-free is the only stable equilibrium (above the transcritical curve),
one unstable (disease-free) and a stable endemic equilibria co-exist (below the transcritical curve
and outside the Hopf bifurcation island) and, finally, a Hopf island with a stable limit cycle and
unstable disease-free and endemic equilibria. Parameter values are as follows: N = 100, 〈k〉 = 10,
αSS = 0.004, αSI = 0.005, αII = 0, ωSS = 0.005, ωII = 0 and γ = 1.0

reducing the susceptibility and infectivity level as well as the typical time that an
infectious individual spends in the population. While this last component cannot be
modelled by the alteration of the network of contacts, the former aspects can be
modelled by the explicit alteration of the connectivity pattern of the population.
Evolving or adaptive networks have already been studied in terms of simple
epidemic models where susceptible individuals break links to infected neighbours
and reconnect to other susceptibles [9]. This model can be regarded as an implicit
model of information generation and transmission where the action of individuals
of certain type can lead to curtailing an epidemic. A generalisation of the model
proposed by Gross et al. in terms of an SIS-based pairwise models can be written as:

˙[I] = τ[SI]− γ[I], (10)

˙[SI] = γ([II]− [SI])+ τ([SSI]− [ISI]− [SI])−ωSI[SI]+αSI([S][I]− [SI]), (11)

˙[II] = −2γ[II]+ 2τ([ISI]+ [SI])−ωII[II]+αII(([I]− 1)[I]− [II]), (12)

˙[SS] = 2γ[SI]− 2τ[SSI]−ωSS[SS]+αSS([S]([S]− 1)− [SS]), (13)

where, αAB and ωAB represent the rate at which AB-type links are created and cut
(A,B ∈ {S, I}). This system is closed in the same way as the initial pairwise model
(see Eq. (2)) and the system lends itself to a bifurcation type analysis in order
to determine full system behaviour [13, 19]. The main outcome is illustrated in
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Fig. 2b, where the cutting of [SI]-type links can halt the spread of the epidemic.
While the precise mechanism of information generation and transmission is not
explicit, this model is attractive in that it shows a qualitatively similar behaviour to
result from models with explicit information components yet it keeps a good degree
of transparency and analytical tractability. Moreover, for most diseases avoiding
infection will involve a significant amount of contact reduction or limitation and
hence a necessity of capturing evolving contact patterns. Previous models, explicitly
including aspects of information transmission, have recognised the importance of
also explicitly modelling contact and overlap between the disease and information
transmitting contact [8, 10] but have not considered a changing network structure.
Future research may shed light on whether the static network approach with
information modelled explicitly or dynamic networks with or without explicit
contact are more suitable and whether these should be used in combination or
singly. As more data becomes available, model fitting techniques may lead to better
understanding as to how link cutting and creation rates behave and whether these
need to be considered as time dependent functions of prevalence, including delays.
Dynamic network models of this type could be also refined to include aspects such
as the propensity of informed individuals to seek early treatment and thus limiting
further onward spread.

4 Discussion: Impact of Information and Modelling Outlook

In reference to the first pairwise model, Eq. (1), the numerical analysis suggests that
contact-based transmission is always more efficient in lowering prevalence when
compared to global information dissemination. Preliminary results also highlight
that increasing individual specific heterogeneity in σ (while keeping the same mean)
leads to lower prevalence as a large number of nodes, with small values of σ , are
almost completely immune or unable to transmit infection. A similar observation
holds for α , where a high proportion of individuals with weak potential to transmit
the information will result in higher prevalence. The discrepancy between the impact
of peer-to-peer and population-wide transmission of information on epidemic
outcomes has important public health implications as illustrated in the United
Kingdom’s early AIDS epidemic, which was concentrated largely among men
who have sex with men (MSM). Informal campaigns within the male homosexual
community can be dated to early 1983. This was prior to dissemination in the gay
press (1983–4) and much earlier then the wider government sponsored campaigns
of 1986–7. It is estimated that HIV transmission peaked around 1983 among MSM
[16], followed by a rapid decrease which limited the size of the HIV epidemic in the
UK. The population-wide campaigns of 1986–7 were however associated with less
dramatic changes in STI diagnosis.

On the modelling side further progress and model refinement can be made by
looking at ODE-based models that have been developed for approximating epidemic
transmission on static and dynamic networks. For example, the pairwise models
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presented above do not take into account heterogeneity in the connectivity of
individuals. This can be circumvented by using heterogenous pairwise models [5]
where variables are determined by both disease status and number of links (e.g.,
[Sk] - susceptible nodes with k contacts and [SkIl ] - pairs linking a susceptible
with k contacts to and infected with l contacts). Obviously, this will increase the
number of equations and including information explicitly may make the model
difficult to analyse. In such cases, adaptive network models, where information is
included implicitly, may be more desirable. A recently proposed novel approach that
comes to meet this demand and also accounts for degree heterogeneity is the so-
called effective-degree type model developed by Lindquist et al. [14] and extended
further for dynamic networks by Marceau et al. [15] and Taylor et al. [20]. Here,
a “smart” choice of variables, with equations formulated in terms of the expected
number of Ssi and Isi (susceptibles and infecteds with s susceptibles and i infectious
neighbours, respectively), leads to further modelling flexibility and more accurate
bookkeeping of nodes and the status of their contacts. However, this approach also
relies on a closure and raises further questions about the performance of various
approximate models when compared to true simulation. The large spectrum of
modelling approaches coupled with the natural tendency to increase model accuracy
can easily lead to overly complex models that are not transparent and difficult to
analyse and thus we advocate a modelling approach that aims for a good balance
between capturing key mechanisms and tractability.
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