
Chapter 10

Sets of Zero Discrete Harmonic
Density

Sets with zdhd and zhd are defined. Finite unions of I0 sets have zdhd.
A “Hadamard gap” theorem holds for sets with zhd.

10.1 Introduction

Two important themes have motivated much of the research on Sidon and
related special sets: determining which classes of special sets have the prop-
erty that every Sidon set is a finite union of sets from the class and under-
standing the “size” of Sidon sets. Much progress has been made on these
themes, as discussed in Chaps. 6–9. Two specific problems which remain
outstanding are:

1. Is every Sidon set a finite union of I0 sets? [P 1]
2. Can a Sidon set be dense in Γ? [P 2]

These questions are not independent. A finite union of I0 sets cannot be
dense in Γ (Theorem 3.5.1), and hence, a “yes” answer to the first question
implies “no” to the second.

In this chapter we approach these two questions by introducing the notion
of zero (discrete) harmonic density, abbreviated z(d)hd. A set E ⊆ Γ is
said to have property z(d)hd if for each non-empty, open U ⊆ G, the Fourier
transform of every (discrete) measure agrees on E with the Fourier transform
of a (discrete) measure concentrated on U . The characterizations given of
z(d)hd in Sect. 10.2 will make it easy to show that property zdhd implies zhd.

The definition is motivated by the facts that when G is connected every
Sidon (or I0) set is Sidon(U) (resp., I0(U)) (see Corollary 6.3.7 and Theorem
5.3.6) for all non-empty, open U . It follows that Sidon sets have the property
zhd and I0 sets have the property zdhd. In particular, every finite set has
zdhd. But there are also non-Sidon sets with property zdhd; several examples
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176 10 Sets of Zero Discrete Harmonic Density

are given in Sect. 10.4. It is unknown if every Sidon set has zdhd or even if
every ε-Kronecker (for ε ≥ √

2) or dissociate set has zdhd [P 11].
It is easy to see that a set with the zdhd property cannot be dense in Γ

(Proposition 10.2.6). A deeper result, Theorem 10.3.5, is that finite unions
of I0 sets have property zdhd. Thus, if it could be resolved whether every
Sidon set has zdhd (either way), then one of the two questions stated in the
opening paragraph could be answered: If every Sidon set has zdhd, then a
Sidon set cannot be dense in Γ. If, instead, there is a Sidon set which does
not have zdhd, then that Sidon set is not a finite union of I0 sets.

Another motivation for the study of the z(d)hd property is a “globalization
principle”, which is illustrated in Sect. 10.4.1 by a novel proof of the classical
Hadamard gap Theorem 1.2.2.

10.2 Characterizations and Closure Properties

Throughout this chapter, the compact group G is assumed to be connected.
That is a natural assumption to make because a set of two elements of finite
order will not even have zhd; just take for U any open subset of G on which
the two elements coincide.

Definition 10.2.1. Let U ⊆ G. We say that E ⊆ Γ has U -hd (respectively,
U -dhd) if for every μ ∈ M(G) (respectively, μ ∈ Md(G)) there exists ν ∈
M(U) (resp., ν ∈ Md(U)) satisfying μ̂ = ν̂ on E.

Clearly, E has zhd (respectively, zdhd) if and only if E has U -hd (resp.,
U -dhd) for every non-empty, open set U ⊆ G. A translation argument shows
that E has zhd (zdhd) if and only if E has U -hd (U -dhd) for every e-neigh-
bourhood U ⊆ G.

Sets with the U -dhd property can be characterized in an analogous fashion
to Kalton’s characterization of I0(U) sets, Theorem 3.2.5. Similar statements
characterize U -hd but with Md(G) and Md(U) replaced by M(G) and M(U)
and Bd(E) replaced by B(E).

Theorem 10.2.2. Let U ⊆ G be open and E ⊆ Γ. The following are
equivalent:

1. E has U -dhd.
2. There is a constant N such that for all μ ∈ Md(G) there exists ν ∈ Md(U)

with ‖ν‖M(G) ≤ N ‖μ‖M(G) and ν̂(γ) = μ̂(γ) for all γ ∈ E.

3. There is a constant N such that for all x ∈ G there exists ν ∈ Md(U)

with ‖ν‖M(G) ≤ N and ν̂(γ) = ̂δx(γ) for all γ ∈ E.

4. There exists 0 < ε < 1 and constant N = N(ε) such that for every
μ ∈ Md(G) there exists ν ∈ Md(U) with ‖ν‖M(G) ≤ N ‖μ‖M(G) and

‖μ̂− ν̂‖Bd(E) < ε ‖μ‖M(G) .
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As in the characterizations of I0(U) sets, the proof will show that the
phrase, “There exists 0 < ε < 1”, can be replaced by “For every 0 < ε < 1”.

Proof. (1) ⇒ (2) is the closed graph theorem. The implications (2) ⇒(3)
⇒(4) are clear. (4) ⇒(1) is a variation on the standard iteration argument.
The details are left as Exercise 10.6.1. 	


The proof of the analogous theorem for zdhd is also left as Exercise 10.6.2.

Theorem 10.2.3. The subset E ⊆ Γ has zdhd if and only if any of the
following conditions hold:

1. Any one of properties Theorem 10.2.2 (1)–(4) is satisfied for all
e-neighbourhoods U ⊆ G.

2. For every x ∈ G and for every e-neighbourhood U ⊆ G, there exists
ν ∈ Md(U) with ν̂(γ) = ̂δx(γ) for all γ ∈ E.

3. For every e-neighbourhood U ⊆ G and 0 < ε < 1 there exists N = N(U, ε)
such that for every x ∈ G there are scalars cn ∈ Δ and elements un ∈ U
such that

∥

∥

∥

̂δx −
N
∑

n=1

cn̂δun

∥

∥

∥

Bd(E)
< ε. (10.2.1)

Remark 10.2.4. In Theorem 10.2.3(3), δx cannot be replaced by arbitrary
μ ∈ Ball(Md(G)). Here is why. Suppose ω ∈ Ball(M(G)). Let μα ∈
Ball(Md(G)) converge weak* to ω, and let cn,α ∈ Δ and un,α ∈ U have

‖μ̂α−
∑N

n=1 cn,α
̂δun,α‖B(E) < ε for all α. Letting cn be a cluster point of cn,α

and un a cluster point of un,α, we see that ‖ω̂ −∑N
1 cn̂δun‖B(E) ≤ ε. That

shows that E satisfies the conclusion of Lemma 9.4.13. By the completion
(Sect. 9.4.2) of the proof of the Ramsey–Wells–Bourgain Theorem 9.4.15, E
is I0. But there are non-I0 sets (even non-Sidon sets) that have zdhd; see Sect.
10.4 for several examples.

Corollary 10.2.5. A set with zdhd has zhd.

Proof. It will be enough to verify that if E has U -dhd, then E has U -hd.
Let μ ∈ M(G) and choose να ∈ Md(G) with ‖να‖M(G) ≤ ‖μ‖M(G) and

να → μ weak* in M(G). Since E has U -dhd, by Theorem 10.2.2(2), there are
discrete measures σα ∈ Md(U) and a constant N such that σ̂α = ν̂α on E and
‖σα‖M(G) ≤ N ‖να‖M(G) ≤ N ‖μ‖M(G). Being norm bounded, the net {σα}
has a weak* cluster point σ ∈ M(G). Because the measures σα are supported
on U, the same is true of σ and since ν̂α(γ) → μ̂(γ) for all γ ∈ Γ, σ̂ = μ̂ on
E. Thus, E has U -hd. 	


Here are some easy facts about the “size” of a set with zdhd. In particular,
Proposition 10.2.6 (1) implies a set with zdhd is not dense in Γ.
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Proposition 10.2.6. Suppose E ⊆ Γ has zdhd.

1. If Λ is a non-trivial, closed subgroup of Γ, then E ∩Λ = Λ.
2. The interior of E in Γ is empty.

Proof. (1) Suppose E ∩ Λ is dense in the non-trivial, closed subgroup Λ.
Let H ⊆ G be the annihilator of Λ. Since Λ is non-trivial, its dual group
G/H contains a proper open subset UH . Choose x ∈ G such that the coset
xH /∈ UH . The set UH can also be viewed as an open subset of G. Hence,
there is a discrete measure ν =

∑

cjδxj ∈ Md(UH) with ν̂ = ̂δx on E. Put
μ =

∑

cjδxjH . Then μ is a discrete measure on G/Hconcentrated on UH.
If γ ∈ Λ, then, since γ(H) = 1,

μ̂(γ) =
∑

cĵδxjH(γ) = ν̂(γ) = ̂δx(γ) = ̂δxH(γ).

Thus, the Fourier–Stieltjes transforms of μ and δxH agree on Λ. But xH /∈
UH , so this is not possible.

(2) Suppose E contains a non-empty, open set in Γ. There is no loss of
generality in assuming this open set is a neighbourhood of the identity since
translates of sets with property zdhd also have zdhd. Thus, E contains a
set of the form {γ : |γ(xj) − 1| < ε for j = 1, . . . , J}. In particular, E will
contain H⊥, where H = 〈{x1, . . . , xJ}〉. By the first part of the proposition,
this subgroup must be trivial and so H must be dense in G.

Consider the map T : Γ → T

J given by T (γ) = (γ(x1), . . . , γ(xJ )).
The map T is clearly continuous and, since H is dense, T is 1 − 1. Thus,
T : Γ → T (Γ) is a homeomorphism. This shows Γ is homeomorphic to a
compact subgroup of TJ , and so G is countable. But there are no countably
infinite, compact abelian groups (Exercise C.4.17 (1)). 	

Remark 10.2.7. It is known that, unlike I0 sets, a set E with zdhd can cluster
at a continuous character; see Corollary 10.4.5, but it is unknown if E is a
U0 set [P 12], for example.

Proposition 10.2.8. A subset E ⊆ Z which has zhd cannot contain
arbitrarily long arithmetic progressions of fixed step length.

Proof. Since translation and dilation do not affect the property zhd, or even
the zhd constants, there is no loss of generality in assuming E contains
arbitrarily long arithmetic progressions of step length 1.

Let U ⊆ T be a non-empty, open subset that is not dense and choose
x /∈ U . Let N be the U -hd constant of E, that is, for every μ ∈ M(G)
there is some ν ∈ M(U) such that ‖ν‖M(G) ≤ N ‖μ‖M(G) and ν̂ = μ̂ on E.

By translating E repeatedly, we can obtain measures νj ∈ Md(U) such that

ν̂j = ̂δx on [−j, j] and ‖νj‖M(G) ≤ N . Let ν be a weak* limit. This measure

is supported on U and its transform agrees with δx on all of Z. But this is
impossible because x /∈ U . 	
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10.3 Union Results

It is unknown if the union of two sets with zdhd has zdhd [P 11] . In this
section it will be shown that a finite union of zdhd sets has property zdhd
under additional assumptions. In particular, we will prove that a finite union
of I0 sets, although not necessarily I0, has zdhd.

10.3.1 Unions of Zdhd Sets with Disjoint Closures

We begin by showing that a finite union of zdhd sets with disjoint closures
has zdhd.

Proposition 10.3.1. Suppose E,F ⊆ Γ have V -dhd for some symmetric
e-neighbourhood V and that E ∩ F is empty. Then E ∪ F has V 6-dhd.

Proof. We claim it will be enough to find ν ∈ Md(V
5) with ν̂ = 1 on E and

ν̂ = 0 on F. To see this, note that for each μ ∈ Md(G) there exist ωE, ωF ∈
Md(V ) such that ω̂E = μ̂ on E and ω̂F = μ̂ on F. Set ω = ν∗ωE+(1−ν)∗ωF.
We have ω ∈ Md(V

6) and ω̂ = μ̂ on E ∪ F.
We turn to finding ν. That is done exactly as in the proof of

Proposition 5.2.2, up to the point at which the I0(V ) property for F is
called upon. In the notation of the proof of Proposition 5.2.2, for each γ ∈ E
there is a measure τ1 ∈ Md(V ), with τ̂1 ≥ 1/2 on F and τ̂1(γ) = 0. In the
present context, we call upon Gel’fand’s Theorem C.1.12. Applying that
theorem to A(F) and τ̂1, we see that there exists τ̂0 ∈ A(F) such that
τ̂0 = 1/τ̂1 on F. We may assume τ0 ∈ Md(G). Because F has V -dhd, there
exists τ ∈ Md(V ) with τ̂ = τ̂0 on F. Then ωγ = (1− τ1 ∗ τ) ∗ (1− τ̃1 ∗ τ̃ ) has
ω̂γ(γ) = 1, ω̂γ = 0 on F and ω̂γ ≥ 0 everywhere. Also, ωγ ∈ Md(V

4).

By the compactness of E, there are γ1, . . . , γM such that τ ′1 :=
∑M

1 ωγm

has ̂τ ′1 ≥ 1/2 on E (and 0 on F). Again, by Gel’fand’s theorem, there exists

τ ′0 ∈ Md(G) such that ̂τ ′0 = 1/ ̂τ ′1 on E. Because E has V -dhd, there exists

τ ′ ∈ Md(V ) such that ̂τ ′ = τ̂ ′0 on E. Then ν = τ ′1 ∗ τ ′ has ν̂ = 1 on E and
ν̂ = 0 on F. Also, ν ∈ Md(V

5). 	

Corollary 10.3.2. If E,F have zdhd and E ∩ F is empty, then E ∪ F has
zdhd.

Corollary 10.3.3. If E has zdhd and F is finite, then E ∪F has zdhd.

Proof. There is no loss in assuming F = {γ}. If μ and ν are discrete measures
whose Fourier transforms agree on E, then by continuity μ̂ = ν̂ on E. Thus,
if γ ∈ E, then E ∪ {γ} has zdhd. Otherwise, E ∩ F is empty and we may
apply the previous corollary. 	
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10.3.2 A Finite Union of I0 Sets Has Zdhd

The goal of this section is to prove the theorem stated in its title. The proof
will require the notion of a Helson set (Remark 3.5.5). Recall that the Helson
constant (p. 165) of a closed set S ⊂ Γ is the infimum of the numbers C such
that ‖f‖Bd(S) ≤ C‖f‖∞ for all f ∈ Bd(S).

Helson sets are relevant here because, as was observed in Remark 3.5.5,
the closure of an I0 set is a Helson set. Like Sidon sets, a finite union of
Helson sets is Helson. This deep result, stated below, will be used in what
follows.

Theorem 10.3.4 (Varopoulos’s union theorem).
The union of two Helson sets is Helson.

Here is our union theorem for I0 sets.

Theorem 10.3.5. If E, F ⊆ Γ are I0 sets, then E ∪ F has zdhd.

One can immediately deduce that there are non-I0 sets with zdhd (such
as Example 1.5.2). We will see later (Proposition 10.4.4) that there are
non-Sidon sets that have zdhd.

First we prove a technical lemma.

Lemma 10.3.6. Suppose E,F ⊆ Γ are I0 sets. Let V ⊆ G be an e-neigh-
bourhood. Then there is an open set ΩΩΩ ⊆ Γ, containing E ∩ F, such that
(E ∪ F) ∩ΩΩΩ has V -dhd.

Proof (of Lemma 10.3.6). The characterization of V -dhd given in Theorem
10.2.2 (4) implies that it will suffice to show that there is an open set ΩΩΩ ⊇
E∩F and constant N such that for every μ ∈ Md(G) with ‖μ‖M(G) ≤ 1 there

exists ν ∈ Md(V ) such that ‖ν‖M(G) ≤ N and ‖μ̂− ν̂‖Bd((E∪F)∩ΩΩΩ) ≤ 1/2.

Choose an e-neighbourhood W ⊆ G such that W 2 ⊆ V . By compactness,
there are finitely many points xk, k = 1, . . . ,K, such that

⋃K
k=1 xkW = G.

Being I0, the set E has zdhd, and hence there are measures νk ∈ Md(W )

and a constant CE such that ‖νk‖M(G) ≤ CE and ν̂k = ̂δxk
on E. Continuity

implies that this equality continues to hold on E.
The sets E,F are both Helson, and therefore so is their union. Let C0 be

the Helson constant of E ∪F. Put

ΩΩΩ =

K
⋂

k=1

{γ ∈ Γ :
∣

∣

∣ν̂k(γ)− ̂δxk
(γ)

∣

∣

∣ < 1/ (4C0)} ⊆ Γ.

The set ΩΩΩ is open as each of the sets {γ :
∣

∣

∣ν̂k(γ)− ̂δxk
(γ)

∣

∣

∣ < 1/ (4C0)} is

open in Γ. Since ν̂k = ̂δxk
on E, ΩΩΩ contains all of E.
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Let μ be any discrete measure on G with ‖μ‖M(G) ≤ 1. Then μ can be
written as

μ =
∑

j,k

cj,kδxkwj,k
=

K
∑

k=1

∞
∑

j=1

cj,kδxk
∗ δwj,k

,

where wj,k ∈ W and
∑

j,k |cj,k| = ‖μ‖M(G) ≤ 1.

Consider the measure ν =
∑

j,k cj,kνk ∗ δwj,k
∈ Md(W

2) ⊆ Md(V ). This
measure satisfies ‖ν‖M(G) ≤ ∑

j,k |cj,k| ‖νk‖M(G) ≤ CE. Furthermore, the

definition of ΩΩΩ ensures that for each γ ∈ ΩΩΩ,

|ν̂(γ)− μ̂(γ)| = ∣

∣

∑

j,k

cj,k(ν̂k(γ)− ̂δxk
(γ))̂δwj,k

(γ)
∣

∣

≤
∑

j,k

|cj,k| |ν̂k(γ)− ̂δxk
(γ)| ≤ 1

4C0
‖μ‖ ≤ 1

4C0
.

Thus, the function ν̂ − μ̂, viewed as an element of C((E∪F)∩ΩΩΩ), has norm
at most 1/ (4C0) . Since E ∪ F is Helson, it follows that there is a measure
σ ∈ Md(G) such that σ̂ = ν̂− μ̂ on (E∪F)∩ΩΩΩ and ‖σ‖M(G) ≤ 2C0/ (4C0) =

1/2. Therefore, ‖ν̂ − μ̂‖Bd((E∪F)∩ΩΩΩ) ≤ ‖σ‖M(G) ≤ 1/2, which proves that ν
has the desired properties. 	

Proof (of Theorem 10.3.5). Let U ⊆ G be an e-neighbourhood and let V ⊆ G
be an e-neighbourhood with V 5 ⊆ U. As in Lemma 10.3.6, choose ΩΩΩ ⊆ Γ, an
open set containing E∩F, such that (E∪F)∩ΩΩΩ has V -dhd. The regularity of
the topology of Γ implies there is an open setΩΩΩ1 ⊇ E∩F, such thatΩΩΩ1 ⊆ ΩΩΩ.

Because E has zdhd, there is a measure μE ∈ Md(V ) such that μ̂E = 0 on
E �ΩΩΩ1 and μ̂E = 1 on the disjoint closed set E ∩ F. Similarly, there exists
a measure μF ∈ Md(V ) such that μ̂F = 0 on F � ΩΩΩ1 and μ̂F = 1 on the
disjoint set E∩F. Put σ = μE ∗ μF ∈ Md(V

2). Then σ̂ = 0 on (E∪F)�ΩΩΩ1

and σ̂ = 1 on E ∩ F. Let

ΩΩΩ2 = {γ ∈ E ∪ F : |σ̂(γ)| > 1/2}.
The choice of σ ensures that E ∩F ⊆ ΩΩΩ2 ⊆ΩΩΩ2 ⊆ ΩΩΩ1.

Since σ̂|ΩΩΩ2
is bounded away from 0, an application of Gel’fand’s theorem

(as in Proposition 10.3.1) implies there exists σ1 ∈ Md(G) such that σ̂ ·σ̂1 = 1
onΩΩΩ2. Since (E∪F)∩ΩΩΩ has V -dhd, the same is true for its subset (E∪F)∩ΩΩΩ2.
Hence, we can choose σ2 ∈ Md(V ) such that σ̂2 = σ̂1 on (E ∪F) ∩ΩΩΩ2.

Because the closed sets ΩΩΩ2 and ΩΩΩc
1 are disjoint, there is a discrete measure

ν such that ν̂ = 1 on ΩΩΩ2, ν̂ = 0 on ΩΩΩ1 and 0 ≤ ν̂ ≤ 1. Again, because
(E ∪ F) ∩ ΩΩΩ has V -dhd, there exists ν1 ∈ Md(V ) such that ν̂1 = ν̂ on
(E ∪ F) ∩ΩΩΩ. Finally, put

μ = σ ∗ σ2 ∗ ν1 ∈ Md(V
4).

By construction, μ̂ = 1 on (E ∪F) ∩ΩΩΩ2 and μ̂ = 0 on (E ∪ F)�ΩΩΩ1.
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Let ρ ∈ Md(G) be given. To prove that E∪F has U -dhd it will be enough
to prove there exists ρ0 ∈ Md(V

5) such that ρ̂0 = ρ̂ on E ∪ F.
The closed sets E � ΩΩΩ2 and F � ΩΩΩ2 are disjoint since E ∩ F ⊆ ΩΩΩ2.

By Corollary 10.3.2, (E�ΩΩΩ2) ∪(F � ΩΩΩ2) = (E ∪ F) � ΩΩΩ2 has zdhd and
this ensures there is a discrete measure ρ1 ∈ Md(V ) such that ρ̂1 = ρ̂ on
(E∪F)�ΩΩΩ2. Since (E∪F)∩ΩΩΩ has V -dhd, there is also a measure ρ2 ∈ Md(V )
such that ρ̂2 = ρ̂ on (E ∪ F) ∩ΩΩΩ. Set

ρ0 = ρ1 ∗ (δe − μ) + ρ2 ∗ μ ∈ Md(V
5).

We claim this measure interpolates ρ̂ on E ∪ F. To see this, observe the
following:

• On (E ∪ F) ∩ (ΩΩΩ1 �ΩΩΩ2), ρ̂1 = ρ̂ = ρ̂2; hence, ρ̂0 = ρ̂1(1− μ̂) + ρ̂2μ̂ = ρ̂.
• On (E ∪ F)�ΩΩΩ1, ρ̂1 = ρ̂ and μ̂ = 0; thus, ρ̂0 = ρ̂1 = ρ̂.
• Finally, on (E ∪ F) ∩ΩΩΩ2, ρ̂2 = ρ̂ and μ̂ = 1, and so ρ̂0 = ρ̂2 = ρ̂.

These observations demonstrate that ρ̂0 = ρ̂ on E ∪ F, as claimed. 	


10.3.3 Other Union Results for Zdhd Sets

The union of two zdhd sets can also be shown to have zdhd if their closures
have finite intersection, though we know of no non-trivial instances of this.
This is a consequence of a more general result which relies on the property
of spectral synthesis (p. 213).

Theorem 10.3.7. Suppose E, F ⊆ Γ have zdhd and E ∩ F obeys spectral
synthesis. Then E ∪ F has zdhd.

Corollary 10.3.8. If E,F have zdhd and E ∩ F is finite, then E ∪ F has
zdhd.

Proof. This follows since finite sets have spectral synthesis (see p. 213). 	

The theorem is deduced from a technical lemma similar to Lemma 10.3.6.

We remark that the definition of zdhd extends to subsets of Γ in the obvious
fashion and the characterization results, Theorems 10.2.2 and 10.2.3, continue
to hold in this setting.

Lemma 10.3.9. Suppose E has zdhd, E ∩ F obeys spectral synthesis and
V ⊆ G is an e-neighbourhood. Then there is an open set ΩΩΩ ⊇ E∩F such that
ΩΩΩ has V -dhd.

Proof (of Lemma 10.3.9). We begin in the same manner as the proof

of Lemma 10.3.6. Let W 2 ⊆ V be open and assume
⋃K

k=1 xkW = G. Use
the zdhd property of E to obtain a constant C and measures νk ∈ Md(W )
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such that ‖νk‖M(G) ≤ C and ν̂k = ̂δxk
on E for k = 1, . . . ,K. Since E ∩ F

obeys spectral synthesis, there is a neighbourhood ΩΩΩ of E ∩ F such that

‖ν̂k − ̂δxk
‖Bd(ΩΩΩ) < 1/ (2K) for each k = 1, . . . ,K (see Lemma C.1.14). This

inequality is enough to prove that if μ =
∑

j,k cj,kδxkwj,k
is any norm one,

discrete measure, with wj,k ∈ W , then ν =
∑

j,k cj,kνk ∗ δwj,k
∈ Md(V ) has

measure norm at most C and satisfies ‖μ̂− ν̂‖Bd(ΩΩΩ) ≤ 1/2. 	

Proof (of Theorem 10.3.7). The proof is like that of Theorem 10.3.5 but
without the intersections with E ∪F and using Lemma 10.3.9. 	


10.4 Examples and Applications

Proposition 10.4.1. Let E ⊆ Γ and suppose the cluster points of E are
contained in the intersection of cosets of the form γnH

⊥
n ⊆ Γ, where Hn are

finite subgroups of G and
⋃∞

n=1 Hn is dense in G. Then E has zdhd.

Proof. Fix an e-neighbourhood U ⊆ G and let V be a symmetric e-neigh-
bourhood such that V 12 ⊆ U . Assume G =

⋃K
k=1 xkV . Since

⋃

n Hn is dense
in G, for each k, there are elements hk ∈ xkV ∩(⋃n Hn), say hk = xkvk ∈ Hnk

with vk ∈ V . Because V is symmetric,

K
⋃

k=1

hkV
2 =

K
⋃

k=1

xkvkV
2 ⊇

K
⋃

k=1

xkV = G.

We first check that Λ =
⋂K

k=1 γnk
H⊥

nk
has V 2-dhd by verifying Theo-

rem 10.2.2 (3). Let x ∈ G. Then x = hkv for some k = 1, . . . ,K and
v ∈ V 2. Fix γ0 ∈ γnk

H⊥
nk

and let σ be the discrete, norm one measure

σ = γ0(hk)δv−1 ∈ Md(V
2). If γ ∈ Λ, then γ ∈ γnk

H⊥
nk
, so γ(hk) = γnk

(hk) =

γ0(hk). Thus, σ̂(γ) = γ0(hk)γ(v) = γ(hkv) = γ(x) = ̂δx−1(γ), showing that
Theorem 10.2.2 (3) is satisfied with N = 1.

Since Hn is a finite group, Λ is open. By assumption, all the cluster points
of E belong to Λ. Thus, E�Λ must be finite. Since Λ is also closed, E has
V 12-dhd by Proposition 10.3.1. 	

Definition 10.4.2. Sets E ⊆ Γ which satisfy the hypotheses of the
proposition will be said to have strong zdhd.

Example 10.4.3. Hadamard sets of the form {rn}∞n=1, with integer r ≥ 2, are
strong zdhd. Just take Hn to be the subgroup of the rnth roots of unity.
Similarly, the set {k · 100j! : k = 1, . . . , j, 1 ≤ j < ∞} is another example of
a strong zdhd set, and this set is not Sidon since it contains arbitrarily long
arithmetic progressions.

The next proposition gives another example of a non-Sidon, zdhd set.
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Proposition 10.4.4. If E = {rn}∞n=1 ⊂ Z with r ≥ 3 an integer, then E+E
and E−E have zdhd.

Proof. Let Hn be the subgroup consisting of the rnth roots of unity and let
Λ =

⋂

n H
⊥
n ⊆ Z. Fix a non-empty, open set U ⊆ T and choose h1, . . . , hK ∈

⋃∞
n=1 Hn such that

⋃K
k=1(hk + U) = T.

Being a compact subgroup, Λ is a set of spectral synthesis (p. 213) and,

since ̂δhk
= 1 on Λ, it follows that there is a neighbourhoodΩΩΩ ⊆ Z containing

Λ such that
∥

∥

∥

̂δhk
− ̂δ1

∥

∥

∥

Bd(ΩΩΩ)
< 1 for each k = 1, . . . ,K. By an argument

similar to the proof that Theorem 10.2.3(3) implies zdhd (see Exercise 10.6.3),
we conclude that ΩΩΩ has U -dhd.

Notice that (E+E)�ΩΩΩ consists of a finite number of elements of E+E,
plus a finite number of sets of the form rn+E. Each of these finitely many sets
has zdhd and their closures in Z are pairwise disjoint (see Exercise 10.6.6).
Therefore, their union has zdhd by Proposition 10.3.1.

The argument is similar for E−E. 	

Corollary 10.4.5. A zdhd set can cluster at a continuous character.

Proof. 1 is a cluster point of E ·E−1 whenever E is an infinite set. 	

Remark 10.4.6. Being Hadamard, the E of Proposition 10.4.4 is I0(U) with
bounded length (Remark 3.2.15 (i)). In [30] it is shown that if E = {nj} is any
Hadamard set with ratio at least 3, then for each k the set {nj1±···±njk : j1 <
··· < jk} has zhd. It is unknown, in general, if E·E±1 has zdhd wheneverE has
bounded length (or bounded constants) and if all such “sums” of Hadamard
sets have zdhd [P 11].

10.4.1 The Hadamard Gap Theorem for Sets with Zhd

We began this book by introducing Hadamard sets and giving examples of
some of the unusual properties possessed by power series and trigonometric
series with frequencies supported on a Hadamard set. Throughout the book,
we have seen various generalizations these properties. To conclude, we give a
short proof of a generalization of the classical Hadamard gap Theorem 1.2.2
for sets with property zhd.

Proposition 10.4.7. Suppose {nj}∞j=1 is an increasing sequence of positive

integers and has property zhd. The function f(z) =
∑∞

j=1 cjz
nj cannot be

analytically continued, at any point, across the circle of convergence.

Remark 10.4.8. This proves the classical Hadamard gap theorem since
Hadamard sets, being Sidon, have property zhd.
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Proof. Suppose that f could be analytically continued at z0 on the circle of
convergence. There is no loss of generality in assuming the circle of conver-
gence has radius 1 and that z0 = 1. Then f can be continued to be analytic
in the open set Uε = {z ∈ C : |z − 1| < ε} for some ε > 0.

Let t ∈ [0, 2π]. Since {nj} has zhd, it is possible to obtain a measure ν on

T, concentrated on T ∩Uε/3 (an open subset of T), such that ν̂(nj) = ̂δt(nj)
for all j.

The function g(z) =
∫

f(e−iθz)dν(θ) is analytic in the interior of the unit
disk, as well as in the set Uε/3. Since

∫

e−iθnjdν(θ) = ν̂(nj) = eitnj ,

the Taylor coefficients of g are the same as those of the function z �→ f(eitz).
Thus, f has an analytic continuation to {z ∈ C :

∣

∣z − eit
∣

∣ < ε/3}. Since t was
arbitrary, f can be continued to {z : |z| < 1 + ε/3}, which contradicts the
assumption that 1 is the radius of convergence. 	


10.5 Remarks and Credits

The term “zero harmonic density” seems to have first appeared in Déchamps-
Gondim’s 1976 note [28]. In [29], she gave the proof that if {γj} is dissociate,
then {±γj ± γk : 1 ≤ j < k < ∞} has zhd. Déchamps and Selles in 1996
[30] gave a lengthy construction to establish that the sets {nj1 ± · · · ± njk :
j1 < · · · < jk}, where {nj} is Hadamard with ratio at least 3, have zhd.
Lust [125] showed that if E ⊆ Z is such that for each k ≥ 1, CkE (where
kE = E + · · · + E k times) does not contain a subspace isomorphic to c0,
then E has zhd.

The concept of zero discrete harmonic density was introduced in [58]
and most of the results of this chapter can be found there. The property zdhd
with bounded constants, defined analogously to that of I0(U) with bounded
constants, was also studied in that paper. It is shown there that a set which
has zdhd with bounded constants has at most one cluster point in Γ and
that M0(E) = {0} if E is a finite union of sets having zdhd with bounded
constants. Like Sidon sets, a set which contains the sum of two disjoint infi-
nite sets cannot be a finite union of sets with zdhd with bounded constants.
Thus, {3n} + {3n} is a zdhd set that is not a finite union of sets with zdhd
with bounded constants. The proof of Proposition 10.4.1 actually shows that
strong zdhd sets have zdhd with bounded constants.

Theorem 10.3.4 was proved by Varopoulos for compact Helson sets, one of
which was metrizable [188, 189]. It was extended to the non-metrizable (but
still compact) case by Lust [124] and then to the general case by Saeki [170].
Other proofs can be found in [56, Chapter 2], [86, 120]. See also [177], which
improves on the original constants.
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The connection between zero harmonic density and zero density for subsets
of Z (meaning lim sup |E∩[−N,N ]|/(2N+1) = 0) is unclear [P 13]. It is only
known that not all sets of zero density have zero harmonic density. The set
{100j! + k : k ≤ j} is such an example since it contains arbitrarily long
arithmetic progressions of fixed step length (see Proposition 10.2.8).

10.6 Exercises

Exercise 10.6.1. Prove Theorem 10.2.2 (4) ⇒ (1).

Exercise 10.6.2. Prove Theorem 10.2.3.

Exercise 10.6.3. Let V ⊆ G be open and ε < 1. Show that if there exist
finitely many points {xj}Nj=1 ⊆ G with

⋃N
j=1 xjV = G and νj ∈ Md(V ) with

∥

∥

∥ν̂j − ̂δxj

∥

∥

∥

Bd(E)
< 1, then E ⊆ Γ has V 2-dhd.

Exercise 10.6.4. Suppose that U ⊆ [−π/k, π/k) ⊆ T. Show that E ⊆ Z

is kU -dhd with constant N (as in Theorem 10.2.2 (2)) if and only if kE is
U -dhd with constant N .

Exercise 10.6.5. Show that if E has U -dhd for some proper open subset
U ⊆ G, then E is not dense in Γ.

Exercise 10.6.6. Suppose E = {rn}∞n=1 with r ≥ 3 an integer. Show that
the sets rn +E and rm +E for m = n have disjoint closures.

Exercise 10.6.7. One can define the notion of zdhd with bounded constants
analogously to that of I0 sets with bounded constants.

1. Prove that a set which has zdhd with bounded constants has at most one
cluster point in Γ.

2. Prove that a set with strong zdhd has zdhd with bounded constants.

Exercise 10.6.8. Prove that the union of a set with strong zdhd and a set
with zdhd has zdhd.
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