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Abstract We use mathematical models to assess the impact of behavioral changes
in response to an emerging epidemic. Evaluating the quantitative and qualitative
impact of public health interventions on the spread of infectious diseases is a crucial
public health objective. The recent avian influenza (H5N1) outbreaks and the 2009
H1N1 pandemic have raised significant global concerns about the emergence of a
deadly influenza virus causing a pandemic of catastrophic proportions. Mitigation
strategies based on behavior changes are some of the only options available in the
early stages of an emerging epidemic when vaccines are unlikely to be available
and there are only limited stockpiles of antiviral medications. Mathematical models
that capture these behavior changes can quantify the relative impact of different
mitigation strategies, such as closing schools, in slowing the spread of an infectious
disease. Including behavior changes in mathematical models increases complexity
and is often left out of the analysis. We present a simple differential equation
model which allows for people changing their behavior to decrease their probability
of infection. We also describe a large-scale agent-based model that can be used
to analyze the impact of isolation scenarios such as school closures and fear-
based home isolation during a pandemic. The agent-based model captures realistic
individual-level mixing patterns and coordinated reactive changes in human behav-
ior in order to better predict the transmission dynamics of an epidemic. Both models
confirm that changes in behavior can be effective in reducing the spread of disease.
For example, our model predicts that if school closures are implemented for the

S.Y. Del Valle (�) • S.M. Mniszewski
Los Alamos National Laboratory, West Jemez Road, Los Alamos, NM 87545, USA
e-mail: sdelvall@lanl.gov; smm@lanl.gov

J.M. Hyman
Tulane University, St Charles Avenue, New Orleans, LA, USA
e-mail: mhyman@tulane.edu

P. Manfredi and A. d’Onofrio (eds.), Modeling the Interplay Between Human Behavior
and the Spread of Infectious Diseases, DOI 10.1007/978-1-4614-5474-8 4,
© Springer Science+Business Media New York 2013

59



60 S.Y. Del Valle et al.

duration of the pandemic, the clinical attack rate could be reduced by more than
50%. We also verify that when interventions are stopped too soon, a second wave of
infection can occur.

1 Introduction

Pandemics are global epidemics and are often associated with a high morbidity and
mortality burden. There have been three pandemic influenza outbreaks in the 20th
history: the Spanish flu (1918–19), the Asian flu (1957–58), and the Hong Kong
flu (1968–69) [32]. The 1918–1919 influenza pandemic (known as the Spanish flu)
was the most devastating in recent history, where at least 20 million died [30]. In the
United States, about 675,000 lives were lost to the Spanish flu with an estimated
mean case fatality rate of 2% [52]. This case fatality rate is an order of magnitude
larger than the case fatality rates observed in seasonal flu epidemics in normal
years. Recurrent outbreaks of H5N1 around the world and the most recent pandemic
(H1N1) 2009 suggest that a deadly pandemic is eminent.

Nearly half of the world’s population resides in urban areas [50]. Air travel
connects these urban centers in a global network where a new influenza strain can
spread around the world in a few weeks, as recently experienced with pandemic
(H1N1) 2009. In addition, influenza’s short incubation period and the lack of a
universal vaccine can increase the spread of influenza, posing a significant global
challenge to public health officials. Mathematical models can help in meeting this
challenge, if the model includes the most significant properties of the transmission
dynamics. In particular, the model most include how people change their behavior
in response to an epidemic threat.

Evidence suggests that in the presence of a deadly disease and lack of
pharmaceutical interventions, people will change their behavior to avoid infection
[15, 19, 42]. Recent studies have evaluated the impact that non-pharmaceutical
interventions, such as school closures, social distancing, and travel restrictions,
could have on the spread of the next influenza pandemic [13, 14, 21, 24]. However,
none of these studies have incorporated intentional changes in individual behavior,
such as avoiding gatherings, increasing hygiene, or staying home. Furthermore,
these studies have assumed that these non-pharmaceutical interventions would
remain in effect for the duration of the pandemic. Typically, people resume their
normal behaviors due to lack of resources or as the perceived risk declines [27].
Recent studies on the impact of basic public health measures implemented during
the 1918 pandemic [6, 27] indicate that non-pharmaceutical interventions did not
last for the duration of the pandemic.

Mathematical models for the spread of infectious diseases have been extensively
used to gain insights into the transmission dynamics of infectious diseases. Several
approaches have been used for these studies including simple compartmental
models [31, 44], network models [35], and agent-based models [18, 24, 34, 48].
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These models have provided new insights on important issues such as the effects of
drug resistance [5, 46], treatment [34, 40], vaccination [3, 45], non-pharmaceutical
interventions [11, 15] and on the overall dynamics of infectious diseases [28].

Diseases often spread through person-to-person contacts; therefore, realistic
mixing patterns can be crucial to accurately predicting the path and severity of
the disease [16]. The course of an epidemic through a population is determined by
the interactions among individuals and the process of transmitting a pathogen is a
stochastic (random) process based on the length of time the individuals are in contact
with each other and the strength of the contact. Agent-based models can capture this
realistic contact structure and allow the simulation to explore how contact networks
and different demographic characteristics affect disease transmission.

Several studies have shown the importance of population structure when
modeling disease spread [20], but only a few studies have incorporated
realistic mixing populations [18, 24]. The accurate representation of population
heterogeneity is one of the greatest challenges of epidemic modeling. While
substantial progress has been made over the years with the introduction of different
mixing functions [29] and mixing matrices [2] for compartmental models, they are
still far from achieving a good approximation to real world scenarios. In recent
years, new approaches that incorporate more realistic contact structures have been
developed to allow for nonrandom interactions among populations [4, 22, 48, 54].
For example, Zaric [54] compared random and nonrandom mixing patterns for
network epidemic models and showed that different mixing assumptions led
to different epidemic outcomes. In particular, they found that random mixing
generally results in a greater number of new infections than nonrandom mixing.
Similarly, Bansal et al. [4] used several real and simulated datasets of human
contact networks to analyze their impact on disease spread. They concluded that
homogeneous-mixing models are appropriate for host populations that are nearly
homogeneous. However, network models are more appropriate to better capture
and predict disease spread through heterogeneous host populations. Furthermore,
Fukś et al. [22] used an agent-based model of Southern and Central Ontario to
investigate the spatial correlations of disease spread. They concluded that spatial
correlations were difficult to destroy if neighborhood sizes were inhomogeneous.
Finally, Stroud et al. [48] showed a strong correlation between local demographic
characteristics and pandemic severity. This study used an agent-based model of
Southern California with a heterogeneously mixing population and concluded that
the average household size in a census tract was strongly correlated with the clinical
attack rate.

Here, we use a simple mathematical model to show how behavioral changes
can be easily introduced into epidemiological models. In addition, we use a large-
scale agent-based model to assess the potential impact of temporary and permanent
behavioral changes including school closures in containing a pandemic influenza
and analyze how these changes affect the contact structure and transmission
dynamics.
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2 Methods

We will consider two approaches to incorporate behavior changes in a mathematical
model. We first describe a simple system of five ordinary differential equa-
tions (ODEs) to describe disease dynamics based on the Kermack–McKendrick
susceptible-infected-recovered model (SIR) [31]. We extended this model by using
the approaches introduced in Del Valle et al. (2005) [15]. The second approach
is based on a stochastic agent-based model, object-oriented platform for people in
infectious epidemics (OPPIE). This is an extension of the Los Alamos Epidemic
Simulation System (EpiSimS) [16, 18, 48] and includes dynamic behavior changes.

2.1 Ordinary Differential Equation Model

In our ODE model, the population is divided into two subgroups: a group that
does not change its behavior or has normal behavior (subscript n) and a group that
modifies its behavior in response to an outbreak (subscript b). People move back
and forth between the two groups (reducing susceptibility or infectivity) depending
on the behavior adopted. Individuals in each activity group are characterized by
their epidemiological status: susceptible, Sn and Sb and infectious individuals, In

and Ib; the transfers are shown diagrammatically in Fig. 4. Because we are primarily
interested in the effectiveness of changes in behavior for a single outbreak, we use a
closed system with no migration in or out of the population, and births and natural
deaths are not included in the model.

We define t0 as the beginning of the epidemic. Movement of individuals between
the two groups depends upon disease incidence in the population. It is assumed that
a certain fraction of the population will change their behavior to protect themselves
against infection or reduce their chances of spreading the disease. Let ϕSbSn and
ϕIb In be the transfer rates from the Sn and In classes to the Sb and Ib classes,
respectively, and ϕSnSb and ϕIn Ib be the transfer rates from the Sb, and Ib classes
to the Sn and In classes, respectively. The rate coefficients are modeled by step
functions given by:

ϕi =

⎧
⎨

⎩

0, t < τ
ci, τ < t < τmax

0 t > τmax

for i = Sn, In, Sb, and Ib, where the parameter c is a positive constant that determines
the rate of movement and τ is the time that determines when the new behavior is
adopted.

Using the transfer diagrams in Fig. 1, we obtain the following system of
differential equations:
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Fig. 1 Schematic relationship between people who adopt a new behavior in response to an
epidemic and people who do not change their behavior. The arrows that connect the boxed groups
represent movement of individuals from one group to an adjacent one. Susceptible individuals (Sn

or Sb) can become infected (In or Ib) at rates λn or λb; infected individuals recover at a rate μ ; and
people change their behavior based on the transfer rates ϕSb , ϕIb , ϕSn , or ϕIn

dSn

dt
= −(ϕSb +λn)Sn +ϕSnSb

dIn

dt
= −(ϕIb + μ)In +ϕIn Ib +λnSn

dSb

dt
= −(ϕSn +λb)Sb +ϕSbSn

dIb

dt
= −(ϕIn + μ)Ib +ϕIb In +λ Sb

dR
dt

= μ(In + Ib) (1)

where λn (for normal behavior) and λb (for modified behavior) are the forces of
infection. λn and λb incorporate the probability of transmission per contact, β ,
the reduced number of contacts because of symptomatic infection, θ , and 1−η j

(j = s or i), which accounts for the effectiveness of the behavior in reducing
either susceptibility (ηs) or infectivity (ηi). β is defined as the susceptibility of
the population multiplied by the infectivity of the disease multiplied by the average
number of contacts an individual has per day. The forces of infection for both groups
are shown by:

λn = β

[(
θ In

ρ

)

+(1−ηi)

(
θ Ib

ρ

)]

λb = β

[

(1−ηs)

(
θ In

ρ

)

+(1−ηi)(1−ηs)

(
θ Ib

ρ

)]

(2)
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where ρ = N − (1 − θ )(In + Ib) and N is the total population (Sn + Sb + In +
Ib + R). In the forces of infection, ηi is incorporated into the θ Ib/ρ infectious
fractions because individuals in the Ib class have adopted a new behavior and
ηs is incorporated into the infectious fractions in λb because individuals in the
susceptible class (Sb) have also adopted a new behavior. These forces of infection
and appropriate initial conditions complete our model formulation.

2.2 The Agent-Based Model

The OPPIE simulation platform is an agent-based model that combines the
demographic-based population of a region, a network of specific business and home
locations, and the movement of individuals between locations with daily itineraries.
We simulated the spread of an influenza epidemic using a synthetic population
constructed to statistically match the 2000 US Census population demographics of
Southern California at the census tract level. There are 20 million individuals living
in six million households, with an additional one million locations representing
actual schools, businesses, shops, and social recreation addresses. This synthetic
population only represents individuals reported as household residents; thus, visiting
tourists, guests in hotels, and travelers in airports are not explicitly included.

Each individual has a schedule of activities based on the National Household
Transportation Survey (NHTS) [37]. A schedule specifies the type of activity,
the starting and ending time, and the location of each assigned activity. There
are six types of activities: home, work, shopping, social recreation, school, and
other. The time, duration, and location of activities determine which individuals
mix together at the same location at the same time, which is relevant for airborne
transmission.

Each location is geographically located using the Dun & Bradstreet commercial
database. Each building is subdivided based on the number of activities available at
that location. There are one or more buildings per activity that are further subdivided
into rooms or mixing places. Schools have classrooms, workplaces have workrooms
or offices, and shopping malls have shops. Typical room sizes can be specified;
for example, for workplaces the mean workgroup size varies by standard industry
classification (SIC) code. The number of rooms in each building is computed by
dividing the peak occupancy by the appropriate mixing group size. We used two data
sources to estimate the mean workgroup by SIC including a study on employment
density [53] and a study on commercial building usage from the Department
of Energy [36]. Based on these two data sources workgroup sizes range from
3.1 for transportation workers to 25.4 for health service workers. The average
workgroup size over all types of work is 15.3. For the analyses presented here,
the average mixing group sizes are 8.5 at a school, 4.4 at a shop, and 3.5 at a social
recreation venue.
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2.2.1 Disease Progression Model

Airborne diseases spread primarily from person to person during close proximity
through contact, sneezing, coughing, or via fomites. In OPPIE, an opportunity for
disease spread between two individuals occurs when they occupy a mixing location
together. Whether or not a susceptible individual becomes infected is based on how
long they co-occupy within a mixing place, the presence of infectious individuals, a
high-level description of the activity they are engaged in, and their age.

A location represents a street address, and a room or mixing place represents
a specific place where people have face-to-face interactions. When an infectious
person is in one of these mixing locations with a susceptible person for some time,
we estimate a probability of disease transmission, which depends on the variables
identified above.

A susceptible person j has a dimensionless susceptibility multiplier S j and an
infectious person i has an infectious multiplier Ii. The probability that the susceptible
individual j becomes infected during an activity is computed as:

Pj = 1− e
−∑

i
T S jIiti j

(3)

where T is the average transmissibility per unit time, ti j is the duration of contact,
and the sum extends over all infectious people that occupied the room with
individual j.

Disease progression of the epidemic is modeled as a Markov chain consisting
of five main epidemiological stages: uninfected, latent (non-infectious), incubation
(partially infectious), infectious, and recovered. Infected individuals start in the
incubation stage and remain there for a period of between 0 and 0.5 days, 0.5 or
1.0 day, before transitioning to the symptomatic or recovered stages, respectively.
The average incubation time is 1.9 days and average duration of the symptomatic
stage is 4.1 [34]. The disease model assumes that 50% of adults and seniors,
75% of students, and 80% of preschoolers will stay home within 12 hours of
the onset of influenza symptoms. These people can then transmit disease only to
household members or visitors. Based on previous studies [34], 33.3% of infections
are assumed to be subclinical. Individuals in the subclinical stage are only half as
infectious as those in the symptomatic stages and continue their normal activities
as if they were not infected. The infection rate for children is assumed to be
double than for adults. All scenarios were analyzed for the same set of transmission
parameters where the population was initially seeded with 100 people infected, all
in the incubation stage.

2.2.2 Baseline Assumptions

The Homeland Security Council released the National Strategy for Pandemic
Influenza for the United States, which suggests that the emergence of a new
influenza virus could have a clinical disease attack rate of 30% in the overall
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population [49]. Based on this attack rate, we constructed a baseline scenario under
the assumption of no specific intervention to contain the pandemic and an infection
attack rate of 45% with a clinical attack rate of 30%.

2.2.3 School Closure Assumptions

Protecting children during an influenza pandemic is important since illness rates are
typically highest among school-aged children [38]. Closing schools limits students’
contacts and has the potential to block paths of spread between families and
neighborhoods [1]. Several studies have analyzed the impact of school closures
[8,21,24]; however, these studies only investigated the impact of sustaining a school
closed during the entire epidemic. School closures in OPPIE are implemented as
a general closure of selected activity locations. Based on the Center for Disease
Control and Prevention pandemic guidelines [9], closures in OPPIE follow a steplike
function and are specified with a start and stop time; the activity to close; and a single
location or a fraction of all locations of the specified activity type that will be closed.
During the time a closure is in effect, anyone whose activity schedule would have
taken them to one of the closed locations will stay home during that time instead.
Scheduled after-school activities are not affected by a school closure.

2.2.4 Fear-Based Home Isolation Assumptions

Fear-based home isolation consists of people staying home as a reaction to an
epidemic crisis. Some of these people may be considered the “worried well”.
The news of increasing numbers of people becoming ill, or seeing friends and family
fall ill, is strong motivation to avoid potential infectious situations. Surprisingly,
none of the recent studies on pandemic influenza have incorporated the impact
of this type of behavioral change. We assume that people isolate due to fear at
a level that follows the pattern of the epidemic [6, 27]. This is implemented with
a specification of start, peak, and end times with corresponding fractions of the
population that will be isolating at those times, along with a minimum and maximum
contiguous duration per individual. We assume that people who choose to stay home
will only self-isolate for 7–14 days at a time. People isolate on an individual basis,
not on a household basis, so there might be households in which some members
of the family are isolating due to fear and others are going about their normal
activities. Fear-based home isolation begins when a percentage of the population
is symptomatic (e.g., 0.1%). The number of people self-isolating increases linearly
until reaching a maximum near the epidemic peak day. After this day, the stay-home
rate begins to drop linearly with time, until no fear-based home isolation is occurring
by a selected end day.
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2.2.5 Strain-Specific Vaccine Assumptions

Currently, vaccine manufactures need an estimated 5–8 months to develop a
strain-specific egg-based vaccine [47]. Based on seasonal influenza vaccine
production, we estimate U.S. production at four million doses per week; thus,
we assume that a limited number of vaccines, enough to cover 0.67% of the
population per week, will be available five months after the emergence of pandemic
influenza. We further assume that two doses of pandemic vaccine are required to
attain an immune response of 80% seropositivity after 42 days from the first dose
[33]. Those who are vaccinated and become sick are only 20% as infectious as those
who become sick without the vaccine. In all of the scenarios where a strain-specific
vaccine is considered, the strain-specific vaccine is distributed as soon as it becomes
available. Vaccine is distributed to households at random until supplies run out; 95%
of the selected household members are vaccinated, and 5% either refuse treatment
or cannot be found.

3 Results

Here we show how we use both models to analyze the impact that behavioral
changes may have on disease transmission. In particular, we look at the impact of
some generic behavior for the ODE type model and school closures and fear-based
home isolation for the agent-based model.

3.1 Ordinary Differential Equation Results

We recognize that large agent-based simulations may require significant
infrastructure such as high performance computing; therefore, we analyze a simple
ODE model and show how behavioral changes can modify disease dynamics.

We used the model presented in Sect. 2.1 and analyzed the impact that temporary
behavioral changes (e.g., school closures) may have on the spread of an airborne
infection. We use a population of 10,000 people and start the simulation with one
infected person. We assume that some generic behavior is implemented for two
weeks (14 days) starting on day 25. Furthermore, we assume that the behavior
reduces susceptibility and infectivity by 50%, that is, ηs = 0.5 and ηi = 0.5.
In addition, we assume that θ , a reduction in contact rates due to symptomatic
infection, is 0.8. Finally, we assume that β , the probability of infection, is 0.4.
Figure 2 shows the epidemic curves as a function of time for Sn, Sb, In, and Ib.
Not that as people change their behavior, the disease spread slows down. Since
behavioral changes are only temporary and do not provide a permanent cure to the
disease, the virus eventually infects everyone in the population (due to homogeneous
assumptions).
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Fig. 2 Epidemic curves for various groups within the population including Sn, Sb, In, and Ib. Note
that as the changes in behavior are implemented (starting on day 25), the disease transmission
slows down

3.2 Agent-Based Model Results

3.2.1 Baseline Simulation

The baseline scenario was constructed with no specific intervention to contain the
pandemic and an infection attack rate of 45% with a clinical attack rate of 30%.
A key quantity in epidemiology is the basic reproduction number (denoted by R0)
defined as the average number of secondary cases generated by a primary infectious
case in a completely susceptible population [2]. Hence, the R0 concept only applies
to the case of newly emergent infectious agents or situations when the disease in
question has not been observed in a given population for a long period of time, so
that the population is essentially entirely susceptible. This concept applies to most
pandemics, particularly to the influenza pandemic of 1918 for which the mean R0

has been estimated to range from 1.5 to 5.4, depending on the specific location and
pandemic wave considered [10]. For consistency with historical pandemics [23,34],
we considered a moderately severe pandemic strain with an R0 of 1.8, which is
in agreement with the transmissibility baseline assumed in other modeling studies
[21, 23, 34]. OPPIE tracks who infects whom and so the value of R0 was calculated
using the average number of secondary infections generated by the index cases.
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Table 1 Results for the baseline and various durations of 100% school closures

5-month 5-month 8-month 8-month
Baseline 1st wave 2nd wave 1st wave 2nd wave 11-month

Clinical attack rate (%) 30.6 14.1 12 14.1 8.5 14.1
Pandemic duration (days) 150a 190b 350a 190b 465a 300a

Mortality per 100,000 614 279 240 282 164 281
Population vaccinated (%) 0 0 15.7 0 25.5 13.1
aWhen the number of newly infected cases has reached zero
bWhen the number of newly infected people has reached its lowest point before ramping up again

3.2.2 School Closures and Vaccination

School closures can provide an effective way to reduce the spread of the epidemic.
We assumed that schools close when 0.1% of the population is symptomatic
(day 33), and they remain closed for 5, 8, or 11 months. Table 1 shows that in the
absence of any interventions, the model predicts a 30.6% clinical attack rate and
614 influenza-related deaths per 100,000 persons in the population. However, our
results show that if schools remain closed for 11 months, the clinical and mortality
attack rate would be reduced by more than 50%.

In Fig. 3, we show the symptomatic percentage of the population as a function
of time for the baseline and for 100% school closures for 5, 8, and 11 months.
School closures might be relaxed after 5 and 8 months, if a strain-specific vaccine
becomes available. In the 5 month school closure scenario, schools reopen on day
183 when 0.0007% (14,238 people) is infected; in the 8 month scenario, schools
reopen on day 273 when 0.00003% (721 people) of the population is infected.
However, if schools close for the duration of the pandemic (in this case 11 months),
the disease dies out and no second wave is generated. Unlike previous studies that
have shown that the benefit provided by school closures is maintained after schools
reopen [25], our simulation results show that, given the limited number of vaccine
doses, if schools reopen too early a new infection wave appears, resulting in an
increased number of new cases. Nevertheless, even in the presence of infection
waves, the overall clinical attack rate for these three scenarios of school closures is
lower than the baseline. Although school closures prolong the epidemic due to the
reduction in the number of contacts, they benefit society by spreading the number
of hospitalizations over two waves, which is crucial in order to maintain health-
care services operational. Our results show that school closures for the duration
of the pandemic (up to 11 months) are the most effective strategy in containing the
pandemic and reducing morbidity and mortality. Furthermore, the 11 month strategy
also reduces the number of vaccinations needed to contain the pandemic.
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Fig. 3 Symptomatic percentage of the population as a function of time for the baseline scenario
and three school closure scenarios. (a) shows the simulated epidemic curve for the baseline
scenario, (b) shows the results for a 5-month closure scenario, (c) shows the results for an 8-month
closure scenario, and (d) shows the results for the 11-month 100% closure scenario. The arrows
indicate the time when school closures are in effect. Note that as the interventions are relaxed
(schools reopen), new infection waves can appear (panels (b) and (c))

3.2.3 Fear-Based Home Isolation and Vaccination

In Table 2, we illustrate the simulation results for various levels of fear-based home
isolation. When the percentage of population self-isolating at home, due to fear, is
15%, the clinical attack rate and death rate decrease, but the percentage of infections
generated at home increases. When the number of people self-isolating is greater
than 50%, the epidemic is partitioned into two infection waves and the number of
infected people increases.

Figure 4 shows a comparison of the effective reproduction number and the
epidemic dynamics for the baseline and 50% fear-based home isolation. Reffective

captures the effects of public health interventions and depletion of the susceptible
population as the epidemic progresses. Note that Reffective drops below 1 when
the number of susceptibles declines, but as fear-based home isolation is relaxed
and the social contact networks return to normal, Reffective increases. In general, we
observe that even if a small fraction of the population reduces their interactions for a
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Table 2 Results for the baseline and various levels of fear-based home isolation

50% 50% 60% 60%
Baseline 15% 30% 1st wave 2nd wave 1st wave 2nd wave

Clinical attack rate (%) 30.6 25.9 20.5 13 9.6 7.6 18.2
Pandemic duration (days) 150a 211a 300a 184b 372a 161b 340a

Mortality per 100,000 614 517 411 251 199 150 364
Population vaccinated (%) 0 2.8 5.9 0 17.8 0 13.3
Infections generated at home (%) 58.4 62.2 65.8 65 65 62.9 62.9
aWhen the number of newly infected cases has reached zero
bWhen the number of newly infected people has reached its lowest point before ramping up again
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Fig. 4 Epidemic dynamics for the baseline and 50% fear-based home isolation for 5-months. (a)
and (b) show the effective reproduction number as a function of time for the baseline and 50% fear-
based home isolation, respectively. (c) and (d) show the symptomatic percentage of the population
for the baseline and the 50% fear-based home isolation scenario

week or two, morbidity and mortality can be reduced, but the epidemic is prolonged;
however, temporal compliance of large fractions of people can create susceptible
populations, resulting in waves of infection [6, 27, 41].
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Fig. 5 Degree distribution of the population in Southern California under three different scenarios
for a typical day. On average, each individual has 22.5, 19.9, and 8 contacts per day for the baseline,
100% school closure scenario (5-month), and 50% fear-based home isolation scenario, respectively

3.2.4 Impact on Social Contact Network

Population mixing information is key to provide good approximation on the path of
the disease and devise effective intervention strategies. Here, we apply tools from
social network epidemiology [35,39,43] to study how changes in behavior affect the
contact network and, as a result, disease transmission. The social contact network
emerges from the simulation as individuals move through their daily activities and
come into and out of contact in rooms [11]. We extracted the degree distribution
of the social contact structure in the absence of disease during a random day for
the baseline, 100% school closure scenario, and at the peak of the 50% fear-based
home isolation scenario. Figure 5 depicts the population distribution in Southern
California under the three scenarios for a typical day. On average, each individual
has 22.5, 19.9, and 8 contacts per day for the baseline, 100% school closure scenario,
and 50% fear-based home isolation scenario, respectively. We observe that the
average number of contacts per day decreased for the school closure and fear-based
home isolation scenarios when compared to the baseline. Note that the average
number of people contacted per person can provide an estimate of how many people
can potentially acquire infection from one index case. Furthermore, we found that
closing schools would be less effective in breaking the social contact network than
fear-based home isolation. This finding might be due to the fact that school closures
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imply partial home isolation; individuals affected by this intervention still perform
other scheduled activities, except for school-related activities. While fear-based
home isolation assumes that people affected by this intervention are completely
cut off from the rest of the population, our results show that reactive changes in
population contact rates can have a dramatic impact on the overall contact structure.

4 Discussion

We used two types of modeling approaches to show that coordinated or reactive
behavioral modifications can have a significant effect not only in reducing disease
burden but also on the qualitative dynamics of influenza transmission. Although
vaccination would be the best means for controlling influenza, a strain-specific
vaccine will not be available until 5–8 months after the emergence of a new
pandemic influenza and current production capabilities are insufficient to cope with
demand. Antivirals share important features that could make them useful during a
pandemic [34], although most countries do not have enough antivirals stockpiled
and current distribution strategies may not allow for rapid dissemination of drugs.
Behavioral modifications have the potential to slow down the spread of the pandemic
in the absence of pharmaceutical interventions.

We argue that models that use social contact networks and human behavior are
better able to capture the dynamics of infectious-disease transmission than models
that ignore human behavior or use homogeneous mixing. We showed how easy one
can incorporate behavioral changes in traditional ODE epidemiological models and
how simple assumptions can change the dynamics of disease transmission.

The emergent degree distribution of the baseline social network is in agreement
with contact patterns observed in small convenience samples [17, 51]. Although we
cannot compare the emergent contact patterns in the presence of school closures
and fear-based home isolation due to lack of data, our simulation results are useful
in providing estimates of the effects of behavioral changes on disease burden and
gain insights into potential qualitative effects on the transmission dynamics (e.g.,
multiple waves of infection). The simulations suggest that fear-based home isolation
at moderate levels (less than 50%) can have an impact on breaking transmission
paths; however, its impact on the social contact network is highly sensitive to the
duration that this intervention is in effect.

Our simulations show that if 100% of the schools close when 0.1% of the
population is ill and they remain closed for the duration of the pandemic, the clinical
attack rate could be reduced by more than 50%, when compared with the baseline.
However, if schools reopen before the pandemic is over, a second wave is likely to
appear and increase morbidity and mortality; thus, the parameters associated to a
school closing policy should depend on the actual pandemic profile. For example,
our results suggest that a temporary school closure policy may not be successful in
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the sense that secondary waves of infection could be triggered if the school closure
policy is suspended when the pandemic is still running its course.

The appearance of a second wave may imply a failed intervention strategy [41];
however, our results suggest that the overall clinical attack rate when a school
closure intervention strategy is implemented is still lower than that obtained from the
baseline scenario. Temporary school closures may have benefits beyond reducing
morbidity and mortality, such as maintaining health-care services by spreading the
number of hospitalizations over two waves. However, school closures indirectly
contribute to absenteeism when parents must miss work to care for their children at
home. Therefore, recommendations on school closures must be planned in advance
to reduce the social and economic impact of absenteeism.

Fear-based home isolation can be effective in reducing morbidity and mortality
and slowing transmission. The effectiveness of fear-based home isolation is deter-
mined by the fraction of the population that voluntarily withdraws from their daily
activities for a week or two. We showed that as the number of people isolating at
home increases, the clinical attack rate decreases. However, when the fraction of
people self-isolating is over 50% (e.g., the intervention is too strong [26]) a second
infection wave appears if home isolation is relaxed, leading to a larger clinical
attack rate. It may not be feasible in reality for a large fraction of the population
to self-isolate for a week or two; however, even if a small fraction of the population
self-isolates, it can have a dramatic impact on reducing morbidity and mortality.

One of the most striking results of our study is the fact that temporary
behavioral modifications have the potential to generate waves. This result raises
an interesting question about the role that behavioral changes played in previous
pandemics, since there were some temporary public health measures during the
1918 pandemic [6, 7, 12, 27]. There is a potential for multiple infection waves
if public health measures are relaxed before the epidemic is over. Perhaps the
most illustrative example of secondary waves is the 2002–2003 SARS epidemic
in Toronto, Canada, where a secondary wave of infection occurred following a
relaxation of infection-control precautions that were also associated with temporary
increases in nosocomial transmission events [41]. The potential role that behavior
changes may have played on the multiple wave pandemic profile observed during
the 1918–1919 influenza pandemic in many regions of the world should not be
discarded [6, 12, 27].

Early detection of index cases and early dissemination of information to the
public are critical to empowering the population to make rational decisions, such
as self-isolation. Capturing human behavior can have a profound influence in the
predictions of future disease spread and the resources needed to contain an outbreak
[19]. Modeling studies such as the one presented here could prove useful in
providing estimates of the effects of changes in human behavior for future pandemic
guidelines.
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