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Preface

This book is about the rather new discipline of “behavioral epidemiology” of
infectious diseases (BE). And “behavioral epidemiology” was indeed the title we
originally planned to give this book when its first ideas were grown. Unfortunately,
we have discovered soon after that the description “behavioral epidemiology” is
quite common in other areas of applied epidemiology, though unrelated to infectious
diseases, and it already appeared as the title of at least two published books. This is
why we eventually preferred to choose the present title which, though perhaps less
evocative, should anyhow clearly explain what is currently meant by “behavioral
epidemiology” of infectious diseases.

BE is a new branch of the epidemiology of infectious diseases focusing on the
complex interplay between human behavior and its determinants (e.g. acquisition of
information, risk perception, perceived benefits and costs of different actions) and
the transmission and control of infectious diseases.

In the last 25 years, mathematical models of infectious diseases have become
highly sophisticated tools for assisting public health decisions and policies, which
are used in an increasing number of countries worldwide. A major example is
provided by the huge advancements in the modeling and prediction in relation to
the pandemic threats, from the avian flu scare, to the SARS outbreaks, to the H1N1
influenza pandemic that scared the world in 2009.

Despite these advancements, there is an increasing awareness that in this
sophisticated modeling there is a neglected “layer” of complexity, which is critical
to understand the mechanisms underlying infection transmission and control. This
missing layer is human behavior.

For example, we finally know something about social contact patterns. But what
we know mostly deals with social behavior in “normal life” days, therefore in
absence of illness, of serious life-threatening conditions, and so on. How might
people socially respond in the presence of a big, real, pandemic threat, and how
these individual responses might impact on transmission and control, we simply
do not know. But there are other areas, beyond pandemic threats, where human
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vi Preface

behavior is becoming a critical determinant of infectious diseases dynamics, first of
all the area of immunization choices.

Filling these knowledge gaps, by including the “missing layer,” is the main task
of behavioral epidemiology. BE integrates traditional mathematical modeling of
infectious diseases with tools from a variety of behavioral sciences, ranging from
economics and sociology to psychology, in order to model and predict the impact of
information about infections and vaccines on human behavior, its epidemiological
consequences, and their ultimate feedback on behavior.

Behavioral epidemiology is certainly one of the major news of the research
landscape in epidemiological modeling. As argued in the historical overview BE
incubated prior to 2000, thanks to the many studies motivated by the onset of
HIV/AIDS, and entered thereafter in its epidemic phase, as documented by the
many dozens of papers published on the subject, by the increasing rate of growth of
publications, by the widening spectrum of scientific journals publishing papers on
the subject, which has expanded to leading public health and medical journals, and,
last but not least, by the increasing number of national and international grants that
are funded on the subject.

In this first phase, most behavioral epidemiology studies have been largely
theoretical. This is not surprising. Given the novelty of the discipline, appropriate
data are most often lacking, and what can at most be done is inferring the presence
of behavioral responses from infection trajectories. In these circumstances “behav-
ioral” mathematical, or computational, models, integrating behavioral elements into
epidemiological models, become a unique tool for investigating and quantifying
these complex feedbacks.

Obviously, the true challenge for the future therefore lies in the design of appro-
priate data collection plans that might make possible to robustly estimate, and pos-
sibly predict, behavioral parameters, thereby allowing behavioral–epidemiological
models to overtake their current role, still sometimes seen as that of elegant
theoretical tools, to become useful policy supporting tools.

In this important phase for behavioral epidemiology of infectious diseases, this is
also the first book devoted to the subject: this was surprising for us, and we indeed
felt that time has come to ripen the above research work in order to collect a carefully
selected number of contributions by some of the scientists who mostly contributed
to the building up of this new discipline.

This book is opened by a historical overview aiming to motivate the historical
and cultural background underpinning the BE revolution, which is identified in the
changed relationship between man and disease in modern industrialized countries
on the one hand, and, on the other hand, to access the heart of the book by reviewing
the current epidemic phase of BE studies and by introducing some of its baseline
models.

The core of this book is divided into three parts.
The first part includes two contributions on field work about the two main foci of

interest of this volume, i.e., behavioral responses to the threat of a pandemic event



Preface vii

and attitudes towards routine immunization. The first contribution by Rizzo et al.
aims to assess beliefs and behavior change in relation to the 2009 H1N1 pandemic,
based on the main field study conducted on the topic, via two surveys carried out in
4 European countries, one at the beginning and the other one after the first wave of
the 2009 pandemic. The second contribution, by Theeten et al., investigates, based
on questionnaire data from the Flanders, the determinants of vaccine uptake for a
number of infant and adolescent immunizations, focusing on central issues, e.g., the
parents’ willingness to accept multiple concomitant injections for their children.

The second part of the volume deals with the modeling, from various viewpoints
and by using a variety of mathematical tools, of behavior change in response to
an epidemic outbreak of a serious threatening infection. Motivated by the fact that
behavior changes is possibly one of the only options available in the early stages
of an emerging epidemic of a serious disease, Del Valle et al. investigate both
simple models, where people change their behavior to decrease their probability
of infection, and complex agent-based models including isolation scenarios such as
school closures and fear-based home isolation, suggesting that behavior changes can
be effective in containing the disease spread.

On the same theme Poletti et al. use a model coupling the classic simple
susceptible-infective-removed (SIR) transmission model with an imitation dynam-
ics process to account for the diffusion of different behaviors as a response to the
epidemic threat. They suggest that perception of risk and diffusion of behavior are
the most critical factors capable to determine remarkable alterations in the epidemic
course, and they also try to identify from data the extent of behavior change during
the 2009 H1N1 pandemic in Italy.

The spread of information and awareness about the disease and the way aware-
ness affects the disease spread through behavior change, e.g., through protective
measures people can adopt, are the core of the contribution by Funk and Jansen.
They in particular focus on the word-of-mouth information exchanged through
person-to-person in a double-network model, where one network describes the
spread of awareness, and the other the spread of infection.

Perra and Vespignani also focus on the diffusion of awareness about the infection.
They investigate single and multi-population SIR models where contacts either
between susceptible and infected people or between uninformed and informed
susceptible individual yield newly “informed susceptible” people who then migrate
towards a lower risk group. They show that when awareness is lost, complex
epidemic behavior, including multiple epidemic peaks, can result from the interplay
of information and transmission.

Still on the dynamic interplay between information and infection, Kiss revisits a
pairwise model for the concurrent spread of an epidemic of a sexually transmitted
infection (STI) and the related information about it to discuss the relation between
information generating and transmission mechanisms and their implications for
modeling complexity. The results of the pairwise model are compared with those
of simpler variants, and a general discussion about alternative modeling strategies,
is carried out.

Lió et al. provide a general discussion of the determinants of the heterogeneity
in the perception and assessment of risk as a critical shaping factor of behavioral
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responses in relation to infectious diseases, ranging from the types of information
to the mental heuristics used by agents to assess the risk. They also expand their
discussion to fairly advanced issues, such as the challenges faced by mathematical
modeling when risk perception is modulated by other relevant process acting
at different micro- and macroscopic scales. Fenichel and Wang investigate the
characteristics of adaptive human behavior in relation to an epidemic outbreak
described by a SIR model with a variable contact rate depending on the actions
taken by individuals according to an evaluation of benefits and costs of such actions
provided by micro-economic first principles, i.e., utility maximization. They find
that assumptions about information processing, first of all the form of the utility
function of individuals, may have a substantial influence on the course of the
epidemic.

The third part of the volume deals with models of vaccinating behavior under a
variety of situations. On the same lines of reasoning as those of the contribution by
Fenichel and Wang, there are the two papers by Gersovitz and Chen, which link the
second and third parts of the volume. Both papers focus on the economic approach to
infectious diseases, i.e., utility maximization, to determine optimal either protective
(e.g., decreasing at-risk contacts, or vaccinating) or therapeutic actions in the context
of recurrent infections of the susceptible-infective-susceptible (SIS) type.

In particular, Chen develops a discrete-time framework to illustrate the equilib-
rium implications of risk-reduction actions (including vaccination) that forward-
looking, utility-maximizing agents can take to lower the probability of acquiring
an infection. He illustrates the various concepts of equilibria which appear as a
consequence of combining economic and mathematical epidemiology approaches
and shows several counter-intuitive consequences of the interplay of individual
actions and public policies. Gersovitz uses a continuous-time framework to discuss
the issue of “externalities,” i.e., the discrepancy between costs and benefits at the
level of the individuals who make choices about the infection (e.g., about prevention
and therapy) and at the level of the society as a whole. Such discrepancy provides
the rationale for public policies (e.g., subsidies for prevention and therapies) aimed
to offset the externality, i.e., to align private and social choices. He also suggests
that the absence of such interventions might have perverse effects on welfare.

Two contributions (Vardavas and Marcum, and Breban, respectively) focus on
the issue of voluntary vaccination choices against sequences of seasonal influenza
epidemics, where individuals must decide every year whether or not to get immu-
nized, by using the inductive reasoning games approach. This is a flexible adaptive
approach allowing to update influenza vaccination decisions for a new epidemic
year based on the past experience with vaccination (i.e., whether effective or not)
and infection (mild or not) and expectations about future influenza epidemics.

In particular, on the one hand, Vardavas and Marcum show that individual
immunization choices can cause severe influenza epidemics and illustrate the
actions that might be undertaken to prevent them. These include commitment-
based incentives or the release, by the mass media, of appropriate epidemiological
information that individuals can use to evaluate the importance of vaccination.
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On the other hand, Breban includes age structure both in social contact patterns
and vaccination decisions. He shows that age structure affects the game dynamics
for not only epidemiological but also behavioral reasons. In particular, unlike the
unstructured case, the inclusion of age structure makes it possible to eliminate
influenza through voluntary vaccination and induces much more complex dynamical
patterns.

Finally, the last set of contributions of the third part focuses on the issue of
vaccinating behavior in relation to immunization for vaccine-preventable infections.

Bhattacharyya and Bauch aim to give a broader perspective of the issue of
behavior in relation to vaccination programs, by departing from the classical free-
rider problem, to suggest that various types of dynamic behavior can emerge from
the interplay between vaccinating strategies and information about disease, which
range from policy resistance, i.e., free-riding, to policy reinforcement, outcome
inelasticity, and outcome variability, and suggest the potential implications for
vaccination policies.

Shim et al. use a game-theoretic dynamic model of measles’ transmission
with two groups, one composed by “vaccine skeptics” and the other by “vaccine
believers,” characterized by widely different perceptions about the risks of vaccine
side effects and disease, to examine the impact of perceived risks of measles’
vaccination on vaccine uptake as a possible cause of decline in herd immunity. They
conclude that the most important factor for decline in herd immunity and consequent
measles’ resurgence is the size of the proportion of vaccine skeptics.

d’Onofrio et al. review and extend their work on the implications of vac-
cinating behavior for the dynamics of common vaccine-preventable infections.
They consider both prevalence-based models with vaccine uptake given by a
phenomenological function of the information about prevalence of infection, or
of vaccine side effects, and models where perceptions about benefits and costs of
vaccination spread through to an imitation process. They discuss the relationships
between the two frameworks and highlight the importance of appropriately taking
into account delayed information, as well as oscillations in the contact rate.

In a more mathematical vein Buonomo et al. focus on the global stability
properties of the endemic states of prevalence-based SIR models with phenomeno-
logical behavioral responses either in vaccine uptake or in contact rates, by using
the modern geometric approach to stability. This approach, proposed by Li and
Muldowney, extends the classical Poincaré–Bendixson theory to dynamical systems
of arbitrary—but finite—dimensions. They apply the methodology to prove in
particular the global stability of the endemic state of a model of vaccination of adult
susceptible subjects.

The book is ended by the concluding overview by Edmunds et al. Their title
“Capturing human behaviour: is it possible to bridge the gap between data and mod-
els?” suggests which are the major future challenges for behavioral epidemiology
of infectious diseases. Whether we will, in the future, be able to predict behavior
in relation to infections, thereby making behavioral models useful policy tools, is
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hard to answer right now. But now that we have the models, the first step towards
predictability would surely be to create the appropriate bridge between models
and data.

We finally thank Springer Verlag for having allowed this book to exist and, in
particular, the Springer officer Vaishali Damle for her cooperating attitude—and
remarkable patience—during all phases of development of this volume.

Pisa, Italy Piero Manfredi
Milan, Italy Alberto d’Onofrio



Contents

Behavioral Epidemiology of Infectious Diseases: An Overview. . . . . . . . . . . . . 1
Chris Bauch, Alberto d’Onofrio, and Piero Manfredi

Part I Field Data on Behaviour

Survey on the Likely Behavioural Changes of the General
Public in Four European Countries During the 2009/2010 Pandemic . . . . . 23
Caterina Rizzo, Massimo Fabiani, Richard Amlôt, Ian Hall,
Thomas Finnie, G. James Rubin, Radu Cucuiu, Adriana Pistol,
Florin Popovici, Rodica Popescu, Väinölä Joose, Kari Auranen,
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Behavioral Epidemiology of Infectious Diseases:
An Overview

Chris Bauch, Alberto d’Onofrio, and Piero Manfredi

Abstract The focus of the growing discipline of behavioral epidemiology (BE) of
infectious diseases is on individual behavior as a key determinant of infection trajec-
tories. This overview departs from the central, but static, role of human behavior in
traditional mathematical models of infection to motivate the importance of including
behavior into epidemiological models. Our aim is threefold. First, we attempt to
motivate the historical and cultural background underpinning the BE revolution,
focusing on the issue of rational opposition to vaccines as a natural endpoint of
the changed relation between man and disease in modern industrialized countries.
Second, we review those contributions, from both mathematical epidemiology and
economics, that forerun the current “epidemic” of studies on BE. Last, we offer
a more detailed overview of the current epidemic phase of BE studies and, still
motivated by the issue of immunization choices, introduce some baseline ideas
and models.

1 Introduction

The severe acute respiratory syndrome coronavirus (SARS-CoV) outbreaks of the
early 2003 yielded worldwide panic. The characteristics of the SARS virus, mainly
transmitted through close contact from person to person [20], brought to everyone’s
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mind, more than HIV/AIDS, the spectrum of a “modern plague,” at risk of being
triggered by historically unprecedented population mobility. The SARS chapter
closed leaving only 8,500 cases worldwide (though 800 deaths), but having given a
sharp demonstration of how effective might be the diffusion of fear in the globalized
world, with the dramatic decline in traveling, tourism, and investments to the Far
East [65].

The SARS outbreaks are only one dramatic example of an endless list. In October
2009, in the middle of the H1N1 crisis, the Italian Public Health System started
advertising a national immunization campaign against the pandemic flu, targeting
21 million individuals with two doses. A few months later, when the Italian
epidemic ended, vaccine coverage was a mere 4.2% [87], the worse result in H1N1
immunization in Europe.

In 1998 the prestigious medical journal The Lancet reported an apparently highly
circumstantial evidence by Wakefield and coworkers on the striking hypothesis
that measles–mumps–rubella (MMR) vaccination might be causally linked with
autism. Although the Wakefield’s paper was strongly criticized by other scientists
and retracted in 2010 by The Lancet [102], and although its data could not be
replicated by other research groups, in subsequent years UK measles immunization
fell from 92% to less than 80% in 2003, yielding a protracted marked decline in
herd immunity, ultimately responsible for measles resurgence [60, 78].

What possibly happened with H1N1 immunization in Italy was that individuals
perceived that H1N1 was a mild disease and therefore were not motivated to accept
the risk of vaccine adverse events (VAE) from a vaccine which they also perceived
as being of insufficiently proven safety. We note that it was not important that
the perception was not informed from the best science: what mattered was that
this misperception spread faster than other, more correct perceptions, and it was
ostensibly confirmed by the subsequent course of the epidemic, which was mild
only in comparison to what had been feared based on the early, confused events in
Mexico. So eventually only a small proportion were immunized. What happened
with MMR uptake in the UK was that news reports of the Wakefield study suddenly
raised the perceived risk of VAE, thereby making the perceived utility of vaccination
strongly negative. Especially in the context of very low measles circulation at
the time, many parents therefore decided not to immunize their children. We note
that the perception of measles rarity was “myopic”—rarity was the consequence
of herd immunity generated by 20 years of successful immunization—but this is
not relevant. What matters is that the rumor spread fast, possibly aggravated by
apparently coming from the “best science.”

There are also examples where human behavioral responses played a critical role
in controlling infections. There is little doubt that in the HIV/AIDS catastrophe in
Sub-Saharan Africa (SSA), sexual behavior change has been the key in the Ugandan
success story [1, 77], which is currently the major instance of success in the control
of HIV in SSA, and is becoming an effective strategy as well in other SSA settings
such as Zimbabwe where a major HIV epidemic is still ongoing [51, 52].

All these examples document how important human behavior might be for
infection spread and for determining the success of public health interventions.
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2 Human Behavior and Epidemiological Modeling

The current mathematical theory of infectious disease transmission was built on
a few cornerstone ideas and models developed during the so-called Golden Age
of theoretical ecology [61, 88, 92]. The most important among such milestones is
the homogeneous mixing SIR (susceptible-infective-recovered) model in its two
variations, for epidemic outbreaks as seasonal influenza and for endemic infections
as measles in large communities in absence of any immunization [3]. In this class
of models, behavior is absent: individuals contact (and infect) each other at random,
as particles of a perfect gas (the so-called law of mass action [28]) and therefore
behavioral influences are ruled out by definition.

In the last 25 years however, thanks to pioneering works aiming to better integrate
models with data [3, 53, 54], mathematical models of infectious diseases have
crossed their traditional biomathematical boundaries to become central supporting
tools for public health decisions, such as determining the duration of travel
restrictions or of school closure during a pandemic event, or the fraction of newborn
to be immunized for a vaccine-preventable infection, as measles. Some of these
models are highly sophisticated both from the computational and data requirements’
viewpoints [5,39,73]. In these models, the importance of human behavior is implicit
in the acknowledged role of social or sexual contact patterns as the key determinant
of the transmission of both close-contact infections, as influenza or measles, and
sexually transmitted infections (STIs), such as HIV/AIDS. In recent years there
have been great advances in the understanding of contact patterns [59, 75, 108],
which made available rich information about, for example, the average number of
persons of different ages an individual encounters in a typical day. This information
is allowing great improvements in model parameterization and validation. However,
the point of behavioral epidemiology lies exactly here: though sophisticated, current
models treat these contact patterns statically, as a universal constant, exactly as in
the simple SIR model. This means that behavior is totally unaffected by the state of
the disease, for example, individuals continue to contact each other however low or
high might be the perceived risk of contracting the infection. As these static contact
patterns refer to normal situations, the ensuing models are unlikely to apply under
stressed conditions as those observed during a dangerous epidemic or a period of
panic raised by a pandemic threat [38]. Similarly, models used to evaluate the impact
of immunization programs treat vaccine uptake as a constant [3], totally unaffected
by individuals’ risk perceptions about the disease and the vaccine, and despite the
fact that it is the degree of acceptance of the public that will ultimately determine the
success of the program unless mandatory policies can be strictly enforced. Clearly,
phenomena such as vaccine scares cannot be captured by treating vaccine coverage
as a fixed, exogenously determined input parameter.

As suggested by the above examples, this postulated static human behavior
is therefore an unrealistic abstraction. Individuals are neither static nor passive:
they can change their social behavior spontaneously in response to a pandemic
threat, can adaptively vaccinate in response to a sequence of seasonal influenza



4 C. Bauch et al.

epidemics, or can decide not to vaccinate their children after a comparison between
the perceived costs and benefits of a vaccination program, thereby threatening its
success. In modern times, these decision dynamics are facilitated by the power
of modern communication technologies, which allow real-time, selective access
to broadly available information to the extent that certain reliable influenza data
can now be mined from individuals’ search activities on the web during influenza
seasons [49].

The challenging task of modeling, explaining and possibly predicting these
phenomena is the ultimate purpose of the emerging field of behavioral epidemiology
of infectious diseases. As the above examples clearly show, the major novelty
that distinguishes BE from, for instance, traditional biomathematical approaches
or economic approaches in epidemiology (e.g., cost–benefit analyses of public
programs) is the focus on modeling behavioral changes in response to infection
dynamics [44] as a key determinant of infection trajectories, and therefore on the
complex interplay between agents’ decisions, on one hand, and the transmission
and control of infections, on the other hand [38, 44].

3 Behavioral Epidemiology: Why Now?

Later on in this overview, BE is described as currently being in its “epidemic” phase.
A question is then, why right now? We argue that a rich “humus” was supplied by the
current scientific, cultural, and socio-demographical context of industrialized coun-
tries which has dramatically changed the relationship between humans and disease.
In this context, individuals frantically demand “predictability” during a pandemic
event [38] or “rationally” refuse a vaccine—the invention that has protected so
much human life in the last hundred years. In short, technology has turned us from
victims of nature per se to victims of our own actions locked in a feedback loop with
natural forces. This is why it is now that studying BE is important, and we expand
on this in the following paragraphs. Until 1750 the millenary fight between man

�

Fig. 1 (continued) (upper left panel) Thucydides, who described with many details the plague
outbreak that frightened Athens during 430–429 BC and resulted in significant socioeconomic
reactions. The etiological agent is still unknown; (upper right) Giovanni Boccaccio, whose
Decameron (written between 1351 and 1353) supplied a dramatic description of the devastating
impact of the Black Death passed through Florence in 1350. The book is the story of ten young
people (seven women and three men) who flee from the devastated Florence and self-quarantine
(an early example of social distancing) into a villa in the countryside, where they pass time
telling stories. (bottom left) Daniel Defoe, who was five years old when the bubonic plague struck
London in 1665, which he subsequently described in his Journal of the Plague Year. (bottom right)
collection of dead bodies during the outbreak of bubonic plague in Milan, described in Manzoni’s
“The Betrothed.” In Chap. 22 he underlies the possibly devastating role played the great procession
authorized by the Cardinal of Milan, Federico Borromeo, ironically undertaken to invoke God’s
favor
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Fig. 1 (continued)
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and disease—the third horseman of the Apocalypse—is the story of a long-lasting
unperturbed ecological equilibrium. During this fight human behavioral responses to
infectious disease threats always took place, as is documented by the great writers,
from the Athens’ “plague” described by Thucydides, to the Black Death whose visit
to Florence was immortalized by Giovanni Boccaccio in the “Decameron,” to the
seventeenth-century plague described by Daniel Defoe and Samuel Pepys, and two
centuries later on by Alessandro Manzoni (Fig. 1). However, most these responses
are reported by historians as taking place at the community level (e.g., enforcing
quarantine of sick individuals and also of goods [97], or closing the city gates,1

and mass migrations—especially by rich people—toward the country2), so that
individual actions, though reported, were usually perceived as minor and passive.
Most of all these actions, collective or individual, were lacking any scientific basis.3

Most importantly, these actions were unable to mitigate plague epidemics or to
perturb the ecological equilibrium between man and disease: infectious diseases
continued to impose a major and intractable health burden on populations worldwide
for several millenniums.

During the last two centuries, however, thanks to the sanitation revolution (such
as potable water) and to medical discoveries (such as vaccines), humanity has
attained amazing achievements in the control of infectious diseases and reduction in
associated mortality. These achievements have perturbed the equilibrium between
humans and disease, yielding that epochal change in the casual composition of
mortality from infectious (and nutritional) diseases to chronic degenerative ones
known as the “epidemiological transition” [76, 96, 103]. The epidemiological
transition has been a major determinant of the huge progress in survival and
health in industrialized countries, where life expectancy increased from 25 to
30 years in preindustrial societies to more than 80 years in the current period

1In Rome, during the seventeenth-century plague special additional walls were built around the
city [97].
2As S. Pepys wrote during the London Plague: “I find all the town almost going out of town, the
coaches and wagons being all full of people going into the country,” as reported by [97]. The same
paper also reports that the parish of Covent Garden, London, wrote “all the gentry and better sort
of tradesmen being gone.”
3For example, based on historical documents, Manzoni describes in his masterpiece novel
The Betrothed the behavioral changes of the citizens of Milan, during the plague in 1629, mainly
due to their fear of the “poisoners”: imaginary villains that were thought to voluntarily spread the
disease through mysterious ointments causing the disease. In particular, Manzoni describes as the
epidemic peak following a procession against the plague is not attributed to the crowding during
the procession nor to “the infinite multiplication of random contacts” (note the surprising accuracy
of Manzoni’s language in describing the contagion process, despite this phrase has been written
in 1827). The most of people attributed, indeed, the peak to the poisoners, who would have had an
easier task, in the crowd of the procession, in diffusing their evil ointments in order to accomplish
their “impious plan.”
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[69, 103], which in turn triggered fertility decline, the escape from Malthusian
traps, and eventually, in a virtuous circle, sustained economic development [14,45].
Further advances with vaccines, such as vaccines that protect against oncogenic
viruses such as HBV and HPV, are making a reality out of previously utopian
conceptions of life in a future world free from infectious diseases [22].

This amazing success against infectious diseases and their associated mortality
in the industrialized world, and the ensuing huge increase in the value of human
life in current low-mortality/low-fertility societies, is however changing the rela-
tion between man and infection. What was the rule in the ancient demographic
regime—losing 50% of children before age 15 as a consequence of infections and
malnutrition [69]—has been completely reversed in today’s small, highly educated
postindustrial families.

There are several evidences of this changed attitude, and surely the main one
is represented by the increasing frequency of episodes of oppositions to vaccines
[47,70,78], the single invention that possibly more than other has contributed to the
changed relation between man and infection.

The history of immunization in the western world has always been characterized,
already since the introduction of smallpox vaccine, by phases of declining uptake.
However, most of this historical opposition to vaccination is thought to be due
to conscientious, religious, or philosophical reasons [90]4 In contrast, current
societies are gradually facing the more complex challenge of rational opposition
to vaccines [8, 9, 31, 33].5 Consider the example of an infection that is preventable
by childhood immunization, as measles, for which we assume there are only two
options, i.e., vaccinating or not vaccinating at birth. By rational opposition we mean,
under voluntary vaccination, the parents’ choice not to vaccinate children after a
comparison between the perceived benefit and cost of vaccination.

The cost of vaccination can be conceived of as the perceived risk of suffering
some vaccine-associated adverse event (VAE). In the simplest case this can be
taken as a constant (e.g., as in [8]), though individuals’ perceptions about a given
vaccine are possibly affected by perceptions about other vaccines as well. On the
other hand the perceived benefit of vaccination can be estimated by the perceived
risk of suffering death (or serious morbidity) from the disease, which can in turn
be estimated as the product of some measure of the current perceived risk of
acquiring infection, i.e., the force of infection, and the conditional probability of
death, as a consequence of infection. European data suggest that, due to improved
nutrition and sanitation, the probability of death following infection from measles
and other childhood infections fell off at least two orders of magnitude from

4We shortly mention that there are also a number of a priori opposers to vaccinations, who
irrationally believe that vaccines are a sort of Manzoni’s “ointments.” Quite interestingly, this
observation is in line with the fact that some anti-vaccination arguments remained unchanged since
the Jenner’s times [107].
5Although out of the aims of this work, we remark here that the partisans of most extreme
anti-vaccination positions are very able in spreading their ideas through the World Wide Web [107],
so that WWW 2.0 might represent not only an opportunity but also a challenge for vaccination
decisions [12]. This topic, in particular, is worthwhile to be studied in the future.
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1860 to 1950 [34, 35], i.e., prior to when most immunization began. As for the
risk of infection, the simple endemic SIR model with immunization at birth [3]
suggests that for highly transmissible infection as measles, with a basic reproduction
number about 15, a vaccine uptake of approximately 90%, as was typical in many
European countries during the last two decades, would create strong herd immunity
by decreasing both the endemic prevalence and the risk of infection by about
30 times compared to the case of no vaccination. This straightforwardly yields
the perception that the infection is no longer circulating. These numbers suggest
that sanitation progress and mass immunization, two major factors underlying the
changed relation between humans and their diseases, are now acting as “killers” of
the perceived rewards of immunization [33]. In simple words it is the vaccine’s
success in controlling infections that promotes “rational” opposition, leading to
declining vaccine coverage and potentially to infection reemergence.

The modeling of vaccination choices and rational opposition is currently a
major topic of investigation in BE [8–10, 13, 29–33, 72, 85, 86]. Details about how
vaccination choices can be incorporated into transmission models to capture the
emergent population-level implications of vaccinating behavior will be presented in
Sect. 5 of this overview.

4 Incubation of BE: Mathematical Forerunners, HIV/AIDS,
and the Free-Rider Problem

The first mathematical epidemiology papers incorporating behavioral concepts
date back to the end of the 1970s and were mainly motivated by mathematical
questions, i.e., investigating extensions of the basic SIR model including nonlinear
forces of infection. The first among such efforts [19] investigated the effects
of a prevalence-dependent [44] contact rate, i.e., a contact rate reacting to the
(perceived) prevalence of infective individuals, on the epidemic SIR model. To our
knowledge, this is the first study including the concept of social distancing in
epidemic modeling. Extensions of these ideas to endemic infections were developed
shortly thereafter [67, 68].

However, the first great impulse to the development of behavioral epidemiology
as a discipline was provided by the HIV/AIDS threat, beginning in the 1980s.
The combination of a long incubation period, with difficult and costly treatment,
and the lack of a vaccine have made instilling preventive behavior through the
dissemination of information on risky behavior with respect to sexual or intravenous
drug use the main control strategy, especially in poor resource settings.

In a situation almost completely lacking reliable data on individuals’ responses
to the spread of epidemics, mathematical modeling has rapidly become the main
tool for understanding the effects of behavior change on HIV trajectories. The
first contribution is [91], where the effects of switching from high to low risk
behavior on the epidemic threshold parameter were investigated by a two-group
model with preferred mixing, subsequently extended in [66], and estimated in [99].
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In [15] data on HIV/AIDS in San Francisco are used to provide a model-based
estimate of the decline in at-risk behavior required to eliminate, even in presence of
a vaccine, the infection. The first warning on the possibility that a protective vaccine
increases epidemic severity by raising at-risk behavior is also put forth. Several
papers have used simple models to investigate the static and dynamic effects of
various forms of behavioral responses including prevalence-dependent recruitment
into the at-risk population and reducing contact rates after screening or treatment
[50, 56, 105, 106]. The effects of prevalence-dependent sexual mixing patterns were
investigated in [58]. A first attempt to integrate optimal choices of sexual partners
into HIV transmission models is [64]. These are pioneering works of an endless list.

In parallel to the explosion of studies on behavior change in relation to
HIV/AIDS, the first studies on vaccinating behavior appeared. In a seminal epi-
demiological paper, Fine and Clarkson [40] compare the different perspectives of the
individual and the public good toward immunization and supply the first formulation
of the result that under voluntary vaccination, rational individuals’ decisions would
most often yield a lower vaccine uptake than is optimal for the community as
a whole. This result remained essentially unnoticed to epidemiological modelers
until recent times and was independently rediscovered later by economists as well,
but in relation to the debate between free market and compulsory immunization
formulated as a free-rider problem. Immunization against a communicable infection
by a vaccine that protects against infection has a twofold protective effect: a direct
one for those who are immunized and an indirect one for those who are not,
due to the reduced circulation of the virus in the community which reduces the
risk of acquiring infection for those non-immunized. Free-riding arises when some
individuals take advantage of this indirect protection (herd immunity) created by
those who choose to be vaccinated, to avoid immunization and its related costs.
In [18] the conditions under which free-riding can be overcome without compulsory
vaccination, through taxes or subsidies, are investigated, while [41] departs from
the problem investigated in [18] and shows that in a special case of SI infections
the market and the government optimal solutions may be identical. Geoffard and
Philipson [48] use an SIR model for a childhood infection with vaccine uptake
dependent upon infection prevalence as a measure of perceived risk of infection, as
empirically supported by analyses in [80], to offer the first proof of the supposed
impossibility of eliminating infection under voluntary vaccination. The simple
argument is that a successful immunization program will strongly reduce infection
prevalence and therefore also reduce the perceived risk of disease, thereby killing
the vaccine demand. These works formed the “humus” for the current outbreak of
BE studies, discussed in the next section.

5 The “Epidemic Phase” of Behavioral Epidemiology

Behavioral epidemiology is arguably in an “epidemic phase,” with many dozens
of publications in the area in the past decade [2, 4, 6–11, 13, 16, 17, 21, 23–27, 29–
33, 36, 37, 42–44, 46, 62, 63, 72, 79, 81–86, 89, 93–95, 101, 104, 109]. This attention
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has come primarily from biomathematicians and theoretical biologists, for whom
an interest in behavioral epidemiology comes naturally due to their long-standing
involvement in both mathematical epidemiology [53] and evolutionary game theory
[71]. It is also possible that the MMR vaccine scare of the late 1990s and the oral
polio vaccine (OPV) scare early in the twenty-first century contributed to this surge
of interest [57].

Some of this development has been described in recent review papers [13,44,63].
Here, we provide a broad overview of the behavioral epidemiology literature in the
past ten years, starting with a discussion of the broad range of approaches that have
been adopted.

5.1 Model Taxonomy

Funk et al. suggest that the literature can be classified in terms of (1) source of
information used by decision-makers, (2) type of information used by decision-
makers, and (3) effect of behavioral change [44]. For example, decision-makers may
either base their decisions on global sources of information available to everyone
(television, World Wide Web) [7, 8, 11, 21, 24, 27, 31, 32, 37, 46, 62, 86, 101, 104],
or they may base their decisions on local sources available only to a subset
of the population (such as information passed through word of mouth between
acquaintances) [4, 36, 37, 43, 79, 89, 93, 109]. Likewise, decision-makers may base
their decisions on perfect knowledge of disease prevalence [4, 7, 9, 11, 21, 27,
31, 32, 46, 79, 86, 93, 104, 109], and/or they may base their decisions on sources
completely independent from prevalence or base only loosely on prevalence, such
as peer opinions or faulty media representations [8, 24, 36, 37, 43, 62, 89, 101].
Finally, the effect of behavioral change may be to change individual disease states
[7–9, 11, 21, 24, 31, 32, 36, 46, 79, 86, 89, 104], model parameters [4, 27, 37, 43, 62,
101] or contact structure [37, 84, 93, 109].

One could also distinguish the literature by the intervention concerned. For in-
stance, the majority of papers are specifically concerned with vaccinating behavior,
although some papers are concerned with social distancing [43, 84, 93, 109] or
antiviral drugs [100]. Some models are intended for specific diseases, such as
influenza [17, 46, 94, 104], smallpox [6, 11, 27], or human papillomavirus [7], while
many models are intended to be more general [8, 9, 16, 21, 36, 43, 72, 86, 93].

Earlier models in behavioral epidemiology tended to be either mechanistic with
respect to transmission and phenomenological with respect to behavior [19] or
mechanistic with respect to behavior and phenomenological with respect to trans-
mission [40], whereas more recent models represent both behavior and transmission
mechanistically. If mechanistic with respect to both, they have sometimes been
termed “behavior-prevalence” or “behavior-incidence” models, because the full
mechanistic model is formed by coupling two independent mechanistic submodels,
one for behavior and one for transmission [13, 63].
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Mechanistic transmission models are often deterministic compartmental models,
although there is also a distinct subset of the literature concerned with contact
networks [26, 42, 43, 79, 93, 109]. Likewise, mechanistic behavioral models may
be based on theory about behavior or perception stemming from psychology
[4, 8, 16, 24, 26, 27, 29, 42, 43, 79, 93], and/or some of these approaches may
be specifically game theoretical, assuming that individuals act to rationally optimize
their own payoffs [9,11,72,83,84,86,94]. In the next two sections, we describe two
examples of behavior-incidence models, the first of which represents a game
theoretical approach to behavioral epidemiology.

5.2 A Game Theoretical Example

Game theoretical approaches specify a game that entails strategic interactions
between individuals, and identify the Nash equilibrium of the game. When each
player is playing their Nash equilibrium strategy, no player can obtain a higher
payoff by switching to another strategy. Therefore, a population at the Nash
equilibrium is expected to remain there. We note that one can furthermore define
a convergently stable Nash equilibrium, meaning that a population whose initial
conditions place it away from the Nash equilibrium will eventually converge to the
Nash equilibrium and stay there [9]. Many behavioral epidemiological approaches
are akin to game theory, in that they describe scenarios where strategic interactions
exist and they specify payoffs [40, 43, 79, 93], but strictly speaking they are not
game theoretical unless they specify a game and identify its Nash equilibria (or its
evolutionarily stable states [71] or similar such solutions).

5.2.1 Model Description

An example of an approach to behavioral epidemiology that combines a game
theoretical model of human behavior with a mechanistic disease transmission
model is the simple vaccination game for pediatric infectious diseases, appearing
in [9]. This game captures many of the basic features of mechanistic approaches to
behavioral epidemiology modeling. We explain the game and its Nash equilibrium
intuitively as follows. The game is a population game where individuals play
against the outcome of the average behavior of the population. Individuals can
either vaccinate or not vaccinate. The payoff to vaccinate is −rv, where rv is
the vaccine cost, i.e., the perceived probability of complications due to vaccine
(the payoff is negative because maximizing payoff is the same as minimizing
adverse health impacts). The parameter rv could equally well be interpreted as being
the financial costs plus monetized health costs due to complications. This payoff
function implies that the vaccine is perfectly efficacious, because the individual only
pays the one-time cost rv upon vaccinating and never any infection cost. The payoff
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not to vaccinate is −riπ(p), where π(p) is the perceived lifetime probability that
a nonvaccinator becomes infected if the vaccine coverage in the population is p
and ri is the perceived probability of significant morbidity if a nonvaccinator ends
up getting infected. We suppose that π(p) is strictly decreasing in p and that
π(pcrit) = 0 for some pcrit < 1, due to herd immunity. We allow individuals to adopt
a mixed strategy to vaccinate with probability P, where 0 ≤ P ≤ 1. At a steady-state
equilibrium in a population where everyone is playing P, we note that p = P.

5.2.2 Finding the Nash Equilibrium

Suppose first that rv ≥ riπ(0), such that the cost to vaccinate exceeds the cost not
to vaccinate, even if no one else is vaccinating and hence the infectious disease is
rampant. Then P∗ = 0 is the Nash equilibrium: suppose that everyone is playing
P∗ = 0; then, a small group considering switching to a strategy Q > P∗ would, as
a result of their actions, increase the vaccine coverage slightly; this would decrease
the probability that nonvaccinators are infected since π(p) < π(0) for all p > 0,
and meanwhile, the payoff to vaccinate would remain unchanged; thus, by starting
to vaccinate with a higher probability, the small group would only worsen their
payoff by changing strategies; as a result, there is no incentive for anyone to start
vaccinating and so P∗ = 0 is the Nash equilibrium when rv ≥ riπ(0).

Now suppose that rv < riπ(0). In this case, the Nash equilibrium occurs at P∗
such that the payoff to vaccinate equals the payoff not to vaccinate, i.e., −rv =
−riπ(p∗) (where P∗ = p∗). The reason for this lies in the fact that π(p) must be
strictly decreasing in p. Suppose in a population where everyone is playing P∗
a small group of individuals considers playing Q > P∗. This would increase the
overall vaccine coverage in the population slightly, meaning that the probability that
a nonvaccinator is infected would be lower, meaning that the payoff not to vaccinate
now exceeds the payoff to vaccinate. As a result, the small group would only receive
a lower payoff if they switched to Q > P∗ and, if they are rational, would probably
decide against that option. Similarly, at P∗, there is no incentive for anyone to start
vaccinating with probability Q < P∗. Hence, we expect that a population existing at
P∗ would stay at P∗, where P∗ satisfies −rv =−riπ(P∗).

It is also possible to show that P∗ is unique and locally convergently stable
and that p∗ < pcrit , such that the Nash equilibrium coverage is always below the
threshold coverage at which the infection would be completely eliminated from
the population. Because self-interested behavior thereby precludes eradication of
a vaccine-preventable infection, this can be interpreted as a form of “free-riding,”
or equivalently, policy resistance [98]. Free-riding is a common prediction of
behavioral epidemiological models, although exceptions occur (e.g., see [79, 94]).
Much work in behavioral epidemiology is concerned with the extent of free-riding
behavior and conditions for its emergence.
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5.2.3 Introducing a Mechanistic Disease Transmission Model

By introducing a compartmental model such as the susceptible-infectious-recovered
(SIR) model with births and deaths, it becomes possible to specify a function form
for π(p) and thus make quantitative predictions of the Nash equilibrium coverage.
The SIR model equations are

dS
dt

= μ(1− p)−β SI− μS , (1)

dI
dt

= β SI− γI− μI , (2)

dR
dt

= μ p+ γI− μR , (3)

where S is the proportion of the population that is susceptible, I is the proportion
infectious, R is the proportion recovered, μ is the mean birth and death rate, β
is the mean transmission rate, 1/γ is the mean infectious period, and p is the
vaccine coverage (assuming, for simplicity, that individuals are never infected
before being vaccinated) [53]. From the equilibrium solutions of these equations we
can determine π(p) and thus p∗ from −rv = −riπ(p∗). For the pediatric infectious
disease vaccination game using (1)–(3), the Nash equilibrium coverage p∗ when
rv < riπ(0) is:

p∗ = 1− 1
R0(1− rv/ri)

, (4)

suggesting that Nash equilibrium vaccine coverage in a population attempting to
optimize their own health-related payoff is higher when the basic reproduction
number R0 is higher, when rv is lower or when ri is higher.

5.3 An Example Based on Imitation Processes

A contrasting, non-game theoretical approach appears in [8,10]. In order to achieve
the dynamic description required to capture temporally extended phenomena such
as vaccine scares, the SIR equations with birth and death are modified by replacing
a constant vaccine coverage p by a potentially time-varying vaccine coverage x,
where x is determined by a differential equation capturing how individuals learn
their strategic behaviors from others:

dS
dt

= μ(1− x)−β SI− μS , (5)

dI
dt

= β SI− γI− μI , (6)
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dR
dt

= μx+ γI− μR , (7)

dx
dt

= kx(1− x) [−rv + rimI] . (8)

In these equations, all parameters and variables are as in Sect. 5.3, except x is the
proportion of the population favoring vaccination at time t, m is the sensitivity of
individuals to prevalence I (where higher values of m mean that individuals perceive
the disease as more harmful), and k quantities are the combined rate at which
individuals sample others and probability of switching strategies if they find that
others are receiving a higher payoff for playing the other strategy. The probability
of switching strategies is proportional to the difference in the vaccinator payoff,
−rv, and the nonvaccinator payoff, −rimI. Individuals do not know their lifetime
probability of being infected, but rather adopt a “rule of thumb” that the cost
of not vaccinating is proportional to the current disease incidence I, hence the
nonvaccinator payoff −rimI. Since R = 1− S− I, we note that equation (7) can
be dropped.

The analysis of [8] is not really game theoretical because the Nash equilibria
were not identified and the focus was on dynamics away from equilibrium. This
type of approach has been described as a game dynamic approach, since it describes
how populations may evolve over time toward, or away from, Nash equilibria
[55]. However, the model equations (5)–(8) nonetheless describe a situation where
strategic interactions exist due to the feedbacks between vaccinating behavior and
disease prevalence. And, in principle, connections exist and can be made between
the equilibria of the model equations and Nash equilibria of the underlying game.
For example, Lyapunov stable or asymptotically stable equilibria of the model
equations can also be Nash equilibria under certain conditions [55].

Equations (5)–(8) exhibit a broad range of behavior, including a disease-free
equilibrium where no one vaccinates (I = x = 0), a disease-free equilibrium where
everyone vaccinates (I = 0, x = 1), an endemic equilibrium where a fixed proportion
of the population vaccinates (I > 0, x > 0), an endemic equilibrium where no one
vaccinates (I > 0, x = 0), and a stable limit cycle where x and I oscillate indefinitely
(see Fig. 2) [74]. However, as before, because of free-riding behavior, vaccine
coverage x never reaches the level pcrit that enables elimination of the infection.
Variants of this model have been shown to provide parsimonious explanations of
vaccine coverage and case notification data from vaccine scares in England and
Wales, and in the deterministic regime the model also appears to have predictive
power [10].

5.4 A Prevalence-Based Modeling Example

A contrasting approach appears in [31]. In order to achieve the dynamic description
required to capture temporally extended phenomena such as changing levels of
vaccine coverage over time, many approaches augment a compartmental model
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Fig. 2 The κ-ω parameter
plane illustrating dynamics of
model described by (5)–(8).
κ ≡ krv and ω ≡ mri/rv. I:
stable endemic, pure
nonvaccinator equilibrium. II:
stable endemic, partially
vaccinating equilibrium. III:
stable limit cycle. Other
parameters are R0 = 10,
1/γ = 10 days,
1/μ = 50 years. Figure
reproduced from [8]

by replacing a constant vaccine coverage by an information dependent, potentially
time-varying vaccine coverage that captures how individuals make vaccinating
decisions according to information about incidence or prevalence of infection:

dS
dt

= μ(1− p(M))− μS−β (t)SI , (9)

dI
dt

= β (t)SI− (μ + γ)I , (10)

dR
dt

= γI− μR , (11)

dU
dt

= μ p(M)− μU . (12)

Here, S, I, R, p, β (t) and μ are as in Sect. 5.3 except β is potentially time-varying.
U is the proportion of vaccinated individuals and M is an information variable
governing the signal available to individuals as a function of prevalence or incidence
of infection. Since R = 1− S− I−U , we note that equation (7) can be dropped.

Rather than taking p from game theoretical considerations, in this approach,
p = p(M) where M depends directly on current or past states of the disease in the
population. When depending on current states, the authors explore three possibilities
for M:

• M = αβ SI: information governing vaccinating behavior depends on the current
incidence, where α is a reporting rate.

• M = kI: information governing vaccinating behavior depends on the current
prevalence, where k is a parameter subsuming aspects such as pathogenicity [8].

• M =αβ I/(μ+αβ I): information governing vaccinating behavior is a saturating
function of current incidence [86].
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In comparison, M can also depend on past states, such as according to

• M(t) =
∫ t
−∞ g(S(τ), I(τ))K(t − τ)dτ ,

where K governs memory decay. The parameter p can in turn depend upon M
according to a constant term p0 plus a saturating Michaelis–Menten function p1(M),
for example:

p(M) = p0 + p1(M) = p0 +
CM

DM+ 1
. (13)

Strictly speaking, the analysis of [31] is not game theoretical because Nash
equilibria are not identified. However, this type of approach might potentially be
described as a game dynamic approach, since it may describe how populations
may evolve over time toward, or away from, Nash equilibria [55]. The model
equations (5)–(8) nonetheless describe a situation where strategic interactions exist
due to the feedbacks between vaccinating behavior and disease prevalence. And, in
principle, connections exist and can be made between the equilibria of the model
equations and Nash equilibria of the underlying game. For example, Lyapunov
stable or asymptotically stable equilibria of the model equations can also be Nash
equilibria under certain conditions [55].

Equations (5)–(8) exhibit a broad range of behavior, including fixed points and
stable limit cycles where vaccine uptake and disease prevalence oscillate over
time in a “boom-bust” cycle, even when memory decays exponentially. Hence, as
a result of information-dependent vaccination, the globally asymptotically stable
endemic equilibrium of the basic SIR equations is often destabilized. Moreover, as
in Sect. 5.3, for p0 sufficiently small, vaccine coverage p can never be sustained
at the level pcrit that enables elimination of the infection because of “free-riding
behavior” or equivalently “rational exemption.” Under some assumptions, it is also
possible to derive an expression for the classic interepidemic interval in the presence
of information-dependent vaccination [31].

6 Concluding Comments

The growth in the behavioral epidemiology literature has been significant, but what
will be required for this “epidemic” to become an “endemic?” In order that this
approach becomes an established part of applied mathematics and theoretical biol-
ogy, we suggest that one potential future course for these models involves greater
realism in how behavior is captured in the models, greater realism in transmission
processes, and closer integration of models and data [7, 10, 38, 46, 82, 94]. Other
answers to this question will appear in the following pages, and these directions
by no means exhaust how the field can be further developed. Incorporating greater
realism in transmission processes should come easily to the mathematical epidemi-
ologists; however, incorporating greater realism into models of vaccinating behavior
will require closer collaboration with psychologists, sociologists, epidemiologists,
and economists.
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Abstract In order to assess the likely impact of public health interventions, it is
important to predict the acceptance of control measures, as well as the behavioural
changes that may occur among the general public in response to epidemics, in partic-
ular lethal ones. The emergence of 2009 pandemic allowed us to assess the general
public’s behaviour during the pandemic, via two surveys: one at the beginning and
one after the first wave of the 2009 pandemic, in four European countries.Results
showed some differences between participating countries in previous behaviours
relating to seasonal flu and in beliefs and knowledge about 2009 pandemic influenza.
No substantial differences were detected among the four countries in the first survey
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with respect to the intended behaviours in anticipation of the spread of the pandemic
virus. However, results from the second survey showed differences within and
among the four participating countries. The two surveys were useful in showing
differences between behavioural intentions and actual actions related to the 2009
pandemic influenza. To our knowledge this is the first study investigating the actual
behaviour of the population in four EU countries and provides crucial descriptions
of pandemic impact on social-network dynamics parameters which can be included
in mathematical models.

1 Background

Novel influenza viruses with pandemic potential have emerged every few decades,
and the fear of rapid global transmission of a deadly pathogen, as experienced during
the influenza pandemic in 1918, has shaped research and public health policies in
this area. Moreover, in the last two decades, the emergence of health threats, such as
the highly virulent avian A/H5N1 virus in 1997 [28], the SARS [3] in 2003 and the
A/H1N1 pandemic influenza virus in 2009 [4], has made pandemic preparedness
a crucial issue for public health worldwide especially with regard to population
behaviour and population compliance with public health measures. Spontaneous
behaviour change by the population, which alters transmission risk in a pandemic,
may affect the impact of organized control measures. In fact, during outbreaks, one
of the major problems has always been to communicate with the population in order
to influence behaviours and reduce the spread of disease [2].

For centuries, the response strategy adopted by health authorities dealing with
outbreaks was mainly based on restrictive non-pharmaceutical measures (quar-
antine, isolation, compulsory hospitalization) and, in case of non-adherence to
response measures recommended, sanctions for non-compliant individuals (Balin-
ska et al. 2009). The increasing recognition that human behaviour (compliance
with recommended response measures) critically influences infectious disease
transmission has led to a greater effort to communicate with the public and enlist
their help in reducing disease transmission.

In March 2009 a new influenza virus emerged in Mexico [29] and rapidly
spread around the world in the first influenza pandemic of the twenty-first century
[6]. As the number of 2009 pandemic influenza cases increased and spread and
as extensive media coverage and government advertising campaigns began to
appear, the behaviour of the population changed [1]. Higher perceived risk of
infection and higher perceived severity of infection were associated with greater
use of recommended behaviours in the UK [24]. Other studies have examined the
behavioural changes and initial response to the 2009 pandemic in China [30], Hong
Kong [5], India [16] and Europe [12] and internationally [15].The FluModCont
project, a collaborative project funded by the Seventh Framework Programme (FP7),
started in 2008 and ended in May 2011 (www.flumodcont.org). Main objective of
the project was to arrive at an accurate and data-based modelling of the expected

www.flumodcont.org
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course of an influenza pandemic and of the impact of public health measures on its
scale and severity. Aims of the project include the study of the social acceptability of
public health measures during a pandemic and of the behavioural changes that are to
be expected in such circumstances. Within the FluModCont project we investigated
how populations would react to respond to and comply with interventions foreseen
in national pandemic preparedness plans, which aim to produce accurate and
data-based modelling of the potential course of an influenza pandemic and of the
impact of public health measures on its scale and severity.

A cross-sectional survey had been planned among adults in four EU countries:
Finland, Italy, Romania and the UK. As the 2009 pandemic influenza virus began
to spread in EU countries during the development of the common questionnaire for
the survey, we decided to conduct two surveys at different times in order to assess
behaviour during the pandemic. In particular, the objectives of the surveys were to
investigate behavioural responses and social acceptance of mitigation measures, and
to assess the reliability and validity of behavioural intentions regarding public health
interventions, declared at the beginning of the 2009 influenza pandemic, through
comparison with real behavioural responses to the 2009 pandemic, at the end of
the pandemic wave in 2010 in order to obtain behavioural relevant parameters to be
included in modelling the expected course of an influenza pandemic.

2 Materials and Methods

2.1 Sampling Procedures

In Italy, Romania and the UK, a two-stage stratified sampling with unequal
probabilities of sampling was used: (1) a stratified sample of household telephone
lines was selected through random digit dialling (RDD); (2) the adult (18 years or
over) with the most recent birthday (to the date of the interview) was selected from
each sampled household according to predefined quota (Table 1). A detailed study
protocol was prepared and distributed to the four participating countries.

Table 1 Sample description of the two FluModCont surveys conducted

Number of
respondents
successfully
interviewed

Proportion of
re-contacted
individuals in the
2nd survey (%) Response rate (%)

Country 1st survey 2nd survey 1st survey 2nd survey

Finland 681 683 73 42 –
Italy 1,025 1,025 32 12 –
Romania 1,025 1,025 43 37 –
UK 1,025 1,000 24 15 –
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In order to mitigate the fact that certain social groups are more likely to be at
home (i.e. older people and women) and so may be over-represented in the eventual
sample, the interviewers were instructed, in case the household member with the
most recent birthday was not at home, to skip to the next household instead of
replacing him/her with another household member. Moreover, in order to reduce
this possible bias, the interviews were conducted between 6.00 PM and 8.00 PM,
when people are more likely to be at home. The sample size for these three countries
was fixed at 1,025 individuals in order to estimate a compliance of 80 % for the
main behaviour measures with a precision of ±3%, while assuming a confidence
level equal to 95 % and in order to improve standard variance estimators in health
surveys, based on previous studies, a design effect equal to 1.5 [13].

In Finland, a simple random sampling of adults from the population register with
a link to telephone numbers was used. The sample size, under the same assumptions
made for the other three countries with the exception of design effect, was fixed at
683 individuals. For the second survey we planned to re-contact the sample of the
1st survey and depending on the response rate in each participating country to ‘top
up’ the sample using an identical sampling procedure as used in the initial sample
until we reached n=1025 for Italy, Romania and UK (two stage stratified sampling),
and n=683 for Finland.

2.2 Data Collection

The surveys were conducted in comparable period of time in the four countries
(Fig. 1) and were conducted by market research companies in each country.

The interviews for the first survey were conducted using a four-stage
questionnaire to collect information on (1) health status and behaviour during
seasonal influenza, (2) beliefs and level of knowledge about the new A/H1N1
influenza, (3) behavioural intentions (i.e. social distancing measures, pre-pandemic
vaccination and attitude to use antivirals) according to different scenarios of disease
severity (worst and mild) and (4) socio-demographic characteristics. Beliefs,
knowledge and behavioural responses were measured on 4-point Likert scales.

For the second survey a second specific questionnaire based on the first one was
developed including questions on actual behavioural responses to the A/H1N1 pan-
demic (experience of taking pandemic vaccine and antiviral medications, following
public health advice, isolation at home).

Before the surveys, the questionnaires, originally developed in English, were
translated into the languages of the population to be surveyed and then back-
translated by a different native speaker to verify consistency. The questionnaires
were pretested for qualitative purposes on a small number of participants (from 10
to 15) in all the four countries involved in the studies.

All individuals recruited in the first survey were re-contacted and requested
to answer to the second; in case of refusal, new household telephone lines were
randomly selected using the RDD methodology above described (Table 2).
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Fig. 1 Timing of the behavioural surveys

The study protocol and the standard questionnaires have been revised in order to
be applicable and conform to ethical standards in all countries for both surveys.

2.3 Data Analysis

Data were checked for validity of values, ranges and consistency, cleaned and made
anonymous at the research centre of each participating country. The databases were
then sent to the coordinating research centre in Italy for analysis.

For both surveys in Italy, Romania and the UK, the individual probability to
be sampled, based on the number of adult household members and the number of
working telephone lines available in the household, has been considered for data
weighting. Moreover, data were also weighted to reflect the socio-demographic
structure of the national adult populations. No weights were applied to data collected
in Finland.

Variables measured on 4-point Likert scales were re-coded into two categories
for the analysis (e.g. “very likely” and “fairly likely” were grouped together in a
unique category, as well as “not very likely” and “not at all likely”). Values coded as
“don’t know” were considered as “negative” outcomes (e.g. “no”, “unlikely”, “not
willing”) and included in the analysis, while missing values and values coded as
“not applicable” were excluded from the analysis.

Univariate analysis was performed using percentages and 95 % confidence inter-
val (CI). Differences between percentages estimated in 2009 and those estimated
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in the whole sample in 2010 were evaluated using logistic regression models while
controlling for sex, age, education, occupation, level of information about “swine
flu”, and household composition (when appropriate) as potential confounders.

For Italy, Romania and the UK, the analysis was conducted accounting for survey
design and data weighting in order to improve standard variance estimators [13].
The post-survey estimate of the average design effect among the main outcome
measures for these three countries was 1.53, 1.51, and 1.81, respectively, thus
supporting the assumption made for sample size calculation.

The analysis was conducted using Stata 11.2 software (Stata Corporation,
College Station, TX).

3 Results

3.1 Demographic Characteristics

Table 1 shows the sample sizes and response rates for the two surveys. The response
rates, calculated as the percentage of valid interviews out of the valid interviews plus
refusals and missed appointments during the first survey, varied across countries, as
did the percentage of the successfully re-contacted individuals in the second survey.

The socio-demographic characteristics of respondents (shown in Table 2) were
similar among the four countries in both surveys, except for religion (about 50 %
of respondents in the UK described themselves as religious compared with more
than 80 % in the other countries) and household composition (almost 30 % of
respondents in Finland were single compared with about 10 % or less in the other
three countries). Most of the respondents in all countries in both surveys had a
secondary level of education and about half said that they were working at the time
of interview and living in a household with no children.

3.2 Past Behaviour and Beliefs

During the 2009 survey, respondents from Italy and Romania reported having sought
medical advice last time they had flu more frequently than respondents from the UK
and Finland, mainly through home visit by or visit to a doctor.

About one-third of respondents in Italy, Romania and the UK and about two-
thirds in Finland had the seasonal flu vaccine in the past. Those who had never had
the seasonal flu vaccine reported their low likelihood of catching flu and their good
health status as the main reasons for this.

In case of need, most of the respondents to the 2009 survey from all the four
countries said they would seek health advice about swine flu from their local
GP/nurse and other local and national health authorities. However, about half of
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Table 2 Socio-demographic characteristics

Italy Romania UK Finland

2009 2010 2009 2010 2009 2010 2009 2010

n = 1,025 n = 1,025 n = 1,025 n = 1,025 n = 1,025 n = 1,000 n = 681 n = 683
% % % %

Sex
Male 48.0 48.8 49.2 49.7 47.7 49.8 45.7 45.4a

Female 52.0 51.2 50.8 50.3 52.3 50.2 54.3 54.6a

Age group
18–34 years 23.7 30.1 35.7 33.3 35.2 34.5 19.5 19.5a

35–54 years 40.3 34.5 36.1 35.1 35.2 36.4 31.7 31.4a

55–74 years 27.7 27.1 25.2 28.9 24.9 29.1 48.5 47.6a

75 years 8.3 8.3 3.0 2.7 4.7 0.3 1.6a

Education
Primary or 11.8 13.8 3.4 2.5 13.8 16.3 23.5 23.3

lower
Secondary 73.1 71.6 64.3 61.5 53.2 48.3 38.0 40.5
University 15.1 14.6 32.3 36.0 33.0 35.4 38.5 36.1

or higher

Religion
Christian 91.0 89.4 94.0 91.3 48.7 50.1 82.4 85.1a

Other 0.7 0.2 5.2 7.5 18.8 18.4 2.1 2.2a

None 8.3 10.4 0.8 1.2 32.5 31.5 15.5 12.7a

Occupational status
Working 57.5 59.1 48.6 44.6 63.3 67.7 53.2 50.5
Not 34.9 34.0 41.5 46.1 32.1 28.0 43.2 47.4

working
Student 7.6 6.9 9.9 9.3 4.6 4.3 3.6 2.1

Household composition
Single 5.6 4.0 3.8 3.8 10.0 11.2 26.7 25.2
Only adults 65.9 69.6 58.2 59.2 58.3 53.9 50.8 53.3
With 28.5 26.4 38.0 37.0 31.7 34.9 22.5 21.5

children

Weekly time spent away from home for working/studying
None 34.1 NA 35.9 NA 33.7 NA 44.0 NA
<35 h 19.6 NA 15.7 NA 33.7 NA 14.3 NA
35–44 h 22.2 NA 26.2 NA 21.2 NA 35.4 NA
≥45 h 24.1 NA 22.2 NA 11.4 NA 6.3 NA

Availability towork/study fromhome for 7–10 daysb

Yes 24.6 NA 32.1 NA 29.4 NA 23.7 NA
No 75.2 NA 66.3 NA 70.5 NA 74.1 NA
Don’t know 0.2 NA 1.6 NA 0.1 NA 2.1 NA

NA not available
aPercentages among the 185 new respondents in Finland (data not available for the 498 old
respondents)
bAmong those who reported to work/study some time in a week away from home
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the respondents from the UK and Finland also reported the media and internet as a
source of information, thus partly explaining the fact that they were more likely to
perceive themselves as well informed about A/H1N1 than respondents from Italy
and Romania. Subsequently, during the 2010 survey, respondents from Finland,
Romania and the UK were less likely to report that their local GPs and nurse were
their main source of information about swine flu, with the media being a more
prominent source (proportion reporting the media: 26.9 % vs. 77.0 % in Finland;
7.2 % vs. 55.8 % in Romania; and 16.3 % vs 67.6 % in the UK in 2009 and 2010,
respectively) (Table 3). Most respondents in all countries thought that, in case of
need, it would be possible to get antiviral medication through a chemist (with or
without a GP prescription), hospitals or health authorities.

The proportion of individuals worried about catching swine flu during both
surveys is reported in Fig. 2. The level of worry significantly decreased in Italy and
Finland, remained stable in Romania and increased in the UK from 2009 to 2010.

3.3 Behavioural Intentions

In all countries, about 70–80 % of respondents, during the 2009 survey, stated they
would get vaccinated against swine flu and would take antivirals as precautionary
measure, assuming both treatments were free of charge (Table 3). A higher propor-
tion of respondents would be willing to give the same treatments to their children if
recommended by health authorities. In 2010, the proportion of respondents reporting
to be willing to take the antiviral drugs as a preventive measure significantly
decreased to 36.7 % in Italy and 68.8 % in the UK, while remaining stable at about
70 % in Romania and Finland.

Concerning non-pharmaceutical measures, approximately 63 % (range 56–66 %)
of respondents to the first survey in each country reported spending some time away
from home for working/studying and, among them, approximately 27 % (range 24–
32 %) would be able to stay at home for 7–10 days if needed (Table 2). Of these
more than 80 % of both singles and respondents living with other persons stated
they would be available to stay at home for 7–10 days, if recommended by health
authorities; this was true both if they had been in contact with someone who has
swine flu or if they had themselves symptoms of swine flu. More than 70 % of
respondents living with other people said they would be able to isolate a sick
adult from other household members in a separate room, and about half of single
respondents reported that they would be able to find someone to take care of them
for 7–10 days if they caught swine flu.

During 2009, more than 60 % would take time off from work/school for
7–10 days in case of symptoms, as recommended by health authorities. These
proportions significantly increased in Romania and the UK in the 2010 survey to
70 % and 71 %, respectively.

Furthermore, about 80 % stated they would stay away and keep children away
from large gatherings if the new influenza outbreak spread, with no significant
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Fig. 2 Comparison of the proportion of individuals worried about catching swine flu by country
and survey, 2009–2010

changes in 2010. About 80 %, of those that regularly attend, would avoid going
to church or religious services, if showing mild symptoms, in 2009, with a slight
reduction for Italy and the UK in 2010.

Few respondents suggested other actions against swine flu in addition to those
mentioned in the questionnaire, and among these individuals, washing hands
frequently was the most frequently reported behaviour in 2009 and 2010.

3.4 Actual Behaviour

During the 2010 survey, of those individuals who reported having had swine flu,
81 % in Finland, 33 % in Italy, 31 % in Romania and 14 % in the UK reported having
been diagnosed through a medical test.

In case of symptoms, more than 70 % of Italian individuals interviewed reported
having taken days off from work/school; the proportion decreases to 65 % in Finland
and to 23 % in Romania. In Italy, Romania and the UK, 87 %, 62 % and 67 % of
individuals, respectively, reported having isolated themselves in a separate room,
if not living alone, while symptomatic while in Finland the proportion was lower
(34 %).

The proportion of individuals that reported they would be vaccinated against
swine flu (intended behaviour) in 2009 was higher than the proportion of those who
really had the pandemic vaccine (actual behaviour) in 2010, when offered, in all the
four participating countries (Fig. 3),with the lowest difference in Finland and the
largest in Italy.
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Fig. 3 Comparison of the proportion of individuals getting vaccinated against swine flu if
recommended by country and survey, 2009–2010: comparison between intended (2009) and actual
behaviour (2010)

The pandemic vaccine was offered to 30 % of respondents in Italy and the UK, to
40 % in Romania and to 50 % in Finland, and of those 14 %, 55 %, 31 % and 60 %,
respectively, reported having received it. The reasons accounted for not receiving
it, if offered, were mostly related to possible side effects of the vaccine, to the
belief that the vaccine was not effective and to the perceived healthy status of the
participant. Interestingly, 11 % of individuals in Italy, 5 % in Romania and 3 % in
the UK were advised by their GP against getting the pandemic vaccine.

Concerning children, the pandemic vaccine was offered to 16 % in Italy, to 15 %
in the UK and to all of them in Finland; 2 %, 19 % and 85 % reported to have
vaccinated their children against pandemic influenza, respectively. About 68 % in
Italy, 80 % in Romania, 86 % in the UK and 91 % in Finland reported to have given
antiviral medications to ill children if offered.

Of respondents, 3.1 % in Italy, 10 % in Romania, 8 % in the UK and 1 % in
Finland reported that schools were closed as a result of the swine flu, and in Italy
(100 %), Romania (40 %) and the UK (35 %), parents were the main carers of
children, while in Finland children took care of themselves (50 %) or were cared
by a family member not living in the same household (50 %).

The worry about the possibility of catching swine flu was strongly associated
with increased likelihood of performing protecting behaviour with regard to social
distancing and vaccination in both 2009 and 2010 surveys except for Italy.
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4 Discussion

We conducted a study in four EU countries (Finland, Italy, Romania and the UK)
to assess the reliability and validity of behavioural intentions regarding public
health interventions through comparison with real behavioural responses to the 2009
A/H1N1 pandemic.

Comparable surveys in a number of different countries have been previously
conducted in order to make inter-country comparisons and assess factors that
may lead to precautionary actions for SARS, avian influenza [7, 8, 25] and 2009
pandemic [5, 12, 15, 16, 30]. However, few have investigated reliability and validity
of behavioural intentions regarding public health interventions, declared at the be-
ginning of the 2009 influenza pandemic, through comparison with real behavioural
responses at the end of the pandemic wave in 2010. The lay public’s behavioural
responses during a disease outbreak play an important role in bringing the outbreak
under control and should be considered in the development of mathematical
models that have been and are largely used to evaluate and inform infectious
disease prevention and control policy. Behavioural changes of the population can
significantly affect the epidemic spread both quantitatively (mainly slowing the
epidemic spread or determining different final epidemic size) and qualitatively
(mainly varying the epidemic dynamics). Including parameters that account for
spontaneous behavioural changes in mathematical models could be very useful for
giving insight to public health policy makers, for planning public health control
strategy (e.g. vaccination, antivirals) and better estimating the burden for health-
care settings over time. In one, recently published, study it has been demonstrated
that the estimation of key epidemiological parameters (in particular the reproductive
number) could be largely modified by human behavioural changes [21].

During the 2009 pandemic, because of the mild nature of most cases [17] and
the existing immunity in the elderly [14, 20, 23], the initial fears of a moderately
severe pandemic with a 1918-like case fatality rate [10] declined. Public behaviour is
likely to be similar in some respects (waning compliance with prevention measures
as worry declines), but it is difficult to determine the respective effects on the
population of the ongoing heightened perception of personal health and exposure
to risk.

In our study, we have been able to assess the beliefs and the behavioural
intentions before the actual beginning of the epidemic wave, at least for 3 of the
countries involved (the UK had already seen a first summer wave of A/H1N1
pandemic, before the survey was run), and to compare them with actual behaviour
during the epidemic and with stated intentions afterwards.

There were some differences among participating countries in 2009 as for
previous behaviours related to seasonal flu, and belief and level of knowledge about
A/H1N1 influenza; on the other hand, no substantial differences were observed
among the four countries with respect to the expected behaviours should swine flu
begin to spread.
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However, when comparing results of the two surveys, we observed in all
countries a significant reduction in those who reported to be willing to vaccinate
their children against swine flu if free of charge and recommended by health
authorities, but the reduction ranged from extreme in Italy and Romania to modest
in the UK and Finland. A significant reduction with respect to the use of antivirals
as a precautionary measure was reported only in Italy and the UK.

On the other hand, when considering non-pharmaceutical measures (e.g. staying
at home for 7–10 days and keeping children away from large gatherings) there
were no significant changes in population behavioural intentions between the two
surveys. Exceptions are that in Romania and Finland the proportion of individuals
reporting to take time off from work/school in case of mild symptoms increased;
instead, individuals from Italy and the UK significantly reduced their willingness to
avoid religious services in case of mild symptoms.

In our study worry about the possibility of catching swine flu was strongly
associated with increased likelihood to perform protecting behaviour with regard
to social distancing and vaccination in both 2009 and 2010 surveys except for
Italy. In most of the participating countries except Finland, peoples’ anxiety about
2009 pandemic and the preventive pharmacological measures (both antivirals and
pandemic vaccine) they took to avoid infection declined from June to July 2009 to
June 2010.

Considering the actual behaviour, Italy, Finland and the UK reported a high
proportion of individuals that took days off from work/school in case of influenza
symptoms, while in Romania the proportion was low compared to other countries.
Except for Finland, a high proportion of individuals reported having isolated
themselves in a separate room, if not living alone, in case of symptoms.

Most published studies in the literature report possible behavioural intentions
and preventive strategies adopted by the population in the early phase of the 2009
pandemic [5, 12, 15, 16, 24, 26, 30]. Studies on behavioural response to the initial
phase of the 2009 pandemic influenza have highlighted an initial high level of
anxiety about the pandemic [12] and different behavioural responses to the risk of
infection [5, 15, 16, 24, 26, 27, 30]. In the USA, data collected on public response
to 2009 pandemic influenza from May 2009 to June 2009 suggest that 16–25 %
of Americans avoided mass gathering events, like sporting events, malls or public
transportation and 20 % reduced contact with people outside [their] household as
much as possible [27].

Published studies have shown a behavioural change in the population against
the 2009 pandemic [12, 24] and our results support this. Suboptimal adherence to
preventive measures as a function of risk perception has been previously described
[18, 19] and is also confirmed by our results showing that the reduction in some
avoidance behaviours may indicate a decrease in risk perception with consequent
decline in population adherence to public health authorities recommendations.

The role of human behaviours on mathematical model estimation of epidemio-
logical parameters (such as the reproductive number) has previously been discussed
[9, 11, 21, 22] because of the possible role of behavioural changes on the contact
network and in the virus transmissibility [9]. Recent published studies [21,22] have
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started to investigate the role of spontaneous behavioural changes in the population,
not accounted for by the large majority of influenza transmission models showing
that individual choices can drastically affect the dynamics, the overall number of
cases and epidemic spread, mostly by altering timing.

To our knowledge our study is the only one to have investigated the actual
behaviour of the population in EU countries and provides crucial descriptions
of pandemic impact on social-network dynamics parameters to be included in
mathematical models in order to obtain more accurate and realistic scenarios and
for giving better insight to public health policy makers.
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Factors Influencing Infant and Adolescent
Vaccine Uptake in Flanders, Belgium
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Abstract This chapter focuses on the determinants of a number of immunization
programme outcomes in Flanders (Belgium), such as vaccine initiation and uptake,
completion of the vaccination schedule and compliance to official validity criteria.
These were assessed in both infant and adolescent age groups. Three main groups
of potential influencing factors are looked at: (1) individual background variables;
(2) family level variables; (3) external factors such as the governmental vaccination
programme and other initiatives to promote vaccination. Data on parental willing-
ness to pay for and willingness to accept multiple concomitant injections and their
determinants are discussed as well. Exploring relationships between vaccination
programme outcomes and influencing factors can give important information to
optimize vaccination programme performance.
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1 Introduction

During the previous century, highly effective vaccines have been developed and
vaccination programmes have been implemented. Together, these have allowed for
primary prevention of infectious diseases that once disabled or killed large numbers
of adults and children, such as measles, polio and diphtheria. However, continued
and extensive surveillance of diseases, vaccines and vaccination programmes is
necessary since any of these diseases can be reintroduced, as has happened in the
past. Such reintroduction of diseases can be induced by, among others, vaccine
failure or failure to vaccinate for reasons such as programme performance regression
or changes in people’s attitudes and perceptions towards vaccinations. Accurate
information on vaccine uptake, disease susceptibility in the target groups, disease
epidemiology and changes in people’s attitudes and preferences towards vaccines
and vaccination programmes is highly needed to evaluate the performance of
recommended vaccination programmes. This information can also be used to guide
decisions on adaptation of the existing programmes or on the introduction of new
vaccines.

This chapter summarizes findings from studies on infant and adolescent vac-
cination in Flanders, the northern region of Belgium, representing about 2/3 of
the Belgian population. The studies explored various indicators of vaccine uptake
(vaccination initiation, vaccination completion), compliance with the recommended
validity criteria and attitudes and preferences towards vaccinations. In order to
understand the setting of these studies some background information on the
organization of the vaccination programme in Belgium seems appropriate.

Belgium is governed both by a national and sub-national (regional) governments.
Vaccination policy is a shared responsibility of the national and the regional
Ministries of Health. A national schedule of recommended vaccines is provided
and regularly updated by the national Superior Health Council (SHC). The regional
authorities are responsible for the organization and promotion of the immunization
programmes in their respective regions. The way the vaccination programme is
organized in each region (supply of vaccines via the public and the private health
setting vs via the private health setting only) as well as the price of the vaccine
(free of charge, partially or not reimbursed) are jointly decided by the national
and the regional governments. With regard to the organization of the vaccination
programme, for most vaccines recommended by the SHC, parents can choose to
have their child vaccinated in a public or in a private health care setting. In the
case of infant vaccinations, the public health setting consists of well-baby clinics.
These clinics systematically offer vaccines to all children between 0 and 3 years
of age through regular preventive consultations. Most of these vaccines are free of
charge, while for some of them an out-of-pocket cost is required. In the case of
school-aged children, the public health setting consists of free of charge preventive
consultations by school health services. Throughout the school career of a child, the
vaccination status is checked at regular points in time and recommended vaccines
are offered systematically to children at specific ages. All vaccines offered by
these school health services are currently (situation April 2012) free of charge.
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The private health care setting for both infant and school-aged children consists
of general practitioners and paediatricians, who can order and administer free of
charge vaccines as well. Nevertheless, they charge a fee for the consultation.

In practice, many vaccines, once the SHC recommends them, are first available
only via the private health care setting during some time, prior to an agreement
on financing between the national and the regional governments. This was the
case for, e.g., the hepatitis B vaccine, the Haemophilus influenzae type b vaccine,
pneumococcal vaccines and human papilloma virus (HPV) vaccines. If no final
agreement is reached between the national and the regional government on a
specific vaccine, this vaccine can still be obtained via the private health setting,
but the initiative for vaccination lies entirely with the parents or with the physicians,
and there is no systematic offer of these vaccines to the eligible children. Partial
reimbursement is in some cases provided by the national government or by private,
non-profit sickness funds.

2 Studies

The results described in this section can be divided into two subsections. In the
first subsection, indicators of vaccine uptake and its determinants are described.
In the second subsection, we look at other indicators relevant for the surveillance and
monitoring of the vaccination programme, namely parental attitudes with regard to
the administration of concomitant vaccines and willingness to pay to avoid an extra
injection. Table 1 gives an overview of the different studies that are summarized
below.

2.1 Determinants of Vaccine Uptake

We first describe the indicators of vaccine uptake and its determinants for various
vaccines supplied via both the public and the private setting, and subsequently
indicators for one specific vaccine (HPV vaccine) during the period it was only
supplied via the private health care setting (partly reimbursed). For all vaccines we
identified low-uptake risk groups. Identification of low-uptake risk groups allows
for targeted strategies that can enhance the uptake of vaccines, overall or in certain
risk groups.

2.1.1 Vaccines Offered Both via the Public and the Private Health
Care Setting

A first series of studies [1, 4, 7, 8] investigated indicators of vaccine uptake for
vaccines offered free of charge to infants and school children both via the public and
the private health care setting. Information was obtained through two immunization
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coverage surveys performed in 2005 and 2008, both ordered by the Flemish Ministry
of Health. Their principal aim was to assess coverage of the following infant
and adolescent vaccines: poliomyelitis (polio), diphtheria-tetanus-pertussis (DTP),
H. influenzae type b (Hib), hepatitis B (HBV), measles-mumps-rubella (MMR)
and meningococcal C (MenC) vaccines. The survey comprised samples of 18–24-
month-old infants (◦2003 and ◦2006), 7–8-year-old school-aged children (◦1997)
and 13–14-year-old adolescents (◦1991 and ◦1994) (Table 1). Two-step random
cluster samples were selected as recommended by the Expanded Programme on
Immunization (EPI) of the World Health Organization. Families were interviewed
at home. The obtained vaccination data were updated from medical files of private
physicians or public health services (if necessary and if possible), as well as from
the child’s individual record in Vaccinnet, Flanders’ online vaccine ordering and
registration system. The main results with regard to vaccine uptake are summarized
in Table 2.

Vaccine coverage in Flanders was found to be higher at infant age (where it
surpassed 90 % for all assessed vaccines) than at later age (where the coverage
of most recommended vaccines was below 90 %). Note that non-availability of
vaccination documents at home was also more frequent at later age and can thus
have biased the findings. First dose coverage (limited to multi-dose vaccines), an
indicator of vaccination initiation, ranged from 96.9 to 99.0 % in infants and from
80.6 to 83.3 % in adolescents in 2005. In 2008, vaccination initiation levels of
close to 100 % and between 86.4 and 92.5 % were noted in infants and adolescents,
respectively. Full series coverage (vaccination completion) per vaccine in infants
ranged from 92.2 to 94.1 % in 2005 and from 95.1 to 96.6 % in 2008. In adolescents,
full series were assessed for HBV and MMR vaccines only. Full series coverage
for MMR in this age group rose from 74.6 in 2005 to 83.5 % in 2008; for
HBV a rise from 75.7 to 89.3 % was noted. Age-appropriate vaccination rate (full
series of all recommended vaccines) in infants was stable at 89.5 and 89.6 % in
2005 and 2008, respectively, whereas in adolescents it increased from 58.1 to
72.8 %. Excluding invalid doses (as based on official criteria for minimal age at
administration and minimal interval between doses) resulted in a reduction of full
series coverage only in infants. Valid series coverage per vaccine in that age group
ranged from 85.6 to 90.1 % in 2005 and from 88.4 to 93.4 % in 2008. Several
predictors of the vaccination coverage per vaccine and per dose in each surveyed
age cohort were studied, using parametric and non-parametric methods (Table 2).
The most important predictor of lower vaccination coverage in infants was the main
vaccinator, with children vaccinated in the private health care setting having a higher
risk of undervaccination than children vaccinated in the public health care setting.
In adolescents an atypical school career was a consistent risk factor, but several
socio-economic factors were found to be significant as well, with, e.g., children from
families with a lower family income or children whose parents or grandparents were
born outside the EU having a higher risk of undervaccination. For a lot of factors
the association with coverage of specific vaccines was significant in one birth cohort
and borderline or non-significant in another, but in general similar trends could be
seen.
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2.1.2 Vaccines Offered Only via a Private Health Care Setting

The second series of studies [5, 6] investigated predictors of vaccine uptake for one
specific vaccine, namely the HPV vaccine, in the period it was recommended to
adolescent girls by the SHC but offered only via the private health care setting with
partial reimbursement (2007–2009). Information was obtained through analyses
of HPV vaccine reimbursement claims of the National Alliance of Christian
Mutualities (NACM), the largest sickness fund in Flanders. All female members
aged 12–18 (◦1989–1996; N= 117 151 in [2], N = 127 854 in [3]) and living
in Flanders were selected from the membership files of the NACM. Initiation of
HPV vaccination between January 2007 and June 2009 varied between 20 and 80 %
depending on the year of birth (age) of the girls. These differences in vaccination
coverage were mainly due to two factors. First, there were differences in the
reimbursement rules (during certain periods of time and for certain birth cohorts
the out-of-pocket cost for the vaccines was much lower, and eligibility rules were
more advertised in the media). Second, the vaccine was partly reimbursed up until
the age of 15 or later 18 years, so for the youngest girls in the study (born in 1995 and
1996) there was still a lot of time left after June 2009 to start vaccination. Besides
these two main factors a higher probability of initiation of HPV vaccination was
found for girls coming from families with higher incomes and for girls who were
personally informed about their eligibility for reimbursement. Furthermore, the
probability of initiation of HPV vaccination was found to be positively associated
with cervical cancer screening of the mother in the years prior to the launch of HPV
vaccines (factors affecting the probability of vaccination initiation are summarized
in Table 2).

2.2 Parental Attitudes and Willingness to Pay

The main results with regard to parental attitudes are summarized in Table 3.
In the vaccination coverage study of 2005 additional questions were added to the

questionnaires of both infants and adolescents to obtain information on parental
attitudes and preferences with respect to multiple vaccine injections [5, 7]. The
results were analysed separately for parents of infants and parents of adolescents.
Willingness to pay (amount in euro) to avoid a concomitant injection and the
maximum number of concomitant injections parents would allow during the same
visit were used as a proxy of parental acceptance of concomitant injections. Parents
of young children as well as those of adolescents gave preference to a maximum
of two separate vaccine injections to be given at the same immunization visit.
Parents also shared common attitudes on the amount of money they would pay to
avoid concomitant injections. A significant proportion of parents of both infants
and adolescents, 41.0 % and 38.8 %, respectively, were not willing to pay anything,
whereas in both age groups the remaining parents mentioned a median amount of
20 euro to avoid a concomitant injection. However, extensive analysis using several
regression methods to identify predictors of the attributed value and the allowed
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Table 3 Predictors of different proxies for parental acceptance of concomitant vaccine injections
(not vaccine specific). Being willing to pay to avoid a concomitant injection (WTP); amount (in
euro) caregivers are willing to pay (amount WTP); number of concomitant injections caregivers
would allow (number allowed); as assessed in parents of infants and adolescents in 2005

Predictor
Category with lower
outcome WTP Yes

Amount
WTP

Number
allowed

Educational level of the
mother

Lowest (vs. secondary
school)

Infants

Employment of the father Part-time or freelance
(vs. full-time)

Infants

Not working
(vs. full-time)

Adolescents

Number of siblings Lower number Infants
Origin of the mother Belgian vs. other

European country
Infants

Non-European vs.
Belgian

Infants

Main vaccinator Well-baby clinic
(vs. paediatrician)

Infants

Number of concomitant
injections parents
would allow

Lower number Adolescents

WTP Being willing to pay Infants
Respondent’s relation to

the child
Mother vs

grandparent1
Infants2

Child’s vaccination status Complete Infants2

Incomplete Adolescents3

Note: Only factors and categories with significant odds ratios were plotted. Family income was a
significant predictor of WTP in infants, but only if the unknown income category was compared to
the categories with known income
1Grandparents accounted for less than 2 % of the respondents
2Comparing respondents who would allow an unlimited number of injections to those who would
allow a limited number
3Comparing respondents who would allow more than two concomitant injections to respondents
who would allow not more than two

number of concomitant injections (Table 3) explained only a small part of the
variability in the answering behaviour and yielded some conflicting information;
this suggests that the proxies we used are only rough indicators of parental attitudes
on concomitant vaccines.

3 Discussion

In this chapter we summarized studies on predictors of infants’ and adoles-
cents’ vaccine uptake and attitudes of parents towards vaccination in Flanders
(Belgium). First, individual level characteristics, such as age and school career
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were found to significantly affect vaccination coverage. Second, various family
level characteristics such as family income, parental educational level or screening
behaviour by the mother, were also significantly associated with vaccine uptake.
A final set of predictors of vaccine uptake consisted of external factors such as
main vaccinator, information campaigns or the reimbursement rules. Exploring
relationships between vaccine uptake and these predictors can help to identify
subgroups with higher risk of undervaccination who merit special attention. It can
also be used to monitor existing vaccination programmes and to guide decisions on
changes in these vaccination programmes. Information on parental attitudes towards
different aspects of vaccination and vaccination programmes can further optimize
these decisions. The results of the presented analyses suggest, in general, a need to
monitor and support vaccinating activities of private vaccinators (paediatricians and
family physicians) and to develop specific strategies for families in an unfavourable
socio-economic situation, as well as for children in special education programmes.
Interventions to increase vaccine uptake in infants should address the importance
both of timely administration and of completion of the schedule, since similar
risk factors were found for invalid and for incomplete vaccination. Apart from the
socio-economical and individual predictors of vaccine uptake, documentation of
vaccination is a major hurdle in the assessment of vaccination coverage, especially
in older age groups, when vaccination is less an issue and is often scattered over
different vaccine providers. A cornerstone for good documentation and vaccination
practices throughout life is a centralized registration database, which is easily
accessible for all vaccine providers and which takes into account safety and privacy
issues.

Regular reassessment of vaccine coverage in different settings would provide the
opportunity to detect and interpret trends over time. Targeted research (e.g. using
a qualitative design) in known subgroups of undervaccinated children could add
information on more specific hurdles for vaccination, out of which tailored strategies
could be inferred. Ideally data on vaccination coverage should be complemented
by studies designed to estimate the serological level of immunity in the target
population, which is the indicator we are ultimately interested in when evaluating
the performance of vaccination programmes. To have a better insight in parents’
preferences regarding concomitant vaccine injections, sensitive quantifications
using a more appropriate design (e.g. discrete choice experiments) would confer
important additional insights.
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Modeling the Impact of Behavior Changes
on the Spread of Pandemic Influenza
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Abstract We use mathematical models to assess the impact of behavioral changes
in response to an emerging epidemic. Evaluating the quantitative and qualitative
impact of public health interventions on the spread of infectious diseases is a crucial
public health objective. The recent avian influenza (H5N1) outbreaks and the 2009
H1N1 pandemic have raised significant global concerns about the emergence of a
deadly influenza virus causing a pandemic of catastrophic proportions. Mitigation
strategies based on behavior changes are some of the only options available in the
early stages of an emerging epidemic when vaccines are unlikely to be available
and there are only limited stockpiles of antiviral medications. Mathematical models
that capture these behavior changes can quantify the relative impact of different
mitigation strategies, such as closing schools, in slowing the spread of an infectious
disease. Including behavior changes in mathematical models increases complexity
and is often left out of the analysis. We present a simple differential equation
model which allows for people changing their behavior to decrease their probability
of infection. We also describe a large-scale agent-based model that can be used
to analyze the impact of isolation scenarios such as school closures and fear-
based home isolation during a pandemic. The agent-based model captures realistic
individual-level mixing patterns and coordinated reactive changes in human behav-
ior in order to better predict the transmission dynamics of an epidemic. Both models
confirm that changes in behavior can be effective in reducing the spread of disease.
For example, our model predicts that if school closures are implemented for the
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duration of the pandemic, the clinical attack rate could be reduced by more than
50%. We also verify that when interventions are stopped too soon, a second wave of
infection can occur.

1 Introduction

Pandemics are global epidemics and are often associated with a high morbidity and
mortality burden. There have been three pandemic influenza outbreaks in the 20th
history: the Spanish flu (1918–19), the Asian flu (1957–58), and the Hong Kong
flu (1968–69) [32]. The 1918–1919 influenza pandemic (known as the Spanish flu)
was the most devastating in recent history, where at least 20 million died [30]. In the
United States, about 675,000 lives were lost to the Spanish flu with an estimated
mean case fatality rate of 2% [52]. This case fatality rate is an order of magnitude
larger than the case fatality rates observed in seasonal flu epidemics in normal
years. Recurrent outbreaks of H5N1 around the world and the most recent pandemic
(H1N1) 2009 suggest that a deadly pandemic is eminent.

Nearly half of the world’s population resides in urban areas [50]. Air travel
connects these urban centers in a global network where a new influenza strain can
spread around the world in a few weeks, as recently experienced with pandemic
(H1N1) 2009. In addition, influenza’s short incubation period and the lack of a
universal vaccine can increase the spread of influenza, posing a significant global
challenge to public health officials. Mathematical models can help in meeting this
challenge, if the model includes the most significant properties of the transmission
dynamics. In particular, the model most include how people change their behavior
in response to an epidemic threat.

Evidence suggests that in the presence of a deadly disease and lack of
pharmaceutical interventions, people will change their behavior to avoid infection
[15, 19, 42]. Recent studies have evaluated the impact that non-pharmaceutical
interventions, such as school closures, social distancing, and travel restrictions,
could have on the spread of the next influenza pandemic [13, 14, 21, 24]. However,
none of these studies have incorporated intentional changes in individual behavior,
such as avoiding gatherings, increasing hygiene, or staying home. Furthermore,
these studies have assumed that these non-pharmaceutical interventions would
remain in effect for the duration of the pandemic. Typically, people resume their
normal behaviors due to lack of resources or as the perceived risk declines [27].
Recent studies on the impact of basic public health measures implemented during
the 1918 pandemic [6, 27] indicate that non-pharmaceutical interventions did not
last for the duration of the pandemic.

Mathematical models for the spread of infectious diseases have been extensively
used to gain insights into the transmission dynamics of infectious diseases. Several
approaches have been used for these studies including simple compartmental
models [31, 44], network models [35], and agent-based models [18, 24, 34, 48].
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These models have provided new insights on important issues such as the effects of
drug resistance [5, 46], treatment [34, 40], vaccination [3, 45], non-pharmaceutical
interventions [11, 15] and on the overall dynamics of infectious diseases [28].

Diseases often spread through person-to-person contacts; therefore, realistic
mixing patterns can be crucial to accurately predicting the path and severity of
the disease [16]. The course of an epidemic through a population is determined by
the interactions among individuals and the process of transmitting a pathogen is a
stochastic (random) process based on the length of time the individuals are in contact
with each other and the strength of the contact. Agent-based models can capture this
realistic contact structure and allow the simulation to explore how contact networks
and different demographic characteristics affect disease transmission.

Several studies have shown the importance of population structure when
modeling disease spread [20], but only a few studies have incorporated
realistic mixing populations [18, 24]. The accurate representation of population
heterogeneity is one of the greatest challenges of epidemic modeling. While
substantial progress has been made over the years with the introduction of different
mixing functions [29] and mixing matrices [2] for compartmental models, they are
still far from achieving a good approximation to real world scenarios. In recent
years, new approaches that incorporate more realistic contact structures have been
developed to allow for nonrandom interactions among populations [4, 22, 48, 54].
For example, Zaric [54] compared random and nonrandom mixing patterns for
network epidemic models and showed that different mixing assumptions led
to different epidemic outcomes. In particular, they found that random mixing
generally results in a greater number of new infections than nonrandom mixing.
Similarly, Bansal et al. [4] used several real and simulated datasets of human
contact networks to analyze their impact on disease spread. They concluded that
homogeneous-mixing models are appropriate for host populations that are nearly
homogeneous. However, network models are more appropriate to better capture
and predict disease spread through heterogeneous host populations. Furthermore,
Fukś et al. [22] used an agent-based model of Southern and Central Ontario to
investigate the spatial correlations of disease spread. They concluded that spatial
correlations were difficult to destroy if neighborhood sizes were inhomogeneous.
Finally, Stroud et al. [48] showed a strong correlation between local demographic
characteristics and pandemic severity. This study used an agent-based model of
Southern California with a heterogeneously mixing population and concluded that
the average household size in a census tract was strongly correlated with the clinical
attack rate.

Here, we use a simple mathematical model to show how behavioral changes
can be easily introduced into epidemiological models. In addition, we use a large-
scale agent-based model to assess the potential impact of temporary and permanent
behavioral changes including school closures in containing a pandemic influenza
and analyze how these changes affect the contact structure and transmission
dynamics.
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2 Methods

We will consider two approaches to incorporate behavior changes in a mathematical
model. We first describe a simple system of five ordinary differential equa-
tions (ODEs) to describe disease dynamics based on the Kermack–McKendrick
susceptible-infected-recovered model (SIR) [31]. We extended this model by using
the approaches introduced in Del Valle et al. (2005) [15]. The second approach
is based on a stochastic agent-based model, object-oriented platform for people in
infectious epidemics (OPPIE). This is an extension of the Los Alamos Epidemic
Simulation System (EpiSimS) [16, 18, 48] and includes dynamic behavior changes.

2.1 Ordinary Differential Equation Model

In our ODE model, the population is divided into two subgroups: a group that
does not change its behavior or has normal behavior (subscript n) and a group that
modifies its behavior in response to an outbreak (subscript b). People move back
and forth between the two groups (reducing susceptibility or infectivity) depending
on the behavior adopted. Individuals in each activity group are characterized by
their epidemiological status: susceptible, Sn and Sb and infectious individuals, In

and Ib; the transfers are shown diagrammatically in Fig. 4. Because we are primarily
interested in the effectiveness of changes in behavior for a single outbreak, we use a
closed system with no migration in or out of the population, and births and natural
deaths are not included in the model.

We define t0 as the beginning of the epidemic. Movement of individuals between
the two groups depends upon disease incidence in the population. It is assumed that
a certain fraction of the population will change their behavior to protect themselves
against infection or reduce their chances of spreading the disease. Let ϕSbSn and
ϕIb In be the transfer rates from the Sn and In classes to the Sb and Ib classes,
respectively, and ϕSnSb and ϕIn Ib be the transfer rates from the Sb, and Ib classes
to the Sn and In classes, respectively. The rate coefficients are modeled by step
functions given by:

ϕi =

⎧
⎨

⎩

0, t < τ
ci, τ < t < τmax

0 t > τmax

for i = Sn, In, Sb, and Ib, where the parameter c is a positive constant that determines
the rate of movement and τ is the time that determines when the new behavior is
adopted.

Using the transfer diagrams in Fig. 1, we obtain the following system of
differential equations:
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Fig. 1 Schematic relationship between people who adopt a new behavior in response to an
epidemic and people who do not change their behavior. The arrows that connect the boxed groups
represent movement of individuals from one group to an adjacent one. Susceptible individuals (Sn

or Sb) can become infected (In or Ib) at rates λn or λb; infected individuals recover at a rate μ ; and
people change their behavior based on the transfer rates ϕSb , ϕIb , ϕSn , or ϕIn

dSn

dt
= −(ϕSb +λn)Sn +ϕSnSb

dIn

dt
= −(ϕIb + μ)In +ϕIn Ib +λnSn

dSb

dt
= −(ϕSn +λb)Sb +ϕSbSn

dIb

dt
= −(ϕIn + μ)Ib +ϕIb In +λ Sb

dR
dt

= μ(In + Ib) (1)

where λn (for normal behavior) and λb (for modified behavior) are the forces of
infection. λn and λb incorporate the probability of transmission per contact, β ,
the reduced number of contacts because of symptomatic infection, θ , and 1−η j

(j = s or i), which accounts for the effectiveness of the behavior in reducing
either susceptibility (ηs) or infectivity (ηi). β is defined as the susceptibility of
the population multiplied by the infectivity of the disease multiplied by the average
number of contacts an individual has per day. The forces of infection for both groups
are shown by:

λn = β

[(
θ In

ρ

)

+(1−ηi)

(
θ Ib

ρ

)]

λb = β

[

(1−ηs)

(
θ In

ρ

)

+(1−ηi)(1−ηs)

(
θ Ib

ρ

)]

(2)
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where ρ = N − (1 − θ )(In + Ib) and N is the total population (Sn + Sb + In +
Ib + R). In the forces of infection, ηi is incorporated into the θ Ib/ρ infectious
fractions because individuals in the Ib class have adopted a new behavior and
ηs is incorporated into the infectious fractions in λb because individuals in the
susceptible class (Sb) have also adopted a new behavior. These forces of infection
and appropriate initial conditions complete our model formulation.

2.2 The Agent-Based Model

The OPPIE simulation platform is an agent-based model that combines the
demographic-based population of a region, a network of specific business and home
locations, and the movement of individuals between locations with daily itineraries.
We simulated the spread of an influenza epidemic using a synthetic population
constructed to statistically match the 2000 US Census population demographics of
Southern California at the census tract level. There are 20 million individuals living
in six million households, with an additional one million locations representing
actual schools, businesses, shops, and social recreation addresses. This synthetic
population only represents individuals reported as household residents; thus, visiting
tourists, guests in hotels, and travelers in airports are not explicitly included.

Each individual has a schedule of activities based on the National Household
Transportation Survey (NHTS) [37]. A schedule specifies the type of activity,
the starting and ending time, and the location of each assigned activity. There
are six types of activities: home, work, shopping, social recreation, school, and
other. The time, duration, and location of activities determine which individuals
mix together at the same location at the same time, which is relevant for airborne
transmission.

Each location is geographically located using the Dun & Bradstreet commercial
database. Each building is subdivided based on the number of activities available at
that location. There are one or more buildings per activity that are further subdivided
into rooms or mixing places. Schools have classrooms, workplaces have workrooms
or offices, and shopping malls have shops. Typical room sizes can be specified;
for example, for workplaces the mean workgroup size varies by standard industry
classification (SIC) code. The number of rooms in each building is computed by
dividing the peak occupancy by the appropriate mixing group size. We used two data
sources to estimate the mean workgroup by SIC including a study on employment
density [53] and a study on commercial building usage from the Department
of Energy [36]. Based on these two data sources workgroup sizes range from
3.1 for transportation workers to 25.4 for health service workers. The average
workgroup size over all types of work is 15.3. For the analyses presented here,
the average mixing group sizes are 8.5 at a school, 4.4 at a shop, and 3.5 at a social
recreation venue.
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2.2.1 Disease Progression Model

Airborne diseases spread primarily from person to person during close proximity
through contact, sneezing, coughing, or via fomites. In OPPIE, an opportunity for
disease spread between two individuals occurs when they occupy a mixing location
together. Whether or not a susceptible individual becomes infected is based on how
long they co-occupy within a mixing place, the presence of infectious individuals, a
high-level description of the activity they are engaged in, and their age.

A location represents a street address, and a room or mixing place represents
a specific place where people have face-to-face interactions. When an infectious
person is in one of these mixing locations with a susceptible person for some time,
we estimate a probability of disease transmission, which depends on the variables
identified above.

A susceptible person j has a dimensionless susceptibility multiplier S j and an
infectious person i has an infectious multiplier Ii. The probability that the susceptible
individual j becomes infected during an activity is computed as:

Pj = 1− e
−∑

i
T S jIiti j

(3)

where T is the average transmissibility per unit time, ti j is the duration of contact,
and the sum extends over all infectious people that occupied the room with
individual j.

Disease progression of the epidemic is modeled as a Markov chain consisting
of five main epidemiological stages: uninfected, latent (non-infectious), incubation
(partially infectious), infectious, and recovered. Infected individuals start in the
incubation stage and remain there for a period of between 0 and 0.5 days, 0.5 or
1.0 day, before transitioning to the symptomatic or recovered stages, respectively.
The average incubation time is 1.9 days and average duration of the symptomatic
stage is 4.1 [34]. The disease model assumes that 50% of adults and seniors,
75% of students, and 80% of preschoolers will stay home within 12 hours of
the onset of influenza symptoms. These people can then transmit disease only to
household members or visitors. Based on previous studies [34], 33.3% of infections
are assumed to be subclinical. Individuals in the subclinical stage are only half as
infectious as those in the symptomatic stages and continue their normal activities
as if they were not infected. The infection rate for children is assumed to be
double than for adults. All scenarios were analyzed for the same set of transmission
parameters where the population was initially seeded with 100 people infected, all
in the incubation stage.

2.2.2 Baseline Assumptions

The Homeland Security Council released the National Strategy for Pandemic
Influenza for the United States, which suggests that the emergence of a new
influenza virus could have a clinical disease attack rate of 30% in the overall
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population [49]. Based on this attack rate, we constructed a baseline scenario under
the assumption of no specific intervention to contain the pandemic and an infection
attack rate of 45% with a clinical attack rate of 30%.

2.2.3 School Closure Assumptions

Protecting children during an influenza pandemic is important since illness rates are
typically highest among school-aged children [38]. Closing schools limits students’
contacts and has the potential to block paths of spread between families and
neighborhoods [1]. Several studies have analyzed the impact of school closures
[8,21,24]; however, these studies only investigated the impact of sustaining a school
closed during the entire epidemic. School closures in OPPIE are implemented as
a general closure of selected activity locations. Based on the Center for Disease
Control and Prevention pandemic guidelines [9], closures in OPPIE follow a steplike
function and are specified with a start and stop time; the activity to close; and a single
location or a fraction of all locations of the specified activity type that will be closed.
During the time a closure is in effect, anyone whose activity schedule would have
taken them to one of the closed locations will stay home during that time instead.
Scheduled after-school activities are not affected by a school closure.

2.2.4 Fear-Based Home Isolation Assumptions

Fear-based home isolation consists of people staying home as a reaction to an
epidemic crisis. Some of these people may be considered the “worried well”.
The news of increasing numbers of people becoming ill, or seeing friends and family
fall ill, is strong motivation to avoid potential infectious situations. Surprisingly,
none of the recent studies on pandemic influenza have incorporated the impact
of this type of behavioral change. We assume that people isolate due to fear at
a level that follows the pattern of the epidemic [6, 27]. This is implemented with
a specification of start, peak, and end times with corresponding fractions of the
population that will be isolating at those times, along with a minimum and maximum
contiguous duration per individual. We assume that people who choose to stay home
will only self-isolate for 7–14 days at a time. People isolate on an individual basis,
not on a household basis, so there might be households in which some members
of the family are isolating due to fear and others are going about their normal
activities. Fear-based home isolation begins when a percentage of the population
is symptomatic (e.g., 0.1%). The number of people self-isolating increases linearly
until reaching a maximum near the epidemic peak day. After this day, the stay-home
rate begins to drop linearly with time, until no fear-based home isolation is occurring
by a selected end day.
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2.2.5 Strain-Specific Vaccine Assumptions

Currently, vaccine manufactures need an estimated 5–8 months to develop a
strain-specific egg-based vaccine [47]. Based on seasonal influenza vaccine
production, we estimate U.S. production at four million doses per week; thus,
we assume that a limited number of vaccines, enough to cover 0.67% of the
population per week, will be available five months after the emergence of pandemic
influenza. We further assume that two doses of pandemic vaccine are required to
attain an immune response of 80% seropositivity after 42 days from the first dose
[33]. Those who are vaccinated and become sick are only 20% as infectious as those
who become sick without the vaccine. In all of the scenarios where a strain-specific
vaccine is considered, the strain-specific vaccine is distributed as soon as it becomes
available. Vaccine is distributed to households at random until supplies run out; 95%
of the selected household members are vaccinated, and 5% either refuse treatment
or cannot be found.

3 Results

Here we show how we use both models to analyze the impact that behavioral
changes may have on disease transmission. In particular, we look at the impact of
some generic behavior for the ODE type model and school closures and fear-based
home isolation for the agent-based model.

3.1 Ordinary Differential Equation Results

We recognize that large agent-based simulations may require significant
infrastructure such as high performance computing; therefore, we analyze a simple
ODE model and show how behavioral changes can modify disease dynamics.

We used the model presented in Sect. 2.1 and analyzed the impact that temporary
behavioral changes (e.g., school closures) may have on the spread of an airborne
infection. We use a population of 10,000 people and start the simulation with one
infected person. We assume that some generic behavior is implemented for two
weeks (14 days) starting on day 25. Furthermore, we assume that the behavior
reduces susceptibility and infectivity by 50%, that is, ηs = 0.5 and ηi = 0.5.
In addition, we assume that θ , a reduction in contact rates due to symptomatic
infection, is 0.8. Finally, we assume that β , the probability of infection, is 0.4.
Figure 2 shows the epidemic curves as a function of time for Sn, Sb, In, and Ib.
Not that as people change their behavior, the disease spread slows down. Since
behavioral changes are only temporary and do not provide a permanent cure to the
disease, the virus eventually infects everyone in the population (due to homogeneous
assumptions).
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Fig. 2 Epidemic curves for various groups within the population including Sn, Sb, In, and Ib. Note
that as the changes in behavior are implemented (starting on day 25), the disease transmission
slows down

3.2 Agent-Based Model Results

3.2.1 Baseline Simulation

The baseline scenario was constructed with no specific intervention to contain the
pandemic and an infection attack rate of 45% with a clinical attack rate of 30%.
A key quantity in epidemiology is the basic reproduction number (denoted by R0)
defined as the average number of secondary cases generated by a primary infectious
case in a completely susceptible population [2]. Hence, the R0 concept only applies
to the case of newly emergent infectious agents or situations when the disease in
question has not been observed in a given population for a long period of time, so
that the population is essentially entirely susceptible. This concept applies to most
pandemics, particularly to the influenza pandemic of 1918 for which the mean R0

has been estimated to range from 1.5 to 5.4, depending on the specific location and
pandemic wave considered [10]. For consistency with historical pandemics [23,34],
we considered a moderately severe pandemic strain with an R0 of 1.8, which is
in agreement with the transmissibility baseline assumed in other modeling studies
[21, 23, 34]. OPPIE tracks who infects whom and so the value of R0 was calculated
using the average number of secondary infections generated by the index cases.
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Table 1 Results for the baseline and various durations of 100% school closures

5-month 5-month 8-month 8-month
Baseline 1st wave 2nd wave 1st wave 2nd wave 11-month

Clinical attack rate (%) 30.6 14.1 12 14.1 8.5 14.1
Pandemic duration (days) 150a 190b 350a 190b 465a 300a

Mortality per 100,000 614 279 240 282 164 281
Population vaccinated (%) 0 0 15.7 0 25.5 13.1
aWhen the number of newly infected cases has reached zero
bWhen the number of newly infected people has reached its lowest point before ramping up again

3.2.2 School Closures and Vaccination

School closures can provide an effective way to reduce the spread of the epidemic.
We assumed that schools close when 0.1% of the population is symptomatic
(day 33), and they remain closed for 5, 8, or 11 months. Table 1 shows that in the
absence of any interventions, the model predicts a 30.6% clinical attack rate and
614 influenza-related deaths per 100,000 persons in the population. However, our
results show that if schools remain closed for 11 months, the clinical and mortality
attack rate would be reduced by more than 50%.

In Fig. 3, we show the symptomatic percentage of the population as a function
of time for the baseline and for 100% school closures for 5, 8, and 11 months.
School closures might be relaxed after 5 and 8 months, if a strain-specific vaccine
becomes available. In the 5 month school closure scenario, schools reopen on day
183 when 0.0007% (14,238 people) is infected; in the 8 month scenario, schools
reopen on day 273 when 0.00003% (721 people) of the population is infected.
However, if schools close for the duration of the pandemic (in this case 11 months),
the disease dies out and no second wave is generated. Unlike previous studies that
have shown that the benefit provided by school closures is maintained after schools
reopen [25], our simulation results show that, given the limited number of vaccine
doses, if schools reopen too early a new infection wave appears, resulting in an
increased number of new cases. Nevertheless, even in the presence of infection
waves, the overall clinical attack rate for these three scenarios of school closures is
lower than the baseline. Although school closures prolong the epidemic due to the
reduction in the number of contacts, they benefit society by spreading the number
of hospitalizations over two waves, which is crucial in order to maintain health-
care services operational. Our results show that school closures for the duration
of the pandemic (up to 11 months) are the most effective strategy in containing the
pandemic and reducing morbidity and mortality. Furthermore, the 11 month strategy
also reduces the number of vaccinations needed to contain the pandemic.
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Fig. 3 Symptomatic percentage of the population as a function of time for the baseline scenario
and three school closure scenarios. (a) shows the simulated epidemic curve for the baseline
scenario, (b) shows the results for a 5-month closure scenario, (c) shows the results for an 8-month
closure scenario, and (d) shows the results for the 11-month 100% closure scenario. The arrows
indicate the time when school closures are in effect. Note that as the interventions are relaxed
(schools reopen), new infection waves can appear (panels (b) and (c))

3.2.3 Fear-Based Home Isolation and Vaccination

In Table 2, we illustrate the simulation results for various levels of fear-based home
isolation. When the percentage of population self-isolating at home, due to fear, is
15%, the clinical attack rate and death rate decrease, but the percentage of infections
generated at home increases. When the number of people self-isolating is greater
than 50%, the epidemic is partitioned into two infection waves and the number of
infected people increases.

Figure 4 shows a comparison of the effective reproduction number and the
epidemic dynamics for the baseline and 50% fear-based home isolation. Reffective

captures the effects of public health interventions and depletion of the susceptible
population as the epidemic progresses. Note that Reffective drops below 1 when
the number of susceptibles declines, but as fear-based home isolation is relaxed
and the social contact networks return to normal, Reffective increases. In general, we
observe that even if a small fraction of the population reduces their interactions for a
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Table 2 Results for the baseline and various levels of fear-based home isolation

50% 50% 60% 60%
Baseline 15% 30% 1st wave 2nd wave 1st wave 2nd wave

Clinical attack rate (%) 30.6 25.9 20.5 13 9.6 7.6 18.2
Pandemic duration (days) 150a 211a 300a 184b 372a 161b 340a

Mortality per 100,000 614 517 411 251 199 150 364
Population vaccinated (%) 0 2.8 5.9 0 17.8 0 13.3
Infections generated at home (%) 58.4 62.2 65.8 65 65 62.9 62.9
aWhen the number of newly infected cases has reached zero
bWhen the number of newly infected people has reached its lowest point before ramping up again
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Fig. 4 Epidemic dynamics for the baseline and 50% fear-based home isolation for 5-months. (a)
and (b) show the effective reproduction number as a function of time for the baseline and 50% fear-
based home isolation, respectively. (c) and (d) show the symptomatic percentage of the population
for the baseline and the 50% fear-based home isolation scenario

week or two, morbidity and mortality can be reduced, but the epidemic is prolonged;
however, temporal compliance of large fractions of people can create susceptible
populations, resulting in waves of infection [6, 27, 41].
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Fig. 5 Degree distribution of the population in Southern California under three different scenarios
for a typical day. On average, each individual has 22.5, 19.9, and 8 contacts per day for the baseline,
100% school closure scenario (5-month), and 50% fear-based home isolation scenario, respectively

3.2.4 Impact on Social Contact Network

Population mixing information is key to provide good approximation on the path of
the disease and devise effective intervention strategies. Here, we apply tools from
social network epidemiology [35,39,43] to study how changes in behavior affect the
contact network and, as a result, disease transmission. The social contact network
emerges from the simulation as individuals move through their daily activities and
come into and out of contact in rooms [11]. We extracted the degree distribution
of the social contact structure in the absence of disease during a random day for
the baseline, 100% school closure scenario, and at the peak of the 50% fear-based
home isolation scenario. Figure 5 depicts the population distribution in Southern
California under the three scenarios for a typical day. On average, each individual
has 22.5, 19.9, and 8 contacts per day for the baseline, 100% school closure scenario,
and 50% fear-based home isolation scenario, respectively. We observe that the
average number of contacts per day decreased for the school closure and fear-based
home isolation scenarios when compared to the baseline. Note that the average
number of people contacted per person can provide an estimate of how many people
can potentially acquire infection from one index case. Furthermore, we found that
closing schools would be less effective in breaking the social contact network than
fear-based home isolation. This finding might be due to the fact that school closures
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imply partial home isolation; individuals affected by this intervention still perform
other scheduled activities, except for school-related activities. While fear-based
home isolation assumes that people affected by this intervention are completely
cut off from the rest of the population, our results show that reactive changes in
population contact rates can have a dramatic impact on the overall contact structure.

4 Discussion

We used two types of modeling approaches to show that coordinated or reactive
behavioral modifications can have a significant effect not only in reducing disease
burden but also on the qualitative dynamics of influenza transmission. Although
vaccination would be the best means for controlling influenza, a strain-specific
vaccine will not be available until 5–8 months after the emergence of a new
pandemic influenza and current production capabilities are insufficient to cope with
demand. Antivirals share important features that could make them useful during a
pandemic [34], although most countries do not have enough antivirals stockpiled
and current distribution strategies may not allow for rapid dissemination of drugs.
Behavioral modifications have the potential to slow down the spread of the pandemic
in the absence of pharmaceutical interventions.

We argue that models that use social contact networks and human behavior are
better able to capture the dynamics of infectious-disease transmission than models
that ignore human behavior or use homogeneous mixing. We showed how easy one
can incorporate behavioral changes in traditional ODE epidemiological models and
how simple assumptions can change the dynamics of disease transmission.

The emergent degree distribution of the baseline social network is in agreement
with contact patterns observed in small convenience samples [17, 51]. Although we
cannot compare the emergent contact patterns in the presence of school closures
and fear-based home isolation due to lack of data, our simulation results are useful
in providing estimates of the effects of behavioral changes on disease burden and
gain insights into potential qualitative effects on the transmission dynamics (e.g.,
multiple waves of infection). The simulations suggest that fear-based home isolation
at moderate levels (less than 50%) can have an impact on breaking transmission
paths; however, its impact on the social contact network is highly sensitive to the
duration that this intervention is in effect.

Our simulations show that if 100% of the schools close when 0.1% of the
population is ill and they remain closed for the duration of the pandemic, the clinical
attack rate could be reduced by more than 50%, when compared with the baseline.
However, if schools reopen before the pandemic is over, a second wave is likely to
appear and increase morbidity and mortality; thus, the parameters associated to a
school closing policy should depend on the actual pandemic profile. For example,
our results suggest that a temporary school closure policy may not be successful in



74 S.Y. Del Valle et al.

the sense that secondary waves of infection could be triggered if the school closure
policy is suspended when the pandemic is still running its course.

The appearance of a second wave may imply a failed intervention strategy [41];
however, our results suggest that the overall clinical attack rate when a school
closure intervention strategy is implemented is still lower than that obtained from the
baseline scenario. Temporary school closures may have benefits beyond reducing
morbidity and mortality, such as maintaining health-care services by spreading the
number of hospitalizations over two waves. However, school closures indirectly
contribute to absenteeism when parents must miss work to care for their children at
home. Therefore, recommendations on school closures must be planned in advance
to reduce the social and economic impact of absenteeism.

Fear-based home isolation can be effective in reducing morbidity and mortality
and slowing transmission. The effectiveness of fear-based home isolation is deter-
mined by the fraction of the population that voluntarily withdraws from their daily
activities for a week or two. We showed that as the number of people isolating at
home increases, the clinical attack rate decreases. However, when the fraction of
people self-isolating is over 50% (e.g., the intervention is too strong [26]) a second
infection wave appears if home isolation is relaxed, leading to a larger clinical
attack rate. It may not be feasible in reality for a large fraction of the population
to self-isolate for a week or two; however, even if a small fraction of the population
self-isolates, it can have a dramatic impact on reducing morbidity and mortality.

One of the most striking results of our study is the fact that temporary
behavioral modifications have the potential to generate waves. This result raises
an interesting question about the role that behavioral changes played in previous
pandemics, since there were some temporary public health measures during the
1918 pandemic [6, 7, 12, 27]. There is a potential for multiple infection waves
if public health measures are relaxed before the epidemic is over. Perhaps the
most illustrative example of secondary waves is the 2002–2003 SARS epidemic
in Toronto, Canada, where a secondary wave of infection occurred following a
relaxation of infection-control precautions that were also associated with temporary
increases in nosocomial transmission events [41]. The potential role that behavior
changes may have played on the multiple wave pandemic profile observed during
the 1918–1919 influenza pandemic in many regions of the world should not be
discarded [6, 12, 27].

Early detection of index cases and early dissemination of information to the
public are critical to empowering the population to make rational decisions, such
as self-isolation. Capturing human behavior can have a profound influence in the
predictions of future disease spread and the resources needed to contain an outbreak
[19]. Modeling studies such as the one presented here could prove useful in
providing estimates of the effects of changes in human behavior for future pandemic
guidelines.
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Uncoordinated Human Responses During
Epidemic Outbreaks

Piero Poletti, Bruno Caprile, Marco Ajelli, and Stefano Merler

Abstract Uncoordinated human behavioral responses triggered by risk perception
can alter the evolution of an epidemic outbreak further and beyond control measures
imposed by public authorities. In fact, spontaneous behavioral changes could
develop as a defensive response during the spread of an epidemic, thereby impacting
the epidemic dynamics and affecting timing and overall number of cases. In this
chapter, a model coupling the classic SIR disease transmission model with an
imitation dynamics process is introduced which accounts for the diffusion of
different behaviors in the population as a response to the epidemic threat. A detailed
analysis of the model identifies the main determinants leading to remarkable
alterations in infection dynamics in both risk perception and diffusion of human
behavioral patterns. Empirical evidence points to the need of incorporating human
behavior in prediction models informing public health decisions.

1 Introduction

Mechanisms able to account for spontaneous behavioral changes in response to
perceived risk are increasingly important as they have the potential for improving
predictions about the spread of emerging epidemics. The aim of this chapter is
to analyze the main determinants in both risk perception and diffusion of human
behavioral patterns leading to remarkable alterations in infection dynamics.

In particular, a model accounting for human behavioral response to the risk of
infection is introduced. The approach is fairy general to be applied to the description
of epidemic outbreaks caused by different diseases (e.g., due to influenza, smallpox,
SARS). The effectiveness of human self-protection is investigated by considering
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behavioral changes during the spread of a generic, influenza-like infection. The role
of the key parameters regulating the mechanism of spontaneous self-protection
is analyzed along with the interplay between risk perception and the disease
transmission process. As a practical application, the effect played by risk perception
during the 2009 H1N1 pandemic in Italy is discussed.

1.1 Evidence of Uncoordinated Behavioral Changes

During an epidemic outbreak, individuals may change their behavior in order to
reduce the risk of infection, especially when serious consequences for individual
health are implied. A population-based survey reported that more than 75 % of
respondents would avoid public transportation and 20–30 % would try to avoid
crowded environments as precautionary actions in response to a hypothetical
influenza pandemic [22]. During the 2009 H1N1 influenza, an initial high level of
anxiety about the pandemic has been observed [11] and different behavioral changes
triggered by the perceived risk of infection have been reported [7, 21, 23–25].
In Australia, after the first pandemic wave, individuals “reported increasing hand-
washing (46 %) and covering cough and sneezes (27 %)” to reduce the risk of
infection [24]. In the USA, data collected on public response to H1N1 influenza
from May 2009 to June 2009 suggest that “16 to 25 % of Americans had avoided
places where many people are gathered, like sporting events, malls, or public
transportation and 20 % had reduced contact with people outside [their] household
as much as possible” [25]. Furthermore, larger uncoordinated behavioral changes
have been detected for more severe epidemics. For instance, an 80 % reduction
in travel to and from Hong Kong has been reported during the 2003 SARS crisis
[9]. This empirical evidence highlights that behavioral response occurs when a
new infectious disease emerges, although it is hard to quantify its impact on the
epidemic spread.

1.2 Evolutionary Game Theory and Epidemic Modeling

Human behavioral change in response to the risk of infection can be accounted
for by modeling the diffusion of fear as a parallel infection. In this case, the
“recovery from fear” occurs at a constant rate, regardless the current state of the
epidemic and the behavior adopted by the individuals. However, individuals may
or may not reduce risky behaviors on the basis of the current risk perception of
the epidemic. The approach considered in this chapter is based on evolutionary
game theory [12], which allows considering a symmetric mechanism regulating
spontaneous behavioral changes. Different behaviors adopted in the population are
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represented by a given set of strategies. The adoption of self-protection is assumed
to be driven by the perceived convenience of different behaviors, dependent on the
epidemic dynamics.

2 The Model

The disease transmission process is based on an SIR scheme, where susceptible
individuals may adopt two mutually exclusive behaviors, “normal” bn and “al-
tered” ba, on the basis of the perceived risk of infection. We assume that individuals
adopting the altered behavior are able to reduce the risk of getting infected by
reducing the number of potentially infectious contacts and, in turn, the force of
infection to which they are exposed. This defensive response accounts for both
reduction in physical contacts and, more in general, all self-prophylaxis measures
which can reduce the transmission probability during these contacts. For instance,
a reduction in the number of contacts can be achieved by avoiding crowded
environments or by limiting travels, whereas a reduction in transmission probability
can occur as a consequence of an increased wariness in common activities (e.g., the
behavioral goals recommended by the WHO for reducing influenza transmission,
such as washing hands frequently or respecting cough/respiratory etiquette).

In the model, spontaneous behavioral changes occur on the basis of cost/benefit
considerations. This assumption perfectly fits the language of evolutionary game
theory, in which behaviors adopted by individuals correspond to strategies played in
a suitable game, with certain expected payoffs.

All individuals pay a cost for the risk of infection, which we assume to depend
linearly on the perceived prevalence M(t) and to be higher for individuals adopting
the normal behavior (bn) than for those adopting the altered behavior (ba).
However, individuals playing ba pay an extra, fixed, cost because they are limiting
their usual activities. Therefore, the payoffs associated with bn and ba result
respectively:

Pn(t) =−mnM(t), Pa(t) =−k−maM(t)

The altered behavior gives the advantage of reducing the risk of infection
(mn > ma), but the extra cost associated to it (k) implies that the normal behavior is
the most convenient one when the perceived prevalence M is small (or in absence of
disease). Which behavior is more convenient to adopt clearly depends on the status
of the epidemic. The balance of the payoff between the two possible behaviors
is determined by the cost associated to the risk of infection and on the perceived
prevalence of infections in the population (M(t)). The latter is modeled by assuming
a fading memory mechanism (such in [1, 6]) altering the perception of the risk of
infection on the basis of the number of cases occurred over a certain (past) period
of time.
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The diffusion of strategies in the population is modeled as an imitation process
[4, 12] based on the idea that individuals change strategy as they become aware
that their payoff can increase by adopting a different behavior. By introducing the
variables S, I, and R (describing the fraction of susceptible, infective, and recovered
individuals, respectively) and by introducing the variable x (describing the fraction
of individuals adopting the normal behavior), the system governing this process can
be written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ = −β IS [x+ q(1− x)]
İ = β IS [x+ q(1− x)]− γI
Ṙ = γI
Ṁ = β IS [x+ q(1− x)]−νM
ẋ = x(1− x)(qβ I−β I)+ρx(1− x)(1−mM)S

(1)

where β is the transmission rate; 1/γ is the average duration of infectivity period
(here corresponding to the generation time); q represents the reduction of the risk
of infection to which individuals adopting the altered behavior are exposed; ν
weighs the decay of the perceived prevalence; ρ essentially represents the speed
of the imitation process with respect to the pathogen transmission dynamics;
m = (mn −ma)/k defines the risk threshold for determining which behavior would
represent the most convenient choice.

Basically, the last equation of the system accounts for the diffusion of the two
different behaviors in the population. The first term of the equation accounts for
a natural selection embedded into the transmission process that favors individuals
reducing the risk of infection (qβ I − β I < 0); the second term represents the
imitation process and accounts for spontaneous changes in individual behaviors,
based on the balance between the payoffs associated to the two different behav-
iors (i.e., 1 − mM). Behavioral change driven by the imitation dynamics occurs
depending on the difference between the payoffs of the two possible behaviors,
the perceived prevalence, the level of the risk threshold, and the speed of the
imitation process. The latter is in general different from the speed of the disease
transmission process as imitation is based on the diffusion of information. Details
on the derivation of the last equation in System 1 can be found in [19] for a model
comprising behavioral changes possibly occurring among infective individuals and
for different symptomaticity levels of the infection.

2.1 Basic Reproduction Number

The basic reproduction number R0 is defined as the average number of secondary
infections that results from a single infectious individual in a fully susceptible
population. For the System 1, R0 can be computed using the next-generation
technique [5], and it results to be R0 = [x+ q(1− x)]β/γ . R0 can thus be interpreted
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as a weighted sum of two basic reproductive numbers: the reproductive number for
individuals adopting the normal behavior (namely the fraction x), i.e., Rn

0 = β/γ and
the reproductive number for individuals adopting the altered behavior (namely the
fraction 1−x), i.e., Ra

0 = qβ/γ . Therefore, R0 depends on the fraction of individuals
in the population who are currently adopting either normal or altered behavior.

3 Behavioral Changes During a “Generic”
Influenza-Like Infection

In this section, parameters characterizing the disease transmission process are
taken from reliable estimates available for the 2009 H1N1 pandemic influenza.
Specifically, R0 is assumed to be 1.4, and the generation time is taken equal to 2.8
days [3, 10, 16].

3.1 Baseline Scenario

The effect of possible spontaneous behavioral responses to the risk of infection
on the epidemic spread is investigated, starting from a baseline configuration
and by varying one by one the parameters. This baseline represents the simple
case where the perceived prevalence M is exactly the prevalence of infections I
(γ = ν) and at the beginning of the epidemic the perceived risk of infection is zero
(M(0) = 0). Moreover, as an illustrative scenario, values of parameters related to
human behavioral response are taken in such a way that (a) the adoption of the
altered behavior reduces by 15 % the number of potentially infectious contacts, i.e.,
q = 0.85; (b) the altered behavior becomes more convenient when the prevalence
becomes larger than the 1% of the population, i.e., 1/m = 0.01; (c) the delay
between the time at which the altered behavior becomes convenient and the time
at which more than 50 % of the population becomes responsive is about 5 days,
i.e., ρ = 10. The initial conditions considered in this section are S(0) = 1− 10−3,
I(0) = 10−3, x(0) = 1− 10−6, and R(0) = M(0) = 0.

The resulting dynamics of System (1) is shown in Fig. 1. After an initial growth
of the epidemic, the perceived prevalence reaches the prevalence threshold 1/m and
the altered behavior becomes more convenient. As a consequence when the altered
behavior became widely adopted in the population, which occurs after few days, the
epidemic growth rate reduces remarkably. As the prevalence decreases below the
threshold, the normal behavior becomes more convenient and its diffusion produces
a fat tail in the infection dynamics.

The timing of the behavioral response is characterized by parameters m and ρ .
The former describes how the perceived prevalence M is weighted in the payoff
functions, i.e., in the balance of the cost associated to the risk of infection and the
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Fig. 1 (a) Daily prevalence of infection in the case of no responsiveness of the population (q = 1
bold gray line) and in the baseline scenario (q = 0.85, bold red line). The horizontal gray line
represents the prevalence threshold 1/m. The behavioral response appears about 4 days after
the perceived prevalence M(t) = I(t) crosses the threshold 1/m producing a lower increase in
the prevalence of infection. (b) The dynamics of 1−x (blue line, scale on the left) and the effective
reproductive number over time (dark green line, scale on the right)

cost of a self-protection strategy. The latter represents the speed of the imitation
process with respect to the disease transmission timescale. As a matter of fact,
1/m defines the threshold for the perceived prevalence above which individuals
reducing contacts have a larger payoff; the larger m, the earlier the altered behavior
is perceived as the most convenient choice. On the other hand, ρ drives the delay
(embedded in the imitation dynamics) between the time at which a strategy becomes
more convenient and the time at which the strategy is adopted by the majority of
the population. In sum, the time at which the transition between the two possible
behaviors occurs is driven by m, while the duration of this transition is driven by
ρ ; these two parameters together define the responsiveness of the population to an
epidemic outbreak.

3.2 Effectiveness of Human Self-protection

The effectiveness of human self-protection is analyzed in terms of: (1) final
epidemic size (defined as the total number of infections at the end of the epidemic);
(2) daily peak prevalence; (3) peak day.
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Fig. 2 (a) Daily prevalence of infections (a1), final epidemic size (a2) as obtained for different
values of the prevalence threshold 1/m. Other parameters as in the baseline scenario. (b) As (a) but
for different values of the speed of behavioral changes ρ . (c) As (a) but for different values of the
reduction factor q

As mentioned above, a major responsiveness of the population to an infection
corresponds to a small prevalence threshold (large values of m) and to large values
of ρ . The responsiveness of the population is related to time at which the behavioral
response starts to affect the population behavior. As the population responsiveness
increases, a larger reduction in the final epidemic size and in the daily peak
prevalence is observed (see Fig. 2a and b). However, if the prevalence threshold
1/m is larger than the maximum prevalence of infections, or the imitation process
is too slow (i.e., for small values of ρ), the human response never takes place
and the epidemic spreads following the dynamics of an SIR model driven by Rn

0.
An unreachable prevalence threshold represents the situation in which the epidemic
is not perceived sufficiently severe to trigger a behavioral response of the population.
This happens when 1/m is larger than I p = 1 − 1

Rn
0
+ 1

Rn
0

log 1
Rn

0
, i.e., the largest

possible daily peak prevalence, which is reached when all individuals adopt the
normal behavior throughout the whole course of the epidemic.

The size of reduction in contagious contacts associated to the altered behavior
has a strong impact on the epidemic dynamics. A larger reduction of the risk of
infection is enacted by individuals adopting the altered behavior when smaller
values of q are considered. As q decreases, the final epidemic size and the daily
peak prevalence reduce as well (see Fig. 2c).
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Fig. 3 (a) Daily prevalence of infections (a1), final epidemic size (a2) as obtained for different
values of the average memory length 1/ν . Other parameters as in the baseline scenario. (b) As (a)
but for different values of the alarm time T (in days)

At this point three interesting aspects are worth highlighting:

1. Even a small reduction in the number of contagious contacts enacted by the
population can remarkably alter the spread of the epidemic.

2. A threshold exists for q such that for smaller values of q a larger impact of
behavioral changes on the final epidemic size, the daily peak prevalence, and
the peak day does not occur. Indeed, in terms of the final epidemic size and the
peak day, a reduction of 100% in the number of potentially infectious contacts
(corresponding to q = 0, i.e., total isolation) produces the same effects obtained
by considering a reduction of 25% (q = 0.75).

3. For small values of q, the model accounts for multiple epidemic waves.
A detailed discussion on the conditions for observing such a pattern can be
found in [17].

3.3 Risk Perception and Information Diffusion

In Sects. 3.1 and 3.2 the perceived prevalence M at time t is assumed to be exactly
the prevalence I at time t (i.e., ν = γ). However, individuals may explore the
convenience of different behaviors taking into account infections occurred over a
(past) period of time. This case is investigated by considering 1/ν > 1/γ . As a
matter of fact, the perceived risk of infection associated to every single new infection
is larger when 1/ν > 1/γ is considered. Therefore, it is not surprising that a longer
memory duration leads to a larger diffusion of the altered behavior and implies a
decrease in the daily peak prevalence and the final epidemic size, and a delay in the
epidemic spread (see Fig. 3a).
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A misperception of risk may occur when the population becomes aware of a new
epidemic outbreak after a period of time since the emergence of the epidemic. This
situation can be investigated by assuming that the perceived prevalence is initially
equal to zero for a certain period of time, T . Figure 3b shows that the effectiveness
of human response diminishes when a larger delay is considered. In particular, daily
peak prevalence and final epidemic size increase as T increases and, no relevant
effects on the outbreak can be detected when the “alert” takes place too late.

4 The 2009 H1N1 Pandemic in Italy

In March 2009, a new influenza virus emerged in Mexico giving rise to a pandemic
that spread worldwide [10]. Early in the course of the pandemic, the population
was very concerned about the event [15, 21]. Did this affect the behavior of the
population and, consequently, alter the dynamics of the epidemic?

As most European countries, Italy experienced one single pandemic wave during
fall-winter 2009 and no substantial activity was detected during the summer.
However, the weekly influenza-like-illness (ILI) incidence is characterized by an
initial slow exponential increase (September–mid-October 2009) followed by a
sudden and sharp increase of the growth rate (mid-October). Over the whole period
schools remained open [8] and only moderate mitigation measures were enacted
(e.g., antiviral treatment of severe cases) [14]. This allows us to investigate an
“uncontrolled” epidemic, not affected by “heavy” public health interventions or by
school closure. On the other hand, since the emergence of the pandemic the Italian
population was exposed to a massive information campaign on the risks possibly
associated to the pandemic, which may have contributed to alter the perceived risk.

4.1 The Effect of Risk Perception During the 2009 Pandemic

Two different phases, characterized by two distinct exponential growth rates, can
be appreciated in Italy (especially when data are plotted in logarithmic scale) by
observing the ILI incidence as reported by the surveillance system during the 2009
H1N1 pandemic (see green points in Fig. 4a and its subpanel).

The observed pattern cannot be reproduced by a classic SIR model, unless one
considers a time-dependent transmission rate, switching from a low transmission
level during the first four weeks to a higher level for the rest of the epidemic.
However, this model would not be able to explain the reason of the sudden change
in the transmissibility potential.

On the contrary, the model introduced in this chapter perfectly fits the observed
ILI incidence (see red lines in Fig. 4a and its subpanel) and provides a plausible
explanation of the mechanisms responsible for the observed evolution of the ILI
incidence. Indeed, the estimated parameter configuration obtained by fitting ILI
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Fig. 4 (a) Weekly ILI incidence as reported to the surveillance system (green) and weekly
incidence simulated by the model (red). Sub-panel shows the same curves in a logarithmic scale.
Parameter values used in the simulation are set as follows. The generation time 1/γ is assumed
2.5 days according to [10]; S(0) = 0.9 according to a serological survey on the Italian population
[20]; x(0) = 10−8 and m = 0.1 assumed; M(0) = 10.5, I(0) = 0.001243, ρ = 66, q = 0.84,
ν = 0.005, β = 0.59, fitted; the estimated under reporting factor is 16.9 %, in good agreement
with the range 18–20.2 % estimated in [2]. (b) Weekly purchase of antiviral drugs (orange, scale
on the left axis) and weekly ILI incidence as reported to the surveillance system (blue, scale on the
right axis) during the 2009 pandemic, in Italy

incidence entails an initial overestimation of the perceived risk (which decreases
over time), along with an initial diffusion of the altered behavior in the population,
which in turn is replaced by the normal behavior during the course of the epidemic.
In fact, at the beginning of the pandemic, the simulated population is led to adopt the
altered behavior by a high level of perceived risk of infection (as in the presence of
a well-sustained circulation of the virus) and, as a consequence, the growth rate of
the epidemic results lower than what would have been observed in a population
adopting the normal behavior. On the other hand, a decrease in the perceived
risk of infection is observed, despite the (slow) increase in the actual number of
cases. In fact, the latter depends on the combination of two opposite phenomena:
the increase of new infections and the decline (slowed by the memory mechanism)
of the perceived prevalence, which was overestimated in the early phases of the
epidemic. As the perceived prevalence goes below the risk threshold 1/m, the
normal behavior starts to spread quickly in the population as the most convenient
strategy to be adopted through the subsequent course of the epidemic. This leads
to a sudden change in the growth rate of the epidemic which is triggered by an
increase of R0. Model simulations show that the two distinct exponential growth
phases observed for ILI incidence correspond to an initial diffusion of the altered
behavior in the population, which determines an epidemic spread driven by Ra

0, and
a second phase characterized by the diffusion of the normal behavior, where the
spread is driven Rn

0. The best estimate for Ra
0 is 1.24 and for Rn

0 is 1.48. Estimates of
Rn

0, i.e. the basic reproductive number for a population in which the normal behavior
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is widely adopted, are in good agreement with those obtained for the 2009 influenza
pandemic [2, 3, 10, 16].

The model explains the observed ILI incidence only if an initial (persistent)
diffusion of the altered behavior in the population is considered. Specifically, an
initial perceived risk of infection above the risk threshold, a long-lasting memory
(able to keep the altered behavior as apparently more convenient over a relevant
period of time), and a fast imitation process (enough to produce a sudden change in
the force of infection) are required.

4.2 Antiviral Drugs Purchase and Perceived Risk

By fitting the model to the observed ILI incidence, our investigation identifies an
initial overestimation of the risk as the main determinant of the influenza dynamics
reported in Italy in the 2009. The same result is suggested by other empirical
evidences, such as the temporal pattern of drug purchases.

As shown in Fig. 4b, during the fall the purchase of antiviral drugs complied with
the observed ILI temporal dynamics; on the contrary, until mid-October an excess
of antiviral drug purchase can be observed, suggesting an initial overestimation of
the risk of infection. Specifically, when the 2009 pandemic arrived in Europe at the
end of April, the weekly number of antiviral drugs sold jumped suddenly to more
than 12 doses per 100,000 individuals per week [13], while the maximum weekly
number of antiviral drugs sold during the 2008–2009 influenza season was less 2
doses per 100,000 individuals per week. Moreover, the purchase of antiviral drugs
reached a peak of about 35 doses per 100,000 individuals per week at the end of
July, despite no substantial ILI activity was detected in Italy during the summer.

The concern about the pandemic might have amplified the purchase of antiviral
drugs, likely due to the information campaign about the use of antivirals for treating
H1N1 infections. This example provides an empirical evidence that the Italian
population have actively enacted spontaneous defensive response measures aimed
at reducing the risk of infection in response to the high perceived risk. A discussion
on this topic, including other (empirical) sources of information supporting the
hypothesis of an initial overestimation of the risks of the pandemic, is developed
in [18].

5 Conclusion

Spontaneous human behavioral changes triggered by the perceived risk of infection
can remarkably alter the spread of an epidemic, leading to different epidemic
dynamics. In particular, if changes in behavioral patterns are fast enough, they can
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have a remarkable effect in reducing the daily prevalence of infection and the final
epidemic size. In addition, human response may also lead to quite rich epidemic
dynamics including, for example, the occurrence of multiple epidemic waves.
Our performed investigation singles out the main determinants of human behavior
and risk perception leading to remarkable alterations of the dynamics of an epidemic
outbreak. First, if the perceived risk associated to an epidemic is sufficiently
large, even a small decrease in the number of potentially infectious contacts can
remarkably reduce the impact of an epidemic. Second, the disease spread is highly
sensitive to how rapidly people adopt self-protecting behavioral patterns. Third,
when the population becomes aware only late of a new epidemic outbreak, the
effectiveness of human response reduces. However, when the mechanism regulating
the spread of information about the disease is sufficiently fast, spontaneous social
distancing is always effective.

Finally, our analysis shows that an initial overestimation of risk can delay the
epidemic spread, leading to sudden changes in the transmissibility potential and, in
turn, to a (somewhat unexpected) sharp increase in the growth rate of an emerging
epidemic, as it might have happened in Italy during the 2009 H1N1 pandemic.
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The Talk of the Town: Modelling the Spread
of Information and Changes in Behaviour

Sebastian Funk and Vincent A.A. Jansen

Abstract Changes in host behaviour can influence the course of a disease outbreak.
These changes can be triggered not only by public campaigns and mass media
reporting, but also by person-to-person communication and influence from peers.
Here, we describe a model in which awareness of the presence of a disease
can spread in a population and influence the spread of the disease itself through
protective measures that people can take. We describe the dynamics of disease
spread, focusing, in particular, on the relation between awareness and proximity
of disease in the network.

1 Human Behaviour and Infectious Diseases

Human behaviour is intricately linked with the spread of infectious diseases [1, 2].
After all, transmission of an infectious disease depends on contact of some sort,
either with another infected individual or with an environmental reservoir. The rate
of transmission depends on the intensity and rate with which we make such contacts.
For instance, the rate of transmission of a sexually transmitted disease is linked to
the behaviour that governs the frequency with which sexual contacts, or the change
in sexual partners. An element of human behaviour is therefore contained in any
mathematical model for an infectious disease, in a way that may be as simple as a
fixed contact rate in a traditional susceptible-infected-recovered (SIR) model [3].
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There are situations, however, in which it may become desirable to model
behaviour explicitly, that is, to include it in the model dynamics and allow it to
change over time. Such situations arise, for example, when behaviour depends
on overall prevalence of a disease (so-called prevalence-elastic behaviour), on
information which is communicated concurrently with the spread of an infection or
on extrinsic factors such as perceived adverse vaccine effects [4] or severe outcomes
associated with a given disease. In these cases, behaviour can be an important source
of heterogeneity in the population, it can change over time, and it can both affect
and be affected by the dynamics of the disease itself.

While it might be impossible to model the behaviour of an individual, it has
been suggested that collective human behaviour can be described using compu-
tational and mathematical models [5]. These have been applied, for example, in
sociology [6], economics [7] and anthropology [8] and to crowd behaviour [9, 10]
and vehicle traffic [11]. In order to study the collective behavioural response to the
spread of an infectious disease, one needs to consider the following questions:

• What causes people to act? We are all exposed to a variety of sources of
information and have different tendencies to act on them. Collectively, are we
more likely to respond to public health messages or to be influenced by the
behaviour of our peers? Does it influence us to perceive high prevalence of
the disease in our neighbourhood? It is known that humans tend to overestimate
the risk of extreme outcomes [12]. How does this influence our response to an
outbreak of a given disease? All of these factors will depend on the specific
disease, the media and public health response and a variety of other cultural and
historical factors. It remains an open challenge to identify common patterns in
the answer, any of these questions.

• How do the behavioural reactions influence the disease dynamics? Depending
on the disease being studied, behavioural changes can have an impact on the
dynamics of the disease in a variety of ways. For airborne diseases, individual
behaviour that has the potential to affect the dynamics of the disease can range
from social distancing or voluntary quarantine to wearing face masks, hygienic
practice, usage of prophylactic or other medication and vaccination. Beyond
these, more extreme measures such as mass flight from an area in which a
disease is present or the erection of road blocks to stop a disease from expanding
geographically have occurred in history. All of these have the potential to
influence the epidemiology of an infectious disease in different ways.

In the light of this wide range of possibilities for behavioural influences and
outcomes, it is important to identify their common elements, in order to understand
the overall influence of human behaviour on infectious diseases. Previously [2], we
suggested to distinguish between prevalence-based behaviours, based on informa-
tion directly related to the disease prevalence, or belief-based behaviours based on
information not directly related to disease prevalence. Belief-based behaviour can
have its own dynamics independently of the disease dynamics, as the behaviour can
be copied from one person to the next. This is the case, for example, for behavioural



Spread of Information and Changes in Behaviour 95

changes that are based on the spread of some sort of information, be it a rumour,
awareness or fear. Moreover, we suggested to distinguish whether individuals
source their social neighbourhood for (local) information to act on or behaviour
to imitate, or whether they act on publicly available (global) information. Lastly,
for the influence on disease dynamics, we suggested to distinguish whether a given
behaviour would change the state of an individual with respect to a disease (e.g., by
turning someone from being susceptible to being immune via vaccination), whether
it would change the parameters of spread itself (e.g., by leading to speedier recovery
from infection), or modify the contact structure between individuals (e.g., if people
avoid contact with those infected). Of course, all these distinctions are somewhat
arbitrary, and in reality our reactions will rarely fit perfectly in either of these
categories.

2 The Spread of Awareness

Ideas, innovations, rumours or a cultural practice can spread in a way not entirely
dissimilar from the spread of a disease: those who have not yet been “infected”
(i.e., convinced or informed) can become so by coming in some form of (not neces-
sarily physical) contact with someone who has [13, 14]. The spread of rumours or
ideas has been described as “infection of the mind” [15] or “thought contagion” [16].
The analogy between the spread of information and communicable diseases seems
to have been first proposed by Landau [17] and later, independently, by Kendall [18]
and Goffman and Newill [19]. Generally, studies on models of rumours have
concentrated on similar questions to epidemic models, that is the probability of
it affecting a large part of the population and the fraction which hears of it
over a given period of time. The work of Landau [17] is based on the epidemic
model of Kermack and McKendrick [20] and considers cases where probability of
transmission depends on the age of the rumour or the time since a given spreader
heard it first. A similar model was proposed by Landahl [21], who had individuals
transmit a message an average of f times, f being a function of time. The stochastic
model of Daley and Kendall [22, 23] added a “stifler” class for those who carry
the rumour, but have lost interest and no longer spread it, just as Goffman and
Newill [13, 19, 24] did in their deterministic models.

After the flurry of activity on models of rumour spreading in the 1950s and 1960s,
interest resurged in the past 10 years, in line with increasing interest in network
theory. A number of studies applied variants of the model of Daley and Kendall [23]
to different network settings [25–28] to study the interplay between topology and
model dynamics. Nekovee et al. [15] extended this to include the possibility that
individuals lose interest or forget about the rumour. Agliari et al. [29,30] proposed a
model in which the information contained in the rumour decays as it spreads through
the population, an idea we will get back to in the following.
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3 Spreading Awareness and Behavioural Changes

We are interested in a situation where people change their behaviour upon becoming
aware of the presence of a disease. In particular, we want to investigate what
happens when awareness can spread, in the sense outlined in Sect. 2. We understand
this to be awareness of the (perceived) presence of the disease and assume people
to change their behaviour once they become aware, by protecting themselves from
getting infected. We consider a scenario where first-hand information originates via
acutely infected cases but subsequently spreads independently of the disease.

There is anecdotal evidence that this kind of word-of-mouth and person-to-person
spread of awareness can occur when an infectious disease is around. From the
lepers’ bell to notes on a nursery door, from the millions of text messages exchanged
during the outbreak of severe acute respiratory syndrome (SARS) in Ghuangzhou
in 2003 [31], to online health fora [32] and the exchange of twitter messages
concerning vaccination against pandemic influenza H1N1 [33], examples for the
exchange of information relating to the presence of an infectious disease are
numerous.

In our model (see box below for details), we consider the population to be
connected in a contact network; that is, any two members of the population
are connected if they could potentially transmit the disease between each other.
In addition, people are connected on a second network over which awareness
spreads. Connections can be present over both networks or only on one of them,
that is, people could be connected on an online forum but not be able to transmit
disease between each other because they never get into contact, or vice versa, or
they could be connected on both networks.

Lastly, we assume the quality of information, or the probability of individuals to
act on it, to decay as it spreads in the population (Fig. 1), an idea first formulated
by Agliari et al. [29, 30]. This reflects that we are interested in local and timely
information, which will lose its value both with time and (network) distance.

Fig. 1 A model of awareness spread with decay of information. Left to right: awareness originates
in an infected case. As it spreads from person to person, the level of awareness gets updated with
the distance from the source and in this way loses some quality, in the sense that it will cause less
of an incentive to change the behaviour of the recipient
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Mathematical Details of the Model
As described in [34], we divide the population of size N into susceptibles (S),
infected (I) and recovered (R) [3]. Further, we divide the population according
to the level of awareness they possess, here understood as awareness that the
disease is present nearby. The level of awareness is denoted i, with i = 0
denoting the highest level of awareness, decreasing as i increases. Awareness
spreads at rate α and is lost (forgotten) at rate λ . Each time awareness is
passed on to someone else, its level increases by 1 (in other words, a bit
of quality is lost every time awareness is passed on). The infection spreads
at base rate β , and recovery from disease occurs at rate γ . Susceptibles of
awareness level i are assumed to reduce their susceptibility (i.e., their infection
rate) by a factor ρ i, so that 0 < ρ < 1 is the decay constant of awareness. New
generation arises in infected individuals at rate ω .

The resulting set of equations is (see also Fig. 2)
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where I = ∑i, Ii, S0 = 0 and Ni = Si + Ii+Ri.

4 Dynamics of the Model

In the following, we describe the phenomena observed in simulations of the model.
Readers interested in analytical backing of these results are referred to [34].
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Disease:

Awareness:

Sources of awareness:

Fig. 2 Left: Schematic diagram of the model. Transitions marked occur within nodes (empty caps)
or across the disease (solid) or awareness (dashed) network (solid caps). Right: A network with
two types of edges (disease, awareness)

4.1 Relative Timescales of Spread

The dynamic interaction between awareness and disease that results from our model
depends highly on the relative timescales of the two processes. If awareness spreads
much faster than disease, it will reach its final distribution amongst the population
before the disease spreads widely. In this case, awareness provides merely a uniform
backdrop that is static on short timescales. This is the scenario we would expect
for information disseminated by the mass media in response to an outbreak of a
novel disease. If, on the other hand, the disease spreads much faster than awareness,
it will encounter an unaware population which only retrospectively might receive
information on the outbreak. In other words, this situation is similar to one in which
awareness does not exist at all. In both of these cases, there is no need to model
the dynamical interaction of awareness and disease explicitly, and any impact of
awareness on spread can be subsumed in the parameters of the disease model.

If, on the other hand, both spread on similar timescales, the effect of the dynamic
interaction between awareness and disease becomes more sensitive to the details of
network and spatial structure, as we will describe in the following sections.

4.2 Local Quenching of Disease Outbreaks

If disease and awareness operate on similar timescales, the dynamical interplay
between the two can result in them having a strong impact on each other, with
network structure and overlap becoming more important. Let us first assume that
the networks of both infection and awareness are the same. In that case, as soon
as awareness originates in those infected and spreads in the population, it starts
to quench the outbreak locally because high-quality information (which has a
high tendency of changing the behaviour or people) is near the outbreak itself.
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Fig. 3 Snapshots from a simulation of the disease-awareness model on a triangular lattice,
progressing in time from left to right. The red patch, in the centre is where the disease has reached,
with bright red indicating those currently infected surrounded by susceptibles in white to dark grey,
with increasing awareness levels the darker they are plotted. In the rightmost panel, the outbreak
has stopped
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Fig. 4 Change of the
effective reproductive number
R in time in a simulated
outbreak on a triangular
lattice, starting with a single
infected individual

This results in a lot of awareness appearing around infected cases, which can slow
down an outbreak until the disease reaches another unaware part of the population,
or it can even stop an outbreak altogether (Fig. 3).

If the behavioural reaction is not strong enough to stop an initial outbreak
completely in its tracks while, on the other hand, it is strong enough to slow
down the spread of the disease locally, the course of the outbreak is changed: if
we follow the reproductive number R over time, it moves around 1 for a long
time during the outbreak instead of declining monotonically, as would be expected
without the effect of the behavioural response (Fig. 4). This is not dissimilar from
patterns observed for the influenza pandemic of 1918, where similar variation of R
in time has been attributed to the possible impact of individual reactions [35], or
the irregular pattern in the epidemic tail of the 2001 UK foot and mouth disease
epidemic [36]. The changing dynamics are reflected in the spatiotemporal pattern
which changes from a simple diffusive spread with radial outward progression from
the source of the outbreak to a much more irregular, patchy shape, characteristic of
critical phenomena (Fig. 3) [37].
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Fig. 5 Relative reduction in outbreak size in simulations of the disease-awareness model on a
triangular lattice, with a part of the disease edges randomly rewired, given as (mean outbreak size
with awareness)/(mean outbreak size without awareness). The averages are over 100 simulations
on a lattice of 10,000 nodes

4.3 The Importance of Clustering and Network Overlap

The local quenching of outbreaks described in Sect. 4.2 can only occur when there
exists a notion of locality in the population in which disease and awareness spread.
For this to be the case, the network needs to possess a clustered structure. In
network science, clustering traditionally denotes the probability for there to be a
connection between two individuals who are both connected to a third individual
(or, the probability of two friends of someone to be friends amongst themselves).
Here, we mean, more generally, the fact that the distribution of shortest paths from
a given individual to other individuals in the networks has a steep slope or, in other
words, that very few individuals are close (only a few hops on the network away),
while most are distant (many hops away).

This alone, however, is not enough to guarantee a strong impact of the spread of
awareness on outbreaks. For this, we need the networks over which awareness and
disease spread to display a strong degree of overlap, in the sense that contacts on one
network need to be contacts on the other, too. This guarantees that the individuals
closest to those infected (which also act as sources of high-quality information) are
the ones with the best information. Clustered structure then allows this information
to be spread to individuals who themselves are not distant from the source of
infection, protecting these before the disease can get to them.

This effect can be observed clearly when considering the model on an
(overlapping) triangular lattice (i.e., a very clustered structure with a strong
sense of locality) in which some of the disease edges are randomly rewired. As a
consequence of this rewiring, the potentially infectious connections of an infected
node have a certain probability of pointing to a region in the disease network which
is not local to that node on the awareness network. If that is the case, the disease can
escape regions of the network where it is locally suppressed as people around an
infected cluster protect themselves. The greater the probability of such escape, the
weaker the effect that awareness spread can have in containing outbreaks (Fig. 5).
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5 Conclusions

We have described the dynamics of a model for the concurrent spread of an
infectious disease and awareness to its presence and assumed this awareness to
be the trigger for behavioural reactions. Local interactions between disease and
awareness only become relevant when the two spread on similar timescales. In that
case, we can observe local quenching of disease outbreaks as those that are most
at risk become aware and protect themselves. When this happens, the spatial
progression of an outbreak changes from a simple diffusive process to a situation
where small outbreaks flare up before they get contained locally. This effect is
the strongest when the networks over which infection and awareness spread are
overlapping and clustered. If this is not the case, for example, when the infection can
escape to unaware populations with a certain probability, the behavioural reactions
become less effective in quenching outbreaks.

Whether any of this happens in reality remains an open question. While all
parts of our model have been informed by anecdotal evidence, it can be quite
difficult to quantify the different components and their relative impact. Still, there
are some things to be learnt from the kind of study we present here. Recent studies
of health behaviour show that the structure of networks of influence can play a
role in how such behaviours become adopted in a population [32]. Here, we show
that, if people are indeed influenced by their peers, it is the interplay between the
network of influence with the network of infection that determines the effect on
outbreaks. Moreover, if behavioural reactions can change the epidemiology of a
given disease, one must be careful in extrapolating from observations in a disease-
free situation to one where a disease is present. How exactly peer and media
influence, the particularities of any given infectious disease and the type and strength
of behavioural reactions interact is notoriously difficult to establish. Still, it seems
that innovative theoretical approaches used hand in hand with careful observational
studies, for example, using the digital traces we leave in our online interactions,
have a role to play in shedding some light on what shapes our reactions to disease
outbreaks and how this, in turn, can affect the fate of an outbreak itself.
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Modeling Contact and Mobility Based Social
Response to the Spreading of Infectious Diseases

Nicola Perra and Alessandro Vespignani

Abstract We present here a set of prototypical mechanisms aimed at modeling the
social adaptation and response triggered in the population by the knowledge of the
spreading of an infectious disease. We define models that couples the spreading
of information and behavioral changes with the spreading of the infectious disease
by considering the local and non-local prevalence-based information available to
individuals in the population. The behavioral changes are modeled both as the
onset of effective social distancing and contact reduction as well as changes in
the mobility patterns of individuals. The defined models exhibit a rich phase space
with multiple epidemic peaks and threshold behavior. In addition, we show that in
specific cases the change of mobility pattern may counterintuitively enhance the
disease spreading. The class of models presented here can be used in the case of
data-driven computational approaches to analyze scenarios of social adaptation and
behavioral change.

In the last years we have witnessed formidable advances in the data-driven modeling
of the spreading of infectious diseases. The growing abundance of demographic,
census, and mobility data is allowing the development of highly detailed models
aiming at providing both a conceptual understanding and quantitative scenario
analysis of infectious disease spreading. For a long time these modeling approaches
have assumed that the network of contacts that exists at the beginning of an
outbreak remain fixed throughout the outbreak, rather than change in real time as
the outbreak itself spreads. For instance, infected individuals hide, run away, and
generally destroy the regular patterns of interaction present at regular time. Some of
these new patterns of interaction, such as staying at home or off mass transit,
might temporarily stifle the diseases spread through the network. Other patterns
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like fleeing can facilitate the spread to whole new populations. The coevolution
of the social network with the spread of the disease therefore is at the heart of
understanding the social epidemiological nature of disease spread.

In this context, self-initiated changes in behavior induced by transmission of
information about the disease both from the media and the local environment
(friends, colleagues, etc.) is one of the prime mechanism of social adaptation to
the spreading of an infectious diseases. The awareness of each individuals to the
prevalence of the disease can transform in the “fear” of the disease and alter
the behavioral patterns of individuals. The ensuing behavioral changes can be
grouped in to two major reactions mechanisms: (i) People can decide to avoid
social contacts with infected individuals, to avoid crowded spaces, and to prevent
children from attending school generating a social distancing effect that reduces the
transmissibility of the disease. (ii) In order to reduce their risk to get sick, people
can also decide to change their mobility patterns either canceling specific trips or
changing the path to reach destination according to the information concerning the
prevalence of the diseases in different areas. These self-initiated measures affect the
local contagion process as well as the diffusion pattern of the disease by changing
the level of contact and the mobility rate of individuals. At the modeling level
these two social responses unfold in a different way. Social distancing can be
modeled as an intrapopulation phenomena reflected in the change of contact rates of
individuals. Mobility responses affects mostly the inter-population coupling defined
by the exchange of individuals among different subpopulations in geographically
structured models. Finally, other types of changes in the behaviors could be imposed
by authorities through the closure of schools, churches, and public offices, bans on
public gatherings, and travel restrictions. Due to the availability of public data on
these imposed phenomena they have been intensively studied. Instead, self-initiated
behavioral changes are elusive to modeling because of the difficulty involved in
quantifying these changes and an overall lack of relevant data.

Here we want to provide a brief review of recent results we have obtained at
level of intra-population dynamics and in the framework of metapopulation models
describing collections of subpopulations linked by intercommunity mobility. We can
easily imagine the information about the disease as a competing spreading process
acting on the same time scale of the pathogen spread. The contact structure as well as
the coupling patterns can be simultaneously modified changing the global unfolding
of the disease. The study of these societal phenomena and their effects on the
spreading is extremely hard due the feedback mechanisms induced by the change of
behaviors. For this reason models have looked so far at contact- and diffusion-based
behavioral changes separately. Indeed, the understanding of the effects induced by
all possible change in behaviors can be reached just after the characterization of the
single phenomena.

Modeling the infectious disease with a simple SIR model in which individuals
can be either susceptible, infected or recovered, we present a general framework to
study contact-based behavioral changes in isolated subpopulations. In particular we
present the definition and characterization of two models that incorporate different
societal reactions based on the local and nonlocal prevalence-based information
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about the disease available to individuals in the population. We then consider
mobility-based behavioral changes in a system of connected subpopulations. In this
case different societal reactions triggering changes in the mobility behavior of
individuals are studied and characterized within the framework of metapopula-
tion approaches. We provide a theoretical and numerical analysis of the various
mechanisms involved and uncover a rich phenomenology of the behavior-disease
models that includes epidemics with multiple activity peaks and transition points.
Furthermore, although the aim of such a self-initiated behavior is to prevent an
individual’s exposure to the disease, we show that it may lead to the unanticipated
effect of facilitating the disease spread to new locations. This abundance of
different dynamical behaviors clearly shows the importance of the behavior-disease
perspective in the study of realistic progressions of infectious diseases and provides
a chart for future studies and scenario analyses in data-driven epidemic models.

1 Single Population: Contact-Based Behavioral Changes

We approach the analysis of behavioral changes due to the spreading of diseases
considering first the intra-population dynamics. We consider a single isolated,
unstructured population characterized by N individuals. All the effects due to
the contacts among individuals in different subpopulations are for the moment
neglected. In particular, we consider the general extension of the SIR model
where a new class of individuals, SF , is introduced. The label F stands for “fear”
characterizing individuals that fear the disease and self-initiate social distancing
measures in order to reduce the likelihood of contagion [1,2]. In this class of models
the spread of the disease is coupled with the spread of the fear of the disease within
the population. The unfolding of the fear contagion process depends on the source
and type of information to which individuals are exposed [3, 4].

Among the many different mechanisms governing the transitions of individuals
into and out the compartment SF , we review two basic interaction schemes.
The first mechanism is prevalence-based. Individuals enter in the compartment SF

by interacting with infected individuals. The awareness of the presence of sick
persons triggers the transition in the new compartment and the consequent reduction
in the contacts. The second mechanism, instead, is belief-based. Individuals enter
the new compartment interacting either with infected individuals as in the previous
case or with people already in the SF compartment. The presence of individuals
fearing the disease is able to trigger further transitions in this compartment. The fear
is able to self-sustain its spread in this case as more and more individuals change
their behaviors because others did.

The basic infectious disease evolution is described using the SIR model [5].
In this model individuals are partitioned into compartments according to their
disease status. At each time step t, three different compartments are defined:
S(t), I(t), and R(t) representing the number of susceptible, infected and recovered
individuals in the population. For diseases characterized by a time scale much
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Fig. 1 Schematic representation of the two types of transitions that will be recurrent in the
different models presented. In panel (a) we show the first in which individuals in compartment
X interact with individuals in class Y , represented by the small square, becoming Y themselves
with rate β . In general the compartment inducing the transition of individuals in X could be any
other compartment in the model, for example, M, different from the end-point of the transition.
In panel (b) we show the second type. This is a spontaneous transition with rate μ in which an
individual in compartment Y spontaneously moves to compartment Z

smaller respect to the average lifetime of individuals, we can then consider the
population as constant, i.e., N = S(t)+ I(t)+R(t) for each time step. The evolution
of the disease is defined by two simple classes of transitions represented in Fig. 1.
In the first one, a susceptible individual interacts with an infectious one acquiring
the infection with transmission rate β . This transition depends then on the internal
structure of the population and on the contacts patterns. In the second one, an
infected individual recovers spontaneously from the disease with rate μ entering
in the recovered compartment. Individuals in this class are immune of the disease.
The two transitions can be represented as:

S+ I
β−→ 2I, (1)

I
μ−→ R. (2)

Influenza-like illness usually can be easily transmitted, even without direct contacts.
A typical simplification used to model this type of diseases considers the mixing
between individuals as homogenous: each pair of individuals has the same probabil-
ity of interaction. According to this assumption, the larger the number of infectious
individuals the higher the probability of transmission of the infection. The force of
infection can be then defined in terms of a mass action law [6], λS→I = β I(t)/N.

The local spreading of the disease is characterized by its basic reproductive num-
ber R0. This quantity is defined as the average number of secondary infected cases
generated by a primary infected individual in a fully susceptible population. In the
limit of homogeneous mixing, only if on average each infected is able to produce
at least one other infected individual the disease will be able to spread. The basic
reproductive number of the SIR model is simply R0 =

β
μ . The reproductive number

defines the threshold of the epidemic process. The populations will experience an
outbreak just if the disease transmission rate is larger than the recovery rate, i.e.,
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β > μ . In this case the epidemic generate a number of infected individuals larger
than those who recover, leading initially to an exponential increase in the overall
number of infectious individuals I(t).

1.1 The New Compartment: SF

The self-initiated behavioral changes are modeled adding a new compartment, SF , to
the basic SIR structure [7].This describes individuals, still susceptible and healthy,
that change their behavior reducing the number contacts or that implement other
social distancing measures [1, 3, 8–14].

These actions raise the level of protection from the disease reducing the transmis-
sion rate of the infection. For individuals in the class SF the force of infection is thus
reduced by a resiling of the transmissibility β to rβ β with 0≤ rβ < 1. The transition
from SF to I is then:

SF + I
rβ β−−→ 2I. (3)

The force of infection for individuals in the new compartment is λSF→I =
rβ β I(t)/N. The crucial parameter is rβ that modulates the level of protection
from the contagion due to the self-induced behavioral changes.

When the epidemic starts to decline, it is natural to assume that individuals relax
the adopted behavioral changes returning to regular social behavior. This translates
into a transition SF → S. There are different possible mechanisms that can account
for this process [1, 3, 11, 13, 15]. Individuals can simply lose interest in the disease
and spontaneously recovery from fear, or they can interact with other individuals
that are recovered or healthy and decide to change their behavior. In the last case we
can define two different transitions:

SF + S
μF−→ 2S (4)

and

SF +R
μF−→ S+R, (5)

regulated by two mass-action laws: λ A
SF→S = μF S(t)/N and λ B

SF→S = μF R(t)/N.
The new compartment SF allows in a very simple way the inclusion of social

distancing in the system. A variety of scenarios can be considered in the modeling of
the phenomena that induce susceptible individuals to change their behavior moving
in the compartment SF . In the next section we will describe two basic mechanisms
studying their effects on the disease unfolding [7].
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1.2 Local Prevalence-Based Behavioral Changes

The first mechanism we consider for the generation of individuals with fear of the
disease is prevalence-based. The fear of the disease is simply coupled with the
spread of the virus in the population [1, 3, 7, 11]. In this scenario susceptible in-
dividuals change their behavior interacting with infectious individuals. The larger
the number of sick and infectious individuals, the higher the probability to adopt
behavioral changes. The fear contagion process is modeled introducing a new
transition

S+ I
βF−→ SF + I, (6)

where βF is the transmission rate of the awareness/fear of the disease. In analogy
with the previous interactions, this processes is characterized by a mass-action law
of the form λ I

S→SF
= βF I(t)/N.

Considering the basic structure of a SIR model and adding the transitions (3),
(4), (5) and (6) (see Fig. 4 for a schematic representation) we can write the set of
differential equation for this model as

dtS(t) = −β S(t)
I(t)
N

−βFS(t)
I(t)
N

+ μFSF(t)

[
S(t)+R(t)

N

]

,

dtS
F(t) = −rβ β SF(t)

I(t)
N

+βFS(t)
I(t)
N

− μFSF(t)

[
S(t)+R(t)

N

]

,

dtI(t) = −μI(t)+β S(t)
I(t)
N

+ rβ β SF(t)
I(t)
N

,

dtR(t) = μI(t). (7)

To better understand the equations let us consider the negative flows. The first
term of the first equation in (7) takes into account susceptible individuals who
through interaction with infected ones become sick. The second term takes into
account susceptible individuals who through interaction with infected ones change
their behavior. The first term of the second equation takes into account individuals
in compartment SF who through interaction with infected individuals enter in the
compartment I. This transition is reduced by a factor rβ due to the protection that
they gain. The last term in the second equation takes into account people with fear of
the disease who through social interaction with healthy and recovered individuals,
move back to compartment S. The first term in the third equation takes into account
the spontaneous recovery of infected individuals.

The system of equations in (7) is characterized by different regimes according to
the initial conditions and the value of the parameters selected. It is natural to assume
that the initial population is fully susceptible except for a few infected individuals.
This translates in fixing, SF(t = 0) = R(t = 0) = 0. It is easy to prove [7] that if the
disease spreading is faster than the fear spreading (βF � β ,), the model reduces to
the classic SIR with basic reproductive number R0 = β/μ . Instead, if fear spreads
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Fig. 2 Medians of I(t) for the for baseline (SIR model without fear of contagion) and three
realizations of the model for different values of βF . In particular in panel (a) is plot the baseline
SIR model with the same disease parameters. In panel (b) is considered βF = 1 day−1. In panel
(c) βF = 2.5 day−1. In panel (d) βF = 5 day−1. The peak time is the same for all the scenarios
and how the number of infected individuals at peak is reduced as βF increases. The other relevant
parameter are μF = 0.5 day−1, rβ = 0.5, μ = 0.1 day−1, N = 106, and R0 = 2. The medians are
evaluated using 5×103 stochastic runs

much faster than the disease, βF 	 β , even a small number of infected individuals
is able to trigger a rapid transition in the compartment SF . The epidemic in this case
is equivalent to the spreading of a disease with an effective reproductive number
RF

0 = rβ β/μ = rβ R0.
In the intermediate region in which the two transmission rates are comparable,

βF/β ∼ O(1), the spread of the fear does not significantly affect the timing or the
size of the disease. As showed in Fig. 2 in this region fear simply produces a mild
reduction in the epidemic size.

Moving in a different phase space by increasing the value of βF , an interesting
region characterized by multiple peaks emerges. This is important not only from
a mathematical point of view but also for practical reasons. In historical data
from the 1918 pandemic multiple epidemic peaks were observed [15–17]. These
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Fig. 3 Model I Phase diagram of infection waves on R0-βF plane. We display the regions of
parameter space on R0-βF plane exhibiting different number of disease activity peaks for three
different values of rβ = 0, 0.15, and 0.3, where we have fixed μ = 0.1 day−1, μF = 0.1 day−1

and N = 106. The phase diagram has been obtained by numerical integration of the deterministic
equations in Eq. (7)
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Fig. 4 Model I. Schematic representation of Model I

cannot be created by the simple SIR mechanisms. Adding some components to
the model is necessary. Changes in the behaviors during that period have been
often associated to the emergence of multiple waves of infections. The presence
of multiple peaks can be qualitatively understood considering that after the first
wave of infection individuals start leaving the compartment SF returning to the
S state. In this compartment they are less protected from the disease. If the number
of infected individuals at this stage is not too small and if there is still a large enough
pool of individuals susceptible to the infection a second wave might emerge.

The analysis of the phase diagram of the model as a function of the parameter
R0-βF identifies the regions where multiple peaks are observed. In Fig. 3 the
multiple peak region for three different values of rβ is shown. As this parameter
increases, the region in which multiple peaks are encountered shifts to smaller
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values of R0 and larger values of βF . Fixing rβ , increasing values of βF increase
the number of infection peaks while an increase in R0 leads to a decrease in the
number of peaks.

By increasing the value of βF to larger and larger values, the spread of the fear
contagion becomes increasingly rapid with respect to the spread of the disease.
It is natural to think in this regime that the reproductive number of the disease is
characterized by the SF class. We then have two different scenarios:

1. If rβ β/μ > 1, then the epidemic size is given by that of an SIR model with
β → β rβ .

2. If rβ β/μ < 1, then fear completely stops the spreading of the disease.

At the end of the disease epidemic the system enters the so-called “disease-free”
stage. This region of the phase space is described by

(S,SF , I,R) = (S∞,S
F
∞,0,R∞). (8)

In this model there is one only disease-free state characterized by

(S,SF , I,R) = (N −R∞,0,0,R∞). (9)

The model does not allow an endemic state of fear. Fear can only be produced by the
presence of infected people. As soon as the infection dies out, people recover from
their fear of the disease by interacting with the susceptible and recovered individuals
and become susceptible themselves.

1.3 Local Belief-Based Behavioral Changes

The contagion process governing the spread of the fear may also occur by the contact
with individuals who have already acquired fear/awareness of the disease [7].
The fear contagion process therefore can also progress according to the following
process:

S+ SF αβF−−→ 2SF , (10)

where the transmission rate is αβF , with α modulating the ratio between the fear
spreading rate by contacting infected individuals and contacting individuals with
fear of the disease. The transition rate is defined by the mass-action law λ III

S→SF =

αβF SF(t)/N. This transition is a self-reinforcing process in which individuals might
enter the compartment SF simply by interacting with people in this compartment:
fear generates fear. In this model people could develop fear of the infection both
by interacting with infected persons and with people already concerned about the
disease. A new parameter, α ≥ 0, is necessary to distinguish between these two
interactions. These processes are different in their nature. In general individuals
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who contact infected people are more likely to acquire the fear of the disease than
those who interact with individuals which also fear the disease. For this reason it is
natural to fix 0 ≤ α ≤ 1.

In the limit in which no infected individuals are present in the population the

SF compartment can only grow through the interaction S+ SF αβF−−→ 2SF . The early
stage of this process is analogous to an SIS-like model as long there is at least one
initial individual in the fear compartment, i.e., SF(t = 0) = 1 [7]. In this case it is
possible to define the reproductive number of the fear contagion process as

RF ≡ α
βF

μF
. (11)

In isolation, the fear contagion process is analogous to the reproductive number
of an SIS or SIR model with transmission rate αβF . However, in the general
case the spread of the fear of infection is coupled with the actual disease spread.
As schematically presented in Fig. 5, the complete set of equations is

dtS(t) = −β S(t)
I(t)
N

−βFS(t)

[
I(t)+αSF(t)

N

]

+ μFSF(t)

[
S(t)+R(t)

N

]

,

dtS
F(t) = −rβ β SF(t)

I(t)
N

+βFS(t)

[
I(t)+αSF(t)

N

]

− μFSF(t)

[
S(t)+R(t)

N

]

,

dtI(t) = −μI(t)+β S(t)
I(t)
N

+ rβ β SF(t)
I(t)
N

,

dtR(t) = μI(t). (12)

In the case in which the disease spreads faster than the fear of it, then the
reproductive ratio is R0 = β/μ . In the opposite case the reproductive ratio is
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Fig. 6 Phase diagram of infection waves on R0-βF plane. We display the regions of parameter
space on R0-βF plane exhibiting different number of disease activity peaks for three different values
of rβ = 0, 0.15, and 0.3, where we have fixed μ = 0.4day−1, μF = 0.5day−1, α = 0.05 and N =

106. The phase diagram has been obtained by numerical integration of the deterministic equations
in Eq. (12)

governed by the compartment SF so that RF
0 = rβ R0 and the epidemic size will

be reduced depending on the value of rβ . In this latter case, if rβ R0 < 1, then
the protection from infection gained in the compartment SF causes the disease to
fade out.

In the early stages of the epidemic the set of equations can be linearized and the
equations for SF compartment is given by

SF(t)∼ βF

μ(R0 − 1)− μF(RF − 1)
×
[
eμ(R0−1)t − eμF(RF−1)t

]
. (13)

Two different regions in the parameter space are then identified: one in which the
rate of increase of fear is dominated by its own contagion process, μF(RF − 1) >
μ(R0−1), and one in which the rate of the local belief-based spread is dominated by
the disease, μ(R0−1)> μF(RF −1). In the first case the fear spreads independently
of the value of R0, and the epidemic size will be reduced due to the protection that
individuals gain in the SF compartment [7].

The new interaction, although intuitively simple, significantly complicates the
dynamic behavior of the model. In particular within several regions of the parameter
space we observe two or more epidemic peaks (see Fig. 6). This non-trivial behavior
can be easily understood. Fear reinforces itself until it severely depletes the reservoir
of susceptible individuals, causing a decline in new cases. As a result people are
lured into a false sense of security and return back to their normal behavior (recovery
from fear) causing a second epidemic peak that can be even larger than the first
[15–17].
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Residual Collective Memory of the Disease and Its Effect on Epidemic
Resurgence

At the end of the disease epidemic the system enters the disease-free stage. Setting
I(t) = 0 and the epidemic size to R∞ is possible to show that the model allows
for two different disease-free equilibriums depending on the value of a parameter
γ ≡ RF

(
1− R∞

N

)− 1 [7]. In particular, for

γ ≤ 0 ⇒ (S∞,S
F
∞, I∞,R∞) = (N −R∞,0,0,R∞), (14)

where fear dies along with the disease, and the one given by

γ > 0 ⇒ (
S∞,S

F
∞, I∞,R∞

)
=

(
R∞

RF − 1
,N − RF R∞

RF − 1
,0,R∞

)

, (15)

where fear and behavioral changes persist even after the end of the disease epidemic.
The condition RF > 1 is necessary but not sufficient in order to have an endemic state
of fear, while RF ≤ 1 is sufficient to avoid an endemic state of fear. Unfortunately,
the parameter γ is an implicit function of the whole dynamics through the epidemic
size R∞.

The presence of an endemic state associated to long lasting fear and the altered
social behavior, a societal memory of the disease, is a quite interesting features of the
model induced by the fear’s self-reinforcement. In this model fear is able to sustain
its presence in the population if the effective reproductive number of the local belief-
based spread is larger than unity even if the disease dies out. Unfortunately, this
argument cannot be used to fix the range of parameters in the phase space with
these properties since any linearization at these stages of the compartments is not
suitable.

Furthermore, the possibility of having an endemic state of fear indicates that
an event localized in time is capable of inducing long lasting modifications to
social behavior with interesting consequences. In the case of a second epidemic,
the presence of part of the population already in the compartment SF reduces the
value of the basic reproduction number. The societal memory of the first outbreak
increases the resistance in the population against the spread of the second outbreak
in a non-trivial way. This is an important result that confirms how an endemic state
of behavioral change in the population reduces the likelihood and impact of a second
epidemic outbreak. We note that such a state will inevitably fade out on a long time
scale. This can be modeled with a spontaneous transition SF → S acting on a time
scale longer than the epidemic process itself.

Discontinuous Transition in the Epidemic Prevalence

In the first model the epidemic size was significantly reduced just for large values of
βF . When belief-based behavioral changes are added, the reduction is characterized
by a rich behavior as shown in Fig. 7. In this plot the fraction of the final number
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Fig. 7 Reduction of the epidemic size as a function of RF and R0. The three lines are curves of
R∞/N as a function of RF , keeping R0 constant are considered. In particular, R0 : 1.5,2.5,3 which
correspond to solid black, blue, and red lines, respectively. The value R0 = 2.5 is a special case that
leads to R0rβ = 1. It divides the phase space in two different regions. All the values of R0 below are
characterized by R0rβ < 1. In this case for large values of RF the model is reduced to an SIR with
reproductive number R0rβ below 1 and the epidemic is halted. Interestingly, this behavior starts in
an intermediate regime of RF . There is a critical value R∗

F of RF above which (i.e., RF > R∗
F ) the

epidemic size is zero. This transition happens with a jump, as shown by the solid black line. All
the values of R0 above 2.5 are instead characterized by R0rβ > 1. Also in this case the model is
reduced to an SIR with reproductive number R0rβ for large values of RF , but in this case this value
is above 1. This results in a epidemic size that is always nonzero. In this region of parameters no
jumps are present (see the dashed line). The other parameters used are rβ = 0.4, μ = 0.4day−1,
μF = 0.5day−1, N = 106, and α = 0.05

of recovered individuals at the end of the epidemic is shown as a function of RF

and R0, keeping fixed the other parameters. The self-reinforcement mechanism
creates a more complicated phase space that allows for a jump in the epidemic
size as RF increases above a critical value R∗

F (see the black line in Fig. 7). This
behavior, typical of the first-order phase transitions in cooperative systems, signals a
drastic change in the dynamical properties of the behavior-disease model. If RF < 1,
then obviously the fear of the disease is not able to affect a large fraction of the
population and the disease spreads as usual in the population, affecting at the end
of its progression R∞ individuals. If RF > 1 we face two different scenarios or two
different regions of R0 separated by the blue line in Fig. 7:

• In the case that R0rβ > 1 (i.e., the red line in Fig. 7) the generation of a finite
fraction of individuals in the SF compartment is not able to halt the epidemic.
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The behavioral changes are not enough to bring the reproductive number below
the epidemic threshold and R∞ decreases smoothly because of the epidemic
progress with a progressively lower effective reproductive number.

• If R0rβ ≤ 1, (i.e., the black line in Fig. 7) the individuals that populate the SF

compartment keep the spread of the epidemic below the threshold. In principle,
the state R∞ = 0 and SF = N would be possible. In general, the process needs
to start with infectious individuals that trigger the first transitions S → SF and
therefore a small number of R∞ individuals are generated. However, there will
be a R∗

F at which the growth of the fear contagion process is faster than the
growth of the epidemic with a small R∞. At this point the fear contagion process
is accelerated by the growth of individuals in SF while the epidemic spread is
hampered by it. The SF is quickly populated by individuals while the epidemic
stops, generating a very small number of R∞. This generates a jump in the amount
of individuals that experience the infection as a function of RF . The value at
which the transition occurs also depends on the other parameters of the model
including R0 and rβ .

The self-reinforcing mechanism that characterized this model clearly creates
non-trivial behaviors in the dynamics. In particular strong reductions in the cu-
mulative number of infected individuals associated with discontinuous transition
are observed. Even more, in the case of a second epidemic, the memory of the
system shifts the reproductive number towards smaller values. These results show
how simple modifications of the basic SIR model that accounts for change in the
behavior of individuals might have critical effects in the unfolding of the disease.

2 Coupled Subpopulations: Mobility-Based
Behavioral Changes

Considering a system of many subpopulations connected by human mobility, we
now focus on a different type of behavioral changes. The epidemic dynamics
happening inside each subpopulations is now coupled by the movement of indi-
viduals to the other subpopulations. In the previous sections we considered local
behavioral changes that affect just the internal dynamics (reaction) of a single
isolated population. Now we consider mobility-based changes in the behavior
that act on the diffusion of individuals. Indeed, during the outbreak of an acute
infectious disease, it is natural to expect self-initiated human behavioral changes
and variations of individuals’ mobility patterns. Obviously the extent of behavioral
change depends on the risk as perceived by individuals that concerns the severity
of the disease, prevalence of it within the population, and the information available
on the disease. As discussed before, behavioral changes have been shown [18] to
modify the disease state of individuals [3, 19], model parameters [12], and contact
structure [20]. Human responses to the presence of a disease might have a direct
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impact on mobility and traveling habits, since avoiding infected areas is a natural
attitude of individuals and more drastic reactions such as not traveling at all may
spontaneously arise, as documented in recent epidemics. In the following we present
a general framework based on the metapopulation approach that includes two
different self-initiate diffusion-based changes in individuals behavior [21]. In order
to fully characterize their effects in the spreading, we neglect internal changes in the
behavior as those discussed in Sect. 1.

2.1 Metapopulation Approach

This framework is extensively used to describe sets of spatially structured
interacting subpopulations as a network whose links denote the mobility of
individuals across subpopulations [6]. Each subpopulation consists of a number
of individuals that are divided into several classes according to their dynamical state
with respect to the modeled disease—for instance: susceptible, infected, removed,
etc. The internal compartmental dynamics models the contagion dynamics by
considering that people in the same subpopulation are in contact and may change
their state according to their interactions and the disease dynamics. Subpopulations
also interact and exchange individuals due to mobility from one subpopulation to
another. Figure 8 shows a schematic representation of the metapopulation system.
The global invasion threshold, R∗, marks the point beyond which a local outbreak
reaches other subpopulations and spreads throughout the metapopulation system.
The global invasion threshold not only depends on the infection parameters but also
on the mobility rates of individuals and the property of the mobility network of
individuals [22, 23]. This quantity thus differs from the single population epidemic
threshold, R0 that defines just the local spreading.

Dynamics in these systems have been intensively studied considering fully
Markovian dynamics for the movement of individuals among subpopulations, and
more recent analyses have focused on the analytical description of models with
recurrent patterns [21–24]. In the following we consider a general scenario in which
individuals have memory of their original subpopulations, which they return to after
having reached their destination location. More explicitly, we define a population of
size N now partitioned into V subpopulations. An individual is assigned its origin
subpopulation—its home—among the V subpopulations. The subpopulations are
interconnected by edges that represent the mobility connections among subpopula-
tions. We can therefore conceptualize the metapopulation system as a network made
of V nodes with assigned degree distribution P(k) that defines the probability that
any given subpopulation is connected to k other subpopulations.

The mobility of the population can be modeled in different ways depending on
the required level of realism. A simple scheme reads as follows for every time step
each of the Ni individuals (N = ∑i Ni) of subpopulation i travels with probability
λi j to the subpopulation j. These probabilities and the selected paths encode the
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Fig. 8 Schematic representation of the metapopulation system. A population of individuals is
divided into V subpopulations connected with each other following a heterogeneous network.
Within each subpopulation, individuals are classified according to their dynamical status as
susceptible (S), infected (I) and removed (R). In absence of behavioral changes (blue arrows),
individuals move from a subpopulation to another at a rate λ following the shortest path connecting
both subpopulations. The discontinuous arrows represent the second mechanisms of behavioral
reaction in which people travel avoiding places with high prevalence at the cost of larger
diffusion paths

details of the mobility. In realistic scenarios they are data driven. For example, the
probability of selecting a destination can be set to be proportional to the total traffic
of that node and the mobility scheme could be traffic-based. Individuals in this case
follow paths to the destination proportionally to the actual traffic. In other cases
the path can be fixed to be the shortest path between source and destination. In the
following we consider the last case and a scenario in which the basic departure
probability is fixed for all subpopulations i.e., λi j = λ . All travelers spend a time τ
at their destinations before coming back home. The length of stay can be fixed
or extracted from distributions built from real data. The intra-population epidemic
dynamics is modeled using the basic SIR model. It is possible to analytically derive
the invasion threshold within these settings. For details we refer the readers to
reference [21].
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2.2 Variation in Departure Probabilities

In the first behavioral reaction mechanism, individuals react to prevalence-based
information about the disease. In particular, the probability λi j(t) of traveling from
subpopulation i to subpopulation j at time t is related to the level of infection at the
destination subpopulation. One of the simplest possibility is considering that, the
higher the incidence of the infection at the destination, the less likely the individual
will engage in traveling. This translate in setting the probabilities of traveling as:

λi j(t) = λ
(

1− I j(t)

Nj(t)

)

. (16)

In the beginning when the number of infected individuals is zero in the large
majority of subpopulations the probability of moving from i to j is equivalent to
the baseline when no behavioral changes are considered i.e. λ . When the disease
start to spread and the number of infected individuals in the diseased subpopulation
increases, the departure probabilities start to deviate from the baseline. Mechanisms
similar to this have been observed in real cases. In the recent H1N1 pandemic, for
example, a consistent decline in the number of passengers arriving at airports in
Mexico both domestically and internationally have been registered.

In Fig. 9 we show the results of this mechanism against the baseline in which
no behavioral changes are implemented. The plot shows the behavior of the
density of infected subpopulations D/V at the end of the global epidemic as a
function of both the basic reproductive number R0 and the traveling diffusion rate
λ . The results readily show that the metapopulation system exhibits an invasion
threshold which is independent of human behavioral changes. This feature of the
model can be traced back to the fact that the behavioral changes are prevalence
based. Analogously to the basic reproductive number, the invasion threshold is
determined by the average number that each infected subpopulation will generate
in a fully susceptible metapopulation system. Clearly in this regime the prevalence-
based behavioral changes are irrelevant and the threshold value is thus not affected.
Not surprisingly when the departure probabilities are reduced, the fraction of
diseased subpopulations at the end of the outbreak decreases with respect to the
null case. This kind of response is beneficial for the populations. The reason for
the reduction in D/V is rooted in the effective reduction of the mobility rate of
individuals, which leads to a smaller exposure of susceptible individuals to the
disease both while traveling and at home. Of course the effect is much more evident
for large value of the mobility rate λ and reproductive number R0.

2.3 Variation in the Mobility Paths

The second mobility-based behavioral change model (see Fig. 8 for a schematic
representation) induces changes in traveling routes. Specifically, any individual who
is traveling from an origin (subpopulation i) to a destination (subpopulation j)
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Fig. 9 The figure compares the fraction of diseased subpopulations D/V when behavioral reaction
mechanisms are active with the situation in which such behavioral responses are not taken into
account. (a) Shows the dependency of D/V with the mobility rate λ for random scale-free networks
generated according to the uncorrelated configuration model [25]. Symbols represent the results
obtained when individuals do not react to the presence of the disease. The rest of the results
correspond to the mechanisms of behavioral changes: “DP” stands for “departure probability” and
represents the mechanism in which individuals decide whether or not to travel; “RR” (re-routing)
corresponds to the case in which people travel while trying to minimize the risk of infection
avoiding subpopulations with high prevalence at the cost of long travel paths. The results confirm
that the invasion threshold is independent of behavioral changes and that the latter has a significant
impact on the invasion dynamics of the metapopulation. The points are the averages among at
least 100 stochastic runs and considers μ = 0.04 and h = 0.1. (b) we report the relative difference
of subpopulations experiencing an outbreak in the RR and baseline scenarios as a function of
λ . It is possible to see the nonlinear behavior that first induce a decrease—close to the invasion
threshold—and then a sharp increase in the number of affected subpopulations

attempts to avoid traversing infected subpopulations, except when the next move
leads to its destination. This process is obviously not deterministic and it consists
of a trade-off between the risk associated with visiting a given subpopulation and
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the increase of the travel path length to the final destination. In this model the
risk perception associated with the visit of a given subpopulation is dependent on
the prevalence of the disease in that subpopulation. However, staying away from
infected subpopulations has the associated cost of traveling through alternative
routes. Individuals move to the neighboring subpopulation l that minimizes the cost
function

cl(t) = hδl +(1− h)
Il(t)
Nl(t)

, (17)

where δl is the change in distance to the destination, which can only take values −1
if node l is in the shortest path to the destination, 0 if it is at the same distance to
the destination than the actual node, and +1 otherwise. The parameter h tunes the
force of the behavioral response and for h = 1 the shortest path is always followed,
whereas h = 0 corresponds to a path minimizing the risk of traversing infected
areas.

As shown in Fig. 9, this second type of behavioral adaptation defines an
interesting dynamic of the epidemic diffusion. As in the previous mechanism the
invasion threshold is not changed. Indeed, in the early stages of the spreading,
the number of infected individuals is small and individuals follow the shortest
path to their destination. As shown in Fig. 9b for values of the parameter R0

and λ that bring the system just above the invasion threshold, the rerouting of
individuals on different paths leads to a reduction of the outbreak probability in
the subpopulations along the origin-destination path. This leads to a final reduction
of the subpopulations experiencing an outbreak. This is an interesting phenomena
due to the effects induced by the rerouting mechanism [21]. Indeed, when the
h mechanism is active, the number of individuals going through a node in the
shortest path between an origin and a destination decreases due to the rerouting
of individuals induced by the risk aversion mechanism. This implies that a smaller
number of individuals goes through that node lowering the probability of outbreak
in each sub-population that depends on the reproductive number R0 and the number
of traveling individuals [21]. However, for increasing R0 and λ this probability
saturates to one and all subpopulations visited on the original and the rerouted path
experience an outbreak. In this regime the number of subpopulations affected by
the epidemic is much larger than in the case without behavioral changes. This is a
very interesting phenomenon in which the behavioral changes that were put in place
to reduce the risk of infection actually give a negative global effect. This is due to
the fact that, trying to minimize the risks to get sick, individuals change their route
visiting places that otherwise would have not been visited, therefore contributing
to a wider spread of the disease. The network is explored more efficiently and the
disease can spread much faster.



122 N. Perra and A. Vespignani

3 Discussion

We have presented two general approaches, intra-population and inter-population,
to model the effect of self-induced behavioral changes induced in a population
by the awareness and risk perception to the spreading of an infectious disease.
These two approaches looked at different scales and aspects of the same prob-
lem. The first approach considers a single isolated population and two different
mechanisms modeling the contact-based behavioral changes. Interestingly these
simple models exhibit a very interesting and rich spectrum of dynamical behaviors.
Both mechanisms show multiple peaks in the incidence curve. In the belief-based
model we find a disease-free equilibrium is present where the population acquires
a memory of the behavioral changes induced by the epidemic outbreak. This
memory is contained in a stationary (endemic) prevalence of individuals with self-
induced behavioral changes. Furthermore, a discontinuous transition in the number
of infected individuals at the end of the epidemic is observed as a function of the
transmissibility of fear of the disease contagion.

The second approach considers a metapopulation system where two different
mechanisms of mobility-based behavioral changes have been presented. In the first
model individuals reduce their mobility in order to reduce the risk of contagion. This
basic mechanism translates in a reduction of the number of infected subpopulation.
In the second model instead individuals keep traveling but change their routes in
order to minimize their risk. The results show that the disease spreading, as given by
the number of subpopulations with local outbreaks, increases when travelers decide
to bypass the subpopulations with a high number of infected individuals. Indeed, the
increased flow of individuals going through alternative paths brings the infection
to new subpopulations that would otherwise be infected by other subpopulations.
This constitutes a very interesting finding, as one can think of the whole process in
terms of a social dilemma; individuals adopt a sort of selfish behavior by avoiding
highly infected spots, but as a consequence, the disease invades a larger fraction
of the subpopulations in the metapopulation system. Thus, what is beneficial at
the individual level, turns out to have a negative impact on the whole population,
especially in the cases where the epidemic has pervaded the system (large R0 and λ ).

The results presented here points out the importance and relevant effects of
behavioral changes in the modeling of infectious diseases. The extension of the
models in which both contact- and mobility-based changes are considered at once
are the obvious next step. However, the nontrivial dynamic behavior of the models
emphasizes the importance of calibrating those features by appropriate choices
of parameter values. Unfortunately, in many cases we lack the data necessary
for calibrating the behavioral models. The availability of real-world, quantitative
data concerning behavioral changes in populations affected by epidemic outbreaks
is therefore the major roadblock to the integration of behavior-disease models.
Any progress in this area certainly has to target novel data acquisition techniques
and basic experiments aimed at gathering these data.
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Incorporating Human Behaviour in Epidemic
Dynamics: A Modelling Perspective

Istvan Z. Kiss

Abstract The past few years have seen the development of a suite of extended
epidemic models that take into account the “active” nature of individuals and/or
population. Many models start from the natural premise that individuals are not
“passive” but, on the contrary, receive and process information about potential
or ongoing epidemics. Therefore, risk perception and behaviour change play a
major role in shaping and changing the outcome of an epidemic. Incorporating
such aspects into classical epidemic models poses many challenges. First of all,
there are many open questions about how information is generated, its availability
locally and globally, its routes of dissemination and diminishing returns of “old”
information. All these factors lead to a significantly extended state space with
many more variables and parameters compared to standard epidemic models.
Thus, apart from issues around measuring and quantifying risk perception and/or
behaviour change driven by information, a major modelling challenge revolves
around model complexity. More precisely, how to achieve an optimal balance
between model accuracy and tractability. In this chapter, starting from a pairwise
model that accounts for the concurrent spread of an epidemic and information,
modelling complexity and results are discussed by (1) evaluating the effectiveness
of various information generating and transmitting mechanisms followed by (2) the
deconstruction of the pairwise model to a simpler variant and by (3) discussing
concrete modelling alternatives (i.e., pairwise and effective degree models for
dynamic networks) and potential future modelling trends in the area of coupled
models of human behaviour and disease transmission.
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1 Introduction

Classical epidemic models operate on the assumption of a “passive” population
where neither individuals nor population can absorb and process information arising
from a potential or an ongoing epidemic [1, 4]. This is a strong and unrealistic
assumption since for most diseases (e.g., sexually transmitted infections (STIs),
SARS, pandemic influenza, childhood diseases) the heightened risk of an outbreak
or ongoing epidemic leads to a series of measures aimed at preventing or limiting
the negative impact of an epidemic. These can be broadly divided into two classes:
(1) information generation and dissemination and (2) concrete measures taken by
individuals or groups to prevent infection or limit onward spread. While measures
of the first type can range from centrally driven population-wide campaigns and
dissemination of news via different mass-media to more local interactions in
acquaintance circles, measures of the second type include concrete pre-emptive or
reactive measures such as vaccination [2], limiting exposure via altering contact
patterns [9], seeking early treatment or taking medication (e.g., antiviral drugs) [6].

In this context and probably against intuition, information is not always bene-
ficial. For example, the risk associated with vaccination has been documented to
lead to limited uptake to the extent where herd-immunity thresholds have been
breached [2]. To capture such counterintuitive effects various game theoretical
models have been developed to combine epidemic dynamics with risk perception
and model different strategies of vaccine uptake or avoidance [18]. Such models
first and foremost are determined by the type of disease, e.g., SIS (susceptible-
infected-susceptible) or different versions of it for STIs [17] and SIR (susceptible-
infected-recovered) for childhood disease and influenza, and these are then modified
to account for information generation and transmission together with modelling the
benefits or penalties of having the information and choosing to act on or ignore it.
For example, for STIs, Chen [3] formulated an economic/game-theoretic epidemic
model to capture the interplay between the quality of information and its availability,
the prevalence of the infection and disease dynamics.

A more traditional, population dynamics type approach has been proposed by
Funk et al. [7] where information about the disease generates awareness which
in turn can lead to discounted infection rates. The model is based on an extended
version of the SIR combined with results based on individual-based simulation. As a
result of the added complexity imposed by the awareness, the S, I and R classes were
further divided to reflect both disease and awareness status. They have found that
for the compartmental ODE model the spread of awareness has no effect on the
basic reproduction number R0 but leads to a reduction in the number of infecteds.
The consideration of the same model on theoretical network models has revealed
that if the disease transmission is not too fast, the generation and transmission of
awareness can stop the outbreak, i.e., R0 < 1.

In this chapter a coupled model of information and disease transmission in the
context of STIs [10, 17] is revisited and this model is used to discuss issues around
the efficacy of various information generating and transmitting mechanisms and
modelling complexity. The results and discussion from the analysis of the model
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are followed by a deconstruction of the model into its simpler components by first
relaxing assumptions about the population contact structure and then about the
way in which information is generated and transmitted. This helps to pinpoint and
discuss model assumptions along with identifying alternative modelling approaches
which account for evolving or adaptive contact networks that link naturally to
aspects around the concurrent spread of disease and information.

2 Model

The model presented here is based on that formulated by Hatzopoulos et al. [10]
but with some new aspects on interpretation of results and calculation of R0. This
pairwise model captures both disease and information transmission where evolution
equations are written down for the expected number of individuals of various types
which in turn depend on the expected number of pairs. The dependency of singles
on pairs and then of pairs on triples is curtailed by using a closure relation where
triples are approximated in terms of singles and pairs [11]. This framework allows us
to take the population contact structure explicitly into account and thus produce an
accurate description of the problem where, as an added advantage, multiple routes
of information transmission (e.g., local and global) can also be accounted for.

Following on from [10, 12], individuals can be divided into one of five different
classes that specify the individuals’ status with respect to disease and information.
These are susceptible non-responsive (Snr), susceptible responsive (Sr), infected
non-responsive (Inr), infected responsive (Ir) and in treatment (T ). The term
responsiveness denotes the willingness to act or respond to information and is
key in trying to avoid infection or halting further spread [17]. The important
components of the model relate to the generation and transmission of information
as well as the benefits of possessing and acting on information. In the model,
information or responsiveness is generated in three ways: (1) Inr → Ir as a result
of symptoms, (2) Ix → T , where x ∈ {nr,r}, as a result of being diagnosed and
moving to the treatment class and (3) Xnr →Xr, where X ∈{S, I} as a result of global
information transmission. While the first two are intuitive, the latter is used to model
the effect of mass-media campaigns which act as a single-source of information
with its strength and duration often linked to the prevalence of infection in the
population. Information transmission is possible in two different ways: (1) local or
individual to individual and (2) mean-field. While information dissemination locally
captures circles of close friends or acquaintances, the mean-field type transmission
accounts for a less clear-cut interaction at the population level, often centrally
lead or orchestrated. Many of these mechanisms of information generation and
transmission pathways can be easily linked to various ways in which information is
disseminated in real life. The model also accounts for the depreciation or decay of
responsiveness over time and this is achieved by allowing Xr → Xnr-type transitions
at rate dX , where X ∈ {S, I}. The main benefits of being informed and responding
to information amount to reduced susceptibility, reduced infectivity and/or faster
recovery if infected. To keep the model as general as possible, all the above factors
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Table 1 All transitions allowed by the coupled infection/information system, where
X ,Y ∈ {S, I} with individuals in treatment acting as members of the responsive classes
(i.e., Xr ∈ {Sr, Ir,T}). Individuals in the treatment class return to being susceptible non-
responsive and responsive at rate pr and r(1 − p) with 0 ≤ p ≤ 1, respectively. The
reduced susceptibility, infectivity and faster recovery, as a result of acting on information,
is captured by the discount factors σs,σi ∈ (0,1] and σr > 1. To model the mean-
field transmission of information it is assumed that per unit time an individual may
momentarily come into contact with kMF others not in their social network. Along such
links information flows at a rate mX . The function GX ([Inr], [Ir]) maps the prevalence of
infection to the unit interval and is subsequently multiplied by the constant rate δX . This
form models the saturating effect of media on individual behavioural response

Transition Rate Contact Type

Inr +Snr → 2Inr τ Gd Infection
Inr +Sr → Inr + Ir σsτ Gd Infection
Ir +Snr → Ir + Inr σiτ Gd Infection
Ir +Sr → 2Ir σsσiτ Gd Infection
Inr → T γnr Independent Infection
Ir → T σrγnr Independent Infection
T → Snr r · p Independent Infection
T → Sr r · (1− p) Independent Infection
Xr +Ynr → Xr +Yr αX Gi Information transmission
Xr +Ynr → Xr +Yr mX kMF Mean-field Information transmission
Xnr → Xr δX GX([Inr ], [Ir]) Independent Information transmission
Inr → Ir ω Independent Information generation
Xr → Xnr dX Independent Information generation

are accounted for, but their presence or absence will be determined by the precise
modelling context and should be used accordingly. The full suite of transitions are
given in Table 1.

3 Results

Using the pairwise model (for a sample, see group of equations given in Eq. (1)),
the efficacy of different information generating and transmitting mechanisms in
slowing or stopping disease spread is investigated. Results are followed by a close
scrutiny of model complexity including a model deconstruction and discussion
around alternative modelling directions in the area of modelling the concurrent
spread of disease and information.

3.1 Pairwise Model: Impact and Efficacy of Different
Information Generating and Transmitting Mechanisms

Pairwise ODE models [11] represent an improvement upon standard compartmental
models as they allow us to capture the local nature of contacts. They also interpolate
with success between simple and full simulation models allowing for some degree
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of analytical tractability and transparency. Similarly to contact tracing models [5],
for information transmission it is important to represent the network of contacts
and be able to represent the formation of clusters of responsive individuals that
are difficult to capture via simple compartmental models. The resulting pairwise
model has 20 equations, 5 for singles and 15 for pairs (see Eq. (1) for a sample).
The dimensionality of the system can be further reduced by taking into account that
the population is closed and that all pairs add up to 〈k〉N, where 〈k〉 is the average
node degree and N is the population size. The sample equations are:

˙[Snr] = −τ[SnrInr]− τσi[SnrIr]+ pr[T ]−λCαs([SnrSr]+ [SnrIr]+ [SnrT ])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[Snr]/N −λGGs([Inr], [Ir])[Snr]+ ds[Sr],

˙[Sr] = −τσs[SrInr]−τσiσs[SrIr]+(1− p)r[T ]+λCαs([SnrSr]+[SnrIr]+[SnrT ])

+λMFmskMF ([Sr]+ [Ir]+ [T ])[Snr]/N +λGGs([Inr], [Ir])[Snr]− ds[Sr],

˙[Inr] = +τ[SnrInr]+ τσi[SnrIr]− γ[Inr]−λCαi([InrSr]+ [InrIr]+ [InrT ])

−λMFmikMF([Sr]+[Ir]+[T ])[Inr]/N−λGGi([Inr],[Ir])[Inr]+di[Ir]−ω [Inr],

˙[Ir] = +τσs[SrInr]+ τσiσs[SrIr]− γσr[Ir]+λCαi([InrSr]+ [InrIr]+ [InrT ])

+λMFmikMF([Sr]+[Ir]+[T ])[Inr]/N+λGGi([Inr],[Ir])[Inr]−di[Ir]+ω [Inr],

˙[T ] = +γ[Inr]+γσr[Ir]−r[T ], (1)

˙[SnrInr] = +τ[SnrSnrInr]+ τσi[SnrSnrIr]− τ[InrSnrInr]− τσi[IrSnrInr]− τ[SnrInr]

−λCαs([SrSnrInr]+ [IrSnrInr]+ [TSnrInr])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGs([Inr], [Ir])[SnrInr]

−λCαi([SnrInrSr]+ [SnrInrIr]+ [SnrInrT ])

−λMFmikMF([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGi([Inr], [Ir])[SnrInr]

−γ[SnrInr]+ rp[TInr]+ di[SnrIr]+ ds[SrInr]−ω [SnrInr],

˙[SnrIr] = +τσs[SnrSrInr]+ τσiσs[SnrSrIr]− τ[InrSnrIr]− τσi[IrSnrIr]− τσi[SnrIr]

+λCαi([SnrInrSr]+ [SnrInrIr]+ [SnrInrT ])

+λMFmikMF([Sr]+ [Ir]+ [T ])[SnrInr]/N +λGGi([Inr], [Ir])[SnrInr]

−λCαs([SrSnrIr]+ [IrSnrIr]+ [TSnrIr])

−λMFmskMF ([Sr]+ [Ir]+ [T ])[SnrInr]/N −λGGs([Inr], [Ir])[SnrInr]

−γσr[SnrIr]− di[SnrIr]+ ds[SrIr]−λCαs[SnrIr]+ pr[TIr]+ω [SnrInr].

To integrate the equations numerically, the standard closure proposed in [11] is used.
This amounts to approximating all triples in terms of singles and pairs with the
general closure relation given by
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[ABC] =
〈k〉− 1
〈k〉

[AB][BC]
[B]

. (2)

This approximation closes the system and numerical integration can be performed.
Parameter values are based on those used in [10] and, for simplicity, it is assumed
that αs = αi = α , ds = di = d and δs = δi = δ . λ s are binary and are used to
switch on and off various information transmission routes. The system exhibits three
qualitatively different behaviours: (1) neither disease nor responsiveness can spread,
(2) only responsiveness spreads and a state of endemic-responsiveness is reached
and (3) both responsiveness and infection are endemic.

The system accounts for disease transmission through a static network of contacts
with information generated either by individuals in treatment or by those that
are infected and likely to self-diagnose. The model accounts for three different
routes of responsiveness transmission. The first overlaps completely with the disease
transmission route, while the second and third account for mean-field and global
transmission of information, respectively. The analysis compares the potential of
different sources and pathways of information generation and transmission to reduce
prevalence or stop infection. These desirable outcomes can be achieved due to
fractions of the population moving to the responsive class. As a result, these
informed individuals will experience decreases in their levels of susceptibility and
infectivity and a faster recovery if infected.

The system is seeded with a small number of individuals of type Inr and Sr and
then it is numerically integrated to identify the smallest or critical rate that will lead
to the desired prevalence level Ieq = 0.01. This is repeated for a range of τ values
to determine the relative capacities of α , ω and δ to deliver a state of low infection
prevalence. A value of p = 0.9 was used as this approaches a worse-case scenario
limit whereby no information is generated by the individuals themselves through
past experience. This setup allows us to examine the effects of α , ω and δ in relative
isolation (peer-to-peer transmission at rate α relies on the presence of informed or
responsive individuals via self-diagnosis or via treatment). According to Fig. 1a,
contact-based transmission of information is by far the most potent pathway to
generating a responsive population. Similarly to disease transmission, every receiver
of information (Inr or Snr) immediately becomes a transmitter, in contrast to global
transmission of information that acts in isolation and remains singular at all times.
The mean-field type transmission of information, not shown in Fig. 1a, is equally
effective and produces an outcome that is similar to the contact-based transmission
case, especially if the network is densely connected. For smaller values of 〈k〉, and as
expected, the mean-field transmission performs better than the purely contact-based
but with small differences.

The transition to the responsive class due to media exposure is assumed to happen
at a rate given by the function

Gs([Inr], [Ir]) = Gi([Inr], [Ir]) =
δ ([Inr]+ [Ir])

n

K +([Inr]+ [Ir])n ,
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Fig. 1 (a) Critical information rates resulting in a prevalence of Ieq = 0.01 as a function of the per-
contact infection transmission rate τ (computed via the pairwise model). For τ > 0.42 and in the
absence of information, the prevalence equilibrates at Ieq > 0.01. At and beyond this point different
amounts of each information rate are needed to lower the prevalence to Ieq = 0.01. In this case, the
effect of each transmission route is investigated in the absence of all others. Solid and thick solid
line correspond to αc and ωc, respectively. The four dashed lines represent δ c for different values
of the population inertia parameter K = [0,5,20,100] increasing from right towards the left. The
values for αc are denoted on the right y axis and all the others on the left y axis. (b) The effect of
combining different sources of information. On the top left panel the endemic infection prevalence
is shown for a range of α and τ values. In the remaining panels, for each combination of α and τ ,
either global information or self-diagnosis or both are added with the same constant rate equal to
12. Other parameters are p = 0.9, σs = σi = 0.5, σr = 2, γnr = 2, γr = σrγnr , d = γr , N = 104, and
〈k〉 = 6, from [10]. c© Elsevier Science

where in this chapter, n = 1 at all times. The efficacy of global information (acting
on Inr or Snr) strongly depends on the value of the K which controls the growth of
G(·, ·), for low prevalence the function grows like 1

K (Inr+ Ir)
n. The parameter K can

be thought of as a measure of population’s willingness in responding to information.
Populations that resist behavioural change correlate with high values of K, and if it
could be measured or inferred could act as an indicator for the quality of global
information campaigns. For example, high values of K will simply translate to
observing vanishingly small returns from global information campaigns. The critical
rates for self-diagnosis are at best similar to those for global information, especially
for diseases with low transmissibility. As is the case for global information, self-
diagnosis lags behind the front of infection and will only produce benefits once
infected individuals are present. This is made even worse given that ω can only act
on Inr.

Information generation depends heavily on the precise type of the disease. The
self-diagnosis rate correlates directly with the disease being symptomatic. Diseases
with mild symptoms or the slow generation of new sources of information trans-
mission requires an efficient peer-to-peer communication and a population which is
responsive and is ready to adapt. Finally, where the population’s behavioural inertia
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is high, self-diagnosis can be more effective than global information dissemination.
This is illustrated by comparing the appropriate curves in Fig. 1a. The figure also
shows that as τ increases it is less and less likely that information generation and/or
transmission can prevent an epidemic. More precisely at large but finite values of τ ,
the rates of information generation and/or transmission needed to prevent the spread
will tend to unfeasibly large values.

In reality information generation and transmission will not operate singly. Mass-
media campaigns increase awareness which can bring forth behavioural change.
Infected members of the population are likely to learn from experience and share
their knowledge with their acquaintances. The model presented here is able to
accommodate these elements as it is shown in Fig. 1b for various combinations of
α , δ and ω . As indicated, the α and δ combination is the most effective, while
the combination of all three is capable of preventing a significant proportion of
epidemics, especially for large τ . Contact-based transmission of information is by
far the most efficient as it generates new information transmitters. When epidemics
are successfully halted, the responsive and non-responsive susceptible individuals
form clusters that can resist infection invasions [10]. Such desirable endemic
steady states, with no disease but with informed and/or aware individuals, provide
an illustration of optimal dissemination of information that can prevent disease
invasion and calculating the basic reproduction number at such an equilibrium can
provide valuable insight into how disease, information and contact structure interact
and determine the outcome of potential invasions. The basic reproduction number
for such a setup, and with taking into account the heterogeneity in individuals’
connectivity, can be written as

R0 = ∑
x,k

W k
x (k− 1)∑

y,l

P(Sl
y|Ik

x )P(I
k
x → Sl

y), (3)

where W k
x = kSk

x/〈k〉N is the probability that an initial index case chosen uni-
formly at random reaches an individual of type Sk

x with x,y ∈ {nr,r} and k, l ∈
{kmin, . . . ,kmax} with minimal an maximal nodal degree. P(Sl

y|Ik
x ) incapsulates the

neighbourhood composition, e.g., the extent to which non-responsive or responsive
individuals are surrounded by responsive individuals. The final component, P(Ik

x →
Sl

y), simply denotes the probability of infection being passed across a link with
infectious and susceptible individuals of different types and can be challenging to
compute, see [10]. In this individual-based framework, R0 involves the information
generation and transmission components and provides a better representation when
compared to simple ODE models and it can be used to explore the optimal
arrangement that minimises the likelihood of an outbreak [8, 10].
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3.2 Model Deconstruction

The pairwise model above can be deconstructed by relaxing the assumption about
the mixing pattern in the population. Furthermore, applying it strictly under the
assumption of asymptomatic disease [17] (i.e., ω = 0), the model becomes [12]:

˙snr = −βnr(inr + ir)snr −αs(sr + ir +ϕ)snr − gs(inr, ir)snr + dssr + prϕ , (4)

ṡr = −βr(inr + ir)sr +αs(sr + ir +ϕ)snr + gs(inr, ir)snr − dssr +(1− p)rϕ , (5)

˙inr = βnr(inr + ir)snr −αi(sr + ir +ϕ)inr − gi(inr, ir)inr − γnrinr + diir, (6)

i̇r = βr(inr + ir)sr +αi(sr + ir +ϕ)inr + gi(inr, ir)inr − γrir − diir, (7)

ϕ̇ = γnrinr + γrir − rϕ , (8)

where gx(·, ·) = δx(inr + ir)/(k+(inr + ir)) with x ∈ {s, i}. A standard dynamical
system analysis of the model above reveals two steady states ((1,0,0,0,0) and (1−
s0 = ds/αs),s0,0,0,0) with two important threshold parameters (Rr

0 = αs/ds for the
responsiveness and Ri

0 = βnr/γnr for the disease) and an analytical relation between
the two determining the bifurcation picture of the system. In summary, the trivial
disease-free steady state is locally stable if and only if Rr

0 < 1 and Ri
0 < 1 and the

non-trivial disease-free steady state is locally stable if and only if Rr
0 > 1 and

Ri
0−1< A(Rr

0−1) with A=
(γr −βr)(αi + γnr)+B(γnr −βr)

γnr(αi + γr +B)
, B= di− αi

Rr
0
. (9)

This is illustrated in Fig. 2a and highlights that information at the right level can
prevent an epidemic. However, it is important to note that in this simplified model,
Ri

0 does not depend on the information, as it was the case in [7]. This means that
information cannot halt an epidemic at the onset but it can do so once information
generation and transmission is quick started. In an SIR model this amounts to always
experiencing a small epidemic whereas for an SIS model, the system can be driven
back to full susceptibility and with a proportion of the population “infected” by
awareness or responsiveness.

3.3 Alternative Modelling Approaches: Pairwise Models
for Evolving Contact Structures

The principal aim of any pre-emptive or reactive interventions is to reduce the
number of those affected by the disease. The reduction in onward spread can be
achieved by either limiting or reducing the number of potentially infectious contacts,
in network language amounting to cutting links, or keeping the connectivity but
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Fig. 2 (a) Illustration of the long-term behaviour of the system as a function of Rr
0 and Ri

0 for
increasing values of αi = 0.05 j ( j = 0,1,2,3,4) and di = 1/(52 weeks) with other parameters
being γnr = 1/(26 weeks), γr = 1/(13 weeks) and βr = γnr. (b) The parameter space is divided
into three regions: the disease-free is the only stable equilibrium (above the transcritical curve),
one unstable (disease-free) and a stable endemic equilibria co-exist (below the transcritical curve
and outside the Hopf bifurcation island) and, finally, a Hopf island with a stable limit cycle and
unstable disease-free and endemic equilibria. Parameter values are as follows: N = 100, 〈k〉 = 10,
αSS = 0.004, αSI = 0.005, αII = 0, ωSS = 0.005, ωII = 0 and γ = 1.0

reducing the susceptibility and infectivity level as well as the typical time that an
infectious individual spends in the population. While this last component cannot be
modelled by the alteration of the network of contacts, the former aspects can be
modelled by the explicit alteration of the connectivity pattern of the population.
Evolving or adaptive networks have already been studied in terms of simple
epidemic models where susceptible individuals break links to infected neighbours
and reconnect to other susceptibles [9]. This model can be regarded as an implicit
model of information generation and transmission where the action of individuals
of certain type can lead to curtailing an epidemic. A generalisation of the model
proposed by Gross et al. in terms of an SIS-based pairwise models can be written as:

˙[I] = τ[SI]− γ[I], (10)

˙[SI] = γ([II]− [SI])+ τ([SSI]− [ISI]− [SI])−ωSI[SI]+αSI([S][I]− [SI]), (11)

˙[II] = −2γ[II]+ 2τ([ISI]+ [SI])−ωII[II]+αII(([I]− 1)[I]− [II]), (12)

˙[SS] = 2γ[SI]− 2τ[SSI]−ωSS[SS]+αSS([S]([S]− 1)− [SS]), (13)

where, αAB and ωAB represent the rate at which AB-type links are created and cut
(A,B ∈ {S, I}). This system is closed in the same way as the initial pairwise model
(see Eq. (2)) and the system lends itself to a bifurcation type analysis in order
to determine full system behaviour [13, 19]. The main outcome is illustrated in
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Fig. 2b, where the cutting of [SI]-type links can halt the spread of the epidemic.
While the precise mechanism of information generation and transmission is not
explicit, this model is attractive in that it shows a qualitatively similar behaviour to
result from models with explicit information components yet it keeps a good degree
of transparency and analytical tractability. Moreover, for most diseases avoiding
infection will involve a significant amount of contact reduction or limitation and
hence a necessity of capturing evolving contact patterns. Previous models, explicitly
including aspects of information transmission, have recognised the importance of
also explicitly modelling contact and overlap between the disease and information
transmitting contact [8, 10] but have not considered a changing network structure.
Future research may shed light on whether the static network approach with
information modelled explicitly or dynamic networks with or without explicit
contact are more suitable and whether these should be used in combination or
singly. As more data becomes available, model fitting techniques may lead to better
understanding as to how link cutting and creation rates behave and whether these
need to be considered as time dependent functions of prevalence, including delays.
Dynamic network models of this type could be also refined to include aspects such
as the propensity of informed individuals to seek early treatment and thus limiting
further onward spread.

4 Discussion: Impact of Information and Modelling Outlook

In reference to the first pairwise model, Eq. (1), the numerical analysis suggests that
contact-based transmission is always more efficient in lowering prevalence when
compared to global information dissemination. Preliminary results also highlight
that increasing individual specific heterogeneity in σ (while keeping the same mean)
leads to lower prevalence as a large number of nodes, with small values of σ , are
almost completely immune or unable to transmit infection. A similar observation
holds for α , where a high proportion of individuals with weak potential to transmit
the information will result in higher prevalence. The discrepancy between the impact
of peer-to-peer and population-wide transmission of information on epidemic
outcomes has important public health implications as illustrated in the United
Kingdom’s early AIDS epidemic, which was concentrated largely among men
who have sex with men (MSM). Informal campaigns within the male homosexual
community can be dated to early 1983. This was prior to dissemination in the gay
press (1983–4) and much earlier then the wider government sponsored campaigns
of 1986–7. It is estimated that HIV transmission peaked around 1983 among MSM
[16], followed by a rapid decrease which limited the size of the HIV epidemic in the
UK. The population-wide campaigns of 1986–7 were however associated with less
dramatic changes in STI diagnosis.

On the modelling side further progress and model refinement can be made by
looking at ODE-based models that have been developed for approximating epidemic
transmission on static and dynamic networks. For example, the pairwise models



136 I.Z. Kiss

presented above do not take into account heterogeneity in the connectivity of
individuals. This can be circumvented by using heterogenous pairwise models [5]
where variables are determined by both disease status and number of links (e.g.,
[Sk] - susceptible nodes with k contacts and [SkIl ] - pairs linking a susceptible
with k contacts to and infected with l contacts). Obviously, this will increase the
number of equations and including information explicitly may make the model
difficult to analyse. In such cases, adaptive network models, where information is
included implicitly, may be more desirable. A recently proposed novel approach that
comes to meet this demand and also accounts for degree heterogeneity is the so-
called effective-degree type model developed by Lindquist et al. [14] and extended
further for dynamic networks by Marceau et al. [15] and Taylor et al. [20]. Here,
a “smart” choice of variables, with equations formulated in terms of the expected
number of Ssi and Isi (susceptibles and infecteds with s susceptibles and i infectious
neighbours, respectively), leads to further modelling flexibility and more accurate
bookkeeping of nodes and the status of their contacts. However, this approach also
relies on a closure and raises further questions about the performance of various
approximate models when compared to true simulation. The large spectrum of
modelling approaches coupled with the natural tendency to increase model accuracy
can easily lead to overly complex models that are not transparent and difficult to
analyse and thus we advocate a modelling approach that aims for a good balance
between capturing key mechanisms and tractability.
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Risk Perception, Heuristics and Epidemic
Spread

Pietro Liò, Bianchi Lucia, Viet-Anh Nguyen, and Stephan Kitchovitch

Abstract During an outbreak of an infectious disease, people often change their
behaviour to reduce their risk of infection. In a given population, the levels of
perceived risk of infection vary greatly among individuals. The difference in
perception could be due to a number of different factors including varying levels
of information regarding the pathogen, quality of local healthcare, availability of
preventive measures, individual and group usage of heuristics in the decision-
making process. First we discuss the rigorous assessment of the risk, then we
describe how our brain assesses the risk through the use of heuristics that are
still rooted in animal evolution. Then we discuss the impact and the role of mass
media and social networks in modulating risk perception. Next, we show how
mathematical modelling is challenged by multi-scale epidemiological problems
where the risk perception level is coupled with all the other microscopic and
macroscopic levels. Finally, we draw future scenarios of personal risk evaluation
through self-monitoring devices and personal genomics. The aim of this chapter is
to discuss the importance of risk perception related to the spreading of a disease and
to present a variety of ideas that could be fruitfully explored through modelling.

1 The Relationship Between Epidemic Risk and Awareness

Current and future public health hazards do not depend only on the biological
characteristics of the infectious organism and on our immune system capability of
response but also on the responsible behaviour of individuals, particularly of those
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who are more likely to be infected. We find difficult to accurately evaluate infection
risk because of the lack of data and multi-scale and multi-factorial conditions of
infection events. We are able to estimate different health threats of different viral
strains by comparing the binding energies of viral proteins with host membrane
receptors, but it is still difficult to estimate all interaction combinatorics at the
whole cell proteomics level. Recently animal models have provided important
experimental data on influenza spreading. Lowen and co-authors [22] have found
that the influenza virus can pass between guinea pigs by means of droplet spread and
was transmitted from infected guinea pigs to healthy guinea pigs housed in the same
cage, an adjacent cage, or a cage placed 91 cm away. Coughing, sneezing, talking,
and breathing generate a cloud of airborne particles with diameters ranging from
a few mm to less than 1 μm. Alford et al. [2] revealed that humans could contract
influenza by inhaling an experimental small-particle aerosol containing low levels
of influenza virus. We trust hospitals as safe places but they are known to originate
the spread of infectious diseases in patients. Even isolation rooms equipped with ad-
vanced heating ventilation air conditioning (HVAC) systems may not be completely
safe as shown in [4]. Here, 3D models of the room consider different, most typical,
positions of the patients. Results indicate the best conditions for high induction
air inlet diffuser and the scheme of pressures imposed in the room to provide the
effective means of controlling flows containing virus droplets. The authors used
finite element modelling software and CAD techniques to model the isolation room
under different operating conditions (negative and positive pressure of the isolation
room, airflow patterns associated with different cough conditions, switch on off
of the HVAC). The authors found difficult to obtain technical details of surgery
theatres, probably because results could change patients awareness and highlight
structural deficiencies during economic crisis. The seasonal flu infection follows an
age pattern: Brownstein [5] showed that influenza spread firstly in children aged 3–4
years old, then the infection involves their brothers and sisters who may have more
hygienic behaviour, then their parents and with the start of the winter it spreads
among the elderly who may be at greater risk. People affected by severe immune
pathologies could have different infectious risks and different awareness. With age,
both frailty and risk perception usually increase. A challenge task is to evaluate
the probability of the emergence of new variety of pathogen strains. Although
about 3,000 different viruses are nowadays known, next generation sequencing and
metagenomic approaches have revealed the vast majority of the viruses on Earth is
not yet characterised. Statistical bioinformatics models will be increasingly used to
calculate the number of viral mutations between safety and pandemics with little
population awareness due to scarce education about DNA sequences.

2 Putting Risk Evidences Together

Expensive and complex epidemiological data are gathered and being analysed
in a rather simple way that runs the risk of missing the opportunity to uncover
combinations of predictive and meaningful profiles among the data. The challenge
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is to establish whether any causal conclusion suggested by the best fitting model is
warranted by the data. Formal approaches to causal inference are needed in order to
guide the researcher specifying the underlying causal assumptions, formulating the
causal hypothesis in a non-ambiguous way, determining whether the data provide
information to address that hypothesis. The complexly structured data, embracing
molecular, subclinical and clinical, epidemiological information, social network
require novel methodology to elucidate epidemics and health-related mechanisms.
The multilevel data point at a huge space of causal models. The problem is not
simply one of defining a suitable class of models and, within this class, to search for
those models which provide the best fit but to combine the multilevel data within a
study, with one type of data across studies, into multilevel data across studies. There
is an increasing need to use all the available information, even with missing values,
from different datasets (meta-analysis) and different dimensionality, which may be
called super meta methodology.

An important approach in evidence synthesis is that of back-calculation, which is
based on convolution equations; it uses reported numbers of diagnoses of a disease
(say AIDS) in each calendar period, together with estimates of the distribution
of time from infection to diagnosis of AIDS (the incubation period) to generate
estimates of the underlying incidence of infections. Combined with information on
survival, this approach allows to estimate current HIV prevalence. However, cheap
diagnostic tools and medical treatments would change the actual incubation period
(information ignorance). Another approach is the direct method where the general
population is subdivided into mutually exclusive groups, indexed by g, at risk for
HIV and information on the proportion of the population in each risk group, γg, is
derived from routinely collected statistics or the census [12]. The task is then to
estimate the number of prevalent diagnosed and undiagnosed infections in each risk
group, as well as the risk group totals RG, which can be expressed as

RG = ∑
g

N(πgγgδg +πgg(1− δg)). (1)

The direct method is not easy to implement in practice because it requires complete
data from all the risk groups to compute confidence intervals for each group and
the relationships between the various items of evidence. Interesting example of
software is the Estimation and Projection Package [16] that fits a simple infectious
transmission model to the prevalence data via sampling importance resampling and
generates a cluster of epidemic curves for each urban/rural and subgroup-specific
sub-epidemic. A novel promising approach is that of multi-parameter evidence
synthesis which offers a coherent analytical framework designed to make rational
and exhaustive use of the whole body of information available [1]. It constructs
a formal specification of the relationships between data and parameters, which
dictates how direct and indirect evidences on the parameters of interest can be
integrated [15].

Recent advances in cognitive science have given insights into the human brain
as a rational Bayesian machine. Risk perception of a particular disease is shaped
by both past events experienced by the individual and available hints from living
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environment at global and local scales. Given an incomplete picture Yobs of the
situation, the brain performs a filling-in process of the missing details Ymiss so
it could come up with decisions of rational action. The inference is facilitated
by assuming a single model with the relevant variables, specified by the set of
parameters Θ with prior belief p(θ ). The predictive distribution of missing details
can be obtained by integrating out the parameter posterior space

p(Ymiss|Yobs) =

∫

p(Ymiss|Θ)p(Θ |Yobs)dΘ (2)

where parameter posterior is in turn estimated from probable values of missing
portion

p(Θ |Yobs) ∝ p(Θ)

∫

p(Yobs,Ymiss|Θ)dYmiss (3)

An approximation of this iterated scheme [23] has been demonstrated to success-
fully uncover missing feature and relational data in the biological domain.

3 Perception as Human Quick Synthesis of Evidences

Since the individual decision-making process is affected by the risk perception,
during evolution we have developed fast decision shortcuts, called heuristics, in
order to increase our survival. Heuristics are efficient cognitive processes that
ignore information and enable fast decisions. Because of their cognitive limitations,
humans are often unable to perform rational calculations and instead rely on
error-prone heuristics; moreover, even when people could optimise, that is, to
compute the best decision, they often rely on heuristics to save efforts at the price
of sacrificing some accuracy. These concepts are based on the principle of an
accuracy-effort trade-off: the less information, computation or time one uses, the
less accurate one’s judgments will be. This trade-off is believed to be one of the
few general laws of the mind. It is important to evaluate the heuristics in terms
of its ecological rationality environment. How do people make decisions when
optimisation is out of reach? Examples of the embedded heuristics toolbox we
use at individual or social levels are the recognition heuristic, which states that if
one of the two alternatives is recognised, one will infer that it has the higher value
on the criterion (less-is-more effect is often detected); the 1/N equality heuristic,
which allocates resources equally to each of N alternatives; and tit f ortat, in which
one cooperates first and then imitates her/his partner’s last behaviour; other widely
used heuristics are the imitation of the behaviour of majority and the imitation of
the successful person. The last two heuristics are recognised as a driving force
in bonding and group identification and therefore play an important role in our
choices [11]. In 1950 Herbert Simon [27] first proposed that the people satisfice
rather than maximise. Maximisation means optimisation, the process of finding the
best solution for a problem, whereas satisficing (satisfying and sacrificing at the
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same time) means finding a good enough solution. This corresponds to a well-
known heuristics: in order to select a good alternative (e.g. a house or a spouse)
from a series of options encountered sequentially, a person sets an aspiration level,
chooses the first one that meets the aspiration and then terminates the search.
The aspiration level can be fixed or adjusted following experience. For Simon,
humans rely on heuristics not simply because of their cognitive limitation but also
because of the task environment. We often trust a person we know well as non-
infected while we may judge as potentially infected a person we do not know;
sometimes these decision-making processes take less than one minute. Gigerenzer
has shown that simple rules, that is, decision-making tree based on fast and frugal
heuristics, behave nearly the same as more complex diagnostic procedures [32].
The self-diagnosis, which may correlate with the time you decide a medical visit is
opportune, the choice of a doctor or of a therapy could be biased by the underlying
presence of the recognition heuristics. There is a growing activity of mathematical
modelling of the impact of heuristics in the theory of mind and in the ICT. Recent
approaches are based on so-called ACTR (adaptive control of thought-rational)
and establish analogies with an ecological model for strategy selection. In Parma
during 1980s and 1990s Rizzolatti and colleagues demonstrated the existence of
a mirror-matching system in the human brain [25]. It is nowadays accepted that
the mirror neurons system mediates the automatic imitation and empathy; in some
sense they provide basis for connecting individuals’ emotions. The neurophysiology
of mirror neurons could possibly suggest the origin of heuristics in the imitation
and processing capabilities of mirror neurons and in the spread of risk perception
levels by imitation. The ancient structure of the mirror neurons could provide some
explanation for some ancestral fears and overestimated risk perception such as that
for snakes. It is noteworthy that the link between heuristics and neurophysiology and
the link between epidemics spreading and heuristics generate a connection between
epidemics and the functioning of brain regions affected by fear and conscience.
This connection is also affected by reading newspapers, twitter and blogs, watching
television and Youtube.

4 Risk Perception Modulation by Mass Media and Social
Media

Our risk perception is shaped by heuristics and more influenced by friends’
recommendations than mass media channels such as newspapers and television.
Nevertheless, mass media have a tremendous importance in influencing individual
behaviour probably because of the concept of the wisdom of the crowds, that is,
the many are smarter than the few. Mass media is influenced by commercial trends,
politics and the journalistic practice, for example, an article could appear in the first
page in large characters or towards the end of the newspaper in a minor section;
moreover, there is a journalistic tendency to draw attention to certain features of
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an issue while minimising attention to others. Social media is strongly influenced
by our social constrains. Robin Dunbar and collaborators have found that social
networks have a cognitive limit for emotional closeness of about 150 members
(albeit with significant variance around this value); within a 150-people layer, there
are those you know as persons. Beyond 150, we know people only as categories;
interactions are defined by rules, not personal knowledge. Kin are given preference
in the network where individuals from large families have fewer friends, and there
are strong same-sex preferences. Kin networks are usually more dense than friend
networks, suggesting that family links are less fragile than friends (reflecting the
say that blood is not water) [8]. There is a widespread belief that social media
have increased the amount and quality of information but also background rumours.
Facebook, Twitter and other social websites have boosted the public awareness of
disease outbreaks but also make it more difficult to separate facts from fiction. Many
WHO experts have pointed out that social media are mixed blessing in epidemics.
WHO officials reported that during the H1N1 swine flu that swept the world in
2009/2010, one of the Internet rumours was increasing your salt intake can help,
consequently boosting a counteraction by WHO about the dangers of taking too
much salt. Two important differences with respect to mass media are represented by
specific information social networks for patients such as the website PatientsLikeMe
and flu tracker phone or Internet-based networks which act as a quick alarm
network and continuous coverage statistics on the evolution of an epidemic front.
The website Patients Like Me acts as a quick self-diagnose based on symptomatic
similarity and drug performance evaluation social network. The drawbacks could be
mis-diagnoses and less personalised treatment (an individual takes the same drugs
that have well performed for other patients disregarding his/her special conditions
and past history of treatments). Although observational studies cannot meet the
rigid standard of randomised clinical trials, they provide an opportunity to collect
possibly useful data by capturing patients’ conditions. There is more trust in people
with similar conditions and the heuristics of imitating likewise people. A recent
work reported that a person’s overall web literacy predicts their behaviour to a
significant extent. Especially for people with lower web literacy, the extent to which
a web page’s declared ideological perspective was consistent with their own was
very important for whether a person decided to believe the information posted on
that web page. In [31] the authors have proposed a susceptible (S)-infected (I)-
hospitalised (H)-recovered (R) model where the media function is incorporated into
the model using an exponentially decreasing function:

dS
dt

= Λ − e−M(t)λ S− μS+ δR (4)

where the rate of susceptibles depends on the recruited into the population Λ and
on the media coverage over time M(t) times the constant recruitment rate, λ ; μ is
the natural death rate and δ is the recovery rate. This model is able to highlight
different levels of beneficial effects of media coverage. M(t) depends on both the
number of cases and their rate. Their model is successful in fitting some relevant
data but also opens the possibility for parameter estimation. Recent work by Durham
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and Casman [9] has taken a step towards constructing a model for SARS that is
based on time series of media coverage regarding the disease and on the proportion
of the population wearing face masks during the outbreak. The approach of [9]
demonstrates the possibility of identifying parameters of human behaviour using
various data sources such as news, surveys or even search engine query data [13].
Models are at the level of the intensity of single source of data acquisition; we still
need to approach the variety of data acquisition.

5 Heuristics and Undervaccination

Undervaccination is observed in both poor and wealthy communities [30]. In poor
countries, intensive international programmes aiming at familiarising adult primary
care providers (APCPs) with vaccine-preventable diseases and the importance of
using vaccines are needed in order to improve vaccination rates. Recent work
shows poor familiarisation of APCPs to inform hospitalised individuals about
vaccinations [30]. Noteworthy, on Facebook (2011), there are more than 40,000
pages on vaccinations and more than 1200 groups; 95 % of them are negative
towards vaccination; on Youtube 90 % of the 10,000 movies about vaccination are
against. So the background noises for rumours have become much louder, making
it so much harder to detect the really important segments. Typical reasons found
in blogs are the following: mom knows best; if vaccines caused autism, I would
probably opt out of most vaccines, because most kids don’t die of whooping cough
or scarlet fever, but autism is forever; don’t want my kids to get autism. So I
will risk a deadly disease instead. Clearly the decision is based on a heuristic
approach and not on a careful reasoning which should have considered that for
highly contagious viruses, like measles, about 95 % of the population need to be
immunised to effectively prevent spread. In some sense the mother had not made a
choice for her son only, but for everyone with whom he had come in contact. Is it
reasonable that this mother’s rights should include the right to have her child catch
and transmit a potentially fatal infection? Peadiatricians must also take proactive
precautions with the growing number of unvaccinated, potentially biohazardous
children and immediately place them in an examination room away from office
traffic flow. It is totally unfair to expose the rest of your patients who are trying their
best to protect their children with recommended vaccines. Mathematical models
have highlighted the different values of vaccination strategies and information (see
for instance [19, 21, 24]). A model with pulse vaccination has shown that the media
can trigger a vaccinating panic if the vaccine is imperfect and simplified messages
may result in the vaccinated mixing with the infectives without regard to disease
risk [31]. The perception of the individual responsibility in different context is an
important factor that has not been incorporated in models.
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6 Building Models of Risk Perception

A study on the psychological responses to the 2009 H1N1 virus, [14], reported
significant reduction in the use of public transport, a high number of flight
cancellations and a considerable amount of investment in preventative goods.
Individuals undertaking such precautionary measures may succeed in reducing their
susceptibility to the disease and thus potentially reduce the size of an epidemic
outbreak. Despite the potentially considerable impact of behavioural changes in the
population, the majority of mathematical models have only considered changes in
human behaviour resulting from various public health interventions. The aim of such
models is to study the effectiveness of interventions such as social distancing and the
provision of treatment and prophylaxis in containing an emerging pandemic. [33]
have also considered the compliance with suggested interventions, mentioning that
the compliance of individuals may be closely related to various demographics and
that levels of compliance may vary over the course of the disease outbreak. Even in
the absence of institutionally enforced interventions, individuals may occasionally
take the initiative and change their personal behaviour in response to their perceived
risk of becoming infected. The risk perception framework was applied by [3] to
study the effect of human behaviour on both homogeneous and directed scale-free
networks [3]. In this framework, as a result of alertness to the disease, the probability
of transmission of the disease due to contact between an infectious and a susceptible
individual is multiplied by a factor of

A(s,k) = exp
[
−
(

H + J
s
k

)]
(5)

where s is the number of the individual’s infected connections and k is the degree of
the connectivity of the network. The parameter J represents the ‘local’ or personal
perception and determines how strongly the individual reacts to observing disease
symptoms in his close contacts. The global awareness parameter H determines the
awareness that an individual has gained from publicly available information or due
to access to treatment and preventative measures. The probability that an individual
becomes infected following contact with at least one of its infectious neighbours is
modelled as

λ (s,k) = 1− [1−A(s,k)τ]s . (6)

[3] presented an additional approach to examining the effects of risk perception on
a population. They showed that, for random networks and infectivity, there exists a
critical value of the individual awareness J, above which it can prevent an epidemic
outbreak.
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7 Combining Community Structure and Risk Perception

Mean-field approach shows that, in the presence of several communities, a value of
J higher than the critical value for the homogeneous case, is necessary to prevent
a community from experiencing an epidemic. Since in a realistic situation the
amount of precautions an individual can take are limited, a consequence of this
result is that, in the presence of community interactions, even high awareness of the
disease may be insufficient to prevent an epidemic. Different ethnic communities
or communities in geographical regions (e.g., countryside versus city) may respond
differently to an epidemic, so community models will provide a better fit to real
situations [18, 19]. In [19] the authors developed an epidemic prediction tool that
uses a combination of geographical, demographic and housing information. We
foresee that similar tools will have automatic update of the relevant information.
Following [18] we consider a network of N individuals described by five parameters:
C is the number of communities; n(X) is the size of community X; pi(X)
is the probability of connection between nodes in community X; pe(X) is the
probability of connection between nodes in community X and the nodes of any
other community; and H(X) the awareness of the disease in community X. We use
ς to denote the set of all communities in the network. The first four parameters
allow for variation in size and connectivity per community and are necessary for
constructing a network of heterogeneous communities. The parameters pi(X) and
pe(X) are chosen based on the required average internal and external connectivity
per individual in each community. The H(X) parameter is only necessary when
the communities modeled also have varying levels of risk perception. A common
approach for generating networks to test community detection algorithms is the use
of the planted l-partition model [7, 10]. The algorithm divides a set of N nodes
into l equally sized groups according to two probabilities: pin is the probability of
connection between nodes in the same group; pout is the probability of connection
between nodes belonging to separate groups. Links are generated between all pairs
of nodes according to these probabilities and the result is an Erdos-Renyi-like
(ER) random network of l communities, provided that pin > pout . This approach
generates a network of communities of varying sizes. The average connectivity in
the resulting network is homogeneous for individuals within the same community
but varies across communities. The communities exhibit the small-world property.
Across communities, the average shortest path L is likely to be larger than within
communities, due to the lower density of edges between communities.

The investigation of the effects of boundary nodes (i.e. nodes within a community
with at least one external connection) is a common procedure when examining
community structure in networks [10]. In the case of non-overlapping communities,
these nodes have a high betweenness centrality and represent the only means by
which infection may travel between communities. In this model the probability of
connection between two nodes, members of the communities X and V, respectively,
is pe(X)pe(V ). The probability of a node in V not having a connection to any node
in X is
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[1− pe(V )pe(X)]n(X). (7)

Thus, the expected number of boundary nodes in V, considering all communities
in ς , is given by

BV = n(V )[1− ∏
X∈ς ,X �=V

[1− pe(V )pe(X)]n(X)] (8)

An isolated community is simply an ER random graph. Let us consider for
simplicity the case of the arrival of the infection from outside the community and
not its subsequent spread. The set of parameters we need to consider are thus the
community size n (the size of the infected outside world is N − n), the probability
of external connectivity pe (pe = 1 for the outside world) and the awareness
of the community H. The expected number of infections entering a susceptible
community is simply the number of boundary nodes which would become infected.
The probability of an individual becomes infected following contact with at least
one of its infectious neighbours is given by equation above.

If B is the number of boundary nodes of the community, then the expected
number of infections, for an individual with s infectious out of k total contacts,
is simply λ (s,k)B. If we do not consider the local awareness and the outside world
is completely infected we can simplify λ (s,k) to 1− [1− e−Hτ]kout

and we obtain

yX (k, i) =
k

∑
s=0

(
k
s

)

λ (s,< kX >)is(1− i)k−s (9)

where yX (k, i) is the prevalence of the disease and < kX >=< kin
X >+< kout

X >.
Note that the force of infection yX(k, i) considers the expected rate of infection
over all possible neighbourhoods of any node in community X according to the
current prevalence. Thus yX (k, i) serves to replace the uniform mixing assumption
with an approximation of the mixing between infective and susceptible individuals
occurring across different parts of the network. Next, we define the fraction of
infected individuals both within and outside of community X. The prevalence of
the disease within the community X is

iinX =
IX

n(X)
(10)

where iX denotes the number of infected individuals in X. The expected number
of infected external acquaintances to the boundary nodes of community X is
given by

iout
X =

pe(X)

< kout
X > ∑

Y∈ς ,Y �=X

pe(Y )IY (11)

Using these definitions we can write expressions for the force of infection
experienced by both boundary and non-boundary nodes. If SX is the number of
susceptible individuals of community X, the number of susceptible non-boundary
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nodes and the force of infection they experience are, respectively,

(

1− BX

n(X)

)

SX , y(< kin
X >, iinX ) (12)

and the number of susceptible boundary nodes which can acquire infection from
either outside or inside the community, and the force of infection they experience
are, respectively,

Bx

n(X)
SX , y(< kin

X >, iinX )+ y(< kout
X >, iout

X )− y(< kin
X >, iinX )y(< kout

X >, iout
X )

(13)

Using the expressions defined above, the dynamics of community X can be
described by the following ODEs:

dSX

dt
=−

[

SX

(

y
(
< kin

X >, iinX
)
+

BX

n(X)

[
y(< kout

X >, iout
X )

−y(< kin
X >, iinX )y(< kout

X >, iout
X )
]
)]

(14)

dIX

dt
=−SX

(

y
(
< kin

X >, iinX
)
+

BX

n(X)

[
y(< kout

X >, iout
X )

−y(< kin
X >, iinX )y

(
< kout

X >, iout
X

)]
)

−αIX

(15)

dRX

dt
= αIX (16)

For a population of C communities, C sets of three equations need to be solved
simultaneously to approximate the disease dynamics, as the equations all depend on
iout
X which is defined according to the prevalence across all communities. We can

remove this dependency by setting iout
X = 0 for all communities, so that the external

force of infection is y(< kin
X >) = 0, thus obtaining the dynamics of the disease if

each community is isolated from the rest of the population.
This model has been implemented in an open software available from the authors

that allow testing for different community structure, topologies of connections
(variable boundaries), individual and community awareness J,H and modelling
interventions. Using the mean-field approximation, [18] showed that in the presence
of interaction between communities, values of J higher than the critical value
are necessary to prevent a community from experiencing an epidemic. Since in a
realistic situation the amount of precautions an individual can take are limited, a
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consequence of this result is that, in the presence of community interactions, even
high awareness of the disease may be insufficient to prevent an epidemic.

Applying a different transmission model to this framework is also possible.
For example, if we wished to implement a susceptible-exposed-infected-recovered
(SEIR) model we could easily do so by defining the mean period of time α for the
exposed period, so that at every time step an individual in the exposed state becomes
infected with probability 1/α . An important consideration might be to allow for
the modelling of diseases with asymptomatic infectious cases, such as influenza.
Asymptomatic individuals may still be infectious, although potentially less so than
symptomatic cases.

At the microscale modelling, more efforts are needed to estimate better the
effective reproduction number of seasonal versus pandemic disease and how the
magnitude of this number is affected by both the presence of risky conditions
because of health (e.g. the genetic structure) or behaviour of a community and the
genetic diversity and the accumulation of mutations of the pathogen, particularly its
antigenic evolution. At the macroscopic scale, the current economic crisis seems to
produce relevant effects on the possibility of pandemic and seasonal diseases due to
the toughened conditions for certain high-risk groups, including migrants, homeless
persons, and prison populations that are particularly vulnerable to reductions in
treatment access, quality of care due to drops in government spending [28]. These
groups show stress with increased high-risk behaviour, consumption of alcohol,
tobacco, substance abuse and worse nutrition. Clearly a better description of the
information acquisition dynamics and of heuristics involved in the decision making
process for various communities would lead to better prediction.

The combining analysis of micro- and macroscales of an epidemic could provide
an accurate estimate of the effective reproduction number of the disease. The aim
of mitigation strategies is to reduce the effective reproduction number of the disease
to a value close to or less than the epidemic threshold and thus prevent the disease
from causing a large epidemic outbreak.

Recently Lio et al. [20] have combined formal languages and hybrid modelling
to model the use of different therapies between therapies following the spread of
an epidemic. Important efforts are focused on developing multi-scale approaches of
epidemics: from the intracellular signalling and the communication between cells
which form the levels of the immune response, to the tissue and organs levels that
form the level of the structural response variation induced by the disease and are
at the core of therapies application, to the population levels where parameters are
related to social contacts, economy, psychology, for instance the cost of the therapies
and vaccination. Note that all scales of description are dependent on each other.
Furthermore, usage of personal technology tools will increase the individual and
community differences of awareness.
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8 Future Risk and Awareness Management Through Self
Monitoring Devices and Personal Genomics

There is growing interest in using technological devices to continuously monitor
one’s own health. In the past these tools were used by people trying to lose weight
or improve their fitness. Athletes and their coaches commonly make detailed notes
on nutrition, training sessions, sleep and other variables. New technologies (e.g.
wristbands for heart rate, sleep patterns, skin conductance) make it simpler than ever
to gather and analyse personal data. Sensors have shrunk and become cheaper. In
USA and Europe, quantified self conferences are showing people new ways to deal
with medical problems or improve their quality of life with technology. For instance
together with various signals such as heart rate, posture, motion and temperature,
co-ordination, reaction times, memory and emotions could be monitored. Personal
genomics will provide an estimate of the personal risk in an epidemics. Ultra-
high-throughput sequencing strategies have now been used to sequence more than
10,000 full, individual human genomes. One of the clinical implication is the
possibility to obtain an almost complete map of the antigenic coverage of each of
us against existing and predicted (on genomic basis) epitopes of pathogens. The
availability of personal genome sequences and antigenic response data will require
the development of models that will incorporate such information. It is noteworthy
that the price of sequencing is dropping quickly. This suggests that samples could be
collected from mining sewage systems and spots like toilets in pubs, trains, airports
or emergency rooms to monitor public health concerns , for example, flu outbreaks
that can then be sent off for sequencing, allowing us to build an early alarm map over
time of the arrival of pathogens. We can imagine this map to be consulted using a
phone in the same way we now watch the weather forecasting map. The combination
of personal genomics would provide useful information on the personal threat posed
by the arising pathogen strain.
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The Mechanism and Phenomena of Adaptive
Human Behavior During an Epidemic
and the Role of Information

Eli P. Fenichel and Xiaoxia Wang

Abstract Disease transmission can be described phenomenologically at the
population level or mechanistically as the aggregate result of individual behaviors.
To explain why epidemics evolve as they do in response to information, a
mechanistic approach is required. However, taking a mechanistic approach reveals
that information can be parsed in terms of forecasting models or the approach
to forming expectations, timeliness or quality of information, and information
processing and how the information is used to make trade-offs. We develop
a mechanistic model that uses microeconomic theory to describe adaptive or
strategic human behavior. We show that phenomenological forecasting models
and forecasting models based on classical epidemiological theory guide human
behavior towards similar biological results, but different social well-being results.
Moreover, we find that assumptions about information processing method, i.e., the
utility function of individuals, may have a substantial influence on an epidemic.

1 Introduction

The persistent use of Kermack and McKendrick’s (1929) [33] compartmental
modeling framework for epidemics attests to the usefulness and parsimony of
their framework for describing epidemics. A key contribution of the framework
is that it treats the total population as heterogeneous, dividing the population into
health classes. From the mixing levels of these health classes the epidemiological
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dynamics emerge. Hence, from the perspective of epidemiological trends, the
Kermack and McKendrick framework can be seen as a mechanistic description
of the epidemic. But, what is mechanistic at one scale is phenomenological at
another. The Kermack and McKendrick framework and most modern applications
(many following [3]) is purely phenomenological with respect to the mixing
levels; so much so that it is unclear where human behavior fits into the Kermack
and McKendrick compartmental framework. Most attempts at including human
behavior do so by extending compartmental classes via analyst-defined static rules
[23].1 Such extensions are a double-edged sword in the quest to better understand
why epidemics evolve as they do, and how public policy can or should intervene,
because these extensions do not qualitatively change the nature of the basic model
[26]. The advantage of modeling human behavior as an extension of compartments
is that many of the known properties of epidemiological models persist [26] and
concepts like the basic reproductive number can be generated in a straightforward
manner [31]. The disadvantage of extending compartmental models to address
adaptive human behavior is that the models remain chiefly phenomenological at
the level of behavior, making it inappropriate to extend them beyond the range of
observed data to novel situations or to investigate counterfactual policy scenarios –
two key goals of applied science. The purpose of this chapter is to present an
alternative approach to mechanistically modeling human behavior that builds on the
insights of the compartmental model by leveraging insights from microeconomic
models of human behavioral responses to dynamic and partially endogenous risks
[46]. We do this while working from the standard susceptible-infected-recovered
compartmental model. Developing behavioral choices at the phenomenological
level allows us to provide a relatively mechanistic description of disease dynamics.
We use this mechanistic description to more clearly define what is meant by
information and model the role of information, and perhaps epidemiology itself,
in shaping the nature of an epidemic

2 The Model

2.1 A Mechanistic Model of an Epidemic

To open a place for explicitly modeling adaptive human behavior in the compart-
mental epidemiological model [3,33] for a communicable disease that imposes costs
on individuals while infected, but does not cause mortality, we factor the contact rate
and the infectiveness parameter [6, 7, 38], writing the model as2

1Agent-based [36], network [45], and distributed parameters [49] can be seen as generalization to
the compartmental modeling framework.
2Our notation and model development follows [20]. The framework is easily adapted to handle
disease-induced mortality, but this requires tracking changes in the total population thereby adding
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Ṡ =−C(·)β SI
N

(1)

İ =
C(·)β SI

N
−νI (2)

Ż = νI (3)

The population that is incurring an epidemic is divided into health compartments.
We restrict our analysis to the three basic time-varying epidemiological compart-
ments: susceptible, S, infected and infectious, I (for the purpose of this chapter
we use these terms interchangeably), and recovered with immunity, Z, in a fixed
population, N. C(·)I/N is the rate that susceptible individuals contact infectious
individuals. Parameter β represents the likelihood that contact with an infectious
individual yields infection, i.e., the conditional infectiveness of a pathogen. The rate
of recovery and acquired immunity is ν , and we assume no loss of immunity. The
model is constructed so that N is fixed and scaled to 1 so that the state variables
are fractions of the population, and individuals within a particular compartment are
homogeneous. The outbreak is temporary, so we focus on dynamics as opposed to
steady states (see [22] for a similar treatment).

Factoring the C(·) function provides a ‘place’ in the compartmental model for
human behavior. Fixing C(·) = c as parameter, which is the implicit assumption

when the terms C(·)β = β̃ (t) = c ∀t, gives the standard mass-action model [6].
To the extent that this describes behavior, it does not provide mechanism. Time-
varying or nonlinear descriptions of β̃(t), [9, 34] seldom describe a mechanism,
but often use behavior to motivate nonlinear functional forms. Information change
has motivated many of these papers, and general mathematical insights have been
gleamed [17, 18]. These approaches can be seen as working from phenomena
towards mechanism.

An alternative line of inquiry begins with behavioral mechanisms, based on the
goal-seeking behavior of individuals (e.g., utility maximizing). Economic theory
suggests that individuals will engage in adaptive or strategic behavior in response to
a disease if disease creates benefits or costs broadly defined. These behaviors include
adoption of treatment and vaccine [7, 21, 25, 42], changes in risky sexual behavior
[5, 35], migration behavior [39], and general risk reduction through decreasing
contact opportunities [11, 20]. Behavior in these models is not simply adaptive or
reactionary to past events, but strategic-adaptive to expected future events. A key
component of models with strategic behavior is that heterogeneity is endogenous
[5, 20]. Endogenous heterogeneity means that the fraction of the population facing
a set of incentives changes as the epidemic progresses, but that the epidemic

an additional state variable. It is also possible to include population turnover (see supplemental
material in [20]). However, our primary goal is to consider adaptive behavior during an epidemic
such as flu and such epidemics are often managed as if they will eventually die out (see [21] for a
similar treatment).
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progression is driven in part by response to incentives created by the epidemic itself.
This endogenous heterogeneity makes predetermining behavioral compartments
impossible. Indeed, the basic model structure itself introduces heterogeneity among
health classes [33], and there is reason to believe that individuals in different
health classes would face different incentives and behave differently. Game theoretic
disease models are emerging and implicitly addressing some of these issues [24,43],
but these game theoretic models often focus on Nash equilibria as opposed to
dynamics and trade-offs for policy.

Prior to developing a mechanistic model of strategic behavior it is useful to
specify the contact function, C(·), to allow individuals in different health classes to
behave differently. The specification should have the property that it nests the mass-
action specification if all individuals behave identically. Index individuals by health
type, Y = {s, i,z} , to be the set of possible health types (corresponding to S, I, and
Z). Next, define contacts between m-type and n-type individuals, with m,n ∈Y , as

Cmn(·) = CmCn

SCs + ICi +ZCz (4)

Cm is the expected number of contacts made by a type-m individual. When m =
s and n = i, Cmn(·) = Csi corresponds to C(·) in Eqs. (1) and (2). We emphasize
that Cm is a choice made by a type m individual. Cm could be chosen directly or
by engaging in certain activities (e.g., taking public transportation). Equation (4)
implies conditional proportional mixing. Mixing is proportional but also conditional
on the behaviors and the distribution of individuals of different health types. If all
types choose the same number of contacts Ch = c ∀h ∈ Y and ∀t, irrespective of
health class, then Cm(·) = c, satisfying our nesting criteria.

Equation (4) generalizes the model from Eqs. (1)–(3) to allow different behaviors
by health class. Now we turn our attention to developing a mechanistic model for
behaviors of the three health classes. We model a representative agent who is goal
seeking. Following [20] and other economic models of infection (e.g., [21, 22]),
we model goal-seeking behavior using economic consumer theory [48]. We assume
that individuals have a single period utility function that depends on their current
health state, h ∈ Y , and current-period contacts with others. Specifically, a type-h
individual’s instantaneous utility is u(h,Ch). Single-period utility is assumed to be a
concave and single-peaked function in contacts and infection reduces single-period
utility, so that u(i,c)< u(s,c), and u(i,c)< u(z,c). We may also expect that u(z,c)≤
u(s,c), suggesting the possibility of lasting fixed cost effects from infection. This
departs somewhat from the majority of the economic literature which often models
utility as a function of health expenditures and health class [10, 25, 42]. One could
view forgone contacts as a special case of health expenditures, but our specification
has the advantage of more directly connecting to epidemiological theory.3

3Conversely, the specification has the disadvantage of not modeling time allocation directly since
contacts are not actual goods that are consumed. Bridging this divide is an active area of research.
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If agents act in their own best interests and ignore the impacts of their behaviors
on the well-being of others, then each individual type behaves as if he solves a
dynamic problem formalized by the Bellman equation

V (h) = maxCh

{

u(h,Ch)+ δ ∑
Y

Ph, j(Ch : S, I,Z,C−h,C̄h)(V ( j)−V(h))

}

(5)

where δ is the discount factor. Ph, j is the probability of transition from state h ∈ Y
to state j ∈ Y conditional on choice Ch for a given time step. The probability Ph, j

in the current period may be derived from Eqs. (1)–(3) (see [20] for details). The
probability Ph, j depends on the current state of the system and the behaviors of
individuals in the other health classes, C−h, where −h indexes all but the h health
state, and the behavior of individual’s own health class is C̄h, which the individual
takes as given, but which ex post is identical to the individual’s choice. We focus on
the case when Ph, j = 0 for h �= j, except for the basic epidemiological transitions of
Ps,i and Pi,z were Pi,z(Ci) = P̄i,z ∀Ch. For example,

Ps,i(Cs;S, I,Z,C−s,C̄s) = 1− exp

(

− β ICsCi

SC̄s+ ICi +ZCz

)

.

This structure implies that the recovery rate is invariant to behaviors in the
population, it is not possible to go from s to z, or z to s, and Pz,z = 1.

The solution to problem (5) depends on the individual’s current state and
expectations about the future. Consider the problem for type-z individuals. Type-
z’s first-order condition is uCz(z,Cz) = 0 because there is no dynamic effect of
type-z’s decision. The concave and single-peaked nature of u(h,Cz) implies that
Cz is constant, finite and positive value. The assumption that Pi,z(Ci) = P̄i,z ∀Ch

implies that type-i individuals have a similar result, uCi(i,Ci) = 0, implying that
Ci is a constant, finite and positive value. Recovered and infected individuals do
not behave strategically with respect to the epidemic. Susceptible individuals make
forward-looking decisions, which are modeled by satisfying4

uCs(s,Cs)− δPsi
Cs(·)(V (s)−V (i)) = 0 (6)

Equation (6) implies

V (i) =V (s)− uCs(s,Cs)

δPsi
Cs(·) (7)

4The partial derivative in Eq. (6) is only taken with respect to Cs . However, Cs is substituted for
C̄s after the derivative is taken prior to solving Eq. (6) for the optimal Cs . This ensures that all
individuals in the same class behave the same but do not consider the homogeneity of behavior
when making behavioral choices.
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As the state of the epidemic changes, the marginal contribution of an individual’s
behavior to the probability of infection, Psi

Cs(·), changes. If the V (i) is constant,
which is the case if infection does not affect behavior [20], then as the state of the
epidemic changes, so must the optimal marginal utility from contacts, the present
value of being in the susceptible state, V (s), or both. The only way to change
realized marginal utility of a contact is to change behavior. Behavior changes as
the state of the epidemic changes, and Eqs. (5)–(7) provide a mechanism, at the
scale of the disease dynamics, to model this behavioral change. Furthermore, V (s)
is also partially dependent on behavior. A goal-seeking susceptible individual will
change his behavior as the general state of the epidemic changes.

2.2 Information and Expectations

Nonlinear incidence is often motivated by behavioral change in response to
information [17, 18], and information quality has been shown to affect behavior
[12]. But, the idea of information is vague. Information can be knowledge of the
current state of the world or information may be forecasts about the future state of
the world. Information may also be confounded with information processing [40].
How information is processed may be just as relevant as the package of data. In
our mechanistic model information is processed via the form and parameterization
of the utility function and Bellman equation. The utility function indicates relative
preferences for health compared to an unspecified numeraire good. To develop
simulations below, we adopt the same form of utility function as in [20]

uh
t (h,C

h) = (bhCh
t −Ch2

t )γ − ai.

The functional form implies that infection reduces the marginal utility of a contact
through reductions in b and imposes a lump sum cost through a. Other functional
forms are possible, e.g., [10]. We wish to compare three potential interpretations of
the idea of information affecting an epidemic by providing incentives for changes
in behavior. The first mode by which information may affect epidemiological
dynamics is through effects on expectations. Expectations play a prominent role in
Eq. (5), via the summation over Y . It is possible to convert Eq. (1) into a probability
of being infected in a single time step [20], but it is much more difficult to
choose a single model as to how expectations should be formed over the entire
planning horizon. Adaptive expectations models are based on the idea of learning
and updating [37]. An agent forms a set of expectations, solves his dynamic
optimization problem and carries out the solution for a relative short period of
time (e.g., one time step), collects new information, forms new expectations and
resolves the entire dynamic optimization problem and uses the new policy function.
Multiple authors have used adaptive expectations models to model information in
economic-epidemiological models like the one developed here [5,20]. However, the



Mechanism & Phenomena, Behavior, Information, and Epidemics 159

expectations modeled in these models are somewhat naive. Traditionally, adaptive
expectation asserts that the agent takes the current measurement as fixed when
forecasting out expectations. We use this approach as a baseline and refer to this
as classical adaptive expectations.

In addition to the classical adaptive expectations model, we develop two forms
of scientific adaptive expectations models.5 To form scientific expectations models
we fit phenomenological models to the data generated within the simulation of
the epidemiological-economic model, a model defined by Eqs. (1)–(6). This notion
of adaptive expectations models has been shown in some cases to lead to similar
behavior as rational expectations, fully accounting for future strategic behavior
[37].6 The first phenomenological model is based on theory and the estimation
of the basic reproduction number, R0. There are multiple ways to estimate R0

[15]. For illustrative purposes, and given the simplicity of our model, we adopt
an approach based on the intrinsic growth rate of the infected population in the
classical SIR model, r, measured from the initial epidemic phase. Even though the
approach is simple, it is commonly used in applied epidemiology [14, 41]. We take
the initial epidemic phase as the period over which cumulative incidence increases
at an increasing rate. Assuming homogeneous mixing (an assumption violated in
our data-generating model) and that the mean generation time of the pathogen is
exponentially distributed, R0 can be approximated as

R0 = 1+ rq (8)

where q is the expected time until recovery (calculated as 1/Pi,z, where Pi,z = 1−
e−ν ). The intrinsic growth rate, r, can be calculated assuming an initial exponential
epidemic growth phase, where

y = Aert+ε (9)

and where y is the curve of cumulative incidence at time t, A is a constant, and
ε is a mean zero error term [14]. The value of r is estimated by linear regression
following a log transformation of Eq. (9). The forecast resulting from this model is
then provided as the forecast for the state variables out to the planning horizon. We
refer to this as the R0-based forecast.

The second phenomenological model simulates a time series analysis. We use
the two-day running average to fit a third-order polynomial to the time series of
prevalence. The next T elements in the series following the polynomial are used
as forecasts for the expectations about S and I populations. We refer to this as the
simulated time series forecast.

A few comments about these forecasting models are in order. First, we do not
include any stochastic shocks in our simulations. The data generating mechanisms

5 Such an approach has a history in economics, and is not always differentiated from classical
adaptive expectations [13, 37].
6We do not consider rational expectations because the necessary market assumptions to impose as
if rational behavior do not exist.
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Table 1 Parameter values used in the simulations

Parameter Interpretation Value

bh, h �= i Twice utility maximizing contacts, with no disease 10
bi Twice utility maximizing contacts, with disease 6.667
γ Exponent in utility function 0.25
α Utility loss due to disease in utility function 1.826
τ Length of planning horizon 12
β Disease transmission rate per infected contact 0.0925
ν Recovery rate 0.1823

bi = 10 in the non adaptive SIR model

for our estimated models are deterministic at the system level. Second, all residual
error, ε , comes from misspecification because the phenomenological models ignore
changing behavioral dynamics. We believe this approach is informative because
to our knowledge models that jointly estimate behavioral response and disease
dynamics have not yet been developed. Indeed, Geoffard and Philipson [26] point
out that the development of such models is likely to be a nontrivial problem.
In addition to alternative expectations models, we vary the rate of at which new
information becomes available so that information is less timely but not inherently
corrupted. We also explore alternative parameterizations of the utility function. We
simulate each model on a daily time step using parameters from [20] repeated here
in Table 1, and use a planning horizon of 12 days, twice the expected recovery time.

Simulations were completed in Mathematica 8.0 (Wolfram Research).

3 Results

3.1 The Role of Expectations

Disease dynamics at the system level are remarkably unaffected by the forecasting
model used. Indeed, the results from the classical adaptive expectations forecast and
the simulated time series are nearly identical. This is true regardless of the metric
used (Table 2 and Figs. 1 and 2).

At first, this result is surprising, but [5] considers a model of HIV with classical
adaptive and rational (when the agent full considers the effect of behavior on the
future disease dynamics) expectations and finds little difference in the course of an
HIV epidemic between classical adaptive and rational expectations. Our scientific
expectations models may be thought of as intermediate cases. Furthermore, [37]
suggest that forecasting approaches similar to our description of scientific expec-
tations may approximate rational expectations. What is striking is the difference
between the static behavioral models (dotted curve, Fig. 1) and any model with
adaptive or strategic behavior. Fenichel et al. [20] point out that is possible to fit
models that assume static behavior to data generating mechanisms with adaptive
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Table 2 Summary statistics by expectations model

Model
Cumulative
cases

Peak
prevalence

Peak
time

Minimum
contacts

Cumulative
utility (N)

Cumulative
utility (S)

Classical 0.6391 0.08799 47 3.65 259.8 163.9
App R0 0.6830 0.09110 52 2.63 258.0 158.2
Time series 0.6445 0.09085 47 3.79 259.9 162.8
Delayed classical 0.6422 0.09683 48 3.76 260.0 161.8
Delayed App R0 0.6666 0.08136 53 2.63 258.3 162.0
Delayed time series 0.6409 0.09476 47 3.73 260.0 162.5

Fig. 1 The dotted curve represents an epidemic curve with constant behavior. The three solid
curves are epidemic curves for the same biological and economic parameters, but with different
expectations models. The black curve corresponds to classical adaptive expectations, the thin gray
curve (to the right) corresponds to expectations based on estimates using R0 theory, and thick gray
curve that largely overlaps the black curve is based on a simulated time series analysis to forecast
expectations

behavior, but that the parameters that result do not have the usual biological
interpretations. Given Fig. 1, this concern seems robust to how expectations are
formed, at least for some cases. Among the three forecasting models, simulations
that include the R0-based forecasting model deviate from simulations where the
other forecasting models are used. When agents are provided the R0-based forecast,
the model yields similar epidemiological metrics. Agents are also made worse off
in terms of utility (Table 2) and engage in much greater averting behavior (Fig. 2).
If panic is defined as a strong irrational behavior that has little effect on the overall
dynamics, then R0-based forecasts could be described as inducing panic. Under R0-
based forecasting, the realized cumulative infection and peak prevalence is greater,
but the epidemic is slowed by the strong initial response of susceptible individuals.
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Fig. 2 The dotted curve represents constant behavior. The three solid curves are behavioral
responses to the expectations about the epidemic for the same biological and economic param-
eters, but with different expectations models. The black curve corresponds to classical adaptive
expectations, the thin gray curve (to the left) corresponds to expectations based on estimates using
R0 theory, and thick gray curve that largely overlaps the black curve is based on a simulated time
series analysis to forecast expectations

3.2 The Timeliness of Data

Relative insensitivity of results to the forecasting model suggests that perhaps the
quality or timeliness of information is more important than the actual forecasting
model. In the previous section we assumed all information was available for
forecasts. To investigate the importance of the timeliness of information we delay
the availability of information by one week (Fig. 3). In addition to informing the
role of information and adaptive human behavior during an epidemic, these results
suggest the importance of considered data feasibility in the approach to forecasting
disease risks for the public to respond to.

Information delay has the expected effect of increasing peak prevalence if
classical adaptive expectations or simulated time series forecasting is used to
form expectations. In both cases averting behavior lags slightly relative to more
timely information and results in greater peak prevalence. However, the higher
peak prevalence yields a stronger behavioral response as the epidemic wanes and
ultimately results in fewer cumulative cases, though the marginal proportion of
the population ultimately avoiding the infection do to information delay is small
(Table 2). Delaying information has a counterintuitive effect if R0-based forecasts
are used. Delaying information reduces cumulative cases and peak prevalence
relative to timely information. The reason is that because information is delayed
susceptible individuals believe that there is less chance of being infected as
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Fig. 3 The relative effect of
information delay (dashed
curve) compared to no
information delay (solid) on
the epidemic curve
conditional on the forecasting
model: classical adaptive
expectations (upper panel),
R0-based forecasts (central
panel), and simulated time
series (lower panel)

prevalence increases. This tempers the panic response induced by the R0-based
forecast. In our simulations, this offsetting effect is sufficiently large so that a time-
delayed R0-based forecast yields the lowest peak prevalence of models that we
investigated (Table 2). We caution that which effect dominants in real systems is
an empirical question, but this result suggests that R0-based forecasting is missing
something important. The net effect of information delay on utility is positive
when then entire population is considered. It is odd that less information could
make people better-off. This suggests that all of these phenomenological models
miss something important. But the delay has little effect on the cumulative utility
earned by the overall population conditional on the simulated time series analysis.
However, delaying information makes susceptible individuals worse off, except in
the case of R0-based forecasts Consistent with counterintuitive effects on disease
dynamics, delaying information slightly increases the utility payoff if R0-based
forecasts are used, which seems to violate the Le Chatelier principle. Perhaps this
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occurs because when there is strategic or adaptive behavior R0 lacks a mechanistic
interpretation, but provides a poor case for a phenomenological model. The utility
payoff from delayed R0-based forecasts is still less than timely versions of the other
two forecasting systems.

3.3 Preferences and Tradeoffs

The interpretation of information, or what exactly the information means, is
important. To adaptive or strategic individuals, forecasts about the future state of
public health must be assimilated into an index (utility) that guides behavior. This
behavior results from making trade-offs. Therefore, understanding the construction
of the utility index is likely important for parsing the biological and behavioral
effects associated with a pathogen. This separation of biological and behavioral
effects is particularly important when public health planners make decisions
about non-pharmaceutical interventions such as social distancing policies [50], and
pharmaceutical interventions such as providing drugs to speed recovery. The table
reported in Fig. 4 shows the sensitivity of epidemic statistics to the parameters in
our model. Only two statistics, peak prevalence and susceptible utility, are generally
sensitive (greater than unit elastic in absolute value) to parameters in our model.7

Health policy makers need to make a normative decision about which epidemic
statistics to use to guide policy decisions. A goal of low peak prevalence or
cumulative cases does not necessarily suggest the same forecasting model or the
same interventions to effectively change the parameters in our model. Moreover,
how the public learns about disease and forms expectation may matter for targeting
intervention. It is not clear that focusing on biological metrics associate with the
epidemic is in the best interest of society as a whole. Keogh-Brown et al. [32]
and Smith et al. [47] focus on economic impact or shocks to consumption.8 In
our model lower levels of minimal contacts could be considered as a proxy for
decreased economic activity. If the goal of policy makers is to avoid economic
disruption, then R0-based forecasting could be rather disruptive and yield little
value to society in terms of other goals. Most economists advocate a welfare-based
approach [10, 42]. In the context of our model, this means looking at cumulative
utility over the epidemic. One draws rather different conclusions about the benefits
of intervening to change a parameter value if one focuses on the entire population
or just the susceptible population. If the focus is on the entire population, then all

7Minimum contacts are also greater than unit elastic in absolute value to the transmission parameter
β for two of the forecasting models.
8These authors point out that consumption smoothing associated with borrowing and savings over
an epidemic shock implies that in the long run epidemics may have little effect on the level of
economic activity in developed countries. The results of an epidemic in developing countries may
be more sever [10], and there may long-run lasting effects on human capital from infection [1, 2].
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Fig. 4 Sensitivity analysis (percent change) to a 10% increase parameters conditional on a
forecasting model. Shaded cells represent responses that are greater in absolute value than unit
arc elastic

interventions are less than unit elastic so a 10% change in the parameter elicits less
than a 10% change in the utility payoff in absolute value. Furthermore, if the focus is
on population level cumulative utility, then the most sensitive parameters are related
to behavior (i.e., utility parameters, bs, bz, and γ) not biology. But, if the focus is just
on the utility accrued by the susceptible population, then the model is also sensitive
to traditional epidemiological parameters and is generally greater than unit elastic.

4 Discussion

Over the last century, policy makers have increasingly looked to science to shape
policy to improve public well-being. Great strides have been made in the area
of public health. Phenomenological descriptions are essential for picking patterns
from the noise of data and describing past events. If events are common enough
and the luxury of designed experimentation exists, then mechanistic theory may
not be needed to inform policies. However, in the case of the emergence of novel
infectious diseases, it is unlikely that sufficient data will exist for policy design.
Moreover, in the twenty-first century science is about explaining why we observe
the phenomena that we do. This calls for a mechanistic approach, but mechanism is
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a question of hierarchical organization. With respect to epidemiological dynamics
we have developed a mechanistic model that is based on the behavioral response
of people to disease risk. Phenomenological models still have an important role in
forecasting. For example time series analysis often does better at predicting events
in the near future than complicated mechanistic models do. Worst of all would be to
use mechanistically derived models that miss important mechanisms, e.g., strategic
human behavior, for short-term forecasting. This seems to be one use of models
based on R0. Basic reproductive number theory and R0 are prolific in epidemiology
[3, 15, 19, 29, 30, 44] and much has been done to generalize R0-based approaches
[4, 28, 31]. As a descriptive approach of a dynamical system, it is difficult to argue
with the long record or persistent use, and this approach is useful for some questions.
However, models do not exist for the sake of the model; models help us answer
questions. It is important to consider how science and models are used. One use of
science and models is to forecast the future so people can make informed decision
much like a weather forecast. We have shown that at least in some dimensions, R0-
based models may perform relatively poorly.

Perhaps, the enthusiasm for R0 should be tempered (see [16] for an example
of this enthusiasm)? While the R0 concept is useful in some situations, it is
likely less useful for making policy with respect to or providing informing to
the public so that individuals can adapt behavior during ongoing disease out-
breaks. This is because it provides a relatively poor phenomenological model but
also misses critical mechanistic components. Increasingly, health officials have
expressed interest in behavior-based policy responses to infectious diseases [27,50]
and evidence suggests that people alter behavior when faced with infection risk [8].
Standard susceptible-infected-recovered models do not easily incorporate individual
behavioral responses or policies directed at shaping individual’s behaviors. Geoffard
and Philipson [26] state that estimators for compartmental models are not consistent
or unbiased if people adapt behavior.

In this chapter we have shown that using R0-based models to forecast epidemics
to a population that uses this information to adjust behavior may produce counterin-
tuitive and perhaps undesirable results relative to simply providing the current state
of the system or a simple phenomenological time series estimate. This suggests
a potential problem with the application of basic reproductive number theory to
important questions related to including individual behavior into epidemic models.

It is possible to build behavior into the compartmental framework that has served
epidemiology well for almost 100 years, but it cannot be done at the phenomeno-
logical level of the dynamics of the disease. The approach taken in this chapter
offers one mechanistic approach to incorporating behavior into epidemiological
models. An advantage of this approach is that it has allowed us to parse the idea
of information into three parts. Doing so reveals the need to better understand the
phenomenon of individuals making trade-offs. Empirical advances in behavioral
epidemiology of infectious disease will require recovering parameters of the utility
functions that guide behavioral decisions. Effectively, this means estimating the
demand for contacts as a function of the current state of the epidemic.
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Part III
Modeling Vaccinating Behaviour



The Economic Approach to Modeling
Self-protective Behavior in Epidemiology

Frederick Chen

Abstract The economic approach to studying the transmission of infectious
diseases provides an analytical framework for making predictions about how people
will respond to an epidemic. Furthermore, this framework can be used for normative
analysis to determine how various policies and control strategies can affect the
well-being of the population under consideration. By examining explicitly people’s
incentives to alter their behavior in response to an infectious disease, the economic
approach often yields counterintuitive results with significant policy implications.

1 Introduction

How quickly as well as how widely an infectious disease spreads depend in large
part on the behavior of individuals. The severity of flu epidemics is a function of
the number of people who are vaccinated. The prevalence of a sexually transmitted
disease is determined by, among other factors, the number of sexual partners people
have and the type of sex acts that people engage in. How often people go out to
public places such as restaurants, how much people utilize public transportation,
or how frequently people socialize with others all can impact the rate at which
infectious agents are transmitted.

Conversely, the presence of an infectious disease can affect people’s behavior. As
has been shown by numerous studies, the HIV/AIDS pandemic led many individuals
to alter their sexual behavior in order to reduce the risk of infection [1, 11]. In
response to the SARS outbreak in 2003, many people in the affected regions avoided
public gatherings and using public transportation [17]. Therefore, to accurately
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forecast the course of an epidemic and the effects of various control measures
requires: (1) an understanding of how disease spread depends on human behavior;
and (2) the incentive people have for altering their behavior during an epidemic.

While mathematical models are vital—in fact, indispensable—for predicting the
population level impact of infectious diseases, their value and accuracy depend
on how well people’s behavior is captured and specified in them. For instance,
overestimating or underestimating how many people would choose to get vaccinated
during an epidemic in modeling work could have significant policy implications
if mathematical models are relied on for evaluating different potential control
measures. Moreover, mathematical modeling alone cannot tell us how people would
behave during an epidemic, since an analysis of what causes behavior change
ultimately belongs in the realm of the social and behavioral sciences.

The optimization foundation of utility theory from the field of economics
provides an ideal framework to study the determinants of people’s behavior in the
presence of an infectious disease. In utility theory, people’s preferences are taken as
given and it is assumed that people try to achieve the best outcome—best from their
own perspective—subject to the constraints that they face. By focusing on people’s
incentives to act in different ways, utility maximization theory allows us to look at
how people’s behavior is affected by their decision environments and how various
policies can alter the way people behave. In addition, since utility theory is based on
people’s preferences, it allows us to quantify in a rigorous way a population’s well-
being and lets us evaluate different outcomes or policies based on the population’s
welfare.

It should be noted that, in the context of infectious disease transmission, people’s
decision environments are inherently dynamic in nature and affected by the choices
and actions of other people. How likely one is to get infected depends not only on
the choices one makes, but also on the behavior of other people. For example, the
probability that an individual will get the flu should be decreasing in the fraction
of people in the population that get vaccinated. This means that people’s decision
problems in this context are interdependent: everyone’s optimal choice of actions
is dependent on the choices that everyone else makes. Another central notion in
economics, that of an equilibrium, is useful for predicting how people would act in
these situations and what outcome would obtain in the population. Put simply, an
equilibrium is characterized by the condition that people’s actions maximize their
own utility given the behavior of other people, where other people’s behavior is also
the result of utility maximization. Therefore, in an equilibrium, no one wants to
change his or her behavior given what everyone else is doing.

There has been growing interest in recent years to apply the tools and concepts
from economics and game theory to study the spread of infectious diseases [e.g., 2,3,
10,13–15,18–20]. This chapter provides an overview of the economic approach that
models individuals as forward-looking agents seeking to maximize their utility over
their lifetime. The focus will be on risk-reduction actions that individuals can take
to lower the probability of acquiring an infection. Examples of such risk-reducing
actions include vaccination, more frequent handwashing or wearing of mask in the
case of flu, or the use of condoms when looking at STDs.
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2 The Framework

Time is discrete, and the population consists of a large number of agents, each of
whom can be in one of the following (mutually exclusive) health states in any time
period: susceptible, infected, and vaccinated. Assume for convenience that once
infected, an agent remains infected for life, i.e., there is no cure or recovery for the
disease in question. It should be noted that, although only susceptible-infected (SI)
models are considered here, the economic approach to modeling infectious disease
transmission can be applied to any other settings; moreover, many of the qualitative
results discussed here do not depend on the assumption that being infected is an
absorbing state.

In any period, a noninfected agent receives the utility or payoff uh > 0, while the
payoff to an infected agent is ui ∈ (0,uh). To protect against the risk of infection,
noninfected agents can at any point in time choose a self-protective action that
reduces their probability of infection just in that time period (e.g., handwashing,
wearing of condoms, etc.). In addition, susceptible agents can in any period choose
to get vaccinated, where the vaccine confers lifelong immunity. Both the self-
protective action and vaccination are costly in the sense that choosing either one
reduces the utility of an agent: the cost in utility of the self-protective action is
cs > 0, and the cost of getting vaccinated is cv > 0.

Let Pt denote the fraction of the population that is infected at time t, i.e., Pt

is the time t prevalence. It is assumed here that there is random mixing in the
population (see [6] for the model with preferred mixing as defined in [16]): in any
period t, the probability that a susceptible agent will get infected in that period
is β Pt , where β ∈ (0,1] is the transmission probability, if the agent does not take
any action to reduce the risk of getting infected; and the probability of infection
is β (1− εs)Pt if the agent chooses the self-protective action in that period, where
εs ∈ (0,1] is the efficacy of the self-protective action. An agent that is vaccinated
has probability β (1− εv)Pt of acquiring an infection in time t, where εv ∈ (0,1]
denotes the efficacy of the vaccine, without taking the self-protective action; and the
probability of infection is β (1− εv)(1− εs)Pt with the self-protective action. Let
βs ≡ β (1− εs), βv ≡ β (1− εv), and βvs ≡ β (1− εv)(1− εs).

For ease of exposition, it will be assumed that the (expected) length of an agent’s
lifetime is independent of the agent’s health status. In particular, an agent, regardless
of health state, has probability δ ∈ (0,1] of dying at the end of any period. Given
that the size of the population is large by assumption, this implies that the fraction
δ of all agents will die at the end of every period. There is no payoff from death.
New susceptible agents enter the population at the beginning of each time period.
For convenience, assume that in every period the number of new agents equals the
number of deaths so that the population size is a constant.

All agents are forward-looking expected utility maximizers: they seek to maxi-
mize their expected lifetime utility by choosing what actions to take in every period
that they are not infected. Agents discount future payoffs using the discount factor
α ∈ [0,1]. The dynamic optimization problem of agents can be formulated using
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standard dynamic programming arguments [21]. Suppose the prevalence of the
disease over time is given by {P0,P1, . . . ,Pt , . . .}. Let Uv (Pt) denote the maximum
expected lifetime utility of a vaccinated agent starting at time t, i.e., Uv (Pt) is—
in expectation—a vaccinated agent’s maximum sum of (discounted) utility over
the rest of the agent’s lifetime starting in time t. Similarly, let Uh (Pt) denote the
maximum expected lifetime utility of a susceptible agent from time t onwards, i.e.,
Uh (Pt) is the maximum expected value of a susceptible agent’s sum of (discounted)
utility over the rest of the agent’s lifetime starting in time t. Note that, given the
assumption that agents’ length of life is geometrically distributed, neither Uv (Pt)
nor Uh (Pt) depends on an agent’s age. Given {Pt}∞

t=0, the value functions Uv and
Uh, respectively, satisfy the Bellman equations:

Uv (Pt) = max

⎧
⎨

⎩

uh − cs+ γ
[
βvsPt

(
ui

1−γ

)
+(1−βvsPt)Uv (Pt+1)

]

uh + γ
[
βvPt

(
ui

1−γ

)
+(1−βvPt)Uv (Pt+1)

] (1)

and

Uh (Pt) = max

⎧
⎪⎪⎨

⎪⎪⎩

Uv (Pt)− cv

uh − cs + γ
[
βsPt

(
ui

1−γ

)
+(1−βsPt)Uh (Pt+1)

]

uh + γ
[
β Pt

(
ui

1−γ

)
+(1−β Pt)Uh (Pt+1)

] , (2)

where γ ≡ (1− δ )α and ui
1−γ
(
= ∑∞

k=0 γkui
)

is the expected lifetime utility of an
infected agent. For convenience, define Wv (P) ≡ Uv (P)− ui

1−γ , Wh (P) ≡ Uh (P)−
ui

1−γ , and w ≡ uh − ui. Eqs. (1) and (2), respectively, can then be simplified to

Wv (Pt) = max

{
w− cs+ γ (1−βvsPt)Wv (Pt+1)

w+ γ (1−βvPt)Wv (Pt+1)
(3)

and

Wh (Pt) = max

⎧
⎨

⎩

Wv (Pt)− cv

w− cs+ γ (1−βsPt)Wh (Pt+1)

w+ γ (1−β Pt)Wh (Pt+1)

. (4)

Using the contraction mapping theorem, it can be shown that there exist uniquely
continuous functions Wv and Wh that satisfy (3) and (4).

Let St and Vt , respectively, denote the proportion of susceptible and vaccinated
agents at time t. Assuming for simplicity that the population is homogeneous in
terms of preferences, i.e., all agents have the same preference parameters uh, ui, cs,
cv, and α , the disease transmission dynamics can be described as follows (see [7] for
the model specification when agents are heterogeneous with respect to preference
structure):

St+1 = (1− δ )St [σn,t (1−βsPt)+ρn,t (1−β Pt)]+ δ , (5)
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Pt+1 = (1− δ )Pt [1+σn,tβsSt +ρn,tβ St +σv,tβvsSt

+ρv,tβvSt + rtβvVt +(1− rt)βvsVt ] , (6)

Vt+1 = 1− St+1−Pt+1. (7)

Below are the definitions of the notations used:

• rt : The proportion of vaccinated agents in period t who choose not to self-protect
in that period

• σv,t : The proportion of susceptible agents in period t who choose to self-protect
and be vaccinated in that period

• σn,t : The proportion of susceptible agents in period t who choose to self-protect
and not to be vaccinated in that period

• ρv,t : The proportion of susceptible agents in period t who choose to be vaccinated
but not self-protect in that period

• ρn,t : The proportion of susceptible agents in period t who choose not to self-
protect and not to be vaccinated in that period

Note that rt , σv,t , σn,t , ρv,t , and ρn,t are derived from agents’ optimization
problems (3) and (4) as follows:

rt

⎧
⎨

⎩

= 1 if cs > γ (βv −βvs)PtWv (Pt+1)

∈ [0,1] if cs = γ (βv −βvs)PtWv (Pt+1) ;
= 0 if cs < γ (βv −βvs)PtWv (Pt+1)

(8)

• If Wv (Pt)− cv > Ω (Pt), where

Ω (Pt)≡ max{w− cs + γ (1−βsPt)Wh (Pt+1) , w+ γ (1−β Pt)Wh (Pt+1)} ,
then σv,t +ρv,t = 1, where

ρv,t

⎧
⎨

⎩

= 1 if cs > γ (βv −βvs)PtWv (Pt+1)

∈ [0,1] if cs = γ (βv −βvs)PtWv (Pt+1) ;
= 0 if cs < γ (βv −βvs)PtWv (Pt+1)

(9)

• If Wv (Pt)− cv < Ω (Pt), then σn,t +ρn,t = 1, where

ρn,t

⎧
⎨

⎩

= 1 if cs > γ (β −βs)PtWh (Pt+1)

∈ [0,1] if cs = γ (β −βs)PtWh (Pt+1) ;
= 0 if cs < γ (β −βs)PtWh (Pt+1)

(10)

• If Wv (Pt)− cv = Ω (Pt), then σn,t +ρn,t ∈ [0,1] and σv,t +ρv,t ∈ [0,1], where

ρn,t

{≥ 0 if cs ≥ γ (β −βs)PtWh (Pt+1)

= 0 if cs < γ (β −βs)PtWh (Pt+1)
(11)
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and

ρv,t

{≥ 0 if cs ≥ γ (βv −βvs)PtWv (Pt+1)

= 0 if cs < γ (βv −βvs)PtWv (Pt+1)
. (12)

Condition (8) tells us that all vaccinated agents would choose the self-protective
action in period t if the value of self-protection (w− cs + γ (1−βvsPt)Wv (Pt+1) in
Eq. (3)) exceeds the value of not doing so (w+ γ (1−βvPt)Wv (Pt+1) in Eq. (3));
no vaccinated agent would self-protect in period t if the value of self-protection
is below the value of not self-protecting; and if the two values are the same, the
proportion of vaccinated agents who self-protect in time t can be any number
between 0 and 1.

Similar interpretations apply to conditions (9)–(12). When Wv (Pt)−cv > Ω (Pt),
the value of vaccinating in period t is greater than the value of not vaccinating; there-
fore, the proportions σv,t and ρv,t must sum to 1, i.e., the proportion of susceptible
agents that choose to vaccinate must be 1. Whether susceptible agents would choose
to self-protect in period t in addition to being vaccinated depends on cs: if the value
of also self-protecting (which is given by w− cs + γ (1−βvsPt)Wv (Pt+1)) is higher
than the value of not self-protecting (w+ γ (1−βvPt)Wv (Pt+1)), then all susceptible
agents would self-protect and be vaccinated; if the value of self-protection given
vaccination is lower than the value of no self-protection given vaccination, then
the agents would all choose to be vaccinated without also taking the self-protective
action; and σv,t (or ρv,t ) can be anywhere in [0,1] when the value of self-protection
given vaccination equals the value of no self-protection given vaccination.

On the other hand, when Wv (Pt)− cv < Ω (Pt), it is better not to be vaccinated.
Whether susceptible agents would choose to self-protect then depends on the
comparison between the value of no vaccination and no self-protection (w +
γ (1−β Pt)Wh (Pt+1) in Eq. (4)) and the value of self-protection without also being
vaccinated (w− cs+ γ (1−βsPt)Wh (Pt+1) in Eq. (4)).

In the case where Wv (Pt)− cv = Ω (Pt), the value of vaccination in period t is
the same as the value of not vaccinating so that the proportion of susceptible agents
who choose to be vaccinated can be anywhere between 0 and 1. Whether susceptible
agents would choose the self-protective action in time t is determined by comparing
the value of self-protection to the value of no self-protection: for agents who choose
to be vaccinated, the comparison is between w+ γ (1−βvPt)Wv (Pt+1) and w− cs+
γ (1−βvsPt)Wv (Pt+1); for agents who choose not to be vaccinated, the comparison
is between w+ γ (1−β Pt)Wh (Pt+1) and w− cs+ γ (1−βsPt)Wh (Pt+1).

A rational expectations equilibrium (REE) of the model is given by

{St ,Pt ,Vt ,rt ,σv,t ,σn,t ,ρv,t ,ρn,t}t

such that Eqs. (3)–(12) are satisfied. Since agents’ behavior in any period is a
function of current and future prevalence and since prevalence at any point in time
depends on how agents behave, the equilibrium concept of a REE requires that
agents’ behavior and the prevalence of disease be consistent with one another. In
a steady state equilibrium, St = S, Pt = P, Vt = V , rt = r, σv,t = σv, σn,t = σn,
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ρv,t = ρv, and ρn,t = ρn for all t. Say that a steady state equilibrium is endemic if
P > 0. It can be shown that an endemic equilibrium exists if (1− δ )β/δ > 1 (see
[7]). Otherwise, the disease-free equilibrium in which P = 0 is the only steady state
equilibrium. The value (1− δ )β/δ is the reproductive number R0. In a steady state,
the aggregate payoff or, using the language of economics, the social welfare of the
population in every period is given by

Pui +V (uh − (1− r)cs)+ S (uh − (σv +σn)cs − (σv +ρv)cv) .

3 Some Results

Assume henceforth that (1− δ )β/δ > 1 so that an endemic equilibrium exists.

3.1 The Model with Only Self-protective Action

Consider for now a setting in which vaccination is not an option for agents (or,
equivalently, the cost of vaccination is prohibitively high so that no one ever chooses
to get vaccinated); therefore, the only decision that a susceptible agent needs to make
in any period is whether to engage in the self-protective act or not. In a steady state,
Eq. (4) tells us that the difference in expected lifetime utility between taking the
self-protective action and not doing so is

w− cs

1− γ (1−βsP)
− w

1− γ (1−β P)
=

wγP (β −βs)− cs (1− γ (1−β P))
(1− γ (1−βsP)) (1− γ (1−β P))

.

Hence, susceptible agents’ decision boils down to a comparison of the benefit of
self-protection, wγP(β−βs)

1−γ(1−β P) , with the cost of the self-protective action, cs. Since the
benefit of self-protection is monotonically increasing in the steady state prevalence
P, it can be shown that, in this case, an endemic equilibrium must be unique (it is
shown in [5] that, with εs = 1, the endemic equilibrium is globally stable).

To see how the endemic equilibrium of the model is affected by changes in
agents’ decision environments, we can look at the impact of changing the values of
the model parameters. For convenience, assume henceforth that εs = 1. With regard
to the effect of changing the cost of the self-protective action, it is not surprising that
the steady state equilibrium prevalence is nondecreasing in cs. This obtains since an
increase in cs reduces agents’ incentive to take the self-protective action and lowers
the proportion of susceptible agents that engage in self-protection in equilibrium.
Similarly, an increase in ui, which can result if there is an improvement in the
treatment of infected agents or if infected agents have better access to treatment,
lowers the benefit of taking the self-protective action in a steady state and causes the
equilibrium prevalence to rise (weakly).
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In contrast, the effect of changes in the transmission probability on the steady
state prevalence is non-monotonic. Specifically, in increase in the transmission
probability β can in fact lead to a lower equilibrium prevalence, since susceptible
agents are more likely to engage in self-protection when the transmission probability
is high. Somewhat counterintuitively, the population as a whole can be better off
with a higher value of β . To understand why, note that when the transmission
probability increases, there can be two opposing effects on the steady state social
welfare. On the one hand, the population can be better off because the prevalence
may decrease. On the other hand, a higher transmission probability increases
the equilibrium proportion of susceptible agents who choose to self-protect, and
this—all else being fixed—decreases the population welfare since self-protection
is a costly activity. The overall effect of a higher transmission probability thus
depends on which effect is greater. The following numerical example shows that the
population welfare in an endemic equilibrium can increase when the transmission
probability rises.

Example 1. Suppose δ = 1/20, α = 95/100, cs = 7, uh = 10, and ui = 1. When
β = 1/2, the endemic equilibrium prevalence is 0.756; in every period, the fraction
of susceptible agents who choose to self-protect is 0.568, and the population welfare
is 2.22. When β = 3/5, the endemic equilibrium prevalence is 0.630; in every
period, the fraction of susceptible agents who choose to self-protect is 0.763, and
the population welfare is 2.35.

This result has obvious policy implications. For instance, it suggests that
implementing a mass vaccination campaign during an epidemic, where the vaccine
is imperfect but lowers the transmission probability of the disease, can lead to a
worse outcome for the population as a whole. Not only would such a program
be costly to the population when considering the resources needed to develop,
produce, and distribute the vaccines, it would not generate any benefit to society
if the aggregate payoff of the population decreases subsequently.

Similar caveats apply to policies that encourage infected agents to reduce contact
with people or take other actions to lower the likelihood of spreading their disease
such as the wearing of mask in the case of flu. They are also relevant when
considering improvements in the treatment of infected individuals that may result
in their having lower infectivity (e.g., HAART for HIV/AIDS). If susceptible
individuals expect a disease to become less infectious—whether as a result of policy
intervention or medical innovation—they would rationally be less likely to take
precautionary actions; and this change in behavior can worsen an epidemic and
result in lower well-being for the population.

3.2 The Model with Only Vaccination

Although getting vaccinated is a form of action one can take to reduce the likelihood
of infection, its analysis differs in considerable ways from that of the self-protective



The Economic Approach to Modeling Self-protective Behavior in Epidemiology 179

action considered above. The difference arises because vaccines offer protection
over several time periods, while the self-protective action in the model is effective
only during the period in which it is taken. This distinction affects the cost-benefit
calculations of agents, and thus can yield dissimilar results.

To examine the effects of vaccination more closely, assume that a vaccine
is available but that the self-protective action is not an option (or, equivalently,
cs is prohibitively high). Unlike the model with only the self-protective action
and no vaccine, an endemic equilibrium need not be unique when agents can
get vaccinated. Specifically, there is only one endemic equilibrium when vaccine
efficacy is sufficiently high; otherwise, multiple endemic equilibria can coexist (see
[7] or [9] for numerical examples). In a model in which all susceptible agents are
identical with respect to their preference parameters and cost of vaccination, there
can be at most three endemic equilibria, which differ in vaccine coverage and steady
state prevalence. Note that unless the vaccine is sufficiently efficacious, there can be
an endemic equilibrium in which all susceptible agents choose to be vaccinated.

Multiple endemic equilibria can coexist since, counterintuitively, the benefit of
vaccination need not be monotonically increasing in prevalence in a steady state
(see [9] for an illustration). In fact, when εv is not sufficiently high, the benefit of
vaccination is decreasing in prevalence when prevalence is high. This means that
there can be an equilibrium with a relatively low level of prevalence in which a high
number of susceptible agents choose to be vaccinated, and an equilibrium with high
prevalence in which susceptible agents rationally choose not to be vaccinated due
to the lower benefit of vaccination. On the other hand, if vaccine efficacy is above
some threshold level, then the benefit of vaccination in a steady state is strictly
increasing in prevalence. In this case, it can be shown that an endemic equilibrium
must be unique [7]. Note that this is a major distinction between vaccination and the
self-protective action: as pointed out earlier, the benefit of taking the self-protective
action is increasing in the steady state prevalence regardless of the value of εs, but
the benefit of vaccination may not be monotonic in prevalence depending on the
value of εv.

Because there can be multiple endemic equilibria, the steady state prevalence—
as well as the equilibrium behavior of agents—in the model may not behave
monotonically or even continuously with respect to changes in parameter values.
To see this, consider the effect of a change in the cost of vaccination cv. When
vaccine efficacy is sufficiently high so that there is a unique endemic equilibrium,
the steady state prevalence is nondecreasing in cv as the incentive to vaccinate is
lower when the cost to do so rises. However, if multiple endemic equilibria coexist,
then how the equilibrium behavior of agents and the steady state prevalence are
impacted by increasing cv depends on which equilibrium is selected before and after
the change in the vaccination cost. Therefore, it is possible for the population to
jump from the high vaccine coverage equilibrium (with a relatively low prevalence)
to the no-vaccination equilibrium (in which prevalence is high), or vice versa, when
the cost of vaccination is increased. Changing cv can also affect the number of
endemic equilibria. Specifically, if, for some given value of cv, more than one
endemic equilibrium exist, the multiplicity can always be eliminated by making cv
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sufficiently large so that no agent ever chooses to get vaccinated. This observation
implies that small changes in cv around the value where the multiplicity disappears
can bring about an abrupt, discontinuous change in steady state behavior and
prevalence. For an example, suppose cv is such that multiple endemic equilibria
coexist and that the population is initially in the high vaccine coverage equilibrium.
Assuming that cv is very close to the threshold value above which no one would
ever choose to get vaccinated, a tiny increase in the cost of vaccination would push
the population to the no-vaccination equilibrium, resulting in a much higher steady
state prevalence.

Not surprisingly, increasing the value of ui reduces the benefit of vaccination.
As with changes in the value of cv, when multiple endemic equilibria coexist, it is
possible for the population to jump discontinuously from the high vaccine coverage
equilibrium to the no-vaccination equilibrium with higher steady state prevalence
when ui rises. This implies, for instance, that making treatment more affordable or
accessible can drastically increase the number of infected individuals. It is important
to note, however, that a rise in steady state prevalence does not necessarily mean
a lower aggregate payoff for the population. To see this, consider the following
example.

Example 2. Suppose δ = 1/10, α = 1, cv = 13/10, εv =
1
2 , β = 3

5 , and uh = 2. When
ui = 1, there is an endemic equilibrium in which all susceptible agents choose to be
vaccinated. In this equilibrium, the prevalence is 0.63, and the social welfare in each
period is 1.24. When ui =

11
10 , the no-vaccination equilibrium with prevalence 0.81

is the unique endemic equilibrium, and the social welfare in every period is 1.27.

When the vaccine is imperfect, the benefit of vaccination is not necessarily
increasing in the transmission probability β , holding all else fixed. In other words, as
β increases—as the disease becomes more infectious—it is possible for the benefit
of vaccination to decrease instead. This means, in particular, that the equilibrium
number of agents who choose to get vaccinated can fall when β rises.

Example 3. Suppose δ = 1/20, α = 18/19, cv = 124/100, εv =
1
2 , and uh−ui = 1.

When β = 3/5, there is an endemic equilibrium in which all susceptible agents
choose to get vaccinated. However, when β = 7/10, there is a unique endemic
equilibrium in which no one gets vaccinated.

Assuming multiple endemic equilibria coexist, which one the population will
reach may not be pinned down by the initial conditions. As shown in [9], fixing the
initial prevalence P0 and assuming that there are no vaccinated agents at time 0, there
can exist multiple REEs which differ significantly in their limiting behavior. For the
same value of P0, there can be a REE in which the population converges to the high
vaccine coverage equilibrium, another REE in which the population converges to
the no-vaccination equilibrium, as well as REEs in which the prevalence oscillates
over time and never reaches a steady state value.

These results regarding the model with voluntary vaccinations have important
policy implications. Because there can be multiple equilibria when vaccine efficacy
is not sufficiently high, it can be difficult to predict beforehand the effects of
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various public health policies to combat epidemics. In particular, as discussed in
[9], when multiple equilibria coexist, agents’ beliefs and expectations regarding
how the epidemic will play out in the future can determine which equilibrium will
obtain. This is the case since agent’s expectations affect their actions, which in turn
influence the behavior of prevalence over time. Thus, the model suggests that, in
formulating control strategies, there are situations in which policy-makers need to
also consider what kind of messages and information to convey to the public, since
these can affect people’s forecasts and expectations and thereby impact the course
of an epidemic.

3.3 The Model with Both Self-protective Action
and Vaccination

The model with both the self-protective action and vaccination lets us examine how
agents select among multiple risk-reduction options that can differ in efficacy and
cost. In particular, it allows us to analyze how people respond in terms of their risk
behavior to the increased availability of a vaccine and the subsequent effects on the
population as a whole. As with the model in which vaccination is the only risk-
reducing strategy available, multiple endemic equilibria can coexist when vaccine
efficacy is low.

Assuming that vaccination is initially not an option, making an imperfect vaccine
accessible to the population at cost cv can lead to a perverse outcome in which the
steady state prevalence increases [7]. This occurs due to behavioral disinhibition:
with the availability of the vaccine, agents have less incentive to take the self-
protective action; and if εs, the efficacy of the self-protective action, is sufficiently
high, this behavioral response can result in higher prevalence. Similarly, when a
vaccine is already available in a population, behavioral disinhibition can cause
the prevalence to rise when the cost of vaccination decreases (which can result,
e.g., from a government subsidy for vaccination). Note that this perverse effect of
introducing a vaccine cannot occur in a model in which the self-protective action is
not available as an option. In such a setting, making a vaccine available cannot lead
to a higher equilibrium prevalence.

It is well-known from the literature on voluntary vaccinations that, in general, the
equilibrium amount of vaccination in a population is lower than the socially optimal
amount [4, 12]. However, this result assumes that vaccination is the only risk-
reduction option available to individuals. An important topic that can be pursued
in future research in this area is to consider how the equilibrium level of vaccination
compares to the socially optimal level when people can engage in multiple forms of
risk-reducing behavior.
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4 Conclusion

The economic approach to studying the transmission of infectious diseases provides
an analytical framework for making predictions about how people will respond to
an epidemic. Furthermore, this framework can be used for normative analysis to
determine how various policies and control strategies can affect the well-being of
the population under consideration. By examining explicitly people’s incentives to
alter their behavior in response to an infectious disease, the economic approach often
yields counterintuitive results with significant policy implications. It is important to
note that, from an economic perspective, reducing prevalence may not always be
socially desirable. This follows since we need to take into account society’s cost of
reducing prevalence and weigh that against the welfare cost of infection. If the cost
to society as a whole of a policy that decreases the number of infections by a certain
amount exceeds the resulting gain to society, then such a policy would lower social
welfare if implemented.

The model presented here is highly stylized and omits many aspects of people’s
decision-making process, how people interact with others, or the disease trans-
mission process. Nevertheless, this simplified model is useful for identifying the
relevant trade-offs people have to make during an epidemic and how these are
affected by changes in their decision environment. This understanding can thus
serve as key building blocks for the analysis of more complex economic models
of disease transmission.

An important extension of the existing literature in economic epidemiology
is to consider the effect of imperfect information. The model discussed here
assumes that people always know with certainty their infection status. Naturally,
such an assumption would not be appropriate when studying diseases that have an
asymptomatic phase during which one can infect others without showing any signs
of illness. Furthermore, agents in the model are assumed to know the prevalence in
every period, which need not obtain even if everyone always has perfect information
regarding their own health status. As has been shown in [8], varying the amount
of information that agents have about how widespread a disease is can affect
their behavior and hence disease incidence. Given that economists have already
developed a rich set of analytical tools to study decision-making with imperfect
information, future research in the economic modeling of epidemics can examine
how people’s behavior is affected by uncertainty regarding one’s own health status
or the health status of others in the population. This would give us a better idea as
to how disease transmission will be affected as people modify their behavior during
an epidemic outbreak and what policy or mix of policies to implement to optimally
manage the situation.
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Mathematical Epidemiology and Welfare
Economics

Mark Gersovitz

Abstract Economics provides theories of private behavior and government
policy that can be integrated with mathematical epidemiology, as illustrated in a
susceptible-infected-susceptible model of infection. Confronting infections, people
decide on prevention and therapy with regard to consequences for themselves but
not for others, the economic concept of an externality. Public policy can optimally
offset the externality by subsidizing prevention and therapy at equal rates (or
less practically, taxing infection). Absent such interventions, seemingly beneficial
changes such as a decreased cost of infection can perversely lower welfare by
worsening the externality, the economic concept of immiserization. Other issues
discussed include uniqueness and stability of the optimal steady state and its
response to parameter changes.

1 Introduction

This chapter discusses choices that affect people’s health, choices about prevention
and therapy made by individuals and governments in an environment of infectious
diseases. Choice requires options. The range of options and their consequences
provide the constraints on choice. Choice also presupposes objectives, the goals
that individuals and governments pursue. This chapter discusses both constraints
and objectives and how the decisions of individuals and governments to maximize
their objectives subject to their constraints produce behavioral outcomes and the
dynamics of infectious diseases. To fix ideas, this chapter illustrates these general
principles with a model of transmission of a susceptible-infected-susceptible (SIS)
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disease, drawing on [6].1 Throughout, the discussion is abstract and is therefore
an exercise in pure theory that is not yet ready to guide actual policy toward any
particular disease.

Any approach to infectious diseases recognizes that a person who becomes
infected and stays that way poses risks of infection to others. Presumably in many
if not most such instances a person who poses such risks does not take into account
in deciding about prevention and therapy the benefits to other people if that person
is uninfected. Any such subsequent infections of other people, however, impose
costs on them and their own attempts to avoid such infections also imposes costs
on them. In modeling infectious diseases, one focus of economics is understanding
the discrepancy between the costs and benefits as seen by self-interested individuals
who make choices about prevention and therapy and the totality of these costs and
benefits as seen by society as a whole. This discrepancy is termed an externality,
for the costs and benefits that are external to the person making the decisions.
Differences in the optimal choices as seen by individuals and by governments about
prevention and therapy then provide the rationale for public policy to align private
and social choices.

Certainly, epidemiologists are well aware that infectious diseases pose problems
because the infection of an individual may have consequences for others. They use
terms such as mass or community effects or herd immunity for phenomena that
economists would term externalities. What primarily distinguishes these notions
from the externality is that the economic concept of an externality is anchored in
an explicit comparison between the incentives faced by rational individuals acting
alone and by the policy maker acting for society as a whole. Furthermore, in acting
for society as a whole, the policy maker’s valuation of an individual’s well-being
does not differ from that individual’s own valuation. Where the policy maker differs
from individuals is in recognizing that individuals’ actions taken together have
consequences for people’s well-being as a whole. This notion is made more precise
in the succeeding sections in which the objective of the social planner and the
representative private decision maker are congruent but their constraints differ.

Like any models, therefore, the one presented here has its assumptions, some
of which may be unfamiliar, even uncongenial, to noneconomists. First of all,
the decision makers both private and public are rational in that they maximize
an objective subject to constraints. Second, because the problem is a dynamic
one, individuals and policy makers have to form expectations about the future
most especially about future values of the infection rate which determines the
probability of infection. To avoid compounding the identification of any externalities
with problems of myopia, decision makers are assumed to foresee perfectly the
dynamics of the infection as summarized in the proportion of the population that is
infected (a special case of rational expectations because the model is not inherently
stochastic). Furthermore, to the extent that disease persists, it affects the well-being

1This chapter is not a survey of contributions by economists to the study of infectious diseases and
does not undertake any literature review. Paper [3] provides such a survey and should be seen as a
complement to this chapter.
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of people into the indefinite future. Decisions taken today affect the future course
of the disease and therefore affect the welfare of people in the future, including
the welfare of people born after the decisions were made. The decision makers are
therefore assumed to have objectives formulated in a way that provides a consistent
accounting for present and future well-being so that decisions are made taking into
account their future consequences. Finally, the model is simplified so that people
do not care whether they have access to insurance against the costs of the disease
or not, again to focus on externalities rather than problems in insurance markets. I
sketch some alternative ways to formulate the model so that people do care about
access to insurance, a topic for future research.

The next section lays out the accounting for people by disease status and
the dynamics that move people from one status to another, the constraints on
optimization. The following section introduces the objective of decision makers
taking into account the costs of prevention, therapy, lost work time, pain, and
suffering. As is conventional in modeling externalities, this chapter next discusses
the problem of a hypothetical social planner who can directly control all preventive
and therapeutic actions. Maximization of the objective function subject to the
constraints provides the optimal solution to the social planner’s problem and some
of its properties. The next section looks at decisions by individuals, their deviations
from the social planner’s choices, and hence the existence of externalities and the
role for public interventions to achieve the social planner’s optimum.

2 The Dynamics of Infection and the Constraints on Choice

In the SIS model of infections transmitted from person to person, the total number
of people (N) is the sum of the number who are susceptible (S) or infected and
infectious (I):

N = S+ I. (1)

The proportions of these groups in the population are denoted by s (= S/N) and
i (= I/N) so that s + i = 1. The birth rate of the population is ε . For simplicity
no deaths occur at all. An assumption that people die at the same rate regardless
of whether they are infected or not would just introduce an extra parameter of no
interest to the questions of this chapter. Specifying a death rate that depends on
infection status is contrary to the assumption of an SIS infection; [6] discuss a model
in which infection raises the probability of death. The net change in the population
is therefore

Ṅ = εN. (2)

The number of susceptibles changes over time according to

Ṡ = εN −αSi+β I. (3)
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Given Eq. (2), the first term of the right-hand side embodies the assumption that
all newborns are susceptible. The second term reduces the number of susceptibles
by those people who become infected. Under the assumption of random (or
homogeneous) mixing, the probability per contact of a susceptible person’s meeting
an infected (and infectious) person is the proportion of infected people in the
population, i = I/N. The product, Si, is the number of susceptibles who do so. The
factor α is a composite term incorporating both the rate of contact and the inherent
infectiousness of an infected (or susceptibility of a susceptible). The third term, β I,
is the addition to the susceptible pool resulting from the recovery of infecteds at rate
β . Eqs. (1)–(3) can be solved for the change in the proportion of susceptibles:

ṡ =−αs(1− s)+ (β + ε)(1− s). (4)

So long as the symbols α and β represent constant parameters, this equation
is a classic model in mathematical epidemiology. In traditional epidemiological
modeling, α and β are invariant (or exogenous) within any model. In particular, they
do not vary with the prevalence the infection, i, or equivalently in an SIS model, the
variable s. A simple representation of behavior in such a model is to assume that in
some places or times, α and β take specific values but that in other places or times,
they take different values. For instance, there may be immutable customs that differ
among communities and affect the ease of becoming infected and of recovering
with corresponding consequences for α and β . But an economist would not think of
these differences as constituting a behavioral model of the transmission dynamics
of an infectious disease. In such circumstances there would not be any choices that
individuals could make and consequently none that could or should be affected by
government policy.

Behavior enters the model if people make choices about preventive effort and
therapeutic effort that affect α and β . Most importantly, these choices respond to
the state of the infection (summarized by s in an SIS model), because the risk of
infection is proportional to the infection prevalence, i = 1− s, and this risk shifts
the costs and benefits of prevention and therapy. A summary representation of
these notions would be to make α and β functions of s, so that Eq. (4) would be
modified to:

ṡ =−α(s)s[1− s]+ [β (s)+ ε][1− s]. (5)

Philipson [9] termed this type of dependence of α and β on s the prevalence
elasticity of behavior, and he emphasized it as the touchstone of an economic
approach to epidemiology.

Certainly, there are properties of Eq. (5) that are worth exploring. Such properties
include whether the steady-state value of s is unique, whether it is stable, and the
conditions under which these properties obtain. Some of these issues are discussed
in [4]. But if Eq. (5) is the starting point for an investigation, little can be said
about the functional forms of α(s) and β (s), how they differ according to whether
individuals are making all the decisions or governments are also intervening, and
therefore the social desirability of the choices made by individuals and the role for
public interventions.
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Thus it is desirable to move back from Eq. (5) and rebuild it from the underlying
components of the problem, the objectives, and constraints faced by maximizing
decision makers and their consequent choices. The first step is to recognize that α
and β do not depend directly on the prevalence of the infection, i = 1− s, but rather
on the inputs of preventive effort and therapeutic effort which are in turn choices.

Either input may be targeted in the sense that only a proportion of the population
generates costs associated with the input. Let θ j, j = a,b be the proportions of the
population that generate either preventive or therapeutic costs associated with an
infectious disease. The θ j are termed targeting functions; in general, they depend
on s. The most natural formulation would be for prevention to be targeted at the
susceptible (θ a = s) and for therapies to be targeted at the infected (θ b = 1− s).
Other formulations may, however, be plausible depending on the ability to identify
and reach different groups and what makes sense in terms of the disease and the
balance of costs and benefits. The type of targeting may be a choice variable, but
in this chapter it is a technical given. For example, in the case of a respiratory
infection such as a cold or influenza, θ a could plausibly take values of 1, s, 1− s,
and s(1 − s). In the first case, everyone wears a mask, in the second only the
uninfected do so, in the third only the infected do so (as in Japan), and in the fourth
only in matchings involving an uninfected and an infected person do people wear
masks. For therapeutic interventions, the simplest case is targeting exclusively at
the infected so that θ b = (1− s). If it is difficult to diagnose the disease, cheap
to treat, and treatment does not have important side effects, then mass treatment
may be adopted with θ b = 1. Such targeting has been tried for sexually transmitted
diseases.

In all these targeting schemes for prevention and for therapy, it is the level of these
health inputs per targeted person that affect the parameters of the model directly,
with prevention lowering α and therapy raising β . The number of units of preventive
effort is denoted by a and the number of units of therapeutic effort is denoted by
b so that α(a) and β (b). Thus a and b determine, respectively, the rate of new
infections and the rate of transition back to being susceptible. The preventive and
therapeutic interventions exhibit positive but diminishing marginal products, i.e.,
α ′ < 0, α ′′ > 0, β ′ > 0, and β ′′ < 0. For many if not all diseases there is scope for
undertaking additional preventive and therapeutic interventions although they are
marginally less and less productive.

All types of targeting considered in this chapter will produce a dynamic equation
of the form

ṡ =−α(a)s[1− s]+ [β (b)+ ε][1− s]. (6)

Other types of targeting would not. For instance, if only some of the susceptibles
are targeted by prevention, then there would be two groups of susceptibles and their
dynamics would have to be tracked separately and the model would no longer have
only one state variable. But for the types of targeting considered in this chapter,
Eq. (6) is operative and the problem is then to show how a and b depend on s.
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3 The Well-Being of Individuals and the Consequences
of Infectious Diseases

In evaluating situations, economics usually starts with the utility function, a
relationship between consumption and well-being. It provides both a component
of predictive theories based on the hypothesis that individuals maximize utility and
a method of evaluating any situation from a social perspective based in individuals’
own evaluation of that situation. When the situation is one involving health, a
general formulation of the utility function would make it depend on health status as
well as consumption. This approach differs from that of cost-effectiveness analysis
which explicitly sidesteps the question of the utility of health; paper [5] discuss
criticisms of cost-effectiveness.

A person who is susceptible (and therefore healthy) and who consumes com-
modities other than those involved in health of quantity cs has utility function
Ψ s(cs), (Ψ s)′ > 0, and (Ψ s)′′ < 0, with these derivative conditions representing
the assumption that marginal utility of consumption is positive but diminishing. A
person who is infected and therefore ill consumes other commodities of quantity
ci and has utility Ψ i(ci) with the same derivative properties. The costs of being
infected, therefore, affect the utility of individuals in two ways. First, there are
monetary costs. People may have less to spend on the consumption of other
commodities if they become infected because they spend on therapy and because
their ability to earn income is impaired. They may also be continuing to spend
on prevention. At the same time, they may be receiving insurance payments and
paying insurance premiums. If people are uninfected (and susceptible), they may
be spending on prevention and paying insurance premiums. Second, people who
are infected experience pain, suffering, and other physical impairments which
affect their level of well-being. Formally, these latter consequences of illness are
represented by the fact that the functions Ψ k(ck) k = i,s are superscripted and are
therefore potentially completely different functions of the argument. About all that
can be said is Ψ i(c) <Ψ s(c), the utility of being infected is less than the utility of
being susceptible if the amount of consumption is identical. Importantly, there is no
presumption about the relative magnitudes of the marginal utilities of consumption,
the (Ψ k)′, if consumption is identical, i.e.,

(
Ψ i(c)

)′
and (Ψ s(c))′ bear no necessary

relation to each other.
A specialization of these utility functions is: Ψ i(ci) =Ψ (ci)− h and Ψ s(cs) =

Ψ(cs), h > 0 in which case the marginal utilities of consumption are the same if the
value of consumption is the same and only the term h represents the utility loss from
pain, suffering, and other physical impairments. Nonetheless, there are potentially
important effects of the dependence of utility on health status even in this restricted
specification.

A yet further simplification is to assume that all the effects of illness can be
represented by money and can therefore be subtracted from available income (or
have lowered income beforehand in the case of lost work opportunities). In this case,
utility depends only on consumption and the utility function is the same regardless
of disease status, Ψ(c). There is potentially a long list of these monetary costs.
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Suppose prevention costs pa per unit and each targeted person receives a units.
There are θ aN such people so that the total cost of prevention is paaθ aN. Similarly,
if therapy costs pb per unit, the total cost of therapy is pbbθ bN. These costs may
be direct monetary costs, such as the cost of a drug, or they may also involve time
in which case monetary estimates could be made and they could be included in the
relevant p j, j = a,b.

Some of the costs of actually being infected and ill are also monetary in a
straightforward way. For instance, people may be unable to work and thereby lose
income. It is more difficult to attach a monetary value to the costs of illness in terms
of pain, suffering, and disability. The simplest cases to consider are ones in which it
is possible to do so. If so, everyone who is ill experiences a monetary cost of pI that
includes the costs of missed work, pain, suffering, and disability and the total costs
of being infected and ill are then pI(1− s)N. Costs of therapy as discussed above
are in addition.

If all these consequences of the existence of the disease can be measured in
monetary terms then once one knows who pays, one can calculate the consequences
for each individual’s well-being. For instance, assume that everyone has income of
V0 available for consumption if there were no disease at all. Furthermore, assume
that targeting is such that susceptibles undertake and pay for prevention (θ a = s) and
the infecteds undertake and pay for therapy (θ b = 1− s) as well as experience the
costs of being ill valued at pI . In particular, there is no health insurance or sharing
of these burdens. In this case the consumption of commodities other than health of
a susceptible person (cs) is

cs =V0 − paa, (7)

and the consumption of an infected person (ci) is

ci =V0 − pI − pbb. (8)

So long as the marginal utility of consumption is declining, there is a motivation
for insurance. People would like to receive an assured level of consumption through
insuring it rather than have a level of consumption that fluctuates with their health
status. Insurance markets are, however, problematic and therefore complicate the
analysis. The simplest assumption is therefore that the utility function, Ψ , is
proportional to the level of consumption, c, so that motivations for insurance do not
arise. In this case, utility maximization is identical to the minimization of the total
costs of the infectious disease, the approach adopted in this chapter following [6] as
well as other earlier analyses of the optimal control of infectious diseases. Part of the
agenda for future research is to introduce more complicated versions of the utility
functions into the analysis with the ultimate goal of providing an understanding of
both externalities and insurance.

The next section shows how the social planner, an idealized decision maker for all
people in the society, can use this notion of utility to specify objectives to maximize
subject to the constraints of the infection process outlined in the preceding section.
The important principle is that the social planner’s valuation of any situation in terms
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of the prevalence of infection and the availability of resources for consumption of
commodities other than health is an aggregation of the valuations of the members of
the society. The difference between the decisions of the idealized social planner and
of individuals is not how the social planner values each person’s well-being relative
to how that person values his own well-being but rather in how the social planner
accounts for externalities.

4 The Social Planner’s Problem

The objective of government policy is to maximize people’s well-being over
the indefinite future, not just in the current period. Some method is therefore
needed to aggregate people’s well-being as represented by their utility in each and
every period. In the case of cost minimization, the present discounted value of
consumption is the obvious criterion because it takes account of the time value of
money. Costs incurred at different times can be expressed in the common unit of
present discounted value by using the interest rate. If the interest or discount rate is
constant, the present discounted value of social welfare is

W =
∫ ∞

0
{csS+ ciI}e−rtdt =

∫ ∞

0

{
V0N − [pIiN + paaθ aN + pbbθ bN]

}
e−rtdt (9)

in which r is the discount rate.
Equation (9) therefore provides the objective function and Eqs. (2) and (6)

provide the dynamic equations that constrain the optimization problem. The current-
value Hamiltonian, H, is

H = N
{

V0 −
[

pI(1− s)+ paaθ a + pbbθ b
]}

+(λsN)[(1− s)(ε +β )

−αs(1− s)]+λN[Nε], (10)

in which (λsN) and λN are the current-value multipliers. Because λsN is the
multiplier on the change in s, it has the interpretation of the value of a unit increase
in s on social welfare, W . The variable λs therefore has the interpretation of the value
of an increase in s on the welfare of the average member of society, or alternatively
as the value of an increase in one susceptible person on social welfare. Because W
is measured in monetary units, e.g., dollars, λs is measured in monetary units and is
like a price, but because it is not actually a price in a market, economists term it a
shadow price. In Eq. (10) and what follows, the arguments a and b of α and β and
their derivatives are suppressed for compactness when there should be no ambiguity.

The first derivatives of H with respect to the controls, a and b, set equal to zero
imply

paθ a =−λsα ′ s(1− s), (11)
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s = 0
.

λs  = 0
.

s

λs
Fig. 1 The phase diagram of
an SIS disease: a stable case

and

pbθ b = λsβ ′(1− s), (12)

Equation (11) equates the marginal cost of an increase in the preventive intervention
as determined by the product of its price and targeting function to the marginal
benefit of the increase in the proportion of the population that is uninfected achieved
by the increase in preventive effort as valued using the shadow price of s, λs.
Equation (12) similarly equates the marginal cost of an increase in therapeutic
intervention as determined by the product of its price and targeting function to the
marginal benefit of the increase in the proportion of the population that is uninfected
achieved by the increase in therapeutic effort. All marginal costs and benefits are
expressed in terms of the welfare of the average member of the economy measured
in monetary units.

Under the assumptions on the θ j and on α ′ and β ′, the λs must be positive
if Eqs. (11)–(12) are to hold. In addition, the dynamic equation for the multiplier
implies:

λ̇s = rλs − (pI − paaθ a
s − pbbθ b

s )+ (α(1− 2s)+β )λs. (13)

Note that Eqs. (6) and (11)–(13) form a system of equations without the need for
Eq. (2) or consideration of the variable N. Thus the steady state (states if there are
more than one) of the system can be found by setting Eqs. (6) and (13) to zero and
using Eqs. (11)–(12) to substitute (implicitly) for the variables a and b. Similarly,
some qualitative properties of the dynamics of the system can be inferred from the
phase diagram plotted in s-λs space, Fig. 1.

To simplify what follows, assume that θ b = 1− s, so that targeting of therapeutic
interventions is restricted to the infected and therefore θ b

s =−1. Total differentiation
of Eqs. (11)–(12) implies

aλ ≡ ∂a
∂λs

=− α ′

λsα ′′ > 0, (14)
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as ≡ ∂a
∂ s

=
α ′

θ a

[
θ a

s s(1− s)−θ a(1− 2s)
α ′′s(1− s)

]

� 0, (15)

bλ ≡ ∂b
∂λs

=− β ′

λsβ ′′ > 0, (16)

and

bs ≡ ∂b
∂ s

= 0. (17)

These expressions simplify the following discussion. They all have straightforward
interpretations, except perhaps the indeterminate sign of the expression in Eq. (15)
for the partial effect of s on a. This ambiguity arises because s influences both the
marginal cost of an increase in a, via its role in the targeting function, and the
marginal benefit of an increase in a, via the effect of s on the dynamics of the
infectious diseases. The variable as: (1) has the same sign as (1− 2s) if θ a = 1; (2)
is negative if θ a = s; (3) is positive if θ a = (1− s); and (4) is zero if θ a = s(1− s).

So far the discussion has proceeded on the presumption that Eqs. (6) and (11)–
(13) determine a path to a unique optimal steady state, but this need not be so.
There may be bifurcations in the phase diagram in s − λs space so that a Skiba
point exists that divides the state space into different regions from which the system
converges to different optimal steady states [8]. Paper [7] provides an analysis of
this phenomenon in a model that is similar to the one in this chapter and paper [4]
provides some further discussion of the model in this chapter. There do not seem
to be general conditions that ensure uniqueness in terms of the underlying structure
of the problem. In what follows, I assume that there is a unique path to a unique
optimal steady state. By implicit differentiation, the slope of the locus in the s-λs

plane that is obtained from setting Eq. (6) to zero is

[
∂λs

∂ s

]

ṡ=0
=

α +α ′sas

β ′bλ −α ′saλ
=

?
+
, (18)

and the slope of the locus from setting Eq. (13) to zero is:

[
∂λs

∂ s

]

λ̇s=0
=

−(paasθ a
s + paaθ a

ss − 2αλs+(1− 2s)α ′asλs)

[r−αs+β +(1− s)(α +α ′sas)]
=

+

?
. (19)

The signs of both slopes are ambiguous, partially for the same reason that the sign of
as is ambiguous. Further progress requires the separate consideration of the different
cases of θ a.

In two cases, θ a = s and θ a = s(1 − s), both slopes are positive when the
equations of motion are linearized about the steady state so long as a variant of
the conventional condition that the interest rate exceeds the population growth rate
holds, r > ε , so that the society will not have infinite present discounted value and
it makes sense to maximize the integral in Eq. (9). If the slope of the λ̇s = 0 locus is
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flatter than that of the ṡ = 0 locus in s-λs space, there is a unique stable path to the
steady state because the characteristic equation of the linearized dynamic system
has one positive and one negative real root (see Fig. 1). On this path, the variables
s and λs move together toward the steady state, and b and β move with them so
that therapeutic effort increases as the proportion of susceptibles is increasing as it
approaches the equilibrium from below (or the reverse if from above). Preventive
effort, a, and α move as determined by the relation between a and b as given by
Eqs. (11)–(12), decreasing with the proportion of susceptibles if θ a = s and varying
with it if θ a = s(1−s). If the slope of the λ̇s = 0 locus is steeper than that of the ṡ= 0
locus in s-λs space, however, there is no stable path to the steady state. This chapter,
however, does not discuss these divergent cases and is restricted to situations in
which the structure of the model is such that policy takes the system to a unique
optimal steady state in which the disease is endemic (0 < s∗ < 1).

The two remaining cases, θ a = 1 and θ a = 1− s, are slightly more complicated.
When the model is linearized about the steady state both slopes may be positive,
as in the preceding two cases and the foregoing analysis obtains. It may be that the
slope of the λ̇s = 0 locus is positive and that of the ṡ = 0 locus is negative or both
slopes may be negative, but the λ̇s = 0 locus is more negatively sloped. Both these
cases are unstable and are not considered on the assumption that there is a unique
stable steady state.2

The economic parameters of the model are the three prices, pI , pa, and pb, and
the interest rate, r. Changes in these parameters affect choices about prevention and
therapy and the outcomes of welfare and the infection rate, i. Welfare rather than the
infection rate is really what is important; it is, after all, what is being maximized.

For any change in the price parameters x = pI, pa, pb, the effect on W is given by
the dynamic envelope theorem (see [1], Chap. 9 and 14):

dW
dx

=

∫ ∞

0
e−rt ∂H

∂x
dt, (20)

in which H is given by Eq. (10). By inspection of Eq. (10), it is immediately apparent
that the effects of increases in all three prices is to lower welfare as would be
expected.

Although secondary to the effects on welfare, the effects of the parameters on the
steady-state infection rate, i = 1− s, may also be of interest. The parameters pI and
r enter Eq. (13) for λ̇s but not Eq. (6) for ṡ , nor do they enter Eqs. (11)–(12). They
therefore shift the λ̇s = 0 locus but not the ṡ = 0 locus.

Consider the effect of an increase in pI on s∗, the steady-state number of
susceptibles in the stable case of Fig. 1. The λ̇s = 0 locus shifts up and s∗ rises;

2Paper [6] mistakenly stated (pp. 13–14 and Fig. 1c) that there could be a stable case with both
isoclines negatively sloped and with the s-isocline more negatively sloped. This case would be
stable were it possible, but it is impossible under the restrictions of the model as can be proved by
careful collection of algebraic terms.
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use of therapy increases but the change in prevention depends on targeting. The
reverse change, a decrease in pI , naturally produces the reverse change in s∗ and
the equilibrium infection rate, i∗ = 1− s∗, rises. The use of therapy declines, and
in epidemiological terminology, there is disinhibition of therapy which may extend
to prevention as well depending on targeting. On balance, disinhibition is so strong
that the social planner adjusts the package of prevention and therapy in a way that
leads to an increase in infection. But the well-being of members of society increases
consequent on the decrease in pI regardless as has already been established in the
discussion of Eq. (20). The change in well-being and not that in the infection rate
is what is ultimately important and avoiding disinhibition is not relevant to what
the social planner should do. Indeed, if the social planner were arbitrarily ordered
to keep the levels of a and b at the values that were optimal before the fall in pI ,
welfare would not rise as much because it is suboptimal not to adjust a and b given
the shift in costs relative to benefits.

The effect on s∗ of an increase in r is opposite to that of pI . The costs of
prevention or therapy are borne immediately while their benefits are received over
time. Because an increase in r leads to a diminished weight of the future in decisions,
an increase in r leads to an increase in the optimal steady-state proportion of the
population that is infected.

The effects of the other two parameters are more complicated, however, because
both loci shift. The impact effect (s and λs fixed) of an increase in the price of either
preventive or therapeutic interventions is to decrease the amount used via Eqs. (11)–
(12) and therefore either a and α or b and β are affected in both equations.

In the case of an increase in pb, both the ṡ = 0 and the λ̇s = 0 loci shift up. The
shift in the ṡ = 0 locus tends to lower s∗ while the shift in the λ̇s = 0 locus tends
to raise s∗ and consequently the net outcome is ambiguous even when the algebraic
magnitudes of these shifts are taken into account. The rationale for this ambiguity is
as follows: The price of a therapeutic intervention, pb, enters the dynamic equation
for the co-state variable in the same way as the cost of being infected, pI . One of the
effects of an increase in pb is therefore to raise s, just as an increase in pI does; in
effect an increase in the cost of being cured is like an increase in the cost of being
infected because every infection induces expenditures on therapeutic inputs. But
there is also the fact that it is more expensive to be cured so that it may be desirable
to spend less on b and be cured less quickly. That the first effect can dominate is
easily seen from the special case when b is fixed at some positive value (perhaps
for technological reasons) so that therapeutic effort is not adjusted in response to its
price increase. The preventive intervention can still respond, however, as it would
to a change in pI and the steady state proportion of the uninfected, s∗, is thereby
increased.

In the case of an increase in pa, the ṡ = 0 locus also always shifts up regardless
of targeting. When the system is linearized about the steady state, the λ̇s = 0 locus
shifts according to the sign of

−aθ a
s −θ aas

r− ε +(1− s)(α +α ′ass)
,
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rising with an increase in pa if this expression is positive and falling if it is negative.
The denominator is unambiguously positive regardless of θ a so long as the steady
state is stable. The sign of the numerator is ambiguous in all four cases; if θ a = 1 or
θ a = s(1− s), this numerator has the sign of (2s−1). Once again, these ambiguities
stem from the role of s in affecting both the costs and benefits of an increase in a (see
the discussion of as). Consequently, little can be said about the effect of pa on s∗.

5 Decentralization

To this point the discussion has concerned the problem of the social planner who
directly controls the values of a and b in a model without people who make decisions
that affect their own health. The next step is to consider private decisions and their
implications for government policy. If people do not take into account the effect on
the infection of the general population caused by their ability to infect others if they
become infected, they generate an externality.

In the model, governments can subsidize preventive and therapeutic activities,
the privately chosen values of a and b. In reality, for some diseases, there will be
some inputs that are marketed and some inputs that do not go through markets, like
time and effort by the person at risk for infection or already infected. Some of these
activities may even be entirely unobservable by third parties because they involve
private and intimate behavior. Thus the government can subsidize condoms but not
the act of safer sex. Some public health programs such as directly observed therapy
short course (DOTS) in the case of tuberculosis and other diseases are attempts by
the public health authorities to monitor and encourage patient compliance at least
partially for its benefits external to the patient. The expenditure on such programs
is, of course, a type of subsidy. In the case of any specific infectious disease and its
control, these issues need detailed attention. In general, when a and b involve non-
marketed and unobservable actions the subsidy/tax interventions may be infeasible
or may have to be targeted only on the marketed components of preventive and
therapeutic activities with limitations on their effectiveness.

The simplest way to illustrate the externality and its implications for policy is to
assume that private decisions are made by a group of people termed a household, a
construct that serves as the representative decision-making agent. This construct
provides a logically consistent and analytically tractable model to contrast with
the model of the social planner: First, the household’s objective function is fully
congruent with the social planner’s. Furthermore, the household understands and
anticipates the dynamics of the infection and therefore how the variable i will evolve
and is fully forward-looking with regard to its future status as well as its current one.
In its current decisions, the household takes account of the dynamics of the infection,
its implications for the future risk of infection, and its implications for all the
household’s descendants. For instance, if the future probability of infection is high
it affects the current incentive of the household to make therapeutic expenditures.
It is therefore the case that the rationale for government interventions does not
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depend either on myopia or on a discrepancy between the social planner’s and the
representative agent’s valuation of outcomes. Instead, the assumptions isolate the
pure externality motivation for government intervention. To the extent that there are
deviations from the preceding assumptions on the behavior of the household, there
may be other important reasons for government interventions but they are not the
subject of this chapter.

As is conventional in the public-economics treatment of externalities, the only
distinction between the social planner and the representative agent is that the
household is assumed to be small relative to the population as a whole, in this
case so that the proportion of the household in any disease status does not affect
the proportion of the population as a whole that is in that status. In particular, this
household takes as given the proportion of the population that is infected at any time,
i= 1−s, which equals the probability, π , that any random contact is with an infected
person. The household neglects its effects on the aggregate infection rate because
such an effect is too small for the household to take into the account as it affects the
well-being of its own household members and because the selfish household does
not care about its effects on all the other households even though these effects taken
together are not negligible. Second, the household is assumed to be sufficiently
large that it can fulfill the role of a representative agent and therefore that the
proportion of the household in each disease status is identical to the corresponding
population proportion. Finally, it is this household that takes decisions about the
interventions, a and b. Because the instantaneous utility function is linear, there is
no sense in which the household is performing any implicit insurance function for
its members. A perhaps more realistic but only perhaps (because people do indeed
live in households) and less tractable approach would build the society from private
decision makers each of whom is in one or another disease status at any one time
and taking decisions about either prevention or therapy, with regard to their possible
future status as well as their current one.

The dynamic equations of this version of the model are the same as for the social
planner except that in Eq. (6) the term αs(1− s) is replaced by αsπ to denote the
exogeneity from the household’s viewpoint of the proportion, π , of the population
(in contrast to the proportion, i, of the household) that is infected.

A further change has to be made to the objective function to reflect the possibility
of government interventions. If there is an externality, the government may find it
optimal to subsidize or tax preventive and/or therapeutic inputs. To allow for these
possibilities, the representative household faces prices of q j = (1+ t j)p j, j = a,b.
As is standard in public economics, so that any interventions are revenue neutral in
a way that does not have any incentive effects beyond the t j, the household receives
a lump-sum payment (possibly negative) per household member of T that it takes
as exogenous to its own choices about prevention and therapy but that in fact equals
ta paahθ a + tb pbbhθ b. A superscript indicates that the variables are evaluated at the
household’s values rather than the social planner’s. If this lump-sum offset were not
part of the package, the household’s welfare would be affected by its experiencing
a net loss or gain of income as the government intervenes with taxes or subsidies



Mathematical Epidemiology and Welfare Economics 199

to offset the externality. The decentralization results that follow would not obtain as
can be seen by following the steps of the proofs without the assumption of revenue
neutrality.

With these modifications, the household’s current-value Hamiltonian is:

Hh = Nh
{

V h
0 − [pIi

h + qaahθ a + qbbhθ b]+T
}

+ (λ h
s Nh)[(1− sh)(ε +β )−αshπ ]

+ λ h
N [εNh]. (21)

All functions of variables (θ , α , and β ) are evaluated at the household values of
their arguments while ε is a constant common to both the social planner’s and the
household’s models.

Once again, assume that only the infected are targeted by therapies, so that θ b =
(1− sh). Differentiation of Eq. (21) with respect to a and b implies:

qaθ a =−λ h
s α ′sh(1− s) (22)

and

qbθ b = λ h
s β ′(1− sh), (23)

and the co-state equation is:

λ̇ h
s = rλ h

s − [pI − qaahθ a
s − qbbhθ b

s ]+ [α(1− s)+β ]λ h
s . (24)

Because the group is representative of society, s must equal sh. Once this
substitution is made, the only differences between Eqs. (11)–(13), the planner’s
problem, and Eqs. (22)–(24), the private problem, are the q j and the (1− s) term
at the end of Eq. (24) rather than the (1 − 2s) term at the end of Eq. (13). This
latter difference reflects precisely the fact that the household takes the general rate
of infection as exogenous in making its decisions and this difference determines
whether the government’s optimal intervention is a tax or a subsidy as is shown
below. Note that the s-isocline takes the same form for the problem of Eq. (21) as
for the problem of Eq. (10) and therefore has the same position in Fig. 1. The λ -
isocline has been altered from Eq. (13) to Eq. (24) and is lower in Fig. 1 than in the
social planner’s problem if there is no government intervention (ta = tb = T = 0).
Consequently the steady state value of s is lower with households rather than the
social planner making decisions, indicative of the diminished incentive to undertake
prevention and therapy faced by households when acting without government
interventions.

At this point, there are two natural goals to the investigation:
First is to establish what the government can do to induce private households to

undertake choices that have been shown to be optimal for the social planner (in the
preceding section). In particular, the goal is to find the taxes (or subsidies depending
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on whether they are negative or positive) that induce this behavior, termed the
decentralization problem. If the social planner’s choices can be decentralized then
the analysis of the effects of parameter changes on well-being and the infection rate
is identical to that of the social planner and, in particular, disinhibition, if any, is a
side effect of the optimal choices and is not relevant in guiding what should be done.

Second is to establish some of the consequences if the government does not
intervene at all. For instance, there is the question of how welfare responds to
changes in the parameters if the government does not intervene. In particular, can a
change such as a decrease in the cost of infection, pI , that improves welfare when the
social planner is taking decisions instead lower welfare when decisions are made by
households in the absence of government intervention to implement (decentralize)
the social planner’s solution? If it does so, it is because the direct effect of the
parameter change (corresponding to what would happen in the social planner’s
problem) is overwhelmed by a worsening of the externality, the discrepancy between
the social and private decisions. Immiserization is the economist’s term for this type
of outcome.

Turning to the first goal, the main result is that, in principle, the government can
induce private decision makers to make decisions that coincide with the planner’s
problem by instituting equiproportionate changes in pa and pb. Comparison of
Eqs. (11)–(12) with Eqs. (22)–(23) shows that a property of successful decentral-
ization of the social planner’s problem is ta = tb = t. In other words, the government
compensates for any differences between λs and λ h

s in Eqs. (11)–(12) and (22)–(23).
It does so with a lump-sum offset, T , so that any revenues or expenditures from the
price interventions also appear in the household’s budget. Because the intervention
is only to λ h

s and because of the way λ h
s enters Eqs. (22)–(23), a and b activities

are affected to the same degree. At the steady state, the intervention is a subsidy
(negative tax) at rate t∗:

t∗ =− λ ∗
s αs∗

pI +λ ∗
s αs∗

< 0, (25)

in which λ ∗
s and s∗ are the values from the planner’s steady state [6]. Furthermore,

for any non-steady-state s, the government must intervene with a subsidy [6]. This
finding that the intervention is a subsidy coincides with the intuition that private
decisions ignore the benefits to society as a whole from taking preventive and
therapeutic measures. Subsidization is at equal rates because it is equally beneficial
in preventing further infection to get a person out of the infected pool as to have
prevented the person from getting into it in the first place. These benefits are equally
overlooked by the private decision makers. Note that this policy could also be
implemented by taxing the condition of being infected (raising pI) to raise λ h

s to
coincide with λs.

The second goal is to consider what happens if the government does not intervene
to implement the social planner’s solution, i.e., ta = tb = T = 0. Clearly, the first
observation is that because the choices from the solution to the problem of Eq. (21)
under these conditions are not the same as the solution from the problem of Eq. (10),
the level of well-being under private decision making is lower than when the
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social planner takes decisions. The social planner maximizes well-being; the private
decision maker (household) ignores something that has to be taken into account to
maximize well-being, namely that π = (1− s).

Furthermore, starting from a steady state, the effect of a change in a parameter,
x, on welfare, W , is more complicated when the household takes decisions and
the optimal subsidies have not been put in place. The equation determining the
outcome is

dW
dx

=

∫ ∞

0
e−rt
[

∂H
∂x

+
∂H
∂π

dπ
dx

]

dt =
∫ ∞

0
e−rt
[

∂H
∂x

+λsNαs
ds
dx

]

dt. (26)

This result is an extension of the dynamic envelope theorem to account for the fact
that the household ignores its effect on s through its effect on π (the derivation is
the same as in [1], Chaps. 9 and 14). The term ∂H/∂x has the same sign regardless
of whether it derives from the social planner’s or the household’s problem, although
the values at which it is evaluated differ between the two situations. Because the
model has only one state variable, the state moves monotonically from one steady
state to another so the sign of ds/dx is the same along the path as the sign of the
difference between steady states.

As an illustration of what can happen if the social planner’s solution is not
implemented consider the effect of a decrease in pI . This change increases H as it
did in the social planner’s problem. However, such a change also lowers s, through
disinhibition as households slacken off on prevention and therapy taken together.
Thus Eq. (26) raises the possibility that the net effect on welfare could be negative
if disinhibition is extreme enough not just to lower s but to lower it so much that
the first term of the right-hand side of Eq. (26) is dominated by the second term.
At this point, I do not have an example that leads to immiserization based on a
special case, but substitution for the terms in Eq. (26) makes it plausible that one
exists. The reason immiserization may occur is that households make choices that
are sub-optimal because they disregard their effect on others’ welfare. A decrease
in the cost of infection could worsen this discrepancy between the social planner’s
and the private solution and on balance lower welfare even though the direct effect
of the decrease in the cost of infection is to increase welfare. The outcome is
then immiserization, a perverse transformation of a seemingly beneficial change
into an actual lowering of welfare. This outcome is, of course, only possible if
the social planner’s solution is not decentralized through taxes or subsidies. If the
social planner’s solution is implemented, a decrease in pI does decrease s, but it
cannot decrease welfare because the consequence for welfare is given by Eq. (20)
for the social planner. One could say that the social planner is disinhibited or
that households facing the optimal tax/subsidy package implementing the social
planner’s solution are optimally disinhibited, but they are not immiserized. This
observation underlines the position that the goal of policy is the maximization of
well-being inclusive of all costs and not the minimization of infection.
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6 Conclusions

This chapter has tried to build a bridge between epidemiology and economics, as
regards both terminology and substance. In this chapter, the epidemiological model
is one in which infection spreads from person to person and people recover from the
disease without becoming immune. Paper [6] presents results for models of infection
from person to person that result in death or immunity as well as infections involving
vectors. Gersovitz [2] presents a model of externalities and vaccinations that leads
to explicit formulae for optimal subsidies in terms only of the underlying parameters
of the models without need to calculate multipliers as in Eq. (25).

An important direction for further research in economic epidemiology is to
make the models more realistic by capturing more aspects of infections and their
transmission. A key part of such progress would seem to be a more explicit modeling
of behavior by private decision makers and possibly the strategic interaction of
people who know at least some of the people who are putting them at risk such as
their sexual partners in the case of sexually transmitted infections or their family
members in the case of tuberculosis. Another way to enrich the understanding
from these models is to deal with motivations for public policy in addition to
the externality. Questions of equity arise when people are in different situations
especially because they have different incomes. If people are risk averse cost
minimization is not an appropriate goal and it is necessary to substitute utility
maximization with an explicit treatment of insurance markets and their attendant
problems. The first step is to implement a version of utility maximization rather
than cost minimization as sketched in Sect. 2.
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Modeling Influenza Vaccination Behavior
via Inductive Reasoning Games

Raffaele Vardavas and Christopher Steven Marcum

Abstract Past experiences with seasonal influenza and immunization may affect
individual decisions about whether to obtain vaccinations. Individuals continually
adapt to recent influenza-related experiences, using inductive thought to reevaluate
their options to obtain vaccinations. We explore this concept by constructing
an individual-level model of adaptive decision-making. We couple this model
with a population-level model of influenza that includes vaccination dynamics.
The coupled models allow us to explore how individual-level decisions may change
influenza epidemiology and, conversely, how influenza epidemiology might change
individual-level decisions. By including the effects of adaptive decision-making
within an epidemic model, we show that the behavioral dynamics of vaccination
uptake could lead to severe influenza epidemics even without the presence of a
pandemic strain. We further show that these severe epidemics might be prevented
if vaccination programs provided commitment-based incentives or if mass media
released epidemiological information that individuals can use to evaluate the
prudence of vaccination. Finally we discuss and present some preliminary results
of the model when social networks offer preferential paths for transmission.

1 Introduction

The impact of the spread of an infectious disease through a population can be
strongly influenced by people’s decision-making. Perceptions of the risk of disease
versus that of immunization are driving factors in the decision to be vaccinated and,
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consequently, the overall population-level vaccination coverage (i.e., the proportion
of the population that gets vaccinated). Individuals who choose to be vaccinated
protect themselves and others they come in contact with, which hinders the further
spread of the disease. When a significant proportion of the population is immunized,
the disease can no longer spread, leading to the protection of the whole population
and to what is known as herd immunity [1]. Arguably, people may be consciously
or sub-consciously aware of the concept of herd immunity, and this awareness
could affect their vaccination behavior. If individuals act in their own self-interest,
they might rely on the protection of others being immunized, rather than obtaining
vaccinations themselves, resulting in what is known as a free-rider problem [2].

There has been growing interest in constructing mathematical models of epi-
demics, in which individuals’ vaccination decisions are influenced both by personal
risk perceptions and by perceptions of whether others are being vaccinated [3]. The
first approaches consider a homogenous population of rational self-interested indi-
viduals who, by logical deductive reasoning, make vaccination-related decisions.
Based on a game theoretic approach, individuals maximize their utility and reach a
Nash equilibrium by choosing to vaccinate with a given probability. This probability
to vaccinate is found by assuming that all individuals in the population rely on the
same information and perceptions and make equally rational decisions. Specifically,
individuals’ perceptions of getting infected are based on an epidemic model; this
is typically a deterministic susceptible-infected-recovered (SIR) or susceptible-
exposed-infected-recovered (SEIR) model. This approach was first used to price
vaccines [4] and to predict the voluntary vaccination coverage for pathogens that
provide permanent immunity. For example, following the heightened fear of bio-
terrorism, there has been growing attention in modeling a smallpox outbreak [5]
and individuals’ preemptive vaccination behavior [6]. A game theoretic approach
showed that a voluntary vaccination policy for smallpox could lead to the free-rider
problem, where the achieved vaccination coverage is well below optimal for the
group [7]. Similarly, it was shown that voluntary vaccination alone will not, by
itself, eradicate childhood diseases such as measles because of the onset of rational
exemption, a phenomenon whereby some informed and rational parents still decide
not to vaccinate their children [8, 9].

These initial models predict a stationary stable vaccination coverage for the
population. However, in a heterogeneous population with varying beliefs about
the costs of infection and vaccination the coverage may oscillate over time [10].
Cyclic dynamics of vaccination coverage can also result from other behavioral
mechanisms. In the case of childhood diseases, this can occur when parents imitate
vaccination choices made by other parents [11] or when decisions are based on past
epidemic information [12, 13]. Cyclic dynamics can also occur for immunizations
that do not provide permanent immunity against the pathogen in question and, thus,
where individuals face vaccination decisions multiple times in a lifetime.

For the case of seasonal influenza, decisions need to be made on an annual
basis because of the high mutation rate of the virus. Moreover, not all strains of
influenza propagating in a single year are covered by the annually reformulated
vaccine. Consequently, by using inductive reasoning, people may rely on their
past experiences with the flu and its vaccine to help make their yearly vaccination
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decisions. This continuous learning and adaptation process could indeed give rise
to complex cyclic dynamics. For example, repeated annual influenza vaccination of
individuals and of those in their social sphere leads to herd immunity, which in turn
may lead to complacency behavior and free riding.

Evolutionary game theory agent-based models provide an approach for describ-
ing the coupled dynamics of influenza epidemiology and vaccination decision-
making. In particular, inductive reasoning games [14], initially applied to models
of the interplay between financial markets and evolving agents trading strategies
[15], have since been used for this purpose. The first model assumed a uniformly
mixed population where individuals annually evaluate their decision to vaccinate
based on their personal outcomes and rely on the vaccination coverage as a proxy
of the severity of the flu [16, 17]. In this model, individuals’ acquire different
past experiences which results in different risk perceptions of getting infected.
Consequently, individuals do not assume nor rely on the notion that others are as
likely to decide to be vaccinated as themselves. The heterogeneity in vaccination
behavior emerges from the model dynamics as a result of different individuals’
experiences with the flu and flu vaccine. This model has also been extended to
consider other population outcomes individuals may consider to be proxy measures
of the severity of the flu [18]. Another important source of heterogeneity in
vaccination decision-making is the interaction of individuals in complex social
contact networks [19–22]. Recently, evolutionary games of flu vaccination decision-
making based on learning by imitation and by inductive thought have been coupled
to influenza epidemiology models on networks [23, 24].

In this chapter we review our inductive reasoning game model of influenza
vaccination decision-making introduced in [16]. The outline of the chapter is
organized as follows. In Sect. 2 we describe and analyze the basic model. In Sect. 3
we analyze the basic model when two types of vaccination incentives are used. We
then move to illustrate how a mean-field approach described in [17] can be used
to analyze the model dynamics by deriving a dynamical system for the expected
coverage in Sect. 4. In Sect. 5 we discuss extensions of the basic model explored in
[18]. Finally, in Sect. 6 we provide some insights of our model for the case where
influenza spreads over a contact network.

2 The Basic Model

For influenza, the average number of secondary cases, R0, caused by one infectious
case at the beginning of an epidemic ranges from 2 to 3 [25]. In a uniformly mixed
population, simple deterministic models of influenza transmission such as SIR and
SEIR models have shown that the probability q(p) of any susceptible individual
being infected decreases monotonically with vaccination coverage p. For large
populations, once the vaccination coverage reaches the critical vaccination level
given by

πc = 1−R−1
0 , (1)
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the population achieves herd immunity and the probability of infection is effectively
zero. According to Eq. 1, πc ranges from 50% to 67%. If the coverage is below this
critical level, influenza can spread, and an epidemic occurs. If the coverage is at
or above this level, influenza epidemics are prevented. In our inductive reasoning
game, q(p) can be calculated via an influenza transmission model. However, the
overall behavior of our model described below does not rely on the specific form of
q(p), provided that it decreases monotonically for p < πc and is 0 for p ≥ πc.

2.1 Description

Our model considers a population of N self-interested individuals who decide
whether or not to seek vaccination against seasonal influenza on an annual basis.
Their sole interest is to avoid getting infected, preferably without undergoing
vaccination. For simplicity, we assume that (i) the vaccine is risk-free and those
who are vaccinated are fully protected from infection; (ii) individuals do not
communicate their vaccination decisions to each other; and (iii) individuals who
decide to get vaccinated do so at the beginning of the season.

At the beginning of year n, an individual i will vaccinate with probability w(i)
n that

depends on a weighted sum of past experiences with flu infections and vaccination,
lending more importance to the more recent experiences. A past experience in a

previous year m is quantified by a variable Δ (i)
m . In our basic model this variable

can be either 0 or 1. If individual i considered vaccination necessary that year, this
variable takes the value 1; otherwise, if it was considered unnecessary, the variable
takes the value 0. The weighted sum of these experiences defines individual i’s pro-

vaccination experience v(i)n and is given by

v(i)n = sv(i)n−1 +Δ (i)
n−1 =

n−1

∑
m=1

s(n−1)−mΔ (i)
m , (2)

where the parameter s discounts the importance of past experiences (0 ≤ s < 1).1

Those individuals who vaccinate achieve a coverage pn in year n given by

pn =
N

∑
i

x(i)n /N, (3)

where x(i)n ∈ {0,1} is a Bernoulli variable with parameter w(i)
n . Those who do not

vaccinate risk infection with a probability q(pn). At the end of the flu season, each
individual evaluates his vaccination decision based either on personal outcomes or
on a population-level (i.e., global to the system) epidemiological outcome. Those

1For s = 1, the pro-vaccination experience of an individual simply represents the total number of
the years that he/she would have benefited from vaccinating.
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Decision Outcome Evaluation

Vaccination
Unnecessary

Vaccination
necessary

Vaccination
Unnecessary

Fig. 1 A schematic diagram illustrating the decision, outcome, and evaluation tree for each
individual. Those who decide to seek vaccination will evaluate their choice based on whether
an epidemic occurs that season. Those that do not vaccinate will evaluate their choice based on
whether or not they got infected. Both types of evaluations depend on the vaccination coverage
pn which they collectively determined through their vaccination decisions. See the main text for a
detailed description

who vaccinate (and thus did not get infected) evaluate their decision based on
feedback information they receive on the severity of the flu epidemic. In the basic
model, the severity measure is determined by whether or not a flu epidemic occurred
which explicitly depends on the vaccination coverage. If the achieved vaccination
coverage was below the critical level (i.e., pn < πc) a flu epidemic occurred, and the

choice to vaccinate was beneficial, and thus Δ (i)
n takes the value 1. If no epidemic

occurred, an individual who chose to get vaccinated is led to believe that vaccination

was not necessary and thus Δ (i)
n takes the value 0.2 Those who do not get vaccinated

evaluate their decision based on whether or not they were infected with the flu that
year. If individual i was infected, vaccination would have been beneficial, and thus

Δ (i)
n is 1. Otherwise, if he/she was not infected, vaccination was not necessary, and

Δ (i)
n is 0. The feedback on the vaccination behavior of non-vaccinated individuals

also depends on the achieved vaccination coverage, in this case implicitly via the
probability q(pn). Figure 1 provides an illustration of the vaccination decision-

making tree. Based on the evaluation Δ (i)
n individuals update their pro-vaccination

2If no epidemic occurred, we assume that an individual who chose to get vaccinated is not attending
to the fact that mass vaccination could have prevented the epidemic. He/she is purely self-interested
and believes that in the next flu season he/she can choose not to vaccinate and free-ride on the
protection provided by those that do get vaccinated. This assumption is relaxed in Sect. 5.
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a

b

c

Fig. 2 Individual and population level vaccination dynamics using s = 0.7 and πc = 0.6.
(a) Dynamics of yearly coverage (p) for a population of N = 105 individuals (black data),
and the corresponding dynamics of the prevalence (gray data). (b) Dynamics of the probability

of vaccination w(i)
n for two example individuals in the population. (c) Normalized distributions

(ρ(w(i))) of the probability to vaccinate (w(i)
n ) for a population of size N = 107 for improved

accuracy. The first distribution (black data) is obtained from a season when an epidemic does not
occur. The second distribution (gray data) is obtained in successive seasons when severe epidemics
occur. Figure taken from [16]

experience to v(i)n+1 as given by Eq. (2). Finally, the probability they use to decide
whether or not to be vaccinated in the next flu season is given by

w(i)
n+1 = v(i)n+1(1− s)/(1− sn+1). (4)

The term (1−s)/(1−sn+1) is a normalizing factor representing the maximum value
the pro-vaccination experience could be if every year individual i evaluated that
vaccination as necessary. The model is iterated from year to year by repeating these
steps.

2.2 Numerical Results

Figure 2a shows the vaccination coverage dynamics obtained by simulating the
basic model for a population size of N = 105 and with s = 0.7 and πc = 0.6.3

Here, our initial conditions assign a random vaccination probability for the first

season to every individual. Therefore, v(i)0 = 0 and w(i)
0 is uniformly distributed

between 0 and 1 for all i. It can be seen that as p approaches πc from below, it

3We used an R0 value of 2.5 and obtained q(p) by integrating a deterministic SIR model with daily
transmissibility rate of 5/6 and an average infectious duration with flu of 3 days. Similar results
can be obtained for the case where q(p) is a linear function with q(0) = 0.8 that monotonically
decreases to q(p) = 0 for p ≥ πc.
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eventually fluctuates above πc because of the stochastic nature of the individual-
level adaptive decision-making process. In the following season, many individuals
believe they no longer need to be vaccinated, as an epidemic did not occur in
the previous season. Consequently, the vaccination coverage abruptly decreases.
The vaccination coverage dynamics then repeat with a cycle of approximately 35

years. Figure 2b shows the dynamics of the probability w(i)
n versus time for two

example individuals in the population. In contrast to the simple dynamics of the
coverage, individuals go through complex vaccination decision behavior. Over the
years, individuals who would commonly seek vaccination or commonly not seek
vaccination may change their vaccination behavior. Figure 2c shows two different
distributions for two separate seasons of the populations’ probability of seeking
vaccination. These distributions show that individuals segregate into two groups
with different vaccination behaviors: those who commonly get vaccinated and those
who do not. Individuals who were very likely to get vaccinated in the previous
season decrease their vaccination probability, causing severe epidemics. Over the
years, the distribution shown by the gray data slowly tend toward the distribution
shown by the black data as epidemics decrease in severity. The segregation in the
probability to seek vaccination results from the fact that in the model individuals
rely on different past experiences and over the years this produces very different
vaccination behaviors.

3 Basic Model with Public Health Incentives

The basic model showed that, although the vaccination coverage necessary for
controlling seasonal influenza epidemics can occasionally be achieved by voluntary
vaccination, it cannot be maintained. Furthermore, the model suggests that the
vaccination coverage undergoes cyclic dynamics and can collapse to low values.
However, public health programs based on incentives could help stabilize the vac-
cination coverage dynamics. Two classes of incentive-based public health programs
can be investigated with the model. The first class uses incentives to correlate
vaccination decisions among individuals in one influenza season. The second class
uses incentives to correlate vaccination decisions for the same individual over many
influenza seasons. Many additional incentive-based vaccination programs can be
formulated by combining the defining characteristics of these two classes. Here we
describe an example of each of these classes.

3.1 Family-Based Vaccination Incentive

In the first public health program that we explore, families pay a reduced price for
vaccination if they get vaccinated together. We assume that the head of the family
decides every year whether to enroll in the program based upon how many of his/her
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a

b

Fig. 3 Population level vaccination coverage dynamics using s = 0.7, πc = 0.6, and N = 105.
(a) Family-based incentive vaccination coverage dynamics for a family size of eight (C = 8)
is shown in black. (b) Coverage dynamics for a commitment incentive to vaccinate for three
additional years (y = 3) is shown in black. The coverage dynamics of the basic model with no
incentives is shown in gray for comparison. Figure taken from [17]

family members were infected in the previous season. To model this vaccination
program we considered our population to be grouped into F families, each with
C members. As with the basic model with no incentive, each family keeps track
of, and updates their pro-vaccination value based on the outcomes and evaluations

made each flu season. Family j updates their pro-vaccination value v( j)
n as follows:

Decision Outcome Evaluation

Vaccinated No epidemic v j)
n+1 = sv( j)

n

Vaccinated Epidemic v j)
n+1 = sv( j)

n +C

Not
vaccinated

k members
infected

v( j)
n+1 = sv( j)

n + k

(5)

where k is the number of family members who get infected if the family is not
vaccinated and ranges from 0 to C via a binomial distribution. The probability that
a family chooses to vaccinate is updated as follows:

w( j)
n+1 = v( j)

n+1/[C(s
n+1 − 1)/(s− 1)], (6)

where the normalizing factor, C(sn+1−1)/(s−1), represents the maximum possible

value for v( j)
n+1 if family j would have benefited from vaccination in all of the n

influenza seasons.
As shown in Fig. 3a, simulations of the basic model with family-incentive pro-

grams increase the frequency of severe epidemics. In the model, epidemic severity
and frequency depend on the number of individuals who independently decide
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whether to vaccinate. As the number of independent decision-makers decreases,
the likelihood that the coverage fluctuates above πc increases as it approaches
from below. When this occurs, the coverage decreases abruptly in the next flu
season resulting in a severe epidemic. Therefore, stochastic variation in the coverage
and hence frequency of severe epidemics increases as the number of independent
decision-makers decreases. In the basic model without incentives, each member
of the population is a decision-maker and decides independently whether to be
vaccinated or not. In the family-incentive program the family decides as a whole
and therefore the number of independent decision-makers is reduced from the total
number of individuals to the total number of families. Thus the family-incentive
program increased the frequency of severe epidemics.

3.2 Commitment-Incentive Vaccination Program

The second public health program that we explore offers vaccination for a certain
number of additional years at a reduced price to an individual who prepays in the
first year. We assume that individuals obtain vaccinations for each year during their
enrollment in the program, but they still evaluate the necessity of vaccination every
year. The program is specified for 1+ y years, which includes the first year and the
y additional years of vaccination. At the end of this period, individuals enrolled in
the program evaluate whether to reenroll in the program. If they do not reenroll,
they stay exposed to the flu that year and for subsequent years until they decide to
reenroll. Although highly simplistic, we assume that only enrollees to the program
can vaccinate.

As shown in Fig. 3b, simulations of the basic model with a three-year (y = 3)
commitment-incentive program demonstrated substantially less severe, but more
frequent, epidemics than a program without incentives. This result is a consequence
of the relationship between the length of the commitment to the program and the
time scale of the parameter s. In our simulations we used s = 0.7 which translates
into a half-life of 1.9 years. In this case, when individuals decide whether or not
to vaccinate in the current season, experiences acquired roughly three flu seasons
earlier are half as important as the experiences of the previous year. Programs
that require only a short-term commitment (e.g., y = 3) have a high turnover
of participants and a time scale comparable to that of the half-life parameter.
Individuals self-organize in such a way that the number of participants entering the
vaccination program annually stays roughly the same. Consequently, the number of
participants who leave the program in any one year is never very large leading to
small frequent epidemics.

In contrast, programs that require long-term commitments (e.g., y > 10) have
a relatively low turnover of participants and a time scale much longer than that
of the half-life parameter. Individuals choose to enroll in the program as long as
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the coverage is below πc. Eventually, the coverage increases above πc, but many
participants are still locked into the program for many remaining years. Once this
occurs, individuals not enrolled in the program no longer find it necessary to enroll
in the program as they benefit from the repeated vaccination of those that are locked
in. Consequently, these long-term commitment program prevent epidemics over the
long term. However, at the end of the commitment, many individuals decide not
to reenroll in the program because an epidemic has not occurred for many years.
Consequently, vaccination coverage drops abruptly and a severe epidemic occurs.
In this case, individuals fail to self-organize in a way that the number of participants
entering the vaccination program annually stays roughly the same.

4 Mean-Field Analysis

In statistical physics, mean-field approaches were developed to describe systems
made of many microscopic interacting bodies and to understand the emergence
of macroscopic critical behavior. In a mean-field approach, the microscopic in-
teractions among the bodies are replaced by interactions with an average external
field (namely the mean field). In this case, the many-body model is replaced by
an equivalent one-body model. The basic model is well suited for a mean-field
analysis. Here our basic model describing many individuals is replaced with a mean-
field model describing just one individual interacting with a field that describes the
overall influence of the vaccination decisions made by the others in the population.
Although the basic model includes no explicit individual-individual behavioral in-
teractions, individuals do interact with each other through the vaccination coverage
which defines our mean field. Individual vaccination decisions help determine the
mean field, which in turn affects future vaccination decisions. In this section we
illustrate the mean-field analysis for the basic model and show how it helps explain
the observed dynamics of the simulations presented in Sects. 2 and 3. We will see
that the nature of the cyclic dynamics in the basic model alone, and the basic model
with family-based incentives, is fundamentally different to that of the basic model
with commitment-based incentives.

4.1 Vaccination Coverage Iterative Map

For our analysis we define the mean-field coverage in the limit of large N as

πn = 〈pn〉=
N

∑
i=1

〈w(i)
n 〉/N (7)
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and define the mean pro-vaccination experience un = 〈v(i)n 〉 where 〈.〉 represents an
average over many independent realizations of the game.4 Similar to Eq. (4), these
realization averaged quantities are related by

πn+1 = (1− s)un+1/(1− sn+1). (8)

We use a piecewise linear approximation for the probability of infection q(p) as a
function of coverage p and therefore 〈q(p)〉= q(π) is given by

q(π) =
{

0, if π ≥ πc;
q(0)[1−π/πc], if π < πc.

(9)

Using the decision-outcome-evaluation tree diagram in Fig. 1, we find that

Population Expected fraction Update

Vaccinated πn un+1 = sun + 1−θ (πn−πc)

Not vaccinated &
infected

(1−πn)q(πn) u(i)n+1 = su(i)n + 1

Not vaccinated &
not infected

(1−πn)[1− q(πn)] u(i)n+1 = su(i)n

(10)

where θ (x) is the discrete Heaviside step function, which is equal to 0 for x < 0 and
equal to 1 otherwise. Taking the weighted average over Eqs. (10), we find that

un+1 = sun +(1−πn)q(πn)+πn[1−θ (πn−πc)]. (11)

Substituting Eq. (8) into Eq. (11) and taking the long time limit n → ∞, we obtain
an autonomous asymptotic iterative map of the mean-field vaccination coverage
given by

πn+1 = sπn +(1− s){(1−πn)q(πn)+πn[1−θ (πn−πc)]}. (12)

The map is defined on the unit interval I = [0,1]. However, the nature of the
discontinuity at π = πc allows us to distinguish two complementary domains namely
I1 = [πc,1] and I2 = [0,πc). In the first domain, when the vaccination coverage πn

is between πc and 1, the map reduces to

πn+1 = sπn. (13)

4When simulating the basic model, the achieved vaccination coverage pn in year n represents only

one realization as given by Eq. (3). However, using the same set of vaccination probabilities w(i)
n ,

the Bernoulli process describing the vaccination decisions could have resulted in a different set of
vaccination decisions and thus in a different vaccination coverage realization.
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Fig. 4 (a) Bifurcation diagram of the iterative map given by Eq. (12) versus πc for the case where
s = 0.7 and q(0) = 0.8. As πc decreases, a period-two orbit is created at πc = Π0; here its position
is shown by the vertical dotted line. (b) Bifurcation diagram of the iterative map versus πc of our
basic model with a y = 1 commitment-incentive vaccination program. As πc decreases, a period-
five orbit is created at πc = Π1. Other critical points Π0, Π2, and Π3, respectively, shown for y
values of 0, 2, and 3 are also shown. The dashed line marks our chosen value of π = 0.6. The cases
where y = 1 and y= 2 do not induce a qualitative change in the dynamics of the coverage, whereas,
since Π3 > 0.6, the dynamics for y = 3 are qualitatively different. Figures taken from [17]

Since s is positive but smaller than 1, the orbits in I1 will be attracted toward a
vaccination coverage of 0. Therefore, orbits in I1 will take the vaccination coverage
into the second domain I2 where πn is between 0 and below πc. Once in I2, the
orbit is iterated with a different smooth map given by

πn+1 = πn + q(0)(1− s)(1−πn)(1−πn/πc). (14)

In this domain πn < πc and therefore the second term of this map is always positive.
Depending on its magnitude, orbits in I2 may either stay in I2 or cross back into
I1. The orbits’ behavior can be determined by a fixed point analysis of the second
map over the entire domain I . We find that the map has two fixed points, one
at πn = 1 and the other at πn = πc; we denote the fixed point at πc by π∗. The
first fixed point at πn = 1 is unstable since the derivative of the map at 1, given by
1+ q(0)(1− s)(π−1

c − 1), is always greater than 1. Whereas, the derivative of the
map evaluated at the second fixed point πn = π∗ is given by

λ = 1− q(0)(1− s)(π−1
c − 1), (15)

and since its range is (−∞,1], the second fixed point can be stable. When 0< λ < 1,
orbits always stay in I2 and they approach arbitrarily close to π∗ from below but
never quite reach this fixed point. In this case π∗ is a stable attractor fixed point.
When λ ≤ 0, orbits take πn back and forth between I2 and I1. In this case, π∗ may
still be an attractor fixed point. Depending on the parameters that enter the iterative
map, if the orbit begins close to π∗ within its basin of attraction, it will spiral and
converge toward it. Figure 4a shows a bifurcation diagram for varying πc using
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parameter values s = 0.7 and q(0) = 0.8. We find that as long as πc is greater than
a critical value Π0 ≈ 0.205, the basin of attraction of the fixed point π∗ is the entire
domain I . However, at πc = Π0, a period-two orbit is created between the points
πc and sπc.5 Eventually, the basin of attraction of this period-two orbit completely
replaces the basin of attraction of π∗. At this point π∗ is no longer a stable fixed
point. Interestingly, as πc is further decreased the basin of attraction of the period-
two orbit is itself replaced and numerically we observe period doubling and chaotic
behavior.

4.2 Stochastic Effects

The described analysis of the iterative map given by Eq. (12) is insufficient to
explain the observed numerical dynamics of the vaccination coverage of the basic
model presented in Sect. 2.2. According to our analysis, for πc = 0.6, the vaccination
coverage dynamics should always increase when approaching πc from below.
However, by considering a large set of independent realizations of the game for
year n, we find that the resulting vaccination coverages are normally distributed

with an average πn and variance σ2
n = ∑N

i w(i)
n (1 − w(i)

n )/N (i.e., the sum of the
variances of the Bernoulli distribution). Thus, the dynamics of pn at large finite
N can be described by adding Gaussian noise to the dynamics of πn. In most of
the phase space of π , the noise does not change the qualitative dynamics of the
orbit. However, when the orbit asymptotically approaches π∗ from I2, the coverage
pn may fluctuate above π∗ and into I1. Then, according to Eq. (13), in the next
iteration, the orbit drops back into I2 in the vicinity of sπc and the dynamics repeat.
The expected periodicity depends on the size of the fluctuations which, in turn,
depends on the number of individuals in the system. When N is large, as long as πn

is still in I2 but close to π∗, the dynamics can be approximated as

π∗−πn ∼ λ n. (16)

However, since pn is normally distributed, we expect a jump of the coverage pn

above π∗ when π∗ − pn is on the order of the standard deviation of pn:

π∗− pn ∼
√

∑N
i=1 σ (i)2

n /N

N1/2
. (17)

As can be seen from Fig. 2c, we expect that the distribution of w(i) becomes
asymptotically independent of n just before the drop and therefore the numerator
of Eq. (17) approaches a finite constant. Combining Eqs. (16) and (17) and denoting

5Here, Π0 = {s+1/[(1−s)q(0)]}−1 and is found by setting πn = sπc and πn+1 = πc in the iterative
map Eq. (14).
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ñ as the expected period of the dynamics, we obtain the following scaling result at
large finite N:

ñ ∼− logN
2logλ

. (18)

4.3 Stochastic Versus Deterministic Periodicity

For the basic model with πc = 0.6, our deterministic description of the dynamics
suggests that the vaccination coverage approaches π∗ from below. Were it not
for stochastic fluctuations, the vaccination coverage would remain below πc and
would approach it asymptotically. However, due to the finite size of our population,
stochasticity causes the vaccination coverage to fluctuate above πc which leads
to cyclic dynamics. As shown in [17], a mean-field analysis of the model with
family-based incentives produces an identical iterative map as the basic model.
However, using Eq. 18 and denoting the period for the basic model with family-
based incentives by ñ(C), where C is the family size, we find that

ñ(C)/ñ(1)∼ 1− lnC/lnN < 1. (19)

Hence, with the family-based incentives, we get shorter periods and more frequent,
severe epidemics as observed by simulation. We have also seen that in the basic
model with no incentives, when πc < 0.2 the deterministic description of the
dynamics changes such that we obtain cyclic dynamics, first via a period-two and
then via a multi-period orbit. These deterministic cyclic dynamics are qualitatively
different from the cyclic dynamics caused by stochastic fluctuations. Furthermore,
the periodic orbit they create are robust to stochastic fluctuation for large population
sizes. Although for the case of the basic model, these robust deterministic and
periodic dynamics occur for unrealistically low values of πc, this is not the case
with a commitment-incentive vaccination program. As shown in [17], by following
a mean-field analysis of the basic model with a commitment-incentive vaccination
program, we obtain a different bifurcation diagram. In Fig. 4b we show the
bifurcation diagram for the case where y = 1. For a value of πc at or just below
a critical value of Π1 ≈ 0.435, we obtain a deterministic period-5 orbit. Similar
bifurcation diagrams can be obtained for y = 2, where we obtain a period-5 orbit
forming at Π2 ≈ 0.551, and for y = 3 where we obtain a period-6 orbit forming at
Π3 ≈ 0.647. Since, in our simulations, we used the realistic value of πc = 0.6, which
is below Π3, our observed cyclic dynamics (shown in Fig. 3b) of the vaccination
coverage are not explained by the stochastic nature of the model but rather by the
deterministic periodic nature revealed by our mean-field analysis.

In summary, understanding the nature of the cyclic dynamics—whether more
stochastically or deterministically driven—in inductive reasoning game models of
influenza vaccination is important in order to better design incentive-based public
health programs.



Modeling Influenza Vaccination Behavior via Inductive Reasoning Games 217

5 The Extended Model

Although novel in both methodology and findings, the basic model makes many
idealizing simplifications. One prominent simplification is how individuals make
their vaccination decisions. In real-life scenarios, many factors affect an individual’s
propensity to seek vaccination, including preconceptions—say, fearing pain from
needles—that are not likely to change much over the years and risk perceptions
that change yearly by an adaptation and learning process using evaluations of
past experiences. Although our description of the basic model just considered the
learning process, a simple extension that includes a variable preconception term
has been described in [16]. The model also substantially simplifies how individuals

adapt and evaluate their vaccination decisions. It assumes that Δ (i)
n is given by a

dichotomous variable taking only the values 0 or 1. In particular, the epidemic
severity measure that vaccinating individuals use to make their evaluations is given
by such a dichotomous variable determined by whether or not a flu epidemic
occurred. However, individuals who choose to get vaccinated would probably
evaluate their choice using a more continuous severity measure. This idea has
recently been explored by Breban [18]. In this section we describe this extension.

5.1 Generalizing the Perception of Epidemic Severity

In the mean-field analysis of the extended model considered in [18], individuals who
choose to get vaccinated update their pro-vaccination experience by

v(i)n+1 = sv(i)n +F(πn), (20)

where F(πn) is a continuous and differentiable function everywhere in I except

at π = πc. Hence, Δ (i)
n = F(πn) for all individuals i who get vaccinated. Instead,

individuals who do not choose to vaccinate update their pro-vaccination as before
as given by Eq. (10). The model considers the case where at the end of a flu season,
the media publicizes whether or not a flu epidemic occurred (i.e., θ (πn −πc)), the
achieved vaccination coverage (i.e., πn), and the yearly incidence (i.e., q(πn)).6

Individuals who choose to get vaccinated would then use and combine these pieces
of epidemiological information about the population-level outcomes in different
ways to estimate the severity of the epidemic F(πn).

6Here, incidence is defined as the number of new cases per susceptible (i.e., non-vaccinated)
individual. Since we assume a perfect vaccine, the incidence is equivalent to the risk of infection
q(πn) that a vaccinated individual would have had if he/she had not been vaccinated at the
beginning of the season.
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The mean-field autonomous approximation of the coverage dynamics given by
Eq. (20) is given by

πn+1 = sπn +(1− s)[(1−πn)q(πn)+πnF(πn)]. (21)

As for the basic model, this iterative map has no attractor in I1. However, a fixed
point π̂ to the map that satisfies

q(π̂) = π̂[1−F(π̂)]/(1− π̂) (22)

exists in I2. Note that this fixed point is not necessarily equal to πc = π∗ as in
the basic model. In particular, the form of F(π) could lead to a fixed point π̂ < πc.
This issue is relevant because, as we have seen in Sect. 4.2, such a situation would
lead to a map that is more robust to stochastic fluctuations, which would reduce the
frequency of severe epidemics.

Although the fixed point does not depend on the parameter s, its stability does.
Deterministically, the stability condition of the map is found as before by taking its
derivative at π = π̂ and checking for the cases where its magnitude is less than one.
Breban showed in [18] that the fixed point is stable as long as the parameter s is
greater than a critical value given by

S = 1+ 2[q′(π̂)(1− π̂)− q(π̂)/π̂ + π̂F ′(π̂)]−1. (23)

Furthermore, if F(π) = 0 when π ≥ πc, the vaccination coverage never drops
below sπc when the map is iterated in I1. Therefore, a stable fixed point must
further satisfy π̂ > sπc. Putting these stability conditions together, we can define an
interval (S, π̂/πc) such that if the parameter s takes values within this range we get
deterministically stable dynamics. The smaller the value of the boundary point S the
larger this interval and the more stable the dynamics. As we have seen in Sect. 4.1,
when π̂ loses its stability we obtain deterministically periodic dynamics.

5.2 Example Models for the Epidemic Severity

Four models have been explored, each with a different severity measure F(π) [18].
These are

Model F(π)

1 1−θ (π −πc)

2 q(π)

3 (1−π) [1−θ (π −πc)]

4a {q(π)+ (1−π)[1−q(π)]} [1−θ (π−πc)]

4b (1−π)q(π)

(24)
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Since q(π) is given by Eq. (9), F(π) is equal to 0 in all models when π ≥ πc.
Therefore, at the end of the flu season, individuals who choose to vaccinate always
know whether an epidemic occurred. Model 1 is a restatement of the basic model.
In model 2, individuals that choose to get vaccinated measure the severity of the
epidemic based on the incidence. In model 3, the severity measure is given by
the proportion of individuals who do not choose to get vaccinated. In model 4a,
individuals who choose to get vaccinated consider a severity measure that combines
both a personal and a social benefit of having been vaccinated. They are aware of
the personal benefit of having avoided the risk of infection (i.e., q(π)). Furthermore,
they are aware of the social benefit of vaccination in providing added protection to
those who did not obtain vaccinations, specifically those who directly benefited by
not getting infected. Lastly, in model 4b, individuals who choose to get vaccinated
measure the severity of the epidemic based on the proportion of individuals infected
in the entire population.

Except for model 1 (i.e., the basic model), all models produce a fixed point π̂ that
is below πc and obey the following ordering π̂4b < π̂2 < π̂4a, where the subscripts
label the models. Furthermore, as long as q(π) is piecewise linear, π̂2 < π̂3 < π̂4a.
Hence, according to these models, no combination of epidemiological information
broadcast by mass media would be able to achieve a stable vaccination coverage
that is greater than the critical vaccination level year-after-year. Therefore, none
of these combinations would eliminate flu epidemics. When epidemics do not
occur for many years, individuals would eventually learn that vaccination to the
flu is not as important and become complacent in non-vaccinating, regardless
of the epidemiological information broadcast by mass media. Nevertheless, since
these fixed points are below πc, when compared to the basic model, their iterative
map produces vaccination coverage dynamics that are more robust to stochastic
fluctuations. Therefore, although epidemics cannot be prevented, severe epidemics
would occur less frequently. A stability analysis of the fixed points produced by
these models shows that S4a is the smallest. Consequently, model 4a has the largest
interval of stability with respect to the parameter s and the largest stable vaccination
coverage fixed point that is robust to fluctuations. These results suggest that if
individuals who choose to get vaccinated use a severity measure that combines
both personal and social benefits of vaccination, then mass media broadcasting
epidemiological information would lead to stable yearly vaccination coverages with
less frequent severe epidemics. This goal could be achieved in principle without the
need for incentive-based public health policies of the types described in Sect. 3.

6 Introducing Networks to the Vaccination Game

The basic model and its extensions considered up to this point rely on the underlying
assumption that individuals are uniformly mixed. In this case, the transmission
dynamics are based on an SIR model where any susceptible individual has an equal
chance of being infected. Furthermore, we assumed that individuals update their
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vaccination probability based on their own personal influenza experience and are
not affected nor rely on observing influenza and vaccination outcomes of people
they know. In a more realistic model, individuals interact and mix in complex
contact networks. In this case, information diffuses across individuals through the
underlying contact network which also offers preferential paths for transmission.
Consequently the social structure may strongly affect how individuals change their
vaccination behavior. For this reason, a new paradigm in the study of this class of
models considers the epidemiological effects of network structure [23,24]. Locally,
network structure constrains the availability of alters that any individual can reach
to pass on information or infection; globally, the network structure constrains total
infection and vaccination rates achieved by the end of an influenza season. This, in
turn, gives rise to faster or slower convergence to the critical vaccination coverage
depending on that structure. In many networks, vaccination behavior, susceptibility,
and infections will tend to group in local clusters of the contact network, knowledge
of which may inform targeted vaccination policies. In this section, we will review
how relatively simple models of human interaction gives rise to faster critical
vaccination than randomly vaccinating individuals in a population and show that
vaccinators will tend to cluster together more than expected by chance even though
they do not share information about their decisions.

6.1 The Basic Model on an Erdös–Rènyi Graph

We define a contact network G as a binomial graph with 105 nodes and an average
degree 〈k〉= 20 [24], drawn from the Erdös–Rènyi model [26]. The average degree
represents the typical number of contacts an individual has during a contagious
episode. In our model, we assume that transmission can only occur over the network
and that infected actors transmit influenza to their susceptible nearest neighbors with
transmission probability

T = 1− exp(−β/γ), (25)

where β is the average rate of contact per individual weighted by the probability of
a flu transmission and γ−1 is the average contagious period [27]. We consider the
same SIR parameter values as those presented in Sect. 2.2 with a critical vaccination
coverage πc of 60%.7 As we iterate in time from season to season, we use G to
generate a transmission network Gn for season n: There is a probability 1 − T
that ties connecting susceptible individuals are deactivated on Gn whereas ties to
individuals who choose to vaccinate are always deactivated as they cannot transmit

7Here, R0 is given by 〈k〉T . For the Erdös–Rènyi graph, the epidemic threshold condition is still
expressed in terms of R0, although this is not the case for a general network [19]. Therefore, Eq. (1)
relating πc to R0 is still valid. It is however important to note that πc gives the critical vaccination
coverage needed if individuals vaccinate irrespective of their location on the network.
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Fig. 5 The proportion of infected versus the vaccination coverage. The 300 seasons of the basic
model on an Erdös–Rènyi graph with mean degree 20 are plotted as black points. A Friedman’s
kernel smoother of the points (solid line) shows the average behavior of the model. The basic
model with uniform mixing with no underlying network structure is indicated by the dotted-line
with standard error bars represents 100 independent and identically set up Monte Carlo replications
of the network

influenza nor become infected by the virus. Hence, Gn is a seasonally varying
instantiation of the contact network G. Individual vaccination behavior changes
from season to season as described by our basic model. We continue to assume
that individuals do not communicate their vaccination decisions to one another
and further, we assume that individuals do not observe influenza outcomes of
their alters. Thus, local network characteristics (i.e., nearest neighbors’ vaccination
and infection rates) only affect an individual’s vaccination behavior indirectly by
modifying their chances of getting infected.

When integrating the dynamics of the basic model on an Erdös–Rènyi graph
we reproduce qualitatively similar dynamics to those observed in Sect. 2.2 for
the basic model with no underlying network. However, for the basic model on an
Erdös–Rènyi graph, over time, individuals learn about their relative vulnerability of
getting infected. Those who have many contacts learn to vaccinate more often than
those with fewer contacts. This process has compounding benefits as vaccination
of the more connected individuals rapidly reduces available transmission paths
which results in added herd immunity. Therefore, individuals do not choose to
vaccinate irrespective of their location on the network. Consequently, they reach the
effective critical vaccination coverage which is below πc. Figure 5 illustrates this
by comparing the basic model on an Erdös–Rènyi graph (which we call the network
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Table 1 Odds ratios and standard errors comparing whether or not non-vaccinated
and vaccinated actors are nearest neighbors with non-vaccinated and vaccinated
alters, respectively

Non-vaccinators Vaccinators

Model μ SE μ SE

M1 0.95157 0.00082 *** 1.04462 0.00031 ***
M2 0.99464 0.00064 *** 1.06922 0.00032 ***
M1-M2 −0.04307 0.00059 *** −0.02461 0.00033 ***

∗∗∗= p− value < 2.2e−16

model) to the case where individuals on the graph are randomly selected to vaccinate
(which we call the random model). The plot shows the proportion of infected
individuals versus the proportion of vaccinated individuals. The points shown in
the plot are produced by running the network model. The solid line represents a
fit to the data points given by a Friedman’s smoother. The dotted line represents
the median of the random model found over 100 independent and identically set up
Monte Carlo replications. Although not shown in the plot, it is important to note that
this line is in agreement with a line produced by integrating the equivalently setup
deterministic SIR model that assumes uniform mixing. Therefore, running the basic
model with uniform mixing produces points that lie on the dotted line.

6.2 Adaptation to Local Information

The basic model on an Erdös–Rènyi graph considers individuals making their
evaluations based on personal (i.e., whether they were infected or not) and global
(i.e., whether there was an epidemic or not) outcomes. However, by including a
network, we can assume that individuals may more readily rely on local outcomes
(i.e., how many or what proportion of those they know were infected) than on
global outcomes when making their evaluations. We consider a behavioral model
where individuals who choose to get vaccinated measure the severity of an epidemic

based on a local evaluations. Specifically, Δ (i)
n of an individual i that chose to

get vaccinated is equal to the proportion of alters that were infected in season n.

Likewise, we assume that the Δ ( j)
n for an individual j that chose not to get vaccinated

and did not get infected to be equal to a weighted sum of his personal and local
evaluations. Instead, individuals who get infected continue to evaluate their decision
using personal outcomes and are thus more likely to vaccinate in the following
season. We call this the simple local behavioral model (M2).

Since network models impose that infections diffuse between connected individ-
uals it is useful to consider how clustered vaccinated and non-vaccinated individuals
are on average. Table 1 reports the odds ratios comparing the probability of non-
vaccinated and vaccinated individuals being connected to similarly non-vaccinated
and vaccinated nearest neighbors, respectively, relative to a baseline provided by the
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random model. Values for two games are reported: the basic model on an Erdös–
Rènyi graph (M1) and the simple local behavioral model an Erdös–Rènyi graph
(M2). The results reveal that non-vaccinators are less likely to cluster together and
that vaccinators are more likely to cluster together under both models. Moreover,
M2 exhibits greater clustering of vaccinators and slightly more clustering of non-
vaccinators than M1. Although these effects may seem small, they are statistically
significant.

The reason we see a significant difference in clustering between the two
models is subtle but illustrates why considering network structure in vaccination
decision models is important. Take the susceptible (non-vaccinating) population,
for example, in the simple local model an individual who is not very connected
will tend to be less vulnerable and, over time, will be less likely to vaccinate.
If this individual observes that his/her alters are not getting infected either then
his/her probability to vaccinate decreases more rapidly. It is also likely that his/her
alters are not being infected that often because they are also not highly connected.
This is in sharp contrast to the process at play in M1, whereby the vaccination and
infection history of an individual’s alters do not directly influence that individual’s
own decision to vaccinate. While the non-vaccinators are slightly more clustered
in M2 than in M1, they are nested within smaller clusters that are more sparsely
connected than in M1. Thus, M1 gives rise to greater connectivity among subgraph
clusters of susceptible individuals than M2. To test this, we compare the two models’
average local structure for susceptible individuals at each instance of G from time 0
to time 300 (G0 . . .G300). We expect that, averaging over all 300 seasons, the mean
degree of nearest neighbors (〈knn〉) in each cluster of susceptible individuals will be
greater for M1 than M2. Indeed, we find that 〈knn〉 is 4.435 for M1, and 3.278 for
M2 (t = 38.2192, d f = 596.192, p− value < 2.2e−16).

7 Discussion and Conclusion

Influenza is the leading cause of death among vaccine-preventable diseases in the
USA, and is responsible for more than $10 billion in direct medical expenses
and $16 billion in lost potential earnings annually [28]. As of February 2010,
annual influenza vaccination has been recommended for all people in the USA
aged 6 months and older. However, vaccination rates are well below this target,
with less than 40% of the population receiving the vaccine each year [29]. An
individual’s decision to get vaccinated is affected by the trade-off between perceived
risk of influenza infection and perceived benefits and risks of vaccination. Such
perceptions can be influenced by past experiences, both one’s own and those in one’s
social network, as well as media coverage. Given the suboptimal rates of annual
influenza vaccination, we need a better understanding of how vaccination decisions
and prevalence of influenza infections influence each other. Such information would
help to better inform public health policy by allowing interventions to increase
influenza vaccination coverage.
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In this chapter, we presented the inductive reasoning game first introduced in
[16] that models the interplay between influenza vaccination decisions and influenza
epidemiology. The basic model introduces a simple construct where individuals’
propensity to obtain vaccinations depends on personal experiences with getting
infected in the past, as well as the overall epidemiological outcome of whether or
not an epidemic occurred. The vaccination coverage that results from the collective
actions of the population affects whether or not non-vaccinated individuals get
infected, as well as determining the conditions for an epidemic. The achieved
vaccination coverage changes individual propensities to seek vaccinations for
the following year, which in turn determines that years’ vaccination coverage.8

The basic model showed that individuals’ vaccination behavior, based on learning
and adaptation, can lead to cyclic dynamics in vaccination coverage where severe
epidemics may result even in the absence of a pandemic strain.

As we have seen, public health programs based on incentives could be used to
promote vaccination and prevent the occurrence of severe epidemics. The basic
model showed that public health intervention programs that focus on vaccinating
families are likely to increase the frequency of severe epidemics. This result is
explained by the fact that when the number of independent decision-makers is
reduced, groups of individuals make the same vaccination decisions year after year.
Then, following many years of non-severe epidemics, complacency to vaccination
emerges, which causes many groups of individuals to forgo vaccination, resulting
in a severe epidemic. If this effect is a real, the implication of our finding go
beyond the potential success of a family-based incentive. Surveys show that many
individuals follow the advice of their family physician when deciding to vaccinate
[31]. The basic model indicates that if physicians base vaccination recommendations
on their past influenza experiences and observations, such as how many patients
showed influenza symptoms in the previous year, then the frequency of severe
epidemics might increase. In contrast, when the basic model is used to model
commitment-based incentives where individuals who are inclined to get vaccinated
enter a program that provides vaccinations for multiple years, we find that severe
epidemics can be prevented. However, the duration of the commitment is crucial
in determining the success of the program. The likelihood of program success
increases when the duration of commitment is similar to the number of years of
experience an individual considers when evaluating the necessity to get vaccinated.
If the program is longer, the model indicates that the severity of the epidemic
increases. This result also has implications for the potential success of a universal
influenza vaccine [32]. The development of such a vaccine, which would protect
against many seasonal and pandemic flu strains for many years, has become a real

8This seemingly simple construct provides an example of what is known as a complex-adaptive
system [30] since the emergence of the vaccination coverage (i.e., a macroscopic quantity) provides
different types of feedback to the individuals (i.e., the microscopic agents) depending on both its
achieved value and the actions taken by each individual.
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possibility [33, 34]. The basic model with a commitment-based incentive suggests
that a universal vaccine should be tailored to provide protection for a few years at
most, in order to avoid increased complacency.

We have also presented recent work by Breban that modified the basic model
so that individuals are made aware of more epidemiological information (e.g.,
incidence, coverage, or both) at the end of each flu season [18]. In this model,
individuals who would not be likely to get vaccinated combine these pieces of
epidemiological information and use them to evaluate the necessity of vaccination.
We have seen that although it is unlikely that epidemics can be prevented by the
release of more epidemiological information by the media, the cyclic dynamics of
vaccination coverage, which results in periodic severe epidemics, can be suppressed.
In particular this goal can be achieved if individuals who obtain vaccinations
perceive both the personal benefit of vaccination and the social benefit of providing
added protection for those who did not choose to be vaccinated.

Mathematically, these results can be analyzed and understood via a mean-field
approach. For the basic model, we have presented and analyzed an iterative map
of the vaccination coverage dynamics. We found that for biologically plausible
parameters, the dynamics tend to approach the critical vaccination coverage from
below. However, from time to time, the stochastic nature of the dynamics causes the
vaccination coverage to fluctuate above the critical level. This upward fluctuation
is then followed by a collapse of the vaccination coverage in the subsequent year,
which results in a severe epidemic. When we reduce the number of independent
decision-makers and allow groups of individuals to act together, stochastic fluctua-
tions become larger. These larger fluctuations increase the frequency with which
the vaccination rate exceeds the critical vaccination coverage level and triggers
a severe epidemic the following year. When individuals enter an incentive-based
program to obtain vaccinations for multiple years, the dynamics fundamentally
change from fluctuation-sensitive to fluctuation-robust. Periodicity still occurs, but
it is explained deterministically by a period doubling process of the iterative map.
When mass media releases more epidemiological information, and individuals who
normally obtain vaccinations use these to evaluate the necessity of vaccination, the
iterative map produces a stable fixed point that is below the critical vaccination
coverage. Consequently, fluctuations above the critical coverage becomes less likely
and severe epidemics are suppressed.

We have also presented some first observations of the effects of combining a
social network with our inductive reasoning game model for vaccination. We have
found that network models offer great potential for understanding how individual
decisions are constrained by social structure. While we acknowledge that the partic-
ular network we used, the Erdös–Rènyi graph, is a simplistic model of interpersonal
contact, we also emphasize that our results show that networks affect the learning
and adaptation process of individuals’ vaccination behavior. Throughout this chapter
we have referred to the critical vaccination coverage as the vaccination coverage
required if individuals were uniformly mixed with no underlying network. However,
as we have seen being connected to others, even in a simple world where no
information is shared between alters and vaccination decisions are solely based
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on individual infection experience and knowing whether or not there was a recent
epidemic, reduces the effective critical vaccination coverage necessary to prevent an
epidemic in a population. Furthermore, over the years we see that individuals who
tend to vaccinate cluster together and that this clustering will vary depending on
model choice.

In conclusion, memory and adaptation are principle biological and social at-
tributes of individuals. Consequently, including a learning process in models of
recurring voluntary vaccination is essential. However, many other social-cognitive
factors influence vaccination motivation and participation [31]. Although recent
survey-based studies suggest that past vaccination behavior strongly influences
future intentions to vaccinate [35–37], the extent to which individuals learn from
past experiences with the flu and its vaccine and use these experiences to modify
their vaccination behavior is still unclear. These experiences could include a
combination of personal experiences, observations of flu cases and vaccinations
in their social network, and epidemiological information reported by mass media.
The importance of each of these factors in contributing to the formation of risk
perceptions remains an open question. Furthermore, the basic model assumes that
individuals are self-interested and try to avoid the flu, preferably without getting
vaccinated. Therefore, they are led to try to take advantage of herd immunity.
However, the extent to which individuals are consciously or subconsciously aware of
the concept of herd immunity is also still unclear. A recent survey by the ;American
Life Panel at the RAND Corporation hopes to shed some light on these important
behavioral issues. We hope to use the analyses of these survey data together
with realistic social contact networks to construct a more sophisticated inductive
reasoning game model of influenza vaccination and use it to test public health
policies based on incentives.
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Modeling Voluntary Influenza Vaccination Using
an Age-Structured Inductive Reasoning Game

Romulus Breban

Abstract Recently, the impact of social behavior on the dynamics of voluntary
vaccination coverage against seasonal influenza has been modeled using inductive
reasoning games. This modeling technique allows for a natural approach to describ-
ing decision making, experience, and adaptation of individuals. However, so far,
age structure has not been included in this type of models, despite the fundamental
role that age plays in influenza epidemiology. Here, we build on the previous
mathematical framework to include this feature missing from inductive reasoning
games. Then, we discuss several results in contrast to previously developed theory.
We find that including age structure may impact on the game dynamics not only
for epidemiological, but also behavioral reasons. Although implausible for realistic
parameter values, age structure allows for the possibility that individuals eliminate
influenza through voluntary vaccination. Furthermore, we find that, in this case,
period doubling is not the only type of generic bifurcation that could account for the
stability loss of mean-field fixed-point dynamics of the vaccination coverage. Our
study emphasizes the importance of including age structure in predictive models of
voluntary vaccination against seasonal influenza.

1 Introduction

In the developed world, campaigns of voluntary vaccination rarely run into logistic
problems: vaccines go hardly out of stock and qualified medical personnel is
constantly available. Hence, the success of voluntary vaccination depends very
much on human behavior, because individuals learn and adapt to maximize their
personal benefit even when participating to public health programs for the common
good.
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Game theory provides methods for the mathematical study of models of conflict
and cooperation between intelligent, rational, adaptive decision makers. Although
its major applications are in the fields of economics and political science, game
theory has also offered a proper framework for modeling the impact of social
behavior on the vaccination coverage—i.e., the proportion of the population that
gets vaccinated—in countries of the developed world. Deductive reasoning games
have been used to predict the voluntary vaccination coverage for pathogens that
provide permanent immunity [1–5]. In the case of pathogens that do not provide
permanent immunity, modeling studies have focused on influenza. Human behavior
is particularly important for vaccination against influenza, which is a seasonal
disease and remains a continual epidemic and pandemic threat. In this case,
individuals make yearly vaccination decisions that are potentially biased by their
perception of costs versus benefits of vaccination.

Several ideas of modeling influenza vaccination have been investigated. An
evolutionary game was proposed where an individual copies the vaccination strategy
of another with a probability depending on the success of the vaccination strategy
[6]. A different approach is that based on inductive reasoning games [7] initially
applied to modeling financial markets [8]. In this case, it is assumed that individuals
make repeated vaccination decisions based on their expectations about future
epidemics that are, in turn, determined by their collective vaccination coverage.
Inductive reasoning games were applied to understanding the dynamics of influenza
vaccination coverage assuming both homogeneous mixing of individuals [9–11] and
mixing through complex contact networks [12].

Inductive reasoning games proved very instrumental in capturing the interplay
of many fundamental concepts for the dynamics of the influenza vaccination
coverage, such as (1) decision making based on past experience with vaccination,
(2) competition for profiting from the immunity of others and avoiding vaccination
(i.e., so-called free-riding on herd immunity), (3) cooperation to reduce the severity
of epidemics, and (4) self-interested behavior and avoiding vaccination when epi-
demics are prevented [9–12]. Furthermore, inductive reasoning games have shown
that public health programs ignoring behavioral aspects may have counterintuitive
effects and sometimes make epidemics worse [9, 10]. However, they remain, so
far, toy models of influenza vaccination because, for reasons of tractability, they
ignore various practical behavioral and epidemiological issues and lose quantitative
prediction power. For example, in absence of thorough empirical studies, the public
perception of costs versus benefits of vaccination remains poorly modeled, subject
to working assumptions [11]. Another major limitation is the lack of age structure,
even though age structure is recognized as a fundamental feature of influenza
epidemiology [13].

The purpose of this work is to introduce and discuss, for the first time,
an inductive reasoning game with age structure as model for the dynamics of
vaccination coverage against seasonal influenza. This modeling feature has already
been implemented in compartmental models of seasonal influenza expressed using
ordinary differential equations [14, 15] or stochastic processes [16]. Previous work
has used age structure for accurate descriptions of influenza susceptibility, morbidity



An Age-Structured Inductive Reasoning Game 231

and mixing patterns [14–16] which we also address in this work. In addition, our
game theoretic framework allows for the study of how age impacts on the perceived
costs versus benefits of vaccination.

2 Model Definition

Our model is defined by assumptions which we present below grouped into three
broad categories: demographic, epidemiologic, and behavioral. We explain how
the assumptions were made with regard to real world data and formalize them
mathematically. Then, we investigate the model analytically and discuss the impact
of age structure in contrast to results obtained for models lacking this feature [9–11].

2.1 Demographic Assumptions

To establish the age distribution of the game players, we investigated recent
demographical data about developed countries. In these settings, the probability of
survival up to a certain age as a function of age (i.e., so-called survival function) is
well approximated by a rectangular shape, remaining close to one up to nearly the
life expectancy then dropping abruptly to zero [17]. Furthermore, survival functions
of developed countries are expected to become even more rectangular in the future
[18, 19]. Typically, age distributions are reported as age pyramids which consist of
two back-to-back histograms, with the population plotted on the horizontal axis and
age on the vertical axis, one reporting on males and the other on females [20]. For
developed countries, age pyramids have tall, nearly parallel walls and nearly flat
tops [20], suggesting a stable population with long life expectancy that dies of old
age. Hence, we propose the following demographic assumption.

Assumption D 1: We consider a number of N individuals that make yearly vaccina-
tion decisions. Their age pyramid is rectangular; i.e., ages are uniformly distributed
with the discrete support {1,2,3, . . .A} with N/A individuals of each age, where A
is the maximum age reached by the individuals.

2.2 Epidemiologic Assumptions

Compartmental models of influenza transmission typically have a susceptible-
infected-recovered (SIR) or a susceptible-exposed-infected-recovered (SEIR) struc-
ture which reveals the existence of an epidemic threshold expressed by the basic
reproduction ratio of the model, R0—i.e., if R0 > 1, an outbreak becomes an
epidemic, otherwise, the outbreak goes extinct. Analysis of age-structured models
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of influenza epidemics [14] yields essentially the same basic structure providing that
all ages mix (i.e., the mixing matrix between age groups is not block-diagonal). If
the model also includes vaccination, it is found that various configurations of the
age-stratified vaccination coverage may render R0 < 1, preventing epidemics (see,
e.g., [22] Part I.7 and [23]).

Our game theoretic model includes an unrestrictive axiomatic description of
this threshold phenomenon. We denote by qa the probability that unvaccinated
individuals aged a eventually become infected during the course of an epidemic
and by pa the fraction of individuals of age a that got vaccinated. We also introduce
the vector notation p ≡ (p1, p2, . . . , pA) to refer to all the components of the age-
stratified coverage. The equation R0(p) = 1 provides a constraint that typically
defines a compact manifold, called threshold surface [23], dividing the space
P ≡ [0,1]A of all age-stratified coverage configurations into two disjoint domains:

P− ≡ {p ∈ P : R0(p)< 1}, P+ ≡ {p ∈ P : R0(p)> 1}, (1)

where vaccination succeeds or fails to prevent epidemics, respectively. We use the
notation ∂P± for the boundaries of the domains P±, and P̃± for ∂P± ∪P±.

As a function of p, qa must illustrate the epidemic threshold and a herd immunity
effect (i.e., overall protection increases if coverage increases in one age group
and remains the same in all others). As a function of a, qa must illustrate the
age-dependent susceptibility to influenza infection. Studies of animal populations
[24], animal models of human influenza [25], and surveillance data about human
communities suggest [13] that the early and the elderly ages are more susceptible
than the adults. All these conditions are formulated mathematically by the following
assumptions.

Assumption E 1: qa(·) : P → [0,1] is continuous. We also require that qa(·) is
differentiable everywhere in the domain except on the threshold surface R0(p)=1.

Assumption E 2: qa(p) = 0, ∀p ∈ P−, qa((0,0, . . . ,0))< 1, and ∂qa(p)/∂ pb < 0,
∀p ∈ P+, ∀a,b ∈ {1,2, . . . ,A}.

Assumption E 3: qa(p) is a decreasing function of a for a close to 1, and an
increasing function of a for a close to A.

We also assume that the vaccine offers complete protection against influenza
infection for one season for two reasons. First, the efficacy of the influenza vaccine
is quite high, in the range of 70–90 % [26]. Second, effects of imperfect vaccines
may be accounted by increasing the value of the critical vaccination coverage.

We may obtain functions qa(·) in agreement with Assumptions E1–E3 from a
paradigm within-season influenza epidemic model with age structure and preseason
vaccination. Consider the following SIR model without vital dynamics (i.e., no
births, deaths, or aging)
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dSa/dt = −
A

∑
b=1

βabSaIb, (2)

dIa/dt =
A

∑
b=1

βabSaIb − γaIa, (3)

dRa/dt = γaRa, (4)

dVa/dt = 0, (5)

where Sa, Ia, Ra, and Va represent the number of susceptible, infected, recovered,
and vaccinated individuals of age a, respectively. The notation γa represents the age-
stratified recovery rate and βab are the elements of the “who acquires infection from
whom” (WAIFW) matrix (c.f., [21] and [22] Part I.9.2). Another option would be to
use the slightly more complex age-stratified influenza model presented in [14] and
include vaccination. However, the computation of qa(·) would proceed similarly, as
we illustrate bellow.

We assume that at the beginning of each season, paN/A individuals of age a
vaccinate, while Sa(0) = N(1− pa)/A remain susceptible. Equation 3 shows that
epidemics are averted starting with the beginning of the season if and only if the
matrix with the elements βabSa(0)− 1abγa (where 1ab are the elements of the unit
matrix and a,b = 1, . . . ,A) has all the eigenvalues less than zero. The condition that
the largest eigenvalue equals zero is equivalent to the condition that R0 = 1. Hence,
P− is the region in P where all eigenvalues are negative and P+ is the region
where at least one eigenvalue is positive. The function qa(·) is then given by the
cumulative number of cases in age group a over the duration of the season divided
by the size of the age group

qa(p) =
∫ T

0

∑A
b=1 βabSaIb

N/A
dt, (6)

where by T we denoted the duration of the influenza season. Of note, for an SIR
model without age structure, it was found that q(p) is approximately piece-wise
linear [9].

2.3 Behavioral Assumptions

The game theoretic core of our model is defined for a large population of self-
interested individuals according to the principles of the inductive reasoning games
[9–12]. The game proceeds in two steps per influenza season. The first step is at
the beginning of the season when every individual makes his vaccination decision
depending on his experience with flu vaccination. An epidemic may occur every
influenza season, depending on the achieved R0(p). The second step is at the end
of the influenza season when every individual scores his last vaccination decision.
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We assume that, if he did not get vaccinated, an individual evaluates their decision
favorably if they avoided infection and unfavorably if he got infected. Vaccinated
individuals establish the scores of their decisions based on the available epidemio-
logical information. Then, each individual updates his vaccination experience using
the score of his last vaccination decision. (For early ages, it is assumed that the
decisions and the experience updates are made by the guardian of the individual.)
The whole process repeats in the next influenza season. Explicit mathematical
assumptions are provided below.

Assumption B 1: The interest of the individuals is to avoid getting infected, prefer-
ably without having to vaccinate. They act in their own interest and do not
communicate their vaccination decisions to each other.

Assumption B 2: To make his vaccination decision, each individual uses his past ex-
perience of vaccination outcomes. Thus, individuals independently decide whether
or not to vaccinate using inductive reasoning. A factor s determines how important
his previous vaccination outcomes are with respect to his most recent vaccination
outcome (0 ≤ s ≤ 1).

Assumption B 3: We define a vaccination decision of an individual of age a as

a realization x(ia)n of a Bernoulli variable with parameter w(ia)
n , where w(ia)

n is the

probability that individual ia vaccinates in season n. In turn, w(ia)
n further depends

on a variable v(ia)n that characterizes the pro-vaccination experience of the iath
individual (see details in Assumption B7). The indices ia and n are positive integers;
ia = 1,2, . . . ,N/A labels the individual of age a and n ≥ 0 labels the season. If

individual ia decides to get vaccinated in season n then x(ia)n = ca, otherwise x(ia)n = 0.
The variable ca represents the cost of infection and depends on age similarly to the
probability of infection qa (see Assumption E3). The domains of the variables are

as follows: x(ia)n ∈ {0,1}, w(ia)
n ∈ [0,1], ca ∈ [0,1], and v(ia)n ∈ [0,1/∑A

a=1 casA−a].

Assumption B 4: Newborns join society with no vaccination experience and a

constant probability of vaccination given by public health guidelines; i.e., w(i1)
n ≡

ε = const.

Assumption B 5: In year n, a set of N vaccination decisions is made {x(ia)n ;1 ≤ ia ≤
N/A,1 ≤ a ≤ A}, which, together with the pro-vaccination experiences in year
n, determines the pro-vaccination experiences of all individuals in year (n + 1),

{v(ia)n+1;1 ≤ ia ≤ N/A,1 ≤ a ≤ A}. In turn, the pro-vaccination in year (n + 1)

determine {w(ia)
n+1;1≤ i≤N/A,1≤ a≤A}, the parameters of the Bernoulli variables

in year (n+ 1). Hence, the set of vaccination decisions in year (n+ 1) is obtained

{x(ia)n+1,1 ≤ i ≤ N/A,1 ≤ a ≤ A}. Our inductive reasoning game is an array of sets of
vaccination decisions.

Assumption B 6: The infection event of individual ia in year n is described by a

variable z(ia)n . (If individual ia got infected in season n then z(ia)n = 1, otherwise
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z(i)n = 0.) The infection process is as follows. If x(ia)n = 1 then z(ia)n = 0. If x(ia)n = 0,

then z(ia)n is a realization of a Bernoulli variable with parameter qa(pn). That is, if
individuals vaccinate of age a, they are fully protected, otherwise they risk infection
with probability qa(pn).

Assumption B 7: At the end of the influenza season of year n, each individual

provides a score between 0 and 1 for his vaccination decision x(ia)n based on his

infection status z(ia)n and available epidemiological information. We have three cases:

(a1) if x(ia)n = 0 and z(ia)n = 1 then the score is ca and v(ia+1)
n+1 = sv(ia)n + ca; i.e.,

if individual i did not get vaccinated and got infected, then he considers that the
vaccination would have been necessary to avoid the cost of infection ca; (a2) if

x(i)n = 0 and z(i)n = 0 then the score is 0 and v(ia+1)
n+1 = sv(ia)n ; which means that if

individual i did not get vaccinated and did not get infected, then he considers that

the vaccination was unnecessary and (b) if x(ia)n = 1, then the score of the vaccination

decision is Fa(pn) and v(ia+1)
n+1 = sv(ia)n +Fa(pn). That is, if individual ia got vaccinated

then he did not get infected and uses epidemiological information to evaluate their
vaccination decision (see discussion below).

Assumption B 8: The probability that an individual chooses to get vaccinated is
updated as follows:

w(ia)
n+1 = v(ia)n+1/

a

∑
α=1

cα sa−α . (7)

That is, an individual’s probability to get vaccinated in the next season is given

by the updated cumulative vaccination experience. We have normalized v(ia)n+1 by

∑a
α=1 cα sa−α because this factor is the maximum value of v(ia)n+1 if individual ia

benefited from vaccination in all seasons up to age a.

The score function Fa(·) may be interpreted as the perceived benefit of vaccination,
normalized between 0 and 1. It depends both on the epidemiological information
available to vaccinated individuals, which we express in terms of the age-stratified
vaccination coverage, and how they react to this information. Such a function could
be grounded in terms of how individuals seek to maximize their utility, given their
estimates of infection risk. We make assumptions on the analytic form of Fa(·) to
reflect the fact that the individual tries to benefit from herd immunity and that he is
not fully satisfied to have had vaccinated when epidemics were prevented [11].

Assumption BF 1: Fa : P → [0,1] is continuous and differentiable everywhere in
the domain except on the threshold surface R0(p) = 1.

Assumption BF 2: ∂Fa(p)/∂ pα ≤ 0, ∀a,α ∈ {1,2, . . . ,A}, wherever F(·) is dif-
ferentiable. That is, individuals try to benefit from herd immunity; as coverage
increases, the pro-vaccination experience gained by individuals who got vaccinated
decreases.
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Assumption BF 3: Fa(p)< 1, ∀a ∈ {1,2, . . . ,A}, ∀p ∈ P+. That is, individuals are
not fully satisfied to have had vaccinated when epidemics were prevented.

3 Results

We follow the strategy of previous work [10, 11] and develop the mean-field
approximation (i.e., the limit of large populations, N → ∞) of the dynamics of the
expected coverage predicted by the inductive reasoning game. Then, we proceed by
analyzing the resulting deterministic dynamical system.

3.1 Mean-Field Approximation of the Coverage Dynamics

We denote by 〈·〉 the average over the realizations of the game in the mean-field
approximation and introduce the variable mn ≡ 〈pn〉 for the expected age-stratified
vaccination coverage. By an argument similar to that employed in previous work
[10, 11], the dynamics of pn at large finite N can be approximated by adding
Gaussian noise with amplitude ∼

√
N−1 to the dynamics of mn. However, in most

of the phase space of m, the noise will not change the qualitative dynamics of the
orbit and mean field will be a suitable approximation. Furthermore, since the noise
amplitude is small and qa(·) and Fa(·) are continuous, we have 〈qa(p)〉 ≈ qa(m) and
〈Fa(p)〉 ≈ Fa(m).

From the definition of pa
n, we immediately obtain ma

n = ∑N/A
ia=1〈w(ia)

n 〉/(N/A).
According to Assumption 7, it is straightforward to arrive at the following equations
based on the scoring tree for vaccination decisions of individuals of age a:

branch expected population fraction expected v(ia) update

(a1) (1−ma
n)qa(mn) v(ia+1)

n+1 = sv(ia)n + ca;

(a2) (1−ma
n)[1− qa(mn)] v(ia+1)

n+1 = sv(ia)n ;

(b) ma
n v(ia+1)

n+1 = sv(ia)n +Fa(mn).

(8)

The weighted average of Eq. 8 yields

ua+1
n+1 = sua

n +(1−ma
n)caqa(mn)+ma

nFa(mn), (9)

where ua denotes the average of v(ia) over the population of age a. Taking the
population average of Eq. 7, we obtain

ma+1
n+1 = ua+1

n+1/
a

∑
α=1

cα sa−α . (10)
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Combining Eqs. 9 and 10, and using the fact that m1
n+1 = ε , we obtain the mean-field

approximation of the coverage dynamics of the inductive reasoning game

ma+1
n+1 = sma

n +[(1−ma
n)caqa(mn)+ma

nFa(mn)]/
a

∑
α=1

(cα sa−α), (11)

a dynamical system defined on the phase space of the age-stratified expected
coverage P .

3.2 On the Achieved Coverage When Epidemics Are Prevented

Proposition 1: The mean-field model given by Eq. 9 predicts that epidemics could
be always prevented if and only if the following dynamical system

ma+1
n+1 = ma

n

[

s+Fa(mn)/
a

∑
α=1

(cα sa−α)

]

, (12)

where m1
n+1 = ε , has an attractor in P−.

Proof: The above dynamical system represents the restriction of the mean-field
model (c.f., Eq. 11) to P− where qa(m) = 0. Hence, if it has an attractor in P−,
then the mean-field model has an attractor in P− where R0(m)< 1 and epidemics
are prevented. That is, the evolution of the coverage may assure that epidemics are
prevented for all time given suitable initial conditions. ��
Remark 1: Previous inductive reasoning games have ignored age structure in mod-
eling voluntary vaccination against seasonal influenza. Within a general axiomatic
framework similar to the one employed here, they yield mean-field approximations
whose restriction to P− converge to zero coverage, which belongs to P+ (see [11],
Proposition 1). Hence, inductive reasoning games without age structure predict that,
under very general conditions, voluntary vaccination will fail to eliminate influenza
epidemics every season.

Remark 2: Including age structure in an inductive reasoning game suggests that
voluntary vaccination could be efficient in always preventing influenza epidemics.
To make this result more transparent, we consider a simple example where the
perceived benefit of vaccination is proportional to the individual-level risk of
infection Fa(m) ∝ qa(m) [11]. Hence, Eq. 12 becomes

ma+1
n+1 = sma

n, (13)

a dynamical system with the following fixed-point attractor:
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m̂ = {ε,sε, . . . sA−1ε}. (14)

If m̂ ∈ P−, then epidemics are always prevented; this could, in principle, be the
case for large values of ε and s.

Remark 3: We recall that s represents a memory parameter that weights the previ-
ous vaccination experience with respect to the most recent vaccination outcome;
i.e., for s = 0.7 [9], last year’s memories about vaccination outcome contribute
70 % toward the total vaccination experience and previous to last year’s memories
only 49 %. It is unlikely that, for s = 0.7, m̂ belongs to P− when Fa(m) ∝
qa(m), even if ε = 1. Assuming A = 80 years, the coverage over all age groups
is ∑A

a=1 m̂a/A ≈ 4.2%, much less than the critical vaccination coverage for seasonal
influenza estimated at 50–70 % [9]. Hence, it is unlikely that, under reasonable
parameterization, the age stratified coverage m̂ given by Eq. 14 would prevent
influenza epidemics.

3.3 Analysis of an Example Model

Proposition 2: Consider Fa(m) = caqa(m) and s = 0. Then the following state-
ments hold.

(1) The mean-field model given by Eq. 11 becomes

ma+1
n+1 = qa(mn), (15)

where m1
n+1 = ε .

(2) The model may only have m̂− = {ε,0,0, . . . ,0} as an attractor in P̃−.
(3) If m̂− does not belong to P̃−, then there exists a unique fixed point m̂+ in P̃+.

Proof: (1) Equation 15 is obtained by making the appropriate substitutions in
Eq. 9.

(2) This result follows directly from the discussion in Sect. 3.2. ��
(3) The fixed-point equations are

ma+1
+ = qa(m+). (16)

Because m1
+ = ε , we relabel the components of m̂+ using the shift a →

a − 1. Since each function qa : P → [0,1] is continuous (see Assumption
E1), the vector function q ≡ (q1,q2, . . . ,qA) : P → P is continuous, as well.
Furthermore, since P is closed and convex, the Brouwer fixed-point theorem
[27] guarantees the existence of a fixed point of the function q in P which, in
turn, implies the existence of a fixed point for the dynamical system given by
Eq. 15. If this fixed point does not belong to P̃−, it belongs to P \ P̃− =
P̃+ \ ∂P−; in this case, we denote it by m̂+. Furthermore, m̂+ is unique
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because the qa(·) functions (a = 1,2, . . . ,A) are strictly decreasing in P̃+ (see
Assumption E2). ��

Remark 4: The choice Fa(m) = caqa(m) represents the situation where the per-
ceived benefit of vaccination at age a equals the individual-level risk of infection
normalized between 0 and the cost of infection at age a, ca. By considering s = 0
we model the case where individuals use only last year’s experience to make their
vaccination decisions for the current year.

Remark 5: The fixed point m̂+ is linearly stable if and only if the eigenvalues
of the jacobian matrix with elements (∂qa/∂mb)m̂+ belong to the interior of the
unit disk in the complex plane [28]. Our assumptions are not sufficient for the
resolution of this condition. Depending on the eigenvalues, loss of fixed-point
stability typically occurs through a generic bifurcation: the saddle-node, period
doubling, or Sacker-Neimark [28]. This is in contrast to results from studies of
models without age structure where stability loss typically occurs only through a
period-doubling bifurcation [11].

4 Discussion

Inductive reasoning games have recently emerged as a new class of models
for studying the dynamics of voluntary vaccination against seasonal influenza.
While instrumental at capturing key features of human behavior, they have, so
far, used simplified demographical and epidemiological assumptions. In this work
we expanded the previous mathematical framework to include age structure in
inductive reasoning games. This addition, based on the demography of developed
countries, impacts on modeling both influenza epidemiology and human behavior.
Since the natural history of influenza infection and the prevention measures depend
significantly with age, considering age structure in inductive reasoning games is a
major step forward for making them more realistic models of influenza vaccination.

Age structure has important consequences for the modeling of human behavior.
In previous work, it was considered that individuals live very many influenza
seasons (essentially an infinite number) and, as a consequence, they end up finely
tuning their vaccination strategies. As a result, it was noted that severe epidemics
are periodically expected (approximately once every 35 years) as a result of human
behavior, even without introduction of pandemic strains [9]. Furthermore, it was
inferred that, due to self-interested behavior, a community will always fail to self-
organize to eliminate influenza epidemics [11]. Considering age structure yields two
important comments on these previous results. First, within the previous modeling
framework, predictions of periodic epidemics on the time-scale of human life
expectancy should be made with care as they may fall outside the validity of
the model. Second, the modeling of age structure shows that, in principle, it is
possible that a community eliminates influenza epidemics by voluntary vaccination
(see Proposition 1). This is due to the fact that individuals do not actually reach
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their optimal vaccination strategies as they live for a finite number of influenza
seasons. The community continuously loses individuals that are very experienced
with seasonal vaccination. Instead, they are replaced with newborns that may easily
accept (themselves or their guardians) an initial vaccination probability according
to the standard of care; then they will take time to search for a better vaccination
strategy and adapt. Further work on the parameterization of the games is necessary
to decide to what degree this phenomenon may contribute to the elimination of
influenza epidemics. We determined that its impact increases exponentially with the
degree to which individuals remember their vaccination outcomes (i.e., the memory
parameter s).

Mathematically, age structure turns the mean-field model of the vaccination cov-
erage from a one-dimensional into a multi-dimensional map. As demonstrated by
the analysis of a game example (see Proposition 2), fixed-point coverage dynamics
of the mean-field map when epidemics are not prevented remains possible. However,
the fixed point may typically lose stability through any generic bifurcation, not just
period doubling. Further refinement of this theory and a better understanding of
the discrepancies between age-structured and age-unstructured inductive reasoning
games may reside in restricting the form of the WAIFW matrix using realistic
assumptions based on contact data [29–31]; see [14] for a sample calculation.
In turn, this will constrain how the probability of infection depends on coverage
and age.

In conclusion, including age structure in influenza vaccination models based on
inductive reasoning games impacts on the description of both human behavior and
epidemiology, and represents a key step forward in increasing models’ realism.
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Emergent Dynamical Features
in Behaviour-Incidence Models of Vaccinating
Decisions

Samit Bhattacharyya and Chris T. Bauch

Abstract Vaccination is a cornerstone of infectious disease prevention. However,
individual vaccinating behaviour does not always result in population-level vaccine
coverage patterns that are optimal for protecting public health. For example, vaccine
coverage may fall below the elimination threshold due to nonvaccinators who “free-
ride” on the herd immunity provided by vaccinators. Routine vaccination programs
for many paediatric infectious diseases now have an almost worldwide coverage,
but vaccine scares fuelled by such behaviours threaten eradication goals. This free-
riding behaviour can be seen as a manifestation of policy resistance, where humans
respond to an intervention in such a way that tends to undermine the intervention.
However, policy resistance is only one such example of the types of dynamics that
emerge from the interaction between vaccinating behaviour and disease incidence
or prevalence. Here we explore four types of emergent dynamics of behaviour-
incidence systems: policy resistance, policy reinforcement, outcome inelasticity,
and outcome variability. We discuss examples of each of these dynamics in the
behaviour-incidence modelling literature, and suggest potential implications for
vaccination policy.
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1 Introduction

Despite widespread controversies among the public, vaccination has proved to be
one of the most successful infectious disease interventions ever and remains one
of the greatest public health achievements in the twenty-first century. Vaccination
against major infectious diseases, and the complete or near-complete eradication
of some diseases (such as smallpox and polio), has completely changed the
demography of many developed and developing countries worldwide [13].

The most common strategy is universal mass vaccination (UMV), which requires
covering as much of the population as possible, either through large-scale periodic
campaigns or through regular school-based programs. However, ring vaccination
has also been applied. Ring vaccination involves identifying infectious index cases
and vaccinating their close contacts to prevent them from being infected [29, 37].
Ring vaccination may perform better than UMV when the outbreak is localized
and infected individuals or their exposed contacts can be rapidly identified. Ring
vaccination has been applied to outbreak control for hepatitis A [17], foot-and-
mouth disease in cattle [32, 41], and smallpox [21].

Large-scale vaccination programs confer population-wide benefits. Vaccination
not only prevents infection in vaccinated individuals but also protects the unvac-
cinated through a “herd immunity” effect that slows down the circulation of a
pathogen in the entire population [1]. Herd immunity operates through disrupting
the chain of transmission between individuals. The greater the proportion of
vaccinated individuals, the smaller the probability that a susceptible individual will
come into contact with an infectious individual and thereby become infected.

The epidemiology of many well-known vaccine-preventable diseases is subject
to the effects of human belief and awareness of disease or vaccine [15, 22].
Human behaviour plays an important role in determining whether target vaccination
coverage can be reached in a given population. Common childhood diseases such
as measles or pertussis are timely examples [38]. While there has long been
enthusiastic debate in some higher-income countries about the relative merits
and implications of mandatory versus voluntary vaccination [16], it is clear that
voluntary vaccination policies sometimes fail. Measles-Mumps-Rubella (MMR)
vaccination in Great Britain in the 1990s is one such example of failure due to a
vaccine “scare” [31].

Vaccination coverage for seasonal influenza also remains suboptimal in many
countries, including the USA and Canada. Suboptimal coverage has been observed
even among health care workers (HCWs). For example, a recent study indicates
that vaccination coverage for seasonal influenza among HCWs in Canada remains
below 50 % [33]. Influenza vaccination coverage among children and individuals
at high risk was also very low and significantly below the target level. This is a
worldwide phenomenon, with suboptimal influenza vaccine coverage among HCWs
having also been identified in Middle East countries (United Arab Emirates (UAE),
Kuwait, and Oman), due to doubts about vaccine efficacy, lack of information about
the importance of immunization, and concerns about vaccine side effects [28]. A low
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Fig. 1 Feedback loop arising
from interactions between
vaccinating behavior and
disease incidence. Figure
taken from [10]

perceived risk of becoming infected, whether justified by historically low infection
rates or not, can contribute as much as inflated perception of vaccine risk does:
studies identify perceived lack of infection risk as a factor in non-uptake of influenza
vaccine [35]. If reduced infection rates due to previous vaccinations lead to reduced
perception of infection risks, then herd immunity can, ironically, lead to reduced
infection risk perception and thus reduced vaccine uptake.

An emerging fear of vaccine complications can combine with the temptation to
rely on herd immunity provided by those who have already vaccinated to impel
individuals to exempt themselves or their children from vaccination. Thus, herd
immunity introduces a social dilemma in voluntary vaccination policy that amounts
to “free-riding” or a “tragedy of the commons” [22, 30]. Equivalently, this dynamic
implies a feedback loop between vaccinating decisions and disease dynamics:
individual vaccinating choices influence disease prevalence, but the level of disease
prevalence in turn influences how many individuals choose to seek vaccination
[7, 9, 11] (Fig. 1).

Classical game theory provides a useful tool to analyse and predict the outcomes
of strategic interactions [18, 20, 43, 44], including those arising from the interaction
between disease dynamics and human vaccinating behaviour [5, 14]. According to
a game theoretical perspective, individuals make a rational decision in weighing up
the costs and benefits related to vaccination against the cost of risking infection,
making assumptions about how much herd immunity will be provided by others in
the population. Although further empirical study is warranted regarding how well
game theory captures vaccinating behaviour and risk perception, game theoretical
modelling of individual vaccinating decisions is growing. This models often predict
that rational self-interest leads to a Nash equilibrium vaccine coverage that is
suboptimal for the population, being below the level required to eliminate the
infection [5, 6]. However, a variety of other non-game-theoretical approaches
have also been adopted to capture the interplay between disease dynamics and
vaccinating behaviour, and they often yield similar predictions [2, 7, 19].
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The nonlinear feedback loop that springs from interaction between individual
vaccinating behaviour and disease dynamics can create interesting dynamical con-
sequences, including policy resistance, policy reinforcement, outcome inelasticity,
and outcome variability. In the next few sections, we will define these terms and
discuss how they arise in models of the interplay between vaccinating behaviour
and disease dynamics.

2 Policy Resistance

The most common implication of herd immunity for behaviour-incidence dynamics
is policy resistance, which is “the tendency for interventions to be defeated by the
systems response to the intervention itself” [40]. The vaccine coverage necessary to
achieve perfect herd immunity and thus elimination vary greatly from one infectious
disease to the next but generally range from 80 % to 95 % for common paediatric
infectious diseases [1]. If this level of vaccination is attained, those who refuse
to be vaccinated are nonetheless protected through the strong likelihood that they
will never be infected. As a result, there is a temptation not to seek vaccination
when vaccine coverage is very high. If this temptation translates into individual
action not to seek vaccination, vaccine coverage will drop below the elimination
threshold. Hence, as a result of herd immunity and the nonlinear interplay between
disease dynamics and vaccinating behaviour, voluntary vaccination is subject to
policy resistance.

Policy resistance is often cast as a conflict between the Nash equilibrium
vaccine coverage and the social optimum vaccine coverage. The social optimum
can be defined as the vaccine coverage such that the total population burden from
either vaccination or infection across all individuals is minimized, and in these
models the goal of public health is often conceived as being to reach the socially
optimal coverage level (although typically, this definition ignores issues of equity).
In contrast to the socially optimal coverage, the Nash equilibrium driven by rational
self-interest in most models leads to a vaccine coverage that is different (often lower)
than the social optimum vaccine coverage (Fig. 2). Some models indicate that this
free-riding manifestation of policy resistance can emerge relatively quickly upon
introduction of a new immunization program and that it can result in considerable
instabilities in vaccine coverage [8, 19, 42]. For example, new generation vaccines
for childhood immunization programs are launched in the United States every few
years [3], and the success of the immunization program depends to some extent
on how the population will respond to it, which may only partly be a function
of demonstrated safety and efficacy of the vaccine. A recent game theoretical
model describes how populations respond to a new paediatric infectious disease
vaccine implemented through a universal mass vaccination program administered
at a specified age every year [8]. This model predicts that, due to initially high
infection prevalence, vaccine coverage remains reasonably high immediately after
introduction but can succumb to free-riding on herd immunity within 4–5 birth
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Fig. 2 Policy resistance in vaccination for paediatric infectious diseases. Vaccine coverage p∗
at the Nash equilibrium versus relative risk r, the ratio between risk of vaccination and risk of
infection, for various values of R0 . Dashed horizontal lines demarcate the critical coverage level
that eliminates the disease from the population. Figure taken from [5]

cohorts (years). These drops occurs sooner (within 2–3 birth cohorts) when the
disease risk is low or vaccine efficacy is low. Moreover, due to instabilities in
behaviour-incidence dynamics, vaccine coverage can vary considerably from one
birth cohort to the next. The model also enables calculating the smallest vaccine
risk tolerable for each birth cohort so that an individual makes a rational decision
of considering vaccination; this information may be useful for designing phase III
trials and phase IV safety studies for vaccines [3].

Somewhat similar dynamics have been explored in the context of influenza
vaccination [42]. Influenza management is one of the most significant current
concerns for public health policy makers. While it is recommended that nearly 80 %
of individuals should get annual influenza vaccine, it is estimated that only 40–50 %
actually do so [23]. In response to the need to revaccinate for influenza every year,
universal influenza vaccines conferring long-term immunity are being developed,
and it is hoped that this might increase vaccine coverage [46]. However, a game
theoretical model linking human cognition and memory for universal influenza
immunization and influenza epidemiology forces us to consider the potential for
policy resistance against universal influenza vaccines. This model predicts that a
universal vaccine which provides short-term protection will on average increase the
vaccine coverage, compared to the standard seasonal vaccine: short-term protection
maintains risk communication of influenza among populations, resulting in stable
vaccine coverage, which in turn creates small groups of free-riders and thus frequent
but small-size epidemics. In contrast, a universal vaccine that provides longer-
term protection may be counter-productive in some respects. Long-term protection
creates large groups of free-riders who accept vaccination only after a severe
epidemic occurs. Because of long-term immunity, individuals mostly free-ride, or
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accept vaccination only once in a large time frame, and this results in drop of vaccine
coverage after many years, in turn causing infrequent but very severe epidemics.

The imbalance between perceived and real risk and its negative effect on vaccine
coverage is also reflected by several other examples of research. For example,
population surveys have been used to parameterize game theoretical vaccinating
behaviour models for influenza and human papillomavirus (HPV) vaccination
[4, 27]. These models confirm that rational individual vaccinating decision-making
would not allow populations to reach vaccine coverage levels that minimize disease
prevalence in the population.

Another manifestation of policy resistance is individuals who vaccinate, but only
after a period of delay. Delaying behaviour has been observed in some real-world
immunization programs, and the game theoretical aspects of such behaviour have
been explored for the case of paediatric infectious diseases [11] and pandemic
influenza [12]. Using a game theoretical model of vaccination the authors have
shown that relatively low disease incidence causes individuals to delay vaccination,
for a year or two in the case of school-based programs for paediatric infectious
diseases, or many weeks in the case of pandemic influenza. Naturally, delaying
behaviour also hinders disease control and can cause subsequent incidence spikes.

3 Policy Reinforcement

Models of vaccinating behaviour can also exhibit policy reinforcement, which can
be defined as the tendency for interventions to be boosted by the system’s response
to the intervention. Instead of the negative feedback loop of policy resistance, where
an increase in vaccine coverage tends to create a disincentive for further vaccination
activity, the feedback loop in the case of policy reinforcement is positive, where
increased vaccination activity stimulates still further vaccination activity.

One situation in which policy reinforcement can occur in such models is during
the transient period when a new vaccine has been introduced and there is some
social learning process, whereby individuals adopt a vaccinator strategy only if they
have learned that behaviour from someone else [7, 9, 20, 26, 39]. In that scenario,
disease is initially widespread and there is little herd immunity, and so it is optimal
for individuals to get vaccinated. At the same time, if individuals “sample” other
individuals at some rate and only switch to being a vaccinator when they sample
someone who is a vaccinator, then an increase in the abundance of vaccinators will
lead to more instances of vaccinators being “sampled” and hence more opportunities
for new vaccinators to be created. As a result, there is a virtuous cycle of increasing
vaccine coverage, at least until herd immunity creates a disincentive large enough
to outweigh the effect of increasing numbers of vaccinators.

There are also other potential sources of policy reinforcement. For some
infections (such as chickenpox), pathogenicity of an infection can increase with age,
which can reverse the usual relationship between Nash equilibrium vaccine cover-
age and socially optimal vaccine coverage [34]. Unlike for a non-age-structured
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model, vaccination against chickenpox may either help or harm the unvaccinated.
While vaccination decreases the probability of being infected, it also shifts the
average age at infection upward, and for an infection like chickenpox that can
become more severe with age, this could end up harming the unvaccinated. It could
also harm vaccinated individuals in whom the vaccine was not efficacious, leading
to breakthrough infection. At high vaccine efficacy, while the infection probability
for unvaccinated juveniles decreases with vaccination coverage, it actually increases
for adults. For example, the infection probability for adults peaks at 18 %, when
the background vaccine coverage is 77 %, though it starts declining as full herd
immunity is approached at 92 % coverage. For low vaccine efficacy, the infection
probability peaks at 17 %, even if the entire population is vaccinated. The probability
of breakthrough infection is also dependent on the vaccine coverage. For partial
vaccine efficacy, the probability of breakthrough infection for both juveniles
and adults increases with increasing vaccine coverage. With increasing vaccine
coverage, fewer individuals are exposed to the disease thereby decreasing the total
number of fully protected individuals relative to partially protected individuals.
The probability of acquiring disease for partially protected individuals remains
high when especially the coverage is low, though it drops very quickly as the herd
immunity approached.

As a result of these effects, the Nash equilibrium vaccine coverage in this game
theoretical chickenpox model can actually exceed the socially optimal vaccine
coverage (Fig. 3).

From the perspective of the social optimum, this is not truly an example of policy
reinforcement since the total health burden at the Nash equilibrium vaccine coverage
still differs from the total health burden at the socially optimal vaccine coverage.
However, from the perspective of universal vaccine coverage as a public health goal,
we could view this as an example of policy reinforcement, since the emergence
of high vaccine coverage is facilitated by the population response to the vaccine
program.

4 Outcome Inelasticity

The consequences of a vaccination game played out over the course of a single
outbreak where the vaccine is new to the population has also been investigated, in
the context of pandemic influenza vaccination [12]. This can lead to an effect termed
outcome inelasticity, whereby a given outcome (such as prevalence of infection, or
timing of an epidemic peak or number of deaths) is conserved across a given range
of parameter values, due to nonlinear feedbacks in the model.

In a situation where a new vaccine has been introduced to a population
experiencing an outbreak of an infectious disease, many individuals may opt to
“wait and see” regarding vaccine risks. In particular, they may avoid vaccination
until enough other individuals around them have been vaccinated to convince them
that the vaccine is safe. As a result, perceived vaccine risk decreases as a function of
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Fig. 3 Policy enhancement
in chickenpox vaccination.
Nash equilibria versus social
optimum for a range of cost
of vaccinations in (a) USA
and (b) Israel. Depending on
the vaccination cost, there are
three Nash equilibria
indicated by triangles,
squares, and filled circles.
Solid line (without symbols)
indicates the social optima as
a function of cost of
vaccination. Figure taken
from [34]

the number of individuals vaccinated to date. This amounts to a form of free-riding,
where early vaccination by the entire population would have prevented the outbreak,
but instead late vaccinators use early vaccinators as “guinea pigs.” On the other
hand, late vaccinators also accept an increased risk of being infected before they
can get vaccinated. On top of this interaction, herd immunity also plays a role, with
herd immunity provided by early vaccinators helping to protect late vaccinators or
nonvaccinators.

In a game theoretical model capturing these strategies, it is possible to show
how the strategic behaviour causes the timing of the pandemic peak to be strongly
conserved across a broad range of plausible transmission rates, which is generally
not possible without strategic behaviour. As the basic reproductive number R0

increases it causes a more rapid development of the epidemic, which forces late
vaccinators to vaccinate a little earlier, thus counteracting the effects of a higher R0.
The net effect is that the peak occurs at approximately the same week regardless of
R0, i.e., the outcome is inelastic with respect to R0 (Fig. 4) [12].

We note in passing that this model also exhibits policy reinforcement with respect
to the initial perceived vaccine risk: an effort to decrease the initial perceived
vaccine risk would supply benefits throughout the epidemic, because a lower initial
perceived vaccine risk means more early vaccinators, which in turn means more
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Fig. 4 Outcome inelasticity in pandemic influenza vaccination. (a) Nash equilibrium vaccine
coverage and (b) resulting influenza incidence, at different R0 values and different values of
the parameter a governing perceived risk evolution during the pandemic, over each week of the
outbreak. Figure taken from [12]

“guinea pigs” from which late vaccinators can form an impression of vaccine
safety, which means more late vaccinators and lower perceived vaccine risk later
in the outbreak.

An example of outcome inelasticity with respect to total mortality in a population
is observed in a non-game-theoretical model of vaccinating behaviour for an
infection transmitted through an evolving social contact network [36]. In this model,
individuals who become infected have a probability din f of dying, and this risk is
part of the individual payoff functions. As the parameter din f increases, the payoff
for not vaccinating decreases, making vaccination a more appealing option. As a
result, vaccine coverage increases as din f increases, which counteracts the effects of
a higher din f to make the total number of deaths relatively constant across a range
of values for din f .

5 Outcome Variability

Outcome variability is a situation where, due to stochastic effects, qualitatively
different outcomes are possible for different stochastic realizations of the same
underlying model parameter distributions. This may occur at the boundary of basins
of attraction for two steady states and is a possible outcome of vaccinating behaviour
models where some processes of social learning or imitation is present [7,9,39,45].

For example, in a model of voluntary ring vaccination where individuals must
weigh whether to get vaccinated given that their contact is an index case, outcome
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Fig. 5 Outcome variability in voluntary ring vaccination. The distribution across many stochastic
realizations of the number vaccinated (top) and the number of secondary infections (bottom) in 100
neighbours of an index case, for imitation strength κ = 0.7. Figure adapted from [45]. For details
see this reference

variability can occur when individuals are prone to imitate the decisions of
other contacts of the index case [45]. For the same underlying model parameter
distributions, some stochastic realizations result in the majority of contacts getting
vaccinated, while other stochastic realizations result in the majority of contacts not
getting vaccinated (Fig. 5). As a result, the number of contacts who get infected can
be either large or small. The implications of such social “clumpiness” in vaccine
strategies due to imitation tendencies for the success of ring vaccination strategies
are clear, since this can make the difference between control or no control of the
outbreak.

Likewise, in a social learning model where the population is split evenly between
vaccinators and non-vaccinators and where individuals tend to copy more successful
strategies, the long-term outcome can be high vaccine coverage or low vaccine
coverage depending on which basin of attraction the system is tipped into, based
on stochastic effects.

6 Discussion and Conclusion

Human behaviour can be a key driver of infectious disease dynamics [25],
particularly as it relates to vaccinating decisions [9]. Behaviour-incidence dynamics
can thereby have significant implications for public health policy. The clash between
Nash equilibrium and social optimum, where free-riding behaviour results in
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suboptimal vaccine uptake, is an example of policy resistance, which is the most
commonly explored outcome of behaviour-incidence dynamics. However, here we
have discussed other possible outcomes such as policy reinforcement, outcome
inelasticity, and outcome variability. These effects nuance the standard “cartoon” of
voluntary vaccination as a free-rider problem.

Such nuances can have important implications for vaccine policy. For example,
the game theoretical model of chickenpox vaccination described in Sect. 3 provides
diverging recommendations for chickenpox vaccination policy in Israel versus the
United States [34]. The authors suggest that external regulation such as subsidies
for vaccination may be unnecessary or may even worsen the situation depending on
the relationship between the Nash equilibrium and the social optimum. According
to their analysis, subsidies or external regulation are required to achieve target
coverage for the United States, whereas an information campaign on chickenpox
awareness and vaccine safety is sufficient to optimize vaccine coverage in Israel.

Similarly, outcome inelasticity and outcome variability have implications for
disease management. Reaction to a new vaccine during a pandemic outbreak and the
potential for behavioural feedbacks to shape the epidemic curve have implications
for risk messaging, prioritization of vaccination for high-risk groups, and logistics
of vaccine rollout during a pandemic [12]. Similarly, ring vaccination may need to
consider the social context (with specific emphasis on beliefs regarding vaccination)
given the potential for social learning effects to influence local acceptance or
rejection of a vaccine and thus determine success of local containment [24, 45].

The list of emergent dynamical effects of behaviour-incidence models we have
provided here is not exhaustive, and more effects may come to light as the theory is
developed. However, as the theory continues to develop, we hope that more efforts
will be made to better validate these models against empirical data and apply them
to specific questions concerning real-world vaccine policies. As a result, we will
better understand how to recognize, mitigate, and harness the emergent dynamics of
behaviour-incidence systems in order to improve public health.
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Impact of Vaccine Behavior on the Resurgence
of Measles
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Abstract Widespread avoidance of the measles-mumps-rubella vaccination
(MMR) demonstrates that the effectiveness of vaccination programs can be thwarted
by public misperceptions of vaccine risk. By coupling game theory and epidemic
models, we examine vaccination choice among populations stratified into vaccine
skeptics and vaccine believers. The two behavioral groups are assumed to be
heterogeneous with respect to their perceptions of vaccine and infection risks. We
demonstrate that the pursuit of self-interest among vaccine skeptics often leads to
vaccination levels that are suboptimal for a population, even if complete coverage is
achieved among vaccine believers. Furthermore, as the number of vaccine skeptics
increases, the probability of infection among vaccine skeptics increases initially,
but it decreases once the vaccine skeptics begin receiving the vaccination, if both
behavioral groups are vaccinated according to individual self-interest. This research
illustrates the importance of public education on vaccine safety and infection risk
in order to achieve vaccination levels that are sufficient to maintain herd immunity.
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1 Introduction

During the past century, developments in vaccination have led to effective control
of the transmission and outbreaks of many infectious diseases. In 2000, the endemic
transmission of measles was eliminated in the USA due to public policies regarding
vaccination, such as requiring students to be vaccinated before entering schools [16].
However, measles elimination was hampered when a connection between the MMR
vaccine and autism was proposed by Wakefield in 1998 [11]. This suggestion led
many parents to refuse the MMR vaccine. Although the hypothesis by Wakefield
was discredited in 2010, the impact of the idea linking the MMR vaccine and autism
could not be withdrawn so easily [11].

Prior to the supposed autism-MMR connection in 1998, coverage in England
was 92%, and only 56 cases of measles were reported in Wales and England in
1998 [11]. By 2001, the level of MMR coverage dropped to 80%, resulting in
1,370 measles cases in 2008 [11]. The drop in MMR vaccination also occurred in
France, the European country with the highest number of outbreaks [6]. In the USA,
the number of measles cases increased drastically as well. In 2001, the estimated
number of children in the USA who did not receive the suggested three doses of
the MMR vaccine due to safety concerns was 42,937, 15% of underimmunized
children [12]. As in other developed countries, the main reasons for MMR refusal
were reported to be the harmful effects of vaccines and the relatively low risk of the
diseases. In 2011, the USA had 17 measles outbreaks with 222 confirmed cases, the
highest number of cases since 1996 [18].

To understand the impact of the publics health-related perceptions on the success
of interventions, several game-theoretical models in epidemiology have been pro-
posed [1, 4, 8–10, 13, 20–22]. In the case of vaccination, these studies have shown
potential conflicts between individual incentives and population incentives. From
the perspective of the population, vaccination reduces the transmission of infectious
diseases and has the potential to eliminate diseases when herd immunity is achieved.
For individuals driven by self-interest, game-theoretic decisions are expected to tend
toward the Nash strategy, where no player can increase his or her individual payoff
by changing his or her own strategy [15].

Here, we propose a game-theoretic dynamic model of measles transmission in
order to examine the impact of perceived risks of measles vaccination on the vaccine
uptake. Using our model, we explore how vaccine refusal may lead to the failure of
herd immunity. Our results highlight the role of vaccine skeptics in reducing overall
vaccine coverage in populations, making the discrepancies between the Nash and
utilitarian strategies of vaccination larger. Based on our results, we conclude that
the probability of measles infection and incidence of measles are more sensitive to
the proportion of vaccine skeptics than to individual misperceptions about vaccine
risks. Our study also highlights the impact of discrepancies between perceived and
actual risks in the general population on the individual vaccine uptake.
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2 Methods

2.1 Epidemiological Population Model for Vaccine Refusal

We developed the model of measles transmission and vaccination (Eqs. 1–8),
dividing population into two behavioral groups—vaccine skeptics and vaccine
believers—depending on individual attitudes toward vaccination [20]. We define
vaccine skeptics as individuals who may overestimate the risk of vaccines and/or
underestimate the risk of infection, whereas vaccine believers would not have such
misperceptions. Based on their perceptions of the benefits and risks of vaccination,
parents decide whether to give measles vaccination to their children at the time of
birth. Vaccine skeptics and vaccine believers are denoted by subscripts 1 and 2,
respectively.

We define φ k as the average vaccination coverage of group k, while φk is defined
as the vaccination strategy of a generic individual in behavioral group k (k = 1,2).
The overbar notation indicates the aggregate vaccination behavior in the population.
The probability of vaccination among vaccine skeptics is assumed to be lower than
that among vaccine believers ( φ1 < φ 2).

Within each behavioral group, individuals may be susceptible (S1 and S2),
infected (I1 and I2), recovered (R1 and R2), or vaccinated (V1 and V2). We denote
the population size (K) as N where N = Σ2

k=1(Sk +Vk + Ik +Rk) := K. Children are
born and enter the population at a constant rate per capita, μ . We also assume a
constant natural mortality rate identical to the birth rate, μ , such that the population
size is constant without disease-induced mortality. We denote the size of two
groups, vaccine skeptics and vaccine believers, by N1 = S1 +V1 + I1 + R1 := K1

and N2 = S2 +V2 + I2 +R2 := K2, respectively. If the number of vaccine skeptics
and vaccine believers is asymptotically constant, we can assume that N1 = q1N and
N2 = q2N, without loss of generality. Here, q1 and q2 represent relative sizes of
vaccine skeptics and vaccine believers, respectively (q1 + q2 = 1). Furthermore we
introduce the following variables: s j = S j/K, i j = I j/K, r j = R j/K, and v j =Vj/K,
denoting the epidemiological fractions in each behavioral group.

Given that two measles vaccine doses administered after twelve months of age
are 95–100 % effective, we assume a perfectly efficacious vaccine against measles
that confers lifelong immunity, as does recovery [17]. In addition, we define β and γ
as the transmission rate and recovery rate, respectively. Given these assumptions, the
epidemiological model of vaccination behavior can be expressed by the following
deterministic system of ordinary differential equations:

ds1/dt = μ(1−φ1)q1 −β (i1 + i2)s1 − μs1, (1)

di1/dt = β (i1 + i2)s1 − (γ + μ)i1, (2)

dr1/dt = γi1 − μr1, (3)

dv1/dt = μφ1q1 − μv1, (4)
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ds2/dt = μ(1−φ2)q2 −β (i1 + i2)s2 − μs2, (5)

di2/dt = β (i1 + i2)s2 − (γ + μ)i2, (6)

dr2/dt = γi2 − μr2, (7)

dv2/dt = μφ2q2 − μv2. (8)

Using s j = q j − i j − r j − v j and the conditions for steady states, we can rewrite
the equations, i′1 = 0 and i′2 = 0, as

β (i1 + i2)(q1 − i1 −φ1q1 − (γ/μ)i1) = (γ + μ)i1, (9)

β (i1 + i2)(q2 − i2 −φ2q2 − (γ/μ)i2) = (γ + μ)i2. (10)

By solving Eqs. (9) and (10) simultaneously, one can determine the stationary
solutions to Eqs. (1)–(8). The disease-free steady state of Eqs. (1)–(8) always exists
and it is given by

E0 = (0,0,0,0,0,0,0,0), (11)

and a non-uniform endemic steady state is

E1 = (s∗1, i
∗
1,r

∗
1 ,v

∗
1,s

∗
2, i

∗
2,r

∗
2,v

∗
2), (12)

where s∗k =
(1−φk)qk(γ+μ)

β (1−q1φ 1−q2φ 2)
, i∗k = qk(1 − φ k){ μ

γ+μ − μ
β (1−q1φ1−q2φ 2)

}, r∗k = qk(1−
φ k){ γ

γ+μ − γ
β (1−q1φ 1−q2φ 2)

}, and v∗k = φ kqk (k = 1,2), when ℜC > 1. When

calculating the cost of infection and vaccination, we assume the endemic steady
state, Eq. (12).

The effective reproductive ratio of Eqs. (1)–(8) is ℜC =
β (1−q1φ1−q2φ 2)

γ+μ , whereas

the basic reproductive ratio is given by ℜ0 = ℜC(φ 1 = φ 2 = 0) = β
γ+μ . For measles,

the estimate of a basic reproductive ratio ranges between 15 and 17 [3], and we set
ℜ0 = 15 as a baseline parameter.

2.2 Utility Calculation for Measles Vaccination

In our game-theoretic model of disease transmission and vaccination, vaccination
behavior is modeled at the scales of both the population and the individual. We
formulate our model as a population game, where the payoff of measles vaccination
depends on both the individual’s decision and the population’s average behavior.

We define nk(t) as the distribution of individuals who belong to behavioral group
k in each of the four possible epidemiological states (k = 1,2). The population-scale
dynamics satisfy a system of ordinary differential equations G (Eqs. 1–8):

dnk

dt
= G(nk,φ k). (13)
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An individual-scale model is modeled as a Markov process with transition rates
derived from the population-scale model, Eqs. (1)–(8). Here we define xk(t) as an
individual’s probability density over the life-history state space with a vaccination
strategy, φk, at time t (k = 1,2). Therefore, assuming that the population has reached
the endemic steady-state distributions, n∗k , the state of an individual is described by

dxk

dt
= Qk(nk,φk)xk, (14)

where

Qk(n
∗,φk) =

⎛

⎜
⎜
⎝

−λ − μ 0 0 0
λ −γ − μ 0 0
0 γ −μ 0
0 0 0 −μ

⎞

⎟
⎟
⎠ (15)

and λ = β (i∗1 + i∗2). All individuals enter the population as either susceptible or
immunized newborns, depending on their parents’ vaccination strategy (φk); thus
the initial state of an individual in behavioral group k is given by xk(0) = [1 −
φk, 0, 0, φk]

T .
The instantaneous payoff gains for a Markov process can be represented in terms

of a vector ( f ) of gains per unit of time for residents of each state and a vector (F) of
instantaneous payoff gains associated with each transition. Using these definitions,
it follows that fk = [0,−cI,k, 0, 0]T and Fk = [0, 0, 0,−CV,k]

T . We define cI,k as
the perceived cost per day of measles infection by an individual in group k, while
CV,k is defined as the perceived cost of the measles vaccination, including possible
adverse effects. The perceived costs of measles vaccination are likely to be greater
for vaccine skeptics than for vaccine believers because of this group’s perception of
a greater risk of side effects (CV,1 ≥CV,2).

By applying the Bellman equation for a continuous-time Markov process [2], we
calculate the expected present values of each state, conditional on the measles vacci-
nation strategy. The expected present value is calculated based on the probabilities
of all future events and discounted future costs relative to immediate costs. Thus,
the expected payoff is

Uk = Fkxk(0)+
∫ ∞

0
e−δ t f T

k xk(t)dt, (16)

= −φkCV,k − (1−φk)cI,k

(
λ ∗

δ +λ ∗+ μ

)(
1

δ + γ + μ

)

, (17)

where δ is a positive discount rate (δ = 0.03/yr) and λ = β (i∗1 + i∗2). Unless other-
wise specified, we used the following as a baseline parameter set for simulations:
q1 = 0.3, q2 = 0.7, β = 2.14/day, 1/γ = 7 days, 1/μ = 25550 days, CV,1/cI,1 = 4.8,
and CV,2/cI,2 = 2.4 (Tables 1 and 2).
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Table 1 Cost of measles vaccination

Weighted
Variable Value averagea Reference

Price of MMR
vaccine (per
dose)

$18.64 (public) $42.60 [5]

$50.16 (private)
Administrative cost

(per dose)
$7.03 (public)b $20.73 [23]

$25.06 (private)b

Travel cost for a
round trip

$4.70 [23]

Two hours of time
off from work to
take the child for
vaccination

$22.85b [23]

Total vaccination
cost for two
doses

$181.76

aWe assumed that 76% of children obtain their measles vaccines from
private health-care providers and 24% from public providers [23]

b2001 costs were inflated to 2011 costs

Table 2 Disease cost

Disease Costs
Average direct
cost per case Reference

Uncomplicated (85%)a $150 [14]
Hospitalized (15%)a $2,659 [14]
Weighted average $526
Average cost per day of infection $75
a1997 costs were inflated to 2011 costs

2.3 Calculation of Optimal Measles Vaccination Strategy
Driven by Self-interest

In order to determine the Nash strategy for the population game, we first define
a region of possible stationary incidence of measles (i∗1, i∗2) in Eq. (12) by varying
resident strategies, φ k (k = 1,2) (Fig. 1) [19]. For each point in the reachable region
of incidence, the force of infection exerted on the individuals in a behavioral group
can be uniquely determined. In fact, the endemic prevalence of measles (i∗1, i∗2)
decreases with an increase in the resident vaccination strategies, φ k. We use this
monotonicity of the endemic stationary solution to plot the prevalence of measles
in behavioral groups 1 and 2 at the endemic equilibrium, Eq. (12). Specifically, the
feasible domain of endemic equilibria can be drawn based on Eqs. (9) and (10) when
φ1 = 0 and φ2 = 0, respectively.
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Fig. 1 Plots of the reachable region of disease incidence (i1, i2) and the threshold forces
of infection under various resident strategies, (φ 1, φ 2). Each plot corresponds to the relative
proportion of vaccine skeptics (q1 = 0.1, 0.3, and 0.4). The dotted and solid lines indicate the
threshold force of infection of behavioral groups 1 (λ+

1 = β (i∗1 + i∗2)) and 2 (λ+
2 = β (i∗1 + i∗2)),

respectively. Dots A, B, and C indicate the Nash strategies when q1 = 0.1, q1 = 0.3, and q1 = 0.4,
respectively

In a game-theoretic context, individuals are strategists who strive to maximize
their expected payoff. Thus, the Nash strategy for a population game described
by Eqs. (1)–(8) is the best response that maximizes the expected payoff, Eq. (17).
Differentiating Uk with respect to φk, we find that the Nash strategy is given by

argmaxφkUk(φk,φ 1,φ 2) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if λ < λ+ ≡ CV,k(δ+μ)(δ+γ+μ)
cI,k−CV,k(δ+γ+μ) ,

[0,1], if λ = λ+,

1, if λ > λ+.

(18)

The Nash strategy for the population game (Eqs. 1–8) can be determined by
examining the threshold forces of infection (λ+

k ) over the reachable region (Fig. 1).
Specifically, if the force of infection is below the threshold λ+

k in behavioral
group k, the Nash strategy is to refuse vaccination (φ∗

k = 0), as shown in Eq. (18).
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For a special case, if the disease incidence at endemic steady states in the absence of
vaccination is below both threshold forces of infection, i.e., λ (φ 1 = φ 2 = 0)< λ+

1
and λ (φ 1 = φ2 = 0)< λ+

2 – then the resulting Nash strategy for both subpopulations
will be to refuse vaccination (φ∗

1 = φ∗
2 = 0). On the other hand, individuals accept

vaccination (φ∗
k = 1) if the force of infection is above the threshold value λ+

k
(see Eq. 34). Finally, if the force of infection is exactly at the threshold value, the
individual payoff will be the same for all vaccination strategies. Therefore, the Nash
strategy (φ∗

1 ,φ∗
2 ) can be obtained by solving for vaccination strategies (φ∗

k ) at the
intersection of λ = λ+

1 and λ = λ+
2 within the reachable region. In this case, one or

both behavioral groups may prefer some intermediate vaccination level.

2.4 Calculation of Optimal Vaccination Strategy Driven
by Group Interest

The average payoff for the population is defined as the total societal cost per
individual, and the utilitarian strategy is calculated by maximizing the expected
average payoff. Because the utilitarian strategy is the normatively optimal solution
(often determined at a policy level), the best estimate of the parameters of infection
and vaccination cost is used as a baseline parameter. The utilitarian strategy
generates higher utilities for the community. Using endemic nonuniform steady-
state distributions, we can calculate the average payoff:

Ω = −φCV − (1−φ)ΔcI

(Δ + μ + δ )(γ + μ + δ )

= −φCV − (1−φ)μcI

γ + μ + δ

{
(1−φ)β − (γ + μ)

(1−φ)β μ + δ (γ + μ)

}

,

where Δ = β μ
(

1−φ
γ+μ − 1

β

)
. Note that ∂Ω

∂φ = 0 if and only if φ takes the values:

φ± = 1+
δ (γ + μ)

β μ
± (γ + μ)

√
cIδ (μ + δ )

β μ
√

cI −CV (γ + μ + δ )
.

Using ∂ 2Ω
∂φ 2 |φ=φ+ and ∂ 2Ω

∂φ 2 |φ=φ− , we conclude that the optimal measles vaccine

coverage for the population is achieved at φ−, provided that φ− ∈ [0,1].
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3 Results

Our analysis shows how Nash vaccination levels change as the relative numbers of
vaccine skeptics and vaccine believers vary. Specifically, if the proportion of vaccine
skeptics is 10% (q1 = 0.1 and q2 = 0.9), the Nash vaccination level among vaccine
believers is less than complete, while the Nash strategy for vaccine skeptics is to
reject measles vaccine, i.e., φ1 = 0 and φ2 ∈ (0,1) (marked as dot A in Fig. 1). Thus,
when skeptics and believers are vaccinated according to the Nash strategy at this
proportional ratio, the resulting measles vaccine coverage in the population does
not exceed 86% at baseline parameters, a value that is not sufficient to eliminate
measles. On the other hand, when the proportion of vaccine skeptics increases to
40% (q1 = 0.4), the Nash strategy for vaccine believers will be to accept measles
vaccination fully (φ2 = 1), although the Nash strategy of vaccine skeptics may lead
to incomplete coverage, i.e., φ1 ∈ (0,1), or refusal of measles vaccination (marked
as a dot C in Fig. 1). Under this scenario, the resulting overall measles vaccine
coverage in the population would be 64% (Figs. 2a and 2b). The expected incidence
of measles is estimated at 168 cases per million individuals, and the probability of
infection among the unvaccinated is 63% (not shown).

In general, when both vaccine skeptics and believers are vaccinated according
to the Nash strategy, the probability of infection among vaccine skeptics increases
initially as the number of vaccine skeptics increases, but it decreases once the
vaccine skeptics begin receiving the vaccination. This change of pattern occurs
because the decline in herd immunity that resulted from the falling level of
vaccination by vaccine skeptics generates a rebound in vaccine demand.
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Fig. 2 Effects of the proportion of vaccine skeptics on the demand for measles vaccine and
on the resulting measles incidence, based on the Nash strategy. (a) The coverage of measles
vaccine among vaccine skeptics increases with the proportion of vaccine skeptics and with a basic
reproductive ratio. (b) Overall measles vaccine coverage in the population, combining both vaccine
skeptics and vaccine believers, decreases with the proportion of vaccine skeptics
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Fig. 3 Sensitivity analysis of the vaccination decision among vaccine skeptics when the cost of
vaccination relative to the daily cost of infection (CV,1/cI,1) varies. A basic reproductive ratio is
varied from 13 to 17, and it is assumed that q1 = 0.3 for illustration purpose. (a) The Nash strategy
dictates whether to get a vaccination or not, depending on the relative cost of vaccination. With an
increasing cost of vaccination, vaccine skeptics are less likely to vaccinate. (b) The incidence of
measles under the Nash vaccination strategy increases with the relative cost of vaccination

Nash vaccination of vaccine skeptics reveals the trade-off between the risk of
infection and vaccine cost (Fig. 3a). Here the vaccine cost is a function of perceived
severity of the disease and probability of all potential costs and risks. That is,
the calculation of vaccine cost includes perceived risk of measles infection and
medical costs associated with the infection. At low vaccine costs, even vaccine
skeptics are likely to seek vaccination. However, at higher vaccine costs, the demand
for vaccination among vaccine skeptics drops dramatically, resulting in increased
incidence of measles (Fig. 3b). The threshold cost of vaccination at which the
demand for vaccine starts to drop is increasing with the basic reproductive ratio
(Fig. 3a), i.e., the more transmissible a disease is, the lower the barrier to vaccination
among vaccine skeptics.

When both behavioral groups are vaccinated according to the utilitarian strategy,
levels of measles incidence are significantly lower than they are when vaccination
adheres to the Nash strategy (Figs. 3 and 4). For the current vaccine cost (value of
2.4 on the x-axis of Figs. 3b and 4b), the incidence of measles with the utilitarian
strategy was estimated to be 40 lower per million individuals than the resulting
incidence when vaccination is guided by the Nash strategy (Figs. 3b and 4b). The
gap between the incidence of measles under the Nash and utilitarian strategies
becomes wider as the perceived cost of vaccination increases among vaccine
skeptics (Fig. 4a). This is because utilitarian vaccination level is less elastic to
increasing vaccine cost than the Nash vaccination level over the wide range of ℜ0

examined (Figs. 3a and 4a).
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Fig. 4 Utilitarian measles vaccination strategy and its impact on the incidence of measles.
(a) The measles vaccine coverage level dictated by the utilitarian strategy decreases as the cost
of vaccination rises and the basic reproductive ratio falls. (b) Measles is likely to become epidemic
when the relative cost of vaccination compared to that of infection (CV

cI
) is over 3.5, at the range of

basic reproductive ratios considered (i.e., 13–17)

4 Discussion

Our results show that the pursuit of self-interest is likely to lead to suboptimal
implementations of vaccination policies and increased risk of measles resurgence,
especially in the presence of vaccine skeptics. Compared to the utilitarian vacci-
nation strategy, the vaccine coverage determined by the Nash strategy is generally
lower. Furthermore, the discrepancy between the Nash strategy and the utilitarian
strategy increases with an increasing proportion of vaccine skeptics.

Measles immunization has stopped measles circulation in the USA, so the
memory of measles has faded from the public consciousness. Without the memory
of the damage the disease can do, the perceived risks of vaccination among some
parents have begun to outweigh their perceived benefits of vaccination [16]. Parents
who choose not to vaccinate their own children increase the risk of infection not only
for their children but also for the whole community, including vulnerable newborns
who are too young to have received vaccines [16]. According to a survey of fellows
of the American Academy of Pediatrics (AAP) on immunization-administration
practices, MMR vaccine was listed as the most frequently refused vaccine [7]. Major
reasons for vaccine refusal were found to be a low perceived risk of infection,
parental concerns about effectiveness of vaccine, as well as its safety [16], all of
which may reduce the perceived benefits of vaccination. Media messages about
even a single adverse vaccine event can quickly change behavior, leading to major
declines in vaccine coverage.



266 E. Shim et al.

The game-theoretic epidemiological analysis we performed can yield insights
into the interplay between anti-vaccine behavior, vaccine coverage, and disease
dynamics. An individual’s vaccination decision depends on the perception of the
benefits of vaccination, and these decisions affect the degree of population-level
immunity and the force of infection in the population. Our study demonstrates that
if the enormous benefits to society from measles vaccination are to be maintained,
the public will need to be educated about those benefits in order to increase public
confidence.
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Abstract A main research area in the behavioural epidemiology (BE) of infectious
diseases deals with the modelling of vaccinating behaviour under voluntary im-
munisation. We attempt to provide a broad overview of our research work on
the subject, by separately analysing a general prevalence-based framework, where
vaccine uptake is taken as a function of the relevant information used by parents
to immunise their children, such as the prevalence (or incidence) of infection,
of serious disease, or of vaccine associated side effects, and an imitation-based
framework where behaviour perceived as optimal spreads through spontaneous
communication between individuals about the benefits and cost of vaccination. We
also discuss the relationships between the two modelling framework. Finally, we
supply new results concerning the impact of realistic information kernels and the
appearance of chaotic oscillations due to the interplay of periodic contact patterns
and vaccinating behaviour.
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1 Introduction

As documented in the historical overview [2], a main research area in the be-
havioural epidemiology (BE) of infectious diseases deals with the modelling
of vaccinating behaviour under voluntary immunisation for vaccine preventable
infections, as measles or pertussis, and the related implication for infection trans-
mission and control. In the last years we have investigated the implications of
vaccinating behaviour and the underlying pattern of information for the dynamics
of simple deterministic transmission models (e.g. SIR models). In particular, we
have considered both prevalence-based [14] models, where behaviour is represented
through some phenomenological functions relating, e.g. vaccine uptake to infection
prevalence [7–10], and imitation-based models [11], where vaccinating behaviour
perceived as optimal spreads through an imitation process, as originally investigated
by [3]. In this chapter we depart from our past work on the area to provide a
broad overview of modelling vaccinating behaviour and its dynamic consequences,
and to also introduce some new results. We first introduce a general prevalence-
based framework developed in [7] where vaccine uptake is taken as an appropriate
function of the relevant information used by parents to immunise their children,
such as the prevalence (or incidence) of infection, of serious disease, or of vaccine
associated side effects. We subsequently focus on the central case where vaccine
uptake depends on infection prevalence alone, originally considered in [16] and
separately developed in [7] and [23]. We report a general proof of the main
results of this literature, i.e. the impossibility to eliminate infection when vaccine
behaviour is prevalence dependent, and show that sustained oscillations are the rule
when realistic patterns of information, including not only the current but also past
information according to plausible mechanisms, are considered. We also report new
results showing chaotic oscillations arising from the interplay between realistic,
i.e. periodic, patterns of transmission, and prevalence-based vaccination behaviour.
Then we move to the other critical case, i.e. a highly vaccinated population where
vaccine uptake depends on the burden of vaccine side effects (VSE) alone [10]. This
case is perhaps the most relevant in modern industrialised countries where, due to
decades of sustained immunisation, the perceived risk of infection is steadily low,
and therefore the perceived risk of VSE might become the central determinant of
vaccine uptake. We indeed show, by appropriately modelling, that the transmission
dynamics is fully determined in this case by the feedback between vaccine uptake
and the burden of VSE. Finally, we critically review the imitation-based model
in [11]. Thanks to the formulation adopted therein, we are able to unravel the
relationship between prevalence-based and imitation-based models.

As our focus is on substantive matters, we almost never report mathematical
details, unless required for model building or for presenting new results.

This chapter is organised as follows. In Sect. 2 we present our general prevalence-
dependent framework. Sections 3 and 4 are respectively devoted to the case where
vaccine uptake depends on infection prevalence alone and on the VSE burden alone.
The imitation-based model is reported in Sect. 5. Concluding remarks follow.
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2 A Family of Information-Based Models for Vaccinating
Behavior

In the standard SIR model for childhood immunisation, vaccine uptake is just
constant [1]. Under voluntary vaccination parents will decide whether to immunise
or not their children depending primarily on available information about perceived
costs and benefits of that immunisation. Our framework for information-related
immunisation [7–10] considers the following SIR model for a non-fatal paediatric
infection in a stationary homogeneously mixing population:

S′ = μ (1− p(M))− μS−β (t)SI, (1)

I′ = I(β (t)S− (μ +ν)), (2)

where S and I respectively denote the fractions of susceptible and infectious
individuals, μ > 0 denotes the birth and death rates, which are assumed identical,
ν > 0 the rate of recovery from infection, β (t) > 0 the transmission rate, which is
taken either constant or periodically varying with minimal period θ equal to one
year [1]. As the population is constant, the recovered fraction R is simply given by
R = 1− S− I.

The novelty of Eqs. (1)–(2) is the vaccine uptake at birth (based for simplicity
on a perfect vaccine), which is assumed to be a function p of a suitable variable M
summarising the information on benefits and costs of immunisation used by parents
to take their vaccination decisions. Thus M might be any function of the current,
or past, infection prevalence (or incidence), taken as measures of the perceived
cost of acquiring infection or some serious sequelae of it, or of the prevalence (or
incidence) of vaccine adverse events (VAE), taken as measures of the perceived
cost of suffering some VAE or even of both. We will analyse in a later section
the case where M measures the perceived risk of VAE, and focus here on the
perceived risk of disease as the driving force of immunisation decisions. Noteworthy
examples measures of perceived risk based on current incidence, or prevalence,
are respectively M = hβ (t)SI (h > 0) or M = kI (k > 0). For example, the latter
expression defines the perceived risk of disease as the product of the perceived risk
of infection, given by some linear function of prevalence, times the perceived risk
of serious disease given infection, taken as constant. Generalising these examples
above, we can assume that M is given by a continuous function g of S and I, which
is increasing in the I variable. For simplicity, here we shall deal with functions g
depending on I alone.

More realistically M also depends on past values of state variables, as for many
infections information becomes available only after long procedures (laboratory
confirmations, reporting to public health authorities, etc.), and moreover spreading
among the population requires time. In this case M also includes past values of the
function g, supplying a third equation to system (1)–(2):
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M(t) =

t∫

−∞

g(I(τ))K(t − τ)dτ, (3)

where K is a probability density function called the delaying kernel [20].
Here, besides the trivial kernel K(t) = δ (t), where δ is the Dirac function,

yielding the unlagged case, we consider two main types of delaying kernels,
i.e. the well-known exponentially fading memory kernel K(t) = aexp(−at), with
expectation given by the fading timescale T = 1/a [20], and the kernel

K(t) =
1

T1 −T2

(
e−t/T1 − e−t/T2

)
. (4)

This kernel, which is used here for the first time, in the context of BE, may take into
account two sub-processes occurring at different timescales: (i) formation and ac-
quisition of information, with time-scale T1, and (ii) memory fading, with timescale
T2. Note that if the first process is much faster than the second, i.e. T1 ≈ 0 then
K(t) ≈ (1/T2)e−t/T2 , i.e. the memory fades exponentially with timescale T2. This
kernel has expectation T1+T2 and variance T 2

1 +T 2
2 . Compared to the exponentially

fading memory, which assigns maximum weight to the current information—
usually unavailable—this kernel satisfies K(0) = 0, mirroring unavailability of
current information, as in the commonly used Erlangian kernels [20], and it is still
reducible to ordinary differential equations (ODE). Compared to Erlangian kernels
which consider sub-process having the same timescale, this kernel is obviously
much flexible. We will call it the acquisition-fading kernel.

The vaccine uptake function p is defined as

p(M) = p0 + p1(M) ,0 < p0 < 1, (5)

i.e. it is the sum of a fixed baseline component p0, meaning that a fraction of
the population vaccinates independently of the state of information M and of an
increasing—usually sigmoidal—function p1(M), mirroring the parents’ reaction
to the changing perceived risk of the disease. For example, taking M to be the
current infection prevalence, our formulation means that when infection prevalence
increases, parents in the group influenced by information react by increasing the
vaccine uptake of their children and vice versa. In particular, for large levels of M,
we assume p1 to saturate to some level psat

1 ≤ 1− p0. We assume that 0 ≤ p1 (M)≤
1− p0 ∀M > 0, with p1(0) = 0, and that p1 is continuous and differentiable, except
at a finite number of points.

Many sub-models can derived by the general formulation (1)–(3). Under the
trivial kernel, we recover the unlagged case M = g(I), obtaining

S′ = μ(1− p0− p1(g(I))− μS−β (t)SI,

I′ = I(β (t)S− (μ +ν)). (6)
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Under the exponentially fading memory Eq. (3) reduces to the single ODE:

M′ = a(g(I)−M). (7)

Finally, under the kernel (4) Eq. (3) reduces to the pair of ODEs:

M′
1 = a1 (g(I)−M1) , (8)

M′
2 = a2 (M1 −M2) , (9)

where a1 = 1/T1, a2 = 1/T2, M(t) = M2(t).
Following the review in [14], we remark that the framework considered here

is prevalence-based, as opposite to belief-based, with global information, i.e.
(homogeneously) available to everyone. Prevalence-based vaccinating behaviour
has been documented in the literature [22].

3 Properties of the General Model

Investigating the model properties, through mathematics and simulation, gives
insight about the interplay between information and vaccinating behaviour on the
one hand and infection transmission and control on the other. There are two main
substantive questions here, i.e. whether elimination is possible under prevalence-
dependent vaccination and how behaviour might affect the dynamical pattern of
infection, e.g. by triggering oscillations.

3.1 Elimination Is an Unfeasible Target

As for the first question we have some fairly general results [7]. Note that model (1)–
(3) always admits the disease-free equilibrium (DFE):

DFE = (1− p0,0,0). (10)

The stability properties of the DFE are provided by the following theorem.

Theorem 1. Both under θ -periodic or constant β , the DFE (10) of Eqs. (1)–(3) is
globally asymptotically stable (GAS) if

1− p0

μ +ν
1
θ

θ∫

0

β (u)du ≤ 1. (11)
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Note that if β is constant, then condition (11) becomes the well-known one R0(1−
p0)≤ 1, where R0 = β/(μ +ν) is the basic reproduction number of the infection of
the well-known SIR model for endemic infections [1, 6].

The previous result shows that if the steady component p0 of vaccine uptake lies
below the appropriate elimination threshold (given by pc = 1−1/R0 in the constant
β case), elimination can never be achieved even if the overall uptake could reach
values as high as 100% during epochs of high prevalence. We called this result
elimination: mission impossible [7, 9, 10].

Moreover, if β is constant and the following condition holds:

(1− p0)R0 > 1 (12)

there exists a unique endemic equilibrium EE =(Se, Ie,Me) for (1)–(2)–(3) [7,9,10].
Note that the location of the EE is not affected by the delays.

For the unlagged case Eq. (6), and under the assumption that β is constant and
p1 is differentiable, we could prove the following global result [7]:

Theorem 2. Let R0(1− p0) > 1. Then the unique endemic state EE of system (6)
is GAS in the positively invariant set:

Ω ∗∗ = {(S, I) | S ≥ 0, I > 0, S+ I ≤ 1, S ≤ 1− p0} . (13)

3.2 Onset of Stable Oscillations Under Delayed Responses

The previous global result indicates that information delays are necessary to have
oscillations, as first conjectured in [16]. Next result shows that stable oscillations
appear by Hopf bifurcation of the endemic state, under the simplest pattern of
delay, i.e. the exponentially fading memory. Assuming for simplicity g(I) = kI,
the following result shows how the local stability of EE and onset of oscillations
depend on the delay parameter a = 1/T [7]:

Theorem 3. If and only if

(β Ie + μ)2 −β Ieμkp′1(Me)+ 2(β Ie + μ)
√

β Ie(ν + μ)< 0 (14)

there exist two Hopf bifurcations points a1, a2 with 0 < a1 < a2 of parameter a such
that EE is LAS for a /∈ [a1,a2] and unstable for a∈ (a1,a2), where global Yacubovich
oscillations occur [13].

The previous result shows that oscillations, which arise in an intermediate
window of the range of the average information delay, require the presence of a
strong (delayed) behavioural response to changing prevalence. Further details are
reported in [7]. Under the more realistic kernel (4), computations are more involved.
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Anyhow, from the Jacobian matrix at the endemic equilibrium, one can symbolically
calculate the characteristic polynomial, in the form

4

∑
i=0

bi(a1,a2)λ i = 0, (15)

where each coefficient is taken as a function of the two delay parameters a1,a2.
By the Routh–Hurwitz condition one can then seek in the positive quadrant of the
(a1,a2) plane the regions of local stability. A numerical example is reported in the
next section.

3.3 Some Illustrations and Numerical Simulations

In this section we report illustrations for some selected sub-cases, relying on
the following parameter constellation, roughly mimicking measles in developed
countries, [7,9,11]: μ = (1/L)days−1 where L = 75 ·365 days is the life expectancy
at birth, ν = (1/D)days−1 where D = 7 days is the average duration of infection,
and R0 = 10 or R0 = 15 (β ≈ 1.43 days−1). For simplicity we set g(S, I) = I. As
for the vaccine uptake function we set the baseline component p0 at p0 = 0.75,
while for p1 we follow the functional forms adopted in [7]. A first possibility is the
piecewise linear coverage:

p1(M) = min{cM, 1− p0} ,

where c is a positive constant. In this case the information-dependent component
of vaccine uptake reacts linearly to increasing prevalence until the point when it
jumps to its upper bound 1− p0. A more realistic case is given by the following
Michaelis–Menten function:

p1(M) = (1− p0− ε)
DM

DM+ 1
. (16)

This parametrisation implies a maximal overall coverage of = 1− ε for very large
M values. Here we choose ε = 0.01. Keeping constant the maximal coverage the
reactivity of p1 to changes in M is tuned by D.

3.3.1 Stability Regions Under the Acquisition-Fading kernel

Under linear p1 it is possible to obtain sufficiently simple forms for the coefficients
bi(a1,a2) for the characteristic polynomial (15):
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b0(a1,a2) = a1a2β μ(pcr − p0),

b1(a1,a2) =
μ(μ(1+ c)+ν +β (pcr − p0))

μ +ν +μc
a1a2 − β μ(μ +ν)(p0 − pcr)

μ +ν +μc
(a1 +a2) ,

b2(a1,a2) = a1a2 +
μ(μ(1+ c)+ν +β (pcr − p0))

μ +ν +μc
(a1 +a2)− β μ(μ +ν)(p0 − pcr)

μ +ν +μc

b3(a1,a2) = (a1 +a2)+μ +
β μ(pcr − p0)

μ +ν +μc
.

In Fig. 1 we show the corresponding local stability regions (in grey), in the space
(T1,T2) for increasing values of the parameter c. Notably, the area of the instability
region increases with the sensitivity c of vaccine uptake to changing prevalence,
up to the point where any however small delay in information acquisition yields
oscillations. This shows the intrinsically oscillating nature of the system: an
increasing prevalence raises the demand for vaccines, whose increase will reduce
prevalence, and eventually the vaccine demand, as first noted in [16].

3.3.2 Dynamic Patterns in the Oscillating Regime

We illustrate some dynamic effects of vaccinating behaviour by simulating (1)–(3)
under exponentially fading kernel and Michaelis–Menten response in a situation
where the infection is endemic with constant vaccine uptake at the baseline level
p0, and prevalence-dependent behaviour abruptly arises at time t = 0. We assume
g(S, I)= I, T = 4 months, D= 15000 and R0 = 15, implying that the systems is in its
“cyclic zone”(see [7]). Figure 2 reports the transient (left-hand side) and long-term
(right-hand side) time paths of the effective reproduction number RE(t) = R0S(t)
(top), of the infective proportion (medium), and of the overall vaccine uptake
p(M) = p0 + p1(M) (bottom), jointly with its time average. All state variables
converge to a stable limit cycle. Note that in the long-term the inter-epidemic period
stabilises around 12 years, i.e. about 2.5 times the value of the pseudo-period of
the SIR model with constant baseline vaccination (p0 = 0.75). Moreover though
p(M) reaches levels as high as 97% during epochs of high perceived risk, i.e.
in correspondence of the epidemic phases, the average long-term coverage does
not exceed 79% over time. This supplies further intuition on why elimination is
impossible.

3.4 The Effects of Seasonal Fluctuations in the Contact Rate

Since the seminal work in [21], the seasonal oscillations of the contact rate β (t) are
considered the main route to complex behaviour in simple models for infectious
diseases. In the context of vaccination models, they may have a deep impact,
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Fig. 1 Local stability region (grey) under the information-fading kernel and piecewise linear
vaccination response p1(M) = Min(1 − p0,cM) with g(I) = I for various values of c. Upper-
left panel: c = 0.20(1 − p0)/ISIR ; upper-right panel:c = 0.25(1 − p0)/ISIR ; lower-left panel:
c = 0.5(1− p0)/ISIR ; lower-right panel: c = (1− p0)/ISIR

see the exhaustive study by choisy [5] in the framework of pulse vaccination
strategies. As regards the interplay of behaviour and seasonality, we already found
chaotic oscillations in a periodically forced SIR model with a prevalence-dependent
contact rate [12]. Seasonal patterns of prevalence are especially interesting for
vaccinating behaviour as might strength prevalence-based vaccinating responses
[22]. Here we just illustrate (Figs. 3 and 4) the possibility of complex behaviour
triggered by a periodic contact rate β (t) = β∗ (1+Asin(2πt/T)) (A ∈ [0,1]) under
the acquisition-fading kernel and Michaelis-Menten-type p1(M). Note that in such
a case in absence of oscillations of β the damped or sustained periodic fluctuations
of the state variables exhibit a, respectively, pseudo-period or period that is far



276 A. d’Onofrio et al.

0.8

1

1.2
R

E
=

R
0S

0.8

1

1.2

0

50

I

0

50

0 100 200 300
0.7

0.8

0.9

time (years)

p(
M

)

280 300 320 340
0.7

0.8

0.9

time (years)
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average given by the flat line in the right-bottom graph). R0 is equal to 15. Figure adapted from
reference [7] (C) Elsevier Science Ltd

larger than one year, which might suggest impossibility of observing nonlinear
resonances. These were, instead, observed in our simulations. In the baseline case
of damped oscillations in absence of fluctuations in β (Fig. 4), already small
amplitude seasonal fluctuations (A = 0.1, upper left panels in Figs. 3 and 4) yield
irregular oscillations with a strongly variable inter-epidemic period and distribution
of peak amplitudes. The inter-epidemic period increases with A, and maximum
observed peak increases more than linearly with A. Moreover, in a background
of behaviour-induced oscillations (Fig. 4) the variance of the distribution of peaks
seems decreasing in A.

3.5 Inclusion of Disease-Related Mortality

If infection may cause death, as is still the case for measles and pertussis, then the
perceived cost associated with infection is essentially described by the probability
of suffering death as a consequence of infection. Modelling vaccinating behaviour
requires in this case to include in the model disease-related mortality, e.g. as a
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Fig. 3 Prevalence dynamics of periodic contact rate β (t) = β∗ (1+Asin(2πt/T )), acquisition-
fading delay kernel (T1 = 1year, T2 = 7days), and Michaelis–Menten p1 reaction with D= 500 (no
information-induced oscillations). Upper-left panel: baseline case of constant contact rate (A = 0);
upper-right panel: A = 0.1; lower-left panel: A = 0.25; lower-right panel: A = 0.5. Parameters:
β∗ = 20(μ +ν), T = 1year

constant proportion δ of those who are infectious. As well known this prevents the
possibility of an endemic equilibrium with positive population in the basic model
SIR with stationary population [15] and therefore a more general framework for the
dynamics of the population is required. Common candidates for this are density-
dependent or exponential population dynamics [24]. In the former case, whose
most natural example is the classical logistic law for population growth, the birth
and death rates are replaced by appropriate functions B(N) and D(N), of the total
population size. In the latter case the birth and death rates are taken as distinct
constants b,μ , thereby promoting—in absence of the infection—either exponential
population growth (b > μ) or decay (b < μ).

In [9] we amended the basic model Eqs. (1)–(3) by making the information
index M dependent on the incidence δ I of disease-related mortality, within a fully
consistent framework. The results we obtained are fairly consistent with those of
model Eqs. (1)–(3).
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4 Vaccine Demand Driven by Vaccine Side Effects

Due to the herd immunity allowed by decades of mass immunisation, in modern
industrialised countries the current perceived risk of serious disease from many
infections is steadily very low. At the same time the large number of yearly
immunisations unavoidably yields, despite the safety of current vaccines [25], a
steady flow of VAE [26]. For example, in the USA the yearly reported number
of VAE is about 30,000, with 10–15 % causing disability, hospitalisation, life-
threatening illness, or death [4]. The VAE burden might make the perceived risk
of suffering VSE much higher than the perceived risk of serious infection. This has
been the case for polio immunisation: for instance in Italy during 1979–1999 the
number of vaccine-induced poliomyelitis cases exceeded natural Polio cases by a
factor 3 [19]. In these situations the perceived risk of VSE might become the driving
force of the vaccine demand.

We therefore present a model [10], complementary to that of Sect. 2 in which
the vaccine uptake p(M) is determined by the perceived risk M of suffering VSE
alone, according to a decreasing function of the (current or past) prevalence of
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VSE. After having developed a framework for describing VSE, we show that in this
case the burden of VSE becomes the main determinant on infection transmission
and report some noteworthy general results and predictions about the evolution of
immunisation programmes.

4.1 Modelling the Prevalence of Individuals Hit by VSE

We consider an infection for which the perceived risk of serious disease is
negligible, because, e.g. the disease is mild or the incidence of infection is steadily
low, which is controllable by a perfect vaccine having a constant probability of
severe, non-lethal, VSE. If M now represents the perceived risk of VSE, then the
vaccine uptake p(M) is decreasing in M: p′(M) < 0. Let C(t) and H(t) denote
the current prevalence and incidence of individuals hit by VSE. If parents make
their vaccination choices by using information on current prevalence only, then
M = F (C) , where F is a continuous increasing function. For the sake of simplicity
we take M =C.

Under these assumptions the dynamics of C(t) is determined by the balance
between the outflow of natural mortality (on the assumption that having suffered a
VSE does not affect mortality) and the inflow H represented by the current incidence
of VSE:

C′(t) = H(t)− μC. (17)

Let us now seek an appropriate relation for the incidence H of VSE. Consistently
with the WHO definition, we assume that the hazard of VSE is a function ψ(τ) of
the time τ elapsed since vaccination. By introducing the age-since-vaccination den-
sity W (t,τ), representing the distribution (at any time t) of vaccinated individuals
at risk of VSE according to the time τ elapsed since vaccination, W (t,τ) obeys the
PDE:

∂W
∂ t

+
∂W
∂τ

= −ψ(τ)W − μW,

W (0,τ) = Wo(τ),

W (t,0) = μ p(M(t)). (18)

The PDE (18) states that vaccinated individuals at risk of VSE can be removed
either by the onset of a VSE, at rate ψ(τ), or by mortality. The boundary condition
W (t,0) is given by the per capita incidence μ p(M(t)) of new immunisations per
unit of time. In particular the overall fraction V of individuals at risk of VSE is

V (t) =
∫ +∞

0
W (t,τ)dτ (19)

while the incidence H of VSE is given by
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H(t) =
∫ +∞

0
ψ(τ)W (t,τ)dτ. (20)

By solving Eq. (18) [18] the incidence of VSE can be expressed as

H(t) = f (t)+ μ
∫ t

0
p(M(t − τ))ψ(τ)Ko(τ)dτ, (21)

where the function f (t) depends on the initial age distribution of W and tends to
zero for large t; moreover

K0(τ) = exp

(

−μτ −
∫ τ

0
ψ(x)dx

)

. (22)

Plugging (21) in Eq. (17) on the assumption that M = C, we obtain the following
distributed-delay differential equation for C:

C′(t) =−μC+ f (t)+ μ
∫ t

0
p(C(t − τ))ψ(τ)Ko(τ)dτ (23)

with convolution kernel KD(τ) = ψ(τ)K0(τ). A similar equation can be derived for
H. Note that the equation for C (H) is independent of the epidemiological variables
S, I, so one can first study the dynamics of C (H) from Eq. (23) and then use the
relation p = p(C) as an input for the system in S and I. The interpretation is that
under our hypotheses the burden of VSE is the unique determinant of vaccine uptake
and consequently the trigger of the transmission dynamics of the infection. Note
finally that if M depends on past rather than current prevalence parents then the
same arguments used in Sect. 2 apply [10].

4.2 Equilibria and Stability of the Prevalence of VSE

As the mechanisms governing the onset of VSE and the related hazard ψ(τ) are
poorly understood (especially under multi-vaccine), it is of interest to analyse the
properties of Eq. (23) for a generic ψ(τ). Let us introduce the following useful
function:

Bψ(μ) =
∫ +∞

0
ψ(τ)Ko(τ)dτ =

∫ +∞

0
exp(−μτ)exp

(

−
∫ τ

0
ψ(z)dz

)

ψ(τ)dτ. (24)

The function Bψ(μ) is positive and decreasing with Bψ (0) = 1.
We start by observing that Eq. (23) always has a unique epidemiologically

meaningful steady state C∞, which fulfils:

C∞ = Bψ(μ)p(C∞) . (25)

Note that C∞ < C̃, where C̃ fulfils: C̃ = p
(

C̃
)

.
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The local stability properties of C∞ are determined by linearising Eq. (23) at C∞
and Laplace-transforming, getting

λ + μ = μ p′ (C∞)Bψ (μ +λ ) . (26)

The analysis of Eq. (26) for a generic hazard of VSE yields the following easily
interpretable stability condition:

Theorem 4. If the following constraint

|p′ (C∞) |Bψ(μ)< 1 (27)

holds then the equilibrium point C∞ is locally and globally asymptotically stable.

In simple words, C∞ is globally stable—independently of the age mechanism
which generates VSE—as far as the demand for vaccines p(C) (at C∞) is not too
sensitive to changing perceived risks of VSE.

In [10] deeper analyses are carried out for noteworthy sub-cases of the hazard of
VSE ψ(τ), namely, (i) ψ(τ) = ψ̄δ (τ), i.e. the hazard of VSE is concentrated during
vaccination; (ii) ψ(τ)=ψ ∀τ > 0, i.e. VSE arise at constant rate ψ > 0 independent
of the age τ since vaccination; (iii) ψ(τ) = ψ̄δ (τ −T), i.e. VSE arise with a fixed
delay. We have shown that global stability always holds in sub-cases (i)-(ii), whereas
Hopf bifurcations of the steady state can occur under (iii). Obviously, considering
lagged information allows the onset of oscillations even in cases that are globally
stable in absence of the delay. Results on the impact of the vaccine uptake p(M)
dynamics for the epidemiological variables S and I are available in [10].

4.3 Numerical Simulations

Even in simple cases vaccination choices informed by the perceived risk of VSE
have interesting effects on infection dynamics. We illustrate this by simulation of
the base case M(t) =C(t), where M is given by the current VSE prevalence, under
an age-independent VSE hazard (case (ii) above). In this case the dynamics of
prevalence is given by the 2-dimensional ODE system in the variables (V,C):

V ′(t) = μ p(C)− (μ +ψ)V (28)

C′(t) = ψV − μC

having a unique equilibrium point EVC = (V∞,C∞) where V∞ = (μ/ψ)C∞, which is
always GAS independently of p′(C∞) [10]. For the simulation we use the following
form for p(M):

p(M) = p0 +(1− p0− ε) · p1 (M) ,
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Fig. 5 Switch between different transmission epochs in the base case model with M(t)=C(t), and
age-independent VSE hazard. The figure reports long-term behaviour (250 years after the initiation
of the programme). Left panel: time paths of VSE prevalence C, vaccine uptake p(C), and exposed
to risk of VSE, V . Right panel: effective reproduction number RE and infective prevalence I. The
system is initialised at time t = 0 from the pre-vaccination equilibrium of S, I, and with p = 0.92.
Parameter values are reported in the main text. Figure taken from [10] (C) Elsevier Science Ltd

where

p1 (M) = pmin +
(pmax − pmin)

1+ exp(−σ (M−M∗))

with p0 = 0.80, ε = 0.08, ψ = μ/5, M∗ = .145,σ = 10,000, and R0 = 15 (other
parameters as in Sect. 2). Under this parameter constellation the infection cannot
be eliminated because the maximal coverage in absence of VSE is 92%, which is
below the critical threshold. However, Eq. (28) shows (damped) oscillations. As
the vaccine uptake function p(M) is very steep about the steady state C∞, even
very mild changes in C might cause substantial changes in vaccine uptake, thereby
substantially affecting the dynamic regime of infection. This is illustrated in Fig. 5
where the long-term path following a new immunisation programme with coverage
equal to the maximal one (92%) is initiated at time t = 0. There is long uninteresting
transient phase lasting about 250 years (not reported in the figure), during which
nothing happens to transmission because the prevalence of VSE, which is slowly
increasing toward its steady state, is too low to affect p(M) significantly. However
as C,V approach their steady state, they start oscillating. These oscillations of C
bring large oscillations in vaccine uptake, due to the steepness of p(M) about
the steady state. These oscillations in vaccine uptake have a long pseudo-period
(about 40 years) thereby yielding remarkable changes in the dynamics. Indeed,
while for the long initial adjustment epoch the infection oscillates with long pseudo-
period induced by the slow recruitment of susceptibles due to the high coverage, as
soon as C approaches its equilibrium (about 330 years after the initiation of the
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programme) the vaccine uptake p(M) experiences a big drop, falling to about p0,
where a different epidemiological regime prevails. This new regime is characterised
by a much shorter inter-epidemic period, due to the lower uptake, and lasts about
45 years, i.e. until when vaccine uptake restarts increasing, yielding a new regime
with high coverage and long-inter-epidemic period, and so on. This example is
suggestive of the fact that strong behavioural responses perceptions about vaccine
side effects might strongly affect vaccine uptake and therefore infection trends.

5 An imitation-Based Model of Vaccine Uptake Process
and Vaccine Side Effects

Unlike previous sections, we now consider a more behaviour-explicit model where
vaccine uptake is determined by an imitation process, as in the seminal paper [3],
with however a more general formulation, including a different specification of the
perceived cost of VSE [11]. This alternative formulation will prove useful to link
the class of imitation-based models with the prevalence-based models of previous
sections and supplies some further noteworthy insight.

5.1 Imitation-Based Models for Vaccine Uptake: Some General
Remarks

Let us consider the model

S′ = μ(1− p)− μS−β SI, (29)

I′ = β SI− (μ +ν)I, (30)

p′ = k1ΔE p(1− p), (31)

where the vaccinated proportion at birth p now is a state variable obeying an
imitation process [17] with “imitation” coefficient k1 and ΔE(t) is the perceived
pay-off gain which governs switches between the decisions to vaccinate or not to
vaccinate. The latter can be defined by the difference between the perceived cost
−ρI(t) of suffering serious disease as a consequence of infection, and the perceived
cost −ρV (t) of vaccination. In the review [14] this type of model has been classified
as belief-based, as different from the prevalence-based models of previous sections.
However, it is easy to understand that as soon as perceived costs are evaluated from
prevalences, e.g. of infection and VSE, the two classes of models are intimately
related.

Note that, irrespective of the specific forms of ΔE(t), Eqs. (29)–(31) always has
the following three equilibria: (i) an unstable disease-free state with no vaccinators
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A = (1,0,0); (ii) a pure-vaccinator disease-free equilibrium B = (0,0,1); (iii) the
pre-vaccination endemic equilibriumC=

(
SSIR, ISIR)=(R−1

0 ,μ(1−R−1
0 )/(μ +ν),0

)
.

The stability of B and C as well as the existence of further equilibria depend on
chosen form of the pay-off gain.

In [3] ρI(t) is taken proportional to the infective prevalence I(t): ρI(t) =
rImI(t), where mI(t) is the current perceived risk of infection, and rI the perceived
conditional risk of serious disease given infection while ρV (t) is constant:ρV = rV ,
representing the perceived risk of suffering VSE from vaccination. Hence

ΔE(t) = rImI(t)− rV = rV (ϑ I(t)− 1),

where ϑ =mrI/rV is the relative cost of disease. On these hypotheses [3] has shown
that the B equilibrium is unstable and that there is a post-vaccination equilibrium
D =

(
R−1

0 ,ϑ−1, p̂
)
, where p̂ = (1+ν/μ)

(
ISIR −ϑ−1

)
. At ϑ = ϑ0 = I−1

SIR, there is
a transcritical bifurcation between C and D. In turn, the stability of D depends on
k1(ϑ −ϑ0).

5.2 A Model with Myopic Perception of the Cost of VSE

Here, we reconsider the assumption of [3] of constant perceived cost of vaccination
ρV (t). This can be justified if the public correctly evaluates this risk, e.g. as the
ratio between total reported VSEs for a given infection, and the total number of
immunisations for that infection per unit of time. In this case the perceived risk
would actually be proportional to αI (αI ∈ (0,1)), the per capita probability of VSE
during a single immunisation. We instead suppose [11] that the public myopically
evaluates the risk of VSEs by available information on the total number of VSE,
given by αI (μN) p(t), where N is the total population size. In this case, given that
μ and N are constant, the perceived cost of VSE would become a function of the
proportion actually immunised p. We therefore set

ρV (t) = α p(t). (32)

The previous expression defines the perceived risk of vaccination, as the product of
the (perceived) probability of being immunised, times the conditional probability of
VSE given immunisation. An implication of Eq. (32) is that periods of high vaccine
uptake negatively feedback, through an increase in the incidence of VSEs, into the
perceived cost of vaccination.

For reasons that will become clear later on, we model the perceived cost of
infection as an increasing function of infection prevalence

ρI(t) = h1(I(t)), (33)
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where h′1 (·)> 0 and h1(·) ≥ 0. The case h1(0)> 0 accounts for a scenario of local
elimination where re-emergence (e.g. by importation) is feared. Using Eqs. (32) and
(33) we eventually obtain the following formulation for p(t):

p′ = k (h(I)− p) p(1− p), (34)

where k = k1α and h1(·) = h(·)/α .

5.2.1 Relationship Between Imitation-Based and Prevalence-Based
Models

Note that if h(0)≥ 1 then p(t)→ 1. On the other hand, if h(0)< 1 then for large t
p(t) ≥ h(0). If imitation dynamics is fast compared to infection dynamics, i.e. the
respective timescale obey k >> (μ +ν), then

p(t)≈ min(h(I(t)) ,1) , (35)

which is the phenomenological relationship for vaccine uptake introduced in the
prevalence-based model [7] of the first section. In simple words this shows that the
prevalence-based dynamic of vaccine uptake can be considered as a special case of
an imitation-based dynamic when the imitation process is fast.

5.3 Dynamic Implications and Further Comparison Between
Imitation and Prevalence-Based Models

Comparing the present model to [3], Eqs. (29)–(34) has the equilibria A (unstable),
B (unstable) and C, which, unlike [3], is always unstable. Moreover, two further
equilibria are induced by our formulation: (i) a disease-free equilibrium with
positive vaccine uptake Edfe = (1− h(0),0,h(0)); (ii) a new endemic equilibrium

Ebeh =
(
R−1

0 , Ie,h(Ie)
)
,

where R0 = β/(μ + ν) is the basic reproduction number of the infection and Ie is
the unique solution of the equation:

h(I) = 1−R−1
0 − μ +ν

μ
I. (36)

As all equilibria are independent of k, it is natural to choose k as a bifurcation
parameter. Our main results are as follows:
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(A) If

β Ieμh′ (Ie)< (μ +β Ie)
(
(μ +β Ie)+ 2

√
β Ie(μ +ν)

)
, (37)

then Ebeh is locally asymptotically stable (LAS) irrespective of the imitation
speed k.

(B) On the contrary, if

β Ieμh′ (Ie)> (μ +β Ie)
(
(μ +β Ie)+ 2

√
β Ie(μ +ν)

)
(38)

holds then there are two positive values k1 and k2 > k1 such that

1. If 0 < k < k1 or k > k2 then Ebeh is LAS.
2. At k = k1 and at k = k2 there are Hopf bifurcations.
3. If k ∈ (k1,k2) then Ebeh is unstable and the system’s orbits x(t) =

(S(t), I(t), p(t)) are oscillatory in the sense of Yabucovich [13].

(C) If h0 > pc then Ed f e is GAS; if h0 < pc then Ed f e is unstable.

Property C shows that, unlike [3], elimination is possible but only if the perceived
cost of disease due to infection re-emergence is so large to yield a vaccine uptake in
excess of the elimination threshold. Moreover, in [3], large values of k (ϑ −ϑ0)
induce sustained oscillations around the endemic state, whereas in our model
oscillations are possible in an intermediate window of values of the imitation
coefficient k. This suggests that both slow and fast imitation might be stabilising
forces. More important, one can note that result A-B is very similar to Theorem 3
for the delayed prevalence-based model under exponentially fading memory. This
suggests that the dynamic similarity between the two classes of models extend
beyond the case of fast imitation dynamics. Indeed, as discussed in [11], imitation
induces a simple delay mechanism that under appropriate conditions is essentially
equivalent to the fading memory adopted in the first section of the paper. Further
analyses, simulation results, and insight about the natural history of vaccination
programmes can be found in [11].

6 Discussion

This chapter has focused on the effects of vaccinating behaviour on the dynamical
properties of simple SIR models for vaccine preventable infectious diseases under
voluntary vaccination. In free immunisation regimes, vaccination choices are
governed by the perceived costs of the disease and of vaccine adverse events. We
have considered both prevalence-based, and imitation-based, models of vaccinating
behaviour. We have shown two main substantive, predictions about the effects of
behaviour on dynamics. The first one is that when information is globally [14]
available, then it becomes impossible to eliminate the infection. The second is that
complex oscillating patterns of vaccine uptake and the infection will arise when
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delayed information is used to evaluate perceived risks. These predictions hold for
both approaches and allow to unfold the relationship between them. Finally, we
have reported new results for prevalence-based models, concerning the impact of
realistic patterns of delayed information and the way information-driven vaccinating
behaviour amplifies the seasonal oscillations in the contact rate. Overall, these
results show the importance of simple models in suggesting how complex the
interplay between infection transmission and vaccinating behaviour might be. This
in turn makes it critically important to develop more realistic and better parametrised
transmission models. The search of appropriate field data is therefore a critically
urgent need if we want to allow behavioural epidemiology models to also become
useful policy assisting tools.
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The Geometric Approach to Global Stability
in Behavioral Epidemiology

Bruno Buonomo, Alberto d’Onofrio, and Deborah Lacitignola

Abstract Three behavioral-epidemic models (i.e., epidemic systems including
feedbacks (FB) that the information about an infectious disease has on its spreading)
are introduced. Two relevant FB are explicitly considered: the pseudo-rational
exemption to vaccination and the information-related changes in contact patterns
by healthy subjects. The global stability analysis of the endemic states is performed
by means of the geometric approach to stability, with particular focus on a model of
vaccination of adult susceptible subjects. Biological implications of the results are
discussed.

1 Introduction

Feedbacks (FB) and global stability are among the most important features of all
mathematical models in biology [15, 35]. In mathematical epidemiology (ME) the
vast majority of efforts have been devoted to the study of global stability. Indeed,
determining under which conditions a disease, independently from the initial
burden, either remain endemic or get extinct is probably the most important topic.
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Recently, however, it is increasingly becoming clear that a realistic epidemic
model must include the FB that the information about an infectious disease has on
its spreading [3, 16, 17, 36, 38].

A first type of FB is the pseudo-rational exemption which is defined as the
family’s decision to not vaccinate children because of a pseudo-rational comparison
between the perceived risk of infection and the perceived risk of side effects caused
by the vaccine. This type of FB has a paramount relevance in nonmandatory
vaccinations. Indeed, the progress toward increasing degrees of disease control is
intermixed by temporal trends of declining vaccination coverage [37]. Especially
modern societies (where the vaccinations are increasingly voluntary) face the
challenging paradox of pseudo-rational exemption. The paradox stems in the fact
that the vaccination success makes very low the perceived risk of infection, so that
the risk of side effects appears erroneously huge.

This peculiar unbalance of perceptions, particularly large in transient period of
low disease incidence, induces dynamics that cannot be captured by traditional
mathematical models of infectious diseases spreading and vaccinations.

A second type of FB is the one given by the influence of the information on
the behavior of healthy subjects. For example, in [16] the authors consider simple
epidemic models in which the social contact rate is described as a decreasing
function of the available information on the present and the past disease prevalence.
It is shown that social behavior change alone may trigger sustained oscillations
that, in case of seasonal fluctuation in the contact rate, can degenerate and become
chaotic. This indicates that human behavior might be a critical explaining factor of
oscillations in time series of endemic diseases.

The role of human behavior and also misbehaviors (as the above-mentioned
pseudo-rational exemption) has thus to be included in some manner in the modeling
of infectious disease spreading, which is triggering a large corpus of scientific
research (see, just to name a few contributors [1–3,6,21,23,36]) which is the subject
of this book.

For example, in [17, 18], the dynamic implications of rational exemption were
investigated by using a simple extension of the standard susceptible-infectious-
removed (SIR) model, where the information-dependent vaccination is modeled
by means of a simple information index mostly based on the publicly available
information on the disease, as reviewed and extended in the contribution by
d’Onofrio and Manfredi in this book. In this simple framework, the vaccination
coverage is modeled as a phenomenological function of the current and past state
of the disease (see also the game-funded function employed in [36]), defined as the
sum of a constant component plus a variable one, increasing with the perceived risk
of infection.

In [17, 18] it was shown that if the baseline rate of vaccination does not exceed
the so-called May–Anderson threshold, then a globally or also only locally stable
eradication is impossible, and there is an endemic equilibrium, whose stability was
studied only from the local point of view.
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However, a global analysis of stability is of the outmost importance from an
epidemiological point of view. Indeed, if the endemic equilibrium is GAS, then, also
in case of infinitesimal initial prevalence, the disease will permanently be present in
the population.

From a mathematical point of view, the analysis of the GAS of the endemic
equilibria of bidimensional epidemic systems may be usefully approached by means
of the Poincaré–Bendixson trichotomy. Less simple is the study in dimensions
n ≥ 3. A major progress was achieved in the 1990s, when Li and Muldowney
developed a generalization of the Poincaré–Bendixson criterion for systems of n
ordinary differential equations (ODEs), with n ≥ 3 [28, 30] the so-called geometric
approach to global stability. Since its development [29], their approach has been
(and currently is being) extensively applied to the study of the global behavior of
mathematical models arising in ME and in several other different biomathematical
contexts, such as toxicant–population interaction models [10, 11], Lotka–Volterra
models including delay [4, 5], and ME-like models of dynamics of HIV in a human
host [14,39]. As far as ME is concerned, the majority of applications of this method
refer SIR models including the exposed class, i.e., SEIR, SEIS, and SEIRS models
(see, e.g., [27, 29–31]). The SEIR-like models are represented by a system of four
ODEs. Its dynamics can be usually deduced by studying a reduced three ODEs
system in the variables, say, x, y, and z. Usually, the only nonlinearity is given by
the incidence rate of the infectious disease. When it is postulated that the spread of
the disease occurs according to the principle of mass action, then the corresponding
incidence rate is bilinear with respect to the susceptibles and infective populations
[15]. In this case such a bilinearity represents the only nonlinearity of the model. The
bilinearity is of kind “xz” and is included in the balance equations of the variables
x and y. Generally speaking, the structure of SEIR-like systems appears to be
particularly suitable for the applications of the geometric method for global stability
[12, 13]. However, several well-known models present a different bilinearity. That
is, the balance equations of the variables x and y contain a bilinearity of kind “xy”
instead of “xz.” A simple example is the classical SIRS model with temporary
immunity [24]:

⎧
⎨

⎩

ẋ = k0 − k1xy− k2x+ k3z
ẏ = k1xy− k4y
ż = k5y− k6z,

(1)

where the upper dot denotes the time derivative, d ·/dt, and the ki’s are all positive
parameters. Sometimes, systems like Eq. (1) may be reduced to a planar system.
However, if no reduction is available, the stability analysis for system (1), or
systems with a similar structure (which we call SIR-like models), may become quite
involved. In such cases, the geometric approach to global stability may be a powerful
tool [26]. Nevertheless, applications of the method to SIR-like models are not very
common in the literature. We want to illustrate, by means of a new example and
by means of the brief review of some previously published results, the utility of
the geometric approach to global stability in the framework of the information-
dependent epidemic models of behavioral epidemiology.
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We start by giving a complete global analysis of a model of vaccinations at all
ages, which was defined but incompletely studied in [17]. This model is particularly
interesting since in it the vaccinations are distributed in all ages. We provide here
for the first time its complete global analytical study.

2 Information-Dependent Vaccinations on All Ages

In [17] the following information-dependent vaccination model was introduced:

⎧
⎨

⎩

Ṡ = μ − μS−ϕ(M)S−β SI
M(t) =

∫ t
−∞g(I(τ))Ka(t − τ)dτ

İ = β SI− (μ +ν)I.
(2)

The state variables S and I denote, respectively, the fraction of the susceptible
individuals and the fraction of the infectious and infective individuals at time t. The
variable M is addressed to be the information variable and summarizes information
about the past values of the disease. All the parameters in Eq. (2) are strictly
positive constants. The function ϕ(M) models the information-dependent rate of
vaccinations, and it may be, for ease of biological interpretation, split as follows:

ϕ(M) = ϕ0 +ϕ1(M).

Here, ϕ0 is a positive constant representing the fraction of susceptibles that are
vaccinated independently on the available current and historical information on the
prevalence level of the disease in the population and ϕ1(M) models the fraction of
susceptibles that are vaccinated in dependence of the social alarm caused by the
disease.

The function g describes the role played by the infectious size in the information
dynamics.

We assume that (1) ϕ1(M) and g(I) are continuous and differentiable, except in
some cases, at finite number points; (2) ϕ1(M)≥ 0, for all M, and g(I)≥ 0, for all I;
(3) ϕ1(0) = 0, and g(0) = 0; and (4) 0 < ϕ ′

1(M) < Φ , 0 < g′(I)< Γ , and for some
constants Φ and Γ .

Specific functional forms of ϕ1(M) turn out to be relevant for the applications,
as the linear function,

ϕ1(M) = bM,

where b is a positive constant or the Hill Order n function

ϕ1(M) =
CMn

1+DMn , n = 0,1, . . .

where C > 0, D > 0. Similar functions may be chosen for g.
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The information variable M is a function of the past values of I for two main
reasons. From one hand, the information regarding the spread of a disease is seldom
instantaneous, since it is generally subject to delays of technical nature due to
the presence of time-consuming processes (clinical tests, notification of cases, the
collecting and propagation of information and/or rumors, etc.). On the other hand,
in some cases there can be a memory of the previous epidemics.

An important case of kernel Ka(t) is the weak exponential delay kernel [32],
Ka(t) = ae−at , where the parameter a assumes the biological meaning of inverse
of the average delay of the collected information on the disease, as well as the
average length of the historical memory concerning the disease in study. With this
particular choice of the kernel, by applying the linear chain trick [32], the (infinite
dimensional) nonlinear integro-differential system (2) is equivalent to the following
set of (finite dimensional) nonlinear ODEs:

⎧
⎨

⎩

Ṡ = μ − μS−ϕ(M)S−β SI
Ṁ = a [g(I)−M]

İ = β SI− (μ +ν)I.
(3)

2.1 Basic Properties

It is easy to check that model (3) admits the disease-free equilibrium E0 = (A,0,0),
where A = μ/(μ + ϕ0). Note that if it were ϕ0 ≥ ν , then this inequality would
imply that A < μ/(μ +ν)<< 1. Indeed, the average duration of a disease (ν−1) is
much smaller than the average lifespan (L = μ−1). In other words, if we considered
baseline vaccination rates ϕ0 equal or larger than the recovery rate ν , then at the
disease-free equilibrium, the fraction of residual susceptible subjects would be so
small to make rather pleonastic the study of the influence of information feedback.
For these reasons, the analysis of model (3) will be performed under the realistic
assumption

ϕ0 < ν (4)

First we show that it exists an invariant adsorbing set in the state space.

Proposition 1. The set

Ω =
{
(S,M, I) ∈ R3

+|0 ≤ M ≤ g(A), 0 ≤ S+ I ≤ A
}

is positively invariant and absorbing and, as a consequence, the orbits of Eq. (3) are
bounded, provided that (S(0),M(0), I(0))≥ (0,0,0).

Proof. Defining σ = S+ I, one has that

σ̇ < μ (1−σ)−ϕ0S−νI;
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thus,

σ̇ < μ
(
1− (1+ϕ0 μ−1)σ

)
.

As a consequence

limsup
t→+∞

(S(t)+ I(t))≤ A.

From the following inequality

Ṁ ≤ a(g(A)−M) ,

it follows that

limsup
t→+∞

M(t)≤ g(A),

and our claim is demonstrated. ��
Let us now denote R0 = β/(μ +ν) the basic reproduction number in absence of

vaccinations. It follows that

Proposition 2. if

R0A ≤ 1 (5)

then E0 is GAS in Ω ; otherwise, E0 is unstable.

Proof. The first claim easily follows from the following differential inequality:

İ ≤ I (β (A− I)− (μ +ν)) .

The second claim follows from the linearized equation at E0. Indeed, the equation
for I reads as follows:

İ = I(β A− (μ +ν)). ��
Note that if R0A > 1, then system (3) admits another equilibrium point, the endemic
equilibrium E = (S∗,M∗, I∗) = (1/R0,g(I∗), I∗), where I∗ ∈ (0,1) is the unique
solution of

μ
(

1− 1
R0A

)

− (μ +ν)I =
ϕ(g(I))

R0
.

We also remark that due to Eq. (4), the condition R0A > 1 reads ϕ0 < (R0 − 1)μ .
In order to better appreciate this inequality, and since in absence of infection, the
term 1/(ϕ0 + μ) is the average time of permanence in the susceptibility class, it is
convenient to express ϕ−1

0 as a fraction of the average lifespan: ϕ−1
0 = f0 L, where

L = μ−1 is the average lifespan and f0 ∈ (0,1). This allows to further rewrite the
instability condition as f0 > 1/(R0 − 1).

The local stability analysis of the endemic equilibrium E may be performed
by using the same procedure of Proposition 12 in [17]. System (3) may admit
oscillatory solutions (in the sense of Yacubovitch [8, 19, 20]) as stated by the
following theorem [8]:
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Theorem 1. If and only if

μ2R2
0 + 2μβ R0

√
I∗S∗ −β g′(I∗)ϕ ′(M∗)I∗S∗ < 0, (6)

there exist two values a1 and a2, with 0< a1 < a2, for the parameter a, such that E is
locally asymptotically stable (LAS) for a /∈ [a1,a2]. On the contrary, if a ∈ (a1,a2),
then E is unstable, and the solutions of system (1) exhibit Yacubovitch oscillations.
At the points a1 and a2, Hopf bifurcations occur. If the reverse of Eq. (6) holds, then
E is LAS.

2.2 Global Stability of the Endemic Equilibrium

Global stability analysis for the endemic equilibrium E will be performed through
the approach due to Li and Muldowney [30].

When R0 A > 1, the disease-free equilibrium, which is located on the boundary
∂Ω , is unstable, and this implies that system (3) is uniformly persistent [22],
i.e., there exists a constant c > 0 such that any solution (S(t),M(t), I(t)) with
(S(0),M(0), I(0)) in the interior of Ω , satisfies

min{liminf
t→∞

S(t), liminf
t→∞

M(t), liminf
t→∞

I(t)}> c.

The uniform persistence together with boundedness of Ω is equivalent to the
existence of a compact set in the interior of Ω which is absorbing for Eq. (3), see
[25]. This condition is required by the Li–Muldowney approach, together with a
specific Bendixson criterion (inequality (34) in the Appendix) which will be the
goal of the next theorem.

Theorem 2. If R0A > 1 and

ν −ϕ0 < a(1−Γ ), (7)

(β +Φ)A < a, (8)

then the endemic equilibrium E of system (3) is globally asymptotically stable with
respect to solutions of Eq. (3) initiating in the interior of Ω .

Proof. We first observe that the second additive compound matrix J[2](S,M, I) is
given by

J[2] =

⎛

⎝
−μ −β I−ϕ(M)− a ag′(I) β S

0 −μ −β I+β S− (μ +ν)−ϕ(M) −ϕ ′(M)S
−β I 0 β S− (μ +ν)− a

⎞

⎠ .



296 B. Buonomo et al.

Now we take the function,

P = P(S,M, I) = diag

{
S
I
,

S
I
,

S
I

}

. (9)

It follows,

Pf P
−1 = diag

{
Ṡ
S
− İ

I
,

Ṡ
S
− İ

I
,

Ṡ
S
− İ

I

}

,

and PJ[2]P−1 = J[2] so that

B = Pf P−1 +PJ[2]P−1 =

[
B11 B12

B21 B22

]

,

where B11 =
Ṡ
S − İ

I −μ −β I−ϕ(M)−a, B12 = [ag′(I), β S], B21 = [0, −β I]T , and

B22 =

⎡

⎢
⎢
⎢
⎣

Ṡ
S
− İ

I
− μ −β I−ϕ(M)+β S− (μ+ν) −ϕ ′(M)S

0
Ṡ
S
− İ

I
+β S− (μ +ν)− a

⎤

⎥
⎥
⎥
⎦
.

Consider now the norm in R3 as

|(u,v,w)|= max{|u|, |v|+ |w|} , (10)

where (u,v,w) denotes the vector in R3 and denote by L the Lozinskiı̆ measure
with respect to this norm. It follows [33]

L (B)≤ sup{g1,g2} ≡ sup{L1(B11)+ |B12|, L1(B22)+ |B21|} , (11)

where |B21|, |B12| are matrix norms with respect to the L1 vector norm and L1

denotes the Lozinskiı̆ measure with respect to the L1 norm.1

L1(B11) =
Ṡ
S − İ

I − μ −β I−ϕ(M)− a, (12)

|B12|= max{ag′(I),β S} , (13)

|B21|= β I, (14)

L1(B22)=
Ṡ
S
− İ

I
+β S−(μ +ν)+max{−μ−β I−ϕ(M);−a+

∣
∣−ϕ ′(M)S

∣
∣}. (15)

1That is, for the generic matrix A = (ai j), |A|= max1≤k≤n ∑n
j=1 |a jk| and L (A) = max1≤k≤n(akk +

∑n
j=1( j �=k) |a jk|).
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Taking into account of Eqs. (11) and (12)–(15), the general expressions of g1 and g2

for system (3) are thus

g1 =
Ṡ
S
− İ

I
− μ −β I−ϕ(M)− a+max

{
ag′(I); β S

}
, (16)

and

g2 =
Ṡ
S
− İ

I
+β S− (μ +ν)+β I+max{−μ −β I−ϕ(M); −a+ϕ ′(M)S}. (17)

Observe that system (3) provides the following equality:

İ
I
= β S− (μ +ν); (18)

hence, from Eq. (16) one gets

g1 =
Ṡ
S
−β S+ν −β I−ϕ(M)− a+max

{
ag′(I); β S

}
, (19)

and from Eq. (17),

g2 =
Ṡ
S
+β I+max{−μ −ϕ(M); β I− a+ϕ ′(M)S}.

It follows

g1 =
Ṡ
S
+max

{−β S+ν −β I−ϕ(M)− a+ ag′(I); ν −β I−ϕ(M)− a
}
,

and

g2 =
Ṡ
S
+max

{−μ −ϕ(M); β I+ϕ ′(M)S− a
}
.

Hence, from Eq. (11),

L (B) ≤ sup{g1,g2}
=

Ṡ
S
+max{−β S+ν −β I−ϕ(M)− a+ ag′(I), ν −β I−ϕ(M)− a,

−μ ; β I+ϕ ′(M)S− a} ,
i.e.,

L (B) ≤ Ṡ
S
+max{−β c+ν −ϕ0 −β c− a+ aΓ , ν −ϕ0 −β c− a,

−μ ; β A+ΦA− a},
where c is the constant of uniform persistence.
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Now, impose that

ν −ϕ0 + aΓ < a+ 2β c,

ν −ϕ0 < a+β c,

(β +Φ)A < a. (20)

This allows to conclude that

L (B)≤ Ṡ
S
−ω ,

where

ω = min{a(1−Γ )+ 2β c−ν +ϕ0, a+β c−ν+ϕ0, μ , a−A(β +Φ)},
and ω > 0. Hence

1
t

∫ t

0
L (B)ds ≤ 1

t
log

S(t)
S(0)

−ω ,

and the Bendixson criterion given in [30] is thus verified. Finally, because of c > 0,
conditions (20) are fulfilled if the inequalities (7)–(8) hold true. ��

Note that in the important case where g(I)= kI, the fulfillment of the assumptions
that are needed by the above theorem implies a restriction for k in the range k∈(0,1).

2.3 Information-Dependent Vaccinations of Newborns

In [17] the problem of information-driven vaccination of newborns was thoroughly
analyzed both numerically and analytically, focusing, however, only on the local
properties of the endemic equilibrium. In [7], we performed a global analysis,
which we shall summarize here, for the important case g(I) = kI. The model is
the following:

⎧
⎨

⎩

Ṡ = μ(1− p(M))− μS−β SI
Ṁ = akI− aM
İ = β SI− (μ +ν)I,

(21)

where the nondecreasing positive function p(M) models the proportion of vacci-
nated newborns, and it may be split as follows: p(M) = p0 + p1(M). Here, p0

models the fraction of newborns that are in any case vaccinated, whereas p1(M)
models the fraction of newborns that are vaccinated in dependence of the social
alarm caused by the disease. Note that p0 is lower than the minimum vaccination
rate to obtain the eradication. Assume the following properties to hold: (1) 0 ≤
p1(M)≤ 1− p0, for all M; (2) p1(0)= 0; (3) p1(M) is continuous and differentiable,
except in some cases, at finite number points; and (4) 0 < p′1(M) < Π , for some
constant Π .
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Proposition 3. The set

Γ =
{
(S,M, I) ∈ R3

+|0 ≤ M ≤ k, 0 ≤ S+ I ≤ 1− p0
}
,

is positively invariant and absorbing, and as a consequence, the orbits of Eq. (21)
are bounded, provided that (S(0),M(0), I(0))≥ (0,0,0).

Theorem 3. System (21) admits the disease-free equilibrium E0(1− p0,0,0). If

(1− p0)R0 > 1, (22)

then the equilibrium E0 is unstable, and Eq. (21) admits also a unique endemic
equilibrium with positive components, E = (S∗,M∗, I∗), where S∗ = (μ +ν)/β ,
M∗ = kI∗, and I∗ is the unique positive solution of

μ(1− p0)− μ p1(kI∗)−
(

μ +ν
β

)

[μ +β I∗] = 0.

Moreover, if and only if

(β I∗+ μ)2 −β μkI∗p′(M∗)+ 2(β I∗+ μ)
√

β (ν + μ)I∗ < 0, (23)

there exist two values a1 and a2 for the parameter a, with 0 < a1 < a2, such that
E is unstable for a ∈ (a1,a2) and the solutions of the system exhibit Yacubovitch
oscillations, whereas it is locally asymptotically stable (LAS) for a /∈ [a1,a2]. At the
points a1 and a2, Hopf bifurcations occur. If the reverse of Eq. (23) holds, then E
is LAS. Finally, if the reverse of Eq. (22) holds, then E0 is globally asymptotically
stable in Γ .

Reasoning as in Sect. 2.2, it can be shown that system (21), under the assump-
tion (22), is uniformly persistent. Thus, in order to satisfy the Li–Muldowney
theorem, it remains to find conditions for which the Bendixson criterion given
by Eq. (34) is verified.

Theorem 4. Under the assumptions (22) and

ν + ak < a, β (1− p0)+ μΠ < a, (24)

the endemic equilibrium E of system (21) exists and is globally asymptotically stable
with respect to solutions of Eq. (21) initiating in the interior of Γ .

The proof of the above theorem, which is reported in [7], is obtained by means
of the same function P and the same vector norm used for the proof of Theorem 2.

We remark that also here that the fulfilling of GAS conditions implies the
restriction k ∈ (0,1), as in the previous section. In view of this remark, the
parameter k may play an interesting role on the stability properties of the endemic
equilibrium. To elucidate this aspect, we will show, numerically, how the global
stability properties of the endemic equilibrium E critically depend on the interplay
between the parameters a and k.
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Fig. 1 The local stability properties of the endemic equilibrium E, varying a and k. The numerical
values for the other parameters are chosen as in [17]. Bifurcation diagram in the (k,a) plane: the
dashed-dot branch (-.) is the a1’s branch, and the dashed branch (- -) is the a2’s branch. a1 and a2
are defined in Theorem 3. Figure from [7]: c© Elsevier Science Ltd

As in [17], we choose p1(M) = (1− p0 − ε)DM/(1+DM), where ε and D are
positive constants and ε is arbitrarily small.

Condition (23) can be rewritten as B2
1 − 4β I∗(ν + μ)(β I∗+ μ)2 > 0, where,

B1 = (β I∗+ μ)2 −β I∗μkp′1(M
∗).

Our purpose is to show that some set of parameter values exist such that hypotheses
of Theorem 4 are verified.

We fix the parameter values as in [17]: μ = 1/27375 days−1, ν = 0.1429 days−1,
R0 = 10, β = 1.4289 days−1, p0 = 0.75, D = 5000, ε = 0.01. Furthermore, in the
present case, Π ≈ (1− p0 − ε)D.

We observe that conditions (22) and (24) can be combined. It follows that, to
apply Theorem 4, the bifurcation parameter a has to be chosen in the range a> amin,
where

amin = max{ν(1− k)−1;β (1− p0)+ μ(1− p0− ε)D}. (25)

As it can be seen in Fig. 1, values of k exist such that the endemic equilibrium
is LAS, independently of the delay (e.g., k = 0.1 and k = 0.2). For these choices
of k, global stability properties of E are solely determined by condition a > amin.
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Fig. 2 The global stability region in the (a,k) plane for the endemic equilibrium E, i.e., Eq. (26).
The numerical values for the other parameters are chosen as in [17]. Figure from [7]: c© Elsevier
Science Ltd

From Eq. (25), it follows that the region where amin is independent on k is (0,kc),
with

kc = 1− ν
β (1− p0)+ μ(1− p0− ε)D

.

For the selected numerical values, kc ≈ 0.6437 and

amin =

{
0.4016, i f 0 < k < kc,

0.1429(1− k)−1, i f kc < k < 1.
(26)

The function amin(k) is plotted in Fig. 2, where it is shown the GAS region in the
(a,k) plane for the endemic equilibrium E . We can observe that, especially for
medium–low values of k, 0 < k < kc, the GAS of E is always verified by both
medium or high values of a, progressively increasing the value of k to approach 1;
the values of a for which condition a > amin may be verified become progressively
larger.

Thus, if k <≈ 0.65, according to our result, the GAS of the endemic equili-
brium is guaranteed for values of the information delay up to ≈ 2.5 days. Only for
k >≈ 0.855, the GAS is guaranteed for delays that are less long than a single day.

The values of the parameter a, ensuring the local and the global stability of the
equilibrium E , for different values of k, are summarized in Table 1. For a ∈ (0,a1)∪
(a2,amin), the global stability for the endemic equilibrium may be only guessed.
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Table 1 Different values of the parameter k are chosen and the related ranges of
the parameter a are shown, for which local (LAS) and global (GAS) stability of the
endemic equilibrium E is obtained

k a1 a2 LAS GAS (a > amin)

0.95 0.00037 0.01684 0 < a < a1, a > a2 a > 2.8580
0.9 0.00039 0.01616 0 < a < a1, a > a2 a > 1.4290
0.8 0.00043 0.01475 0 < a < a1, a > a2 a > 0.7145
0.7 0.00049 0.01323 0 < a < a1, a > a2 a > 0.47633
0.6 0.00058 0.01159 0 < a < a1, a > a2 a > 0.40106
0.5 0.00069 0.0098 0 < a < a1, a > a2 Idem
0.4 0.00089 0.0078 0 < a < a1, a > a2 Idem
0.3 0.00130 0.0055 0 < a < a1, a > a2 Idem
0.2 – – ∀a Idem
0.1 – – ∀a Idem
0.02 – – ∀a Idem

The numerical values for the other parameters are chosen as in [17]. a1 and a2 are
defined in Theorem 3

3 FB on Behavior of Susceptible Subjects

In [16] the dynamics of interactions between susceptibles, infectious, and the
information index is described by the following model:

⎧
⎨

⎩

Ṡ = μ(1− S)−β (M) IS
İ = β (M) I S− (μ +ν)I
Ṁ = ag(I)− aM,

(27)

where the function β is required to be a positive decreasing function and g such
that g(0) = 0, and g′(I)> 0. We will prove the global stability result of the endemic
equilibrium for g satisfying

g′(I)I ≤ g(I). (28)

Both the previously mentioned functions g(I) = kI and g(I) = I/(1+ qI) fulfill the
constraint (28).

In [16] it has been shown that the set

Ω = {(S, I,M) : S ≥ 0, I ≥ 0, S+ I ≤ 1, 0 ≤ M ≤ g(1)}
is positively invariant for model (27). Moreover the disease-free equilibrium
E0 = (1,0,0) is on ∂Ω , as well as its stable manifold, which is the set
{(S, I,M) ∈ Ω : I = 0}. As a consequence, the state variables are strongly persistent.
Furthermore, model (27) admits a unique endemic equilibrium, E = (S∗, I∗,M∗),
where S∗ = (μ +ν)/β (g(I∗)), M∗ = g(I∗) and I∗ is the unique solution of

μ
(

μ +ν
β (g(I))

)

− (μ +ν)I = 0.



The Geometric Approach to Global Stability in Behavioral Epidemiology 303

Let us introduce the basic reproduction number

R0 =
β (0)

(μ +ν)
. (29)

The following stability result holds [16]:

Theorem 5. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable. If R0 > 1, then E0 is unstable, and the endemic equilibrium E is locally
asymptotically stable.

As far as the global stability of E is concerned, in [9] the following theorem has
been proven:

Theorem 6. Assume that g satisfies the inequality (28). If R0 > 1 and

ν > 2β (ε0), (30)

where ε0 is the constant of uniform persistence, then the endemic equilibrium E
of system (27) exists and is globally asymptotically stable with respect to solutions
of Eq. (27) initiating in the interior of Ω .

The proof of the above theorem, which is reported in [9], is obtained by means of
the same vector norm used for the proof of Theorem 2, but the following different
P function is employed: P = diag(1, I/M, I/M).

3.1 A SIS Case

In this section we briefly analyze the impact of the information-driven behavior of
susceptible subjects on the transmission of a SIS communicable disease.

By including the variable contact rate β (M) in the classical SIS model, we obtain
the following system:

⎧
⎨

⎩

Ṡ = μ(1− S)−β (M) IS+ γI
İ = β (M) I S− (μ + γ)I
Ṁ = ag(I)− aM.

(31)

We can study the model on the plane (limit set) S+ I = 1. Model (31) reduces to

{
İ = β (M)I(1− I)− (μ + γ)I
Ṁ = a(g(I)−M).

(32)

System (32) has two equilibrium points: a disease-free one, E0 = (0,0), and an
endemic equilibrium E = (Ie,g(Ie)), where Ie is the solution of the following
equation:
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β (kI) =
μ + γ
1− I

.

The equilibrium E exists only if R0 > 1, where R0 is given by Eq. (29).
Stability properties are given in the following:

Theorem 7. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable. If R0 > 1, then E0 is unstable, and the endemic equilibrium E is globally
asymptotically stable.

4 Conclusions

In this work, we consider three SIR epidemic models with information-dependent
feedback. Our main goals are (1) to obtain (sufficient) conditions, expressed in
terms of the parameters of the system, ensuring the global asymptotic stability of
the unique endemic equilibrium, and (2) apply the geometric approach to global
stability analysis, due to Li and Muldowney. This gives an example of the applica-
tion of the method to a class of SIR-like models including peculiar nonlinearities,
modeling new types of biological feedback mechanisms: the influence that the
available information has on either vaccinating behaviors or on the contact behavior
of the population.

We have obtained that imposing the conditions required by the Li–Muldowney
approach (see (H1)–(H2) and Eq. (34) in the Appendix) leads to parameter
restrictions in all the three considered cases.

We stress that the approach to stability applied in this chapter is based on two
crucial choices: the entries of the matrix P and the vector norm in R3. Clearly,
different choices of the matrix P and of the vector norm may lead, in principle,
to better sufficient conditions than the ones we found here, in the sense that the
restrictions on the parameters may be weakened.

For example in the two cases involving vaccination (models (3) and (21)), when
g(I) = kI, the range of variability of the parameter k is restricted to the interval
(0,1). This restriction may be discussed as follows. The parameter k may be seen as
a “summary” of two contrasting phenomena:

• The phenomenon of disease underreporting: for mainly technical reasons, the
number of reported cases of an infectious disease is in any case smaller than the
real number, leading to an underestimate of the infectious fraction I.

• The level of media and rumors coverage of the state of a disease, which tends to
amplify the social alarm.

Thus, we could decompose k as follows: k = kunderreporting × kmedia, where in all
cases 0< kunderreporting ≤ 1 and where generally kmedia > 1, although one may depict
a realistic scenario where, in order to avoid extreme social alarm, or because of lack
of mediatic “appeal” of the disease, media would lower the focus on the disease,
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implying that 0 < kmedia < 1. Finally, of course, there is the case of totally objective
press: kmedia = 1. Consequently,

• The cases of objective and of alarm-avoiding media are fully described by the
constraint k ∈ (0,1).

• The case of “amplifying” media may be well modeled provided that kmedia <
k−1

underreporting.

These considerations suggested that, in the case of vaccination of newborns, the
role of the parameter k was worth further investigations via a numerical bifurcation
analysis. We obtained that if k exceeds a threshold depending on a, k∗(a), limit
cycles arise through Hopf bifurcations at k = k∗(a). We may read this phenomenon
as follows:

• If the media coverage is low, then the “rational exemption” leads to a globally
stable endemic state.

• On the contrary, if the “media exposure” exceeds a threshold that interestingly
depends on a, then a destabilization appears and oscillations arise.

Finally, in the case of information feedback on contact behavior for SIS epidemic
diseases, we obtained that the endemic equilibrium is GAS in a way independent
from any constraints on the epidemic, information, and delay parameters.

5 Appendix

Here, we will shortly describe the general method developed in Li and Muldowney,
[30]. Consider the autonomous dynamical system:

ẋ = f (x), (33)

where f : D → Rn, D ⊂ Rn open set and simply connected and f ∈ C1(D). Let x∗
be an equilibrium of Eq. (33), i.e., f (x∗) = 0. We recall that x∗ is said to be globally
stable in D if it is locally stable and all trajectories in D converge to x∗.

Assume that the following hypotheses hold:

(H1) There exists a compact absorbing set K ⊂ D.
(H2) Equation (33) has a unique equilibrium x∗ in D.

The basic idea of this method is that if the equilibrium x∗ is (locally) stable, then
the global stability is assured provided that (H1)–(H2) hold and no nonconstant
periodic solution of Eq. (33) exists. Therefore, sufficient conditions on f capable to
preclude the existence of such solutions have to be detected.
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Li and Muldowney showed that if (H1)–(H2) hold and Eq. (33) satisfies a
Bendixson criterion that is robust under C1 local ε-perturbations2 of f at all
nonequilibrium non-wandering3 points for Eq. (33), then x∗ is globally stable in
D provided it is stable. Then, a new Bendixson criterion robust under C1 local ε-
perturbation and based on the use of the Lozinskiı̆ measure is introduced.

Let P(x) be a (
n
2
)× (

n
2
) matrix-valued function that is C1 on D and consider

B = Pf P−1 +PJ[2]P−1,

where the matrix Pf is

(pi j(x)) f = (∂ pi j(x)/∂x)T · f (x) = ∇pi j · f (x),

and the matrix J[2] is the second additive compound matrix of the Jacobian matrix J,

i.e., J(x) = D f (x). Generally speaking, for an n× n matrix J = (Ji j), J[2] is a (
n
2
)×

(
n
2
) matrix (for a survey on compound matrices and their relations to differential

equations, see [34]) and in the special case n = 3, one has

J[2] =

⎡

⎣
J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33

⎤

⎦ .

Consider the Lozinskiı̆ measure L of B with respect to a vector norm · in RN , N =

(
n
2
) (see [33])

L (B) = lim
h→0+

I+ hB − 1
h

.

It is proved in [30] that if (H1) and (H2) hold, condition

limsup
t→∞

sup
x0∈Γ

1
t

∫ t

0
L (B(x(s,x0)))ds < 0, (34)

guarantees that there are no orbits giving rise to a simple closed rectifiable curve
in D which is invariant for Eq. (33), i.e., periodic orbits, homoclinic orbits, and

2A function g ∈ C1(D → Rn) is called a C1 local ε-perturbation of f at x0 ∈ D if there exists an
open neighborhood U of x0 in D such that the support supp( f − g)⊂ U and f − gC1 < ε , where
f −gC1 = sup{ f (x)−g(x) + fx(x)−gx(x) : x ∈ D}.

3A point x0 ∈ D is said to be non-wandering for Eq. (33) if for any neighborhood U of x0 in D and
there exists arbitrarily large t such that U ∩ x(t,U) �= /0. For example, any equilibrium, alpha limit
point or omega limit point, is non-wandering.
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heteroclinic cycles. In particular, condition (34) is proved to be a robust Bendixson
criterion for Eq. (33). Besides, it is remarked that under the assumptions (H1)–(H2),
condition (34) also implies the local stability of x∗.

As a consequence, the following theorem holds [30]:

Theorem 8. Assume that conditions (H1)–(H2) hold. Then x∗ is globally asymp-
totically stable in D provided that a function P(x) and a Lozinskiı̆ measure L exist
such that condition (34) is satisfied.
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Part IV
Concluding Overview



Capturing Human Behaviour: Is It Possible
to Bridge the Gap Between Data and Models?

W. John Edmunds, Ken Eames, and Marcus Keogh-Brown

Abstract Do people respond to changes in perceived risk of disease? The answer
to this is surely yes, but how? And will we ever be able to reliably predict how
individuals will react to a given situation? In this chapter we examine the evidence
for changes in behaviour as a result of changing epidemiological situations and the
practical implications of this research. We show that, with a few notable exceptions,
empirical support for recent theoretical advances is generally weak. We highlight
the areas where further observational data are needed, and suggest ways to collect
this information.

1 Background

In his diary on the 21st of June 1665, Samuel Pepys wrote, ‘I find all the towne
almost going out of towne, the coaches and waggons being all full of people going
into the country’. This was no holiday: the plague had arrived in London. The
King and his court moved to Oxford, as did Parliament, and many people with the
means to do so—doctors, priests, lawyers, and merchants—fled from the dangers
of pestilential London. Pepys sent his mother out of town on the 22nd, though
he himself stayed (and survived). The following spring, in the village of Eyam
in the county of Derbyshire, plague cases began to rise. Rather than running, the
villagers of Eyam chose to stay put, severing all direct contact with surrounding
villages, to prevent the spread of infection. Perhaps they had nowhere else to go;
perhaps livelihoods were too tied to farmsteads, livestock, and mining claims to
permit easy relocation; perhaps they were simply doing what they believed to
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be right. In any case, faced with the horrors of the plague, different people and
different communities changed their behaviour in a variety of different, perhaps
unpredictable, ways.

People continue to respond to changes in perceived risk of disease. The scenes
of empty airports and people wearing facemasks during the SARS and H1N1pdm
epidemics are all too familiar. How might they react to the next outbreak of a novel
infection? Do fluctuations in the prevalence of endemic diseases alter the demand
for preventative actions, such as immunisation? This chapter examines the empirical
evidence for changes in behaviour as a result of a changing epidemiological situation
and discusses the practical implications of this research.

2 Motivating Questions

Does a change in epidemiology influence behaviour, and does this change in
behaviour influence epidemiology? Put another way, is there feedback between the
prevalence or incidence of an infectious disease and protective behaviours taken by
individuals? And do these protective behaviours actually lower individual’s risk of
disease? What is the empirical evidence for this? Can we improve the predictive
ability of dynamic transmission models by encapsulating these potential feedbacks?
And finally, can public health authorities make use of this information to tailor their
responses to changing epidemiological circumstances?

3 Narrowing the Field

Before addressing these questions, we need to define what we are looking at. There
are many behaviours that are stimulated or imposed as a result of the actions
of public health officials. Closing schools or other public meeting places during
an outbreak being examples. Under these circumstances individuals must adapt
their behaviours. Likewise, illness itself may induce an alteration in the daily
routine [1]. These behavioural changes are not the primary subject of this volume.
Instead, we are interested in individual’s choices: whether they react to a change
in epidemiological circumstances in order to modify their own risk. This implies
that the individuals concerned must have some information on the risk of disease
(however inaccurate), a choice between actions, and the belief that their actions
will reduce their risk (or that of a loved one). The epidemiological circumstances
could include an outbreak, where the risk of infection is presumably changing
relatively quickly, or an endemic disease, against which protective behaviours such
as vaccination might be effective. We focus here exclusively on infectious diseases,
although it should be noted that a number of ‘lifestyle’ diseases, such as drug use or
smoking, share elements with infectious diseases (an increase in prevalence amongst
peers leading to increasing use), and so many of the findings from this book may
well have implications for a wider range of diseases.
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4 Practical Considerations

Before the epidemiological circumstances arise that might prompt behavioural
modification, a range of a priori possibilities can be envisaged. Some of these can
be seen as a response to a present risk (e.g. self-isolation, moving away from areas
with high incidence, avoiding public transport, children being kept away from
school by their parents). Others could be carried out either in response to current
circumstances or in expectation of future risk (e.g. seeking protective vaccination or
stocking up on medicines).

Some behavioural changes involve a one-off action (e.g. vaccination), whereas
others would be expected to continue over longer periods of time (e.g. social
distancing). The former would be expected to be at a low cost to the individual, as
might those that are essentially changes in habit (e.g. condom use, hand-washing);
other changes could have large impacts on quality of life and would be highly
inconvenient if carried on indefinitely.

When considering possible behavioural change in response to infectious disease
risk, it is necessary to consider the practical implications for individuals attempting
to implement such changes. Not everyone will be free to alter their behaviour in
ways that they might want to, and certainly it will be hard to sustain these changes
for long periods of time. In many cases we would expect behaviour to eventually
revert to normal. In such circumstances, the benefit of behavioural change may not
be a sustained reduction in risk but a delay in risk. At a population level this could be
beneficial, providing extra time to plan a response, but this benefit may be strongly
dependent on the change in behaviour taking place at an appropriate time—social
distancing will be ineffective if people are bored of it before the epidemic arrives.

5 Perverse Outcomes

Not all changes in behaviour are likely to be beneficial, and some may be harmful.
When plague gripped Europe in the centuries after 1347, the general response from
those citizens with the means to do so was to flee affected cities. Although this may
have reduced their personal risk, the increased movement of people might well have
seeded infection in distant communities, hastening the spread of the epidemic across
the continent. Similarly, a rush for treatment during an outbreak could result in high
concentrations of the sick and the worried well at health-care facilities, resulting
in additional transmission, diverting resources from other roles, and hindering the
effective delivery of treatments to those most in need.

The consequences of large-scale behavioural change on the delivery of key
services and on the smooth functioning of a nation’s infrastructure are potentially
vast. The need for health-care workers, food, and fuel delivery personnel, for
example, to continue to work might come into conflict with a desire from individuals
for social distancing. Reduction in public transport use, shopping, and use of bars
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and restaurants may have a significant effect on these aspects of the economy [2,3].
There are therefore likely to be trade-offs between the individual and society. To
what extent this can be controlled, guided, or influenced by government in the event
of a large-scale epidemiological event is a moot point.

6 Epidemiological Models of Behavioural Change

Most epidemiological models assume that behaviour is static, unaffected by the
incidence of disease. Those that have attempted to model how behaviour changes
during an epidemic have tended to perform ‘what-if’ analyses, in which the effect
of a certain behavioural change is examined. For instance, Del Valle et al. (in this
volume) [4] assume that individuals isolate themselves at home due to the fear of
being infected. Their model then shows the potential impact of such behaviour.
Whilst this can give useful insight, the quantitative details of the results are driven by
the assumptions used, not by an empirical examination of whether such behaviour
is likely to occur and under what circumstances.

There have been very few attempts to quantify how behaviour might change in
the event of an epidemic. One such example is that of Sadique et al. [5] who asked
individuals in eight different countries (5 in Europe and 3 SARS-affected Asian
countries) which settings (e.g. public transport, places of entertainment, shops,
work) they thought were most risky and whether they would change behaviour
in the event of an influenza pandemic. The results suggested that potentially large
numbers of individuals would take precautionary behaviours. Over 70% reported
that they would avoid public transport, and large numbers reported that they would
avoid places of entertainment, would be absent from work, would limit shopping
to the essentials, and keep children from school [5]. If these results are combined
with data on usual contact patterns (available from the large population-based survey
POLYMOD [6]), then it is possible to infer the impact of these behavioural changes.
If people behaved as reported, then the reproduction number of the epidemic would
fall to approximately two thirds of its original value, with reduced contacts at school,
at work, and during leisure activities contributing approximately equally to this fall.
Because public transport accounts for such a small fraction of social contacts, it is
unlikely that avoiding it would have a noticeable impact on transmission. That is,
the most commonly reported avoidance behaviour may play a very limited role in
reducing risk.

This analysis does not include any information about how the strength of social
contacts might be influential and might change. The riskiness of an encounter could
be reduced for instance by avoiding physical contact such as shaking hands, wearing
face masks, or increasing physical separation during conversation. Weighting social
contacts by their likely risk of transmission would further reduce the impact of
changes in public transport use and shopping as a means of limiting epidemic
spread.
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Fig. 1 Avoidance of leisure events during the H1N1pdm influenza pandemics in UK

The problem with surveys of hypothetical situations is that respondents may not
react in the way they expect when faced with a real epidemic. The responsibilities
and necessities of normal life may restrict behavioural changes in ways that are not
possible to pick up adequately in surveys. It is interesting to note, for instance, that
in the survey of Sadique et al. [5] those who were employed were less likely to
report that they would avoid public transport, perhaps because of the constraints of
getting to work.

In an attempt to collect data during a real epidemic, we included a survey on
risk behaviour as part of our ongoing Internet-based surveillance of influenza like
illness (www.flusurvey.org.uk) [7,8]. The survey was completed by 279 respondents
between 14th December 2009 and 10th February 2010. Respondents were asked
questions concerning changes in their behaviour as a direct result of the H1N1pdm
influenza pandemic during the previous week. We asked about changes in work-
related travel, time off work due to school closures, changes in shopping behaviour,
and changes in leisure activities.

For each of these questions, more than 98% of respondents submitted a response,
and more than 96% of respondents reported no change in behaviour. Given the
mildness of the pandemic and rapidly declining risk of infection at the time that
many respondents completed the survey, these results are not surprising, but a small
number of respondents indicated that they had undertaken risk averse behaviour
change (shifting to exclusive or increased online shopping or avoiding leisure events
(see Fig. 1) in all response categories.

A telephone-based survey performed at the outset of the 2009 H1N1pdm
influenza epidemic in the UK (early May 2009) showed a similar lack of action
to avoid ‘risky’ scenarios [9]. Only about 1% of over 900 respondents reported

www.flusurvey.org.uk
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cancelling or postponing a social event, 3% reported a reduction in the use of public
transport, and 2% reported a reduction in shopping. The major behaviours that were
adopted were in relation to personal hygiene with 17% reporting an increase in
cleaning and disinfecting and 28% reporting an increase in hand washing. Thus,
although the number of social contacts was almost unchanged, the riskiness of
encounters may have been reduced somewhat. Although, again, we do not know
the efficacy of such measures (increased from what baseline level, by how much,
and in what settings?) and how well these behaviours were maintained.

In contrast a telephone-based survey in the USA conducted at the outset of the
epidemic (April to June 2009) found that almost two thirds had washed their hands
or used hand sanitisers more frequently, and around a half had taken steps to prepare
to stay at home to care for themselves or others who may be sick [10]. By June
20% reported taking measures to reduce contact with others outside the home,
even though such measures were not recommended at the time. As in the survey
of Sadique et al. [5], avoiding public transport and shopping malls were the most
likely behaviours to be adopted, though the fraction of individuals reporting having
undertaken these behaviours (around 10–15% for each) was far lower than the
anticipated reaction to a hypothetical influenza pandemic. The contrast between the
UK and US results is marked, reflecting cultural and context-specific factors.

The risk of acquiring influenza was probably roughly similar at the time all three
surveys were performed (both telephone surveys were performed at the outset of the
epidemic, the Internet-based UK survey at the end). The objective risk of disease is
clearly then not the only driver of behavioural change—in fact it may be relatively
unimportant—and other factors, such as media reports and peer influence play a
role in shaping how individuals respond to a given situation. As can be seen in
the differences between the UK surveys, with somewhat higher levels of avoidance
behaviour at the outset of the epidemic, it is clear that the epidemiological triggers
for action may be unrelated to the recent incidence. It is worth noting that the
few epidemiological models that do try and incorporate behavioural change tend
to exclude the influence of these other factors.

Surveys of behaviour during outbreaks give an invaluable insight into what
may occur. However, these situations are rare, and it is difficult to perform these
studies in real-time due to the rapidly changing epidemiological picture and the
inevitable delays inherent in designing a survey, securing permissions, and obtaining
a sample. A further problem is that we rarely know the baseline—how frequently
do people normally wash their hands or travel by public transport? Do individuals
take preventative measures against seasonal flu, for instance, and if not, why not?
We need to start to collect this information now, and simple online tools such as
the flusurvey [7, 8] may be a convenient way to do this and link with self-reported
illness simultaneously. Surveys performed during outbreaks can also be enhanced
by studies of hypothetical situations that can be performed in ‘peace time’. Such
data can give an indication of which behaviours are likely to be most affected—
public transport and entertainment, for instance—but are probably quantitatively
unreliable due to the restrictions on behaviour that are likely to arise in real life.
Both hypothetical surveys and studies of behaviour during an epidemic are unlikely
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to be able to accurately quantify what may occur during future events as the
scenarios studied are highly unlikely to be similar to any given future epidemic
in all relevant respects. Mechanistic explanations of behaviour change are required
to help generalise these results to other contexts.

7 Economic Models of Behavioural Change

The economic approach makes incentives for behavioural change explicit. Typically
these models assume that the prevalence of disease induces a change in behaviour
to reduce individual’s risk of acquisition. Rational individuals try to maximise
expected utility. In the absence of disease this is maximised by adopting a certain
behaviour (such as engaging in unprotected sex), and as the disease prevalence
increases, a change to protective behaviour is induced. Other behaviours can be
adopted to reduce the risk of disease, such as accepting vaccination. The risk of
a vaccine-preventable disease declines with increasing uptake, whereas the per-
dose risk from the vaccine remains unaltered. Eventually there is a point at which
individuals decide that the risk from the vaccine exceeds the risk of disease and
choose not to vaccinate. This in turn can lead to an increase in incidence and so
on. Typically, this rational epidemic behaviour leads to levels of vaccine coverage
below that necessary for elimination (the herd immunity threshold) [11, 12], even
when the vaccine in subsidised [12], although in a structured population network
effects can allow elimination to be achieved [13].

Empirical support for these theories is generally reliant on ecological analyses.
For instance, Bauch and Bhattacharyya [14] fit a series of models to overall uptake
data for MMR and pertussis vaccines using aggregate data on measles cases and
pertussis notifications (see later). There are a few studies that have used individual-
level data. Philipson [15] analysed data on MMR vaccine uptake from the 1991
US National Health Interview Survey and state-level data on measles incidence, in
two time periods: just before and during a major outbreak of measles. He found
that during the period of the epidemic residents of states with high incidence
were vaccinated more quickly than residents of states with low incidence, but
there had been no difference prior to the measles outbreak. The suggestion being
that individuals were responding to this higher incidence, although many other
factors may also have played a role, including the role of health-care workers in
ensuring that children are promptly immunised during an outbreak. One of the more
convincing studies of behavioural responses to an emerging epidemic threat is the
analysis of sexual behaviour in gay men in San Francisco during the 1980s. The
prevalence of HIV in this population increased from around zero in the late 1970s
to around 50% by 1984, after which it stabilised. Auld [16] examined individual-
level longitudinal data on sexual behaviour and HIV prevalence and found that a
10% increase in prevalence reduced the sexual partner change rate by about 5%.
Importantly, however, he also showed that this average elasticity masked significant
variability. Men in the lowest risk group were much more likely to further reduce



318 W.J. Edmunds et al.

their risk, whereas those in the highest risk group were largely unresponsive. That
is, a similar stimulus (prevalence) can lead to differing behaviours in different
population subgroups: something that would be impossible to pick up using an
ecological analysis of aggregate data.

8 Environments, Peer Networks, and Behavioural Change

Other studies have postulated that an individual’s environment helps shape decisions
to take preventative actions. For example an individual’s peer network may play a
role in influencing whether they accept vaccination [14,17,18]. This can be because
the risk of infection is determined by others close to a given individual in the
contact network, and/or because attitudes towards vaccination (or other preventative
measures) can be spread along a network of influence. Eames [18] showed that if
there is significant overlap between these two networks (the networks of contacts of
children and the opinion networks for their carers), then clusters of susceptibles may
build up. This can allow outbreaks to occur even in a population with high overall
vaccine coverage. The empirical basis for these interesting findings is again rather
weak. A number of studies of vaccination behaviour have shown that peers can be
influential. For instance, Kraut and others [19] surveyed the attitudes of health-care
workers to the seasonal and pandemic flu vaccines and found that co-workers were
the most important source of influence for both those who accepted the pandemic
flu vaccine and those that did not.

Bauch and Bhattacharyya [14] present one of the very few attempts to pa-
rameterise an epidemiological model that incorporates the influence of others in
the population as well as the feedback that may occur from the incidence of
diseases. They go beyond a theoretical exposition and attempt to fit their model
to data. The authors used aggregate data on MMR and pertussis vaccine coverage
and measles and pertussis incidence data from England and Wales during periods
of vaccine scares (1970s and 1980s for pertussis, and 1990s and beyond for
MMR). They include a social learning component (the decision to (not) vaccinate
being passed on from person to person) as well as a feedback component (as
incidence increases demand for vaccination increases) and tested whether these
two mechanisms operated by comparing models with/without them using Akaike
information criteria methods. They compared their model to both vaccine coverage
and disease incidence data and even validated their findings by fitting to the early
part of the time series and comparing their predications to the remaining data.
Interestingly they found that both the social learning and feedback components
appear to be necessary to adequately explain the observed trends.

So social learning may play a role, but how in practice does this come
about? Individuals receive information from a wide range of sources, including
personal contacts, media reports, and official announcements. Different sources
may have different levels of accuracy, perceived accuracy, and trustworthiness,
and two individuals may be given the same information but respond in different
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ways. Understanding how different sources are perceived and the societal, socio-
economic, and social factors that influence the eventual action are extremely
complex problems: how does one measure the degree of encouragement towards
a behavioural change from different individuals or institutions and the sensitivity of
the decision to a change in this level of encouragement?

9 Psychological Theories of Behavioural Change

The economic and epidemiological approaches almost certainly oversimplify the
complex psychological processes that feed into decision-making. A number of
different psychological theories exist that attempt to explain and predict behavioural
change in response to health threats [20]. These include rational models, such as
the theory of planned behaviour, and lay theories which may include irrational
beliefs, and motivations (e.g. that diseases are a result of divine judgement, and
so there is little that can be done to prevent them), and emotions. Within this
broad field, amongst the most common rational models of health behaviours are
the health belief model and the related protection motivation theory. These models
suggest that individuals weigh up the potential perceived benefits of a change against
the perceived costs. They assume that there are a number of factors (constructs)
that affect behaviour change. These vary between different version of the models,
but typically include: susceptibility (whether the individual is at risk), perceived
severity, perceived benefits, and perceived costs of the change in behaviour. These
factors then feed into a decision about whether to adopt a new behaviour (such as
stopping smoking) or not.

There is a large literature on the use of these theories to help frame analyses
of decisions about the uptake of preventative and therapeutic health interventions.
To pick just one example, Regan and Morisky [21] recently examined perceptions
about HIV and the uptake of condoms in the clients of female sex workers in the
Philippines. They found that more educated men were significantly more likely to
consistently use condoms. They also found that two factors taken from protection
motivation theory were significantly associated with consistent condom use, namely,
higher perception of the severity of AIDS and a higher score for the response
efficacy of condoms. Many other examples exist, drawn from all areas of public
health, including decisions to vaccinate [22], accept screening [23], and reduce risk
of exposure to infectious diseases [24].

There is only one example, as far as we are aware, of an epidemiological model
being parameterised explicitly by a psychological model. Durham and Casman
[25] embedded a health belief model within an individual-based epidemic model
of SARS in Hong Kong. Sub-models were developed and parameterised for each
of the major constructs of the health belief model: perceived susceptibility, which
was assumed to be related to recent or cumulative prevalence of disease; perceived
severity, which was assumed to be related to either estimated case-fatality ratios
or news coverage; perceived benefits of face-mask wearing (assumed to remain
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constant over the course of the epidemic); and perceived barriers of mask wearing,
which was assumed to be related to the number of others who were wearing
masks. The model was then calibrated by fitting to data on mask wearing, which
increased dramatically during the outbreak. Their empirical analysis suggested that
perceived susceptibility was the most influential parameter and that it was related to
cumulative rather than the instantaneous number of cases. This study represents an
important first step, although the authors themselves point out that far more work is
needed on the factors associated with decisions to take preventative behaviours and
the functional forms that should be adopted in a parametric description. It should
also be noted that the risk of disease was assumed to be exogenous in this analysis—
that is, there was no feedback resulting from the uptake of these measures on the
incidence of disease.

10 Conclusions

Simple epidemic models have proved to be very useful in providing qualitative
and quantitative insight into the spread of infectious diseases and their control via
public health measures [26], despite the vast majority assuming that host behaviour
does not respond to the epidemiological situation. Nevertheless it has become
increasingly obvious that individuals may adapt their behaviours according to their
perceived risk or because of what others are doing and that these changes may
alter projections of the future incidence of disease and effectiveness of alternative
policies. This book outlines some of the recent advances in this field. However, it is
evident from this volume that this is an area of research in which the development
of theory and its illustration using simulation has outstripped empirical evidence.
Accurately parameterising these models and selecting and validating models by
confrontation with data will be the next major challenge.

As this chapter has attempted to show, there are different approaches that
have been taken ranging from simple assumptions that behaviour will change to
an exploration of the factors underlying these changes. It is tempting to think
that as more psychological detail is included in the model, the more accurate
will be the predictions. This is potentially misguided. Increased complexity does
not necessarily lead to increased precision or qualitative insight. There is almost
certainly a need for multiple approaches to be taken forward. Observational studies
are extremely useful but are limited in their generalisability. Mechanistic models can
help with this, but there is no clear theory that can be used to guide model structure.
The existence of multiple theories of behavioural change illustrate the problem, and
it seems likely that there is an element of truth in each. Understanding which of these
are most applicable and in what circumstances will be a significant undertaking for
which high-quality empirical information will be essential if these models are to be
used to guide future decision-making in this challenging and fascinating field.
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