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Abstract Three behavioral-epidemic models (i.e., epidemic systems including
feedbacks (FB) that the information about an infectious disease has on its spreading)
are introduced. Two relevant FB are explicitly considered: the pseudo-rational
exemption to vaccination and the information-related changes in contact patterns
by healthy subjects. The global stability analysis of the endemic states is performed
by means of the geometric approach to stability, with particular focus on a model of
vaccination of adult susceptible subjects. Biological implications of the results are
discussed.

1 Introduction

Feedbacks (FB) and global stability are among the most important features of all
mathematical models in biology [15, 35]. In mathematical epidemiology (ME) the
vast majority of efforts have been devoted to the study of global stability. Indeed,
determining under which conditions a disease, independently from the initial
burden, either remain endemic or get extinct is probably the most important topic.
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Recently, however, it is increasingly becoming clear that a realistic epidemic
model must include the FB that the information about an infectious disease has on
its spreading [3, 16, 17, 36, 38].

A first type of FB is the pseudo-rational exemption which is defined as the
family’s decision to not vaccinate children because of a pseudo-rational comparison
between the perceived risk of infection and the perceived risk of side effects caused
by the vaccine. This type of FB has a paramount relevance in nonmandatory
vaccinations. Indeed, the progress toward increasing degrees of disease control is
intermixed by temporal trends of declining vaccination coverage [37]. Especially
modern societies (where the vaccinations are increasingly voluntary) face the
challenging paradox of pseudo-rational exemption. The paradox stems in the fact
that the vaccination success makes very low the perceived risk of infection, so that
the risk of side effects appears erroneously huge.

This peculiar unbalance of perceptions, particularly large in transient period of
low disease incidence, induces dynamics that cannot be captured by traditional
mathematical models of infectious diseases spreading and vaccinations.

A second type of FB is the one given by the influence of the information on
the behavior of healthy subjects. For example, in [16] the authors consider simple
epidemic models in which the social contact rate is described as a decreasing
function of the available information on the present and the past disease prevalence.
It is shown that social behavior change alone may trigger sustained oscillations
that, in case of seasonal fluctuation in the contact rate, can degenerate and become
chaotic. This indicates that human behavior might be a critical explaining factor of
oscillations in time series of endemic diseases.

The role of human behavior and also misbehaviors (as the above-mentioned
pseudo-rational exemption) has thus to be included in some manner in the modeling
of infectious disease spreading, which is triggering a large corpus of scientific
research (see, just to name a few contributors [1–3,6,21,23,36]) which is the subject
of this book.

For example, in [17, 18], the dynamic implications of rational exemption were
investigated by using a simple extension of the standard susceptible-infectious-
removed (SIR) model, where the information-dependent vaccination is modeled
by means of a simple information index mostly based on the publicly available
information on the disease, as reviewed and extended in the contribution by
d’Onofrio and Manfredi in this book. In this simple framework, the vaccination
coverage is modeled as a phenomenological function of the current and past state
of the disease (see also the game-funded function employed in [36]), defined as the
sum of a constant component plus a variable one, increasing with the perceived risk
of infection.

In [17, 18] it was shown that if the baseline rate of vaccination does not exceed
the so-called May–Anderson threshold, then a globally or also only locally stable
eradication is impossible, and there is an endemic equilibrium, whose stability was
studied only from the local point of view.
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However, a global analysis of stability is of the outmost importance from an
epidemiological point of view. Indeed, if the endemic equilibrium is GAS, then, also
in case of infinitesimal initial prevalence, the disease will permanently be present in
the population.

From a mathematical point of view, the analysis of the GAS of the endemic
equilibria of bidimensional epidemic systems may be usefully approached by means
of the Poincaré–Bendixson trichotomy. Less simple is the study in dimensions
n ≥ 3. A major progress was achieved in the 1990s, when Li and Muldowney
developed a generalization of the Poincaré–Bendixson criterion for systems of n
ordinary differential equations (ODEs), with n ≥ 3 [28, 30] the so-called geometric
approach to global stability. Since its development [29], their approach has been
(and currently is being) extensively applied to the study of the global behavior of
mathematical models arising in ME and in several other different biomathematical
contexts, such as toxicant–population interaction models [10, 11], Lotka–Volterra
models including delay [4, 5], and ME-like models of dynamics of HIV in a human
host [14,39]. As far as ME is concerned, the majority of applications of this method
refer SIR models including the exposed class, i.e., SEIR, SEIS, and SEIRS models
(see, e.g., [27, 29–31]). The SEIR-like models are represented by a system of four
ODEs. Its dynamics can be usually deduced by studying a reduced three ODEs
system in the variables, say, x, y, and z. Usually, the only nonlinearity is given by
the incidence rate of the infectious disease. When it is postulated that the spread of
the disease occurs according to the principle of mass action, then the corresponding
incidence rate is bilinear with respect to the susceptibles and infective populations
[15]. In this case such a bilinearity represents the only nonlinearity of the model. The
bilinearity is of kind “xz” and is included in the balance equations of the variables
x and y. Generally speaking, the structure of SEIR-like systems appears to be
particularly suitable for the applications of the geometric method for global stability
[12, 13]. However, several well-known models present a different bilinearity. That
is, the balance equations of the variables x and y contain a bilinearity of kind “xy”
instead of “xz.” A simple example is the classical SIRS model with temporary
immunity [24]:

⎧
⎨

⎩

ẋ = k0 − k1xy− k2x+ k3z
ẏ = k1xy− k4y
ż = k5y− k6z,

(1)

where the upper dot denotes the time derivative, d ·/dt, and the ki’s are all positive
parameters. Sometimes, systems like Eq. (1) may be reduced to a planar system.
However, if no reduction is available, the stability analysis for system (1), or
systems with a similar structure (which we call SIR-like models), may become quite
involved. In such cases, the geometric approach to global stability may be a powerful
tool [26]. Nevertheless, applications of the method to SIR-like models are not very
common in the literature. We want to illustrate, by means of a new example and
by means of the brief review of some previously published results, the utility of
the geometric approach to global stability in the framework of the information-
dependent epidemic models of behavioral epidemiology.
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We start by giving a complete global analysis of a model of vaccinations at all
ages, which was defined but incompletely studied in [17]. This model is particularly
interesting since in it the vaccinations are distributed in all ages. We provide here
for the first time its complete global analytical study.

2 Information-Dependent Vaccinations on All Ages

In [17] the following information-dependent vaccination model was introduced:

⎧
⎨

⎩

Ṡ = μ − μS−ϕ(M)S−β SI
M(t) =

∫ t
−∞g(I(τ))Ka(t − τ)dτ

İ = β SI− (μ +ν)I.
(2)

The state variables S and I denote, respectively, the fraction of the susceptible
individuals and the fraction of the infectious and infective individuals at time t. The
variable M is addressed to be the information variable and summarizes information
about the past values of the disease. All the parameters in Eq. (2) are strictly
positive constants. The function ϕ(M) models the information-dependent rate of
vaccinations, and it may be, for ease of biological interpretation, split as follows:

ϕ(M) = ϕ0 +ϕ1(M).

Here, ϕ0 is a positive constant representing the fraction of susceptibles that are
vaccinated independently on the available current and historical information on the
prevalence level of the disease in the population and ϕ1(M) models the fraction of
susceptibles that are vaccinated in dependence of the social alarm caused by the
disease.

The function g describes the role played by the infectious size in the information
dynamics.

We assume that (1) ϕ1(M) and g(I) are continuous and differentiable, except in
some cases, at finite number points; (2) ϕ1(M)≥ 0, for all M, and g(I)≥ 0, for all I;
(3) ϕ1(0) = 0, and g(0) = 0; and (4) 0 < ϕ ′

1(M) < Φ , 0 < g′(I)< Γ , and for some
constants Φ and Γ .

Specific functional forms of ϕ1(M) turn out to be relevant for the applications,
as the linear function,

ϕ1(M) = bM,

where b is a positive constant or the Hill Order n function

ϕ1(M) =
CMn

1+DMn , n = 0,1, . . .

where C > 0, D > 0. Similar functions may be chosen for g.
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The information variable M is a function of the past values of I for two main
reasons. From one hand, the information regarding the spread of a disease is seldom
instantaneous, since it is generally subject to delays of technical nature due to
the presence of time-consuming processes (clinical tests, notification of cases, the
collecting and propagation of information and/or rumors, etc.). On the other hand,
in some cases there can be a memory of the previous epidemics.

An important case of kernel Ka(t) is the weak exponential delay kernel [32],
Ka(t) = ae−at , where the parameter a assumes the biological meaning of inverse
of the average delay of the collected information on the disease, as well as the
average length of the historical memory concerning the disease in study. With this
particular choice of the kernel, by applying the linear chain trick [32], the (infinite
dimensional) nonlinear integro-differential system (2) is equivalent to the following
set of (finite dimensional) nonlinear ODEs:

⎧
⎨

⎩

Ṡ = μ − μS−ϕ(M)S−β SI
Ṁ = a [g(I)−M]

İ = β SI− (μ +ν)I.
(3)

2.1 Basic Properties

It is easy to check that model (3) admits the disease-free equilibrium E0 = (A,0,0),
where A = μ/(μ + ϕ0). Note that if it were ϕ0 ≥ ν , then this inequality would
imply that A < μ/(μ +ν)<< 1. Indeed, the average duration of a disease (ν−1) is
much smaller than the average lifespan (L = μ−1). In other words, if we considered
baseline vaccination rates ϕ0 equal or larger than the recovery rate ν , then at the
disease-free equilibrium, the fraction of residual susceptible subjects would be so
small to make rather pleonastic the study of the influence of information feedback.
For these reasons, the analysis of model (3) will be performed under the realistic
assumption

ϕ0 < ν (4)

First we show that it exists an invariant adsorbing set in the state space.

Proposition 1. The set

Ω =
{
(S,M, I) ∈ R3

+|0 ≤ M ≤ g(A), 0 ≤ S+ I ≤ A
}

is positively invariant and absorbing and, as a consequence, the orbits of Eq. (3) are
bounded, provided that (S(0),M(0), I(0))≥ (0,0,0).

Proof. Defining σ = S+ I, one has that

σ̇ < μ (1−σ)−ϕ0S−νI;
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thus,

σ̇ < μ
(
1− (1+ϕ0 μ−1)σ

)
.

As a consequence

limsup
t→+∞

(S(t)+ I(t))≤ A.

From the following inequality

Ṁ ≤ a(g(A)−M) ,

it follows that

limsup
t→+∞

M(t)≤ g(A),

and our claim is demonstrated. ��
Let us now denote R0 = β/(μ +ν) the basic reproduction number in absence of

vaccinations. It follows that

Proposition 2. if

R0A ≤ 1 (5)

then E0 is GAS in Ω ; otherwise, E0 is unstable.

Proof. The first claim easily follows from the following differential inequality:

İ ≤ I (β (A− I)− (μ +ν)) .

The second claim follows from the linearized equation at E0. Indeed, the equation
for I reads as follows:

İ = I(β A− (μ +ν)). ��
Note that if R0A > 1, then system (3) admits another equilibrium point, the endemic
equilibrium E = (S∗,M∗, I∗) = (1/R0,g(I∗), I∗), where I∗ ∈ (0,1) is the unique
solution of

μ
(

1− 1
R0A

)

− (μ +ν)I =
ϕ(g(I))

R0
.

We also remark that due to Eq. (4), the condition R0A > 1 reads ϕ0 < (R0 − 1)μ .
In order to better appreciate this inequality, and since in absence of infection, the
term 1/(ϕ0 + μ) is the average time of permanence in the susceptibility class, it is
convenient to express ϕ−1

0 as a fraction of the average lifespan: ϕ−1
0 = f0 L, where

L = μ−1 is the average lifespan and f0 ∈ (0,1). This allows to further rewrite the
instability condition as f0 > 1/(R0 − 1).

The local stability analysis of the endemic equilibrium E may be performed
by using the same procedure of Proposition 12 in [17]. System (3) may admit
oscillatory solutions (in the sense of Yacubovitch [8, 19, 20]) as stated by the
following theorem [8]:
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Theorem 1. If and only if

μ2R2
0 + 2μβ R0

√
I∗S∗ −β g′(I∗)ϕ ′(M∗)I∗S∗ < 0, (6)

there exist two values a1 and a2, with 0< a1 < a2, for the parameter a, such that E is
locally asymptotically stable (LAS) for a /∈ [a1,a2]. On the contrary, if a ∈ (a1,a2),
then E is unstable, and the solutions of system (1) exhibit Yacubovitch oscillations.
At the points a1 and a2, Hopf bifurcations occur. If the reverse of Eq. (6) holds, then
E is LAS.

2.2 Global Stability of the Endemic Equilibrium

Global stability analysis for the endemic equilibrium E will be performed through
the approach due to Li and Muldowney [30].

When R0 A > 1, the disease-free equilibrium, which is located on the boundary
∂Ω , is unstable, and this implies that system (3) is uniformly persistent [22],
i.e., there exists a constant c > 0 such that any solution (S(t),M(t), I(t)) with
(S(0),M(0), I(0)) in the interior of Ω , satisfies

min{liminf
t→∞

S(t), liminf
t→∞

M(t), liminf
t→∞

I(t)}> c.

The uniform persistence together with boundedness of Ω is equivalent to the
existence of a compact set in the interior of Ω which is absorbing for Eq. (3), see
[25]. This condition is required by the Li–Muldowney approach, together with a
specific Bendixson criterion (inequality (34) in the Appendix) which will be the
goal of the next theorem.

Theorem 2. If R0A > 1 and

ν −ϕ0 < a(1−Γ ), (7)

(β +Φ)A < a, (8)

then the endemic equilibrium E of system (3) is globally asymptotically stable with
respect to solutions of Eq. (3) initiating in the interior of Ω .

Proof. We first observe that the second additive compound matrix J[2](S,M, I) is
given by

J[2] =

⎛

⎝
−μ −β I−ϕ(M)− a ag′(I) β S

0 −μ −β I+β S− (μ +ν)−ϕ(M) −ϕ ′(M)S
−β I 0 β S− (μ +ν)− a

⎞

⎠ .
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Now we take the function,

P = P(S,M, I) = diag

{
S
I
,

S
I
,

S
I

}

. (9)

It follows,

Pf P
−1 = diag

{
Ṡ
S
− İ

I
,

Ṡ
S
− İ

I
,

Ṡ
S
− İ

I

}

,

and PJ[2]P−1 = J[2] so that

B = Pf P−1 +PJ[2]P−1 =

[
B11 B12

B21 B22

]

,

where B11 =
Ṡ
S − İ

I −μ −β I−ϕ(M)−a, B12 = [ag′(I), β S], B21 = [0, −β I]T , and

B22 =

⎡

⎢
⎢
⎢
⎣

Ṡ
S
− İ

I
− μ −β I−ϕ(M)+β S− (μ+ν) −ϕ ′(M)S

0
Ṡ
S
− İ

I
+β S− (μ +ν)− a

⎤

⎥
⎥
⎥
⎦
.

Consider now the norm in R3 as

|(u,v,w)|= max{|u|, |v|+ |w|} , (10)

where (u,v,w) denotes the vector in R3 and denote by L the Lozinskiı̆ measure
with respect to this norm. It follows [33]

L (B)≤ sup{g1,g2} ≡ sup{L1(B11)+ |B12|, L1(B22)+ |B21|} , (11)

where |B21|, |B12| are matrix norms with respect to the L1 vector norm and L1

denotes the Lozinskiı̆ measure with respect to the L1 norm.1

L1(B11) =
Ṡ
S − İ

I − μ −β I−ϕ(M)− a, (12)

|B12|= max{ag′(I),β S} , (13)

|B21|= β I, (14)

L1(B22)=
Ṡ
S
− İ

I
+β S−(μ +ν)+max{−μ−β I−ϕ(M);−a+

∣
∣−ϕ ′(M)S

∣
∣}. (15)

1That is, for the generic matrix A = (ai j), |A|= max1≤k≤n ∑n
j=1 |a jk| and L (A) = max1≤k≤n(akk +

∑n
j=1( j �=k) |a jk|).



The Geometric Approach to Global Stability in Behavioral Epidemiology 297

Taking into account of Eqs. (11) and (12)–(15), the general expressions of g1 and g2

for system (3) are thus

g1 =
Ṡ
S
− İ

I
− μ −β I−ϕ(M)− a+max

{
ag′(I); β S

}
, (16)

and

g2 =
Ṡ
S
− İ

I
+β S− (μ +ν)+β I+max{−μ −β I−ϕ(M); −a+ϕ ′(M)S}. (17)

Observe that system (3) provides the following equality:

İ
I
= β S− (μ +ν); (18)

hence, from Eq. (16) one gets

g1 =
Ṡ
S
−β S+ν −β I−ϕ(M)− a+max

{
ag′(I); β S

}
, (19)

and from Eq. (17),

g2 =
Ṡ
S
+β I+max{−μ −ϕ(M); β I− a+ϕ ′(M)S}.

It follows

g1 =
Ṡ
S
+max

{−β S+ν −β I−ϕ(M)− a+ ag′(I); ν −β I−ϕ(M)− a
}
,

and

g2 =
Ṡ
S
+max

{−μ −ϕ(M); β I+ϕ ′(M)S− a
}
.

Hence, from Eq. (11),

L (B) ≤ sup{g1,g2}
=

Ṡ
S
+max{−β S+ν −β I−ϕ(M)− a+ ag′(I), ν −β I−ϕ(M)− a,

−μ ; β I+ϕ ′(M)S− a} ,
i.e.,

L (B) ≤ Ṡ
S
+max{−β c+ν −ϕ0 −β c− a+ aΓ , ν −ϕ0 −β c− a,

−μ ; β A+ΦA− a},
where c is the constant of uniform persistence.
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Now, impose that

ν −ϕ0 + aΓ < a+ 2β c,

ν −ϕ0 < a+β c,

(β +Φ)A < a. (20)

This allows to conclude that

L (B)≤ Ṡ
S
−ω ,

where

ω = min{a(1−Γ )+ 2β c−ν +ϕ0, a+β c−ν+ϕ0, μ , a−A(β +Φ)},
and ω > 0. Hence

1
t

∫ t

0
L (B)ds ≤ 1

t
log

S(t)
S(0)

−ω ,

and the Bendixson criterion given in [30] is thus verified. Finally, because of c > 0,
conditions (20) are fulfilled if the inequalities (7)–(8) hold true. ��

Note that in the important case where g(I)= kI, the fulfillment of the assumptions
that are needed by the above theorem implies a restriction for k in the range k∈(0,1).

2.3 Information-Dependent Vaccinations of Newborns

In [17] the problem of information-driven vaccination of newborns was thoroughly
analyzed both numerically and analytically, focusing, however, only on the local
properties of the endemic equilibrium. In [7], we performed a global analysis,
which we shall summarize here, for the important case g(I) = kI. The model is
the following:

⎧
⎨

⎩

Ṡ = μ(1− p(M))− μS−β SI
Ṁ = akI− aM
İ = β SI− (μ +ν)I,

(21)

where the nondecreasing positive function p(M) models the proportion of vacci-
nated newborns, and it may be split as follows: p(M) = p0 + p1(M). Here, p0

models the fraction of newborns that are in any case vaccinated, whereas p1(M)
models the fraction of newborns that are vaccinated in dependence of the social
alarm caused by the disease. Note that p0 is lower than the minimum vaccination
rate to obtain the eradication. Assume the following properties to hold: (1) 0 ≤
p1(M)≤ 1− p0, for all M; (2) p1(0)= 0; (3) p1(M) is continuous and differentiable,
except in some cases, at finite number points; and (4) 0 < p′1(M) < Π , for some
constant Π .
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Proposition 3. The set

Γ =
{
(S,M, I) ∈ R3

+|0 ≤ M ≤ k, 0 ≤ S+ I ≤ 1− p0
}
,

is positively invariant and absorbing, and as a consequence, the orbits of Eq. (21)
are bounded, provided that (S(0),M(0), I(0))≥ (0,0,0).

Theorem 3. System (21) admits the disease-free equilibrium E0(1− p0,0,0). If

(1− p0)R0 > 1, (22)

then the equilibrium E0 is unstable, and Eq. (21) admits also a unique endemic
equilibrium with positive components, E = (S∗,M∗, I∗), where S∗ = (μ +ν)/β ,
M∗ = kI∗, and I∗ is the unique positive solution of

μ(1− p0)− μ p1(kI∗)−
(

μ +ν
β

)

[μ +β I∗] = 0.

Moreover, if and only if

(β I∗+ μ)2 −β μkI∗p′(M∗)+ 2(β I∗+ μ)
√

β (ν + μ)I∗ < 0, (23)

there exist two values a1 and a2 for the parameter a, with 0 < a1 < a2, such that
E is unstable for a ∈ (a1,a2) and the solutions of the system exhibit Yacubovitch
oscillations, whereas it is locally asymptotically stable (LAS) for a /∈ [a1,a2]. At the
points a1 and a2, Hopf bifurcations occur. If the reverse of Eq. (23) holds, then E
is LAS. Finally, if the reverse of Eq. (22) holds, then E0 is globally asymptotically
stable in Γ .

Reasoning as in Sect. 2.2, it can be shown that system (21), under the assump-
tion (22), is uniformly persistent. Thus, in order to satisfy the Li–Muldowney
theorem, it remains to find conditions for which the Bendixson criterion given
by Eq. (34) is verified.

Theorem 4. Under the assumptions (22) and

ν + ak < a, β (1− p0)+ μΠ < a, (24)

the endemic equilibrium E of system (21) exists and is globally asymptotically stable
with respect to solutions of Eq. (21) initiating in the interior of Γ .

The proof of the above theorem, which is reported in [7], is obtained by means
of the same function P and the same vector norm used for the proof of Theorem 2.

We remark that also here that the fulfilling of GAS conditions implies the
restriction k ∈ (0,1), as in the previous section. In view of this remark, the
parameter k may play an interesting role on the stability properties of the endemic
equilibrium. To elucidate this aspect, we will show, numerically, how the global
stability properties of the endemic equilibrium E critically depend on the interplay
between the parameters a and k.
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Fig. 1 The local stability properties of the endemic equilibrium E, varying a and k. The numerical
values for the other parameters are chosen as in [17]. Bifurcation diagram in the (k,a) plane: the
dashed-dot branch (-.) is the a1’s branch, and the dashed branch (- -) is the a2’s branch. a1 and a2
are defined in Theorem 3. Figure from [7]: c© Elsevier Science Ltd

As in [17], we choose p1(M) = (1− p0 − ε)DM/(1+DM), where ε and D are
positive constants and ε is arbitrarily small.

Condition (23) can be rewritten as B2
1 − 4β I∗(ν + μ)(β I∗+ μ)2 > 0, where,

B1 = (β I∗+ μ)2 −β I∗μkp′1(M
∗).

Our purpose is to show that some set of parameter values exist such that hypotheses
of Theorem 4 are verified.

We fix the parameter values as in [17]: μ = 1/27375 days−1, ν = 0.1429 days−1,
R0 = 10, β = 1.4289 days−1, p0 = 0.75, D = 5000, ε = 0.01. Furthermore, in the
present case, Π ≈ (1− p0 − ε)D.

We observe that conditions (22) and (24) can be combined. It follows that, to
apply Theorem 4, the bifurcation parameter a has to be chosen in the range a> amin,
where

amin = max{ν(1− k)−1;β (1− p0)+ μ(1− p0− ε)D}. (25)

As it can be seen in Fig. 1, values of k exist such that the endemic equilibrium
is LAS, independently of the delay (e.g., k = 0.1 and k = 0.2). For these choices
of k, global stability properties of E are solely determined by condition a > amin.
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Fig. 2 The global stability region in the (a,k) plane for the endemic equilibrium E, i.e., Eq. (26).
The numerical values for the other parameters are chosen as in [17]. Figure from [7]: c© Elsevier
Science Ltd

From Eq. (25), it follows that the region where amin is independent on k is (0,kc),
with

kc = 1− ν
β (1− p0)+ μ(1− p0− ε)D

.

For the selected numerical values, kc ≈ 0.6437 and

amin =

{
0.4016, i f 0 < k < kc,

0.1429(1− k)−1, i f kc < k < 1.
(26)

The function amin(k) is plotted in Fig. 2, where it is shown the GAS region in the
(a,k) plane for the endemic equilibrium E . We can observe that, especially for
medium–low values of k, 0 < k < kc, the GAS of E is always verified by both
medium or high values of a, progressively increasing the value of k to approach 1;
the values of a for which condition a > amin may be verified become progressively
larger.

Thus, if k <≈ 0.65, according to our result, the GAS of the endemic equili-
brium is guaranteed for values of the information delay up to ≈ 2.5 days. Only for
k >≈ 0.855, the GAS is guaranteed for delays that are less long than a single day.

The values of the parameter a, ensuring the local and the global stability of the
equilibrium E , for different values of k, are summarized in Table 1. For a ∈ (0,a1)∪
(a2,amin), the global stability for the endemic equilibrium may be only guessed.
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Table 1 Different values of the parameter k are chosen and the related ranges of
the parameter a are shown, for which local (LAS) and global (GAS) stability of the
endemic equilibrium E is obtained

k a1 a2 LAS GAS (a > amin)

0.95 0.00037 0.01684 0 < a < a1, a > a2 a > 2.8580
0.9 0.00039 0.01616 0 < a < a1, a > a2 a > 1.4290
0.8 0.00043 0.01475 0 < a < a1, a > a2 a > 0.7145
0.7 0.00049 0.01323 0 < a < a1, a > a2 a > 0.47633
0.6 0.00058 0.01159 0 < a < a1, a > a2 a > 0.40106
0.5 0.00069 0.0098 0 < a < a1, a > a2 Idem
0.4 0.00089 0.0078 0 < a < a1, a > a2 Idem
0.3 0.00130 0.0055 0 < a < a1, a > a2 Idem
0.2 – – ∀a Idem
0.1 – – ∀a Idem
0.02 – – ∀a Idem

The numerical values for the other parameters are chosen as in [17]. a1 and a2 are
defined in Theorem 3

3 FB on Behavior of Susceptible Subjects

In [16] the dynamics of interactions between susceptibles, infectious, and the
information index is described by the following model:

⎧
⎨

⎩

Ṡ = μ(1− S)−β (M) IS
İ = β (M) I S− (μ +ν)I
Ṁ = ag(I)− aM,

(27)

where the function β is required to be a positive decreasing function and g such
that g(0) = 0, and g′(I)> 0. We will prove the global stability result of the endemic
equilibrium for g satisfying

g′(I)I ≤ g(I). (28)

Both the previously mentioned functions g(I) = kI and g(I) = I/(1+ qI) fulfill the
constraint (28).

In [16] it has been shown that the set

Ω = {(S, I,M) : S ≥ 0, I ≥ 0, S+ I ≤ 1, 0 ≤ M ≤ g(1)}
is positively invariant for model (27). Moreover the disease-free equilibrium
E0 = (1,0,0) is on ∂Ω , as well as its stable manifold, which is the set
{(S, I,M) ∈ Ω : I = 0}. As a consequence, the state variables are strongly persistent.
Furthermore, model (27) admits a unique endemic equilibrium, E = (S∗, I∗,M∗),
where S∗ = (μ +ν)/β (g(I∗)), M∗ = g(I∗) and I∗ is the unique solution of

μ
(

μ +ν
β (g(I))

)

− (μ +ν)I = 0.
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Let us introduce the basic reproduction number

R0 =
β (0)

(μ +ν)
. (29)

The following stability result holds [16]:

Theorem 5. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable. If R0 > 1, then E0 is unstable, and the endemic equilibrium E is locally
asymptotically stable.

As far as the global stability of E is concerned, in [9] the following theorem has
been proven:

Theorem 6. Assume that g satisfies the inequality (28). If R0 > 1 and

ν > 2β (ε0), (30)

where ε0 is the constant of uniform persistence, then the endemic equilibrium E
of system (27) exists and is globally asymptotically stable with respect to solutions
of Eq. (27) initiating in the interior of Ω .

The proof of the above theorem, which is reported in [9], is obtained by means of
the same vector norm used for the proof of Theorem 2, but the following different
P function is employed: P = diag(1, I/M, I/M).

3.1 A SIS Case

In this section we briefly analyze the impact of the information-driven behavior of
susceptible subjects on the transmission of a SIS communicable disease.

By including the variable contact rate β (M) in the classical SIS model, we obtain
the following system:

⎧
⎨

⎩

Ṡ = μ(1− S)−β (M) IS+ γI
İ = β (M) I S− (μ + γ)I
Ṁ = ag(I)− aM.

(31)

We can study the model on the plane (limit set) S+ I = 1. Model (31) reduces to

{
İ = β (M)I(1− I)− (μ + γ)I
Ṁ = a(g(I)−M).

(32)

System (32) has two equilibrium points: a disease-free one, E0 = (0,0), and an
endemic equilibrium E = (Ie,g(Ie)), where Ie is the solution of the following
equation:
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β (kI) =
μ + γ
1− I

.

The equilibrium E exists only if R0 > 1, where R0 is given by Eq. (29).
Stability properties are given in the following:

Theorem 7. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable. If R0 > 1, then E0 is unstable, and the endemic equilibrium E is globally
asymptotically stable.

4 Conclusions

In this work, we consider three SIR epidemic models with information-dependent
feedback. Our main goals are (1) to obtain (sufficient) conditions, expressed in
terms of the parameters of the system, ensuring the global asymptotic stability of
the unique endemic equilibrium, and (2) apply the geometric approach to global
stability analysis, due to Li and Muldowney. This gives an example of the applica-
tion of the method to a class of SIR-like models including peculiar nonlinearities,
modeling new types of biological feedback mechanisms: the influence that the
available information has on either vaccinating behaviors or on the contact behavior
of the population.

We have obtained that imposing the conditions required by the Li–Muldowney
approach (see (H1)–(H2) and Eq. (34) in the Appendix) leads to parameter
restrictions in all the three considered cases.

We stress that the approach to stability applied in this chapter is based on two
crucial choices: the entries of the matrix P and the vector norm in R3. Clearly,
different choices of the matrix P and of the vector norm may lead, in principle,
to better sufficient conditions than the ones we found here, in the sense that the
restrictions on the parameters may be weakened.

For example in the two cases involving vaccination (models (3) and (21)), when
g(I) = kI, the range of variability of the parameter k is restricted to the interval
(0,1). This restriction may be discussed as follows. The parameter k may be seen as
a “summary” of two contrasting phenomena:

• The phenomenon of disease underreporting: for mainly technical reasons, the
number of reported cases of an infectious disease is in any case smaller than the
real number, leading to an underestimate of the infectious fraction I.

• The level of media and rumors coverage of the state of a disease, which tends to
amplify the social alarm.

Thus, we could decompose k as follows: k = kunderreporting × kmedia, where in all
cases 0< kunderreporting ≤ 1 and where generally kmedia > 1, although one may depict
a realistic scenario where, in order to avoid extreme social alarm, or because of lack
of mediatic “appeal” of the disease, media would lower the focus on the disease,
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implying that 0 < kmedia < 1. Finally, of course, there is the case of totally objective
press: kmedia = 1. Consequently,

• The cases of objective and of alarm-avoiding media are fully described by the
constraint k ∈ (0,1).

• The case of “amplifying” media may be well modeled provided that kmedia <
k−1

underreporting.

These considerations suggested that, in the case of vaccination of newborns, the
role of the parameter k was worth further investigations via a numerical bifurcation
analysis. We obtained that if k exceeds a threshold depending on a, k∗(a), limit
cycles arise through Hopf bifurcations at k = k∗(a). We may read this phenomenon
as follows:

• If the media coverage is low, then the “rational exemption” leads to a globally
stable endemic state.

• On the contrary, if the “media exposure” exceeds a threshold that interestingly
depends on a, then a destabilization appears and oscillations arise.

Finally, in the case of information feedback on contact behavior for SIS epidemic
diseases, we obtained that the endemic equilibrium is GAS in a way independent
from any constraints on the epidemic, information, and delay parameters.

5 Appendix

Here, we will shortly describe the general method developed in Li and Muldowney,
[30]. Consider the autonomous dynamical system:

ẋ = f (x), (33)

where f : D → Rn, D ⊂ Rn open set and simply connected and f ∈ C1(D). Let x∗
be an equilibrium of Eq. (33), i.e., f (x∗) = 0. We recall that x∗ is said to be globally
stable in D if it is locally stable and all trajectories in D converge to x∗.

Assume that the following hypotheses hold:

(H1) There exists a compact absorbing set K ⊂ D.
(H2) Equation (33) has a unique equilibrium x∗ in D.

The basic idea of this method is that if the equilibrium x∗ is (locally) stable, then
the global stability is assured provided that (H1)–(H2) hold and no nonconstant
periodic solution of Eq. (33) exists. Therefore, sufficient conditions on f capable to
preclude the existence of such solutions have to be detected.
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Li and Muldowney showed that if (H1)–(H2) hold and Eq. (33) satisfies a
Bendixson criterion that is robust under C1 local ε-perturbations2 of f at all
nonequilibrium non-wandering3 points for Eq. (33), then x∗ is globally stable in
D provided it is stable. Then, a new Bendixson criterion robust under C1 local ε-
perturbation and based on the use of the Lozinskiı̆ measure is introduced.

Let P(x) be a (
n
2
)× (

n
2
) matrix-valued function that is C1 on D and consider

B = Pf P−1 +PJ[2]P−1,

where the matrix Pf is

(pi j(x)) f = (∂ pi j(x)/∂x)T · f (x) = ∇pi j · f (x),

and the matrix J[2] is the second additive compound matrix of the Jacobian matrix J,

i.e., J(x) = D f (x). Generally speaking, for an n× n matrix J = (Ji j), J[2] is a (
n
2
)×

(
n
2
) matrix (for a survey on compound matrices and their relations to differential

equations, see [34]) and in the special case n = 3, one has

J[2] =

⎡

⎣
J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33

⎤

⎦ .

Consider the Lozinskiı̆ measure L of B with respect to a vector norm · in RN , N =

(
n
2
) (see [33])

L (B) = lim
h→0+

I+ hB − 1
h

.

It is proved in [30] that if (H1) and (H2) hold, condition

limsup
t→∞

sup
x0∈Γ

1
t

∫ t

0
L (B(x(s,x0)))ds < 0, (34)

guarantees that there are no orbits giving rise to a simple closed rectifiable curve
in D which is invariant for Eq. (33), i.e., periodic orbits, homoclinic orbits, and

2A function g ∈ C1(D → Rn) is called a C1 local ε-perturbation of f at x0 ∈ D if there exists an
open neighborhood U of x0 in D such that the support supp( f − g)⊂ U and f − gC1 < ε , where
f −gC1 = sup{ f (x)−g(x) + fx(x)−gx(x) : x ∈ D}.

3A point x0 ∈ D is said to be non-wandering for Eq. (33) if for any neighborhood U of x0 in D and
there exists arbitrarily large t such that U ∩ x(t,U) �= /0. For example, any equilibrium, alpha limit
point or omega limit point, is non-wandering.
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heteroclinic cycles. In particular, condition (34) is proved to be a robust Bendixson
criterion for Eq. (33). Besides, it is remarked that under the assumptions (H1)–(H2),
condition (34) also implies the local stability of x∗.

As a consequence, the following theorem holds [30]:

Theorem 8. Assume that conditions (H1)–(H2) hold. Then x∗ is globally asymp-
totically stable in D provided that a function P(x) and a Lozinskiı̆ measure L exist
such that condition (34) is satisfied.
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