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 9.1   Introduction 

 Sourdough fermentation is best known and most studied for its effects on the  sensory 
quality and shelf life of baked goods. Acidi fi cation, activation of enzymes and their 
effects on the cereal matrix as well as production of microbial metabolites all pro-
duce changes in the dough and bread matrix that also in fl uence the nutritional qual-
ity of the products. The nutritional quality is formed through the chemical 
composition and structure of the fermented foods, i.e. content and bioavailability of 
nutrients and non-nutrients. Sourdough fermentation can change all of these, as 
previously reviewed by Poutanen et al.  [  1  ]  and Katina et al.  [  2  ] . 

 Sourdough fermentation has been traditionally applied to whole grain foods, and 
it is a good means of making whole grain bread more palatable. Rye bread is an 
extreme example of this, as most of the whole-grain rye bread is made through 
sourdough fermentation  [  3  ] . Sourdough fermentation, also in the form of pre-treat-
ing raw materials, is again gaining interest also in mixed  fl our and dietary- fi bre-
enriched baking  [  4  ] , where it also can change the properties of the dietary  fi bre 
complex. Fermentation has been studied for reducing the glycaemic response of 
bread  [  5,   6  ] , and for increasing the uptake of minerals  [  7  ] . Microbial metabolism 
during sourdough fermentation may also produce new nutritionally active com-
pounds, such as vitamins  [  8  ]  and potentially prebiotic exopolysaccharides  [  9  ] . 

 This chapter will deal with nutritionally relevant changes in cereal starch,  protein, 
dietary  fi bre, vitamins, minerals and some phytochemicals, and discuss the potential 
of microorganisms to produce new compounds.  
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    9.2   Effects on Cereal Biopolymers 

    9.2.1   Starch 

 Dietary carbohydrate is the major source of plasma glucose. An increase in the 
amount of rapidly digestible carbohydrate in the diet causes a rapid increase in 
blood glucose levels and a large demand for insulin in the postprandial period. The 
major carbohydrate sources in the Western diet contain rapidly digestible starch, 
and many common starchy foods like bakery goods, breakfast cereals, potato prod-
ucts and snacks produce high glycaemic responses. There are strong indications that 
the large amounts of rapidly available glucose derived from starch and free sugars 
in the modern diet [foods with high glycaemic index (GI) and high insulin index 
(II)] lead to periodic elevated plasma glucose and insulin concentrations that may be 
a risk factor to health  [  10  ] . 

 Most processed starchy foods have low to medium moisture contents, thus 
their digestion is basically a solid–liquid two phase reaction, and the enzyme 
(particularly  a -amylase) needs  fi rst to diffuse into the hydrated solid food matrix, 
bind to the substrate, and then cleave the glycosidic linkages of the starch 
molecules  [  11  ] . Factors affecting the binding of  a -amylase to substrates [e.g. 
inhibition by the hydrolysis products (maltose and maltotriose)] will slow down 
the enzymatic reaction and thus digestion of starch. Other physiological factors 
affecting starch digestibility include gastric emptying, enzyme inhibitors and 
 viscosity in the digestive tract  [  12  ] . 

 Macro- and microstructure of cereal foods has a profound in fl uence on the digest-
ibility of starch, as reviewed by Singh et al.  [  13  ] . Especially, the characteristics of 
starch per se are of crucial importance for glucose response. Amylose-rich starches 
are more resistant to amylolysis than waxy or normal starches. The major intrinsic 
factors affecting raw starch digestibility include the supramolecular structure (pack-
ing of crystallites inside the starch granule), the ratio of amylase and amylopectin, 
the amylopectin  fi ne structure, and the surface characteristics of starch granules 
 [  14  ] . In vitro, native starches are hydrolysed very slowly, and to a limited extent, by 
amylases  [  15–  17  ] . When starch is used in food processing, starch gelatinisation, i.e. 
the process of disrupting starch crystalline structure with heat and moisture, usually 
results in a decrease or loss of the slow digestion property of native cereal starches 
 [  18  ] . Gelatinised starch will exist for example in bakery products in a partially or 
completely amorphous state. Thus, the more gelatinised starch is, the more rapidly 
it will be digested  [  19  ] . In many common starchy foods, such as in regular white 
wheat bread, the starch is highly gelatinised and product structure very porous, 
resulting in rapid degradation of starch in the small intestine and a very rapid rise of 
blood glucose level (high GI). 

 There are several mechanisms leading to slow digestion of gelatinised starch 
 [  20  ] . The  fi rst group of important factors is related to the state of starch in the food 
matrix. Starch retrogradation, which is the reassociation of amylose and amylopec-
tin to form double helices and possible crystalline structures, promotes slow 
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 digestibility. The molecular structure of amylopectin is also an important factor, as 
high branch density has been shown to be linked to slow digestibility. Lowering the 
degree of starch gelatinisation and partially retaining the A-type crystalline struc-
ture of related starches is one effective way to increase the content of slowly digest-
ible starch in food products. The second group of factors include impact of chewing 
on food structure, gastric emptying rate, transit time in the small intestine and the 
properties of digestive enzymes  [  16  ] . 

 The means to slower starch digestibility in wheat  fl our-based products such as 
bread, biscuits and breakfast cereals are rare, if the addition of a high amount of 
intact kernels is excluded due to the resulting inferior product quality and consumer 
preferences. For wheat bread, the use of pre-fermentation technology (sourdough) 
or the addition of soluble  fi bres were identi fi ed in a recent review as the only sug-
gested means to reduce GI  [  21  ] . 

 The fermentation of the wheat and rye  fl our matrix with lactic acid bacteria 
(sourdough process) has been shown to lower GI of wholemeal barley bread  [  19, 
  22  ]  and wheat bread  [  5,   23–  25  ] , and insulin index (II) of rye breads with varying 
dietary  fi bre (DF)    content  [  26  ] . Several mechanisms have been proposed to be 
involved in sourdough processing contributing to reduced starch digestibility. 
Formation of organic acids, especially lactic acid, during fermentation has been 
suggested to be a main reason. The physiological mechanisms for the acute effects 
of acids appear to vary. Whereas lactic acid lowers the rate of starch digestion in 
bread  [  22  ] , acetic and propionic acids appear instead to prolong the gastric empty-
ing rate  [  27  ] . Chemical changes taking place during sourdough fermentation have 
been postulated to diminish the degree of starch gelatinisation  [  19  ] , which would 
partly explain the lower digestibility of sourdough-fermented cereal foods. 
Sourdough fermentation has been also shown to promote the formation of resistant 
starch, which has slower digestibility     [  28  ] . 

 At the product level, tissue integrity, porosity and structure of starch are impor-
tant characteristics in fl uencing glycaemic response. Rye breads baked from whole-
meal or white rye  fl our with very different  fi bre contents produced lower insulin 
responses than white wheat bread, when the food portion size was standardised to 
provide 50 g of starch  [  26  ] . The breads were baked with a sourdough process and 
with 40% of a total amount of rye  fl our being pre-fermented before incorporation 
into the dough. The results suggested that with all rye breads, regardless of bran 
content, less insulin was needed to regulate blood sugar from the same amount of 
starch in comparison to normal wheat bread. The in fl uence is probably due to the 
more rigid and less porous structure of rye bread, and because of the presence of 
organic acid formed during sourdough fermentation  [  29  ] . 

 There also may be other mechanisms for the sourdough to regulate GI/II of the 
products. For example, pH-dependent proteolysis generally occurs during sour-
dough fermentation  [  30  ]  producing signi fi cant amounts of peptides and amino acids 
in the sourdough. These may have a role in regulating glucose metabolism  [  31  ] . 
Furthermore, the results of Katina et al.  [  32  ]  demonstrate that sourdough fermenta-
tion increases the amount of free phenolic compounds, which may also have an 
impact on lowering the GI/II  [  6,   33  ] . 
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 However, not all the sourdough breads automatically have low GI/II  [  34  ] . In 
general, a rather low pH of sourdough and subsequent bread is required to obtain 
lowered GI or II; typical values being 3.5–4 for sourdoughs and 3.8–5.1 for sour-
dough breads  [  5,   24,   25,   35,   36  ] . The ef fi cacy of individual acids reducing GI is 
not completely clari fi ed  [  6  ] , and may vary between different bread types. In addi-
tion, such a low pH will in many cases reduce bread volume and increase density, 
which have been shown to promote low GI per se also in regular wheat breads 
 [  37  ] . Furthermore, the sensory quality of highly acidic breads may be a limiting 
factor for consumer acceptability of such breads, and means for enhancing the 
ef fi cacy of fermentation while maintaining higher pH levels would be desirable. 
Further studies will be needed to clarify the direct in fl uence of sourdough metabo-
lites (acids, peptides, and exopolysaccharides) on starch digestibility, and the 
indirect impact of sourdough fermentation on cereal matrix properties (density, 
liberation of phenolic compounds, state of protein, and formation of resistant 
starch), which all in fl uence digestibility.  

    9.2.2   Protein 

 Protein degradation that occurs during sourdough fermentation is among the key 
phenomena that affect the overall quality of sourdough bread as reviewed by Gänzle 
et al.  [  30  ] . Proteolysis by sourdough fermentation has been found to be higher than 
in just yeasted doughs. During dough fermentation, the proteolysis by LAB releases 
small peptides and free amino acids, which are important for rapid microbial growth 
and acidi fi cation and as precursors for the  fl avour development of leavened baked 
products  [  38  ] . Furthermore, this proteolytic activity might be used as a tool to 
reduce certain allergen compounds. Cereal proteins are one of the most frequent 
causes of food allergies. Wheat proteins may induce a classical allergy affecting the 
skin, gut or respiratory tract, exercise-induced anaphylaxis, occupational rhinitis or 
asthma  [  36,   39  ] , and protein modi fi cation with fermentation offers possibilities to 
reduce their allergy-causing properties   . For example, De Angelis et al.  [  36  ]  demon-
strated the capacity of probiotic VSL#3 to hydrolyse wheat  fl our allergens. Albumins, 
globulins, and gliadins extracted from wheat  fl our, a chemically acidi fi ed and started 
doughs, and total proteins extracted from breads were analysed    by immunoblotting 
with pooled sera from patients with an allergy to wheat. Several IgE-binding pro-
teins persisted after treatment of baker’s yeast bread with pepsin and pancreatin. 
The signal of all these IgE-binding proteins disappeared after further treatment by 
VSL#3. Utilisation of the VSL#3 strain as a starter for bread making, caused a 
marked degradation of wheat proteins, including some IgE-binding proteins. De 
Angelis et al.  [  36  ]  showed that the IgE-binding pro fi le of the bread manufactured by 
VSL#3 was largely different from that of baker’s yeast bread. The IgE-binding pro-
teins that persisted in the bread made with VSL#3 were completely degraded by 
pepsin and pancreatin. 



2339 Nutritional Aspects of Cereal Fermentation...

 Intensive degradation of prolamin of wheat and rye has also opened new possibilities 
to use these cereals even as part of gluten-free diets  [  23,   40,   41  ] . Controlled proteolysis 
in wheat and rye doughs was suggested to reduce gluten levels to such an extent that the 
products were tolerated by celiac patients  [  42  ] . While such sourdoughs with extended 
fermentation time are not suitable for bread production as such, they can be incorporated 
as baking improvers into gluten-free recipes. It was shown in a 60-day clinical trial that 
biscuits and cakes produced using a hydrolysed wheat product made using sourdough 
lactobacilli and fungal proteases were not toxic to patients with celiac disease  [  43  ] . 

 The quality of gluten-free bread is often inferior when compared to conventional 
(wheat) products  [  2  ] . However, by degrading prolamins of wheat or rye with a pro-
teolysis-intensive sourdough process, it is possible to produce good quality gluten-
free bread with sourdough technology  [  40,   42  ] . The concept of complete elimination 
of gluten, however, is controversial. Gluten is considered essential for wheat baking 
and the complete elimination of gluten from wheat and rye, albeit possible, is tech-
nically challenging in industrial baking operations. The use of germinated rye in 
sourdoughs may avoid, in part, such controversy because the water binding as well 
as gas retention in rye doughs are mediated by pentosans which remain unaffected 
by proteolysis  [  30  ] . De Angelis et al.  [  23  ]  demonstrated that fermentation by selected 
sourdough lactic acid bacteria to decrease celiac intolerance to rye  fl our  [  44,   45  ]  
used  fl our from germinated wheat and rye grains to enhance the proteolysis and 
ef fi cient degradation of wheat and rye prolamins. 

 Recently, it has been demonstrated that sourdough fermentation can promote 
the formation of bioactive peptides  [  46–  48  ] . Bioactive peptides are de fi ned as 
speci fi c protein fragments that have positive effects on body functions or condi-
tions and that may in fl uence human health. Usually, bioactive peptides correspond 
to speci fi c sequences from native proteins, which are released through hydrolysis 
by digestive, microbial, and plant proteolytic enzymes, and their levels generally 
increase during food fermentation. Coda et al.  [  46  ]  summarised that bioactive 
peptides, on the basis of in vitro and in vivo studies, have demonstrated a large 
spectrum of biological functions, such as opioid-like, mineral-binding, immuno-
modulatory, antimicrobial, antioxidative, antithrombotic, hypocholesterolemic, 
and antihypertensive activities. The ability of selected lactic acid bacteria to 
produce antioxidant peptides during sourdough fermentation by using various 
cereal  fl ours as substrates was demonstrated  [  46  ] . The radical-scavenging activity 
of water/salt-soluble extracts (WSE) from sourdoughs was shown to be signi fi cantly 
( P  < 0.05) higher than that of chemically acidi fi ed doughs. Twenty- fi ve peptides of 
8–57 amino acid residues were identi fi ed in their study and nearly all sequences 
shared compositional features that are typical of antioxidant peptides. All of the 
puri fi ed fractions showed ex vivo antioxidant activity on mouse  fi broblasts 
arti fi cially subjected to oxidative stress. Recently, interest in antioxidant peptides 
derived from food proteins has increased, and evidence that bioactive peptides pre-
vent oxidative stresses associated with numerous degenerative aging diseases (e.g. 
cancer and arteriosclerosis) is accumulating  [  49  ] . 

 Rizzello et al.  [  47  ]  exploited the potential of sourdough lactic acid bacteria to 
release lunasin, an anticarcinogenic peptide, during fermentation of cereal and 
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 non-conventional  fl ours. They used selected lactic acid bacteria as sourdough 
 starters to ferment wholemeal wheat, soybean, barley, amaranth, and rye  fl ours. 
Sourdough-originated lunasin was identi fi ed in their study and the concentration of 
lunasin was shown to increase up to two to four times during fermentation. 

 From a practical standpoint, baked cereal goods are currently manufactured by 
highly accelerated processes. Long-term    fermentations by sourdough, characterised 
by a cocktail of acidifying and proteolytic LAB and yeasts, have been almost totally 
replaced by the indiscriminate use of chemical and/or baker’s yeast leavening 
agents. In these technological circumstances, cereal components (e.g. proteins) are 
subjected to very mild or no degradation during manufacture, resulting in less easily 
digestible foods compared to traditional and ancient sourdough baked goods  [  41  ] .  

    9.2.3   Dietary Fibre 

 Dietary  fi bre consists of the plant polysaccharides and lignin that are resistant to 
hydrolysis by the digestive enzymes of man. A high consumption of dietary  fi bre 
may lower the risk of cardiovascular disease, diabetes, hypertension, obesity, and 
gastrointestinal disorders  [  50,   51  ] . Cereal foods are an important source of dietary 
 fi bre, and because of their role as a staple food provide an important food group to 
increase the currently too low intake of dietary  fi bre. Sourdough fermentation pro-
vides two main options for enhancing utilisation of  fi bre-enriched products: (1) It is 
important technology in the manufacture of whole grain bread, especially rye bread, 
and (2) it may be used to modify  fi bre-rich cereal ingredients such as bran and germ 
for improved technological functionality. 

 Wholemeal rye and wheat are very good sources of dietary  fi bre. However, a 
high content of  fi bre poses technological challenges for baking. For whole-grain rye 
baking, sourdough fermentation is an essential part of the process  [  2  ] . Without sour-
dough wholemeal rye or wheat-rye  fl our mixes are very dif fi cult to process, and 
sourdough improves the overall quality and shelf life of whole-grain rye breads. 
The rye sourdough process not only improves  fl avour and texture of rye bread but 
enables consumption of wholemeal rye, which is well known for its high nutritional 
quality and health-promoting properties. 

 Bran sourdough (or bran pre-ferment) is a potential means to improve the quality 
of high  fi bre bread  [  4,   52–  54  ] . The use of bran sourdough improves loaf volume and 
crumb softness of high- fi bre wheat breads  [  4,   52,   55  ]  and bread with 10-% fermented 
bran has been reported to provide the best sensory properties of bread  [  53  ] . The 
impact of fermentation is assumed to be related to control of endogenous microbiota 
of bran, endogenous xylanase activity and subsequent solubilisation of arabinoxy-
lans in bran fermentation  [  4  ] . Enzyme activity and gluten characteristics of dough 
containing fermented bran will be modi fi ed by the acidity produced during fermen-
tation, and subsequently decreased pH. The  fi bre content of the bran does not change 
signi fi cantly in a short fermentation time but can decrease slightly during prolonged 
fermentation due to hydrolysis of cell wall structures (Katina,  unpublished data). 
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Use of enzymes ( a -amylase, xylanase, lipase) in combination with yeast  fermentation 
of bran has been shown to increase the volume of the subsequent bread, and soften 
its texture signi fi cantly  [  55  ] . Use of fermented bran improves carbon dioxide reten-
tion of the dough, and the use of enzymes strengthens that effect. Also, addition of 
insoluble arabinoxylans and xylanase enzymes has been shown to increase the vol-
ume of the sour dough bread  [  56  ] . Arabinoxylans function as the source material of 
xylose and arabinose, which accelerate the acidi fi cation rate and positively interfere 
with the metabolism of sourdough micro fl ora. 

 Sourdough fermentation improves the technological functionality of bran as a baking 
ingredient, but it most probably also changes the quality of dietary  fi bre. The physiologi-
cal effects of dietary  fi bre depend on the chemical but also physical characteristics, 
including degree of polymerisation of the polysaccharides, presence of side chains and 
degree of cross-linking, particle size and cell wall integrity  [  51  ] . Because of solubilisa-
tion of arabinoxylan, sourdough fermentation may in fl uence its fermentation pattern and 
also produce prebiotic oligosaccharides  [  57  ] . It may also in fl uence the bioaccessibility 
of phytochemicals associated with the dietary  fi bre complex, as shown below. 

 Wheat germ, in addition to vitamins and lipids, contains a signi fi cant amount of 
dietary  fi bre. Fermentation of wheat germ has recently been noticed to enhance the 
volume of the bread and decrease the rate of  fi rmness  [  58  ] . The use of wheat germ 
as a source of dietary  fi bre for bread is still moderate because of its poor shelf-life 
stability. The high lipase and lipoxygenase activities cause sensitivity to oxidation 
which leads to the release of free fatty acids and, consequently, to the appearance of 
rancidity in baked goods. Sourdough fermentation stabilised and enhanced some 
nutritional and chemical properties of the wheat germ. Because of lactic acidi fi cation, 
the lipase activity of the sourdough fermented wheat germ has been shown to be 
lower than that found in the raw wheat germ  [  58  ] .   

    9.3   Micronutrients 

    9.3.1   Vitamins 

 Whole-grain cereal foods are an important source of vitamins, such as thiamine, 
vitamin E and folates. Yeast fermentation increases the folate content during the 
pre-fermentation process of both wheat  fl our and bran  [  32,   59  ]  and rye  [  32,   59,   60  ] , 
causing over a doubling of folate in rye fermentation  [  60  ] . The presence of yeast has 
been shown to be a crucial factor for increased folate production in rye sourdough 
as sourdough bacteria had only slight effects on the synthesis of folates  [  61  ] . Yeast 
strains have been shown to be different in their capability to produce folate, and thus 
a high folate-producing strain could be used as an alternative to folate forti fi cation 
 [  62,   63  ] . The folate content in fermented cereal foods can be further increased by 
the use of malted or germinated grains, as reviewed by Jagerstad et al.  [  64  ] . 
Conversely, 25–38% reduction of folate content in yeast and LAB fermented breads 
have been reported by Gujska et al.  [  65  ] . 
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 Thiamine content has been reported to increase especially in elongated yeast 
 fermentation  [  8,   66  ] , but also to decrease in the actual baking process  [  67  ] . Prolonged 
yeast or sourdough fermentation maintained the original content of vitamin B 

1
  in 

whole wheat baking in contradiction to a short process, which reduced its amount. 
Whole    wheat breadmaking with yeast (from kneading to  fi nal bread), with long fer-
mentations time resulted in a 30% enrichment in ribo fl avin. The fermentation step 
can thus improve the retention of vitamins in the baking process. The use of both 
yeast and sourdough did not have a synergistic effect on B-vitamin levels  [  8  ] . 
Production of the B 

2
  vitamin with strain selection for enrichment of pasta and bread 

has also been recently demonstrated by Capozzi et al.  [  68  ] . The applied approaches 
resulted in a considerable increase of vitamin B 

2
  content (about two- and threefold 

increases in pasta and bread, respectively), thus representing a convenient and 
ef fi cient food-grade biotechnological application for the production of vitamin B 

2
 -

enriched bread and pasta. This methodology may be extended to a wide range of 
cereal-based foods, feed, and beverages. However, sourdough or yeast fermentation 
do not automatically increase the levels of all vitamins; decreased levels have been 
observed for vitamin E during sourdough preparation and dough making  [  69  ] , and 
for levels of tocopherol and tocotrienol in rye sourdough baking  [  60  ] .  

    9.3.2   Minerals 

 Whole grains are a good source of minerals, including calcium, potassium, magne-
sium, iron, zinc and phosphorus. As the bran fraction of the grain also contains 
phytate (myo-inositol hexaphosphate), the bioavailability of minerals may be lim-
ited. This has a large impact especially in developing countries, where iron de fi ciency 
is a common nutritional disorder, especially among children and women. Grains 
contain 3–22-mg phytic acid per gram  [  70  ] , concentrated in the aleurone layers. 
Phytate has strong chelating capacity and forms insoluble complexes with dietary 
cations, thus impairing mineral absorption. Phytases are able to dephosphorylate 
phytate, forming free inorganic phosphate and inositol phosphate esters, which have 
less capacity to in fl uence mineral solubility and bioavailability. It has been shown 
that iron was more bioavailable in mice when fed in sourdough bread vs. straight 
dough bread  [  71  ] , and absorption of zinc, magnesium, and iron was higher in rats 
when bread was baked using sourdough  [  72  ] . 

 Grain endogenous phytase activity is accelerated in the acidic environment pro-
duced in sourdough fermentation. Lactic acid bacteria and yeasts may also possess 
some phytase activity. The pH optimum of wheat phytase is pH 5.0, and that of 
yeast is somewhat lower, i.e. pH 3.5  [  73  ] . A moderate decrease of pH to 5.5 in fer-
mentation reduces phytate content of whole wheat  fl our by 70% due to enhanced 
action of endogenous phytase present in the  fl our  [  74  ] . It was suggested that the 
endogenous  fl our phytase activity was much more in fl uential than the microbial 
phytase of the sourdough. No major phytase activity was found in screening of 50 
lactic acid bacteria strains isolated from sourdoughs  [  75  ] , even though in studies 
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with phytic acid as the only carbon source sourdough-originated lactic acid bacteria 
have been reported to utilise it  [  76,   77  ] . Phytase activity has been detected in com-
mercial baker’s yeasts  [  78  ] , and variable activities were detected in traditional sour-
dough starters containing both yeast and lactic acid bacteria  [  79,   80  ] . Yeast strains 
high in phytase activity have also been suggested to be potential phytase carriers in 
the gastrointestinal tract  [  81  ] . 

 Phytase action is dependent on the fermentation conditions:  fl our particle size, 
acidity, temperature, time and water content  [  82,   83  ] . Sourdough fermentation has 
been shown to be more effective in solubilising minerals in whole-wheat  fl ours than 
its bran fraction. Bran particle size in fl uenced calcium and iron solubilisation, which 
only happened if the bran was  fi nely milled  [  7  ] . Pre-fermentation of bran with lactic 
acid bacteria increased phytate breakdown (up to 90%) and increased magnesium 
and phosphorus solubility  [  84  ] . 

 Selenium-enriched rye and wheat seeds have been used to produce fermented 
sourdough bread, and studied in human volunteers for bioavailability of selenium 
 [  85,   86  ] . The selenium enrichment was made by incubating the seeds in selenium 
solution. The high content of selenium in raw material was re fl ected in high con-
tents in the sourdough bread and further in humans having consumed the bread.  

    9.3.3   Phytochemicals 

 Phytochemicals are biologically active compounds in the cereal grain and they 
have been suggested to be among the factors contributing to the protective proper-
ties of whole grain foods  [  87  ] . The outer layers of grains, such as bran, contain 
much higher levels of phytochemicals, such as phenolic acids, alkylresorcinols, 
lignans, phytosterols, tocols and folate, than the inner parts  [  60,   88  ] . Processing 
may decrease or increase the levels, and also modify the bioavailability of these 
compounds as reviewed by Slavin et al.  [  89  ] , and for the phenolic compounds of 
rye as reviewed by Bondia-Pons et al.  [  90  ] . 

 Wheat bread containing a sourdough-fermented wheat bran- fl our mixture 
was recently shown to provide higher antioxidant potential as compared to reg-
ular wheat bread  [  91  ] . Traditional rye sourdough has been shown to increase the 
antioxidant activity (DPPH radical scavenging activity) in the methanol-
extracted fraction of rye sourdough, concurrently with increased levels of easily 
extractable phenolic compounds  [  60  ] . Accordingly, the antioxidant capacity of 
traditional rye breads baked with sourdough has been shown to be higher than 
that of common white wheat bread, the highest values reported for breads made 
with whole meal  fl our  [  67,   92  ] . 

 Fermentation of rye or wheat bran with yeast and especially with added cell 
wall-degrading enzymes was able to increase the level of free ferulic acid  [  4,   32, 
  93  ] . Ferulic acid is a structural component in cell walls, cross-linked to arabinoxy-
lan. Since most of the ferulic acid is covalently bound to the cell wall structures, its 
bioaccessibility in physiological conditions is low, and bioprocessing can be used as 
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an effective means to increase the bioaccessibility of ferulic acid. Wheat bread 
 supplemented with bioprocessed bran increased the in vitro and in vivo 
 bioaccessibility of phenolic compounds as well as the colonic end metabolite 3-phe-
nylpropionic in breads, and exerted anti-in fl ammatory effects ex-vivo  [  93,   94  ] .   

    9.4   Microbial Exopolysaccharides 

 Dietary non-digestible oligosaccharides (NDO) have been shown to modulate the 
composition and activity of intestinal microbiota, and they may also exert health 
bene fi ts in humans by improving bowel function, prevention of overgrowth of 
pathogenic bacteria through selective stimulation of non-pathogenic members of 
intestinal microbiota and by increased production of short-chain fatty acids (SCFA) 
 [  95  ] . Intestinal fermentation and health bene fi ts of fructo-oligosaccharides, galacto-
oligosaccharides and xylo-oligosaccharides have been well documented in animal 
and human studies  [  96,   97  ] . Recently, stimulation by isomalto-oligosaccharides 
(IMO) of    the growth of intestinal lactic acid bacteria in a rat model was also shown 
by Ketabi et al.  [  95  ] . The relationship between diet, intestinal microbiota and host 
nutrition is currently under active investigation, and the integration of the functional 
analyses of gut microbiota and sourdough genomes and metagenomes may allow 
for design of prebiotic molecules with speci fi c functional properties  [  98  ] . 

 Microbes are able to produce a variety of polysaccharides. Exopolysaccharides 
(EPS) are sugar biopolymers that are secreted by bacteria, microalgae and by some 
yeasts and  fi lamentous fungi. They may protect cells from external stress factors 
such as desiccation and antimicrobial substances, and mediate interactions of cells 
with surfaces and other cells, thus playing an important role, for instance, in bio fi lm 
formation. EPS can be divided into capsular polysaccharides that are more or less 
tightly bound on cells, and extracellular slime which cells excrete to their surround-
ing medium. EPS production can usually be detected on solid and liquid medium, 
respectively, from a slimy or ropy colony appearance and from an increase in 
medium viscosity. Microbial EPS vary greatly in mass; from ~10 kDa to 1–2 mDa. 
On the basis of their chemical composition, all microbial EPS can be broadly divided 
into homopolysaccharides (= Hops), consisting of only one monosaccharide type, 
and heteropolysaccharides (= Heps), made of two or more different monosaccharide 
units. Additionally, various inorganic or organic constituents may be attached. The 
possible complexities of polysaccharide structures are almost in fi nite as, for instance, 
even a disaccharide may be linked in eight different ways  [  99,   100  ] . 

 Lactobacilli from wheat and rye sourdoughs have been shown to produce EPS 
 [  9,   101  ] , and especially gluco-oligosaccharides  [  102  ]  and fructo-oligosaccha-
rides, which have prebiotic properties  [  9  ] . For example,  Lactobacillus sanfranci-
scensis  LTH2590 produced 0.5–1% levan ( fl our basis) during 24-h fermentation 
in wheat and rye doughs  [  101  ] . Tieking et al.  [  103  ]  studied the ability of seven 
fructan- or glucan-positive LAB ( Lb. sanfranciscensis  LTH 2581 and 2590,  Lb. 
frumenti  TMW 1.103, 1.660, 1.669,  Lb. pontis  TMW 1.675,  Lb. reuteri  TMW 
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1.1.06) to produce these EPS during wheat dough fermentation in the presence of 
12% sucrose ( fl our weight). For all the strains the production of the same EPS at 
a level of 0.5–2 g kg −1  was shown. Levans from  Lb. sanfranciscensis  may also 
exert probiotic effects as they are preferentially degraded by bi fi dobacteria in the 
intestinal tract  [  101  ] . Formation of oligo- and polysaccharides with prebiotic 
potential has also been shown by  Lb. reuteri  LTH5448 and  Weissella cibaria  
10 M in sorghum sourdoughs  [  104  ] .  

    9.5   Future Prospects 

 Sourdough fermentation is a food processing method with a long history, tradition-
ally used mainly to improve product quality. During the past 15 years, the use of 
microbial fermentation has also been proven to intensively modify the nutritional 
quality of cereal foods. Because of complex microbial and food structure interac-
tions present in a sourdough system, fermentation can be tuned for multi-functional 
nutritional modi fi cations of both traditional and novel fermentable substrates. 

 In the future, sourdough technology can provide an effective means to utilise and 
upgrade side streams from both food and non-food processing, provide novel pro-
tein functionalities and produce completely novel oligo- and polysaccharides for 
new nutritional improvements such as fat or sugar replacement. They also show 
potential in producing and in fl uencing bioavailability of minor food constituents 
with high biological activity. Next-generation fermentations with yeast and lactic 
acid bacteria can thus be considered effective cell factories to modify cereal and 
also other fermentable materials for nutritionally tailored food or feed.      
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