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Comité consultatif
G. Bluman
P. Borwein

For further volumes:
http://www.springer.com/series/4318

http://www.springer.com/series/4318




Colin C. Graham • Kathryn E. Hare

Interpolation and Sidon
Sets for Compact Groups

123



Colin C. Graham
Department of Mathematics
University of British Columbia
Vancouver, British Columbia
Canada

Kathryn E. Hare
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
Canada

ISSN 1613-5237
ISBN 978-1-4614-5391-8 eISBN 978-1-4614-5392-5 (eBook)
DOI 10.1007/978-1-4614-5392-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951842

Mathematics Subject Classification (2010): 42A55, 43A46, 42A61, 42A38, 43A25, 43A05,
42A75, 43A60, 42A16

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publi-
cation, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

About ten years ago we started an investigation into some classes of “thin”
subsets of discrete abelian groups. These classes were subclasses of “interpo-
lation sets”, which are themselves a subclass of “Sidon sets”. While we did
not always articulate them, we were motivated by several unsolved problems
related to these sets. The most important are:

• Is every Sidon set a finite union of interpolation sets (or sets of some
related class) [P 1]?

• Can a Sidon set be dense in the Bohr group [P 2]?

This book is our attempt to present what is known about interpolation
sets in the context of those (and related) problems. We give the necessary
background on Sidon sets and results related to both problems. Neither prob-
lem has been solved for Z (though the answer to the first is yes for the duals
of certain groups of bounded order and no to the second for a slightly smaller
set of dual groups).

A surprise for us in writing this book was to see that what is known about
Sidon sets is mostly algebraic (this relates to the first problem) and what is
known about interpolation sets is mostly topological (the second problem).
A theme of the book is thus the interplay of the algebraic and topological.

There are many questions to which we do not know the answer. The ones
we think are the most important are flagged with a [P nn]. An index of open
problems is at the end of the book.

We hope that this book will stimulate work on these questions.

Haines Junction, YT, Canada Colin C. Graham
Waterloo, ON, Canada Kathryn E. Hare
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Introduction

A Brief Summary

Let G be a compact abelian group and Γ its discrete dual group, the group
of continuous characters on G. An important example is the circle group,
G = T, with dual group, Γ = Z. By a measure on G we mean a finite,
regular, Borel measure with total variation norm ‖μ‖. The discrete measures
are those of the form μ =

∑∞
j=1 ajδxj where ‖μ‖ =

∑
|aj | < ∞. The set

of measures concentrated on U ⊆ G is denoted by M(U) and the discrete
measures by Md(U). A superscript r or + on a space of measures denotes
the real (respectively, non-negative) measures within that class, for example,
M+(U).

A subset E of Γ is an interpolation set (or I0 set) if every bounded function
on E is the restriction of the Fourier–Stieltjes transform of a discrete measure
onG. The set E is a Sidon set if every bounded function on E is the restriction
of the Fourier–Stieltjes transform of a measure on G, discrete or not. Every
I0 set is Sidon, but not conversely.

Here are three examples of I0 sets:

• Hadamard sets in Z, that is, sets E = {nj} ⊂ N such that inf nj+1/nj > 1
• ε-Kronecker sets with ε <

√
2, that is, E ⊂ Γ with the property that for

every {tγ} ⊂ T there exists x ∈ G such that |γ(x)− tγ | < ε for all γ ∈ E
• Independent sets, that is, E ⊂ Γ� {1} with the property that

∏
γ
mj

j = 1

if and only if all γ
mj

j = 1, whenever {γj} is a finite subset of E.

Special sets of integers, such as Hadamard, ε-Kronecker and independent
sets, have long been of interest to mathematicians and continue to be of
current interest. Many properties of Hadamard (ε-Kronecker or independent)
sets, and properties of classes of functions with frequencies supported thereon,
hold more generally when “Hadamard” (or “ε-Kronecker” or “independent”)
is replaced with “Sidon” or “I0” and, as we illustrate, some classical results
can be proved more easily when viewed in this abstract setting.

xi



xii Introduction

We gather and unify results about these classes of sets, both recent and
early. Of particular interest to this book are structural problems, such as
characterizations of Sidon and I0 sets in terms of arithmetic properties, and
the question of decomposing the special set into a finite union of simpler sets.
We are motivated in part by two open problems that have been outstanding
for more than 40 years:

• Is every Sidon set a finite union of I0 sets [P 1]?
• Can a Sidon set be dense in the Bohr group [P 2]?

These problems are related since a yes to the first implies a no to the
second. They have led to other problems, both solved and unsolved, also
discussed here.

A main contribution of this book is to give the first complete (all in one
place) proof in English of Pisier’s characterization of Sidon sets as propor-
tional quasi-independent.1 We also detail the proofs that Sidon sets are pro-
portional I0 (in a strong sense) and proportional ε-Kronecker, in the latter
case for subsets of Z and other similar groups.

We know of no book covering I0 sets, and the only book on Sidon sets,
[123], was published more than 35 years ago. There have been many new
results about I0 and Sidon sets since [123], and it is the purpose of this
book to

• Present the new developments
• Provide a thorough treatment of I0 sets
• Describe what is known about the relationship between I0 and Sidon sets
• State with context the major open problems concerning that relationship.

I0 sets are perhaps easier than Sidon sets, and they are covered, along with
Hadamard and ε-Kronecker sets, in the first part of the book, Chaps. 1–5.
Sidon sets are addressed in the second part, Chaps. 6–8; these latter chapters
are essentially independent of Chaps. 1–5. Chaps. 6–8 include that proof of
Pisier’s proportional quasi-independent characterization of Sidon sets, as well
as other characterizations.

Chap. 9 discusses the relationship between Sidon and I0 sets, including
characterizations as proportional I0 and proportional ε-Kronecker (when Γ
does not have too many elements of order two). Chap. 10 presents a different
way to approach the two outstanding open problems mentioned above.

The first appendix discusses two related issues: Sidon and I0 subsets of
non-discrete abelian groups and Sidon and I0 subsets in the non-abelian
compact group setting.

The remaining appendices provide some of the tools we need from combi-
natorics, harmonic analysis and probability.

This book is addressed to researchers, both active and prospective. Each
chapter includes exercises and extensive references to the literature. Many

1 The only other complete proof of which we are aware at this time is in the excellent
French book of Li and Queffélec [119].
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of the exercises can be found in [51–55, 57–59]. These are not individually
attributed.

We only assume the reader is familiar with graduate level real and func-
tional analysis and has a basic understanding of Fourier analysis on compact
abelian groups, such as can be found in [167, Ch. 1], although, as has become
common in harmonic analysis, techniques from combinatorics, probability
and topology are used in some proofs.

In the remainder of this chapter we give a more detailed description of the
chapters, remarks on our notation, and acknowledgements.

Chapter Summaries

We begin, in Chap. 1, with a discussion of Hadamard sets. Some of the more
important classical results in complex and Fourier analysis, involving Hada-
mard sets, are reviewed. We show that Hadamard sets are I0 and establish
properties that Hadamard sets have in common with other classes of I0 sets,
but which are more easily proved in the Hadamard case.
ε-Kronecker sets are studied in Chap. 2. This class includes many Hada-

mard sets and can be characterized by good interpolation of arbitrary choices
of signs. Their interesting analytic, arithmetic and topological properties are
explored. Large ε-Kronecker sets exist inside most subsets of Γ and they are
shown to be I0 sets with very strong properties.

Analytic, function algebra and topological characterizations of I0 sets are
established in Chap. 3. Analytically, a set E is I0 if every bounded function
defined on E is “almost” a trigonometric polynomial whose degree depends
only on E and the error specified. The set E is I0 if certain pairs of function
algebras on E agree. Topologically, a set is I0 if disjoint subsets have disjoint
Bohr closures. We also show that an I0 set does not cluster, in the Bohr
topology, at any element of Γ.

The subclasses of I0 sets where the interpolating measure can be taken to
be real, positive and/or concentrated on U ⊆ G (the RI0, FZI0 or I0(U) sets)
are studied in Chap. 4. These subclasses are shown to be distinct and criteria
are given for a set in a larger class to belong to a smaller. Every infinite group
Γ is shown to contain a subset that is FZI0(U) with “bounded length” (a
uniformity condition, defined in Chap. 3) and of the same cardinality as the
group. Every infinite E ⊆ Γ is shown to contain a Kronecker-like subset that
is I0(U) with bounded length and has the same cardinality as E.

In Chap. 5, it is shown that if U is a non-empty, open subset of a connected
group G, then every I0 set E ⊂ Γ is I0(U). Without the assumption of
connectedness, it is still true that every I0 set is a finite union of I0(U) sets
with bounded length. I0 sets fail to satisfy the finite union property, and in
this chapter conditions are given for the union of two I0(U) sets to be I0(U).
Necessary and sufficient conditions for an I0 set to be a finite union of RI0(U)
(or FZI0(U)) sets are also established.



xiv Introduction

Chapter 6 begins with a survey of characterizations, examples and well-
known properties of Sidon sets. Quasi-independent sets and Rider sets are
defined and shown to be Sidon. Sidon sets are Λ(p) for all 1 ≤ p < ∞.
Properties of Λ(p) sets are also surveyed. Every Sidon set is shown to be
a finite union of k-independent sets and also a finite union of sets that are
Sidon(U) for all non-empty, open U .

A complete proof is given of Pisier’s arithmetic characterization of Sidon
sets as those sets that are proportional quasi-independent in Chap. 7. As part
of the proof, we also prove Pisier’s result that Sidon sets can be characterized
as those Λ(p) sets with the minimal growth in their Λ(p) constants. Yet an-
other part of the proof is a refined version of proportional quasi-independence
due to Bourgain. The proof of this theorem takes up most of the chapter and
involves probabilistic, combinatorial and analytic arguments. An immediate
corollary is the union theorem for Sidon sets. Sidon sets are also shown to
satisfy a separation property, known as the Pisier ε-net condition, which will
be proven to be another characterization in Chap. 9.

Chapter 8 addresses the question, “Can a Sidon set be dense in the Bohr
group?”, in two ways. In the first section we give Ramsey’s result that if there
is a Sidon set in Z which clusters at one continuous character, then there is
another that is dense in Z. In the second section, statistical evidence, due to
Kahane and Katznelson, is given for non-density.

The nature of the relationship between Sidon and I0 sets is explored in
more detail in Chap. 9. We prove that Sidon sets are proportional I0 and,
using that fact, show that satisfying a Pisier ε-net condition is equivalent to
Sidonicity, adding another circle of equivalences to that of Pisier’s character-
ization theorem. If Γ has only a finite number of elements of order two, every
Sidon subset is also proportional ε-Kronecker, with ε <

√
2 depending only

on the Sidon constant. The Ramsey–Wells–Bourgain Bd(E) = B(E) charac-
terization of I0 is also proved in this chapter, completing the set of function
space characterizations of I0 sets given in Chap. 3.

Chapter 10 deals with a generalization of I0: A subset E of the dual of a
connected group is said to have the “zero discrete harmonic density property
(zdhd)” if every element of Bd(E) can be interpolated by discrete measures
whose support is concentrated arbitrarily near the identity. We show that
finite unions of I0 sets have zdhd when G is connected, though not all zdhd
sets are finite unions of I0 sets. If it could be determined whether all Sidon
sets have zdhd, we could either prove that Sidon sets cannot be dense in Γ
(if the answer were yes) or prove that not every Sidon set is a finite union of
I0 sets (if the answer were no). The zdhd property is also used to prove the
Hadamard gap theorem.

Appendix A looks at interpolation and Sidon sets for groups that are
abelian, but non-compact, and for groups that are compact, but not abelian.
In its first two sections, we show that in the abelian, non-compact but σ-
compact case, I0 and Sidon sets may be perturbed and remain I0 (resp.,
Sidon). In the duals of non–σ-compact abelian groups, the situation will be
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seen to be quite different. The second section of Appendix A presents a guide
to the literature on I0, Sidon and Λ(p) sets in the dual object of a compact,
non-abelian group.

Appendix B gives combinatorial results needed for the proportional char-
acterizations of Sidonicity of Chaps. 7 and 9. The first section of Appendix C
gives an overview of harmonic analysis on abelian groups, and the second
reviews basic probability.

Remarks on Notation

The circle group T is sometimes represented as the multiplicative group,
{z ∈ C : |z| = 1}, and other times as the additive group [0, 1) (or [0, 2π))
with addition mod 1 (or mod 2π), depending on which is most convenient at
the time.

We follow the usual custom of letting N denote the strictly positive in-
tegers, Z the integers, R the real numbers with the usual topology, Q the
rational numbers and C the complex numbers. For these groups and their
finite product groups, the group operation will be +. For all other groups the
group operation will be multiplication.

We shall frequently use the product group D := Z
N
2 and its direct sum

dual, D̂. In that context πn ∈ D̂ will be the element given by projection on
the nth factor of D. We will call these the Rademacher functions2 and the
set of them the Rademacher set.

The identity of G will be denoted e and that of Γ by 1, unless G = T,
Z, or R, in which case the identity is (respectively) 1, 0, 0. We use boldface
to distinguish the trivial character 1 from the integer 1. We also put subsets
of Γ in bold face. Normalized Haar measure on G is denoted mG, while mΓ

denotes counting measure on Γ. Integration onG is often written, “
∫
f(x)dm”

or “
∫
f(x)dx”, rather than “

∫
f(x)dmG(x)”.

Many spaces of functions or measures are used throughout the book. Some
important ones are listed below. Others will be introduced as they arise.
A(Γ) = {f̂ : f ∈ L1(G)}—the Fourier algebra—the Fourier transforms of

integrable functions on G
B(Γ) (or Bd(Γ))—the Banach algebra of Fourier Stieltjes transforms of

(discrete) measures on G
C(X) (or C0(X))—the Banach space of bounded continuous functions

(vanishing at infinity) on a topological space X
�∞(E)—the Banach space of bounded functions on the set E
Trig(G)—the space of trigonometric polynomials on G

2 This is a slight abuse. Let r(x) equal 1 on (0, 1/2] and −1 on (1/2, 1] and be periodic
with period 1 on all of R. The classical Rademacher functions are then rn(x) = r(2n−1x)
for x ∈ R and n ≥ 1. Dyadic expansion of x ∈ [0, 1) gives a correspondence between the
rn and πn.
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Often we will be interested in functions with Fourier transforms supported
on a specified subset E ⊆ Γ. The subspace of these functions in a function
space X is denoted XE. For example, TrigE(G) is the space of trigonomet-
ric polynomials with transforms supported on E. We refer to elements of
TrigE(G) as E-polynomials.

Finally, Ball(X) is the closed unit ball of the Banach space X .
Throughout the book we will also be restricting functions or measures to

subsets and taking the norms of those restrictions in various algebras. To
avoid long, hard-to-read expressions, we will omit the usual subscript that
denotes the restriction when the subset is clear from the norm expression.
For example, in place of ‖ϕ|E − μ̂|E‖�∞(E) we will write ‖ϕ− μ̂‖�∞(E).
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J. Bourgain and la Societé Mathématique de France for permission to
include the statement and proof of [17, Proposition 3.2]; J. Bourgain and
l’Annales de l’Institut de Fourier for permission to include from [19] what is
now part of the proof of Theorem 7.2.1 and much of the material here from
Theorem 6.4.1 to Corollary 6.4.7

J.-P. Kahane, Y. Katznelson and the Journal d’Analyse Mathématique
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Chapter 1

Hadamard Sets

Hadamard sets before 1960. Interpolation on Hadamard sets. Sums and
differences of a Hadamard set with itself. Bohr cluster points of those sum
and differences.

1.1 Introduction

Mathematicians have long been fascinated by Hadamard sets.
One reason for their interest is that power series or trigonometric series

which have their frequencies supported on a Hadamard set have unusual
behaviour. Hadamard sets were the first examples of I0 sets and many of the
properties that Hadamard sets possess are held by general I0 sets.

In this chapter we recall some of the notable classical results about Hada-
mard sets and their associated power series or trigonometric series. We show
that Hadamard sets are I0 in Sect. 1.3 and investigate the combinatorial and
topological “size” of Hadamard sets in Sect. 1.4 and 1.5. In particular, we
show that a sum (or difference) of a Hadamard set with itself does not cluster
in the Bohr topology at any integer (other than 0).

Later in the book we will present proofs of generalizations of some of these
classical results and other properties of Hadamard sets.

Definition 1.1.1. A subset E = {nj}∞j=1 of N, with n1 < n2 < n3 < . . .,
is said to be a Hadamard set if there exists some q > 1 (called a Hadamard
ratio) such that nj+1/nj ≥ q for all 1 ≤ j <∞.

Hadamard sets are also called lacunary [199].1 As indicated, the elements
of a Hadamard set are written in increasing order.

1 “Lacunary” is also used for increasing sequences {nj} ⊂ N with nj+1 − nj → ∞.
Also, some authors, for example, [101], say a symmetric E ⊂ Z is “Hadamard” if E ∩N is
Hadamard in our sense.

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 1,
© Springer Science+Business Media New York 2013
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2 1 Hadamard Sets

1.2 Classical Results Related to Hadamard Sets

An early and famous use of Hadamard sequences is in Weierstrass’s 1872
example of a nowhere differentiable function.

Theorem 1.2.1 (Weierstrass). Let 0 < b < 1 and a be an integer such
that ab > 1 + 3π

2 . Then f(x) =
∑∞
n=1 b

n cos(anx) is continuous but nowhere
differentiable.

In 1892 Hadamard published his “gap” Theorem 1.2.2 from which we
get the name, “Hadamard set”, though “Weierstrass set” might be equally
appropriate. In Chap. 10 we give a harmonic analysis proof of a generalization
of Hadamard’s gap theorem.

Theorem 1.2.2 (Classical Hadamard gap theorem). Let {nj} ⊆ N be a
Hadamard set with ratio q > 1. Suppose the power series f(z) =

∑∞
j=1 cjz

nj

has radius of convergence equal to 1. Then f cannot be analytically continued
across any portion of the arc |z| = 1.

Another interesting complex analysis theorem is a Picard-type result.

Theorem 1.2.3. Suppose that f(z) =
∑∞
j=1 ajz

nj is analytic in the open
unit disc, E = {nj} is a Hadamard set and that lim supj→∞ |aj | > 0. Then
f(z) assumes every complex value infinitely often in the open unit disc.

In 1918 Riesz gave the first example of a continuous measure whose
Fourier–Stieltjes coefficients did not vanish at infinity. His construction was
the following.

Theorem 1.2.4 (Riesz product). The products
∏N
n=1(1 + cos(4nx)) are

bounded in L1(T)-norm and converge weak* in M(T) to a continuous proba-
bility measure μ such that

μ̂(n) =

⎧
⎪⎨

⎪⎩

1 if n = 0,

2−K for n = ±4n1 ± · · · ± 4nK , n1 < · · · < nK and

0 otherwise.

The Hadamard property of {4n} is used to justify that the partial prod-
ucts converge in the weak* topology to a probability measure, called a Riesz
product, whose Fourier-Stieltjes transform is as described. An application of
Wiener’s Lemma C.1.10 proves that the measure is continuous, meaning the
measure of every singleton is zero. The details of this construction and gen-
eralizations to other Hadamard sequences can be found in Exercise 1.7.9.

Riesz products have been generalized to all compact abelian groups and
play an important role in the study of Sidon sets. These generalizations will
be described in detail in Sect. 6.2.2 and will be extensively used throughout
the latter part of the book.
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Classical harmonic analysts have long been interested in questions about
almost everywhere convergence and whether a trigonometric series is that of a
function in some Lp space. For series involving only Hadamard frequencies the
answers are often simple, as the following three results, due to Kolmogorov,
Sidon and Zygmund, respectively, demonstrate.

Theorem 1.2.5. Suppose {nk} is a Hadamard set and the coefficients ak are
real. The trigonometric series

∑
k ak cos(nkx) converges (diverges) a.e. if and

only if
∑
a2k converges (diverges).

Theorem 1.2.6. Suppose {nk} is a Hadamard set, the coefficients ak, bk are
real and

∑
k ak cos(nkx) + ibk sin(nkx) is the Fourier series of a continuous

function. Then ∑

k

|ak|+ |bk| <∞.

This theorem implies that Hadamard sets are Sidon. Exercise 1.7.9 pro-
vides an alternate proof using Riesz products.

Theorem 1.2.7. Suppose {nk} is a Hadamard set and the coefficients ak, bk
are real. The trigonometric series

∑
k ak cos(nkx)+ibk sin(nkx) is the Fourier

series of an integrable function f if and only if
∑
a2k+ b2k converges, in which

case f ∈ Lp(T) for all 1 ≤ p <∞.

This result is known to be true whenever the set {nk} is Sidon; see Theorem
6.3.9.

There are many other results that illustrate the unexpected behaviour of
functions associated with a Hadamard sequence. We have only given a sample
here and refer the reader to the section Remarks and Credits at the end of
this chapter for further discussion and references.

1.3 Interpolation Properties

In this section it will be shown that every bounded function on a Hadamard
set is the restriction of a Fourier–Stieltjes transform of a discrete, positive
measure, and that even the support of these measures can be controlled. This
means Hadamard sets are I0 sets.

Lemma 1.3.1. Suppose E = {nj}∞1 is a Hadamard set with ratio q ≥ 2.
Then for each ϕ : E→ T there exists

θ ∈
[

−2π

n1
,

2π

n1

]

with |ϕ(nj)− einjθ| < |1− eiπ/(q−1)| (1.3.1)

for all j.
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Proof. Let ϕ : E → T be given. Since einjx takes on all values in T on any
subinterval of length at least 2π/nj , we can pick θ1 ∈ [−π/n1, π/n1] such
that ein1θ1 = ϕ(n1) and then inductively choose

θj ∈ [θj−1 − π/nj, θj−1 + π/nj] with einjθj = ϕ(nj) for all j > 1. (1.3.2)

By (1.3.2),

|θj − θk| ≤
k∑

�=j+1

π

n�
≤

∞∑

�=1

π

njq�
=

π

nj(q − 1)
for 1 ≤ j < k <∞. (1.3.3)

Since nj → ∞, we see that θj is a Cauchy sequence. Let θ be its limit. Two
more geometric series calculations show that |θ| ≤ πq/(n1(q − 1)) ≤ 2π/n1

and |θ − θj | < π/(nj(q − 1)) for all j. Now (1.3.1) follows. ��

The next result is an example of what we call the standard iteration. It
will appear often, and we give several variations on the result, the second
variation being the application to single point masses that will be used in
this chapter.

We define

Δ = {z ∈ C : |z| ≤ 1}.

A subset X of a group is symmetric if X = X−1. It is asymmetric if all the
elements of X ∩X−1 (if any) have order 2. In particular, 1 �∈ X .

Proposition 1.3.2 (Basic standard iteration). Let E ⊆ Γ and U be a
Borel subset of G. Assume ε < 1 and C is a constant.

1. [Complex version]. Assume that for each ϕ : E → T there exist μ ∈
Md(U) (resp., M+

d (U)) such that ‖μ‖ ≤ C and

|ϕ(γ)− μ̂(γ)| < ε for all γ ∈ E.

Then for each ϕ : E → Δ there exists μ ∈ Md(U) (resp., μ ∈ M+
d (U))

such that μ̂ = ϕ on E and ‖μ‖ ≤ C/(1− ε).
2. [Real version]. Assume that U is symmetric and that for each ϕ : E →

[−1, 1] there exists μ ∈Md(U) (resp., M+
d (U)) such that ‖μ‖ ≤ C and

|ϕ(γ)− μ̂(γ)| < ε for all γ ∈ E.

Then for each ϕ : E → [−1, 1] there exists μ ∈ Md(U) (resp., μ ∈
M+
d (U)) with μ̂ real-valued, such that μ̂ = ϕ on E and ‖μ‖ ≤ C/(1− ε).

Proof. The proofs for Md(U) and M+
d (U) are identical. We give the proof for

the latter. The interpolating measure will be constructed through an iterative
procedure.
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(1) We begin by observing that every ϕ : E → Δ is the average of two
functions mapping E→ T. Thus, we may assume that every ϕ : E→ Δ may
be approximated by μ ∈M+

d (U) with ‖μ‖ ≤ C.
Fix ϕ : E→ Δ. Choose μ1 ∈M+

d (U) such that ‖μ1‖ ≤ C and |ϕ− μ̂1| < ε
on E. Now suppose μ1, . . . , μJ ∈ M+

d (U) have been found such that, for
1 ≤ j ≤ J , we have ‖μj‖ ≤ C and

∣
∣
∣
∣
∣
∣
ϕ−

J∑

j=1

εj−1μ̂j

∣
∣
∣
∣
∣
∣
< εJ on E.

Then ε−J(ϕ −
∑
j ε

j−1μ̂j |E) maps E to Δ, so another application of the

hypothesis gives a measure μJ+1 ∈M+
d (U) with ‖μJ+1‖ ≤ C and such that

∣
∣
∣
∣
∣
∣
ε−J

⎛

⎝ϕ−
J∑

j=1

εj−1μ̂j

⎞

⎠− μ̂J+1

∣
∣
∣
∣
∣
∣
< ε on E.

That completes the iterative construction.
Let μ =

∑∞
j=1 ε

j−1μj . By construction, μ ∈M+
d (U), ‖μ‖ ≤ C/(1− ε) and

ϕ = μ̂ on E.
(2) The proof for this part is almost identical to the proof for (1). The key

difference is that at each stage, the measure, μj , that is obtained from the
hypotheses should be replaced by νj = 1

2 (μj + μ̃j). (Here, μ̃j is the measure

whose mass on each Borel set X is μ̃j(X) = μ(X−1).) This is where the
symmetry of U is used. One should also note that whenever ϕ is real-valued,
|ϕ−Reμ̂j | ≤ |ϕ−μ̂j |, where Reμ̂j denotes the real part of the Fourier–Stieltjes
transform.

Since the Fourier–Stieltjes transform of μ̃ is μ̂, those observations allow
us to assume that the approximate interpolation can be done at each stage
with a measure which has real-valued Fourier transform. That permits the
iterative construction to proceed. We omit the remaining details. ��

A computational trick enables us to improve (2), weakening the assump-
tion only to require the interpolation of {−1, 1}-valued functions on E using
the real parts of Fourier–Stieltjes transforms.

Corollary 1.3.3 (Improved standard iteration). Let E ⊆ Γ and U be
a symmetric subset of G. Assume ε < 1 and C is a constant. If for each
ϕ : E → {−1, 1} there exists μ ∈ Md(U) (resp., μ ∈ M+

d (U)) such that
‖μ‖ ≤ C and

|ϕ(γ)−Reμ̂(γ)| < ε for all γ ∈ E,

then for each ϕ : E → [−1, 1] there exists μ ∈ Md(U) (resp., μ ∈ M+
d (U)),

with μ̂ real-valued, such that μ̂ = ϕ on E and ‖μ‖ ≤ C/(1− ε).
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Proof. Let ψ : E→ [−1, 1] be given. Define ϕ : E→ {−1, 1} by

ϕ(γ) =

{
1, if ψ(γ) ∈ [0, 1] and

−1, otherwise.

Then |ψ − 1
2ϕ| ≤ 1/2 on E (that is the “trick”). Let μ ∈ Md(U) (or μ ∈

M+
d (U)) be such that ‖μ‖ ≤ C and |ϕ(γ)−Reμ̂(γ)| < ε for all γ ∈ E and let

ν = 1
2 (μ+ μ̃). Then |ϕ(γ)− ν̂(γ)| < ε on E and ν̂ is real. Also,

∣
∣
∣
∣ψ(γ)− 1

2
ν̂(γ)

∣
∣
∣
∣ <

1

2
+
ε

2
for γ ∈ E. (1.3.4)

We now apply the basic standard iteration using (1.3.4). ��

Corollary 1.3.4 (Standard iteration with point masses). Let E ⊆ Γ,
U ⊆ G, ε < 1 and C be a constant.

1. [Complex version]. If for each ϕ : E → T there exists x ∈ U such that
|ϕ(γ) − γ(x)| < ε for all γ ∈ E, then for each ϕ : E → Δ there exists
μ ∈M+

d (U) such that μ̂ = ϕ on E and ‖μ‖ ≤ 1/(1− ε).
2. [Real version]. If U is symmetric and for each ϕ : E → {−1, 1} there

exists x ∈ U such that |ϕ(γ) − Reγ(x)| < ε for all γ ∈ E, then for each
ϕ : E → [−1, 1], there exists μ ∈ M+

d (U), with μ̂ real-valued, such that
μ̂ = ϕ on E and ‖μ‖ ≤ 1/(1− ε).

Theorem 2.3.1 gives a further improvement to Corollary 1.3.4: “ε < 1”
may be weakened to “ε <

√
2”.

Proof. (1) is immediate from Proposition 1.3.2 (1) since γ(x) = δ̂−x(γ), where
δx ∈Md(G) is the unit point mass measure at x.

(2) follows similarly from Corollary 1.3.3. ��

The following corollary is immediate from Lemma 1.3.1, just take G = T,
E ⊂ Z the Hadamard set and U = [−2π/n1, 2π/n1].

Corollary 1.3.5. If E is a Hadamard set with ratio q > 4, then E is I0 and
the interpolation can be done using the Fourier–Stieltjes transforms of non-
negative, discrete measures supported in L = [−2π/n1, 2πn1]. Furthermore,
for each δ > 0 there exists M (depending only on q and δ) such that for each
ϕ : E→ Δ there are x1, . . . , xM ∈ L and c1, . . . , cM ∈ [0, 1] such that for all
n ∈ E,

∣
∣
∣
∣
∣
ϕ(n)−

M∑

m=1

cme2πixmn

∣
∣
∣
∣
∣
< δ.

To extend Corollary 1.3.5 to q ≤ 4, we will improve Lemma 1.3.1.
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Lemma 1.3.6. Suppose E = {nj} is a Hadamard set with ratio q and satis-
fying inf nj+1/nj−1 > 6q/(q − 1). There is some 0 < ε < 1/4 such that for
all ψ : E → T and intervals I ⊂ R of length at least 3π/(2n1), there exists
θ ∈ I such that

∣
∣ψ(nj)− e2iθnj

∣
∣ ≤

∣
∣1− e2πiε

∣
∣ for all j. (1.3.5)

Remark 1.3.7. 0 < ε < 1/4 implies e2πiε lies in the open right half of the
complex plane. By using the real part of e2iθnj , the real version of the standard
iteration will give us an approximation to Reψ.

Proof (of Lemma 1.3.6). Fix a compact interval I ⊂ R of length at least
3π/2n1. Choose ε > 0 and close enough to 1/4 such that

q >
1− 2ε

2ε
and (1.3.6)

inf
nj+1

nj−1
>

6q

q − 1− (1 − 4ε)(q + 1)
. (1.3.7)

Let

Lj =
{
θ ∈ R :

∣
∣e2iθnj − ψ(nj)

∣
∣ ≤

∣
∣1− e2πiε

∣
∣
}
.

Each set Lj is periodic with period π/nj and consists of a union of disjoint
intervals of lengths 2επ/nj . The complement of each Lj is also a periodic
set with period π/nj and is a union of intervals of length (1− 2ε)π/nj.

Note that any interval of length at least 3π/(2nj) must contain a (full)
component of Lj and each interval of length more than (1 − 2ε)π/nj must
intersect Lj non-trivially. In particular, I contains a component of L1.

Because inequality (1.3.6) implies that

2ε/nj−1 > (1− 2ε)/nj,

each component of Lj−1 will necessarily contain points of Lj. Indeed, such
an interval will either contain a component of Lj or a subinterval L′

j of Lj
with

length(L′
j) ≥

π

2

(
2ε

nj−1
− 1− 2ε

nj

)

.

In the latter case, an easy computation using inequality (1.3.7) and the fact
that nj+1/nj ≤ nj+1/qnj−1 shows that length(L′

j) ≥ 3π/(2nj+1), and thus
L′
j will contain a component of Lj+1. It follows that

I ∩
∞⋂

j=1

Lj �= ∅,

and, of course, any θ ∈ I ∩
∞⋂

j=1

Lj will suffice. ��
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Remark 1.3.8. If E is as in the lemma and I is any open interval in R, then
there is a finite subset F ⊆ E such that given any ψ : E → T, there is some
θ ∈ I such that

∣
∣ψ(nj)− e2iθnj

∣
∣ ≤ |1− e2πiε| for all nj ∈ E�F. Indeed, just

take F = {nj}K−1
j=1 where 3π/2nK ≤ length(I).

Here is the promised improvement of Corollary 1.3.5.

Theorem 1.3.9 (Weiss–Strzelecki–Méla). Suppose E = {nj} is a Hada-
mard set with ratio q and K ∈ N is chosen with qK > 6q/(q − 1).

1. The set E is an I0 set and the interpolation can be done with non-negative,
discrete measures supported on

L =

[

−6Kπ

n1
,

6Kπ

n1

]

.

2. The set E∪−E is an I0 set and the interpolation can be done with discrete
measures supported on

L′ =

[

−12Kπ

n1
,

12Kπ

n1

]

.

3. Furthermore, if δ > 0 there exists M ≥ 1 (depending only on δ and q)
such that whenever ϕ : E→ Δ (resp., ϕ : E∪−E→ Δ), then there exist
x1, . . . , xM ∈ L (resp., L′) and c1, . . . , cM ∈ [0, 1] (resp., Δ) such that
for all n ∈ E (resp., n ∈ E ∪ −E)

∣
∣
∣
∣
∣
ϕ(n)−

M∑

m=1

cme2πixmn

∣
∣
∣
∣
∣
< δ.

Proof. (1) For each k = 1, . . . ,K, let Ek = {nk+jK : j = 0, 1, . . .}. Then Ek
is Hadamard with ratio qK > 6.

For each pair �, k, with � �= k, consider the Hadamard set H = Ek ∪E� of
ratio q and a bounded ψ : H → C that is equal to 1 on Ek and −1 on E�.
If we suppose H = {mj}, with mj+1 ≥ mj, then since each pair mj−1,mj+1

either belongs to Ek or to E�, one can see that mj+1/mj−1 ≥ qK > 6q/(q−1)
for all j.

Thus, the previous lemma can be applied with I = [−3π/4m1, 3π/4m1] to
obtain ε < 1/4 and θ ∈ I satisfying

∣
∣e2iθmj − ψ(mj)

∣
∣ ≤

∣
∣1− e2πiε

∣
∣ for all j.

Let t = cos 2πε. Then t > 0,

Ree2inθ ≥ t for all n ∈ Ek and

Ree2inθ ≤ −t for all n ∈ E�.
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Put ν = 1
2 (δθ + δ−θ). Then ν is a positive, discrete measure supported

on [−3π/4n1, 3π/4n1], with ν̂ real, ν̂ ≥ t on Ek and ν̂ ≤ −t on E�. Since
E� is a Hadamard set with ratio at least 6, by Corollary 1.3.5, there is a
τ1 ∈ M+

d ([−2π/n1, 2π/n1]) such that τ̂1 =
√
−ν̂ on E�. Let ν0 = ν + τ1 ∗ τ̃1

so ν0 ∈ M+
d ([−4π/n1, 4π/n1]). Because the Fourier transform of τ1 ∗ τ̃1 is

non-negative, ν0 has transform 0 on E� and at least t on Ek.
But Ek is also a Hadamard set with ratio at least 6, and hence there is also

a measure τ2 ∈M+
d ([−2π/n1, 2π/n1]) such that τ̂2 = ν̂0

−1 on Ek. Putting

νk,l = τ2 ∗ ν0 ∈M+
d ([−6π/n1, 6π/n1]),

we obtain a measure whose transform is 1 on Ek and 0 on E�. Finally, let ωk
be the convolution of the K−1 measures νk,l for � �= k. This is a non-negative,
discrete measure, supported on [−6(K − 1)π/n1, 6(K− 1)π/n1], with ω̂k = 1
on Ek and equal to 0 otherwise on E.

Now suppose ϕ : E→ C is bounded. Once more use the fact that each Ek
is a Hadamard set with ratio 6 to obtain σk ∈ M+

d ([−2π/n1, 2π/n1]) with
σ̂k = ϕ on Ek. Then

μ =
K∑

k=1

ωk ∗ σk ∈M+
d ([−6Kπ/n1, 6Kπ/n1])

interpolates ϕ on E, completing the proof of (1).
(2) For interpolation on E ∪ −E, obtain ω ∈ M+

d ([−6Kπ/n1, 6Kπ/n1])

such that ω̂ = −i on E. Because ω is a non-negative measure, ω̂(−n) = ω̂(n).
Thus, 1

2 (δ0 + iω) has transform 1 on E and 0 on −E. It is easy to now find

ω′ ∈M+
d ([−12Kπ/n1, 12Kπ/n1]) with ω̂′ = ϕ on E ∪ −E.

(3) Follows from the proofs of (1)–(2). ��

Remark 1.3.10. It is easy to see that if interpolation can be done with mea-
sures on a set L ⊂ T, then the interpolation can be done with measures
concentrated on any translate of L; see Exercise 1.7.3.

1.4 Sums of Hadamard Sets

A common theme in the study of special sets is to quantify, in some fash-
ion, the “smallness” or “thinness” of the set. This theme will be explored
throughout the book. For Hadamard sets there are obvious ways to make
this very explicit. For example, it is very easy to see that if E is a Hadamard
set with ratio q, then

sup
N

|E ∩ [N, 2N)| <∞,
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with the supremum depending only on q. Here |X| denotes the cardinality
of the set X . Furthermore, there is a constant Cq such that |E∩ [−N,N ]| ≤
Cq logN for all N . (We will see later (Corollary 6.3.13) that this density
property is true, more generally, for Sidon sets.)

This fact generalizes to sums and differences of Hadamard sets.

Proposition 1.4.1. Let E = {nj} be Hadamard with integer ratio q ≥ 2 and
let F = {0} ∪E ∪ −E. Then there exists a constant c = c(q) such that

| (

q
︷ ︸︸ ︷
F + · · ·+ F) ∩ [−N,N ]| ≤ c(logN

)q
for any 2 ≤ N <∞.

Proof. Let S =

q
︷ ︸︸ ︷
F + · · ·+ F. Consider a sum s =

∑J+1
j=1 ajnj with aj ∈ Z and

∑J+1
j=1 |aj | ≤ q. If |aJ+1| = 1, then

|s| ≥ nJ+1 −
J∑

1

|aj |nJ ≥ nJ+1 − (q − 1)nJ

≥ qnJ − (q − 1)nJ = nJ .

If |aJ+1| > 1, we have |s| > nJ . It follows that s �∈ [−nJ+1, nJ−1] if aJ+1 �= 0.
Furthermore, s = ±nJ can only be achieved if aJ+1 = ±1 and aJ = ∓(q−1).

Because each |aj | ≤ q, there are at most (2q+1)qJq sums of the form
∑J

1 ajnj
when

∑J
1 |aj | ≤ q, and therefore |S ∩ [−nJ , nJ ]| ≤ 2 + (2q+ 1)q Jq, with the

extra 2 accounting for the endpoints.
Let nJ−1 ≤ N < nJ . Then S∩[−N,N ] ⊆ S∩[−nJ , nJ ], so |S∩[−N,N ]| ≤

2 + (2q + 1)q Jq. Since n1q
J−2 ≤ nJ−1 ≤ N , Jq ≤ c(logN)q for a suitable

constant c. ��

In particular, such a q-fold sum has density zero. If the terms nj are not
allowed to repeat, we can obtain this same sparseness with arbitrarily many
summands.

Proposition 1.4.2. Let E = {nj} be Hadamard with ratio q. Let

Ek =

⎧
⎨

⎩

∑
ajnj :

∑

j

|aj | ≤ k and aj = 0,±1 for all j

⎫
⎬

⎭
. (1.4.1)

1. If q ≥ 2, then for each k ≥ 1 there exists a constant c = c(q, k) such that

|Ek ∩ [−N,N ]| ≤ c(logN
)k

for 1 ≤ N <∞. (1.4.2)

2. If q ≥ 3, then Z�Ek contains increasingly long sequences of consecutive
integers, located between pairs nj and nj+1 for all j sufficiently large.
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Proof. Both assertions are obvious if k = 1, so we may assume that k ≥ 2.
(1) Find a positive integer m = m(q, k) so large that

1 <
qm(q2 − 2q + q−k+2)

q − 1
.

A geometric series calculation shows that if j +m ≥ k, then

nj+m+1 − nj+m − · · · − nj+m−k+2 ≥ nj+m+1

(

1−
k−1∑

i=1

q−i
)

> nj q
m

(
q2 − 2q + q−k+2

q − 1

)

. (1.4.3)

The inequality of (1.4.3) implies that all the elements of Ek∩ [−nj , nj] can

be represented as sums of the form
∑j+m

�=1 a�n�, where
∑
|a�| ≤ k and a� =

0,±1 for all �. Counting in a similar fashion to the proof of Proposition 1.4.1
gives |Ek ∩ [−nj , nj]| ≤ 3k

(
j+m
k

)
≤ 3k(j + m)k ≤ cjk where the constant c

depends only on k and q.
(2) Geometric series calculations show that

nj + nj−1 + · · ·+ nj−k+1 ≤ nj
q − q−k+1

q − 1
. (1.4.4)

Therefore, the gap between the smallest sum one can compute involving
+nj+1 and its predecessors, and the largest sum involving +nj and its pre-
decessors is at least

nj+1 − 2(nj + · · ·+ nj−k+1) ≥ nj
(
q2 − 3q + 2q−k+1

q − 1

)

.

Since q ≥ 3, this can be made arbitrarily large by choosing j sufficiently
large. ��

However, this sparseness result depends crucially upon not allowing repe-
tition. If we do allow repetition, then Proposition 1.4.1 is sharp. Indeed, there
are Hadamard sets of integer ratio q with a q+ 1-fold sum or difference equal
to all of N, as the next result shows.

Proposition 1.4.3. Let 2 ≤ q ∈ N. There exists a Hadamard set E = {nj}
with ratio q such that

E−
q

︷ ︸︸ ︷
(E + · · ·+ E) ⊇ N. (1.4.5)

Proof. The set E will be a union of doubletons, Ej = {nj, j + njq}, 1 ≤ j <
∞, where n1 = 1 and nj+1 = q(j + njq) for 1 ≤ j <∞. That (1.4.5) holds is
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easy to see: just represent j as the difference j+njq−(nj+ · · ·+nj) (q copies
of nj) to obtain the positive integer j. Each Ej is Hadamard with ratio at
least q and the union will be Hadamard with ratio q because of the choice
nj+1 = q(j + njq). ��

1.5 Bohr Cluster Points of Hadamard Sets
and Their Sums

Another way to quantify the size of a set is to consider its closure in the
Bohr topology. In this section we will prove that a sum (or difference) of
a Hadamard set with itself has no continuous characters (other than 0) as
Bohr cluster points. This fact will later be generalized to ε-Kronecker sets;
see Proposition 2.7.4.

The Bohr topology on Z is the topology of pointwise convergence on T.
This topology makes Z a dense subgroup of the Bohr group, denoted Z, the
compact group consisting of all group homomorphisms of T to T (including
discontinuous ones). We refer the reader to Sect. C.1.3 for more details on
the Bohr group and topology.

Theorem 1.5.1 (Kunen–Rudin). Let E = {nj} ⊂ N be a Hadamard set
and let F0 ⊂ Z be finite. Then

1. E ∪ −E has no Bohr cluster points in Z.
2. (E ∪ −E) + F0 has no Bohr cluster points in Z.
3. E−E has only 0 as a Bohr cluster point in Z.
4. E + E has no Bohr cluster points in Z.

Proof. Let q > 1 be the ratio of E and fix m ∈ Z.
(1) It will suffice to show that m is not a Bohr cluster point of E, for if

m were a Bohr cluster point of −E, then −m would be a cluster point of
E. Since any Hadamard set is a finite union of Hadamard sets with ratio at
least 16, and a finite union of sets clusters at m if and only if at least one of
the sets in the union clusters at m, there is no loss of generality in assuming
q ≥ 16.

Since we can find θ such that |1 + eiθnk | < 1/4 for all nk ∈ E, m = 0
cannot be a cluster point.

Now suppose m �= 0. If E clusters at m, so does any cofinite subset of E, so
we can assume n1 > 8π|m|. By Lemma 1.3.1 we may find θ ∈ [−2π/n1, 2π/n1]
such that |1+einjθ| < |1−eiπ/15| < 1/4 for all j. But |1−eimθ| < 2π|m|/n1 <
1/4. Therefore, E does not cluster at m.
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(2) It will suffice to show that E +N has no Bohr cluster points in Z for
each N ∈ Z. By Exercise 1.7.2, (E�F) +N is Hadamard for a suitable finite
set F, and thus part (1) above gives this conclusion. Alternatively, just note
that E +N clusters at integer N0 if and only if E clusters at N0 −N .

(3) For each finite set, F, the closure of E−E is equal to the union of the
closure of (E�F)− (E�F) together with the closure of (E−F)∪ (F−E).
Hence, the second part of the proposition implies that if k ∈ Z, k �= 0 is a
cluster point of E − E, then k belongs to the closure of (E� F) − (E � F).
It follows that for each finite set F,

(k + E� F) ∩E� F �= ∅. (1.5.1)

Since k �= 0, we may choose x ∈ T such that e2ikx = −1. Let K ∈ N

satisfy qK > 6q/(q − 1) and suppose M is given by Theorem 1.3.9 (3) with
δ = π/4. Let L = [x − ε, x + ε] be a neighbourhood of x so small that
|1 + e2iku| < 1/(4M) for all u ∈ L. Choose j0 so large that 6Kπ/nj0 < ε and
let F = {n1, . . . , nj0}.

Theorem 1.3.9 (3) applied to E�F tells us that there exist x1, . . . , xm ∈ L
and c1, . . . , cm ∈ [0, 1] such that |1−

∑M
1 cme2πixmn| < 1/4 for all n ∈ E�F.

Combining these inequalities shows that

∣
∣
∣1 +

M∑

m=1

cme
2ixm(k+n)

∣
∣
∣ ≤

∣
∣
∣1 + e2ixk

∣
∣
∣ +

∣
∣
∣e2ixk

( M∑

m=1

cme
2ixmn − 1

)∣∣
∣

+
∣
∣
∣

M∑

m=1

cme
2ixmn(e2ixmk − e2ikx)

∣
∣
∣

< 0 +
1

4
+M

2

4M
=

3

4
.

Therefore, the continuous (on Γ) function
∑M

1 cme2ixm(·) separates E� F
from k + E� F, contradicting (1.5.1).

(4) Similarly, it is not hard to see that k ∈ Z is a cluster point of E + E
if and only if for any finite set F, k − E� F ∩ E� F �= ∅. We proceed
as for (3), except that we choose an interval L around 0 and require that

the cm, xm satisfy |
∑M

m=1 cme2πixmn − i| < 1/4 for all n ∈ E � F and
that |e2πikx − 1| < 1/4M on L. This will give us a trigonometric polyno-
mial on Z which is approximately i on E � F and approximately −i on
k −E�F. That implies E� F and k −E� F are disjoint. We omit further
details. ��

Example 1.5.2. Disjoint Hadamard sets with common Bohr cluster points:
Let E = {3j : j = 1, 2, . . .} and F = {3j + j : j = 1, 2, . . .}. Exercise C.4.16
says that 0 is a Bohr cluster point of N. Take a net of positive integers {jα}
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such that jα → 0 in the Bohr topology. Because of compactness of the Bohr
group, a subnet, {3jβ}, converges in Z. Thus, E and F have common Bohr
cluster points in Z.

We remark that this property implies that E ∪ F is not I0. The function
that is 1 on E and 0 on F cannot be the restriction of the Fourier–Stieltjes
transform of a discrete measure on T since such transforms are continuous
on Z. See also Proposition 3.4.1.

1.6 Remarks and Credits

Classical Results. For further classical results, see Zygmund’s volumes [199,
200].

Theorem 1.2.1 appears in Weierstrass’s [192]. According to Weier-
strass, Riemann had proposed orally in 1861, or perhaps earlier, that∑

(1/n2) sinn2x was continuous and nowhere differentiable. Weierstrass
justified giving a new example on the basis that it appeared to him that a
proof of the nowhere differentiability of Riemann’s example would be “rather
difficult”. In fact, Riemann’s sum is differentiable at all points of the form
cπ/d where c, d ∈ 2Z + 1 [44] but, at no other point, rational multiple of π
[45] or not [72].

An English version of Weierstrass’s proof of Theorem 1.2.1 is in the trans-
lation of Goursat’s classic Cours d’Analyse Mathématique [48, pp. 423ff].
A twenty-first century proof of the non-differentiability of versions of Weier-
strass’s sum is given by Johnsen [97]; he also gives a good historical survey and
writes that the first example of a nowhere differentiable function was given
by Bolzano. Hardy [72] in 1916 improved Weierstrass’s example and gave
references to the intervening literature. Other ways of constructing nowhere
differentiable functions have also been given, cf., [139] and its references.

Hadamard’s gap theorem (Theorem 1.2.2) is in [70]. Hadamard points out
that the gap theorem is easily proved when nj = aj for a positive integer a.
Mordell’s lovely proof [135] can also be found in [92, pp. 88–89].

A much more general form of Theorem 1.2.2 is that of Fabry (which has,
itself, been generalized in ways outside of harmonic analysis). The Fabry
theorem states that if {λn}∞n=1 ⊂ [0,∞) is a real sequence with inf(λn+1 −
λn) > 0 and infn

n
λn

= D, then the series f(z) =
∑∞
n=1 cne−λnz has at least

one singularity in every interval of length exceeding 2πD on the abscissa of
convergence; see [118, p. 89] for a proof of the Fabry theorem in this form
and [92, p. 89ff] for a proof when the λn’s are integers with limn n/λn = 0.
Interest in the relationship between analyticity and Hadamard sequences has
never ceased; [144] is a recent example.

Theorem 1.2.3 is due to Fuchs [40], who was improving on Pommerenke
[152], who had improved a result of G. and M. Weiss [193]. For related results,
see [12, 47].
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Riesz Products. Theorem 1.2.4 is due to Riesz [163]. Zygmund [199, p. 209]
has a nice proof. The literature on Riesz products is extensive; [56, Chap. 7]
has some of what was known 30 years ago, including most parts of Exercise
1.7.9. The terms 1+aj cos(njx) can be replaced by trigonometric polynomials
pj if pj ≥ 0,

∫
pjdx = 1 and the frequencies of different pj do not interfere

with each other. These are called “generalized Riesz products” and more can
be found on them in [94]. A recent use of Riesz products in Fourier analysis is
[103] and another in dynamical systems is [154]. Further discussion of Riesz
products can be found in Sect. 6.2.2.

Theorem 1.2.5 is in [115]. This result is, of course, an instance of the
Carleson–Hunt a.e. convergence theorem [3, 22, 95]. Theorem 1.2.6 is due
to Sidon [173, 174]. Theorem 1.2.7 comes from [197, 198]. In more modern
language, the theorem says Hadamard sets are Λ(p) sets; see [123, pp.54ff]
for more on Λ(p) sets and Theorem 6.3.9 for the proof that Sidon sets are
Λ(p) sets.

Interpolation properties. The idea of doing interpolation using measures
supported in an interval of length proportional to 1/n1 seems to have first
been used by Mary Weiss [194, Theorem 2]. Lemma 1.3.1 and Proposi-
tion 1.3.2 are standard. Lemma 1.3.6 is from [130, Proof of Theorem 1].

Theorem 1.3.9 was proved originally by Strzelecki [180]; other proofs can
be found in [101, 116]. The proof we have given is from [130].

Sums of Hadamard Sets. The results of Sect. 1.4 are from [61, 116]. A
version of inequality (1.4.3) appears in [199, pp. 208ff].

Proposition 1.4.1 is related to other results. The sum of M disjoint sets
whose union is dissociate is p-Sidon [98] and hence has a logarithmic density
as in Proposition 1.4.1 [35, Corollary 2.6]. See [35] and its references for earlier
results of this type. Hadamard sets with sufficiently large ratio q are dissociate
(Exercise 1.7.4), so Proposition 1.4.1 is an variation of the combination of
[35, 98].

The sets Ek of Proposition 1.4.2 were also investigated by Déchamps and
Selles [30, Theorem A] who proved that if q ≥ 3, then the sets Ek have a
very strong property (called “zhd” in Chap. 10): for each non-empty, open

set U ⊂ T, every restriction of a Fourier–Stieltjes transform to
⋃K
k=1 Ek can

be written as the restriction of a Fourier–Stieltjes transform of a measure
concentrated on U . We use the same geometrical series calculation as [30].
See Chap. 10 for more on this property.

Bohr cluster points. Theorem 1.5.1 (1) is a special case of a result of Ryll-
Nardzewski about I0 sets in R [168] and holds more generally for I0 sets;
see Theorem 3.5.1. The other items of Theorem 1.5.1 are due to Kunen and
Rudin [116]. (1)–(4) hold for ε-Kronecker sets (see Propositions 2.7.1, 2.7.2
and 2.7.4); for other classes of I0 sets see Theorem 5.3.9. Example 1.5.2
appeared first in [129, p. 178].2

2 Méla writes that “rapellons” there refers to an unpublished part of his thèse [131].
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Periodic Extension. The subject of I0 sets began with a question of Mar-
czewski and Ryll-Nardzewski [137]: Does there exist an infinite subset {tn}
of R with the property that for every choice εn = ±1 there exists a periodic
function f such that f(tn) = εn for all n? Mycielski [137] showed that every
Hadamard3 subset 0 < t1 < t2 < · · · with ratio q > 3 had that property.
Subsequently, Lipiński [121] showed that q = 3 was possible. If q ≤ 2 then
there is a choice of εj = ±1 for which there is no continuous periodic
f : R→ R such that f(nj) = εj for all j [168].

In [122] Lipiński constructed a union E of intervals tending to infinity such
that every uniformly continuous function on E has a periodic extension to all
of R. He showed that the set of periods of the extensions of a given function
has cardinality c = |R| (it always has Lebesgue measure zero [79]). Versions
of these periodic extension results for R

n appear to be unknown [P 18].
It was soon apparent that studying almost periodic extensions (defined

in Chap. 3) would be more fruitful than periodic ones. (For example, the
restriction to Z of a periodic function on R is not always periodic.) This led
to the interest in I0 sets, originally defined by Hartman and Ryll-Nardzewski
[81] as the sets E with the property that every bounded function on E was
the restriction of an almost-periodic function.

1.7 Exercises

Exercise 1.7.1. Suppose E ⊂ N is Hadamard.

1. Show that supN |E ∩ [N, 2N ]| <∞.
2. Prove that if F ⊂ N is finite, then E ∪F is Hadamard.

Exercise 1.7.2. Suppose E ⊂ N is Hadamard with ratio q > 1 and q′′ < q <
q′ <∞.

1. Prove that E is a finite union of Hadamard sets with ratio q′.
2. Show that for every n ∈ N, there is a finite set F ⊂ E such that (E�F)+n

is Hadamard with ratio q′′.

Exercise 1.7.3. Let E ⊂ Z, L ⊂ T and eix ∈ T. Suppose that every ϕ :
E → T can be interpolated by a measure in Md(L) (resp., M+

d (L)). Show
that every ϕ : E→ T can be interpolated by a measure in Md(L · eix) (resp.,
M+
d (L · eix)).

Exercise 1.7.4. The set E ⊂ Z � {0} is called quasi-independent if when-
ever m1, . . . ,mN are distinct elements of E and e1, . . . , eN ∈ {−1, 0, 1}, then∑
enmn = 0 implies all enmn = 0. E is dissociate if wheneverm1, . . . ,mN are

distinct elements of E and e1, . . . , eN ∈ {−2,−1, 0, 1, 2}, then
∑
enmn = 0

implies all enmn = 0.

3 We define “Hadamard set” in R exactly as in N.



1.7 Exercises 17

Suppose E is a Hadamard set with ratio q. Show

1. E need not be either dissociate or quasi-independent.
2. E is quasi-independent if q ≥ 2.
3. E is dissociate if q ≥ 3.
4. Every Hadamard set is a finite union of dissociate sets.

Exercise 1.7.5. 1. Suppose ω is a real measure. Show that ω̂(γ) = ω̂(γ−1)
for all γ ∈ Γ.

2. Show that for any measure μ, ̂̃μ = μ̂.
3. Show that if E is an I0 set and the interpolation can be done with a

real (or non-negative), discrete measure supported on a symmetric set U ,
then the same is true for E−1.

Exercise 1.7.6. Let E ⊆ Γ, U be a symmetric subset of G, ε < 1 and
N ∈ N. Assume that for each ϕ : E→ T (resp., ϕ : E→ {−1, 1}) there exists
x1, . . . , xN ∈ U and c1, . . . , cN ∈ Δ (resp., ∈ [0, 1]) with

∣
∣
∣
∣
∣
ϕ(γ)−

N∑

n=1

cnγ(xn)

∣
∣
∣
∣
∣
< ε for all γ ∈ E.

Show that for every δ > 0 there is a M = M(δ, ε,N) such that for each
ϕ : E → Δ (resp., [−1, 1]) there exist y1, . . . , yM ∈ U and d1, . . . , dM ∈ Δ
(resp., ∈ [0, 1]) with

∣
∣
∣
∣
∣
ϕ(γ)−

M∑

m=1

dmγ(ym)

∣
∣
∣
∣
∣
< δ for all γ ∈ E.

Exercise 1.7.7. Let E,Ek, q be as in Proposition 1.4.2.

1. Show that for each k ≥ 1 there exist 1 < qk < 2 and constant c = c(q, k)
such that (1.4.2) holds for k and qk < q.

2. Show that for each k ≥ 1 there exists 1 < qk < 3 such that if qk < q,
then Z � Ek contains increasingly large subsets of consecutive integers
between successive elements of E.

Exercise 1.7.8. Prove that if the integers aj of Proposition 1.4.2 are allowed
to take on values in [−L,L] for an integer L ≥ 2, then there exist qk,L < L+1
and constant c for which (1.4.2) holds when q > qk,L.

Exercise 1.7.9. This exercise investigates Riesz products.
Suppose E is a Hadamard set with ratio q ≥ 3. Suppose −1 ≤ ak ≤ 1 for

k = 1, 2, . . . and let pK(x) =
∏K
k=1(1 + ak cos(nkx)).

1. Show pK ≥ 0, p̂K(0) = 1 and ‖pK‖1 = 1.
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2. Prove the measures pKdm (where dm denotes normalized Lebesgue mea-
sure on T) converge weak* to a probability measure μ on T. Determine
the Fourier transform of μ. (This measure is called a Riesz product.)

3. Show μ ∈ L2(T) if and only if
∑
a2k <∞.

4. Show μ is a continuous measure.
5. Prove that every bounded function on E is the restriction of the Fourier–

Stieltjes transform of a non-negative measure. (This means that E is a
Sidon set.)

6. Prove Theorem 1.2.6. Hint: For any trigonometric polynomial f ,
∑
f̂ μ̂ =∫

fdμ.



Chapter 2

ε-Kronecker Sets

ε-Kronecker sets defined. Are I0. Can be found in most infinite subsets of a
discrete group. Defined by approximating ±1. Arithmetical properties inves-
tigated. Have small sums.

2.1 Introduction

In this book we explore generalizations of Hadamard sets, both in Z and in
discrete abelian groups other than Z. One such generalization is the notion
of an ε-Kronecker set, a set E with the property that for every ϕ : E → T

there exists x ∈ G such that |ϕ(γ)− γ(x)| < ε for all γ ∈ E.
Hadamard sets in Z with suitably large ratio are examples of ε-Kronecker

sets (with ε depending on the ratio), but not all ε-Kronecker sets in Z are
finite unions of Hadamard sets. Independent sets of characters (defined in
the introduction) of sufficiently large order are another important class of
ε-Kronecker sets. An ε-Kronecker set with ε <

√
2 is an I0 set, and this is

sharp. Thus, we have a particular interest in the case ε <
√

2. These facts
and other basic properties are established in Sect. 2.2 and 2.3.

In Z, infinite ε-Kronecker sets exist for each given ε > 0; just take a
Hadamard set with large enough ratio. In contrast, Γ = D̂ contains no
ε-Kronecker subsets if ε ≤

√
2. In Sect. 2.4 we will see that whenever E

is an infinite set in a group that does not contain “too many” elements of
order two, then E contains a (1+ε)-Kronecker subset of the same cardinality.
If the torsion subgroup of Γ is finite, as with Γ = Z, then every infinite subset
of Γ contains an ε-Kronecker subset of the same cardinality, for each ε > 0.

The related problem of interpolating arbitrary choices of signs, rather than
all complex numbers of modulus 1, is investigated in Sect. 2.5. Conditions are
given which ensure that this formally weaker interpolation implies the set is
actually ε-Kronecker. Those ideas will be used in Sect. 9.3 to show that if Γ

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 2,
© Springer Science+Business Media New York 2013

19



20 2 ε-Kronecker Sets

does not contain too many elements of order 2, then every Sidon set in Γ is
characterized by the property of being proportionally ε-Kronecker.

Provided ε < 2, ε-Kronecker sets have arithmetic properties similar to
those possessed by Sidon sets (see Chap. 6). For instance, they do not contain
long arithmetic progressions or large squares. When ε <

√
2, their step length

must tend to infinity. Those properties are proven in Sect. 2.6. It is unknown
if every ε-Kronecker set, for ε < 2, is Sidon [P 4].
ε-Kronecker sets have product properties similar to those of Hadamard

sets, and these are discussed in Sect. 2.7. If E is ε-Kronecker, then E ·E does
not cluster at a continuous character, and the identity is the only continuous
character at which E · E−1 clusters. When ε is small (depending on N) the
closure of (E ∪E−1)N in the Bohr topology has zero Γ-Haar measure.

2.2 Definition and Interpolation Properties

Definition 2.2.1. Let U ⊆ G and ε > 0. A set E ⊆ Γ is ε-Kronecker(U) if
for every ϕ : E→ T there exists x ∈ U such that

|ϕ(γ)− γ(x)| < ε for all γ ∈ E. (2.2.1)

Weak ε-Kronecker(U) sets E are the same as ε-Kronecker(U) sets, except
that the strict inequality in (2.2.1) is replaced with ≤. When U = G we omit
the writing of “(G)”. The subset E is called Kronecker if it is ε-Kronecker
for all ε > 0. By the Kronecker constant of E we mean

ε(E) = inf{ε : E is weak ε-Kronecker}.

A compactness argument shows that if E is ε-Kronecker(U) for all ε > ε0,
then E is weak ε0-Kronecker(U).

Remark 2.2.2. Every subset E of Γ is trivially weak 2-Kronecker. If 1 ∈ E
this cannot be improved, and thus our interest is in ε < 2. The case ε <

√
2

is particularly interesting, as will be seen in what follows.

It is often convenient to measure angular distances, that is distances in
the metric space of the quotient group R/(2πZ), rather than the absolute
value metric from C restricted to T = {z ∈ C : |z| = 1}. Thus, we denote by
d the usual metric in the quotient space, R/(2πZ):

d(θ, φ) = inf{|θ − φ+ 2πk| : k ∈ Z}, for θ, φ ∈ R.

Of course, d(θ, φ) ∈ [0, π] for all θ, φ ∈ R. Given t ∈ T, we let arg(t) denote
the element of [0, 2π) satisfying t = ei arg(t). This identifies T with [0, 2π).

Definition 2.2.3. A set E ⊆ Γ is angular ε-Kronecker(U) if for every
{θγ}γ∈E ∈ [0, 2π)E there exists u ∈ U such that
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d(arg(γ(u)), θγ) < ε for all γ ∈ E.

It is said to be weak angular ε-Kronecker(U) if the strict inequality is replaced
with ≤. Lastly, denote by α(E) the angular Kronecker constant

α(E) = inf{ε : E is weak angular ε-Kronecker}.

It is easy to see that E is angular ε-Kronecker if and only if E is |1− eiε|-
Kronecker. Consequently, angular ε-Kronecker for some ε < π is equivalent
to ε-Kronecker for some ε < 2 and angular ε-Kronecker for some ε < π/2 is
equivalent to ε-Kronecker for some ε <

√
2.

Here are some easy facts whose proofs are left for the reader.

Lemma 2.2.4. 1. If E is (weak) ε-Kronecker, then so is E−1.
2. If E is (weak) ε-Kronecker(U) and x ∈ G, then E is (weak) ε-Kroneck-

er(x · U).
3. E ⊆ Z is ε-Kronecker if and only if nE is ε-Kronecker for all n �= 0.

Remarks 2.2.5. (i) The class of ε-Kronecker sets is not closed under trans-
lation since a set that contains the identity element is no better than weak
2-Kronecker. On the other hand, a Baire category theorem argument (see Ex-
ercise 2.9.1 (3)) shows that if Γ is countable and has no elements of finite
order, then Γ� {1} is 2-Kronecker.

(ii) An ε-Kronecker set E with ε ≤
√

2 cannot contain a character of order
two since that character can take on only real values. Such an ε-Kronecker
set E must also satisfy E ∩E−1 = ∅.

2.2.1 Examples of ε-Kronecker Sets

It is immediate from Lemma 1.3.1 that Hadamard sets are ε-Kronecker for
suitable ε. Indeed, with the terminology of this chapter, Lemma 1.3.1 may
be restated as:

Proposition 2.2.6. If E ⊆ Z is a Hadamard set with ratio q, then E is weak
angular ε-Kronecker with ε = π/(q − 1).

Of course, this result is only of interest if q > 2 and only guarantees an
ε-Kronecker set with ε <

√
2 when q > 3.

Since every Hadamard set is a finite union of Hadamard sets with large
ratio, it follows that every Hadamard set is a finite union of ε-Kronecker sets,
whatever the choice ε > 0. The converse is false.

Example 2.2.7. A set E ⊆ N with the property that for each ε > 0 there is a
finite subset F ⊆ E such that E�F is ε-Kronecker, but E is not a finite union
of Hadamard sets: To construct such a set, inductively choose finite sets of
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positive integers, Ej , of increasing cardinality, with Hadamard ratios tending
to infinity, and an increasing sequence of positive integers mj satisfying the
conditions

1 <
minEj+1

mj
→∞ and 1 <

mj

maxEj
→∞.

Put E =
⋃
j(mj + Ej). The sets Fj = mj + Ej are disjoint since each

element of Fj+1 is greater than every element of Fj . If nj = maxEj and
lj = minEj , then

nj +mj

lj +mj
≤ nj
mj

+ 1→ 1.

Thus, each Hadamard set will meet only a finite number of the sets Fj in more
than one point. That proves E cannot be a finite union of Hadamard sets.

But given any number q > 1, the assumptions on Ej and mj certainly
ensure that there is an index J such that the set {mj}∞j=J ∪ (

⋃∞
j=J Ej) is

a Hadamard set with ratio at least q. By Proposition 2.2.6, for each ε > 0
there exists J such that {mj}∞j=J ∪ (

⋃∞
j=J Ej) is an ε/2-Kronecker set. That

⋃∞
j=J Fj is ε-Kronecker is now a straightforward matter of approximating 1

on the mj ’s and ϕ on each Ej .

A specific instance of this occurs with Ej = {32j
2
k : k = 1, . . . , j} and

mj = 3(j+1)2j
2

.

Other examples of ε-Kronecker sets are the independent sets, defined on
p. 1. Before stating the precise Kronecker properties of independent sets, we
give a very useful lemma whose proof is asked for in Exercise 2.9.4.

Lemma 2.2.8. Let E ⊆ Γ, ε > 0 and Λ ⊆ Γ be a subgroup.

1. Let q : Γ→ Γ/Λ be the quotient homomorphism. If q is one-to-one on E
and q(E) is (weak) ε-Kronecker, then E is (weak) ε-Kronecker.

2. If E ⊆ Λ then E is (weak) ε-Kronecker as a subset of Γ if and only if it
is (weak) ε-Kronecker as a subset of Λ.

Proposition 2.2.9. Let E ⊆ Γ be independent with all its elements having
order at least N . Then E is weak angular π/N -Kronecker.

Proof. Let 〈E〉 denote the subgroup of Γ generated by E. For each γ ∈ E,
let Γγ = 〈γ〉 be the cyclic subgroup of Γ generated by γ. The independence

of E implies that 〈E〉 =
⊕

γ∈E Γγ . Its dual group,
∏
γ∈E Γ̂γ , is a quotient of

G. By the lemma above, there is no loss of generality in assuming Γ = 〈E〉
and that G =

∏
γ∈E Γ̂γ .

Let ϕ : E → [0, 2π). Since each γ ∈ E has order at least N , Γγ is either
Z or Zn, the cyclic group of order n, for some n ≥ N . In either case, there is
some xγ ∈ Γγ such that

d(arg γ(xγ), ϕ(γ)) ≤ π/N,
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the worst case occurring when Γγ = ZN . Let xγ = e if γ /∈ E and put
x = (xγ) ∈ G.

For γ ∈ E, d(arg γ(x), ϕ(γ)) ≤ π/N , and thus E is weak angular π/N -
Kronecker. ��

Corollary 2.2.10. If E is independent and all elements of E have order at
least three, then E is weak 1-Kronecker. If all the elements of E have infinite
order, then E is ε-Kronecker for all ε > 0.

Remark 2.2.11. If G =
∏
Gα is a product of finite cyclic groups, then the

set of projections onto the factor groups Gα is an independent set in Γ. No
subset of two or more elements in Z is independent.

Sets with weaker “independence-like” properties can also be ε-Kronecker,
as the next example illustrates.

Example 2.2.12. A non-independent weak 1-Kronecker set: TakeG = Z2⊕ZN
3

and E = {(χ, γn)} ⊂ Γ where χ is not the identity of Z2 and {γn}∞1 is an
independent subset in the dual of ZN

3 (such as the set of projections on the
factors). Then E is not independent (for trivial reasons), but E is weak 1-
Kronecker. See Exercise 2.9.3.

2.2.2 ε-Kronecker Sets Are ε-Kronecker(U)

We now give a very useful result.

Theorem 2.2.13. Let ε > 0 and suppose E is a weak ε-Kronecker subset of
Γ. Then for each open U ⊆ G there exists a finite set F such that E� F is
weak ε-Kronecker(U).

Remark 2.2.14. In the proof of Theorem 2.2.13 we will here, as elsewhere,
identify the set of functions ϕ : E → T with the compact space T

E. That
product space has the topology of coordinatewise convergence (see p. 209).
It is convenient that this topology is “the same” as the weak* topology for
(Fourier-Stieltjes transforms of) bounded subsets of measures on G. Each
open U ⊆ T

E contains a subset of the form {ψ} × T
E�F, where F ⊆ E

is finite and ψ ∈ T
F. Similar conclusions hold for the functions mapping

E→ X , where X is any of [0, 1], [−1, 1], {−1, 1} or the closed unit ball in C.

Proof (of Theorem 2.2.13). By replacing U with a smaller set we may assume
U is compact. Since G is compact, there exist x1, . . . , xN ∈ G such that
G ⊆

⋃N
n=1 xnU . For each n let

Xn = {ϕ : E→ T : ∃x ∈ xnU such that |ϕ(γ)− γ(x)| ≤ ε ∀γ ∈ E}.

We give T
E the product topology, making it a compact group, and observe

that each Xn is closed in T
E. To see this, suppose that ϕβ ∈ Xn and that
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uβ ∈ xnU satisfy |ϕβ(γ) − γ(uβ)| ≤ ε for all γ ∈ E. Suppose also that
ϕβ → ϕ pointwise on E (this being the topology on T

E). Let u ∈ xnU
be an accumulation point of the uβ. Passing to a subnet, we may assume
|ϕ(γ)− γ(u)| = limβ |ϕ(γ)− γ(uβ)| ≤ ε, so ϕ is in Xn.

The fact that E is weak ε-Kronecker ensures that T
E =

⋃N
n=1Xn, and

hence the Baire category theorem for compact Hausdorff spaces implies there
exists n such that Xn has interior in T

E.
By Remark 2.2.14, Xn contains a set of the form {ψ} × T

E�F for some
finite set F and ψ ∈ T

F. Therefore, for every ϕ : (E � F) → T, there exists
u ∈ xnU such that |ϕ(γ)− γ(u)| ≤ ε for all γ ∈ E� F. Thus, E� F is weak
ε-Kronecker(xnU). By Lemma 2.2.4(2), E� F is weak ε-Kronecker(U). ��

As remarked earlier, the property of being ε-Kronecker, for ε < 2, is not
preserved under translation. However, the following partial translation result
is instructive.

Corollary 2.2.15. Suppose that E is weak ε-Kronecker and that ε′ > ε. Let
γ ∈ Γ. Then there is a finite set F ⊆ Γ such that γ(E� F) is ε′-Kronecker.

Proof. Let U = {x ∈ G : |γ(x) − 1| < ε′ − ε}. This is an open set so
by Theorem 2.2.13 there is a finite set F such that E�F is weak ε-Kroneck-
er(U).

Given ϕ : γ(E � F) → T, define ψ : E � F → T by ψ(χ) = ϕ(γχ). Pick
x ∈ U such that |ψ(χ)− χ(x)| ≤ ε for all χ ∈ E� F. It is easy to see that

|ϕ(γχ)− γχ(x)| ≤ |ψ(χ)− χ(x)| + |χ(x)− γχ(x)| < ε′. ��

Remark 2.2.16. If γ has finite order, there is even a finite set F such that
γ(E � F) is weak ε-Kronecker. To see this, just take as U the open set
U = {x : γ(x) = 1} (see Exercise C.4.3 (2)) and repeat the argument.

It is easy to see that if E ⊂ N is a Hadamard set and m ∈ N, then there
exists a two-element set F such that (E � F) ∪ {m} is Hadamard with the
same ratio as E. We have the following analogue for ε-Kronecker sets.

Corollary 2.2.17. Suppose that E is weak ε-Kronecker. Assume that ε′ > ε
and that γ has infinite order. Then there is a finite set F such that (E�F)∪
{γ} is ε′-Kronecker.

Proof. Fix 0 < τ < ε′ − ε. Since γ has infinite order, γ(G) is dense in T. We
pick a finite subset X ⊆ G such that for every t ∈ T there exists some x ∈ X
with |γ(x) − t| < τ. For each x ∈ X , choose a neighbourhood Ux of x such
that |γ(x) − γ(u)| < ε for all u ∈ Ux. By Theorem 2.2.13, for each x ∈ X ,
there exists a finite subset Fx such that E�Fx is weak ε-Kronecker(Ux). Let
F be the finite set F =

⋃
x∈X Fx.
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Let ϕ : (E � F) ∪ {γ} → T and pick x ∈ X such that |ϕ(γ) − γ(x)| < τ .
Select u ∈ Ux such that |ϕ(χ) − χ(u)| ≤ ε for all χ ∈ E� Fx. In particular,
this inequality holds for all χ ∈ E� F. Furthermore,

|ϕ(γ)− γ(u)| ≤ |ϕ(γ)− γ(x)|+ |γ(x)− γ(u)| < τ + ε < ε′,

and so (E� F) ∪ {γ} is ε′-Kronecker. ��

2.3 The Relationship Between Kronecker Sets
and I0 Sets

2.3.1 ε-Kronecker Sets Are I0 if ε <
√
2

The standard iteration argument, Corollary 1.3.4, immediately shows that ε-
Kronecker sets with ε < 1 are I0. In fact, ε <

√
2 will suffice, as the next result

demonstrates. Example 2.3.6 shows that
√

2 is sharp with this property. In
contrast, in Example 2.5.6, we construct an I0 set that is not a finite union of
ε-Kronecker sets for any choice of ε <

√
2. It is not known if such an example

exists in Z [P 7].
Recall that Δ is the closed unit ball in C.

Theorem 2.3.1. Suppose U is a symmetric e-neighbourhood in G. Let ε <√
2 and let E ⊆ Γ be an ε-Kronecker(U) set. Then

1. E is I0 and the interpolating measure can be chosen to be positive and
concentrated on U .

2. E ∪ −E is I0 and the interpolating measure can be chosen concentrated
on U .

3. Furthermore, in (1) (resp., (2)) for each ε′ > 0 there exists N , depending
only on ε and ε′, such that for each ϕ : E→ Δ (resp., ϕ : E∪E−1 → Δ)
there exists cn ∈ [0, 1] (resp., cn ∈ Δ) and xn ∈ U such that |ϕ(γ) −
∑N

1 cnγ(xn)| < ε′ for all γ ∈ E (resp., γ ∈ E ∪E−1).

Remark 2.3.2. In the terminology of Chap. 3, (1) implies that an ε-Kronecker
set with ε <

√
2 is an FZI0(U) set and item (3) implies that it is FZI0(U)

with bounded length depending only on ε.

Proof (of Theorem 2.3.1). (1) Since ε <
√

2, E is angular τ -Kronecker for
some τ < π/2. We approximate the real and imaginary parts of ϕ : E → Δ
separately.

To begin, let ϕ : E → {−1, 1} be given. The angular τ -Kronecker prop-
erty gives us an x ∈ U with d(argϕ(γ), arg γ(x)) < τ for all γ ∈ E. Then
elementary trigonometry shows |ϕ(γ)−Re(γ(x))| < 1− cos τ = ε2/2 < 1.
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The standard iteration, Corollary 1.3.4, tells us that given any ϕ : E →
[−1, 1] there exists μ ∈M+

d (U) with ϕ(γ) = μ̂(γ) on E and norm depending
only on τ .

Now consider ϕ ∈ Ball(�∞(E)) and choose μ ∈ M+
d (U) such that μ̂ =

Reϕ on E. To interpolate the imaginary iImϕ(γ) we choose u1 ∈ U such
that d(arg γ(u1), rγ) < τ , where rγ = π/2 if Imϕ(γ) ≥ 0 and rγ = −π/2
otherwise. Using the first part of the argument, obtain ν ∈M+

d (U) such that
ν̂(γ) = −Reγ(u1) on E. Then (ν + δu−1

1
)/2 ∈M+

d (U) and for γ ∈ E

∣
∣
∣
∣
∣
∣

ν̂ + δ̂u−1
1

(γ)

2
− iImϕ(γ)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
Imγ(u1)

2
− Imϕ(γ)

∣
∣
∣
∣ ≤ 1− cos τ

2

since Imγ(u1)/2 ∈ ±[(cos τ)/2, 1/2], depending on the sign of Imϕ(γ). The
measure μ0 = μ + (ν + δu−1

1
)/2 ∈ M+

d (U) and satisfies |ϕ(γ)− μ̂0(γ)|
≤ 1 − (cos τ)/2 on E. An application of Proposition 1.3.2 (1) will complete
the proof.

(2) Let ϕ ∈ Ball(�∞(E∪E−1)). We may assume that ϕ is real. We use the
preceding to find μ, ν ∈M+

d (U) such that

μ̂ = ϕ on E and ν̂ = iϕ on E.

Let ω1 = 1
2 (μ − iν). Then ω̂1 = ϕ on E, but ω̂1 = 0 on E−1. Similarly we

can find ω2 ∈ Md(U) such that ω̂2 = ϕ on E−1 and ω̂2 = 0 on E. Then
ω1 + ω2 ∈Md(U) and ω̂1 + ω̂2 = ϕ on E ∪E−1.

(3) is Exercise 2.9.7. ��

Remark 2.3.3. The norm of the interpolating measure in both parts of the
theorem depends only on ε. This observation, together with Theorem 2.2.13,
proves the following corollary:

Corollary 2.3.4. Suppose ε <
√

2 and E is an ε-Kronecker set. There exists
C = C(ε) such that for every non-empty, open U ⊆ G there is a finite set
�L = �L(U) such that every element of Ball(�∞(E� �L)) can be interpolated by
μ ∈M+

d (U) and ‖μ‖ ≤ C(ε).

2.3.2 An Example of a
√
2-Kronecker Set That

Is a Sidon Set but Not I0

The following lemma shows, in particular, that any two-element set of positive
integers is

√
2-Kronecker.



2.3 The Relationship Between Kronecker Sets and I0 Sets 27

Lemma 2.3.5. Let 1 ≤ m < n < ∞. Let I be a closed interval of length
at least 4π/m and w �= z ∈ T. There is a closed subinterval J ⊆ I of length
at least π/(8mn), such that for all θ ∈ J both

|eimθ − w| <
√

2 and |einθ − z| <
√

2.

Proof. Since the function x �→ eimx is 2π/m-periodic, the length of I ensures
that there is some y ∈ I having eimy = w and y + θ ∈ I whenever θ ∈
[−π/m, π/m]. Let β = arg(einy z ).

If β ∈ [0, π/2], take J = [y − 4π
9n , y −

π
9n ] ⊆ I. If x ∈ J , then x = y − θ for

some θ ∈ [ π9n ,
4π
9n ], and since m/n ≤ 1 and nθ < π/2,

|eimx − w| ≤ |ei4π/9 − 1| <
√

2.

Also, since β − nθ ∈ (−π/2, π/2), it follows that

|einx − z| = |eiβe−inθ − 1| <
√

2.

If β ∈ [π/2, π], take J = {y − π
2n (1 + θ) : θ ∈ [ 1

4m ,
1

2m ]} ⊆ I. Thus, if
x = y − π

2n (1 + θ) ∈ J ,

|eimx − w| = |e− imπ
2n (1+θ) − 1| <

√
2.

Since β−π
2 (1+θ) ∈ (−π/2, π/2), we have |einx−z| = |eiβe−iπ(1+θ)/2−1| <

√
2.

The cases β ∈ [−π,−π/2] and [−π/2, 0] are similar. ��

Example 2.3.6. A
√

2-Kronecker set that is Sidon but not I0: Let E be the

set
∞⋃

j=1

{Nj , Nj + j} where N1 = 2 and the Nj are chosen inductively so that

4π

Nj+1
<

π

8Nj(Nj + j)
.

Let ϕ : E → T be given, say ϕ(Nj) = wj and ϕ(Nj + j) = zj . According
to Lemma 2.3.5, there is a closed interval J1 of length π/(8N1(N1+1)) = π/48
such that for all x ∈ J1,

|eiN1x − w1| <
√

2 and |ei(N1+1)x − z1| <
√

2.

Because length J1 > 4π/N2, there is a closed subinterval J2 ⊆ J1 of length
at least π/(8N2(N2 + 2)) and such that for all x ∈ J2, |eiN2x−w2| <

√
2 and

|ei(N2+2)x − z2| <
√

2. Proceed inductively to find closed nested intervals Jk
such that for all x ∈ Jk,

|eiNkx − wk| <
√

2 and |ei(Nk+k)x − zk| <
√

2.
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Then every x ∈
⋂

k

Jk will satisfy |ϕ(n) − einx| <
√

2 for all n ∈ E, which

shows that E is at least
√

2-Kronecker.
The two subsets, {Nj}j and {Nj + j}j, are both Hadamard and therefore

I0 (Theorem 1.3.9), which implies Sidon. Since a finite union of Sidon sets is
Sidon, as we shall see in Corollary 6.3.3, E is Sidon.

But E is not I0 by the same reasoning as given in Example 1.5.2. The
disjoint subsets {Nj} and {Nj + j} do not have disjoint closures in the Bohr
compactification of Z, so their union cannot be I0 (see Corollary 3.4.3). Since
it is not I0, this also shows E can be no better than

√
2-Kronecker because

of Theorem 2.3.1.

2.4 Presence of ε-Kronecker Sets

It is natural to ask which groups Γ contain large ε-Kronecker sets for any (or
all) ε <

√
2. Of course, if Γ contains only elements of order two, then it does

not contain an ε-Kronecker set with ε ≤
√

2 since characters of order two can
only take on the values ±1. Similarly, if Γ contains infinitely many elements
of order two, then not all infinite subsets will contain infinite

√
2-Kronecker

sets.
In this section it will be shown that provided the subset E does not have

“too many” elements of order 2 (as defined below), then E will contain a weak
1-Kronecker set of the same cardinality. Algebraic methods will be used to
prove this.

Definition 2.4.1. Let Γ2 be the subgroup generated by the elements of order
2 in Γ and q2 the quotient mapping Γ→ Γ/Γ2. The set E ⊆ Γ is said to be
2-large if | q2(E)| < |E|.
Remark 2.4.2. If E ⊆ Γ is an infinite, independent set that is not 2-large,
then the subset of E consisting of the elements of order 3 or more has the
same cardinality as E. It is weak 1-Kronecker by Corollary 2.2.10.

Here is the main existence result.

Theorem 2.4.3. Let E ⊆ Γ be infinite and not 2-large. Then there exists a
weak 1-Kronecker set F ⊆ E such that |F| = |E|.

To prove Theorem 2.4.3, we will consider several different discrete abelian
groups. The proof proper begins on p. 30.

2.4.1 Two Countable Groups: C(p∞) and Q

Let p be a prime and denote by C(p∞) the discrete p-subgroup of T, that
is, the group of all pnth-roots of unity. An important classical fact in group
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theory is that every abelian group is isomorphic to a subgroup of

⊕

α

Qα ⊕
⊕

β

C(p∞β ), (2.4.1)

where Qα are copies of the rationals [165, Theorem 10.30]. We begin with Q

and C(p∞).

Proposition 2.4.4. Let ε > 0. Each infinite subset of C(p∞), or Q, contains
an infinite ε-Kronecker set.

Proof. First, suppose E is an infinite subset of C(p∞). Note that each integer,
m, defines a character on C(p∞) by the rule, e2πik/p

n → e2πikm/p
n

. Each
element of the coset m+pnZ acts in the same way on the pnth-roots of unity.

Choose N so large that |e2πi/pN − 1| < ε/2. Take γj ∈ E so that γj =
e2πikj/p

nj
where n1 ≥ N , nj+1 − nj ≥ N for j ≥ 1 and 1 ≤ kj < p. We will

prove that the set {γj} is ε-Kronecker.
Let tj ∈ T. Since k1 and pn1 are coprime, the set {e2πik1m/pn1

: m ∈ Z}
consists of all the pn1th roots of unity and consequently there is an integer
m1 such that

|e2πik1m1/p
n1 − t1| ≤ |e2πi/p

n1 − 1| < ε/2.

Of course, the same inequality is obtained if m1 is replaced by any element
of the coset m1 +pn1Z. By similar arguments, we can choose integer m2 with

|e2πik2(m1+m2p
n1)/pn2 − t2| ≤ |e2πik2m2/p

n2−n1 − t2e−2πik2m1/p
n2 | < ε/2,

as well as

|e2πik1(m1+m2p
n1)/pn1 − t1| < ε/2.

Again, the same inequalities are obtained if m2 is replaced by any element
of the coset m2 + pn2Z. Continuing in this fashion produces a sequence of
integers, m′

j , with

|e2πik�m
′
j/p

n� − t�| < ε/2

for all � ≤ j. If g is an accumulation point of
{
m′
j

}
in the compact dual group

of C(p∞), then |γj(g)− tj | ≤ ε/2, and hence {γj} is ε-Kronecker.
Now consider the case when the discrete dual group is Q. Choose q so large

that every Hadamard set in Q or R, with ratio at least q is ε/3-Kronecker.
(See Exercise 2.9.13.)

If E ⊆ Q is an unbounded set of real numbers, then we can find a subset
{γj} ⊆ E with γj+1/γj ≥ q for all j, and such a set is ε-Kronecker. Otherwise,
E contains a sequence {γj} with limit r ∈ R, in the usual topology of R. By
passing to a further subsequence, if necessary, we can assume (γj+1 − r)
/(γj − r) ≤ 1/q. Then each finite set {γn − r, γn−1 − r, . . . , γ1 − r} ⊆ R

is Hadamard with ratio at least q, and thus is ε/3-Kronecker. It is easy to
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see (Exercise 2.9.20) that the Kronecker constant of a set is the supremum
of the Kronecker constants of its finite subsets. From that we conclude that
F = {γj − r : j ≥ 1} is weak ε/3-Kronecker in the dual, R̂d, of R with the
discrete topology. By Corollary 2.2.15, there exists a finite set F′ such that
(F � F′) + r is ε/2-Kronecker. This last set is in Q, so it is ε/2-Kronecker
there, as well, by Lemma 2.2.8. ��

2.4.2 Proof of Theorem 2.4.3

Let Γ0 denote the torsion subgroup of Γ, that is, the largest subgroup of
Γ consisting only of elements of finite order, and let q : Γ → Γ/Γ0 be the
natural quotient homomorphism. Then Γ/Γ0 has no non-trivial elements of
finite order.

Case I: e := |E| = | q(E)|

We may assume that Γ has no elements of finite order since by Lemma 2.2.8, if
we find an ε-Kronecker subset of q(E) we may lift it to an ε-Kronecker subset
of E. By (2.4.1), we may also assume that Γ is a subgroup of

⊕
�∈B Q�, where

the Q� are copies of the rational numbers and for every � there is an element
γ ∈ E such that the projection, Π�(γ), onto Q� is non-trivial. For γ ∈ E, let

B(γ) = {� ∈ B : Π�(γ) �= 0}. (2.4.2)

Each B(γ) is finite and B =
⋃
γ∈EB(γ).

Case Ia: Countable E

If some Π�(E) is infinite, then Lemma 2.2.8 and Proposition 2.4.4 imply that,
for each ε > 0, E has an ε-Kronecker subset with the same cardinality as E.
Otherwise, we may inductively find γj ∈ E such that B(γj+1) �⊆

⋃j
k=1 B(γk).

Because the γj have infinite order, it is immediate that {γj}∞j=1 is an inde-
pendent set and hence is ε-Kronecker for all ε > 0 by Corollary 2.2.10.

Case Ib: Uncountable E

Let S be the set of subsets of E that are independent and partially order S by
inclusion. Since independence is characterized by properties of finite subsets,
it follows that every chain in S has an upper bound, namely the union of the
sets in the chain. Use Zorn’s lemma to find a maximal independent subset,
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F, of E. Such a set will contain only elements of infinite order and we claim
there will be e of them.

To count the elements of F, let H = 〈F〉, the group generated by F, so
|H| ≤ ℵ0|F|. Observe that if χ ∈ E is non-trivial, then by the maximality of
F, there will be a positive integer m such that χm ∈ H. Let Hm = {χ ∈ E :
χm ∈ H}. The map χ → χm is one-to-one, and thus |Hm| ≤ |H| ≤ ℵ0|F|.
Because E ⊆ ∪∞m=1Hm ∪ {1}, it follows that |E| ≤ ℵ0|F|. Thus, |F| ≥ |E|.

Corollary 2.2.10 completes the proof, as in the countable subcase.

Case II: | q(E)| < e

Without loss of generality, we can assume that E generates Γ. Let F′ be a
maximal independent subset of Γ consisting of elements of infinite order. We
claim that |F′| < e. Indeed, q maps F′ one-to-one onto an independent set
of elements of infinite order since otherwise we would have elements γj ∈ F′

and integers L ≥ 1 and �j �= 0 such that
∏L

1 γ
�j
j ∈ Γ0, and so for some

m > 0, we would have
∏L

1 γ
m�j
j = 1, a contradiction. If |F′| = e, then

| q(E)| = | q(Γ)| ≥ |F′| = e, which we have assumed is not the case.
Then cardinal arithmetic tells us that |Γ/〈F′〉| = e, and the maximality of

F′ implies that Γ/〈F′〉 is a torsion group. Using Lemma 2.2.8, we see that it
will suffice to find a weak 1-Kronecker subset of q(E), and so we may assume
that Γ is a torsion group.

By (2.4.1), we may assume that Γ is a subgroup of
⊕

�∈B C(p∞� ), where
the index set B has the property that for every � ∈ B there is an element
γ ∈ E such that the projection Π�(γ) onto C(p∞� ) is non-trivial. Furthermore,
there must be e indices � such that Π�(E) contains an element of order at
least 3, for otherwise (it is a routine exercise to see that) E would be 2-large.

We continue to use the notation of (2.4.2). We will use induction if E is
countable and transfinite induction if E is uncountable. The reader will see
that the argument is identical, whether the induction is transfinite or not.

Let I be a well-ordered index set of cardinality |B|, with 1, 2, . . . the
first elements of I. Since E is not 2-large, E must contain an element of
order at least 3. Let λ1 ∈ E and �(1) ∈ B be such that the order of Π�(1)(λ1)
is at least 3. That starts the induction.

Suppose i > 1 and that we have found λi′ ∈ E for all 1 ≤ i′ < i such
that B(λi′ ) �⊆

⋃
k<i′ B(λk). If | {λi′ : 1 ≤ i′ < i}| = e, we stop. Otherwise,

we note that A =
⋃
i′<iB(λi′ ) also has cardinality less than e and that there

exist λ(i) ∈ E and �(i) ∈ B such that �(i) �∈
⋃
i′<iB(λ�(i′)) and Π�(i)(λi) has

order at least 3. That completes the inductive step.
Because there are e indices � such that Π�(E) contains an element of

order at least 3, the set F = {λ�(i) : i ≥ 1} must have the same cardinality e.
We now claim that F is weak 1-Kronecker. Again we use induction, transfinite
or not, depending on the cardinality of E. It will be convenient to assume
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that G =
∏
�∈B G�, where G� is the dual of C(p∞� ), � ∈ B. This assumption is

justified by Lemma 2.2.8. We shall abuse notation by using Π�(x) to denote
the �-coordinate of x for x ∈ G.

Let ϕ : F → T. Because Π�(1)(λ1) has order at least 3, it is possible to
choose x1 ∈ G�(1) such that |ϕ(λ1)−λ1(x1)| ≤ 1. Suppose now that i > 1 and
xi′ ∈

∏
k≤i′ G�(k) have been chosen for 1 ≤ i′ < i so that |ϕ(λk)−λk(xi′ )| ≤ 1

and

Π�(k)(xk) = Π�(k)(xi′ ), (2.4.3)

whenever 1 ≤ k ≤ i′ < i.
If i has an immediate predecessor, i′, we choose x ∈ G�(i) such that |ϕ(λi)−

λi(xi′x)| ≤ 1. Set xi = xi′x. Then (2.4.3) holds for 1 ≤ k ≤ i′ ≤ i.
If i is a limit ordinal, let x0 be the limit point of the xi′ as i′ → i. Such

a limit point exists because of (2.4.3). This ensures (2.4.3) holds with x0 in
place of xi′ . Now choose x ∈ G�(i) such that |ϕ(λi) − λi(x0x)| ≤ 1 and set
xi = x0x. It is clear that (2.4.3) now holds with i′ = i. Finally, let z = limi xi.
Then, |ϕ(γ)− γ(z)| ≤ 1, so F is indeed weak 1-Kronecker. ��

In Case I, note that more was actually proved.

Corollary 2.4.5. Suppose Γ0 is the torsion subgroup of Γ and q : Γ→ Γ/Γ0

is the quotient map. If E is infinite and | q(E)| = |E|, then for each ε > 0
and neighbourhood U ⊆ G there is an ε-Kronecker(U) set F ⊆ E, with the
same cardinality as E.

Proof. The proof of the Theorem case I shows the existence of ε-Kronecker
subsets, for any specified ε > 0, of the same cardinality as E. To obtain the
ε-Kronecker(U) set, just discard a suitable finite subset. ��

Corollary 2.4.6. Suppose the torsion subgroup of Γ is finite. If E is an infi-
nite set, then, for each ε > 0 and neighbourhood U ⊆ G, there is an ε-Kron-
ecker(U) set F ⊆ E, with the same cardinality as E.

2.5 Approximating Arbitrary Choices of ±1

It can be seen from the improved standard iteration, Corollary 1.3.3, that
each bounded function on E can be (exactly) interpolated with the Fourier–
Stieltjes transform of a discrete measure provided it is possible to approx-
imately interpolate all ±1-valued functions on E. But having this approxi-
mation property is clearly not sufficient to ensure that E is ε-Kronecker for
some ε <

√
2; just consider, for instance, the set of Rademacher functions

in D̂.
One could ask if there are conditions (perhaps onG or Γ) that would ensure

that the approximation of arbitrary choices of signs is enough to guarantee
the set E is ε-Kronecker. In this section, we give such criteria and consider



2.5 Approximating ±1 33

related questions. Later, in Sect. 4.4, we consider the case where arbitrary
signs can be interpolated exactly but outside of the ε-Kronecker context.

Let G2 be the annihilator of the subgroup, Γ(2), of all characters whose
order is a power of 2. Since G2 is the dual of the quotient group Γ/Γ(2),
which has no elements of order two, Lemma C.1.15 implies every element of
G2 has a square root. This will be significant in what follows.

Theorem 2.5.1. Let E ⊆ Γ and ε > 0. Suppose that for all choices of signs
{rγ}γ∈E ∈ Z

E
2 there exists an element g ∈ G2 such that d(arg γ(g), arg rγ) <

ε for all γ ∈ E. Then E is weak angular 2ε-Kronecker.

Proof. The key step in the proof is to show that for each positive integer k
and all choices of angles, {sγ}γ∈E, which are the arguments of 2kth roots of
unity, there exists some xk ∈ G2 such that

d(arg γ(xk), sγ) < (2− 2−k+1)ε for all γ ∈ E. (2.5.1)

This will be proven by an induction argument.
Suppose that (2.5.1) has been established. Fix ε′ > 2ε and choose k such

that π2−k−ε2−k+1+2ε < ε′. Since the angular distance between two adjacent
2kth roots of unity is 2π/2k, for each selection {θγ}γ∈E ∈ [0, 2π)E we can
choose arguments of 2kth roots of unity, {sγ}γ∈E, such that d(θγ , sγ) ≤ π2−k

for all γ. With xk chosen by (2.5.1) and γ ∈ E,

d(arg γ(xk), θγ) ≤ d(sγ , θγ) + d(arg γ(xk), sγ)

< π2−k − ε2−k+1 + 2ε < ε′.

Consequently, E is weak angular 2ε-Kronecker.
It only remains to verify (2.5.1). Since ±1 are the square roots of

unity, (2.5.1) holds for k = 1 by the hypothesis of the theorem. Proceed
by induction and assume the induction assumption is true for k. Let {sγ}γ∈E

be arguments of the 2k+1th roots of unity and consider {2sγ}, the argu-
ments of 2kth roots of unity. By the induction assumption, there is some
xk ∈ G2 such that for all γ ∈ E, d(arg γ(xk), 2sγ) < (2−2−k+1)ε. Since every
element of G2 is a square, there is some y ∈ G2 such that y2 = xk. Then
γ(y)2 = γ(xk), and hence the argument of γ(y) is either equal to arg γ(xk)/2
or arg γ(xk)/2 + π. Thus, for all γ ∈ E, either

d(arg γ(y), sγ) < (1− 2−k)ε

or
d(arg γ(y), sγ + π) < (1 − 2−k)ε.

In the first case, put rγ = 1 and in the second case, put rγ = −1. According
to the hypothesis of the theorem, there is some g ∈ G2 such that

d(arg γ(g), arg rγ) < ε for all γ ∈ E.
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Let xk+1 = gy ∈ G2. Since arg rγ is either 0 or π, it follows that either

d(arg γ(xk+1), sγ) ≤ d(arg γ(y), sγ) + d(arg γ(g), 0)

< (1− 2−k)ε + ε = (2− 2−k)ε,

or

d(arg γ(xk+1), sγ) ≤ d(arg γ(y), sγ + π) + d(arg γ(g), π)

< (1 − 2−k)ε+ ε = (2− 2−k)ε,

depending on whether it is the first or second case, and that completes the
induction step. ��

Remark 2.5.2. Suppose G = T = [−π, π) and assume the choice of g ∈ G2 =
T in the hypothesis of the theorem can be chosen from an open interval
U that is centred at 0. Then E is weak angular 2ε-Kronecker(2U). To see
this, argue as in the proof of the theorem but assume in the induction step
that the points xk can be chosen belonging to (2 − 2−k+1)U . This is true
by assumption for k = 1. For the induction step, note that we can simply
choose y = xk/2 ∈ (1 − 2−k)U, and then xk+1 = y + g ∈ (1 − 2−k)U + U ⊆
(2− 2−k)U ⊆ 2U .

An easy corollary follows from the theorem.

Corollary 2.5.3. Assume that Γ has no elements of order two and that for
some τ < π/4 and all choices of signs {rγ}γ∈E, there exists g ∈ G such that
d(arg γ(g), arg rγ) < τ for all γ ∈ E. Then E is weak angular ε-Kronecker
for some ε < π/2.

Proof. Since Γ has no elements of order two, G = G2. ��

In particular, if G is connected, then Γ has no elements of finite order, and
hence the corollary applies.

Theorem 2.5.1 can be generalized to the situation where an arbitrary choice
of signs is replaced by an arbitrary choice of (fixed) two elements in T with
angular distance π. The proof is asked for in Exercise 2.9.17.

Theorem 2.5.4. Let E ⊆ Γ, ε > 0 and θ ∈ [0, π). Suppose that for
each {rγ}γ∈E ⊆ {θ, θ + π}E there exists an element g ∈ G2 such that
d(arg γ(g), arg rγ) < ε for all γ ∈ E. Then E is weak angular 2ε-Kronecker.

Theorem 2.5.4 provides a geometric separation condition which ensures a
set is ε-Kronecker.

Corollary 2.5.5. Suppose there are two disjoint intervals, I, J ⊆ T, each
with arc length l < π. Assume that for each F ⊆ E there exists an element
g ∈ G2 such that γ(g) ∈ I for all γ ∈ F and γ(g) ∈ J for all γ ∈ E � F.
Then E is weak angular (π−m)-Kronecker, where m is the arc length of the
smaller of the two gaps separating I and J .
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Proof. Let θ and θ + π be the two points of distance π/2 from the centre of
the smaller of the two gaps. Since m ≤ π, by symmetry (and without loss of
generality), the angular distance from each point in interval I (respectively,
interval J) to θ (resp., θ + π) is at most (π −m)/2. The conclusion follows
from Theorem 2.5.4. ��

It is not enough for the set E, itself, to contain no elements of order two
for the approximation of arbitrary choices of signs (even exactly) to ensure
that E is ε-Kronecker for some ε <

√
2, as Example 2.5.6 shows. The set

there is also I0, but not a finite union of ε-Kronecker sets for any ε <
√

2.

Example 2.5.6. An I0 set that is not a finite union of ε-Kronecker sets: Let
E = {(j, πj) : j = 1, 2, . . .} ⊆ Z × D̂, where {πj} is the Rademacher set

in D̂. Notice E contains no elements of order two, although the subgroup it
generates clearly does. Of course, it is possible to interpolate an arbitrary
choice of signs, {rj}, exactly on E; just take the point (0, x) where πj(x) =
rj . By the standard iteration (applied to the real and imaginary parts of
candidate ϕ’s), this property is enough to ensure that E is I0.

But E is not a finite union of ε-Kronecker sets for any ε <
√

2. To prove
this, assume that E were such a union. Then one of the finitely many sets
would contain a net {(jβ, πjβ )} with jβ → 0 in the Bohr topology on Z.
Furthermore, because the subset {(jβ , πjβ )}β is (assumed to be) ε-Kroneck-
er, there would be (x, y) such that

|(jβ , πjβ )(x, y) − i| = |ei2πjβxπjβ (y)− i| < ε <
√

2 for all β. (2.5.2)

As jβ → 0, given a δ > 0, there is some β such that |ei2πjβx − 1| < δ. Since
πjβ (y) is either ±1, the inequalities (2.5.2) cannot simultaneously hold for
small enough δ.

However, E is
√

2-Kronecker. The argument is similar to the proof that
Z � {0} is 2-Kronecker; see Exercise 2.9.2.

2.6 Arithmetic Properties of ε-Kronecker Sets

2.6.1 Are ε-Kronecker Sets Sidon?

All ε-Kronecker sets with ε <
√

2 are I0 and hence Sidon. The situation for
ε ∈ [

√
2, 2) is less clear. Example 2.3.6 shows that a Sidon set can be

√
2-

Kronecker and not I0. We do not know if all
√

2-Kronecker sets are Sidon,
much less all ε-Kronecker sets with ε ∈ [

√
2, 2) [P 4] . Since the non-Sidon

set, Z� {0}, is 2-Kronecker (Remarks 2.2.5) the question is settled for ε = 2.
In this section, various arithmetic properties of ε-Kronecker sets, even for

ε ∈ [
√

2, 2), are established. In Sect. 6.3.2 it will be seen that Sidon sets also
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possess these properties, and thus the results that follow can be taken as
evidence for an affirmative answer to the question of the section title, for ε
in that range.

We now turn to the above-promised arithmetic properties.

Definition 2.6.1. The set P is called a parallelepiped of dimension N if
P =

∏N
j=1{χj, γj}, where χj , γj ∈ Γ and |P| = 2N . The characters χj , γj ,

for j = 1, . . . , N (which need not be distinct), are called the generators of P.

An example of a parallelepiped of dimension N is an arithmetic progression
in Z of length 2N . Indeed, {a, a + d, . . . , a + (2N − 1)d} = {a, a + d} +
∑N−1
j=1 {0, 2jd}.
Like a Sidon set (Corollary 6.3.13), an ε-Kronecker set can only contain a

small portion of each long arithmetic progression.

Theorem 2.6.2. Suppose E is ε-Kronecker for some ε < 2. For every τ > 0
there is a constant C = C(τ, ε) such that |E ∩ P| ≤ C2Nτ for each paral-
lelepiped P ⊆ Γ of dimension N .

Proof. We will prove that there exists a constant N0 = N0(ε, τ) such that
if P is a parallelepiped of dimension N and E1 is a subset of E ∩ P of
cardinality 2Nτ , then N ≤ N0(ε, τ). That will prove |E ∩ P| < 2Nτ for all
parallelepipeds of dimension N when N > N0 and therefore we will be able to
take C = 2N0 . Being ε-Kronecker for some ε < 2, E is angular (π − δ)-Kron-
ecker for some δ > 0. Fix an even integer M > π/δ and consider X , the set of
all functions mapping E1 to TMN , the group of MN th roots of unity. There

are
(
MN

)|E1|
such functions. We will call a function in X multiplicative if

it is the restriction to E1 of a function defined on the generators of P and
extended by multiplicativity to P. There are at most (MN)2N multiplicative
functions in X .

Temporarily fix a multiplicative function Φ. If h is an arbitrary function in
X and |h(γ)−Φ(γ)| < 2 for every γ ∈ E1, then h(γ) �= −Φ(γ) for all γ ∈ E1.
Since M is even, −Φ(γ) is another MN th root of unity. Hence, there can be

at most
(
MN − 1

)|E1|
functions in X whose distance to the function Φ is

strictly less than 2 and a total of at most
(
MN − 1

)|E1|
(MN)2N functions

in X with distance less than 2 to some multiplicative function in X .
It can be verified that if N is sufficiently large and |E1| ≥ 2τN , then

(
MN

)|E1|
>

(
MN − 1

)|E1|
(MN)2N .

The strict inequality proves there is some function h ∈ X whose distance to
every multiplicative function in X is equal to 2.

Since E is angular (π − δ)-Kronecker, there is some x ∈ G such that
d(arg h(γ), arg γ(x)) < π−δ for every γ ∈ E1. Define a multiplicative function
Φ on the generators of P by choosing Φ(γ) to be the MN th root of unity
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closest to γ(x). Since every character in P is the product of N generators,
d(arg Φ(γ), arg γ(x)) < π/M for all γ ∈ P. But then

d(arg h(γ), arg Φ(γ)) ≤ d(arg h(γ), arg γ(x)) + d(arg Φ(γ), arg γ(x))

< π − δ + π/M < π.

This is a contradiction since the angular distance from h to each multiplicative
function in X is π. ��

Corollary 2.6.3. Suppose E ⊆ Z is an ε-Kronecker set and A is an arith-
metic progression of length N . For each τ > 0 there is a constant C, depend-
ing only on ε and τ , such that |E ∩A| ≤ CN τ .

A square in Γ is a set of the form E1 ·E2 ⊆ Γ, where |E1 ·E2| = |E1| |E2|
and |E1| = |E2|. The same argument as above, viewing the characters in
E1 and E2 as generators of the square, shows that ε-Kronecker sets do not
contain arbitrarily large squares. The details are left to Exercise 2.9.10. That
is another property possessed by Sidon sets (Proposition 6.3.12).

Proposition 2.6.4. Suppose E is ε-Kronecker for some ε < 2. There is a
constant N = N(ε) such that E does not contain a square of cardinality N2.

We now turn to the sum of reciprocals of elements of E.

Proposition 2.6.5. Let {kj}Jj=1 ⊆ N be increasing and assume γ ∈ Γ has

order exceeding kJ . If
∑J

j=1 1/kj = s, then α({γkj}Jj=1) ≥ π(1 − s−1).

The following corollary for subsets of N is immediate from Proposition 2.6.5
and the fact that log J ≤

∑J
k=1 1/k.

Corollary 2.6.6. α({1, . . . , J}) ≥ π(1 − 1/ logJ).

Proof (of Proposition 2.6.5). Let E = {γkj}Jj=1 and δ = π/s. For a positive
integer k and z ∈ T, consider

W (k, z) =

k−1⋃

�=0

{
w ∈ T : d(arg(ze2πi�/k), argw) ≤ δ/k

}
.

Then W (k, z) consists of k arcs each of (angular) length 2δ/k, centred at
elements ze2πi�/k, 0 ≤ � < k. A sketch of the unit circle may be helpful here.

Choose z1 so that W (k1, z1) ⊇ {w : 0 ≤ argw ≤ 2δ/k1}. Choose
z2, . . . , zJ ∈ T inductively such that

W (kj , zj) ⊇
{

w :

j−1∑

�=1

2δ/k� ≤ argw ≤
j∑

�=1

2δ/k�

}

for 2 ≤ j ≤ J.

Then the hypothesis,
∑J

1 1/kj = s, ensures
⋃J
j=1W (kj , zj) = T.
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Define ϕ : E → T by ϕ(γkj ) = −zkjj (the point antipodal to z
kj
j ) for

1 ≤ j ≤ J . We claim supλ∈E d
(

arg(ϕ(λ)), arg(λ(x))
)
≥ π − δ for all x ∈ G.

Indeed, for every x ∈ G there exists 1 ≤ j ≤ J such that γ(x) ∈ W (kj , zj).

Then d
(

arg(zj), arg(γ(x))
)
≤ δ/kj , so d

(
arg(γkj (x)), arg(z

kj
j )

)
≤ δ and

d
(

arg(ϕ(γkj )), arg(γkj (x))
)
≥ π − δ. ��

2.7 Products of ε-Kronecker Sets Are “Small”

In this section we study the small size or “thinness” of products of an ε-
Kronecker set, as was done for Hadamard sets in Chap. 1. Not clustering at
a continuous character is one form of thinness, addressed in our first section.
Another form of thinness is the closure of a sum of copies of E having zero
Haar measure. That is discussed in the second section.

2.7.1 Bohr Cluster Points of Kronecker Sets and
Their Products

We begin by proving that an ε-Kronecker set does not cluster in the Bohr
topology (see Sect. C.1.3) at a continuous character, a special case of the
fact that an I0 set does not cluster at a continuous character (the Ryll–
Nardzewski–Méla–Ramsey Theorem 3.5.1). A more elementary proof can be
given for ε-Kronecker sets.

It is unknown if a Sidon set can cluster at a continuous character. That
problem will be discussed in more detail in Chap. 8.

Proposition 2.7.1. An ε-Kronecker set E does not cluster in the Bohr topol-
ogy at any γ ∈ Γ, if ε < 2.

Proof. Let τ = (2 − ε)/2 > 0. Choose an e-neighbourhood U ⊆ G such that
|1 − γ(u)| < τ for all u ∈ U . Let F ⊆ E be finite such that E � F is weak
ε-Kronecker(U) and let u ∈ U be such that |χ(u) + 1| < ε for all χ ∈ E�F.
Then, |γ(u)− χ(u)| ≥ 2− ε− τ ≥ (2− ε)/2 for all χ ∈ E�F, so E�F does
not cluster at γ in the Bohr topology. ��

The next proposition is an elaboration of the idea in the proof of the
Kunen–Rudin Theorem 1.5.1. It applies to Hadamard sets by Theorem 1.5.1,
ε-Kronecker sets with ε < 2 by Proposition 2.7.1 and to all I0 sets by the
Ryll–Nardzewski–Méla–Ramsey Theorem 3.5.1.

Proposition 2.7.2. Suppose E ⊆ Γ has no Bohr cluster points in Γ. The
following are equivalent:
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1. The only element of Γ which is a Bohr cluster point of E · E−1 is 1.
2. γE ∩ ρE ⊆ Γ for every γ �= ρ ∈ Γ.
3. γE ∩ ρE is a finite subset of Γ for every γ �= ρ ∈ Γ.
4.

(
γ(E�E)

)
∩ (E�E) = ∅ for every γ �= 1 ∈ Γ.

Similarly, the following are equivalent:

5. No element of Γ is a cluster point of E ·E.

6. γE ∩E
−1 ⊆ Γ for every γ ∈ Γ.

7.
(
γ(E�E)

)
∩ (E�E)−1 = ∅ for every γ ∈ Γ.

Remark 2.7.3. The ρ in (2)–(3) is superfluous, but it will be convenient to
have the particular formulation later.

Proof. (1)⇒ (2) Suppose there is some character λ ∈ γE∩ρE with λ ∈ Γ�Γ.
Then λ is a cluster point of nets {γχβ} and {ρψβ}, with {χβ}, {ψβ} ⊆ E.

Since multiplication is jointly continuous in Γ, γρ−1 ∈ Γ is a cluster point of
the net {χ−1

β ψβ} and thus of E · E−1. By (1), γ = ρ.

(2) ⇒ (3) If γE ∩ ρE were an infinite set, it would have a Bohr cluster
point. That cluster point could not be a continuous character because of the
first assumption of the lemma. Therefore, γE ∩ ρE would not be contained
in Γ, contradicting (2).

(3) ⇒ (4) Suppose χ ∈ γ(E� E) ∩ (E� E). Since χ is a cluster point of
E, χ is not in Γ. That ensures γE ∩ E is not a subset of Γ, and hence (3)
implies γ = 1.

(4) ⇒ (1) Suppose E ·E−1 has cluster point γ ∈ Γ� {1}. Then there are
nets {λβ}, {ρβ} ⊆ E such that λβρ

−1
β → γ. Without loss of generality we may

assume that {ρβ} converges to a character ζ ∈ Γ � Γ. But then λβ → γζ.
Thus, ζ ∈ γ−1(E�E) ∩ (E�E). Since γ �= 1 this contradicts (4).

The proof of the equivalences of (5)–(7) is similar (Exercise 2.9.19). ��

The next result is an ε-Kronecker set form of the Kunen–Rudin Theorem
1.5.1.

Proposition 2.7.4. Let ε <
√

2 and E be an ε-Kronecker set. Then

1. 1 is the only continuous character at which E ·E−1 clusters.
2. E · E does not cluster at a continuous character.

Proof. Let C > 0 be given by Corollary 2.3.4.
(1) Let γ ∈ Γ, γ �= 1. Then Proposition 2.7.2(1)–(4) imply it will suffice

to show that
(
γ(E�E)

)
∩ (E�E) = ∅.

Let x ∈ G be such that |1−γ(x)| ≥ 1 and let U = {u ∈ G : |γ(u)−γ(x)| <
1/(4C)}. Now let �L = �L(U) (whose existence is guaranteed by Corollary 2.3.4)
be a finite set such that for every function ϕ : E→ Δ there exists μ ∈M+

d (U)
with ϕ = μ̂ on E� �L and ‖μ‖ ≤ C.
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Set ϕ = 1 on E and obtain μ ∈ M+
d (U) with μ̂ = ϕ on E � �L. Since

μ̂(ρ) = ϕ(ρ) = 1 for every ρ ∈ E� �L we have

|γ(x)− μ̂(γρ)| =
∣
∣
∣
∣

∫

U

ρ(u)
(
γ(x)− γ(u)

)
dμ

∣
∣
∣
∣ ≤ ‖μ‖/(4C) = 1/4.

This shows |1− μ̂(γρ)| ≥ 3/4 and therefore, μ̂(γ(E� �L)) and μ̂(E� �L) have
disjoint closures. Consequently, (γ(E�E)) ∩ (E�E) = ∅.

(2) In view of Proposition 2.7.2(5)–(7), it will suffice to show that
(
γ(E�

E)
)
∩ (E � E)−1 = ∅ for all γ ∈ Γ. Let U = {x ∈ G : |1 − γ(x)| < 1/(4C)}

and let �L = �L(U). Choose ϕ = i on E and μ ∈M+
d (U) with μ̂ = ϕ on E� �L.

Then, |i − μ̂(γρ)| ≤ C/(4C) for all ρ ∈ E � �L. Since μ ∈ M+
d (U), we have

μ̂ = −i on (E� �L)−1 and so γ(E�E) ∩ (E�E)−1 = ∅. ��

Remarks 2.7.5. (i) With smaller ε, one can have more terms in the prod-
ucts in Proposition 2.7.4. See the section Remarks and Credits for more
information.

(ii) It is essential to have ε <
√

2 in the theorem. Consider the set E
of Example 2.3.6. Then E − E = Z, so its Bohr cluster points include all of
Z. Replacing the Nj + j terms with −Nj + j, one obtains (Exercise 2.9.6) a√

2-Kronecker set with E+E clustering at every point of Z since it contains
the semigroup N and a compact semigroup is a group (Exercise C.4.16).

In an ordered group, such as Z, we can measure the “step lengths” of an
increasing sequence {nj} as the difference nj+1 − nj . In the general case, we
have the following definition.

Definition 2.7.6. The step length of E ⊆ Γ tends to infinity if for every
finite set F′ ⊆ Γ, there exists a finite set F ⊆ E such that

γχ−1 /∈ F′ if γ, χ ∈ E� F, γ �= χ.

Hadamard sets obviously have step length tending to infinity. On the other
hand, any set which is a union of an infinite set and a translate of that set
does not. It will be shown later that every Sidon set is a finite union of sets
whose step length tends to infinity (Corollary 6.4.7).

With the previous results we can show that ε-Kronecker sets have step
length tending to infinity. In fact, a more general result is true.

Proposition 2.7.7. Suppose E ⊆ Γ has no Bohr cluster points in Γ and that
γE ∩E ⊆ Γ for all γ �= 1. Then E has step length tending to infinity.

Proof. If E does not have step length tending to infinity, then by definition
there is a finite set F′ such that for all finite F, (E�F) ·(E�F)−1∩F′ �= ∅. It
follows that there exists χ ∈ F′ and distinct γn, ρn ∈ E such that γnρ

−1
n = χ
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for n ≥ 1. In particular, ρn ∈ (χ−1E) ∩E for n ≥ 1. Of course, every cluster
point of {ρn} belongs to (χ−1E) ∩E and cannot be a continuous character.
But that contradicts the second hypothesis of the proposition. ��

A stronger version of the following corollary is in Exercise 2.9.12.

Corollary 2.7.8. Suppose that ε <
√

2 and that E ⊆ Γ is ε-Kronecker. Then
the step length of E tends to infinity.

Proof. Immediate from the preceding results of this section. ��
Corollary 2.7.9. Let ε <

√
2 and E be ε-Kronecker. Then for every finite

set F ⊆ Γ, E ·F is I0.

Proof. Let E,F be as above. Proposition 2.7.2 and Proposition 2.7.4 imply
that for each γ �= ρ ∈ Γ, γE ∩ ρE is finite. Hence, there is a finite set Hγ,ρ

such that γ(E�Hγ,ρ) ∩ ρ(E�Hγ,ρ) = ∅. Let H =
⋃
γ �=ρ∈FHγ,ρ. Then H

is finite. Since the sets γ(E�H) and ρ(E�H) are disjoint when γ �= ρ, the
local units theorem, Theorem C.1.6, applied to those subsets of Γ implies
that there exists, for each γ ∈ F, a discrete measure νγ ∈Md(G) such that

ν̂γ(λ) =

{
1 if λ ∈ γ(E�H) and

0 if λ ∈ ρ(E�H) for some ρ ∈ F, ρ �= γ.

Now let ϕ ∈ �∞(F · (E�H)). Since the class of I0 sets is clearly closed under
translation, γ(E�H) is I0 for each γ ∈ F. Hence, there exists μγ ∈ Md(G)
with μ̂γ = ϕ on γ(E�H). Then

∑
γ∈F νγ ∗μγ has Fourier–Stieltjes transform

equal to ϕ on F · (E �H). Since none of the translates of E�H cluster in
Γ, F · (E �H) does not cluster at an element of F ·H. Therefore, we again
use the local identity theorem, this time to add the points in F ·H. ��
Remark 2.7.10. Corollary 2.7.9 is an instance of Proposition 5.2.7.

2.7.2 U0 Sets and the Closure of Products

For a compact set X of a locally compact abelian group, M0(X) denotes the
set of regular, bounded, Borel measures μ supported on X , such that the
Fourier–Stieltjes transform of μ vanishes at infinity on the dual group. See
Lemma C.1.9 for facts about M0(X).

Definition 2.7.11. A set X is called a set of uniqueness in the weak sense
(U0 set) if M0(X) = {0}.

The Riemann–Lebesgue lemma shows a U0 set has zero Γ-Haar measure.
An interpretation of Proposition 1.4.3 is that there exists an angular π/M -

Kronecker set E ⊆ Z such that (E∪E−1)M+2 is dense in Z. If the Kronecker
constant is halved, we obtain a strong converse, namely, the product is U0.
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Theorem 2.7.12. Suppose that M is a positive integer and E ⊆ Γ is an an-
gular τ-Kronecker set with τ < π/2M . Then the closure in the Bohr topology
of (E ∪E−1)M is a U0 set.

Corollary 2.7.13. Suppose E is Hadamard with ratio q > 5. Then E + E
and E−E are U0 sets in Z.

Proof (of Theorem 2.7.12). We proceed by induction on M . To begin, let μ ∈
M0(E ∪E

−1
). Since μ|E and μ|

E
−1 are absolutely continuous with respect

to μ, Lemma C.1.9 implies it will be enough to show both E and E
−1

are U0

sets. Since there are no non-zero point mass measures in M0, Lemma C.1.9
also implies that μ(F) = 0 for all finite sets F. Finally, that lemma ensures
that there is no loss of generality in assuming μ ∈ M0(E) is a probability
measure.

For each positive integer k choose a finite set, Fk ⊆ E, of cardinality k.
For each ϕ ∈ {0, π}Fk use the angular τ -Kronecker property of E to choose
x ∈ G such that | arg γ(x)| ≤ τ < π/2 for all γ ∈ E� Fk, or, equivalently,

Reγ(x) ≥ cos τ > 0 for all γ ∈ E� Fk and

| arg γ(x)− ϕ(γ)| ≤ τ for all γ ∈ Fk.

Since E = (E� Fk)
⋃
Fk and μ is a probability measure supported on

E� Fk, this produces 2k distinct x ∈ G such that

Reμ̂(x) = Re
(
∫

E

γ(x)dμ(γ)
)

=

∫

E�Fk

Reγ(x)dμ(γ) ≥ cos τ > 0.

Because k is arbitrary, that proves μ̂ does not vanish at infinity on Gd, a
contradiction.

Now proceed inductively and assume the result holds for some M ≥ 1. Let

E be an angular τ -Kronecker set for τ < π/2(M + 1). Since (E
⋃
E

−1
)
M+1

is a finite union of sets of the form

M+1
︷ ︸︸ ︷

E
±1 · · ·E±1

,

another application of Lemma C.1.9 shows it is enough to prove each of these
sets is U0. For notational convenience, we will assume all signs are +1; it will
be clear that the choice of signs is essentially irrelevant to the proof.

So let μ be a probability measure in M0(E
M+1

). Notice that for every
finite set F,

E
M+1

= (E� F)
M+1 ∪

( M⋃

j=1

E
j ·FM−j+1

)

∪ FM+1.
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By the inductive assumption, ν(E
j
) = 0 for all 0 ≤ j ≤ M whenever

ν ∈ M0. Since the translate of a measure in M0 is again in M0, it follows

that μ(ρE
j
) = 0 for all 0 ≤ j ≤ M and characters ρ. Thus, μ is supported

on (E� F)
M+1

.
Now we argue as in the case M = 1. For each positive integer k choose a

finite set, Fk ⊆ E, of cardinality k. For each ϕ ∈ {0, π}Fk use the angular
τ -Kronecker property of E to choose x ∈ G such that

| arg γ(x)| ≤ τ < π/2(M + 1) for all γ ∈ E� Fk and

| arg γ(x)− ϕ(γ)| ≤ τ for all γ ∈ Fk.

This produces 2k distinct x ∈ G such that

| arg ρ(x)| ≤ τ(M + 1) < π/2 for all ρ ∈
(
E� Fk

)M+1
.

Thus

Reμ̂(x) = Re
( ∫

E
M+1

γ(x)dμ(γ)
)

=

∫

(E�Fk)M+1

Reγ(x)dμ(γ) ≥ cos τ > 0.

We derive the same contradiction as before. ��

2.8 Remarks and Credits

Definition and Properties. Unless otherwise indicated, the results in this chap-
ter are from [51–53, 55, 59, 61].
ε-Kronecker sets seem to have first appeared in Kahane’s exposition [102,

p. 226] of Varopoulos’s tensor algebra work, though they are not named. The
term “ε-Kronecker set” appears first in Varopoulos [187], and such sets were
studied by Givens and Kunen [46], who used the term “ε-free set”. Kroneck-
er sets (and, more generally, independent sets) have generated an extensive
literature; cf. [56].
ε-Kronecker sets can be defined for non-discrete Γ. Most of the results

of this chapter (with obvious modifications) hold when Γ is metrizable (not
merely discrete), but difficulties arise when Γ is not metrizable. See Sect. A.1
for details.

Kronecker’s classical approximation theorem states that if h1, . . . , hn are
rationally independent real numbers and θ1, . . . θn are arbitrary real numbers,
then given any ε > 0 there is some real number t such that |hjt − θj | < ε
mod 1 for all j = 1, . . . , n. Thus, any finite set of rationally independent real
numbers is Kronecker. For further discussion, see [87, pp. 435–436].
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Example 2.2.7 is a descendent of one in [89, 178, 179], which can also be
found in [167, 5.7.6]. Other examples may be found in [59, 64, 66].

A Hadamard set with ratio q is angular τ -Kronecker with τ ≤ π/(q − 1).
This is not much use for small q and we do not know if every Hadamard set
is ε-Kronecker for some ε < 2 [P 3] , though our examples show that this
information, by itself, would be of limited use.
ε-Kronecker and I0 Sets. That 1-Kronecker sets are I0 was certainly known

to Kahane when he wrote [102], if not to Varopoulos. That ε-Kronecker sets
are I0 for ε <

√
2 is in [52].

Lemma 2.3.5 is an example of a more general phenomena. Finite sets of
positive integers are always ε-Kronecker for some ε < 2. In [76] an extensive
investigation is made of the Kronecker constants of finite subsets of Z and
an algorithm is given for calculating these constants. For a two integer set,
{m,n}, the angular Kronecker constant is π gcd(m,n)/(|m|+ |n|). For sets of
three or more elements the answers are surprisingly complicated. For instance,
asymptotically, the angular Kronecker constant of {m,m, n+m} is π/3, but
the exact value depends on the congruence mod 3 of m+ 2n. It is also shown
in [76] that the angular Kronecker constant of a finite E ⊆ Z is always a
rational multiple of π. The exact Kronecker constant of most sets is unknown,
in particular, that of {1, . . . , N} [P 5].

Existence of ε-Kronecker Sets. Theorem 2.4.3 is a simplified version of [59,
Theorem 2.3]. Theorem 2.4.3 also improves upon [53, Theorem 4.4] (when Γ
is not 2-large). The 2-large case is addressed in Theorem 4.5.2.

Motivated in part by [184], Galindo and Herńandez, in [41] and [42], used
topological methods to prove the existence of large ε-Kronecker sets in very
abstract settings. A discrete abelian group satisfying their hypothesis is iso-
morphic to a subgroup of a direct sum of copies of Q together with a finite
group. Thus, the existence of large ε-Kronecker sets for all ε > 0 in their set-
ting follows from Corollary 2.4.5. [59] uses their methods to prove Theorem
2.4.3. The proof is shorter, but perhaps less illuminating, than the one here.

For another approach to the topological method, see Givens and Kunen
[46]. Yet another existence theorem for ε-Kronecker sets is [60, Theorem 3.1].

Approximating ±1. The results of Sect. 2.5 are adapted from [55]. They
will be used in Sect. 9.3 in establishing a characterization of Sidon sets as
proportional ε-Kronecker.

Arithmetic Properties. Historically, arithmetic properties were established
first for Sidon sets (see Chap. 6 for more detailed references) and those results
motivated the study of arithmetic properties of ε-Kronecker sets.

Products of ε-Kronecker Sets. See Sect. 1.5 and [116, Theorem 2.3] for
Hadamard set versions of the results of Sect. 2.7.

A stronger version of Proposition 2.7.4 shows that if M ≥ 1, ε <
2 sin(π/4M) and E ⊆ Γ is ε-Kronecker, then E2M has no cluster points
in Γ and the cluster points of (E · E−1)M in Γ are exactly the elements of
(E ·E−1)M−1. We refer the reader to [61, Theorem 4.5] for details and related
results.
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Corollary 2.7.8 appears in [52] with a different proof. The (longer) proof
there gives other conclusions when ε is small. For example, if E ⊆ Γ is 1-
Kronecker, then E cannot contain 50 distinct elements γ1, . . . , γ50 such that
for some choice of signs,

γ±1
1 γ±1

2 = · · · = γ±1
49 γ±1

50 . (2.8.1)

See Exercise 2.9.12.
There is a vast literature on sets of uniqueness and multiplicity; see [56]

and its references. An approach to U0 sets different from [56] is through
descriptive set theory [111].

Exercises. Exercise 2.9.14 (1) is [46, Lemma 3.8].

2.9 Exercises

Exercise 2.9.1. 1. Show that every finite subset E ⊆ Z�{0} is ε-Kronecker
for some ε < 2.

2. Show that Z � {0} is exactly 2-Kronecker.
3. More generally, show that if E ⊂ Γ is countable, E has no elements of

finite order and 1 �∈ E, then E is 2-Kronecker (or better).
4. Compute ε(Z3 � {1}).

Exercise 2.9.2. 1. Show that if an ε-Kronecker set contains an element γ
of order 2, then ε >

√
2.

2. Show that the set E = {(j, πj) : j = 1, 2, . . .} ⊆ Z× D̂, where {πj} is the

Rademacher set in D̂, is
√

2-Kronecker.

Exercise 2.9.3. 1. Suppose E = {(χ, γn}∞n=1 ⊆ Γ, where G = Z2 ⊕ Z
N

k ,
{γn}n is a set of independent characters and k ≥ 3 is odd. Show that E
is weak 1-Kronecker.

2. Suppose E = χ1 ⊕ · · · ⊕χn ⊆ Γ =
⊕

Γ̂n. Show that if each χn has order
at least 3, then E is weak 1-Kronecker.

Exercise 2.9.4. 1. Prove Lemma 2.2.8.
2. Give an example of an ε-Kronecker set E and quotient mapping q that

is one-to-one on E, but q(E) is not ε-Kronecker.

Exercise 2.9.5. State and prove an analogue of Corollary 2.2.17 assuming,
instead, γ has finite order.

Exercise 2.9.6. Adapt the argument of Example 2.3.6 to show that the set
{Nj,−Nj + j}∞j=1 is

√
2-Kronecker.

Exercise 2.9.7. Prove Theorem 2.3.1 (3).
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Exercise 2.9.8. Suppose m < n are positive integers. Show that if I is an
interval of length at least 3π/m, then {m,n} is ε-Kronecker(I) for some
ε <
√

2.

Exercise 2.9.9. Let E ⊆ Z be ε-Kronecker for some ε < 2. Show that E has
upper density zero, meaning

lim sup
N→∞

|E ∩ [−N,N ]|
2N

= 0.

Exercise 2.9.10. Suppose M is an even integer and E is angular π(1 −
1/M)-Kronecker. Prove that if N logM(M − 1) ≥ 2 logM , then E does not
contain a square of cardinality N2. (This proves a stronger statement than
Proposition 2.6.4.)

Exercise 2.9.11. Let d and N be positive integers. A d-perturbed arithmetic
progression of length N is a set of the form {γ0γk1 , γ0γk2 , . . . , γ0γkN} where
kj ∈ [(j − 1)d, jd), 1 ≤ j ≤ N , γ0, γ ∈ Γ and γ has order greater than kN .
(When d = 1 these are arithmetic progressions.) Let τ > 0. Show that there
exists N = N(d, τ) such that if E ⊆ Γ is a d-perturbed arithmetic progression
of length at least N , then α(E) ≥ π − τ .

Exercise 2.9.12. Let E be ε-Kronecker for ε <
√

2. Show that there exists
an integer N = N(ε), depending only on ε, such that E cannot contain 2N
distinct elements, {γj}, satisfying γ1 γ

±1
2 = · · · = γ2N−1 γ

±1
2N , (whatever the

choice of signs).

Exercise 2.9.13. Let Rd be R with the discrete topology.

1. Show that if xj ∈ (0,∞) and xj/xj+1 ≥ 4, then {xj} is weak angular
π/(q − 1)-Kronecker in Rd.

2. Let ε > 0 and let E = {γn} ⊆ Rd be an infinite sequence. Show that E
has an infinite ε-Kronecker subset.

3. Show that every infinite E ⊂ Rd has a subset E′, with |E′| = |E| and
having the property that for each ε > 0 there is a finite set F such that
E′

� F is ε-Kronecker.

Exercise 2.9.14. A discrete abelian group Γ is said to have infinite exponent
if for every N there is some character in Γ with order at least N .

1. Prove that Γ has infinite exponent if and only if Γ contains an infinite
ε-Kronecker set for each ε > 0.

2. Suppose Γ has infinite exponent. Does every infinite subset of Γ contain
an ε-Kronecker subset of the same cardinality for each ε > 0? If not, give
examples.

Exercise 2.9.15. Let F ⊆ Γ be a maximal independent subset of Γ. Show
that Γ/〈F〉 is a torsion group.
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Exercise 2.9.16. Let E ⊆
⊕

�∈B C(p∞� ) be such that for every � ∈ B there is
an element γ ∈ E such that the projection, Π�(γ), onto C(p∞� ) is non-trivial.
Show that E is 2-large if and only if

| {� : Π�(E) contains an element of order ≥ 3}| < |E|.
Exercise 2.9.17. Generalize Theorem 2.5.1 to the situation where an arbi-
trary choice of signs is replaced by an arbitrary choice of (fixed) two elements
in T with angular distance π.

Exercise 2.9.18. 1. Let a ∈ N and E = {ak : k ∈ N}. Show that for each
n, the closure (in Z) of E± · · · ±E (n terms) is U0.

2. Suppose kj ∈ N and kj →∞. Let E = {k1, k1k2, k1k2k3, . . . }. Show that

for each n, the closure (in Z) of E± · · · ±E (n terms) is U0.

Exercise 2.9.19. Prove the equivalences of Proposition 2.7.2(5)–(7).

Exercise 2.9.20. Let E ⊆ Γ. Show ε(E) = sup{ε(F) : |F| <∞,F ⊆ E}.



Chapter 3

I0 Sets and Their Characterizations

I0 sets characterized analytically, in terms of function algebras, and
topologically. I0 sets do not cluster at continuous characters.

3.1 Introduction

A subset E of Γ is “I0” if every bounded function on E is the restriction of
the Fourier–Stieltjes transform of a discrete measure. Hadamard and ε-Kron-
ecker sets with ε <

√
2 are examples of I0 sets (Theorem 1.3.9 and Theorem

2.3.1), as are independent sets of characters (Exercise 3.7.11). Many more
examples of I0 sets will be given, particularly in the next chapter where it
will be shown that every infinite subset of Γ contains an infinite I0 set. Every
I0 set is obviously Sidon. The converse is not true since the class of Sidon
sets is closed under finite unions (Corollary 6.3.3), but the class of I0 sets is
not, as already observed in Example 1.5.2.

In this chapter we establish basic properties of I0 sets, as well as properties
of smaller classes where the interpolating measure is required to be real (RI0
sets), positive (FZI0 sets) and/or supported on a small set (I0(U), RI0(U)
or FZI0(U)).

Most of this chapter is devoted to proving alternate characterizations of I0
or FZI0. After formally defining the classes of I0 sets of interest, we establish
characterizations in terms of approximation by trigonometric polynomials
(Fourier-Stieltjes transforms of finitely supported measures), the number of
whose terms depends only on the error and the I0 set (Theorems 3.2.5 and
3.2.6).
I0 sets can be characterized in terms of various function algebras on E,

as is shown in Sect. 3.3. A distinguishing and important fact about I0 sets
is that there are also topological characterizations of I0. For example, the
Hartman–Ryll-Nardzewski characterization states that E is I0 if and only if
disjoint subsets of E have disjoint closures in the Bohr compactification of Γ

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 3,
© Springer Science+Business Media New York 2013
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(see Sect. 3.4). In the final section of this chapter, it is shown that, like the
special cases of Hadamard and ε-Kronecker sets, I0 sets do not cluster at a
continuous character.

3.1.1 Historical Overview

Given E ⊆ Γ, we denote by B(E) the quotient space of B(Γ) consisting of
restrictions to E of Fourier transforms of measures on G. This is a Banach
space with the quotient norm

‖ϕ‖B(E) = inf{‖μ‖ : μ ∈M(G) and μ̂|E = ϕ}.

The space Bd(E) is defined similarly as a quotient of Bd(Γ) and the restricted
Fourier algebra, A(E), is the analogous quotient of A(Γ).

With this terminology, the definitions of I0 and Sidon may be restated as:
E is I0 (Sidon) if and only if �∞(E) = Bd(E) (respectively, B(E)).

Historically, I0 sets arose from the study of almost periodic functions. They
are the complex-valued functions on Γ with continuous extensions to the
Bohr compactification, Γ. The space of almost periodic functions is denoted
AP (Γ) and by AP (E) we mean the set of restrictions to E of almost periodic
functions. An application of Tietze’s extension theorem implies that AP (E)
is also the space of restrictions to E of continuous functions on the Bohr
closure, E, of E.

The algebra Bd(E) is a subspace of AP (E) (Exercise 3.7.5). By the Stone–
Weierstrass theorem (the set of extensions to Γ of elements of) Bd(Γ) is
uniformly dense in C(Γ). Consequently, the almost periodic functions are
uniform limits of Fourier transforms of discrete measures or, equivalently,
uniform limits of trigonometric polynomials on Γ. Moreover, for every set E,
AP (E) is the closure of Bd(E) in the �∞ norm.

These sets satisfy the following inclusions:

Bd(E) ⊆ AP (E) ⊆ �∞(E) and Bd(E) ⊆ B(E) ⊆ �∞(E). (3.1.1)

In general, the inclusions are proper and equalities of these function spaces
(for a given set E) characterize special sets, such as the characterizations of
Sidon and I0, as noted above.

The original definition of an I0 set, given by Hartman and Ryll-Nardzew-
ski, was a set E such that “every bounded function on E can be extended
to an almost periodic function”. In contemporary terminology, these are the
sets E for which AP (E) = �∞(E). Shortly afterwards, it was realized that
the extensions could always be found in Bd(E), and hence the set is I0 as we
have defined it. Much later it was observed that the property AP (E) = B(E)
is equivalent to E being I0 and that I0 is also equivalent to B(E) = Bd(E);
see Sect. 3.3.
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This leaves one remaining equality from (3.1.1): AP (E) = Bd(E). This
property is known to characterize the class of Helsonian sets. It can be shown
that all finite unions of I0 sets are Helsonian and that all Helsonian sets are
Sidon. The classes of Helson and Helsonian sets are defined in Remark 3.5.5.
They reappear in Sects. 4.2.2, 9.4.1, and 10.3.2.

3.2 Characterizations by Approximate Interpolation

3.2.1 Subclasses of I0 Sets

We define some subclasses of I0 sets and then develop characterizations of
them.

Definition 3.2.1. Let E ⊆ Γ. A function ϕ : E→ C is Hermitian if ϕ(γ) =
ϕ(γ−1) for all γ ∈ E ∩E−1.

Definition 3.2.2. Let U ⊆ G be Borel and E ⊆ Γ.

1. The set E is said to be I0(U) if whenever ϕ ∈ �∞(E) there is a discrete
measure, μ, concentrated on U, such that μ̂|E = ϕ.

2. The set E is said to be RI0(U) (resp., FZI0(U)) if whenever ϕ ∈ �∞(E)
is a Hermitian function there is a discrete real (resp., positive) measure
μ, concentrated on U , such that μ̂|E = ϕ.

In either case, when U = G, we omit the writing of “(G)”.

Remark 3.2.3. We only ask to interpolate Hermitian functions for RI0 or
FZI0 sets since the Fourier transform of a real measure is Hermitian (see
Exercise 1.7.5).

Clearly, every FZI0(U) set is RI0(U). In Sect. 4.2.1 it will be shown that
all RI0(U) sets are I0(U) and that the three classes are distinct.

With this terminology, Theorem 1.3.9(1) states that Hadamard sets are
FZI0(U) for all open U ⊆ T, and Theorem 2.3.1 states that if E is an ε-
Kronecker(U) set for some ε <

√
2, then E is FZI0(U).

We now turn to our characterizations. We begin with a useful observation
about translates.

Lemma 3.2.4. Suppose U ⊆ G and E ⊆ Γ is I0(U) (resp., FZI0(U)). Then

1. γE is I0(U) for every γ ∈ Γ.
2. E is I0(xU) (resp., FZI0(xU)) for every x ∈ G.

Proof. (1) Let ϕ ∈ Ball(�∞(γE)) and define ψ ∈ Ball(�∞(E)) by ψ(χ) =
ϕ(γχ). Obtain μ =

∑∞
j=1 cjδxj ∈ Md(U) with μ̂(χ) = ψ(χ) for χ ∈ E,
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and consider the measure ν =
∑∞
j=1 cjγ(xj)δxj ∈ Md(U). By taking Fourier

transforms, it is easy to see that

ν̂(γχ) =

∞∑

j=1

cjχ(xj) = μ̂(χ) = ψ(χ) = ϕ(γχ) for all γ ∈ E.

(2) Given ϕ ∈ Ball(�∞(E)), obtain μ =
∑∞

j=1 cjδxj ∈ Md(U) such that

μ̂(χ) = ϕ(χ)χ(x) for all χ ∈ E. The measure ν =
∑∞

j=1 cjδxjx ∈Md(xU) has
the property that ν̂|E = ϕ. The FZI0(U) case is similar. ��

In particular, to prove E is I0(U) for all non-empty, open sets U, it suffices
to prove E is I0(U) for e-neighbourhoods in G.

Our first characterization was proved by Kalton and will be important in
proving other equivalences.

3.2.2 Kalton’s Characterization and Immediate
Consequences

Theorem 3.2.5 (Kalton). Let U be a σ-compact subset of G and E be a
subset of Γ. Then the following are equivalent:

1. E is I0(U).
2. There is a constant C such that for all ϕ ∈ Ball(�∞(E)), there exists
μ ∈Md(U) with ‖μ‖M(G) ≤ C and μ̂(γ) = ϕ(γ) for all γ ∈ E.

3. There exist 0 < ε < 1 and constant C such that for all ϕ ∈ Ball(�∞(E))
there exists μ ∈ Md(U) with ‖μ‖M(G) ≤ C and |ϕ(γ)− μ̂(γ)| ≤ ε for all
γ ∈ E.

4. There exists 0 < ε < 1 such that for all ϕ ∈ Ball(�∞(E)) there exists
μ ∈Md(U) with |ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E.

5. There exist 0 < ε < 1 and integer N such that for all ϕ ∈ T
E there exists

μ =
∑N

j=1 cjδxj ∈ Md(U) with |cj | ≤ 1 and |ϕ(γ)− μ̂(γ)| ≤ ε for all
γ ∈ E.

In (3) and (4) the statement, “There exist 0 < ε < 1”, may be replaced by
“For every 0 < ε < 1”, and in (5) “There exists 0 < ε < 1 and integer N”
may be replaced by “For each 0 < ε < 1 there exists an integer N”.

For FZI0(U) sets we have a slight variation. Note that there is no loss
of generality in assuming E is asymmetric because Hermitian functions have
unique Hermitian extensions to E ∪ E−1 and real measures have Hermitian
Fourier transform.

Theorem 3.2.6. Let U be a σ-compact subset of G and E be an asymmetric
subset of Γ. Then the following are equivalent:
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1. E is FZI0(U).
2. There exists C such that for all Hermitian functions ϕ ∈ Ball(�∞(E))

there exists μ ∈ M+
d (U) with ‖μ‖M(G) ≤ C and μ̂(γ) = ϕ(γ) for all

γ ∈ E.
3. There exist 0 < ε < 1 and constant C such that for all Hermitian
ϕ ∈ Ball(�∞(E)) there exists μ ∈ M+

d (U) with ‖μ‖M(G) ≤ C and

|ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E.
4. There exists 0 < ε < 1 such that for all Hermitian ϕ ∈ Ball(�∞(E)) there

exists μ ∈M+
d (U) with |ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E.

5. There exist 0 < ε < 1 and integer N such that for all Hermitian
ϕ ∈ T

E there exists μ =
∑N

j=1 cjδxj ∈ M+
d (U) with 0 ≤ cj ≤ 1 and

|ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E.

In (3) and (4) the statement, “There exist 0 < ε < 1”, may be replaced by
“For every 0 < ε < 1”, and in (5) “There exists 0 < ε < 1 and integer N”
may be replaced by “For each 0 < ε < 1 there exists an integer N”.

A similar set of equivalences can be given for RI0(U), replacing M+
d (U)

with M r
d (U).

We begin by introducing terminology and proving preliminary results.

Definition 3.2.7. A discrete measure on G of the form
∑N
n=1 cnδxn , with

cn ∈ Δ, will be said to be of length N . The xn need not be distinct.
For a Borel set U ⊆ G, N ∈ N and ε > 0, we let AP (E, U,N, ε) be the set

{w ∈ Ball(�∞(E)) : ∃μ ∈Md(U) of length N, ‖μ̂|E − w‖∞ ≤ ε}. (3.2.1)

When E is clear we will omit it. When U = G, we omit the U.
By APr(E, U,N, ε) we mean the subset of AP (E, U,N, ε) where the co-

efficients cn are restricted to be in [−1, 1]. Similarly, AP+(E, U,N, ε) is the
subset with the coefficients in [0, 1]. When E is clear we will omit it in this
notation as well, and when U = G, we omit the U.

We put Hγ = {−1, 1} if γ = γ−1 ∈ E and Hγ = T otherwise. Slightly
abusing notation, we let

H
E =

∏

γ∈E

Hγ .

When E is asymmetric, HE consists of the Hermitian elements of T
E. We

may embed H
E, TE and Z

E
2 in the unit ball of �∞(E) in the natural way.

In terms of this notation, (5) in Theorem 3.2.5 could be restated as (5′)
there exist 0 < ε < 1 and integer N (or, equivalently, for every 0 < ε < 1there
exist an integer N) such that AP (E, U,N, ε) ⊇ T

E. Similarly, in Theo-
rem 3.2.6, we may replace (5) by there exist 0 < ε < 1 and integer N
(or, equivalently, for every 0 < ε < 1, there exists an integer N) with
AP+(E, U,N, ε) ⊇ H

E.

Lemma 3.2.8. 1. For every set U ⊆ G and E ⊆ Γ,



54 3 I0 Sets and Their Characterizations

AP(U,N, ε) · AP(U,N, ε) ⊆ AP(U2, N2, 2ε+ ε2).

2. If U is compact, the sets AP(U,N, ε) are closed in �∞(E).

Similar results hold for APr and AP+.

Proof. (1) is an easy exercise.
(2) Suppose the net {w(β)} ⊆ AP (U,N, ε) converges to w ∈ �∞(E).1 Since

all ‖w(β)‖∞ ≤ N , we have ‖w‖∞ ≤ N . For each β, let cn,β ∈ Δ and xn,β
∈ U be such that

∣
∣
∣
∣
∣

N∑

n=1

cn,βγ(xn,β)− w(β)
γ

∣
∣
∣
∣
∣
≤ ε for all γ ∈ E.

By passing to a subnet, if needed, we may assume that cn,β → cn ∈ Δ
and xn,β → xn ∈ U for each n = 1, . . . , N . The convergence of the xn,β
ensures the convergence of each γ(xn,β) to γ(xn) for all γ ∈ Γ. Thus,

supγ∈E

∣
∣
∑N
n=1 cnγ(xn)− wγ

∣
∣ ≤ ε, and hence w ∈ AP (U,N, ε). ��

Key to the proofs of Theorems 3.2.5 and 3.2.6 is a suitable application of
the Baire category theorem.

Proposition 3.2.9. Suppose U ⊆ G is σ-compact and E ⊆ Γ. If X = T or
Z2 and

⋃∞
N=1AP (U,N, ε) ⊇ XE, then there exists N such that

AP (U2, N, 2ε+ ε) ⊇ XE.

Proof. Let U =
⋃∞
m=1 Um, where the Um are compact and Um+1 ⊇ Um

for m ≥ 1. Since T
E and Z

E
2 are compact groups and each of the sets

XE ∩ AP (Um, N, ε) is closed, the Baire category theorem implies that for
some N0 and m0 the set AP (Um0 , N0, ε) ∩XE has non-empty interior, and
therefore AP (U,N0, ε)∩XE will also have non-empty interior. Call this latter
intersection Y . A finite number of translates of Y cover the compact group
T
E, say

⋃J
j=1 wjY = T

E.

By assumption each wj belongs to AP (U,Nj, ε) ∩ XE for some Nj . Let√
N ≥ max{Nj : j = 0, . . . , J}. Now apply Lemma 3.2.8 (1). ��

Remark 3.2.10. A similar argument shows that if
⋃∞
N=1AP+(U,N, ε) ⊇ H

E,
then for some N , AP+(U2, N, 2ε+ ε2) ⊇ H

E.

The proofs of Theorems 3.2.5 and 3.2.6 are similar and we will prove them
together.

1 We are dropping the “E” from the AP (. . . ) notation, as forewarned.
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Proof (of Theorems 3.2.5 and 3.2.6). For both theorems, (1) ⇒ (2) follows
from the closed graph theorem, and the implications (2) ⇒ (3) ⇒ (4)
are trivial. (5) ⇒ (1) follows directly from the basic standard iteration,
Proposition 1.3.2.

Theorem 3.2.6, (4) ⇒ (5). (Similar, but easier, arguments apply to The-
orem 3.2.5.) We first note that an easily formulated and proved variation on
the standard iteration argument (using only finitely many iterations) proves
the assertion about equivalences of the statements “There exists 0<ε<1 . . . ”
and “For every 0 < ε < 1 . . . ”. Thus, we may assume (4) holds for all ε > 0.

We now prove (5) for every (fixed) ε > 0. Since every non-negative, discrete
measure may be approximated in measure norm by a finite, linear and non-
negative combination of point mass measures, the hypothesis (4) tells us that⋃∞
N=1AP+(U,N, ε/3) ⊇ H

E. Therefore, Remark 3.2.10 implies that there
exists an integer N such that AP+(U2, N, ε) ⊇ H

E. We quickly deduce a
weaker variant of (5), with the approximating measure concentrated on U2.

To prove the sharper result claimed, we proceed more carefully.
The second sentence of the proof of Proposition 3.2.9 (but applied to
AP+(U,N, ε/3)) says that under assumption (4) there is some N such
that the set AP+(U,N, ε/3) ∩ H

E has non-empty interior in H
E. Hence

(see p. 209), there will be a finite set F ⊆ E and a ψ ∈ H
F such that

{ψ} ×H
E�F ⊆ AP+(U,N, ε/3) ∩H

E.
Consider the subset S of �∞(E) consisting of the Hermitian elements which

vanish off F. Because F is finite, S is a finite dimensional real subspace. Take
a basis of S, say e1, . . . , eJ , where ej ∈ Ball(�∞(E)). Since all norms are
comparable on a finite dimensional space, there is some c > 0 such that for
all real scalars bj ,

∥
∥
∥
∥

J∑

j=1

bjej

∥
∥
∥
∥
�∞
≥ c

J∑

j=1

|bj | .

Each ±ej is Hermitian (since they belong to S), so by assumption (4) we
may obtain μj , νj ∈M+

d (U) such that for all γ ∈ E,

|ej(γ)− μ̂j(γ)| < cε

4N
and |ej(γ) + ν̂j(γ)| < cε

4N
. (3.2.2)

By taking suitable, finitely supported, discrete measures, we may assume
there is a positive integer M such that the discrete measures μj , νj have
length at most M for all j = 1, . . . , J .

Let ϕ ∈ Ball(�∞(E)) be Hermitian. Since ϕ coincides on E � F with an
element of AP+(U,N, ε/3)∩HE, we may find a length N measure μ ∈M+

d (U)
such that

|ϕ(γ)− μ̂(γ)| ≤ ε/3 on E� F. (3.2.3)

Because μ is a positive measure and E is asymmetric, (ϕ − μ̂)|F (extended
by 0 on E� F) belongs to the real vector space S, and therefore
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ϕ(γ)− μ̂(γ) =
J∑

j=1

bjej(γ)

for γ ∈ F and suitable bj ∈ R. Write bj = b+j − b−j , where b±j ≥ 0. Note that

c
J∑

j=1

|bj | ≤ ‖(ϕ− μ̂)|F‖∞ ≤ 1 + ‖μ‖M(G) ≤ 1 +N. (3.2.4)

Put ν = μ+
∑J
j=1 b

+
j μj +

∑J
j=1 b

−
j νj . For γ ∈ F, we have

|ϕ(γ)− ν̂(γ)| =
∣
∣ϕ− μ̂−

J∑

j=1

b+j μ̂j −
J∑

j=1

b−j ν̂j
∣
∣

=
∣
∣
∣

J∑

j=1

bjej −
J∑

j=1

b+j μ̂j −
J∑

j=1

b−j ν̂j
∣
∣
∣

=
∣
∣
∣

J∑

j=1

b+j (ej − μ̂j)−
J∑

j=1

b−j (ej + ν̂j)
∣
∣
∣.

Combining this observation with (3.2.2) and (3.2.4) gives the estimate

|ϕ(γ)− ν̂(γ)| ≤ cε

4N

J∑

j=1

|bj | ≤
(1 +N)ε

4N
≤ ε

2
for every γ ∈ F.

If γ ∈ E� F, then
∑
bjej(γ) = 0, so we may write

|ϕ(γ)− ν̂(γ)| =
∣
∣
∣ϕ− μ̂−

J∑

j=1

b+j μ̂j −
J∑

j=1

b−j ν̂j
∣
∣
∣

=
∣
∣
∣ϕ− μ̂+

J∑

j=1

b+j (ej − μ̂j)−
J∑

j=1

b−j (ej + ν̂j)
∣
∣
∣.

Together with (3.2.2) and (3.2.3), that implies that

|ϕ(γ)− ν̂(γ)| < ε

2
+

cε

4N

∑
|bj | ≤ ε for every γ ∈ E� F.

Furthermore, ν ∈ M+
d (U) has length at most N + 2JM . Since N, J,M are

all independent of ϕ, we may take N + 2JM to be the N of (5). ��

The least C such that Theorem 3.2.5 (2) holds for all ϕ ∈ Ball(�∞(E))
is known as the I0(U) constant of E. Proposition 1.3.2 shows that if
AP (E, U,N, ε) ⊇ T

E, then the I0 constant is at most N/(1− ε).
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Corollary 3.2.11. Every finite set is I0.

Proof. Suppose E is a finite set. Given a bounded function, ϕ : E → C, let
P be the trigonometric polynomial P (x) =

∑
γ∈E ϕ(γ)γ(x) and let ν be the

absolutely continuous measure PdmG. Using Riemann sums, approximate ν
by a discrete measure μ so that |ν̂(γ) − μ̂(γ)| < ε for all γ ∈ E. The details
are left to Exercise 3.7.10. It follows from Theorem 3.2.5 (4) that E is I0. ��

Another proof that finite sets are I0 will be given later, as outlined in Re-
mark 3.4.2.

Here is a variation on Theorem 3.2.5. A similar variation of Theorem 3.2.6
can be made.

Proposition 3.2.12. Let U ⊆ G be σ-compact and E ⊆ Γ. The following
are equivalent:

1. The set E is I0(U).
2. For some 0 < ε < 1 and N ≥ 1, TE ⊆ AP (E, U,N, ε).
3. For some 0 < ε < 1 and N ≥ 1, Ball(�∞(E)) ⊆ AP (E, U,N, ε).
4. For some 0 < ε < 1, TE ⊆

⋃∞
N=1AP (E, U,N, ε).

5. For some 0 < ε < 1, Ball(�∞(E)) ⊆
⋃∞
N=1AP (E, U,N, ε).

In each case, the phrase, “For some 0 < ε < 1 and N ≥ 1”, may be replaced
by “For every 0 < ε < 1 there exists a positive integer N”.

Proof. Clearly, (2)⇒ (4), and (3)⇒ (5). Item (2) is a restatement of Theorem
3.2.5 (5) and so (1) ⇔ (2).

Since every element of Ball(�∞(E)) = ΔE is the average of two elements of
T
E, (2) implies (3) with double the N of (2), and (4) implies (5). Therefore,

we have (1) ⇒ (2) ⇒ (3) ⇒ (5) and (1) ⇒ (2) ⇒ (4) ⇒ (5).
(5) obviously implies that (4) of Theorem 3.2.5 holds, and hence

(5) ⇒ (1). ��

3.2.3 I0(U) with Bounded Length

Definition 3.2.13. The set E is I0(U,N, ε) if for every ϕ ∈ Ball(�∞(E))

there exists a measure μ =
∑N

n=1 cnδxn ∈ Md(U) with all cn ∈ Δ and
‖ϕ − μ̂|E‖∞ ≤ ε. We define FZI0(U,N, ε) similarly. If U = G we drop the
“U”.

Equivalently, E is I0(U,N, ε) if and only if Ball(�∞(E)) ⊆ AP (E, U,N, ε).
Kalton’s theorem implies that E is I0(U) if and only if it is I0(U,N, ε) for
some N and ε < 1. The standard iteration argument shows that if E is
I0(U,N, ε) for some ε < 1, then it is I0(U,N ′, ε′) for every 0 < ε′ < 1, where
N ′ depends only on N , ε and ε′.



58 3 I0 Sets and Their Characterizations

Definition 3.2.14. The set E is I0(U) with bounded length (or FZI0(U) with
bounded length) if there is an integer N such that for every non-empty, open
set U ⊆ G there is a finite set F ⊆ E such that E�F is I0(U,N, 1/2) (resp.,
FZI0(U,N, 1/2)).

Remarks 3.2.15. (i) The proof that ε-Kronecker(U) sets, with ε <
√

2 and U
a symmetric e-neighbourhood, are FZI0(U) (Theorem 2.3.1(3)) shows that
they are actually FZI0(U,N, 1/2), whereN depends only on ε. Consequently,
such sets are FZI0(U) with bounded length. Similarly, Hadamard sets are
FZI0(U) with bounded length (Theorem 1.3.9(3)).

(ii) It will be shown in Corollary 5.2.6 that if G is connected, then every
set in its dual that is I0(U) with bounded length is I0(U) for all non-empty,
open sets U .

3.2.4 Interpolation of ±1-Valued Functions

To be I0, it is also sufficient to interpolate all ±1-valued functions on E.

Proposition 3.2.16. Let U ⊆ G be a compact symmetric e-neighbourhood
and suppose there exists ε < 1 such that for all ϕ ∈ Z

E
2 there is some μ ∈

Md(U) such that |ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E. Then E is I0(U).

Proof. The arguments used in the proof of the improved standard iteration,
Corollary 1.3.3, show that under these assumptions, for every ϕ : E→ [−1, 1],
there is a μ ∈Md(U) with real-valued Fourier transform and such that

|ϕ(γ)− μ̂(γ)| ≤ (1 + ε)/2 for all γ ∈ E.

Finitely many more applications of the (real) standard iteration show that
we can assume |ϕ(γ)− μ̂(γ)| ≤ 1/3 for all γ ∈ E.

By interpolating the real and imaginary parts of arbitrary ϕ ∈ Ball(�∞(E))
and appealing to Theorem 3.2.5(4), it follows that E is I0(U). ��

This has an easy corollary.

Corollary 3.2.17. Suppose AP (E, N, ε) ⊇ Z
E
2 for some ε < 1. Then E is

I0(N ′, 1/2) where N ′ depends only on N and ε.

3.3 Function Algebra Characterizations

It is now easy to see that the original definition of I0 coincides with the one
we have given.
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Theorem 3.3.1 (Kahane’s AP theorem). Let E ⊆ Γ. The following are
equivalent:

1. E is I0.
2. AP (E) = B(E).
3. AP (E) = �∞(E).

Proof. (1) ⇒ (2) is immediate from the inclusions of (3.1.1).
(2)⇒ (3). Since ‖f‖∞ ≤ ‖f‖B(E) , the assumption AP (E) = B(E) implies

that the two Banach spaces have equivalent norms. In particular, there is
some constant C such that C‖f‖∞ ≥ ‖f‖B(E) for all f ∈ AP (E).

We claim this statement implies E is Sidon. To see this, suppose ϕ ∈
�∞(E). For every finite subset F ⊆ E, ϕ 1F ∈ AP (F). By assumption, there
is a measure μF ∈ M(G) such that μ̂F = ϕ 1F on E and ‖μF‖M(G) ≤
2‖μ̂F‖B(E) ≤ 2C‖ϕ 1F‖∞ ≤ 2C‖ϕ‖∞. Let μ be a weak* cluster point of
the set of bounded measures μF. Then μ̂|E = ϕ, proving E is Sidon. Hence,
�∞(E) = B(E). Consequently, �∞(E) = AP (E).

(3) ⇒ (1) follows directly from Proposition 3.2.12 (5) ⇒ (1) because the

functions
∑N
n=1 cnδ̂xn are dense in the almost periodic functions. ��

Another characterization was given by Ramsey, Wells and Bourgain.

Theorem 9.4.15 (Ramsey–Wells–Bourgain). A subset E of Γ is I0 if
and only if Bd(E) = B(E).

This is a deep result whose proof is given in Sect. 9.4. From it one may de-
duce another variant on the AP (E, N, ε,TE) ⊇ Ball(�∞(E)) criterion for I0.

Corollary 3.3.2. Let E ⊆ Γ. Then E is I0 if and only if for some 0 < ε < 1
there is a positive integer N such that for all f ∈ B(E), with ‖f‖B(E) ≤ 1,
there exist cn ∈ Δ and xn ∈ G with

∥
∥
∥
∥
∥

N∑

n=1

cnδ̂xn − f
∥
∥
∥
∥
∥
B(E)

≤ ε.

Proof. Suppose E is I0 with I0 constant C. Let ε > 0. If f ∈ Ball(�∞(E)),
there is some μ ∈Md(G) such that μ̂|E = f and ‖μ‖ ≤ C‖f‖∞. Approximat-
ing μ by an appropriate finite sum, it follows that for suitable cn ∈ Δ and
xn ∈ G we have

∥
∥
∥
∥
∥

N∑

n=1

cnδ̂xn |E − f
∥
∥
∥
∥
∥
∞
≤

∥
∥
∥
∥
∥

N∑

n=1

cnδxn − μ
∥
∥
∥
∥
∥
M(G)

< ε/C.

By considering a discrete measure ν whose transform agrees with ϕ =
∑N
n=1 cnδ̂xn − f on E and whose measure norm is at most C‖ϕ‖∞, one

can see that the Bd(E)-norm of ϕ is at most ε.
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For the other direction, an application of the standard iteration argument
shows that given f ∈ B(E), there exists a discrete measure μ whose transform
agrees with f on E. Consequently, Bd(E) = B(E), and the Ramsey–Wells–
Bourgain theorem then implies E is I0. ��

3.4 Topological Characterizations

The following topological characterization of I0 is known as the HRN char-
acterization (for Hartman and Ryll-Nardzewski) and is very useful.

Proposition 3.4.1 (HRN characterization). The following are equiva-
lent:

1. E ⊆ Γ is I0.
2. If E0 and E1 are disjoint subsets of E, then E1,E2 have disjoint closures

in the Bohr compactification of Γ.
3. If E0 and E1 are disjoint subsets of E, then there exists a discrete measure
μ such that μ̂ = 0 on E0 and μ̂ = 1 on E1.

Proof. (1)⇒ (2). Suppose E0 and E1 are disjoint subsets of E. Let ϕ ∈ �∞(E)
equal 0 on E0 and 1 on E�E0. Because E is I0, there is a discrete measure
μ such that μ̂ = ϕ on E. Since μ̂ is a continuous function on the Bohr group,
it must be 0 on E0 and 1 on E1, and hence those closures are disjoint.

(2)⇒ (3). Suppose E0, E1 are disjoint subsets of E. Then their closures are
disjoint, so a compactness argument implies there exists an open set V ⊆ Γ

such that E0 ·V ·V
−1

and E1 are disjoint. Choose g, h ∈ �2(Gd) such that

ĝ = 1V and ĥ = 1
E0·V−1 . Then

μ =
1

mΓ(V)
g · h ∈ �1(Gd) = Md(G).

Since μ̂ = 1
m(V)

ĝ ∗ ĥ, one may easily verify that μ̂ = 1 on E0 and 0 off

E0 ·V ·V
−1

. In particular, μ̂ = 0 on E1.
(3) ⇒ (1). It suffices to verify that

⋃∞
N=1AP (E, N, 1/3) ⊇ Z

E
2 and then

appeal to the standard iteration. The details are left to the reader. ��
Remark 3.4.2. Since finite sets are closed in the Bohr compactification, this
gives a second proof that finite subsets of Γ are I0. In contrast, even a two-
element set need not be I0(U) for all non-empty, open sets U ; take a non-
trivial finite group G, the open subset U = {e} and E = {γ,1}.

Example 1.5.2 shows that the class of I0 sets is not closed under finite
unions. It is easy to deduce from the HRN characterization the following
simple criterion for determining whether the union of two I0 sets is I0. The
proof is left as Exercise 3.7.12(1).
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Corollary 3.4.3. Suppose disjoint sets E and F are I0. Then E ∪F is I0 if
and only if the Bohr closures of E and F are disjoint.

The HRN criterion may be further refined to show that the size of the
separating set can be controlled independently of the partition.

Theorem 3.4.4 (Kahane separation theorem). Let E ⊂ Γ. The follow-
ing are equivalent:

1. E is I0.
2. There exists ε > 0 such that whenever E0 and E1 are disjoint subsets of

E, then there is a 1-neighbourhood V ⊆ Γ, with Γ-Haar measure at least
ε, such that E0 ·V and E1 ·V are disjoint.

3. Whenever E0 and E1 are disjoint subsets of E there is a Borel subset
W ⊆ Γ of positive Haar measure and containing the identity, such that
E0 ·W and E1 ·W are disjoint.

We begin with a technical lemma.

Lemma 3.4.5. Let δ > 0, N be a positive integer and M = �4π/δ�. Let
x1, . . . , xN ∈ G. There is an open set V ⊆ Γ such that mΓ(V) ≥ (1/M)N

and

|λ(xn)− 1| < δ for all n = 1, . . . , N and λ ∈ V.

In the above, �x� is the smallest integer ≥ x.

Proof (of Lemma 3.4.5). For 1 ≤ m ≤M, let

Im =
{

eiθ :
(m− 1)π

M
< θ <

(m+ 1)π

M

}
.

These open sets cover T and hence at least one of the M open preimages,

(δ̂x1)−1(Im) = {λ ∈ Γ : λ(x1) ∈ Im},

has Γ-Haar measure at least 1/M . Choose V1 to be such a set and suppose
λ1 ∈ V1. Notice that if λ ∈ V1, then |λ(x1)− λ1(x1)| < 2π/M ≤ δ/2.

Inductively assume there are non-empty, open sets Vk ⊆ Vk−1 for k =
1, . . . ,K − 1, k ≤ N , with mΓ(Vk) ≥ (1/M)k and having the property that

for every (fixed) λk ∈ Vk and arbitrary λ ∈ Vk we have |λ(xk)− λk(xk)| < δ.

The preimages, (δ̂xK )−1(Im) for m = 1, . . . ,M , cover VK−1, and hence
the intersection of at least one of these sets with VK−1 has measure at least
1
Mm

Γ
(VK−1)≥ (1/M)K . Select VK to be one of those intersections and pick

λK ∈ VK .
Take V = λ−1

N VN . By construction |λ(xn)− 1| < δ for all n = 1, . . . , N
and λ ∈ V. ��
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Proof (of Theorem 3.4.4). (1)⇒ (2). Since E is I0 there is an integer N such
that AP (E, N, 1/4) ∩ T

E = T
E. We will prove ε = (16πN)−N works in (2).

Let E0, E1 be disjoint subsets of E and choose μ =
∑N

n=1 cnδxn , with
cn ∈ Δ, such that |μ̂− 1| ≤ 1/4 on E0 and |μ̂+ 1| ≤ 1/4 on E1. Obtain V
from the lemma with δ = 1/(4N) and these points x1, . . . , xN . We will verify
that E0 ·V ∩E1 ·V is empty.

Suppose χ = γ0β0 = γ1β1 ∈ E0 ·V ∩ E1 ·V, with γj ∈ Ej and βj ∈ V.
The choice of V ensures that |βj(xn)− 1| ≤ 1/(4N) for all n and both j. An
easy calculation shows

|μ̂(χ)− 1| ≤
∣
∣
∣
∣
∣

N∑

n=1

cnγ0(xn) (β0(xn)− 1)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

N∑

n=1

cnγ0(xn)− 1

∣
∣
∣
∣
∣

≤
N∑

n=1

|cn| |β0(xn)− 1|+ |μ̂(γ0)− 1| ≤ 1

2
.

Similarly,

|μ̂(χ) + 1| ≤
N∑

n=1

|cn| |β1(xn)− 1|+ |μ̂(γ1) + 1| ≤ 1

2
,

and this is clearly impossible.
(3) ⇒ (1). It will be sufficient to prove that disjoint subsets of E have

disjoint closures. So assume E0, E1 ⊆ E are disjoint. By (3) there is a Borel
set W of positive measure, with E0 ∩ (E1 ·W ·W−1) = ∅. Since 1 is an
interior point of W ·W−1, there is a symmetric 1-neighbourhood V such that
V2 ⊆W ·W−1. The set (E0 ·V) ∩ (E1 ·V) is empty. Because Ej ⊆ Ej ·V,
it follows that E0 and E1 have disjoint closures.

(2) ⇒ (3) is trivial. ��

3.5 I0 Sets Do Not Cluster at a Continuous Character

We conclude this chapter with a proof that general I0 sets have a property
shown already for Hadamard and ε-Kronecker sets: I0 sets cannot cluster at
a continuous character. The proof uses an idea that is important in the proof
that any I0 set is a finite union of I0(U) sets (Theorem 5.3.1).

Theorem 3.5.1 (Ryll-Nardzewski–Méla–Ramsey). If E is an I0 set,
then no continuous character is a cluster point of E.

Proof. It is enough to show that an I0 set cannot cluster at 1 since if the I0
set E clusters at γ, then the I0 set γ−1E would cluster at 1. We argue by
contradiction, and suppose that E did cluster at 1.
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A Baire category argument (given below) will show that there exist N ≥ 1,
a finite set F ⊂ E and a fixed set c1, . . . , cN ∈ Δ such that if ϕ : E → Z2,
then there exist x1, . . . , xN ∈ G with |ϕ(γ)−

∑N
1 cnγ(xn)| ≤ 1/3 on E� F.

We claim, assuming the preceding, that |1 −
∑N

1 cn| ≤ 1/3. Indeed, let

ϕ ≡ 1 on E. Choose x1, . . . , xN such that |ϕ(γ) −
∑N

1 cnγ(xn)| ≤ 1/3 for

γ ∈ E � F. Then |1 −
∑N

1 cn| = |1 −
∑N

1 cn1(xn)| ≤ 1/3 since E clusters
at 1.

Choosing ϕ ≡ −1 on E, we similarly deduce that |1 +
∑N

1 cn| ≤ 1/3. But
these two inequalities cannot simultaneously hold.

Here is the Baire category argument. For each M ≥ 1, let DM be a count-
able, dense subset of ΔM . For each M ≥ 1 and c = (c1, . . . , cM ) ∈ DM

let ÃP (M, c) be the set of ϕ ∈ Ball(�∞(E)) = ΔE such that there ex-

ist x1, . . . , xM ∈ G with |ϕ(γ) −
∑M

1 cmγ(xm)| ≤ 1/3 for γ ∈ E. Because

G is compact, each ÃP (M, c) is closed in Ball(�∞(E)). Because E is I0,
⋃∞
M=1

⋃
c∈DM

ÃP (M, c) ⊇ Ball(�∞(E)). The Baire category theorem says

that some ÃP (M, c) has interior. By the definition of the product topol-

ogy, there is a finite set F ⊆ E and open V ⊆ ΔF such that ÃP (M, c)
contains V × ΔE�F. In particular, for every ϕ : (E � F) → Δ, there exist

x1, . . . , xM ∈ G such that |ϕ(γ)−
∑M

1 cmγ(xm)| ≤ 1/3 for all γ ∈ E� F. ��

Corollary 3.5.2. If E is an I0 set and F is a finite set, then E ∪ F is I0.

Proof. Without loss of generality the sets E and F are disjoint. Because
E�E contains no continuous characters and F is closed in the Bohr topology,
Corollary 3.4.3 implies E ∪ F is I0. ��

In fact, as with ε-Kronecker sets (Theorem 2.7.12), the Bohr closure of
an I0 set does not support a non-zero measure whose transform vanishes at
infinity on Gd and thus is a U0-set (see Definition 2.7.11).

Proposition 3.5.3. If E is I0, then M0(E) = {0}.

Proof. If ϕ : E → Δ is continuous, then, since E is I0, there is some μ ∈
Md(G) with ϕ = μ̂|E. By continuity, ϕ = μ̂ on E. Therefore, Bd(E) =
A(E) = C(E). A duality argument implies there is a constant C such that
‖ν‖M(E) ≤ C‖μ̂‖∞ for all ν ∈M(E).

For convenience, let Λ =
̂
Γ = Gd. Now we proceed by contradiction.

Suppose there exists μ �= 0 ∈ M0(E). Since each measure in M0 is continu-
ous (Lemma C.1.9 (3)), we may find mutually singular probability measures
ν1, ν2, · · ·  μ. By Lemma C.1.9 (2), the νj ∈M0(Γ), so the Fourier-Stieltjes
transforms of the νj ’s are 1 at 1Λ ∈ Λ and tend to 0 away from 1Λ (recall
that Λ has the discrete topology). Inductively choose λ1, λ2 ∈ Λ such that

‖
∑J

1 λ̂jνj‖ ≤ 2 (just translate the humps). Since ‖
∑J

1 λjνj‖ = J , there can
be no finite C with C‖ν‖∞ ≥ ‖ν‖ for all ν ∈ M0(E). This contradiction
completes the proof. ��
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Corollary 3.5.4. If E is I0, then mΓ(E) = 0.

Remark 3.5.5. A closed subset, X , of a compact abelian group is called a
Helson set if A(X) = C0(X). A subset is Helsonian if its closure is a Helson
set. The first part of the proof of Proposition 3.5.3 shows that an I0 set is
Helsonian, and the second part of the proof shows that Helson sets are sets
of uniqueness in the weak sense.

3.6 Remarks and Credits

Introduction. I0 sets have been extensively studied since the 1960’s and many
of the important contributors from that period are listed in what follows.
See also Sect. 1.6. The more restricted classes of I0(U), RI0 and FZI0 sets
(and their further restrictions, RI0(U) and FZI0(U)) were introduced in
[51, 53]. The name “FZI0” was suggested by the fact that every Sidon set
that does not contain the identity has the Fatou–Zygmund property, meaning
the interpolation of bounded Hermitian functions may always be done with
a positive measure (see Corollary 6.3.4).

Other I0 papers from the early years include [79, 81–83, 121, 122, 128,
130, 137, 168, 169, 180, 181, 194].

Characterizations: Approximate Interpolation. Theorem 3.2.5 was proved
by Kalton [107] for I0 sets; our treatment follows closely that of Ramsey
[158]. Kalton credits Kahane and Méla for the idea and also gives other
characterizations. In place of the Baire category theorem, Kalton’s proof,
like the one in the appendix of Ramsey’s [158], uses the Shields–Kneser–
Kemperman theorem, [112, 114, 172], which states, in particular, that if G is
a compact, connected group, then mG(A ·B) ≥ mG(A)+mG(B) for all Borel
subsets, A,B, of G, unless mG(A) +mG(B) > 1, in which case A · B = G.

See also [51, 53] for proofs of Theorems 3.2.5 and 3.2.6. Other basic prop-
erties of the more restrictive classes of sets are studied in Chap. 4.

Characterizations: Function Algebras and Topological. Theorem 3.3.1(1)
⇔ (3) is due to Kahane [100]. Theorem 3.3.1(1)⇔ (2) and Exercise 3.7.12(2)
are from [158], along with a number of other properties, some of which will
be discussed in later chapters. The Ramsey–Wells–Bourgain characterization
of I0 sets as those with Bd(E) = B(E), Theorem 9.4.15, is from Ramsey and
Wells [159] and Bourgain [18].

Proposition 3.4.1, the Hartman and Ryll-Nardzewski topological charac-
terization, may be found in [81]. The separation condition of Theorem 3.4.4
is a slight improvement of [100, Proposition 3], which Kahane used in prov-
ing Theorem 3.3.1.

Clustering. The fact that I0 sets cannot cluster at a continuous charac-
ter, Theorem 3.5.1, was proved by Ryll-Nardzewski [169] for G = R; the
general case was proved by Méla [129, pp. 177–8] and (independently) by
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Ramsey [156]. Ramsey shows that if γ ∈ Γ is a Bohr cluster point of E ⊆ Γ,
then there exist disjoint sets E1,E2 ⊆ E which also cluster at γ, from which
the non-clustering of I0 sets easily follows. The proof here is adapted from
Méla.

Extensions to LCA Groups. The definition of I0 sets may be extended to
subsets of locally compact abelian groups, such as R, by requiring (only) the
interpolation of continuous, bounded functions on E by the Fourier–Stieltjes
transforms of discrete measures. Many of the papers mentioned above study
I0 sets in this more general setting and many of the results proven in this
chapter continue to hold, particularly when Γ is metrizable. This is discussed
in more detail in Sect. A.1.

Helson and Helsonian Sets. There is a large literature on Helson sets. See
[56]. The term “Helsonian” was introduced by Kahane [100]. That closed
Helson sets are sets of uniqueness in the weak sense is due to Helson [84].
The proof here is a variant of [31]. For a contemporary view on Helson’s
theorem, see [183].

3.7 Exercises

Exercise 3.7.1. Let Λ ⊆ Γ be a subgroup and E ⊆ Λ.

1. Show that E is I0 (resp., FZI0) as a subset of Γ if and only if it is I0
(resp., FZI0) as a subset of Λ.

2. Let U ⊆ G, H = Λ⊥ and U ′ the image of U in G/H . Show that E is
I0(U) (resp., FZI0(U)) as a subset of Γ if and only if it is I0(U ′) (resp.,
FZI0(U ′)) as a subset of Λ.

Exercise 3.7.2. 1. Show that E is I0 if and only if there exist N and ε < 1
such that every finite subset F ⊆ E is I0(G,N, ε).

2. Suppose E is I0(U,N, ε) for some 0 < ε < 1 and δ > 0 is given. Determine
N ′ such that E is I0(U,N ′, δ).

Exercise 3.7.3. Let U ⊆ G be σ-compact. Suppose AP (E, U,N, ε) ⊇ Z
E
2

for some 0 < ε < 1.

1. Find a bound on the I0(U) constant of E.
2. Suppose, in addition, that E is asymmetric and U is a symmetric e-

neighbourhood. Show that every real-valued function on E may be inter-
polated by a measure μ ∈M r

d (U) with real-valued Fourier transform.

Exercise 3.7.4. Suppose there exist N and ε < 1 such that for each non-
empty, open set U there is some finite set F ⊂ E with AP (E� F, U,N, ε) ⊇
Z

E
2 . Show E is I0(U) of bounded length.
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Exercise 3.7.5. 1. Show that Bd(E) ⊆ AP (E).
2. Show that E is Helsonian if and only if AP (E) = Bd(E).

Exercise 3.7.6. Show that if E is I0 then there exists a constant C such
that ‖μ̂‖Bd(E) ≤ C ‖μ̂‖�∞(E) .

Exercise 3.7.7. Let U ⊆ G be a symmetric neighbourhood of e and suppose
that for each ϕ ∈ Z

E
2 there exists μ ∈Md(U) such that

sup{|ϕ(γ)− μ̂(γ)| : γ ∈ E} < 1.

Show that there is a finite set F such that E� F is I0(U).

Exercise 3.7.8. Let E be an ε-Kronecker set for some ε <
√

2.

1. Prove that E is FZI0(N, 1/2) with N depending only on ε.
2. Show that E is FZI0(U) with bounded length.

Exercise 3.7.9. Suppose E is an asymmetric set that contains no elements
of order two. Suppose that for each ϕ1 : E → Z2 and ϕ2 : E → iZ2 there
exist μ1, μ2 ∈M+

d (E) with ϕj = μ̂j on E, j = 1, 2. Show that E is FZI0.

Exercise 3.7.10. Prove that a finite set is I0 by using the strategy outlined
in Corollary 3.2.11.

Exercise 3.7.11. Show that an independent set is both FZI0 and FZI0(U)
with bounded length.

Exercise 3.7.12. 1. Prove that the union of two disjoint I0 sets is I0 if and
only if the Bohr closures of the two sets are disjoint.

2. Prove that E is I0 if and only if whenever E0 ⊆ E there exist a discrete
measure μ and closed disjoint subsets C0, C1 ⊆ C such that μ̂(E0) ⊆ C0

and μ̂(E�E0) ⊆ C1

Exercise 3.7.13. Give an example of an ε-Kronecker set E ⊂ Z and a group
homomorphism Φ : Z→ Z such that E ∪ Φ(E) is not I0.

Exercise 3.7.14. 1. Give the details of the standard iteration argument in
Corollary 3.3.2.

2. Use the weak* density of the unit ball of A(E) in B(E) to prove that
Corollary 3.3.2 continues to be true if “f ∈ B(E)” is replaced by “f ∈
A(E)”.



Chapter 4

More Restrictive Classes of I0 Sets

The classes I0, RI0 and FZI0 are distinct. Criteria are given for a set in a
larger class to belong to a smaller. Pseudo-Rademacher sets are studied. Ev-
ery infinite discrete group is shown to contain a large subset that is FZI0(U)
with bounded length. Every infinite subset of Γ is shown to contain a large
subset that is I0(U) with bounded length.

4.1 Introduction

The focus of this chapter will be on more restrictive classes of I0 sets. In
the previous chapter, the RI0(U) and FZI0(U) sets were introduced—the
sets E ⊆ Γ with the property that every bounded Hermitian function can be
interpolated by a real (respectively, positive) discrete measure concentrated
on U . Obviously, every FZI0(U) set is RI0(U) and it is not difficult to see
that every RI0(U) set is I0(U). In Sect. 4.2, we will see that these three
classes are distinct. Indeed, it will be seen that a set E is RI0(U) if and
only if E ∪ E−1 is I0(U). Since μ̂(1) ≥ 0 whenever μ is a positive measure,
the singleton {1} ⊆ Γ is never FZI0. This will be shown to be the only
distinction between RI0 and FZI0, however. Topological characterizations
of RI0, similar to the HRN characterization of I0, will also be given.

An example of an FZI0 set is an independent set of characters of order 2,
such as the set of Rademacher functions in D̂. More generally, a set E with
the property that every ±1-valued function defined on E can be interpolated
exactly by some x ∈ G will be called a pseudo-Rademacher set. Pseudo-Rad-
emacher sets are weak

√
2-Kronecker and I0. In Sect. 4.4, it will be shown

that they are I0(U) with bounded length, but need not be RI0.
In the final section, the existence of large I0 sets is investigated. We prove

that every infinite subset of Γ contains a subset of the same cardinality that
is either weak 1-Kronecker or pseudo-Rademacher and hence a subset that
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is I0(U) of bounded length. Moreover, an infinite Γ always contains a subset
that is FZI0(U) with bounded length and of the same cardinality.

4.2 Distinctiveness of the Classes I0, RI0 and FZI0

4.2.1 Which I0 Sets Are RI0?

Proposition 4.2.1. Let E ⊆ Γ and U ⊆ G be a symmetric neighbourhood of
the identity. Then E is RI0(U) if and only if E ∪E−1 is I0(U).

Proof. Assume E ∪ E−1 is I0(U). Let ϕ : E → C be a bounded Hermitian
function and extend ϕ to E−1

� E by the rule ϕ(γ−1) = ϕ(γ) for γ ∈ E.
Since E ∪ E−1 is I0(U), we may obtain μ ∈ Md(U) with μ̂(γ) = ϕ(γ) for
γ ∈ E ∪E−1. Put ν = (μ+ μ)/2. Then ν ∈M r

d (U) and for γ ∈ E,

ϕ(γ) =
1

2
(μ̂(γ) + μ̂(γ−1)) = ν̂(γ).

Therefore, E is RI0(U).
Now assume E is RI0(U). To show that E ∪ E−1 is I0(U), we will use

the fact that every bounded function ϕ : E ∪ E−1 → C is a complex linear
combination of bounded Hermitian functions. Indeed, put ϕ = ψ1−iψ2 where
ψ1(γ) = (ϕ(γ) + ϕ(γ−1))/2 and ψ2(γ) = i(ϕ(γ) − ϕ(γ−1))/2. Then ψ1 and
ψ2 are Hermitian functions defined on E, and hence, by assumption, there
are measures μj ∈M r

d (U) with μ̂j(γ) = ψj(γ) for γ ∈ E. Let

ν1 =
1

2
(μ1 + μ̃1) and ν2 =

1

2
(μ2 − μ̃2).

Both νj belong to M r
d (U). Since ψ1 and ψ2 are purely real- and imaginary-

valued, respectively, it is easy to check that ν̂j = ψj on E ∪ E−1. Therefore,
if ν = (ν1 − iν2), then ν ∈Md(U) and ϕ = ν̂ on E ∪E−1. ��

Corollary 4.2.2. 1. Finite sets are RI0.
2. The union of an RI0 set and a finite set is RI0.

Proof. These follow from the analogous results for I0 sets (Corollaries 3.2.11
and 3.5.2) and the previous proposition. ��

Example 4.2.3. An asymmetric subset of Z that is I0, but not RI0: Put E1 =
{8j + 4j + 1 : j ∈ N}, E2 = {8j + 1 : j ∈ N} and E = E1 ∪ −E2. Of course,
E1 and E2 are both Hadamard sets and are therefore I0. The set E ∪ −E is
not I0 since the closures of E1 and E2 are not disjoint. Thus, E is not RI0.

For g = π/2 we have



4.3 A Topological Characterization of RI0 69

δ̂g(n) =

{
i = eiπ/2 for all n = −8j − 1 ∈ −E2,

−i = e−iπ/2 for all n = 8j + 4j + 1 ∈ E1.

Therefore, E1 ∩−E2 = ∅, so E1 ∪ −E2 is I0.

4.2.2 Which RI0 Sets Are FZI0?

Interestingly, the only barrier to an RI0 set being FZI0 is the inclusion of the
identity character. The proof of this is based upon the fact that the closure of
an I0 set in Γ is a Helson set (see Remark 3.5.5 for the definition) and on the
property of Helson sets given by the following theorem. This is known as the
Fatou–Zygmund, or FZ, property in the Sidon set context (Definition 6.2.1).

Theorem 4.2.4 (Smith’s FZ theorem). Let E ⊂ Γ be a compact, sym-
metric Helson set with 1 �∈ E. Then there exists C > 0 such that for all
continuous, Hermitian ϕ : E→ Δ there exists μ ∈M+(Gd) such that ϕ = μ̂
on E and ‖μ‖ ≤ C.

We can now characterize which RI0 sets are FZI0.

Proposition 4.2.5. An RI0 set E ⊆ Γ is an FZI0 set if and only if E does
not contain the identity element.

Proof. We have already observed that an FZI0 set cannot contain the iden-
tity, so assume that E is RI0 and does not contain the identity. Since E is
I0, 1 does not belong to E, either. As noted above, E is Helson in Γ.

Smith’s FZ Theorem 4.2.4 tells us that every Hermitian, continuous ϕ :
E → Δ is the restriction of the Fourier-Stieltjes transform of a measure in
M+(Gd). Since M+(Gd) = M+

d (G), we see that E is FZI0. ��

We do not know if there is always a cofinite subset of an RI0(U) set that
is FZI0(U) [P 10].

4.3 A Topological Characterization of RI0

It follows directly from the definitions that a set E is RI0 if and only if
E ∪ E−1 is RI0, so in studying the property RI0 there is no loss in working
with asymmetric sets.

Proposition 4.3.1. An asymmetric set E is RI0 if and only if both the fol-
lowing conditions are satisfied:

1. For every F ⊆ E there exists σ ∈M r
d (G), with real-valued Fourier trans-

form, such that σ̂(F) and σ̂(E� F) have disjoint closures in C.
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2. The closure of {γ ∈ E : γ2 �= 1} ⊆ Γ in the Bohr topology does not
contain any elements of order two.

Proof. First, assume E is RI0 and let F ⊆ E. Because E is asymmetric, the
function ϕ given by ϕ(γ) = 0 for γ ∈ F and ϕ(γ) = 1 for γ ∈ E � F is
bounded and Hermitian on E. Thus, there is a measure μ ∈ M r

d (G) with
μ̂ = ϕ on E, and, taking σ = μ+ μ̃, we see that (1) holds.

Let E0 = {γ ∈ E : γ2 �= 1} and suppose there is some χ ∈ E0 of order two.
Notice that χ also belongs to the closure of E−1

0 . The function which is equal
to i on E0 and 0 otherwise on E is Hermitian and thus may be interpolated
by a real, discrete measure μ. By continuity, μ̂(χ) = i.

Since μ is a real measure, μ̂(γ−1) = μ̂(γ) for all γ ∈ Γ. In particular, μ̂(γ) =
−i for γ ∈ E−1

0 . This must also hold on the closure of E−1
0 , contradicting the

fact that μ̂(χ) = i and χ ∈ E−1
0 . This shows (2) holds.

Conversely, assume properties (1)–(2) hold. To prove E is RI0 we will
establish that E∪E−1 is I0. By the HRN characterization of I0, property (1)
implies that E (and similarly E−1) is I0. Therefore, it will be enough to prove
that E and E−1

�E have disjoint closures in Γ.
Suppose otherwise. Then there are nets {χα} ⊆ E and {γβ} ⊆ E−1

� E
that have the same limit ψ. Observe that the characters γβ are not of order 2
because γβ ∈ E−1

�E. Hence, ψ ∈ E0 and so property (2) implies ψ is not of
order two. That shows that {χα} and {γ−1

β } are nets in E with different

limits, ψ, ψ−1, respectively. Since these nets eventually belong to disjoint
neighbourhoods of ψ and ψ−1, respectively, there is no loss of generality in
assuming the nets are disjoint.

Apply property (1) with F = {χα}α. Since σ is a real measure with real-
valued Fourier transform, σ̂(ψ) = σ̂(ψ−1). But σ̂(ψ) and σ̂(ψ−1) belong to
the disjoint sets σ̂(F) and σ̂(E� F), respectively, giving a contradiction. ��

Corollary 4.3.2. Suppose Γ has no elements of order two. Then an asym-
metric E ⊂ Γ is RI0 if and only if for every F ⊆ E there exists σ ∈M r

d (G),
with real-valued Fourier transform, such that σ̂(F) and σ̂(E�F) have disjoint
closures.

Proof. If Γ has no elements of order two, then the same is true for Γ (Exercise
C.4.11(3)), and hence property (2) is vacuous. ��

Remark 4.3.3. Call E ⊆ Γ a real RI0 set (respectively, a real FZI0 set) if
for every real-valued, bounded, Hermitian ϕ : E → C there is a real (resp.,
positive) discrete measure μ with μ̂ = ϕ on E. Real RI0 and real FZI0
sets may be characterized in a similar manner to the main characterization
theorems for I0 sets. See Exercise 4.7.4.

Arguments similar to those used to prove the HRN characterization of
I0 also show that an asymmetric set E is real RI0 if and only if for every
F ⊆ E, there exists σ ∈ M r

d (G), with real-valued Fourier transform, such



4.4 Pseudo-Rademacher Sets 71

that σ̂(F) and σ̂(E�F) have disjoint closures. Thus, Corollary 4.3.2 implies
that for groups with no elements of order two, real RI0 and RI0 coincide for
asymmetric sets.

The set E of Example 4.2.3 is I0, but not real RI0 since it is an asymmetric
set in Z which is not RI0. The example below shows that real FZI0 and RI0
are also distinct classes.

Example 4.3.4. A real FZI0 set that is not RI0: Let E = {(j, πj) : j ∈
N} ⊆ Z ⊕ D̂ where the {πj} are the Rademacher functions in D̂. In Exam-
ple 2.5.6 we showed that this set is not a finite union of ε-Kronecker sets.
The independence of the characters {πj} ensures that we may interpolate
±1-valued functions on E by Fourier transforms of positive discrete measures
with real transforms. Of course, this implies that E is I0 (see Corollary 3.2.17).
That this interpolation property is enough to prove that E is real FZI0 is
left to Exercise 4.7.4. Choosing a net (jα, πjα) such that jα → 0 in Z, we see
that E and E−1 do not have disjoint closures. Thus, E is not RI0.

4.4 Pseudo-Rademacher Sets

By a Rademacher set we mean an independent set in Γ consisting only of
characters of order two. The prototypical example is the set {πn}∞n=1 ⊆ D̂ of
Rademacher functions defined on page xvii. A Rademacher set, E, is FZI0,
since given any choice of ϕ ∈ Z

E
2 , there exists x ∈ G with ϕ(γ) = γ(x). We

will see later in this section that a Rademacher set is even FZI0(U) with
bounded length. This example motivates the following (weaker) definition.

Definition 4.4.1. The set E ⊆ Γ is called pseudo-Rademacher(U) if for
every ϕ : E→ Z2 there exists x ∈ U such that ϕ(γ) = γ(x) for all γ ∈ E.

If a pseudo-Rademacher set contains only elements of order 2, then it is
a Rademacher set (Exercise 4.7.6). But there are other pseudo-Rademach-
er sets: the set of Example 4.3.4, any translate of a Rademacher set by a
character independent of that set and any independent set of characters of
even orders are all examples of pseudo-Rademacher sets. An infinite pseu-
do-Rademacher set does not necessarily contain a translate of an infinite
Rademacher set.

Pseudo-Rademacher sets are obviously weak
√

2-Kronecker, as well as be-
ing I0. However, they need not be RI0 (much less FZI0), as Example 4.3.4
demonstrates, or even contain any subsets that are FZI0(U), as the next
example illustrates.

Example 4.4.2. An I0 set that is pseudo-Rademacher and contains no subset
that is FZI0(U) for some non-empty, open set U : Let E1 = {πn}∞n=1 ⊂ D̂

be the set of Rademacher functions and suppose γ ∈ Z3 has order three.
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Let Γ = Z3 ⊕ D̂ and E = {γ} × E1 ⊆ Γ. No subset of E is FZI0(U) for
U = {x ∈ G : γ(x) = 1} since the Fourier transform of every positive
measure concentrated on U takes on only real values on E. The set E is
pseudo-Rademacher since ±1 can be interpolated exactly and hence I0. In
fact, E is even FZI0 (see Exercise 4.7.3).

However, pseudo-Rademacher sets are I0(U) with bounded length. That
requires another application of the Baire category theorem, similar to Theo-
rem 2.2.13.

Lemma 4.4.3. Suppose E is a pseudo-Rademacher set and U ⊆ G is a neigh-
bourhood of e. Then there is a finite set F such that E� F is pseudo-Rade-
macher(U).

Proof. Suppose U is an e-neighbourhood and choose a compact, symmetric
e-neighbourhood V such that V 2 ⊆ U . By compactness, there are finitely
many elements g1, . . . , gK ∈ G such that G =

⋃K
k=1 gkV . Let

Xk = {ϕ ∈ Z
E
2 : ∃x ∈ gkV such that ϕ(γ) = γ(x)∀γ ∈ E}.

The sets Xk are closed in Z
E
2 . Since E is pseudo-Rademacher, their union is

all of the compact Hausdorff space Z
E
2 .

By the Baire category theorem, one of the sets Xk has non-empty interior.
That means there is a finite set F such that for each ϕ ∈ Z

E
2 there is an

x ∈ gkV such that ϕ(γ) = γ(x) for all γ ∈ E� F.
Because the trivial character 1 is also in Z

E
2 , there is some y ∈ gkV such

that γ(y) = 1 for all γ ∈ E�F. But then also γ(y−1) = 1 for all such γ. Take
z = xy−1 ∈ V 2 ⊆ U . Then γ(z) = ϕ(γ) for all γ ∈ E � F, and that shows
E� F is pseudo-Rademacher(U). ��

Corollary 4.4.4. Every translate of a pseudo-Rademacher set is I0(U) with
bounded length.

Proof. Because the property I0(U) with bounded length is preserved under
translation, there is no loss of generality in assuming the translate, E, is
actually pseudo-Rademacher.

Use Lemma 4.4.3 to obtain a finite set F such that E�F is pseudo-Rad-
emacher(U). The arguments of Proposition 3.2.16 easily show that E� F is
I0(U, 4, 1/2). ��

Remark 4.4.5. Similar arguments show that if E is a Rademacher set, then
E � F is FZI0(U, 1, 1/2) since only real-valued functions would need to be
interpolated.

Other properties of pseudo-Rademacher sets are derived in the exercises.
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4.5 The Existence of Large I0 and FZI0 Sets

In Theorem 2.4.3 it was shown that whenever E ⊆ Γ is not 2-large (see
Definition 2.4.1), then E contains a weak 1-Kronecker subset, F, of the same
cardinality as E. As noted in Remark 3.2.15, such a set F is FZI0(U) with
bounded length. Example 4.4.2 shows this need not be true for a set that is
2-large.

In this section, it will be shown that every 2-large set contains a subset
of the same cardinality that is pseudo-Rademacher and hence is I0(U) with
bounded length. It will also be shown that every infinite 2-large group Γ
contains a Rademacher set of the same cardinality as Γ. Thus, every infinite
group contains a subset, of the same cardinality as the group, that is FZI0(U)
with bounded length.

We first prove a lemma.

Lemma 4.5.1. Every infinite set E of elements of order 2 contains an inde-
pendent subset of the same cardinality.

Proof (of Lemma 4.5.1). Use Zorn’s lemma to find a maximal independent
set, A ⊆ E, of elements of order two (see p. 30 for details). We claim |A| =
|E|. If not, let X be the group generated by A. Since |A| < |E|, we have
|X| < |E|, and hence there is some γ ∈ E�X. Because every element of E
has order 2, it follows that A ∪ {γ} is independent, and that contradicts the
maximality of A. ��

Theorem 4.5.2. Let Γ be an infinite discrete group.

1. Then Γ contains a subset F with |F| = |Γ| that is FZI0 and FZI0(U)
with bounded length.

2. Suppose E ⊆ Γ is infinite.

(i) If E is 2-large, then E contains a subset F with |F| = |E| that is I0
and I0(U) with bounded length.

(ii) If E is not 2-large, then E contains a subset F with |F| = |E| that
is FZI0 and FZI0(U) with bounded length.

In addition, in all cases we may choose the subset F so that F ·F−1 does not
cluster at a non-trivial continuous character.

Corollary 4.5.3 (Hartman–Ryll-Nardzewski existence). Let U ⊆ G be
non-empty and open. Every infinite subset of Γ contains a subset of the same
cardinality that is I0(U).

Remark 4.5.4. We do not know if there is a set that does not contain an FZI0
subset of the same cardinality [P 8].
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Proof (of Theorem 4.5.2). Part (2ii) holds since Theorem 2.4.3 shows that
when E is not 2-large one may even choose F to be weak 1-Kronecker.

Of course, this fact also establishes (1), except when Γ is 2-large. But
then the subgroup of Γ consisting of the characters of order 2 has the same
cardinality as Γ. Appealing to Lemma 4.5.1, we may find an independent set
of characters of order 2 (hence, a Rademacher set) of the same cardinality
as Γ. Such a set is clearly FZI0 and, as noted in Remark 4.4.5, it is also
FZI0(U) with bounded length.

To prove (2i) suppose E is 2-large. As in (2.4.1), we may assume Γ is
a subgroup of

⊕
α Γα, where each Γα is either C(p∞) or Q. Being 2-large,

the projection Π of E onto the direct sum of the factor groups C(2∞) must
contain as many elements of order 2 as there are in E.

Appealing to Lemma 4.5.1 again, we obtain an independent subset, F, of
characters of order two with the same cardinality as E. For each γ ∈ F, choose
one element χγ ∈ E such that Π(χγ) = γ. It is an easy exercise to check that
the resulting subset of E is pseudo-Rademacher. By Corollary 4.4.4, it is both
I0 and I0(U) with bounded constants.

The final comment holds since both weak 1-Kronecker and pseudo-Rade-
macher sets have the required property; see Proposition 2.7.4 and Exercise
4.7.7. ��

The proof just given also establishes the following corollary.

Corollary 4.5.5. If E is an infinite subset of Γ, then E contains either a
weak 1-Kronecker subset or a pseudo-Rademacher subset of the same car-
dinality as E. If E = Γ, the pseudo-Rademacher set can be chosen to be
Rademacher.

4.6 Remarks and Credits

Distinctiveness of the Classes I0, RI0 and FZI0. Basic properties of the more
restricted classes of RI0 and FZI0 sets (and their further restrictions, RI0(U)
and FZI0(U)) were studied in [53], including the characterization of which
I0 sets are RI0, Proposition 4.2.1 and Example 4.2.3.

Theorem 4.2.4 is due to Smith [175].
The proof that all RI0 sets that do not contain 1 are FZI0 may be found

in [57]. The topological characterization of RI0, Proposition 4.3.1, may also
be found in that paper, as well as basic properties of the classes real RI0 and
real FZI0 and Example 4.3.4.

Pseudo-Rademacher Sets. Pseudo-Rademacher sets were introduced in [59]
and their Kronecker-like properties established there, including the fact that
if E is pseudo-Rademacher, then M0((E ∪E−1)k) = {0} for all positive
integers k.
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For the classical Rademacher functions and their properties, see [199, I.3
and V.8].

Large I0 and FZI0 Sets. The existence of I0 sets of cardinality |Γ| was
first proved by Hartman and Ryll-Nardzewski [81, Theorem 5]; another proof
was given by Kunen and Rudin [116, Theorem 1.4]. Kalton [75, §4] proved
that every infinite subset of Γ contains an infinite I0 set.

The material on the existence of large I0 or FZI0 sets is mainly taken from
[59]. More detailed properties of large I0 or FZI0 sets are also given there.

4.7 Exercises

Exercise 4.7.1. Exhibit two FZI0 sets E,F ⊂ Z, whose union is not RI0,
but for which there is a positive, discrete measure σ with the property that
σ̂(E) and σ̂(F) have disjoint closures.

Exercise 4.7.2. Show that property (1) of Proposition 4.3.1 need not imply
property (2).

Exercise 4.7.3. Let E = {(γ, πn)} ⊂ Z3 ⊕ D̂, where {πn}∞n=1 is the set of
Rademacher functions and γ is an order 3 element of Z3. (This is the set E
of Example 4.4.2.) Show that E is FZI0.

Exercise 4.7.4. 1. Derive the characterizations of real RI0 sets and real
FZI0 sets mentioned in Remark 4.3.3.

2. Let E = {(j, πj) : j = 1, 2, . . . } ⊆ Z ⊕ D̂ where {πj} ⊂ D̂ is the set of
Rademacher functions (the set E of Example 4.3.4). Show that E is real
FZI0.

Exercise 4.7.5. Show that any translate of a pseudo-Rademacher set is
I0(U, 4, 1/2).

Exercise 4.7.6. Suppose that E is pseudo-Rademacher and all elements of
E have order 2. Show that E is a Rademacher set.

Exercise 4.7.7. 1. Prove that pseudo-Rademacher sets do not cluster at a
continuous character using the method of Proposition 2.7.1.

2. Show that if E is a pseudo-Rademacher set, then E ·E−1 does not cluster
at a continuous character other than 1.

3. Give an example of a pseudo-Rademacher set E such that E ·E clusters
at a continuous character other than 1.

Exercise 4.7.8. 1. Show that if G is infinite, then |Γ| = 2|G|. Hint: Con-
sider a large I0 set, E, and show that | �∞(E)| = 2|E|.

2. Show that if Γ is infinite, then |G| = 2|Γ|.
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3. A locally compact abelian group H is self-dual if Ĥ and H are isomorphic
as topological groups. Assuming the continuum hypothesis, show that if
H is self-dual, then one of the following hold: |H| < ∞, |H| = |R|
or |H| ≥ 2|R|. Hint: Use the fact that every locally compact abelian
group has the form R

n × Λ, where Λ has an open compact subgroup
(This is known as the structure theorem; see [167, Theorem 2.4.1] or [87,
Theorem 9.8].)



Chapter 5

Unions and Decompositions of I0(U)
Sets

Criteria are given for the union of I0(U) sets to be I0(U). Every I0 set is a
finite union of I0(U) sets with bounded length. Criteria for an I0 set to be a
finite union of RI0 (or FZI0) sets are also given.

5.1 Introduction

In the previous chapter we saw that every infinite I0 set contains a subset of
the same cardinality that is I0(U) with bounded length and even FZI0 and
FZI0(U) with bounded length if the set is not 2-large (Theorem 4.5.2). In this
chapter more will be proven. Every I0 set will be shown to be a finite union
of sets that are I0(U) with bounded length, and characterizations of I0 sets
that are finite unions of RI0 or FZI0 sets will be established. Moreover, every
I0 set in the dual of a connected group will be seen to be I0(U) for all non-
empty, open sets U . The latter fails without the connectedness assumption;
just consider a finite group G and the open set U = {e}. No set of two
characters is I0(U) and yet every subset of characters of this finite Γ is I0.

Sets that are I0(U) with bounded length are of interest because of their
special properties. For example, like ε-Kronecker sets, their step length tends
to infinity, any finite union of translates is I0, and the product of such a set
with its inverse does not cluster at any non-trivial, continuous character.

The proofs of these statements involve a study of the union problem for
I0(U) sets. As remarked above, even the union of two singletons need not be
I0(U). When G is connected there are, however, union results for I0(U) sets
similar to those for I0 sets. For instance, if two sets with disjoint closures are
each I0(U) for all non-empty, open U , then the same is true for their union.
In particular, when G is connected, a set that is I0(U) with bounded length
is I0(U) for all non-empty, open sets U .

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
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5.2 Unions of I0(U) Sets

An important consequence of the HRN characterization of I0 sets is that the
union of two disjoint I0 sets is I0 if (and only if) the two sets have disjoint
closures in Γ (Corollary 3.4.3). In duals of connected groups, a similar result
holds for I0(U) sets. This will be important in the proof that I0 sets in duals
of connected groups are I0(U).

We begin with a lemma.

Lemma 5.2.1. Suppose U, V,W ⊆ G are e-neighbourhoods. Assume E is
I0(U), F is I0(V ) and there is a measure ν ∈ Md(W ) such that ν̂ = 1 on E
and 0 on F. Then E ∪ F is I0(UW ∪ VW ).

Proof. The I0 properties of E and F imply that given a ϕ ∈ �∞(E∪F) there
are discrete measures μ1 ∈ Md(U) and μ2 ∈ Md(V ) such that μ̂1 = ϕ on E
and μ̂2 = ϕ on F. The discrete measure ν ∗ μ1 + (δe − ν) ∗ μ2 is concentrated
on UW ∪ VW and its transform agrees with ϕ on E ∪F. ��

Proposition 5.2.2. Suppose G is a connected group and that U, V ⊆ G are
symmetric e-neighbourhoods. Assume that E is I0(U), F is I0(V ) and E∩F
is empty. Then E ∪ F is I0(U2V 4 ∪ UV 5).

Proof. In view of Lemma 5.2.1, it will suffice to prove that there exists ν ∈
Md(UV

4) with ν̂ = 1 on E and 0 on F.
Let W be a symmetric e-neighbourhood with W 2 ⊂ U ∩ V . Fix a γ ∈ E.

Because G is connected and E∩F = ∅, for every λ ∈ F there is w ∈ W with
λ(w)γ−1(w) �= 1. Let

νλ =
1

|1− γ(w)λ−1(w)|2 (δe − γ(w)δw) ∗ (δe − γ(w)δw−1) ∈Md(W
2).

Then ν̂λ(γ) = 0, ν̂λ(λ) = 1 , ν̂λ ≥ 0 everywhere on Γ and νλ ∈Md(V ).
For λ ∈ F, set ΩΩΩλ = {ρ ∈ Γ : ν̂λ(ρ) > 1/2}. By the compactness of F, a

finite number of the ΩΩΩλ cover F. Hence, there are λ1, . . . , λN such that τ1 :=∑N
1 νλn ∈ Md(V ) has τ̂1 ≥ 1/2 on F and 0 at γ. Because F is I0(V ), there

exists τ ∈Md(V ) such that τ̂ = 1/τ̂1 on F. Then ωγ := (δe−τ1∗τ)∗(δe−τ̃1∗τ̃)
has ω̂γ(γ) = 1, ω̂γ = 0 on F and ω̂γ ≥ 0 everywhere. Also, ωγ ∈Md(V

4).

By the compactness of E, there are γ1, . . . , γM such that τ ′1 :=
∑M

1 ωγm
has τ̂ ′1 ≥ 1/2 on E (and 0 on F). Because E is I0(U), there exists τ ′ ∈Md(U)

such that τ̂ ′ = 1/τ̂ ′1 on E. Then ν = τ ′1 ∗ τ ′ has ν̂ = 1 on E and ν̂ = 0 on F.
Also, ν ∈Md(UV

4). ��

Corollary 5.2.3. Suppose G is a connected group.

1. Each finite set in Γ is I0(U) for all non-empty, open sets U .
2. If E is I0(U) for some non-empty, open set U and F is a finite set, then

E ∪ F is I0(U2V ) for each non-empty, open set V .
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Remark 5.2.4. Exercise 5.6.7(2) shows that with the hypotheses of
Corollary 5.2.3(2), E ∪F is even I0(UV ) for each non-empty, open set V .

Proof (of Corollary 5.2.3). (1) holds because singletons are I0(U) for all
open U.

For (2), note that, since an I0 set cannot cluster at a continuous character
(Ryll–Nardzewski–Méla–Ramsey Theorem 3.5.1), there is no loss of generality
in assuming E and F (= F) are disjoint. Now apply Proposition 5.2.2. ��

Definition 5.2.5. A set E is said to be I0(U) with bounded constants if there
is a constant K so that for each non-empty, open U ⊆ G there is a finite set
F ⊆ Γ such that for each ϕ ∈ �∞(E�F) there is a measure μ ∈Md(U) with
μ̂ = ϕ on E� F and ‖μ‖ ≤ K.

A set that is I0(U) with bounded length is clearly I0(U) with bounded
constants. It is unknown if these properties coincide [P 9].

Corollary 5.2.6. If G is connected and E is I0(U) with bounded constants,
then E is I0(U) for all U .

One reason for the interest in sets that are I0(U) with bounded constants
is that the union of a translate of such a set with itself is again I0, as is true
for ε-Kronecker sets with ε <

√
2 (Corollary 2.7.9).

Proposition 5.2.7. Suppose E ⊆ Γ is I0(U) with bounded constants. Then
E · F is I0 for every finite set F.

Proof. Fix γ �= λ in F and choose x ∈ G such that γ−1λ(x) �= 1. Put
z = γ−1λ(x). Suppose U is a neighbourhood of x such that

|γ−1λ(u)− z| < |1− z|
10K

for all u ∈ U ,

where K is as in Definition 5.2.5. Suppose the finite set F0 and measure
ν0 =

∑
ajδxj ∈ Md(U) have the property that ν̂0 = 1 on E � F0 and

‖ν0‖ ≤ K. Put ν =
∑
ajγ(xj)δxj . Then ν ∈ Md(U), ‖ν‖ = ‖ν0‖ and ν̂ = 1

on γ(E� F0). For each α ∈ E� F0,

|ν̂(αλ) − z| = |ν̂(αλ) − zν̂(αγ)| =
∣
∣
∣
∣

∫

U

(αλ − zαγ)dν

∣
∣
∣
∣

≤
∫

U

|γ−1λ− z|dν ≤ |1− z|
10K

‖ν‖ ≤ |1− z|
10

.

Thus, |ν̂ − z| ≤ |1− z| /10 on λ(E�F0). That proves γ(E�F0) and λ(E�F0)
have disjoint closures in Γ, and hence their union is I0 by Corollary 3.4.3.
Since the union of a finite set and an I0 set is I0, it follows that γE ∪ λE
is I0. ��
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Remarks 5.2.8. (i) A similar result holds for sets that are FZI0(U) with
bounded constants; see Exercise 5.6.3.

(ii) Exercise 5.6.6 asks for an example of a set E in the dual of T∞ that is
I0(U) with bounded constants, such that E ∪E−1 is not I0. It is not known
if such a set exists in Z [P 9] . It is also not known if E being I0(U) with
bounded constants with bound close to 1 implies that E ∪E−1 is I0.

Another interesting fact about sets that are I0(U) with bounded constants
is that their step length must tend to infinity, again as was previously estab-
lished for ε-Kronecker sets with ε <

√
2 (Corollary 2.7.8).

Proposition 5.2.9. If E is I0(U) with bounded constants, then the step
length of E goes to infinity.

Proof. Suppose E does not have step length tending to infinity. It is easy
to see that then there exist γ ∈ Γ and an infinite subset E′ ⊆ E such that
γE′ ⊆ E and E′ ∩ γE′ = ∅.

Let ε > 0. Let V = {x : |1 − γ(x)| < ε}. If V = {x ∈ G : γ(x) = 1}, then
no measure concentrated on V can separate the points of E′ from those of
γE′, and so E′

�F cannot be I0(V ), whatever the choice of the finite set F,
much less with bounded constants.

Otherwise, choose μ ∈ Md(V ) and a finite subset F ⊆ E such that μ̂ = 1
on E′

� F and 0 on (γE′) � F. For all λ ∈ E′
� (F ∪ γ−1F),

1 = |μ̂(λ)− μ̂(γλ)| ≤ ‖μ‖ sup{|1− γ(x)| : x ∈ V } ≤ ‖μ‖ε,

so ‖μ‖ ≥ 1/ε. Since ε is arbitrary, E is not I0(U) with bounded constants. ��

Example 5.2.10. A set that is I0, but not I0(U) with bounded constants: Let
E1 = {3j}∞j=1 and E = E1 ∪ (E1 + 1). The set E is not I0(U) with bounded
constants since its step length does not tend to infinity. However, E + F is
I0 for all finite sets F since E1 is I0(U) with bounded constants. So there is
no converse for Proposition 5.2.7.

Example 5.2.11. A set that is not I0(U) with bounded constants has step
length tending to infinity, and for each non-empty, open U, a cofinite subset is
FZI0(U): The set E = {9j}∪{9j+3j+1} has the property that given any non-
empty, open set, U , there is an integer J such that {9j}j≥J ∪{9j+3j+1}j≥J
is FZI0(U). To see that, assume [−π/9J , π/9J ] ⊆ U and let a = π/9J . Then

ν = δ0 + δa ∈M+
d (U) and ν̂ = 0 on {9j}j≥J , while |ν̂| ≥

∣
∣e2πi/9

J − 1
∣
∣ > 0 on

{9j+3j+1}j≥J . Exercise 5.6.8 shows {9j}j≥J∪{9j+3j+1}j≥J is FZI0(U2).
In particular, E is I0. Proposition 5.2.7 implies the set E is not I0(U) with
bounded constants since E ∪ (E + 1) is not I0. The step length of E tends
to infinity, so there is also no converse to Proposition 5.2.9. Later, it will be
seen that there is such a converse for Sidon sets (Theorem 7.4.2).
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5.3 I0 Sets Are Finite Unions of Sets That Are I0(U)
with Bounded Length

In this section, we adapt an argument of Méla to prove that every I0 set in
the discrete group Γ is a finite union of sets, each of which is I0(U) with
bounded length. Furthermore, every I0 set in the dual of a connected group
is I0(U) for all non-empty, open sets U . We also give consequences of this
decomposition.

Here is the precise statement.

Theorem 5.3.1 (Méla decomposition theorem). Let 0 < τ ≤ 1/4, and
assume E is an I0(N, τ/2) set. Then there exist M = M(N, τ) sets, each of
which is I0(U) with bounded length, such that E is their union.

The size of M will be clear from the proof.

Remark 5.3.2. In the case when E is infinite, one of those M subsets will
have the same cardinality as E. This provides another proof that every I0 set
contains a subset of the same cardinality that is I0(U) with bounded length.

Before giving the proof, we will explain how the union results mentioned
above follow and give further properties of sets with bounded length.

5.3.1 Consequences of the Decomposition Theorem:
Unions and Clustering

Since singletons are I0(U) for all non-empty, open sets U, it easily follows
from the theorem that each I0 set is a finite union of I0(U) sets, (though the
number of sets may depend on the open set U).

Corollary 5.3.3. Suppose E is an I0 set. Then for each non-empty, open set
U ⊆ G, there is a finite number of I0(U) sets Em such that E =

⋃N
m=1 Em.

More generally, we have the following.

Corollary 5.3.4. Suppose E is an I0 set. There is a constant M with the
property that for each non-empty, open set U ⊆ G there is a finite set F ⊆ E
such that E� F is a union of at most M sets that are I0(U).

Proof. From Theorem 5.3.1 we know that E =
⋃M
m=1 Em where the sets

Em are I0(U) with bounded length. In particular, for each m and each open
set U , there is a finite set Fm,U such that Em � Fm,U is I0(U). Now take

F =
⋃M
m=1 Fm,U . ��

Combined with Proposition 5.2.9, the theorem gives the following corol-
lary, which will later be shown to be true for all Sidon sets (Corollary 6.4.7).
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Corollary 5.3.5. Suppose E is an I0 set. Then E is a finite union of I0 sets
Em whose step length tends to infinity.

Coupled with Proposition 5.2.2, one can deduce that when the group G is
connected, each I0 set is actually I0(U) for all non-empty, open U .

Theorem 5.3.6. If G is a connected group and E is an I0 set, then E is
I0(U) for all non-empty, open sets U .

Proof. Choose the integer M as in Corollary 5.3.4. We may assume M = 2K .
Fix a symmetric e-neighbourhood U and choose compact symmetric e-neigh-

bourhoods V, W such that V 2·6K+1 ⊆ U and W 5 ⊆ V.
According to Corollary 5.3.4, there is a finite set F with the property that

E� F =
⋃M
m=1 Em where the sets Em are each I0(V ) sets. There is no loss

of generality in assuming the sets Em are disjoint. Being subsets of an I0
set, they must have disjoint closures in Γ. By repeatedly applying Proposi-

tion 5.2.2, we see that
⋃M
m=1 Em is I0(V 6K ).

Since F is I0(W ), Proposition 5.2.2 shows E = F∪
⋃M
m=1 Em is I0(U). ��

The following corollary is immediate from Theorem 5.3.6 and Proposi-
tion 4.2.1.

Corollary 5.3.7. If G is connected, then every RI0 set is RI0(U) for all
non-empty, open U .

While connectedness is essential for Theorem 5.3.6, the following holds
when G has only a finite number of connected components.

Corollary 5.3.8. Suppose the torsion subgroup of Γ is finite and that E is I0.
Then E is the finite union of sets that are I0(U) for all non-empty, open U .

Proof. Let Γ0 be the torsion subgroup of Γ and let G0 be its annihilator, a
connected, open subgroup of G since Γ0 is finite (Exercise C.4.10). It follows

from Corollary 5.3.3 that E =
⋃N
m=1 Em where each Em is I0(G0).

Temporarily fix m. Since Em is an I0(G0) set, we may view the elements
of Em, restricted to G0, as distinct continuous characters on G0. Viewed
in this way, Em is an I0 set in the dual of the connected group G0. But
then Theorem 5.3.6 implies that Em is I0(V ) for all open V ⊆ G0. If U ⊆ G
is a neighbourhood of e, then U ∩ G0 is a neighbourhood of e ∈ G0, so Em
is I0(U) for all non-empty, open U . ��

The following is an abstract form of what we already know for Hadamard
(Theorem 1.5.1) and ε-Kronecker (Proposition 2.7.4) sets. It is easy to see
that Hadamard and ε-Kronecker sets satisfy its hypotheses.

Theorem 5.3.9 (Abstract Kunen–Rudin).

1. If E is I0(U) with bounded length, then E ·E−1 clusters at no continuous
character other than 1.
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2. Suppose E is RI0(U) with bounded length. Then the only continuous char-
acter at which E · E can cluster is 1.

3. Suppose E is RI0, asymmetric and has at most a finite number of ele-
ments of order 2. Then E · E does not cluster at 1.

Proof. (1). This proof is identical to the proof of Proposition 2.7.4 (1), except
that the existence of the finite set �L(U) is guaranteed by the hypotheses
instead of Corollary 2.3.4.

(2). This follows immediately from the first part since E is RI0(U) with
bounded length if and only if E ∪E−1 is I0(U) with bounded length.

(3). Since E has only a finite number of elements of order 2 and has no
cluster points in Γ, there is no loss of generality in deleting those points
of order 2 from E. Because E is asymmetric and has no elements of order
2, there exists μ ∈ M r

d (G) such that μ̂ = i on E. But then, μ̂ = −i on

E−1. That proves E ∩ E
−1

= ∅, and so 1 is not a cluster point of E · E,
by Proposition 2.7.2. ��

5.3.2 Proof of Theorem 5.3.1

We begin by introducing notation that will be used throughout the proof. The
key ideas are the Baire category theorem and the fact that a net in M(G),
consisting of discrete measures of length N , clusters in the weak* topology
at a length N measure. (Note that it is not true if the length is allowed to
grow.)

Given a = (a1, . . . , aN ) ∈ ΔN and g = (g1, . . . , gN ) ∈ GN , we denote by
μa,g the length N , discrete measure on G given by

μa,g =

N∑

n=1

anδgn .

Let F be the set of all length N , discrete measures μ such that the Fourier
transform of μ restricted to E has the property that its range is contained in
the union of two closed τ -balls in the complex plane, one centred at 1, the
other centred at −1. In other words, F is the set

{μ ∈Md(G) : lengthμ = N and min
(
|μ̂(γ)− 1|, |μ̂(γ) + 1|

)
≤ τ ∀γ ∈ E}.

For each neighbourhood U of e in G, we let

F(a, g, U) = {μa,h ∈ F : gnh
−1
n ∈ U , 1 ≤ n ≤ N}.

We give F the weak topology of convergence at each γ ∈ E, so a net {μα}
converges to μ provided μ̂α(γ) → μ̂(γ) for each γ ∈ E. Since G is compact
and the measures in F have length N , the set F is compact.
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Corresponding to each μ ∈ F there is a unique function ϕ ∈ Z
E
2 such that

supγ∈E |ϕ(γ)− μ̂(γ)| ≤ τ. We denote by T : F → Z
E
2 the map that sends μ

to that function ϕ. The map T is continuous by the choice of the topologies,
and it is onto because E is I0(N, τ).

Finally, we let E(a, g, U) denote the image under T of F(a, g, U) and A be
a (fixed) countable, dense subset of ΔN .

In all the following lemmas we assume the hypotheses of Theorem 5.3.1.

Lemma 5.3.10. Let g ∈ GN . Then Z
E
2 =

⋃
a∈A E(a, g,G).

Proof (of Lemma 5.3.10). Since E is I0(N, τ/2), for each ϕ ∈ Z
E
2 , there is a

length N , discrete measure, μ = μb,x =
∑N

n=1 bnδxn , with |bn| ≤ 1 and such
that supγ∈E |ϕ(γ)− μ̂(γ)| ≤ τ/2.

By density we may pick a = (an)Nn=1 ∈ A such that supn |an − bn| <
τ/2N . Then μa,g ∈ F(a, g,G). Also, supγ∈E |ϕ(γ)− μ̂a,g(γ)| ≤ τ , and thus
ϕ ∈ T (F(a, g,G)) = E(a, g,G). ��

Next, the Baire category theorem implies that one of the sets, E(a, g,G),
has non-zero interior.

Lemma 5.3.11. There exists a finite set F ⊆ E, a ∈ A and g ∈ GN such
that for each ϕ ∈ Z

E
2 there is some μ ∈ F(a, g,G) with |ϕ(γ)− μ̂(γ)| ≤ τ for

γ ∈ E� F.

Proof (of Lemma 5.3.11). The sets E(a, g,G) are compact being the images
of compact sets under a continuous function. Since Z

E
2 is a countable union

of such sets, the Baire category theorem implies that at least one of these
sets has interior in Z

E
2 . Thus, one of the sets must contain all functions ϕ

which have the same (fixed) values on some finite subset F but are otherwise
unrestrained. ��

With more care, we may conclude that the element g ∈ GN can be chosen
so that for each non-empty, open set U we may obtain good approximations
from F(a, g, U) on a cofinite subset of E.

Lemma 5.3.12. Let a be as in Lemma 5.3.11. Then there is g ∈ GN such
that for every e-neighbourhood U ⊆ G, there is a finite set F ⊆ E such that
for each ϕ ∈ Z

E
2 there is some μ ∈ F(a, g, U) with |ϕ(γ)− μ̂(γ)| ≤ τ for

γ ∈ E� F.

Proof (of Lemma 5.3.12). Let V be a compact, symmetric neighbourhood
of e. Since G is compact, finitely many translates of V cover G, say G =⋃J
j=1 ujV . If h ∈ G, then h = ujv for some j = 1, . . . , J and v ∈ V . Conse-

quently, μa,h ∈ F(a, u, V ) where if we put U = {u1, . . . , uJ}, then u ∈ UN .
That shows

E(a, g,G) =
⋃

u∈UN

E(a, u, V ).
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Since each of the E(a, u, V ) is closed, one of them must have non-empty
interior, say E(a, g(V ), V ), with g(V ) ∈ UN ⊆ GN .

Thus, for each V , there is a finite set F ⊆ E such that for each ϕ ∈ Z
E
2

there is some μ ∈ F(a, g(V ), V ) with |ϕ(γ)− μ̂(γ)| ≤ τ for γ ∈ E� F.
Let I be the set of compact, symmetric e-neighbourhoods in G, ordered

by reverse inclusion. Then I is a directed set and {g(V ) : V ∈ I} is a net
in the compact set GN . Let g be a cluster point of that net and let J be a
cofinal subnet of I such that limV ∈J g(V ) = g.

Finally, suppose U is a compact e-neighbourhood. Take a compact, sym-
metric e-neighbourhood W such that W 2 ⊆ U . Since J is cofinal, there is a
neighbourhood V ∈ J with V ⊆W and g(V ) ∈ gW . It follows that

F(a, g(V ), V ) ⊆ F(a, g, U),

which gives the desired result. ��
We can now complete the proof of Theorem 5.3.1.

Proof (of Theorem 5.3.1). We partition T
N into N -dimensional cubes, Tm,

with diagonals of length at most τ/N , and let t(m) ∈ T
N be the central point

of Tm for 1 ≤ m ≤ M . For the g = (g1, . . . , gN ) ∈ GN found in Lemma
5.3.12, let Em = {γ ∈ E : (γ(g1), . . . , γ(gN)) ∈ Tm}.

We claim that each Em is I0(U) with bounded constants. Fix an e-neigh-
bourhood U ⊆ G and let F be the finite subset also found by Lemma 5.3.12.
Suppose ϕ ∈ Z

Em
2 . By extending ϕ to be ±1-valued on E we may assume ϕ ∈

Z
E
2 . By that lemma there is some μ ∈ F(a, g, U) such that |ϕ(γ)− μ̂(γ)| ≤ τ

for all γ ∈ E � F. Suppose μ =
∑N
n=1 anδxn where xng

−1
n ∈ U . Define a

second discrete measure ν by

ν =

N∑

n=1

ant
(m)
n δxng

−1
n
∈Md(U).

For each γ ∈ Em,
∣
∣t
(m)
n − γ(gn)

∣
∣ ≤ τ/N , and thus |μ̂(γ)− ν̂(γ)| ≤ τ on

Em�F. Hence, |ϕ(γ)− ν̂(γ)| ≤ 2τ for all γ ∈ Em�F. Since 2τ ≤ 1/2, each
Em � F is I0(U,N, 1/2), and thus Em is of bounded length, with length at
most N. ��

5.4 Union Results for More Restricted Types of I0 Sets

5.4.1 When an I0 Set Is a Finite Union of RI0 Sets

In Example 4.2.3 a construction was given of an I0 subset of Z, which was not
RI0. The reader may have noticed that the example consisted of a union of
two sets that were both ε-Kronecker for some ε < 1, and thus both were even
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FZI0. In this section we will give a topological characterization of the I0 sets
that are finite unions of RI0 sets. From that characterization it will follow
that all I0 sets in duals of connected groups are finite unions of RI0 sets. The
characterization should be compared with the topological characterization of
RI0 given by Proposition 4.3.1.

Theorem 5.4.1. An I0 set E is a finite union of RI0 sets if and only if the
closure of {γ ∈ E : γ2 �= 1} in Γ contains no elements of order 2.

The following corollary is immediate, with the second sentence coming
from the fact that connected groups have torsion-free duals. See Exercise
C.4.11 for more information on groups with no elements of order 2.

Corollary 5.4.2. If Γ has no elements of order two, then each I0 set in Γ is
a finite union of RI0 sets. In particular, if G is connected, then each I0 set
in Γ is a finite union of RI0 sets.

The key idea in the proof of Theorem 5.4.1 is the following simple lemma.

Lemma 5.4.3. Let E ⊆ Γ, V ⊆ G and 0 < ε < 1. For v ∈ V , put

Γv = {γ ∈ Γ : min(|γ(v) + 1|, |γ(v)− 1|) > ε} ⊆ Γ

and suppose
⋃
v∈V Γv ⊇ E. Then there exist finitely many v1, . . . , vM ∈ V

such that
⋃M
m=1 Γvm ⊇ E.

Proof (of Lemma 5.4.3). The sets Γv are open in the Bohr topology on Γ
and cover the compact set E by assumption. By compactness, E is covered
by finitely many of the sets Γvm . ��

Proof (of Theorem 5.4.1). There is no loss of generality in assuming the I0 set
E is asymmetric, and consequently the necessity follows directly from Propo-
sition 4.3.1.

Since a set of characters of order two is RI0, we may assume that E has
no elements of order 2. By assumption, the Bohr closure of E also contains
no elements of order two.

Consider γ ∈ E. Since the range of a character is a subgroup of T and γ
is not of order two, there must be some g ∈ G with

min
(
|γ(g) + 1|, |γ(g)− 1|

)
≥

∣
∣1− eiπ/3

∣
∣ = ε > 0.

By Lemma 5.4.3, there are finitely many g1, . . . , gM ∈ G with the property
that for each γ ∈ E there is some gm with both |γ(gm)± 1| ≥ ε.

We first use these gm to partition E as
⋃M
m=1 Em, where γ ∈ Em if both

|γ(gm)± 1| ≥ ε. Thus, if we put μm = i(δgm−δg−1
m

)/2, then μ̂m is real-valued,

μ̂m(γ−1) = −μ̂m(γ) and

1 ≥ |μ̂m(γ)| = |Imγ(gm)| ≥ sin
π

3
=

√
3

2
for all γ ∈ Em.
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Partition each set Em as E+
m∪E−

m according to the rule that γ ∈ E±
m provided

μ̂m(γ) ∈ ±[
√

3/2, 1].
We claim the E±

m are RI0. This will be proven by establishing that E±
m ∪

(E±
m)−1 is an I0 set and then applying Proposition 4.2.1. Of course, each set

E±
m is I0, being a subset of an I0 set.
We introduce further measures,

μ±
m =

1

2

(

±2μm√
3

+ δe

)

.

For γ ∈ E+
m, we have

μ̂+
m(γ) =

1

2

(
2μ̂m(γ)√

3
+ 1

)

∈ [1, 3/2]

μ̂+
m(γ−1) ∈ [−1/2, 0].

The calculations are similar for μ−
m on E−

m. That shows that the sets E+
m and

(E+
m)−1 (and similarly, E−

m and (E−
m)−1 ) have disjoint closures in Γ. By the

HRN union theorem (specifically, Corollary 3.4.3) for I0 sets with disjoint
closures, each E±

m ∪ (E±
m)−1 is I0 and therefore each E±

m is RI0. ��

Corollary 5.4.4. If Γ contains only finitely many elements of order two,
then every I0 set is a finite union of RI0 sets.

Proof. If γ ∈ E�E is of order two, then, by Corollary C.1.18, γ is continuous.
Because an I0 set does not cluster at elements of Γ, Theorem 5.4.1 applies.
��

Corollary 5.4.5. If G is connected, every I0 set is a finite union of sets that
are RI0(U) for all non-empty, open U .

Proof. Combine Corollary 5.4.4 and Corollary 5.3.7. ��

5.4.2 When E Is a Finite Union of FZI0 Sets

Since RI0 sets that do not contain 1 are FZI0 (Proposition 4.2.5), the fol-
lowing is immediate from Theorem 5.4.1.

Corollary 5.4.6. If E ⊆ Γ�{1} is I0, then E is a finite union of FZI0 sets
if and only if the closure of {γ ∈ E : γ2 �= 1} contains no elements of order
two.

It is unknown if for every RI0(U) set E there is a finite set F such that
E� F is FZI0(U) [P 10]. However, there is a finite union result.
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Theorem 5.4.7. Suppose E is an RI0(U) set. Given an e-neighbourhood
W ⊆ G, there is a finite subset F such that E � F is a finite union of
FZI0(UW ) sets.

Since a real, discrete measure concentrated on U is the difference of two
positive, discrete measures concentrated on U , the main task in proving The-
orem 5.4.7 is to show that a cofinite subset of E may be decomposed into
finitely many sets, Ej , each with the property that the function which is iden-
tically −1 on Ej can be approximated by the Fourier transform of positive
W -measures. This can be done via two lemmas.

Lemma 5.4.8. Let V ⊆ G be an e-neighbourhood and let γ be a discontinuous
character. Given 0 < δ <

√
3, there exists v ∈ V such that |γ(v)− 1| > δ.

Proof (of Lemma 5.4.8). Since γ is discontinuous, there is a net xα → e and
τ > 0 such that

|γ(xα)− 1| > τ.

If τ > δ, just pick v = xα ∈ V . Otherwise, we argue as follows. Let z ∈ T have
|1− z| = τ. Since τ ≤ δ, there exists a minimal k ≥ 2 such that |zk − 1| > δ.
(Here we use the fact that δ <

√
3.) Choose an e-neighbourhood W such

that W k ⊂ V . Let xα ∈W . Then |1− γ(xα)| > τ , and one of the powers xjα
satisfies |1− γ(xjα)| > δ, 1 ≤ j ≤ k. ��

Lemma 5.4.9. Let E be an infinite I0 set and suppose V ⊆ G is an e-neigh-
bourhood. Let 0 < δ <

√
3. There is a finite set F and finitely many v1, . . . , vM

∈ V such that for all γ ∈ E� F there is some vm with |γ(vm)− 1| > δ.

Proof (of Lemma 5.4.9). First we prove that there are only finitely many
continuous characters γ ∈ Γ satisfying |γ(v)− 1| ≤ δ for all v ∈ V. That set
of characters will be the finite set F which we exclude.

So assume otherwise, say the set E′ = {γα} satisfies |γα(v)− 1| ≤ δ for
all v ∈ V. Since every infinite set contains an infinite I0 set (Corollary 4.5.3),
there is no loss of generality in assuming E′ is an I0 set. Then any cluster
point, χ, of E′ is discontinuous. The definition of convergence in the Bohr
topology means |χ(v)− 1| ≤ δ for all v ∈ V , and that contradicts Lemma
5.4.8. Thus, there are only finitely many continuous characters, say those in
the set F, which satisfy |γ(v)− 1| ≤ δ for all v ∈ V.

Since E is I0, if χ ∈ E� F, then either χ ∈ E � F or χ is discontinuous.
In either case, supv∈V |χ(v)− 1| > δ for all such χ. A compactness argument
now completes the proof. ��

Proof (of Theorem 5.4.7). Suppose E is RI0(U,N, ε) for some ε > 0 and
integer N . Pick an integer M such that (1 − sinπ/8)M < (1 − ε)/2N . Let
V ⊆ G be a symmetric e-neighbourhood with V 2M ⊆W.

Obtain the points v1, . . . , vM ∈ V , from Lemma 5.4.9, with δ = |1−eπi/3|.
Partition E =

⋃M
m=1 Em by the rule that γ ∈ Em if |γ(vm)− 1| > δ. Partition
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the sets Em further as Em,1 ∪Em,2 depending on whether arg γ(vm) belongs
to ±[π/3, π/2 + π/8] or ±(π/2 + π/8, π].

If γ ∈ Em,1, then arg γ(v2m) ∈ ±[2π/3, π + π/4], so

Reγ(v2m) ∈ [−1,− cosπ/3].

If γ ∈ Em,2, then Reγ(vm) ∈ [−1,− sinπ/8]. In either case, there is a
choice of um,k ∈ V 2, for k = 1, 2, so that if μm,k = (δum,k

+ δu−1
m,k

)/2, then
∣
∣μ̂m,k(γ) + 1

∣
∣ ≤ 1− sinπ/8 for γ ∈ Em,k. Now put

σm,k =

M∑

�=1

(
M

�

)

μ�m,k ∈M+
d (V 2M ) ⊆M+

d (W ).

Then
∣
∣σ̂m,k(γ) + 1

∣
∣ =

∣
∣μ̂m,k(γ) + 1

∣
∣M ≤ (1− ε)/2N for γ ∈ Em,k.

This measure provides us with a suitable approximation of −1 and will
be used to show that each set Em,k is FZI0(UW ). To see this, suppose ϕ is

a bounded Hermitian function defined on Em,k, and let ω =
∑N

n=1 anδgn ∈
M r
d (U), with all −1 ≤ an ≤ 1, have the property that |ϕ(γ)− ω̂(γ)| ≤ ε for

γ ∈ Em,k. Write an = a+n − a−n with a+n , a
−
n ≥ 0 and consider

ω′ =

N∑

n=1

a+n δgn + σm,k ∗
N∑

n=1

a−n δgn .

Clearly, ω′ ∈M+
d (UW ). It is a routine exercise to show that |ϕ(γ)− ω̂′ (γ)| ≤

(1 + ε)/2. Thus, Em,k is FZI0(UW ). ��

Corollary 5.4.10. If G is connected and E is I0, then for each non-empty,
open set U there is a finite set F such that E�F is a finite union of FZI0(U)
sets.

Proof. Immediate from Corollary 5.4.5 and Theorem 5.4.7. ��

5.5 Remarks and Credits

Except for Example 5.2.11, found in [53], and the abstract Kunen–Rudin
Theorem 5.3.9, which is new, the remaining results of this chapter are
adapted from [62, 63]. Lemma 5.3.12 corrects an error in [62, Lemma 3.4].
Theorem 5.3.1 is a general version of Méla’s [130, Theorem 6]. The proof here
is essentially his. See Corollary 7.4.3 for the corresponding result for Sidon
sets.
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5.6 Exercises

Exercise 5.6.1. Show that a set can be I0(U) for all non-empty, open sets
U , but not have step length tending to infinity.

Exercise 5.6.2. Let G = Z
N
3 and let E = {πk : 1 ≤ k < ∞}, where πk is

the projection onto the kth factor group Z3. Let

U� =

�
︷ ︸︸ ︷
{0} × · · · × {0}×

∞∏

�+1

Z3.

1. Show that E is the union of � sets sets each of which is I0(U�).
2. Show that the number � cannot be reduced.

Exercise 5.6.3. Suppose E is asymmetric and FZI0(U) with bounded con-
stants and that F is an asymmetric finite set. Show that if F−1 ∩E is empty,
then E · F is FZI0.

Exercise 5.6.4. Construct an example of an I0 set that is not a finite union
of RI0(U) sets for all non-empty, open U . This shows there is no analogue
to Corollary 5.3.8 for RI0(U) sets. Hint: Let G = Z3 × T

N.

Exercise 5.6.5. Give examples of the following:

1. A set E that is I0(U) with bounded length, but E · E clusters at γ ∈ Γ,
γ �= 1.

2. A set E that is RI0 and asymmetric, but E · E clusters at 1.
3. A set E that is RI0 and contains no elements of order two, but E · E

clusters at 1.
4. A set E that is I0(U) with bounded length, asymmetric, contains no

elements of order two, but E · E clusters at 1.

These examples illustrate the necessity of the hypotheses in Theorem
5.3.9(2), (3).

Exercise 5.6.6. Let G = T
∞. Construct E ⊂ Γ that is I0(U) with bounded

constants but such that E ∪E−1 is not I0.

Exercise 5.6.7. 1. Suppose U, V,W ⊆ G are e-neighbourhoods. Assume E
is I0(U), F is I0(V ) and there is a measure ν ∈ Md(W ) such that ν̂ = 1
on E and 0 on F. Prove E ∪ F is I0(UW ∪ V ).

2. Suppose G is a connected group, E is I0(U) for some open set U and F is
a finite set. Show that E ∪ F is I0(UV ) for each non-empty, open set V .

Exercise 5.6.8. Prove the following FZI0(U) variation of Lemma 5.2.1:
Assume that U, V,W are open subsets of G. Suppose E is FZI0(U), F is
FZI0(V ) and that there is a measure ν ∈M+

d (W ) such that ν̂ = 0 on F and
|ν̂| ≥ δ > 0 on E. Show that E ∪ F is FZI0(UW ∪ V ).
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Exercise 5.6.9. Suppose Γ contains only finitely many elements of order
two. Show that if U ⊆ G is a non-empty, open set and E ⊆ Γ is an I0 set,
then there is a finite subset F such that E � F is a finite union of RI0(U)
sets.



Chapter 6

Sidon Sets: Introduction
and Decomposition Properties

Sidon sets defined. Basic properties and characterizations. Examples.
Quasi-independent and Rider sets. Λ(p) sets. Decompositions of Sidon sets.

6.1 Introduction

Recall that a set E ⊆ Γ is called a Sidon set if for every ϕ ∈ �∞(E), there is
a measure μ ∈M(G) such that μ̂(γ) = ϕ(γ) for all γ ∈ E. If the measure can
always be chosen to be concentrated on a subset U ⊆ G, then E is called a
Sidon(U) set. Obviously, I0(U) sets are Sidon(U); in this chapter the converse
will be shown to be false.

Sidon sets have been extensively studied since the 1920s, when Sidon
proved that Hadamard sets have the property of Corollary 6.2.5, and thus
are what we now call “Sidon”. Excellent expositions of what was known up
to the late 1970s can be found in [88, Chap. 37] and [123].

A proof that Hadamard sets (with ratio ≥ 3) are Sidon, using the notion
of Riesz products, was outlined in Exercise 1.7.9. That Riesz product con-
struction can be generalized to all discrete abelian groups to prove that sets
possessing various independence-type properties, such as dissociateness or
quasi-independence, are Sidon, providing many new examples of Sidon sets.
These examples illustrate a connection between arithmetic properties of a set
and its (possible) Sidonicity. That culminates in Chap. 7, where Pisier’s char-
acterization of Sidonicity in terms of quasi-independence is established. The
Riesz product construction, along with various equivalent characterizations
of Sidonicity, can be found in Sect. 6.2 of this chapter.

In Sect. 6.3 we give a brief overview of the other major results of the pre-
1980 era: a finite union of Sidon sets is Sidon; each Sidon set in the dual of a
connected group is Sidon(U) for all non-empty, open U ; each Sidon set not
containing the identity has the property that the interpolating measure can
be chosen to be positive; and (like Hadamard sets) each Sidon set has the

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 6,
© Springer Science+Business Media New York 2013
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property that every L2 function, with Fourier transform supported on the
Sidon set, belongs to Lp for every p < ∞. In Chap. 7 it will be shown that
this latter property can also be used to characterize Sidonicity. Arithmetic
properties of Sidon sets are summarized, as well. Proofs will generally not be
given if they can be found in [123], unless they are needed later.

An important open problem in the study of Sidon sets is to determine
which interesting classes of sets have the property that every Sidon set is a
finite union of sets from the class. In Sect. 6.4 probabilistic methods are used
to prove that every Sidon set is a finite union of sets with a weak independence
property and hence a finite union of sets with step length tending to infinity.
We return to this problem, as well, in Chaps. 7 and 9.

6.2 Characterizations and Examples

6.2.1 Characterizations

If E is a Sidon set, then an application of the closed graph theorem shows that
there is a constant C such that for each ϕ ∈ �∞(E), there is some “interpolat-
ing” μ ∈M(G) such that μ̂(γ) = ϕ(γ) for all γ ∈ E and ‖μ‖M(G) ≤ C‖ϕ‖∞.
The infimum of such C is called the Sidon constant, S(E), of E.

An equivalent formulation, easily seen by a dual space argument, is that E
is Sidon if and only if there is a constant C such that for every E-polynomial
f we have

∑
γ∈E |f̂(γ)| ≤ C‖f‖∞. That can be restated: for every μ ∈Md(E)

we have ‖μ‖Md(E) ≤ C‖μ̂‖∞. The infimum of those C is equal to S(E).
We now formalize definitions.

Definition 6.2.1. 1. The set E ⊆ Γ is said to have the Fatou–Zygmund
property (FZ) if there is a constant, S0(E), such that for each Hermitian
ϕ ∈ �∞(E), there is some positive measure μ ∈ M(G) such that μ̂(γ) =
ϕ(γ) for all γ ∈ E and ‖μ‖M(G) ≤ S0(E)‖ϕ‖∞.

2. Suppose U ⊆ G is Borel. The set E ⊆ Γ is said to be a Sidon(U)set if
an interpolating measure μ can always be chosen to belong to M(U). We
denote the constant of interpolation in this case by S(E, U).

Since each bounded function is a linear combination of two bounded Her-
mitian functions, each set with the Fatou–Zygmund property is a Sidon set
with the Sidon constant at most 2S0. Of course, a Sidon(G) set is simply a
Sidon set, an I0(U) set is Sidon(U) and a FZI0 set has the Fatou–Zygmund
property. In particular, Hadamard and ε-Kronecker sets with ε <

√
2 are

Sidon. Every infinite set in Γ contains an infinite Sidon set since it contains
an infinite I0 set (Corollary 4.5.3).

There are many characterizations of Sidonicity. Below we state some of
the important early ones.
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Theorem 6.2.2. For E ⊆ Γ the following are equivalent:

1. E is a Sidon set with Sidon constant S(E).
2. For each ϕ : E→ Ball(�∞(E)), there exists μ ∈M(G) such that

sup{|ϕ(γ)− μ̂(γ)| : γ ∈ E} < 1. (6.2.1)

3. For each ϕ : E→ {−1, 1}, there exists μ ∈M(G) such that (6.2.1) holds.
4. There is a constant S(E) such that

∑

γ

|f̂(γ)| ≤ S(E)‖f‖∞ for all f ∈ TrigE(G).

The proof of this theorem may be found in many books.
The characterization of Sidon(U) sets is more complicated in that we do

not know if “δ < 1” is essential in Theorem 6.2.3(2) and (3).

Theorem 6.2.3. For E ⊆ Γ and U a symmetric, compact subset of G the
following are equivalent:

1. E is a Sidon(U) set with Sidon(U) constant S(E, U).
2. There exists 0 < δ < 1 such that for each ϕ : E → Δ, there exists
μ ∈M(U) such that

sup{|ϕ(γ)− μ̂(γ)| : γ ∈ E} < δ. (6.2.2)

3. There exists 0 < δ < 1 such that for each ϕ : E → {−1, 1} there exists
μ ∈M(U) such that (6.2.2) holds.

4. There is a constant S(E, U) such that

∑

γ

|f̂(γ)| ≤ S(E, U)‖f |U‖∞ for all f ∈ TrigE(G).

To obtain Theorem 6.2.3 (4) from (3) we will use a Baire category theo-
rem argument, whose technique has already appeared several times; see, for
example, Theorem 3.2.5.

Lemma 6.2.4. Let U ⊆ G be symmetric and compact. Suppose there exists
0 < δ < 1 such that for each ϕ : E→ {−1, 1}, there exists μ ∈M(U) with

sup{|ϕ(γ)− μ̂(γ)| : γ ∈ E} ≤ δ. (6.2.3)

Then for every ε > 0 there exists a constant C = C(δ, ε) such that for each
ψ : E→ [−1, 1], there is a measure μ ∈M(U) with ‖μ‖ ≤ C and

sup{|ψ(γ)− μ̂(γ)| : γ ∈ E} ≤ ε. (6.2.4)
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Proof (of Lemma 6.2.4). For each integer n ≥ 1, let Ωn be the set of ϕ ∈ Z
E
2

such that there exists μ ∈M(G) with ‖μ‖ ≤ n and supγ∈E |ϕ(γ)− μ̂(γ)| ≤ δ.
It is easy to verify that each Ωn is closed in Z

E
2 (Exercise 6.6.3).

The hypothesis of the lemma tells us that Z
E
2 =

⋃∞
n=1Ωn. The Baire

category theorem implies that some Ωn has non-empty interior in Z
E
2 and

hence contains a set of the form Ω′ = {ψ} × Z
E�F
2 , where F is a finite set

and ψ ∈ Z
F
2 . In particular, for every ϕ : E→ {−1, 1} there exists μ ∈M(U)

with
|ϕ− μ̂| ≤ δ on E� F and ‖μ‖ ≤ n. (6.2.5)

By replacing μ with 1
2 (μ + μ̃) (which still belongs to M(U) as U is sym-

metric), we may assume that μ̂ is real-valued.
The standard iteration, Proposition 1.3.2, but applied to arbitrary mea-

sures rather than discrete measures, tells us that for every ϕ : E�F→ [−1, 1]

there exists μ′ ∈ M(U) with μ̂′ = ϕ on E � F and ‖μ′‖ ≤ C1 = n/(1 − δ).
By interpolating real and imaginary parts, we see that every ϕ : E�F→ Δ
may be interpolated exactly by μ′′ ∈M(U) with ‖μ′′‖ ≤ 2C1.

If U = G, we add an appropriate trigonometric polynomial of at most |F|
terms and coefficients bounded by 2C1 in absolute value, to elements of Ω′,
to see that ϕ can be interpolated exactly by a measure in M(G) with norm
at most C = 2C1 + (2C1 + 1)|F|. The lemma thus holds, even with ε = 0.

When U �= G we must be more careful. Let μ ∈M(U) have norm at most
2C1 and have μ̂ = ϕ on E � F. Enumerate the elements of F as λ1, . . . , λJ .
The hypotheses of the lemma and the standard iteration tell us that we may
find νj ∈M(U) such that

|1{λj} − ν̂j | < ε/(8C1J) for 1 ≤ j ≤ J on E.

(We have no control of the norms of the νj .) We now add a linear combination

of the νj to μ to obtain μ′ of norm at most 2C1 + (1 + 2C1)
∑J

1 ‖νj‖, having

|ϕ− μ̂′ | < ε on E. ��

Proof (of Theorem 6.2.3). (1) ⇒ (2) and (2) ⇒ (3) are obvious.
(3) ⇒ (4). Let δ be as in (3) and let C be given by Lemma 6.2.4. For

f ∈ TrigE(G) we put f1 = (f + f̃)/2 and if2 = (f − f̃)/2. Then f = f1 + if2
and f̂1, f̂2 are real-valued E-polynomials, so there is no loss of generality in
assuming f̂ is real.

Put ϕ(γ) = sgn f̂(γ) for γ ∈ E. By assumption (3) and Lemma 6.2.4 there
is a measure μ ∈ M(U) with ‖μ‖ ≤ C and |ϕ(γ) − μ̂(γ)| ≤ δ < 1 for all
γ ∈ E. Parseval’s formula and the fact that μ is concentrated on U imply

∑

γ∈E

|f̂(γ)| =
∑

γ∈E

f̂(γ)ϕ(γ) =
∑

γ∈E

f̂(γ) (ϕ(γ)− μ̂(γ)) +
∑

γ∈E

f̂(γ)μ̂(γ)

=
∑

γ∈E

f̂(γ) (ϕ(γ)− μ̂(γ)) +

∫

U

fdμ.
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Thus,
∑
γ∈E |f̂(γ)| ≤

∑
γ∈E |f̂(γ)|δ + ‖f |U‖∞‖μ‖M(U). Subtracting, we see

that
∑
γ∈E |f̂(γ)| ≤ ‖f |U‖∞C/(1− δ).

(4)⇒ (1). Fix ϕ ∈ �∞(E). Notice that assumption (4) ensures that if two
E-polynomials agree on U , then they have the same Fourier transform and
hence coincide. Thus, we may define a linear functional

T : TrigE(G)|U → C

by T (f |U ) =
∑
γ∈E f̂(γ)ϕ(γ). Assumption (4) also ensures that

‖T ‖ ≤ S(E, U)‖ϕ‖∞.

The operator T extends to a bounded linear functional on all of C(U) by
the Hahn–Banach theorem, and hence, by the Riesz representation theorem,
there is a measure μ ∈M(U) with ‖μ‖M(G) = ‖T ‖ and T (f) =

∫
U
fdμ for all

f ∈ C(U). In particular, if f is the character γ ∈ E, then T (f |U) = ϕ(γ) =∫
U
γdμ = μ̂(γ) since μ is supported on U . ��

Corollary 6.2.5. E ⊆ Γ is Sidon if and only if whenever f ∈ L∞
E (G), then

f̂ ∈ �1(E).

Proof. Suppose E is Sidon and f ∈ L∞
E (G). Take a bounded approximate

identity of trigonometric polynomials, {Kρ}. By (4) of the theorem, there is
a constant S(E) such that

∑

γ∈E

|f̂(γ)K̂ρ(γ)| ≤ S(E)‖f ∗Kρ‖∞ ≤ CS‖f‖∞,

where ‖Kρ‖1 ≤ C for all ρ. Since K̂ρ(γ)→ 1 this proves necessity. Sufficiency
follows by an application of the closed graph theorem to deduce Theorem
6.2.3(4). ��

6.2.2 Weak Independence Properties and Riesz
Products

Generalizations of independent sets are very important in the study of Sidon
sets. Important classes include the dissociate sets, quasi-independent sets and
k-independent sets.

Definition 6.2.6. 1. The set E ⊆ Γ � {1} is called dissociate if whenever
γ1, . . . , γn are distinct elements in E, mj ∈ {0,±1,±2} and

∏n
j=1 γ

mj

j =

1, then γ
mj

j = 1 for all j.
2. The set E ⊆ Γ � {1} is called quasi-independent if the same statement

holds for mj ∈ {0,±1}.
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3. Let k be a positive integer. The set E ⊆ Γ�{1} is called k-independent if
whenever γ1, . . . , γn are distinct elements in E, mj ∈ {0,±1},

∑
|mj | ≤ k

and
∏n
j=1 γ

mj

j = 1, then γ
mj

j = 1 for all j.

Independent sets are dissociate, dissociate sets are quasi-independent and
a set is independent if and only if it is k-independent for all positive integers
k. All three classes of sets are asymmetric. A Hadamard set with ratio at
least 3 is dissociate, and every Hadamard set is a finite union of dissociate
sets; see Exercise 1.7.4. However, there exist quasi-independent sets that are
not finite unions of Hadamard sets (Exercise 6.6.4).

A very important observation is that the Riesz product construction of
Theorem 1.2.4 extends to dissociate sets. Indeed, suppose E is a dissociate
subset of Γ and ϕ : E→ C is bounded and Hermitian. Then ϕ is real-valued
on the order two elements and has a unique extension to a bounded Hermitian
function on E ∪E−1, still called ϕ, by setting ϕ(γ−1) = ϕ(γ).

In addition, suppose ‖ϕ‖∞ ≤ 1/2.
For each γ ∈ E, define the trigonometric polynomial pγ = pγ,ϕ by

pγ = pγ,ϕ =

{
1 + 2Re

(
ϕ(γ)γ

)
if γ2 �= 1,

1 + ϕ(γ)γ if γ2 = 1.
(6.2.6)

For a finite subset F ⊆ E, let

PF = PF,ϕ =
∏

γ∈F

pγ . (6.2.7)

Since each pγ ≥ 0, the functions PF are non-negative, trigonometric polyno-
mials. The dissociate property of E makes it easy to see that

‖PF‖1 =

∫

PF = P̂F(1) = 1 and that P̂F(γ) = ϕ(γ) if γ ∈ F ∪ F−1.

Furthermore,

P̂F

(
λ
)

=

{∏
γ∈F′ ϕ(γ) if λ =

∏
γ∈F′ γ for asymmetric F′ ⊆ F ∪F−1,

0 otherwise.

(6.2.8)
The finite subsets of E form a directed set under inclusion, and hence we

can view {PF : F ⊆ E is finite} as a net in the closed unit ball of M(G). Since
that ball is weak* compact, the net has a cluster point in the weak* topology.
Consideration of Fourier–Stieltjes transforms shows that this cluster point is
unique. That unique measure, μ, is known as the Riesz product associated
with E and ϕ. The measure μ is positive and ‖μ‖M(G) = 1 = μ̂(1). Off of
E∪E−1 ∪ {1}, the Fourier transform of μ is at most 1/4 in modulus and on
E it agrees with ϕ. These comments prove the following corollary.
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Corollary 6.2.7. Each dissociate set is a Fatou–Zygmund set with constant
at most 2 and a Sidon set with constant at most 4.

This corollary may be used to show every infinite subset of Γ contains a
Fatou–Zygmund subset of the same cardinality (Exercise 6.6.13).

Remark 6.2.8. If none of the elements of E has order two, then we can apply
the above reasoning directly to each ϕ : E→ C that has supremum at most
1/2. In this case, the Sidon constant is at most 2. If all the elements of E have
order two, we can apply the same reasoning with each Hermitian ϕ : E→ C of
norm at most one. Thus, in the order two case, the Fatou–Zygmund constant
is 1 and the Sidon constant is at most 2.

A similar Riesz product argument shows that a quasi-independent set is
Sidon. For that it is convenient to introduce the following notations.

Definition 6.2.9. For a subset F ⊆ Γ and positive integer k, let

Qk(F) =

⎧
⎨

⎩

∏

γ∈F

γεγ : γ ∈ F, εγ ∈ {0,−1, 1} and
∑

γ

|εγ | = k

⎫
⎬

⎭
and

Wk(F) =

⎧
⎨

⎩

∏

γ∈F

γεγ : γ ∈ F, εγ ∈ Z and
∑

γ

|εγ | ≤ k

⎫
⎬

⎭
.

The elements of Qk(F) will be called quasi-words from F of presentation
length k and the elements of Wk(F) will be called words from F of length at
most k. Of course, Qk(F) ⊆Wk(F).

We shall only use Qk(F) here, but it is convenient to introduce both notations
now since Wk(F) will reappear implicitly in (6.3.2).

Definition 6.2.10. Given a non-negative integer k and χ ∈ Γ, let Rk(E, χ)
denote the number of asymmetric subsets S ⊆ E ∪ E−1 of cardinality k
satisfying

∏
γ∈S γ = χ. In particular, Rk(E, γ) is the number of ways to

represent γ using elements of Qk(E).
An asymmetric set E ⊆ Γ is said to be a Rider set if there is a constant

C > 0 such that Rk(E,1) ≤ Ck for all k. The smallest such C is called the
Rider constant of E.

Since a quasi-independent set has Rk(E,1) = 1 for all k, every quasi-in-
dependent set is a Rider set.1 Thus, the Sidonicity of quasi-independent sets
follows from the next theorem. Exercise 6.6.5 asks for a direct proof that
quasi-independence implies Sidon.

1 The only possible S is the empty set, though of course it is debatable whether ∅ is to be
included. If not, all Rk(E, 1) = 0.
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Theorem 6.2.11 (Rider). Let E be a Rider set. Then E is a Sidon set
with Sidon constant bounded by a function of the Rider constant.

Proof. Choose C ≥ 1 such thatRk(E,1) ≤ Ck for all k and let ϕ(χ) = 1/(2C)
for all χ ∈ E∪E−1. Given F, a finite subset of E, we define the Riesz product
(trigonometric polynomial) PF exactly as in (6.2.6) (and following), noting

that we do not have the same information about the values of P̂F when F is
not dissociate. Then that Riesz product has

P̂F(1) = 1 +
∞∑

k=1

(2C)−kRk(F,1) ≤ 1 +
∞∑

k=1

2−k = 2. (6.2.9)

Therefore, ‖PF‖1 ≤ 2 and, for χ ∈ F ∪ F−1,

∞∑

k=1

(2C)−kRk(F, χ) = P̂F(χ) ≤ ‖PF‖1 ≤ 2. (6.2.10)

Let ψ : E → {−1, 1} and extend it to be Hermitian on E ∪ E−1. Let
0 < a < 1/(4C) and set ϕ(γ) = aψ(γ)/(2C) for γ ∈ E. Also, let μF = μF,a

be the resulting Riesz product (again noting that we will not have the same
information about μ̂F as in the dissociate case). Then

μF = 1 +

∞∑

k=1

∑

|S|=k
S⊂F∪F−1

S asymmetric

∏

ρ∈S

aψ(ρ)

2C
ρ. (6.2.11)

As in (6.2.9), ‖μF‖M(G) ≤ 2. Put 2C
a μ̂F(χ) = ψ(χ) + βF(χ). Since for all

γ ∈ F ∪ F−1,
∑∞

k=1(2C)−kRk(F, χ) ≤ 2, we have

|βF(χ)| ≤ 2C

a

∑

k≥2

ak(2C)−kRk(F, χ) ≤ 4Ca < 1. (6.2.12)

Thus,
∣
∣ψ(χ) − 2C

a μ̂F(χ)
∣
∣ ≤ 4Ca for all χ ∈ E. The same estimate on the

Fourier transform for χ ∈ E holds for any weak* cluster point of the net of
measures {μF}, indexed by the finite subsets of E. Applying Theorem 6.2.2
(3) proves that E is Sidon with Sidon constant bounded by a function of the
Rider constant. ��

Corollary 6.2.12. Every quasi-independent set is Sidon with Sidon constant
bounded by a constant independent of the set.

Remarks 6.2.13. (i) If E is quasi-independent, then P̂F(1) = 1, and so
‖μF‖M(G) = 1. If, in addition, the elements of E all have order two, then
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E is actually an independent set. In particular, it is a dissociate set, and
hence the Sidon constant is at most 2.

(ii) Exercise 6.6.5 gives an improvement in the bound for the Sidon con-
stant of Rider sets and shows that the Sidon constant of a quasi-independent
set is at most 6

√
6. In the quasi-independent case, as in Remark 6.2.8, if

none of the elements of E have order two, the argument of Exercise 6.6.5
may be applied directly, giving a Sidon constant of 3

√
6.

We do not know if every dissociate set (much less every quasi-independent
set) is I0 [P 6]. However, our next result shows that each Rider set is a finite
union of quasi-independent sets.

Proposition 6.2.14. Every Rider set E is a finite union of quasi-
independent sets.

Proof. We may assume E does not contain 1 and the Rider constant is an
integer C ≥ 3. Randomly partition E into C2 sets, where any element of
E belongs to any one of the sets with equal probability and the choices are
independent. Specifically, let ξγ(ω), γ ∈ E, be independent random variables,
each taking on the values 1, . . . , C2 with equal probability. Let

E�(ω) = {γ : ξγ(ω) = �}, 1 ≤ � ≤ C2.

We claim that with positive probability there is a random partition such
that each of the C2 subsets, E�(ω), is quasi-independent. To see this, note
that a subset E�(ω) is not quasi-independent if and only there exist an integer
k, characters γ1, . . . , γk ∈ E�(ω) and ε1, . . . , εk ∈ {−1, 1} such that 1 =
∏k
j=1 γ

εj
j , that is, 1 is a quasi-word of length k using letters in E�(ω). Because

ξγ(ω) = � with probability 1/C2 and the random variables ξγ1 , . . . , ξγk are
independent, the probability that a given collection of k letters from E all
belong to E�(ω) is C−2k. Since there are at most Ck ways of writing 1 as
a quasi-word of length k with letters from E and C2 subsets E�(ω), the
probability that 1 is a quasi-word of length k with letters from one of the
subsets E�(ω) is at most C2 × C−2k × Ck = C2−k.

Since 1 is not a quasi-word from E of length one or two, it follows that
the probability that one of the subsets is not quasi-independent is at most

∑

k≥3

C2−k = 1/(C − 1) < 1.

Hence, with positive probability, there is a choice ω such that all the sets
E�(ω) are quasi-independent. This proves E is a union of at most C2 quasi-
independent sets. ��
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6.3 Important Properties

6.3.1 The Union Theorem, the Fatou–Zygmund
Property and Sidon(U)

An important distinction between Sidon and I0 sets is that the class of Sidon
sets is closed under finite unions. In particular, each finite union of quasi-in-
dependent sets is Sidon; the converse is, in general, an open problem [P 1],
though when k is a product of distinct primes, then every Sidon set in the
dual of ZN

k is the finite union of quasi-independent sets.
The union theorem was proven first by Drury, who used Riesz product

measures in a very clever manner. A major idea in Drury’s proof is the
following result from which one can also deduce that Sidon sets without 1
have the Fatou–Zygmund property.

Theorem 6.3.1 (Drury’s union theorem). Suppose E ⊆ Γ � {1} is a
symmetric Sidon set with Sidon constant S. Given 0 < ε < 1 and Hermitian
function ϕ ∈ Ball(�∞(E)), there is a positive measure μ ∈M(G) with μ̂|E =
ϕ, |μ̂(γ)| ≤ ε for all γ /∈ E ∪ {1} and ‖μ‖M(G) ≤ 32S4/ε.

Corollary 6.3.2. Let E be a Sidon set with Sidon constant S. Given 0 < ε <
1 and ϕ ∈ Ball(�∞(E)), there is some μ ∈ M(G) with μ̂|E = ϕ, |μ̂(γ)| ≤ ε
for all γ /∈ E and ‖μ‖M(G) ≤ 512S4/ε.

The important union theorem for Sidon sets is an easy consequence of
this corollary. Later in the book, we will give an alternate proof of the union
theorem using the Pisier characterization of Sidonicity (see Remark 7.2.3).

Corollary 6.3.3 (Union theorem). The union of two Sidon sets is Sidon.

This shows that there are Sidon sets that are not I0, since the non-I0 set
of Example 1.5.2 is the union of two I0 sets (hence Sidon).

Corollary 6.3.4. Each Sidon set that does not contain the identity has the
Fatou–Zygmund property.

Proof. If E is Sidon, so is E−1 and hence also E ∪ E−1. Since E ∪ E−1 is
symmetric we can appeal to Theorem 6.3.1. ��

Because every measure has a unique decomposition as a sum of discrete
and continuous measures, it is natural to study not only the class of sets
where the interpolation can be done with discrete measures (the I0 sets),
but, also, the class where the interpolation can be done with continuous
measures. Interestingly, the latter class coincides with the Sidon sets. This
can be deduced from Drury’s ideas and the fact that if E is a Sidon subset
of an infinite group Γ, then for each measure ν with discrete part νd,

‖ν̂d‖∞ ≤ sup{|ν̂(γ)| : γ ∈ Γ�E}.
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Theorem 6.3.5. Suppose E is a Sidon set. Given ϕ ∈ �∞(E) there is a
continuous measure μ such that μ̂|E = ϕ.

Drury’s ideas were also used in Déchamps-Gondim’s characterization of
the Sidon sets that are Sidon(U) for all non-empty, open U .

Theorem 6.3.6 (Déchamps-Gondim). A Sidon set E ⊆ Γ is Sidon(U)
for all non-empty, open sets U ⊆ G if and only if for each finite subgroup
X ⊆ Γ, E is the union of a finite set and a set which has the property that it
intersects each coset of X in at most one point.

Corollary 6.3.7. If G is connected, then every Sidon set in the dual of G is
Sidon(U) for all open U ⊆ G.

Proof. The dual of a connected group has no non-trivial finite subgroups. ��

6.3.2 Λ(p) Sets and Arithmetic Properties

One of the classical results about Hadamard sequences, {nk}, is that if f =∑
akeinkx is integrable, then f ∈ Lp for all p <∞ (Theorem 1.2.7). This fact

holds for a larger class of sets, known as Λ(p) sets, which not only includes
Sidon sets but also sets such as {3j + 3k : j, k ∈ N}.

Definition 6.3.8. Suppose 1 < p < ∞. A set E ⊆ Γ is called a Λ(p) set if
whenever f ∈ L1

E(G), then f ∈ Lp(G).

An application of the closed graph theorem shows that E is a Λ(p) set if and
only if there is a constant Bp such that ‖f‖p ≤ Bp‖f‖1 for all f ∈ TrigE(G).
If p > 2, this is also equivalent to the existence of a constant Cp such that
‖f‖p ≤ Cp‖f‖2 for all f ∈ TrigE(G). The least such constant Cp is called the
Λ(p) constant of E.

Obviously, if E is Λ(p), then E is Λ(q) for each q < p. It is known that if
1 < p < 2 and E is a Λ(p) set, then E is also a Λ(q) set for some q > p, while
if p > 2 there are sets that are Λ(p) but not Λ(q) for any q > p.

The union of two Λ(p) sets for p > 2 is clearly Λ(p). The union problem
is open for Λ(p) sets with p ≤ 2.

In this terminology, Theorem 1.2.7 states that Hadamard sets are Λ(p) for
all p <∞. More generally, Sidon sets are Λ(p).

Theorem 6.3.9 (Zygmund–Rudin). Suppose E is a Sidon set with Sidon
constant S(E). Then E is a Λ(p) set for all p < ∞ with Λ(p) constant at
most 2S(E)

√
p for all p > 2.

The Pisier characterization of Sidon sets, Theorem 7.2.1, establishes
(among other things) that the property of being Λ(p) for all p > 2, with
Λ(p) constant O(

√
p), characterizes Sidon sets. That Sidon sets have this
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property is classic and is proved in standard references on Sidon sets, such as
[123]. A proof is included here because it forms part of the proof of Theorem
7.2.1.

Proof (of Theorem 6.3.9). We will first show that if F is the Rademacher set
in the dual of D′ = Z

E
2 and h ∈ TrigF(D′), then for all k ∈ N,

‖h‖2k ≤ 2
√
k‖h‖2. (6.3.1)

That is, of course, a special case of the theorem.
To begin, let h =

∑J
1 ajπj ∈ TrigF(D′) have real coefficients, aj. Then

∫

D′
|h(y)|2k dy =

∫
⎛

⎝
∑

j

ajπj

⎞

⎠

2k

dy

=
∑

mj∈N∑
j mj=2k

(2k)!

m1! · · ·mJ !

∫

D′

J∏

j=1

(a
mj

j π
mj

j ) dy.

Since F is independent and all πj are of order two, each integral on the right
side of the above is zero unless all mj in that term are even. When all mj

are even, the integral of that term is
∏
a
mj

j . Hence,

‖h‖2k2k =

∫

D′
|h(y)|2k dy =

∑

mj∈N

∑
mj=k

(2k)!

(2m1)! · · · (2mJ)!

J∏

j=1

a
2mj

j .

On the other hand,

‖h‖2k2 =

⎛

⎝
∑

j

a2j

⎞

⎠

k

=
∑

mj∈N

∑
mj=k

k!

m1! · · ·mJ !

∏
a
2mj

j .

But if
∑
mj = k, then

(2k)!

(2m1)! · · · (2mJ)!

m1! · · ·mJ !

k!
=

(k + 1) · · · (2k)
∏J
j=1((mj + 1) · · · (2mj))

≤ (k + 1) · · · (2k)

2k
≤ kk.

Thus, ‖h‖2k ≤
√
k‖h‖2.

For complex coefficients, an easy calculation using the triangle inequality
shows that

√
2k will do.
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Now assume G is an arbitrary compact abelian group and E is a Sidon
subset of the dual group Γ.

Let f =
∑
γ∈E aγγ ∈ TrigE(G). Let F = {πγ : f̂(γ) �= 0} be a set of

Rademacher functions on D
′, so (6.3.1) applies to all F-polynomials (i.e.,

elements of TrigF(D′)). Also put gy(x) = g(x, y) =
∑

γ∈E aγπγ(y)γ(x) for
x ∈ G and y ∈ D

′. For each y ∈ D
′, consider the bounded function γ �→ πγ(y)

for γ ∈ E. Since E is Sidon, there exists a measure μy ∈ M(G) such that
μ̂y(γ) = πγ(y) for all γ ∈ E and ‖μy‖ ≤ S(E). Because πγ(y) = ±1, we have
f(x) = μy ∗ gy(x). Therefore,

‖f‖p ≤ ‖gy‖p‖μy‖M(G) ≤ S(E)‖gy‖p.

Also, gy = μy ∗ f , so ‖gy‖p ≤ S(E)‖f‖p.
Then, for each positive integer k and y ∈ D

′,
∫

G

|f(x)|2k dx ≤ S(E)2k
∫

G

|g(x, y)|2k dx.

Now define the D
′-polynomial hx(y) = g(x, y) for each x ∈ G. By Plancherel’s

theorem, ‖hx‖2 = ‖f‖2. Furthermore, Fubini’s theorem and (6.3.1) applied
to each function hx and even integer 2k give

∫

D′

∫

G

|f(x)|2k dxdy ≤ S(E)2k
∫

G

∫

D′
|hx(y)|2k dy dx

≤ S(E)2k
∫

G

(
√

2k‖hx‖2)2k dx

= S(E)2k(
√

2k‖f‖2)2k.

Therefore, ‖f‖2k ≤ S(E)
√

2k‖f‖2. Since ‖f‖p is increasing in p, ‖f‖p ≤
‖f‖2k ≤ S(E)

√
2k‖f‖2 whenever 2k ≥ p. Taking 2k to be the smallest even

integer dominating p gives ‖f‖p ≤ S(E)2
√
p‖f‖2. ��

Another class of Λ(p) sets are the k-fold products of Rider sets.

Proposition 6.3.10. Suppose E is a Rider set. For all 2 < p < ∞, Qk(E)
is a Λ(p) set with Λ(p) constant at most Akp

k/2, where Ak depends only on
k and the Rider constant of E.

For still other examples of Λ(p) sets we introduce the function which counts
the number of words in Wk(E) whose product is γ,

rk(E, γ) =

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

{

(χ1, . . . , χk) ∈ Ek :

k∏

j=1

χj = γ

}∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣. (6.3.2)

Proposition 6.3.11. Suppose there is a constant C such that for some in-
teger k ≥ 2, supγ rk(E, γ) ≤ C. Then E is a Λ(2k) set with Λ(2k) constant

at most C1/k.
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Like Hadamard and ε-Kronecker sets, Sidon and Λ(p) sets are severely re-
stricted in terms of the arithmetic structures they can contain. For instance,
Sidon sets cannot contain a product of two infinite sets. Λ(p) sets cannot
contain arithmetic progressions of length k, (meaning a subset of k distinct
elements of the form {γ, γρ, . . . , γρk}) for arbitrarily large k or even paral-
lelepipeds of large dimension (see Definition 2.6.1).

Proposition 6.3.12. 1. If E is a Sidon set, then

sup{min(|A|, |B|) : A ·B ⊆ E} <∞.

2. If E is a Λ(p) set for some p > 2, with Λ(p) constant Cp, and F is an
arithmetic progression with N terms, then |E ∩ F| ≤ 3C2

pN
2/p.

3. If E is a Λ(p) set for some p > 1, then there are constants C and τ > 0
such that if P is a parallelepiped of dimension N , then |E∩P| ≤ C2Nτ .

Corollary 6.3.13. If E is a Sidon set and F is an arithmetic progression of
length N , then |E ∩ F| ≤ 24S(E)2 logN .

Proof. Apply Proposition 6.3.12 with p = 2 logN. ��

Up to the constant this is sharp, as the example E = {3k} demonstrates.

Example 6.3.14. A Λ(p) set that is not Sidon: It follows from these facts that
if k ≥ 2, then {3j1 + 3j2 + · · ·+ 3jk : j1 < j2 < . . . < jk} is a Λ(p) set for all
p <∞ but not a Sidon set (Exercise 6.6.6).

As a partial converse to Proposition 6.3.11, it is known that when E ⊆ N

is Λ(2k), then on average the numbers rk(E, n) are bounded.

Proposition 6.3.15. If E ⊆ N is Λ(2k), then there is a constant C such

that
∑N
n=1 r

2
k(E, n) ≤ CN for all N .

If F is a finite set, we can view the sets Qk(F) as generalized arithmetic
progressions. Λ(p) sets can also contain only small portions of these sets.

Proposition 6.3.16. 1. Suppose E is a Λ(p) set for some p > 2, with Λ(p)
constant Cp. If F is a finite set, then

|Qk(F) ∩E| ≤ 2e2C2
pk

2|F|/p.

2. If E is a Sidon set and F is a finite set, then

|Qk(F) ∩E| ≤ C|F| log k,

where C depends only on the Sidon constant of E.

This bound will be important in the next section in proving that each
Sidon set is a finite union of k-independent sets.
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6.4 Decompositions of Sidon Sets

A fundamental and difficult problem in the study of Sidon sets is to determine
which more restricted classes of sets have the property that every Sidon set is
a finite union of sets from the class. Hadamard sets do not have this property,
for instance: Sidon sets, and even ε-Kronecker sets, need not be finite unions
of Hadamard sets since not even all quasi-independent sets are finite unions
of Hadamard sets. See Exercise 6.6.4(2) for the assertion about quasi-inde-
pendent sets and Example 2.2.7 for the assertion about ε-Kronecker sets. For
many other interesting classes of sets this problem is open. In particular, it
is unknown [P 1] if every Sidon set in Γ� {1} is:

• A finite union of quasi-independent sets
• A finite union of ε-Kronecker sets for some ε <

√
2

• A finite union of I0 sets.

These problems are all open for Γ = Z and for most other groups, though
there are answers in two special cases (see the section Remarks and credits).
However, every Sidon set not containing 1 is a finite union of k-independent
sets. This striking fact was proven by Bourgain; his proof is given in the
first subsection. From this characterization one can also deduce that every
Sidon set is a finite union of sets whose step length tends to infinity and
consequently a finite union of sets that are Sidon(U) for all non-empty, open
sets U . That is proved in the second subsection.

6.4.1 Sidon Sets Are Finite Unions
of k-Independent Sets

The proof that Sidon sets in Γ � {1} are finite unions of k-independent
sets is based on an investigation of the sets, Qk(F) (see Definition 6.2.9),
of quasi-words of presentation length k. This union property actually holds,
more generally, for sets E with the property that if F ⊆ Γ is finite, then
|E ∩Qk(F)| ≤ Ck|F|, where Ck depends only on k and the set E.

Theorem 6.4.1 (Bourgain’s k-independent set theorem). Suppose that
for some integer k there is a constant Ck such that every finite subset F ⊆ E
satisfies the condition

|E ∩Qk(F)| ≤ Ck |F|.
Then E is a union of N sets, each of which is k-independent, where N depends
only on k and Ck.

Appealing to Proposition 6.3.16 gives the decomposition result for Sidon
sets.

Corollary 6.4.2. For each k, a Sidon set E ⊆ Γ � {1} is a finite union of
k-independent sets.
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The proof of the theorem relies upon combinatorial arguments. For the
duration of the proof, given A ⊆ Γ, let

Pk(A) = {A′ ⊆ A : |A′| = k}.

Lemma 6.4.3. Suppose I and A ⊂ Γ are finite sets and k,N ∈ N. Let
δ = N−1/2k and assume δ|A| is much greater than k. For each i ∈ I, let
Bi be a subset of Pk(A). Suppose that for each i ∈ I, |Bi| = N and that,
if πππ,πππ′ ∈ Bi, then either πππ = πππ′ or πππ ∩ πππ′ is empty. Then there are subsets
I ′ ⊆ I and A′ ⊆ A such that:

1. |I ′| ≥ | I|/2.
2. δ|A|/2 ≤ |A′| ≤ δ|A|.
3. For each i ∈ I ′, there is at least one element πππ ∈ Bi with πππ ⊆ A′.

Proof. Let n = ! δ|A| ". Then every A′ ∈ Pn(A) satisfies (2).
For each i ∈ I, define a function Fi on Pn(A) by setting

Fi(Y) =
∑

πππ∈Bi

∏

ρ∈πππ
1Y(ρ) for Y ∈ Pn(A).

Of course,
∏
ρ∈πππ 1Y(ρ) = 0 or 1 and equals 1 if and only if πππ ⊆ Y. Thus,

Fi(Y) ≥ 1 (equivalently, Fi(Y) > 0) if and only if there is some πππ ∈ Bi with
πππ ⊆ Y.

The number of sets Y ∈ Pn(A) that contain a given subset π of cardinality

k is
(|A|−k
n−k

)
, and since the cardinality of Pn(A) is

(|A|
n

)
, the average (or

expected) value of Fi, denoted E(Fi), is given by

E(Fi) =
∑

πππ∈Bi

(|A|−k
n−k

)

(|A|
n

)
|A|∼ Nδk.

Here f
|A|∼ g means f/g→ 1 as |A|→∞.

If πππ,πππ′ ∈ Bi, then
∏
ρ∈πππ 1Y(ρ)

∏
ρ′∈πππ′ 1Y(ρ′) �= 0 if and only if Y contains

πππ∪πππ′. As these sets are disjoint if πππ �= πππ′, the number of sets Y ∈ Pn(A) with

this property is
(|A|−2k
n−2k

)
or approximately δ2k|Pn(A)|. Thus, the average

value of F 2
i is

E(F 2
i ) = E

( ∑

πππ∈Bi

( ∏

ρ∈πππ
1Y(ρ)

)2
)

+ E

( ∑

πππ �=πππ′∈Bi

∏

ρ∈πππ
1Y(ρ)

∏

ρ′∈πππ′
1Y(ρ′)

)

|A|∼
∑

πππ∈Bi

δk +
∑

πππ �=πππ′∈Bi

δ2k = Nδk +N(N − 1)δ2k.

Given the choice of δ = N−1/2k we deduce that

E(Fi)
|A|∼
√
N and E(F 2

i )
|A|∼ N

(
1 + εN

)
,

where εN → 0 as N →∞.
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We claim the probability that Fi(Y) ≥ 1 (equivalently, Fi(Y) > 0) is at
least 1/2 for all i ∈ I. To see this, note that Hölder’s inequality implies

N
|A|∼

(
E(Fi)

)2 ≤ P{Fi ≥ 1}E(F 2
i )

|A|∼ P{Fi ≥ 1}N
(
1 + εN

)
.

Thus, P{Fi ≥ 1} ≥ (1 + εN )−1 ≥ 1/2 for large enough N .
For Y ∈ Pn(A), let q(Y) be the number of indices i ∈ I such that Fi(Y) ≥

1. Since the expected value of q equals

E(q) = E

(∑

i∈I
1F−1

i [1,∞)

)
=

∑

i∈I
P{Fi(Y) ≥ 1} ≥ | I|/2,

there must be some Y ∈ Pn(A) with Fi(Y) ≥ 1 for at least half the indices
in I. Let A′ be such a choice of Y and let I ′ = {i : Fi(Y) ≥ 1}. Then
properties (1) and (3) hold by definition. ��

Lemma 6.4.4. Assume E ⊆ Γ has the property that |E ∩ Qk(F)| ≤ Ck|F|
for all finite subsets F ⊆ E and some (fixed) k. Let A ⊆ E be finite, N be a
positive integer and

I = {γ ∈ E : γ ∈ Qk(πππ) for at least N disjoint sets πππ ⊆ A}.

Then | I| ≤ 2CkN
−1/2k|A|.

Proof. For each γ ∈ I, put Bγ = {πππ ∈ Pk(A) : γ ∈ Qk(πππ)}. The definition
of I implies that by reducing Bγ , if necessary, we can suppose the sets Bγ

all have N elements and if πππ,πππ′ ∈ Bγ , πππ �= πππ′, then πππ ∩ πππ′ is empty. Put
δ = N−1/2k.

Appealing to the previous lemma, we obtain I ′ ⊆ I with | I ′| ≥ |I|/2 and
A′ ⊂ A with |A′| ≤ δ|A|, having the property that for each γ ∈ I ′ there is
some πππ ∈ Bγ such that πππ ⊆ A′. Consequently, γ ∈ Qk(A′) for all γ ∈ I ′, in
other words, I ′ ⊆ Qk(A′).

Since I ′ ⊆ E, that ensures that |Qk(A′) ∩ E| ≥ |I ′|. Together with the
hypothesis of the lemma, these observations yield the inequalities

1

2
|I| ≤ | I ′| ≤ |Qk(A′) ∩E| ≤ Ck|A′| ≤ Ckδ|A|,

which give the desired result. ��

Lemma 6.4.5. Suppose there is some constant N such that every finite sub-
set of E is a union of N sets, each of which is k-independent. Then E is a
union of N sets that are k-independent.

Proof. This is a limit argument. By assumption, if F is a finite subset of E,

then F =
⋃N
j=1 H

(F)
j , where the sets H

(F)
j are k-independent and disjoint

(possibly empty). The collection of finite subsets of E is a partially ordered
set, with the usual inclusion ordering. Consider the characteristic functions
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1F and 1
H

(F)
j
, j = 1, . . . , N , as nets with respect to this partial ordering.

These characteristic functions belong to the compact space {0, 1}Γ and so by
passing to successive subnets we can assume 1

H
(Fβ)

j

→ fj, j = 1, . . . , N , and

1Fβ
→ f pointwise.

If γ /∈ E, then 1F(γ) = 0 for all F ⊆ E, and thus f(γ) = 0. If γ ∈ E, then
γ ∈ Fβ eventually. Therefore, f(γ) = 1, proving f = 1E. Because each fj is
0, 1-valued, fj = 1Hj for suitable Hj ⊆ Γ. A limiting argument shows that
∑N
j=1 1Hj = 1E, and hence

⋃N
j=1 Hj = E.

To see that each set Hj is k-independent, suppose
∏k
i=1 γ

εi
i = 1 with each

εi = ±1. Since γ1, . . . , γk ∈ H
(Fβ)
j eventually, this contradicts the fact that

every H
(Fβ)
j is k-independent. ��

Proof (of Theorem 6.4.1). Lemma 6.4.5 shows we may assume E is finite.
Take N = N(k, Ck) = (2Ck)2k +1. We proceed by contradiction and

assume E is not the union of N k-independent sets. Then there must be a
subset F ⊆ E which is not a union of N k-independent sets, but every proper
subset of F is such a union. In particular, for each γ ∈ F the proper subset,
F�{γ}, is a union of N sets, Fγ,1, . . . ,Fγ,N , each of which is k-independent.

For each j, it must be true that γ ∈ Qk(Fγ,j) because otherwise the
set Fγ,j ∪ {γ} would still be k-independent and then the collection of sets
Fγ,1, . . . ,Fγ,j ∪ {γ}, . . . ,Fγ,N would be a decomposition of F into N k-
independent sets.

Define I as in Lemma 6.4.4, but with A in the lemma equal to F. The
previous remark implies that F ⊆ I, and hence |I| ≥ |F|. But, Lemma 6.4.4
implies |I| ≤ 2CkN

−1/2k|F| and this is strictly less than |F| by the choice
of N. This contradiction completes the proof of the theorem. ��

Recall (Definition 2.7.6) that a set E ⊆ Γ has “step length tending to
infinity” if for every finite subset F′ ⊆ Γ there exists a finite subset F ⊆ E
such that if χ, ψ ∈ E� F and χ �= ψ, then χψ−1 /∈ F′. We can deduce from
Bourgain’s Theorem 6.4.1 that every Sidon set is a finite union of sets with
step length tending to infinity.

Corollary 6.4.6. If there is a constant C such that all finite subsets F ⊆ E
satisfy the condition |E ∩ Q4(F)| ≤ C|F|, then E is a finite union of sets
with step length tending to infinity.

Proof. Theorem 6.4.1 implies such a set is a finite union of 4-independent
sets, and thus it suffices to check that each 4-independent set E has step
length tending to infinity.

Assume otherwise. Then there is a finite set F′ ⊆ Γ such that for every
finite subset F ⊆ E there exist χ, ψ ∈ E�F with χ �= ψ and yet χψ−1 ∈ F′.
Inductively choose infinite sequences, {χn}∞n=1, {ψn}∞n=1 from E, such that
χnψ

−1
n ∈ F′

� {1} and χn, ψn /∈ {χ1, ψ1, . . . , χn−1, ψn−1}.
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Since F′ is finite, by passing to a further subsequence, if necessary, we can
assume χnψ

−1
n χ−1

1 ψ1 = 1 for all n, contradicting the assumption that E is
4-independent. ��
Corollary 6.4.7 (Déchamps-Gondim–Bourgain theorem). Every Si-
don set is a finite union of Sidon sets whose step length tends to infinity.

It is easy to see that each set E whose step length tends to infinity has
the property that for each finite subgroup X ⊆ Γ, E is the union of a finite
set and a set which intersects each coset of X in at most one point. Thus,
Theorem 6.3.6 implies that every Sidon set whose step length tends to infinity
is Sidon(U) for all non-empty, open sets U . More generally,

Corollary 6.4.8. Every Sidon set is a finite union of sets that are Sidon(U)
for all non-empty, open U .

In Corollary 7.4.3, we will show that a Sidon set whose step length tends
to infinity is Sidon(U) in a uniform sense.

6.5 Remarks and Credits

Introduction. López and Ross [123] provide a detailed report of what was
known about Sidon sets up to the early 1970s. Some results are also in [88,
Sect. 37] and [167, Sect. 5.7], both published earlier. A modern treatment is in
Li and Queffélec’s [119]. Sidon’s proof that Hadamard sets have the property
of Corollary 6.2.5 is in [174].

Characterizations. Theorem 6.2.2 and Corollary 6.2.5 are standard. Other
equivalences can be found in [88, Sect. 37.2], [123, Chap. 1] and [167, Sect. 5.7].

Corollary 6.2.5 shows that if f : E → C is bounded, then
∑

γ∈Γ f̂(γ)γ
converges uniformly, and therefore f agrees almost everywhere with a con-
tinuous function. Thus, if E is Sidon, then L∞

E = CE. Sets with the latter
property are known as Rosenthal sets, after Rosenthal’s construction of ex-
amples of Rosenthal sets that are not Sidon [164] or [123, pp. 161-2]. That
corollary also implies that if E is Sidon, then CE is isomorphic to �1. The
converse of this is true and due to Varopoulos [190]. It requires functional
analysis techniques that we will not develop. We refer the reader to [119,
Theorem 5.IV.15].

Weak Independence Properties. The term “dissociate set” was first used
by Hewitt and Zuckerman in [90, 91]. In [89] they had proved that disso-
ciate sets have the Fatou–Zygmund property. A form of Exercise 6.6.4(2)
can also be found there. The term, “Rider set” is used because Rider [160]
showed that the sets now named after him were Sidon. That improved an
earlier result of Stečkin [176], where some of the ideas developed further in
[89] also appear. See [123, Chap. 2] for a more detailed discussion of Rider
sets. Proposition 6.2.14 is due to Pisier [150, Proposition 2.13]; the proof here
is due to Crevier [26].
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Li and Queffélec [119, Chap. 12:I.1] show that quasi-independent sets have
Sidon constant at most 6

√
6, as per Exercise 6.6.5. Another proof, using

Rider’s randomly continuous function characterization of Sidonicity [162], can
be found in [149, Lemma 3.2]. When the quasi-independent set is (equivalent
to) a set of Rademacher functions, then the Sidon constant is exactly π/2 if
the set is infinite [171] (or see [119, p. 297]) and N sin(π/2N) if the Rade-
macher set has N elements [2].

Li and Queffélec [119, pp. 209-10] give a charming proof that Hadamard
sets are Sidon.

A set E ⊆ Γ is called a Rajchman set if whenever μ ∈ M(G) and μ̂ ∈
c0(Γ�E), (i.e., μ̂ vanishes at infinity off E), then μ ∈M0(G). The terminology
comes from a classical result of Rajchman that states that −N is a Rajchman
set. It is known that the union of a Rajchman set and a Sidon set is a
Rajchman set [145]. Obviously, if E contains a translate of the support of the
Fourier transform of a Riesz product measure, then E is not Rajchman. Host
and Parreau [93] showed that the converse holds, as well.

The Union Theorem, the Fatou–Zygmund Property and Sidon(U). The
union theorem was first proved by Drury [32]. Many proofs of it are known.
See Remark 7.2.3 for one due to Pisier [149] (or at least noted by the reviewer
of Pisier’s paper) and [196] for a proof for the non-abelian case. Edwards,
Hewitt and Ross [36] introduced the Fatou–Zygmund property, but it was
Drury [33] who showed that every Sidon set has the property.

That continuous measures can be used to do the interpolation for Sidon
sets (Theorem 6.3.5) was discovered independently by Hartman and Wells
[80, 195]. This result is sometimes called the “Hartman–Wells theorem”. Méla
earlier proved Theorem 6.3.5 for I0 sets [128, Theorem 6.1]. In Hartman’s
proof, it was shown that the complement of a Sidon set is dense in Γ. Unlike
I0 sets, it is unknown if Sidon sets can cluster at a continuous character or
even if they can be dense in Γ. This problem will be revisited in Chaps. 8
and 10.

The Sidon(U) property was established by Déchamps-Gondim in [27], who
used the terminology “strictly associated with all open sets”. The notion of
Sidon(U) first appears in [85] under the terminology, “U is appropriate to E”.

Complete proofs of all of these results can be found in [123, Chaps. 3-4,
7-8].
Λ(p) Sets and Arithmetic Properties. Zygmund [6] and Rudin [166] are

responsible for many of the basic facts about Λ(p) sets and their relationship
with Sidon sets. See also [88, Chap. 37] and [123, Chap. 5] where many
characterizations can be found. Rudin [166] proved Theorem 6.3.9 for Sidon
sets in Z (the proof for general Γ involves nothing new) and showed that the
Λ(p) constant O(

√
p) is best possible for an infinite set. Thirty years earlier,

Zygmund had established the result for Hadamard sets [198] and proved
Proposition 6.3.11 for Hadamard and Rademacher sets. Proposition 6.3.10
is due to Bonami [16, p. 359].

Rudin [166] also discovered many arithmetic properties of Λ(p) sets in Z,
including Propositions 6.3.11, 6.3.12(2), and 6.3.15. Proofs for general groups
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and further arithmetic properties, including Proposition 6.3.16, can be found
in [123, Chap. 6]. See also [9, 99].

Another accomplishment of Rudin was to construct examples to show that
for each integer q ≥ 2 there were subsets of integers which were Λ(2q) sets but
not Λ(2q+ ε) for any ε > 0. Later, Bourgain [19] used probabilistic methods
to show that for each p > 2 there are Λ(p) sets that are not Λ(p+ ε) for any
ε > 0. The contrasting fact that each Λ(p) set for 1 < p < 2 is also Λ(q) for
some q > p can be found in [5, 74].
Λ(p) sets were also defined by Rudin for p ≤ 1. These are sets E with the

property that there is some 0 < q < p and constant C such that ‖f‖p ≤
C‖f‖q for all f ∈ TrigE(G). It is unknown if such sets are Λ(2).

Rudin’s paper [166] continues to influence activity. For example, [24] ad-
dresses a consequence of an affirmative answer to a question posed by Rudin
in that paper: Is the set of squares a Λ(p) set for some p?

A set E ⊆ Γ is said to be a B2 set if r2(E, γ)≤ 2 for all γ. These are the sets
such that γ1γ2 = γ3γ4 for γj ∈ E if and only if {γ3, γ4} is a permutation of
{γ1, γ2}. In additive groups, such as Z, these are the sets for which all non-zero
differences from the set are distinct. B2 sets are examples of Λ(4) sets. They
are often called “Sidon sets” in number theory because the terminology B2

set was first coined by Sidon. See [138] for a detailed annotated bibliography.
However, such sets need not be Sidon sets in our harmonic analysis sense;
Rudin’s construction of Λ(4) sets that were not Λ(4 + ε) for any ε > 0 gives
B2 sets, and such sets cannot be Sidon (in our sense).

Szemerdi’s famous theorem [182] says that each subset of integers of posi-
tive density contains arbitrarily long arithmetic progressions. It is much easier
to prove a set of positive density contains parallelepipeds of arbitrarily large
dimension; see [11, 133, 134] for a proof for subsets of Z and [73] for the gen-
eral case. The Gowers uniformity norm, [49], important in the study of length
four arithmetic progressions, is a natural way to control parallelepipeds. A
set contains no parallelepipeds of dimension 2 if and only if it is a B2 set,
and therefore such sets are Λ(4).

Proofs that Λ(p) sets do not contain parallelepipeds of arbitrarily large
dimension can be found in [35, 39, 73, 133]. In particular, no Λ(p) set can
contain arbitrarily long arithmetic progressions. It follows easily from Propo-
sition 6.3.12 that a Λ(p) set in Z has upper density zero. On the other hand,
since one can construct sets E ⊂ Z which contain arbitrarily large paral-
lelepipeds and satisfy |E ∩ [a, a+ N |  N , no density condition is sufficient
to guarantee a set is Sidon or even Λ(p) [73].

Decompositions of Sidon Sets. Corollary 6.4.7 for countable Sidon sets is
due to Déchamps-Gondim [27]; Bourgain gave the general case in [17], where
he also proved Theorem 6.4.1.

Bourgain’s paper also contains a proof that if G = Z
a
k is a product of

groups of order k where k has no repeated prime factors, then every Sidon
set in Γ is a finite union of quasi-independent sets. This improves on a result
of the Malliavins’: When G = Z

a
p is a product of groups of prime order, p,
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then every Sidon set in Γ is a finite union of independent sets (which are I0)
[126]. Of course, this implies an answer of yes to [P 1] and no to [P 2] for
these groups.
p-Sidon Sets. Let 1 ≤ p < 2 and p′ be the conjugate index. A subset E

⊆ Γ is called a p-Sidon set if for every φ ∈ �p′(E) there is a measure μ such
that μ̂ = φ on E. Equivalently, E is p-Sidon if there is a constant Sp such

that whenever f ∈ TrigE(G), then ‖f̂‖�p ≤ Sp‖f‖∞. Of course, a 1-Sidon set
is simply a Sidon set, and the nestedness of the �p spaces implies that if E is
p-Sidon for some p, then it is q-Sidon for each q > p. The notion of p-Sidon
set was introduced by Edwards and Ross in [35]. They established a number
of properties similar to those for Sidon sets and showed that if D1,D2 are
infinite disjoint subsets of Γ whose union is dissociate, then E = D1 ·D2 is
p-Sidon if and only if p ≥ 4/3. Johnson and Woodward [98] improved this
to show that if D1, . . . ,Dn are disjoint infinite subsets of Γ whose union
is dissociate, then D1 · · ·Dn is p-Sidon if and only if p ≥ 2n/(n+ 1). Blei in
[14] introduced the notion of fractional cartesian products of sets to construct
examples of sets that were p-Sidon for each given 1 < p < 2 but not q-Sidon
for any q < p. His constructions also provide examples of sets that are Λ(p)
with constant O(pa), for each given p > 2 and a > 1/2.

Exercises. Exercise 6.6.12 is adapted from [94, Chap. V]. Proofs of many
of the other exercises can be found in [123] or [166]. For more on the Rudin–
Shapiro polynomials, see [56, pp. 33 ff.] and [108, p. 34]. Independent unions
are called “n-fold joins” by Asmar and Montgomery-Smith, where an estimate
of their Sidon constants is given [4, Theorem 3.5] (the exact value appears to
be unknown).

6.6 Exercises

Exercise 6.6.1. 1. Show that
∑
γ∈E |f̂(γ)| ≤ C‖f‖∞ for every E-polynom-

ial f if and only if ‖μ‖Md(E) ≤ C‖μ̂‖∞ for every μ ∈Md(E).
2. Show that E is Sidon if and only if �∞(E) = B(E) if and only if c0(E) ⊆
B(E).

Exercise 6.6.2. 1. Show that a Fatou–Zygmund set is a Sidon set.
2. Show that an independent set is a Fatou–Zygmund set.
3. Suppose that for each Hermitian ϕ : E → Δ, there is some positive

measure μ such that

sup{|μ̂(γ)− ϕ(γ)| : γ ∈ E} < 1.

Show that there is a finite set F such that E � F is a Fatou–Zygmund
set.
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Exercise 6.6.3. Show that the sets Ωn of the proof of Lemma 6.2.4 are
closed.

Exercise 6.6.4. 1. Is every Hadamard set Rider? If not, does this depend
on the ratio?

2. Give an example of a quasi-independent set in Z that is not a finite union
of Hadamard sets but is I0. Hint: See Example 2.2.7.

3. Show that every Hadamard set is a finite union of quasi-independent sets.

Exercise 6.6.5. 1. Show that the Sidon constant of a Rider set is bounded
by a function of the Rider constant.

2. Adapt the argument of Theorem 6.2.11 to show that a quasi-independent
set has Sidon constant at most 16. (Hint:

∑∞
n=2 2−nRn(E, χ) ≤ 1/2 for

χ ∈ E.)
3. Use the difference of two Riesz products to show that a quasi-independ-

ent set has Sidon constant at most 6
√

6. (One should equal aψ/2 on F
and the other −aψ/2.)

4. Use the difference of two Riesz products to show that S(E) ≤ 48C3/2 if
E is Rider with constant C.

Exercise 6.6.6. 1. Show that {3j + 3k : j < k} is not a Sidon set.
2. Let d ∈ N. Show that a Sidon set E cannot contain more than dC logN el-

ements of a d-perturbed arithmetic progression, where C depends only on
the Sidon constant. See Exercise 2.9.11 for the definition of “d-perturbed
arithmetic progression”.

Exercise 6.6.7. 1. Use Corollary 6.3.2 to prove that the union of two Sidon
sets is a Sidon set.

2. Suppose E is a Sidon set and γ ∈ Γ. Prove that S(E∪{γ}) ≤ 2S(E) + 1.

Exercise 6.6.8. Suppose that E ⊆ N is Λ(p) for some p > 1.

1. Show that
∑

n∈E 1/n <∞.
2. Show there is some 1 < q <∞ such that if 1/q + 1/q′ = 1, then

sup
N

1

N1/q′

(
N∑

n=1

r2(E, n)q

)1/q

<∞.

3. Show that the set of perfect squares in Z is not Λ(4).

Exercise 6.6.9. Give an example of a set E which is I0, but {γ2 : γ ∈ E} is
not even Sidon.

Exercise 6.6.10. Define trigonometric polynomials Pn, Qn on T inductively
by P0 = Q0 = 1,

Pn+1(t) = Pn(t) + ei2
ntQn(t),

Qn+1(t) = Pn(t)− ei2
ntQn(t).
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1. Prove ‖Pn‖∞ ≤ 2(n+1)/2.

2. Show there is a sequence of signs rk = ±1 such that Pn(t) =
∑2n−1

k=0 rkeikt

for each n.
3. Exhibit f ∈ C(T) such that f̂ /∈ �1.

These are known as the Rudin–Shapiro polynomials.

Exercise 6.6.11. 1. Show that S(E) ≤
√
N if E is any subset of Γ of

cardinality N .
2. Prove that there is a constant c > 0 such that S({1, 2, . . . , N}) ≥ c

√
N

for all N .

Exercise 6.6.12. Let Ej ⊆ Γ be disjoint. The union (finite or not)
⋃
Ej

is a dissociate union if γj ∈ Ej , εj ∈ {−2,−1, 0, 1, 2}, J ∈ N and 1 =
∏J
j=1 γ

εj
j imply all εj = 0. Let

⋃
j Ej be a dissociate union and pj real-valued

trigonometric polynomials with Supp p̂j ⊆ Ej ∪E−1
j for 1 ≤ j ≤ J . Suppose

that 1 + pj ≥ 0 for all j. Show that μ =
∏J

1 (1 + pj)dmG is a probability
measure with

μ̂(γ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if γ = 1,

p̂j(γ) if γ ∈ Ej ∪E−1
j ,

∏
k p̂jk(γjk) if γ =

∏
γjk with γjk ∈ Ejk ∪E−1

jk
, jk distinct, and

0 otherwise.

The measure μ (and weak* limits of such μ) is called a generalized Riesz
product ; see [94, p.175].

Exercise 6.6.13. Let E ⊆ Γ be infinite.

1. Suppose {γ2 : γ ∈ E} is infinite. Prove E contains an infinite dissociate
subset.

2. Suppose{γ ∈ E : γ2 = 1} is infinite. Prove that E contains an infinite
independent subset.

3. Deduce that every infinite subset of Γ contains an infinite Fatou–
Zygmund set of the same cardinality.

Exercise 6.6.14. Let H ⊆ G be dense. Let Λ = Γ/(H⊥) and i : Γ → Λ be
the composition of natural mappings, Γ ↪→ Γ→ Λ.

1. Show that i maps Γ one-to-one onto a dense subgroup of Λ.
2. Show that each finite E ⊂ Γ has Sidon constant of E in Γ the same as

the Sidon constant of i(E).



Chapter 7

Sidon Sets Are Proportional
Quasi-independent

The Pisier characterization of Sidon sets as proportional quasi-independent
is proved. A Sidon set has step length tending to infinity if and only if it is
Sidon(U) with bounded constants.

7.1 Introduction

In the previous chapter we surveyed what was known about Sidon sets prior
to 1980. In the 1980s the understanding of Sidon sets increased vastly as
a result of (particularly) Pisier’s and Bourgain’s contributions. They used
an interesting blend of probabilistic, combinatorial and analytical arguments
to deduce various arithmetic characterizations of Sidon. In Theorem 6.4.1,
Bourgain’s k-independent set theorem, we already saw one example of this:
every Sidon set is a finite union of k-independent sets. In Sect. 7.2 we prove
the Pisier arithmetic characterization of Sidon sets as those sets that are
proportional quasi-independent (defined in the following section). Part of the
proof also involves showing that Sidon sets are characterized by the property
of being Λ(p) for all p <∞, with Λ(p) constant O(

√
p).

Applications of this characterization are given. The union property for
Sidon sets is one immediate application. Another application is to charac-
terize the Sidon sets with step length tending to infinity as those which are
Sidon(U) in a uniform sense. This theorem of Déchamps-Gondim and Bour-
gain is established in Sect. 7.4.

In Sect. 7.3, Sidon sets are shown to possess a separation property known
as the “Pisier ε-net condition”. This property will be further investigated
in Chap. 9, where it will be proven to be another characterization of Sidon
and used to establish that Sidon sets can also be characterized as propor-
tional I0 or ε-Kronecker (in the latter case, provided Γ does not have “too
many” elements of order two). Other results which use the Pisier arithmetic
characterization theorem will also be given in Chaps. 8 and 9.

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 7,
© Springer Science+Business Media New York 2013
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7.2 The Pisier Characterization of Sidon Sets

In this section we prove the theorem highlighted in this chapter’s introduc-
tion, the most significant item of which is (3), the arithmetic characterization
of Sidon sets as those sets which are proportional quasi-independent.

Theorem 7.2.1 (Pisier’s characterization theorem). The following are
equivalent for E ⊆ Γ� {1}:

1. The set E is Sidon.
2. There is a constant, C2, such that

||f ||p ≤ C2
√
p||f ||2 for all f ∈ TrigE(G) and all 2 ≤ p <∞.

3. There is a constant, C3, such that each finite subset, F ⊆ E, has a quasi-
independent subset, F1, with |F| ≤ C3|F1|.

4. There is a constant, C4, such that for all finite,1complex-valued sequences
(aγ)γ∈E, there exists a quasi-independent subset F ⊆ E satisfying

∑

γ∈E

|aγ | ≤ C4

∑

γ∈F

|aγ |. (7.2.1)

5. There is a constant, C5, such that for each finite set F ⊆ E there is a
subset F1 ⊆ F such that F1 has Sidon constant at most C5 and |F| ≤
C5|F1|.

Remarks 7.2.2. (i) The equivalence of (1) and (2) shows that Sidon sets are
characterized by the property of being Λ(p) for all p < ∞, with the Λ(p)
constant at most O(

√
p). This is the minimal Λ(p) constant for an infinite

set. See Sects. 6.3.2 and 6.5 for more details about Λ(p) sets.
(ii) The reciprocal of the constant C3 from (3) is called a Pisier constant

for E.
(iii) We will use “proportional” quasi-independent (resp., Sidon) to express

the relationship in (3) (resp. (5)) and refer to the equivalence of (1) and (3)
as (Pisier’s) proportional quasi-independent characterization of Sidonicity.

Remark 7.2.3. Although this was not the original proof, each of (2)–(5) im-
mediately yields the important union property of Sidon sets (Corollary 6.3.3).
In fact, the Sidon constant of a union is bounded by a constant that depends
only on the Sidon constants of the uniands. That can be seen from analysis
of the proof of Theorem 7.2.1 (see Exercise 7.6.1).

We will prove Theorem 7.2.1 by establishing two overlapping loops of
equivalences. First, that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1) and, second, that
(3) ⇔ (5).

We begin with the implications (2) ⇒ (3) ⇒ (4) since they are the most
difficult.

1 By “finite” we mean, aγ = 0 for all but a finite number of γ.
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7.2.1 Proof of Theorem 7.2.1 (2) ⇒ (3) ⇒ (4)

The major task in proving (2) ⇒ (3) ⇒ (4) is to find the quasi-independent
sets. The first step of the proof will be to show that under assumption (2)
it is possible to find subsets of E which admit no “long” quasi-relations,
where by a quasi-relation in F ⊆ Γ, we mean a product

∏
γ∈F γ

cγ = 1 where
cγ ∈ {−1, 0, 1} and only a finite number of the cγ are non-zero, and by the
length of the relation we mean the sum

∑
γ |cγ |. Note that a subset of E is

quasi-independent if and only if it has no non-trivial quasi-relations.
This is a probabilistic argument and is detailed in Lemma 7.2.4. Random

sets are considered and, by studying Riesz product-like functions, the num-
ber of long quasi-relations which these random sets admit are shown to be
typically bounded. In these estimates, the Lq norms of finite sums of charac-
ters arise and this is where assumption (2) is used. With these estimates, one
can then deduce that large subsets of random sets admit no quasi-relations,
whence (2) ⇒ (3) follows.

Lemma 7.2.4. Assume E satisfies Theorem 7.2.1(2) (with constant C = C2)
and F is a finite subset of E which has |F| ≥ 214C2. Let

τ = 2−10C−2 and � =

⌊
τ |F|

4

⌋

. (7.2.2)

Then there exists F̃ ⊆ F such that τ |F|/2 ≤ | F̃| and F̃ has no quasi-relations
of length more than �.

Here, !x" is the greatest integer ≤ x.

Proof (of Lemma 7.2.4). We note that C ≥ 1/
√

2, so τ ≤ 2−9 and � ≥ 4.
For γ ∈ F, let ξγ(ω) be independent, Bernoulli random variables defined

on the probability space (ΩΩΩ,Σ,P), with P(ξγ = 1) = τ and P(ξγ = 0) = 1−τ.
We will show that one of the random sets F̃ = F(ω) = {γ ∈ F : ξγ(ω) = 1}
will do.

For each ω ∈ ΩΩΩ define the function Fω on G by

Fω(x) =

|F|∑

n=�+1

∑

H⊆F
|H|=n

∏

γ∈H

ξγ(ω)2Reγ(x).

By the independence of the ξγ ,

∫∫

ΩΩΩ×G
Fω(x)dmG(x)dP(ω) =

|F|∑

n=�+1

τn
[ ∑

H⊆F
|H|=n

∫

G

∏

γ∈H

2Reγ(x)dmG(x)

]

.
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Let N(ω) =
∫
G Fω(x)dmG(x). Since ξγ is 0, 1-valued, N(ω) is integer-valued,

and N(ω) is at least the number of quasi-relations of length � + 1 or more
(Exercise 7.6.4). (If H has no elements of order two, then N(ω) is equal to the
number of quasi-relations of length �+ 1 or more, though we will not use this
fact.) Consequently, ifN(ω) = 0, then F(ω) has no quasi-relations of length at
least �+1. Thus, we are interested in estimating P(N(ω) �= 0) = P(N(ω) ≥ 1).

For each set H of cardinality n, the expression
∫
G

∏
γ∈H 2Reγ(x)dmG

appears n! times in the expansion of
∫

G

[ ∑

γ∈F

2Reγ(x)
]n

dmG. (7.2.3)

Moreover, the additional terms that occur in (7.2.3) are non-negative.
Since Theorem 7.2.1 (2) is assumed, that implies

0 ≤
∫

ΩΩΩ

N(ω) dP(ω) ≤
|F|∑

n=�+1

τn

n!

∫

G

[ ∑

γ∈F

2Reγ
]n

dmG

≤
|F|∑

n=�+1

2nτn

n!

∥
∥
∥
∑

γ∈F

γ
∥
∥
∥
n

n
≤

|F|∑

n=�+1

2nτn

n!

(
C
√
n

∥
∥
∥
∑

γ∈F

γ
∥
∥
∥
2

)n

≤
|F|∑

n=�+1

( 6τC
√|F|√
n

)n
≤

∞∑

n=�+1

( 6τC
√|F|√
�+ 1

)n
,

where we have used the inequality (n/3)n ≤ n! on the third line. It is a

routine exercise to check that 6τ C
√|F|/√� + 1 ≤ 3/8, and therefore

∫

ΩΩΩ

N(ω) dP(ω) ≤
∞∑

n=�+1

(3

8

)n
< 2−�.

Since � ≥ 4 and N(ω) is either 0 or at least 1,

P(N(ω) ≥ 1) ≤ 2−� ≤ 1

16
. (7.2.4)

We will also want |F(ω)| ≥ τ |F|/2. For this, we will apply Lemma C.2.2,
a consequence of Markov’s inequality, with the independent random variables
Xγ = ξγ − τ (for γ ∈ F), c2 = τ |F| and a = τ |F|/2. Note that

∑

γ∈F

E(X2
γ) = |F|(τ − τ2) ≤ c2,

so c2 = τ |F| is a valid choice for c2 in that lemma. Thus, by Lemma C.2.2,

P

(∣
∣
∣
∑

γ∈F

Xγ

∣
∣
∣ ≥

τ |F|
2

)

≤ 2 exp

(

− τ |F|
12

)

. (7.2.5)

Because
∑

γ∈FXγ =
∑

(ξγ − τ) = |F(ω)|− τ |F|,
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P

(∣
∣
∣
∑

γ∈F

Xγ

∣
∣
∣ ≥

τ |F|
2

)

= P

(∣
∣
∣ |F(ω)|− τ |F|

∣
∣
∣ ≥

τ |F|
2

)

≥ P

(
|F(ω)| ≤ τ |F|

2

)
. (7.2.6)

But τ |F| ≥ 16, so by (7.2.5) and (7.2.6),

P

(
|F(ω)| ≤ τ |F|

2

)
≤ 2 exp

(−τ |F|
12

)
≤ 2e−4/3 ≤ 9

16
.

Since (7.2.4) states P(N(ω) ≥ 1) ≤ 1/16, the probability that N(ω) = 0
and |F(ω)| ≥ τ |F|/2 simultaneously occur is at least 3/8. Thus, there is an

ω such that F̃ = F(ω) has no quasi-relations of length greater than � and

| F̃| ≥ τ |F|/2. ��

Proof (of Theorem 7.2.1 (2) ⇒ (3)). Let F be any non-empty, finite subset
of E. If |F| < 214(C2)2, then any singleton set, F′, will suffice with C3 =
214(C2)2.

Otherwise, let the set F̃ be given by Lemma 7.2.4. Let
∏
γ∈F̃ γ

cγ be any

quasi-relation of maximal length (at most �) and let F′ = {γ : cγ = 0}. We
claim F′ is quasi-independent. Indeed, if

∏
γ∈F′ γdγ = 1 is a quasi-relation,

then (
∏
γ∈F′ γdγ ) ·(

∏
γ∈F̃ γ

cγ ) is also a quasi-relation of greater length, unless

all the dγ = 0, contradicting the maximality of the choice of {γcγ : γ ∈ F̃}.
Finally,

|F′| ≥ | F̃|− � ≥ τ

2
|F|− � ≥ τ

4
|F| ≥ 2−12(C2)−2|F|.

Thus, (3) is satisfied with C3 = 214(C2)2. ��

To prove (3) ⇒ (4), it will be helpful to develop a method for piecing
together finite quasi-independent sets to obtain a large quasi-independent
set. A complicated combinatorial argument is involved. To make the flow of
the argument clearer, we have put the details in the appendix. Here is the
combinatorial result we need.

Proposition B.1.2. There is a constant A > 10 such that whenever the
finite sets E1, . . . ,EJ are quasi-independent, pairwise disjoint and satisfy
|Ej+1|/|Ej| ≥ A for 1 ≤ j < J , then we can find subsets E′

j ⊆ Ej such

that
⋃J
j=1 E

′
j is quasi-independent and |E′

j| ≥ |Ej|/10 for 1 ≤ j ≤ J .

Proof (of Theorem 7.2.1 (3) ⇒ (4)). Let {aγ : γ ∈ E} be a finite sequence
and let F0 = {γ : aγ �= 0}. Without loss of generality,

∑
γ∈F0

|aγ | = 1. Let A
be given by Proposition B.1.2. For each k = 0, 1, 2, . . ., define

Ek =
{
γ ∈ F0 :

1

Ak+1
< |aγ | ≤

1

Ak

}
.

By the hypothesis of (3), we can find quasi-independent sets E′
k ⊆ Ek such

that |Ek| ≤ C3|E′
k|.
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Now,

1 =
∑

k≥0

∑

γ∈Ek

|aγ | ≤
∑

k≥0

1

Ak
|Ek| ≤ AC3

∑

k≥0

1

Ak+1
|E′

k| ≤ AC3

∑

k≥0

∑

γ∈E′
k

|aγ |.

Define 0 = k1 < k2 < · · · inductively by

kj+1 = min{k > kj : |E′
k| > A|E′

kj |}
and kj+1 =∞ if there is no such finite k. Since E′

k ⊆ Ek and |E′
k| ≤ A|E′

kj
|

if kj < k < kj+1, we obtain2

∑

j≥1

kj+1−1∑

k=kj+1

∑

γ∈E′
k

|aγ | ≤
∑

j≥1

kj+1−1∑

k=kj+1

|E′
k|

Ak
≤

∑

j≥1

∑

kj<k

1

Ak
A|E′

kj |

=
A2

A− 1

∑

j≥1

1

Akj+1
|E′

kj | ≤
A2

A− 1

∑

j≥1

∑

γ∈E′
kj

|aγ |

≤ 2A
∑

j≥1

∑

γ∈E′
kj

|aγ |.

This implies that

1

AC3
≤

∑

k≥1

∑

γ∈E′
k

|aγ | =
∑

j≥1

kj+1−1∑

k=kj+1

∑

γ∈E′
k

|aγ |+
∑

j≥1

∑

γ∈E′
kj

|aγ |

≤ (1 + 2A)
∑

j≥1

∑

γ∈E′
kj

|aγ |. (7.2.7)

Since |E′
kj+1

| ≥ A|E′
kj
|, by Proposition B.1.2 there are subsets, Fj ⊆ E′

kj
,

with |Fj| ≥ |E′
kj
|/10, such that F =

⋃J
j=1 Fj is quasi-independent. Because

Fj ⊆ E′
kj

,
∑

γ∈Fj
|aγ | ≥ |Fj|/Akj+1, and thus

∑

γ∈F

|aγ | ≥
∑

j≥1

1

Akj+1
|Fj| ≥ 1

10A

∑

j≥1

1

Akj
|E′

kj |

≥ 1

10A

∑

j≥1

∑

γ∈E′
kj

|aγ | ≥
1

10A2C3(1 + 2A)
,

where the final inequality comes from (7.2.7). Therefore, C4 = 10A2C3(1 +
2A) will do. ��

2 Since F0 is finite, the sums here are all finite sums.
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7.2.2 Proof of Theorem 7.2.1: (1) ⇒ (2), (4) ⇒ (1)

We now complete the first loop of implications.

Proof (of (1) ⇒ (2)). This is Theorem 6.3.9. ��

Proof (of (4) ⇒ (1)). This is a variation of the proof of Theorem 6.2.11.

We will show that there is a constant S such that ‖f̂‖1 ≤ S‖f‖∞ for all
f ∈ TrigE(G). By Theorem 6.2.2(4), that will prove that E is Sidon. It
remains to find S.

There will be no loss of generality in assuming that E is symmetric. Let
C4 be as in (4) and f ∈ TrigE(G). There will also be no loss of generality in

assuming that f and f̂ are both real-valued. Then f̂(γ) = f̂(γ−1) for γ ∈ E.
Choose the quasi-independent set F ⊆ E such that (7.2.1) holds for the finite

sequence (aγ)γ∈E = (f̂(γ)).

For γ ∈ E, let ψ(γ) = sgn f̂(γ). Since f̂(γ) = f̂(γ−1), ψ is Hermitian. Let
0 < a < 1/(4C4) and let μ = μF,a be the Riesz product as in (6.2.11). As
shown there, ‖μ‖ ≤ 2. We define

β(γ) =
a

2C4
ψ(γ)− μ̂(γ).

Then

|β(γ)| ≤ 2a2 for γ ∈ F ∪ F−1 and |μ̂(χ)| ≤ 2a2 for χ �∈ F ∪ F−1 ∪ {1}.
(7.2.8)

We now estimate
∑

γ∈Γ |f̂(γ)| =
∑

γ∈E |f̂(γ)|. First,

1

C4

∑

γ∈Γ

|f̂(γ)| ≤
∑

γ∈F

|f̂(γ)| ≤
∑

γ∈(F∪F−1)∩E

|f̂(γ)| =
∑

γ∈(F∪F−1)∩E

f̂(γ)ψ.

Using that, (7.2.8) and Parseval’s formula, we have

a

2(C4)2

∑

γ∈Γ

|f̂(γ)| ≤ a

2C4

∑

γ∈(F∪F−1)∩E

|f̂(γ)|

=
∑

γ∈(F∪F−1)∩E

f̂(γ)μ̂(γ) +
∑

γ∈(F∪F−1)∩E

f̂(γ)β(γ)

=
∑

γ∈Γ

f̂(γ)μ̂(γ)−
∑

γ∈E�(F∪F−1)

f̂(γ)μ̂(γ) +
∑

γ∈(F∪F−1)∩E

f̂(γ)β(γ)

≤ 2 ‖f‖∞ + 4a2
∑

γ∈E

|f̂(γ)|.

Then the choice a = 1/(16C 2
4 ) gives the estimate, S(E) ≤ 128C 4

4 . ��
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7.2.3 Proof of Theorem 7.2.1: (3) ⇒ (5)
and (5) ⇒ (3)

Here we complete the second loop of implications and thus complete the proof
of Theorem 7.2.1.

Proof (of (3) ⇒ (5)). Since a quasi-independent set is Sidon with Sidon
constant independent of the set (Corollary 6.2.12), (5) follows from (3). ��

Proof (of (5) ⇒ (3)). Examination of the proofs of (1) ⇒ (2) and (2) ⇒
(3) shows that finite Sidon sets having a common bound to their Sidon con-
stant are proportional quasi-independent, with the constant of proportion-
ality depending only on that common bound. The hypotheses of (5) give a
common bound to the Sidon constants of the finite subsets, F ⊂ E, and so
(5) ⇒ (3). ��

7.3 Pisier’s ε-Net Condition

The next proposition, known as the Pisier ε-net condition, is an important ap-
plication of the Pisier characterization of Sidon sets. It will be used in Chap. 9
to prove that Sidon sets can also be characterized as those which are propor-
tional I0. Before stating the proposition, we give a lemma.

Lemma 7.3.1. Let {γ1, . . . , γN} ⊆ E� {1} ⊆ Γ be a quasi-independent set.
Suppose cn ∈ Δ for 1 ≤ n ≤ N and 0 < τ < 1. Let

X = {x ∈ G : inf
n
|Re(cnγn(x))| > τ}.

Then mG(X) ≤ 2(1 + τ2)−N .

Proof. Let X+ = {x ∈ G : infn Re(cnγn(x)) > τ} and let pn(x) = 1 +

τ Re(cnγn(x)) for 1 ≤ n ≤ N . We note that
∏N
n=1 pn(x) ≥ 0 for all x and

that (1 + τ2)N ≤
∏N
n=1 pn(x) for x ∈ X+. Also,

1 =

(
N∏

n=1

pn

)

(̂1) =

∫ N∏

n=1

pn(x)dx ≥ (1 + τ2)NmG(X+),

where the first equality comes from the quasi-independence. So mG(X+) ≤
(1 + τ2)−N . Redefining pn = 1 − τ Re(cnγn), we see that (the obviously
defined) X− also satisfies mG(X−) ≤ (1 + τ2)−N , from which the conclusion
follows. ��
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Proposition 7.3.2. Suppose that E ⊆ Γ � {1} is Sidon. Then there exists
ε > 0 such that for every finite F ⊆ E, there is a set Y = {y1, . . . , yN} ⊆ G
such that N ≥ 2ε|F| and

ε ≤ sup
γ∈F
|γ(yn)− γ(ym)| for 1 ≤ n �= m ≤ N. (7.3.1)

We will say that E satisfies a Pisier ε-net condition if the conclusion
of Proposition 7.3.2 holds for some 0 < ε < 1.

Proof (of Proposition 7.3.2). If F′ ⊆ F, then

sup
γ∈F′
|γ(x)− γ(y)| ≤ sup

γ∈F
|γ(x)− γ(y)|,

and so by Theorem 7.2.1(3), there is no loss of generality in assuming F ⊆ E
is quasi-independent.

Fix 0 < τ < 1 and pick M0 so large that (1 + τ2)M0 > 8. If |F| < M0,
then take any γ ∈ F and choose any y1, y2 ∈ G such that |γ(y1) − γ(y2)| ≥
|1− e2πi/3|. Then Y = {y1, y2} suffices with the choice of suitably small ε.

Thus, there is also no loss of generality in assuming |F| ≥M0. Let

X = {x ∈ G : inf
γ∈F
|Reγ(x)| > τ}

and choose the largest integer K ≥ 2 such that if |F| = M , then

2K+1 < (1 + τ2)M .

(This is possible by the choice of M0.) We will find x1, . . . , xK ∈ G such that
for each pair of distinct products x = xk(1) · · ·xk(j) and y = x�(1) · · ·x�(m),
it is the case that supγ∈F |γ(x) − γ(y)| > 1 − τ . The set Y will then be

{
∏K
k=1 x

mk
j : mk = 0, 1} � {e}. The choice of K ensures there is a constant

ε1 > 0, which does not depend on |F|, so that | Y | ≥ 2K − 1 ≥ 2ε1|F|.
We may assume that x and y have no common factors. Our interest is in

differences of the form |γ(xy−1)− 1|. This motivates the next paragraph.
For each non-trivial choice of m = (m1, . . . ,mK) ∈ {0, 1}K, let

Xm =

{

(x1, . . . , xK) ∈ GK : inf
γ∈F

∣
∣
∣Re

(
γ
(∏

1

Kxkmk

))∣∣
∣ > τ

}

.

If we let s =
∑
jmj , then it is easy to see that

Xm ⊆
∏

j:mj �=0

{xj : inf
γ∈F
|Reγ(xj)| > τ} ×GK−s.
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It follows from Lemma 7.3.1 that mGK (Xm) ≤ 2(1+τ2)−M . The choice of K
ensures that mGK (

⋃
m �=0Xm) < 1 and this proves there exists (x1, . . . , xK) ∈

GK such that for all non-trivial (m1, . . .mK) ∈ {0, 1}K there exists γ ∈ F
with

∣
∣Re

(
γ
(∏

k x
mk

k

) )∣
∣ ≤ τ and so

∣
∣γ

(∏
x±mk

k

)
− 1

∣
∣ ≥ 1 − τ. It is now

straightforward to check that there is an 0 < ε ≤ 1− τ satisfying the conclu-
sions of the proposition. ��

The following corollary will also be used later.

Corollary 7.3.3. Let V ⊆ G and suppose E ⊆ Γ is a Sidon set. Assume that
finitely many translates of the subset V cover G. Then there are constants
ε = ε(E) > 0 and α = α(E, V ) with the property that for any finite subset
F ⊆ E having cardinality at least α, there is a set V0 ⊆ V having cardinality
at least 2ε|F|/2 and satisfying

sup
γ∈F
|γ(x)− γ(y)| ≥ ε for x �= y ∈ V0. (7.3.2)

Proof. Assume G =
⋃K
k=1 akV , fix a finite F ⊆ E� {1} and obtain the set Y

from Proposition 7.3.2 satisfying (7.3.1). By the pigeon hole principle, at least
N/K ≥ 2ε|F|/K of the points {y1, . . . , yN} ⊂ G satisfying (7.3.1) belong to
one of the sets akV . For any two such points, w, z, we have w = akx, z = aky
for some x, y ∈ V . Of course, |γ(x)− γ(y)| = |γ(z)− γ(w)| for all γ. Thus,
there is a subset V0 of V with at least 2ε|F|/K elements, such that for x �=
y ∈ V0, supγ∈F |γ(x)− γ(y)| ≥ ε.

Pick α such that K ≤ 2αε/2. It follows that if |F| ≥ α, then there will be
at least 2ε|F|/2 points in V satisfying (7.3.2). ��

7.4 Characterizing Sidon Sets with Step Length Tending
to Infinity

Recall (Definition 2.7.6) that E has step length tending to infinity if for every
finite set F′ ⊆ Γ, there exists a finite subset F ⊆ E such that if χ, ψ ∈ E�F
and χ �= ψ, then χψ−1 /∈ F′. In this section we complete a line of investigation,
begun with Corollary 6.4.7, which stated that every Sidon set is a finite union
of sets with step length tending to infinity.

Definition 7.4.1. A set E ⊆ Γ is Sidon(U) with bounded constants if there
exists a constant K such that for every non-empty, open U ⊆ G there exists
a finite F ⊆ E such that for every ϕ ∈ �∞(E) there exists μ ∈ M(U) such
that μ̂ = ϕ on E� F and ‖μ‖ ≤ K.

An I0(U) set with bounded constants is clearly Sidon(U) with bounded
constants but not conversely; see Exercise 7.6.2.



7.4 Characterizing Sidon Sets with Step Length Tending to Infinity 127

Theorem 7.2.1 (4) has the following consequence. Recall (see Example
5.2.11) that the analogous statement for I0 sets is not true.

Theorem 7.4.2 (Déchamps-Gondim–Bourgain-bounded constants).
If E ⊆ Γ is Sidon, then the following are equivalent:

1. E is Sidon(U) with bounded constants.
2. E has step length tending to infinity.

Combined with Corollary 6.4.7, this yields the following:

Corollary 7.4.3. If E ⊆ Γ is a Sidon set, then E is a finite union of Sidon
sets that are Sidon(U) with bounded constants.

Proof (of Theorem 7.4.2 (1) ⇒ (2)). This is similar to the proof of Proposi-
tion 5.2.9: just replace “Md(V )” with “M(V )” and “I0(U)” with “Sidon(U)”.

��

We now turn to the other direction of the proof of Theorem 7.4.2. We will
find a δ > 0 (depending only on E) with the property that for each non-empty,
open set U ⊆ G there is a finite set E′ such that for each q ∈ TrigE�E′(G)
there is a measure μ ∈M(U) with

‖μ‖ ≤ 2 and
∣
∣
∣

∫

qdμ
∣
∣
∣ ≥ δ

∑
|q̂| (7.4.1)

and that will give the uniform bound on the Sidon(U) constants.
The interpolating measure μ will again be built from a suitable Riesz

product but in this case scaled by the restriction to U of a non-negative
polynomial p which will “almost” be supported on U . Theorem 7.2.1 (by way
of Lemma 7.4.5) will be used to extract a suitable quasi-independent set on
which to build the Riesz product. The assumption that E has step length
tending to infinity will be used to estimate the integral |

∫
qdμ|. The main

difficulty is in finding the finite subset E′. We do that in the second of the two
following lemmas, the first lemma being a preliminary technical result. The
proof proper of Theorem 7.4.2 (2) ⇒ (1) is given at the end of this section.

Lemma 7.4.4. Suppose F is a finite quasi-independent set and aγ ∈ Δ for
γ ∈ F. Then

1 =
∥
∥
∥
∏

γ∈F

(1 + Re(aγγ))
∥
∥
∥
1

=
∥
∥
∥
∏

γ∈F

(1 + Reγ)
∥
∥
∥
1
. (7.4.2)

Suppose, in addition, that p is a non-negative, trigonometric polynomial with
p̂ ≥ 0 and F has the property that whenever γ �= χ ∈ F, then γχ−1 �∈ Supp p̂.
Then ∥

∥
∥p

∏

γ∈F

(1 + Re(aγγ))
∥
∥
∥
1
≤

∥
∥
∥p

∏

γ∈F

(1 + Reγ)
∥
∥
∥
1
. (7.4.3)
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Proof (of Lemma 7.4.4). For (7.4.2), we just calculate the size of the Fourier
coefficient at 1, which is 1 in both cases.

For (7.4.3), as both the polynomial p and the two Riesz products are non-
negative functions, it is again the case that the L1-norms are the Fourier
coefficients at 1.

On the right hand side, all Fourier coefficients of all the factors (including
p) are non-negative, so their contributions to the coefficient at 1 do not
cancel. On the left side, some Fourier coefficients may be negative, leading to
cancellation when computing the coefficient at 1. On the left, furthermore, the
Fourier coefficients of the Riesz product factor’s second term have absolute
values at most 1

2 (or 1 if γ has order 2), while those on the right are exactly 1
2

(or 1). Thus, the Fourier coefficients on the left can only have smaller absolute
values than those on the right, and therefore (7.4.3) follows. ��

Lemma 7.4.5. Suppose E ⊂ Γ� {1} is Sidon, F′ ⊂ Γ is finite and C = C4

is given by Theorem 7.2.1 (4) for E. Assume that p ≥ 0 is a trigonometric
polynomial with non-negative Fourier coefficients and having p̂(1) = 1. Let
Supp p̂ = E0. Then there exists a second finite subset E′ ⊆ Γ, with E′ ⊇
E0 ∪ F′, such that if q =

∑
cγγ is an (E�E′)-polynomial, then there exists

a quasi-independent set F ⊆ E�E′ such that

∑

γ∈F

|cγ | >
1

2C

∑

γ∈E�E′
|cγ | and (7.4.4)

∫

p(x)
∏

γ∈F

(
1 + Reγ(x)

)
dx =

∥
∥
∥p(x)

∏

γ∈F

(1 + Reγ)
∥
∥
∥
1
< 2. (7.4.5)

Proof (of Lemma 7.4.5). Suppose that the conclusion were false. Then for
each positive integer, R, there are disjoint finite sets E1, . . . ,ER ⊆ E and
scalars cγ such that

∑
γ∈Er

|cγ | = 1 and for which a quasi-independent set
satisfying both (7.4.4) and (7.4.5) does not exist. Obtain such sets for R >

2C|E0|. We apply Theorem 7.2.1 (4), to the subset
⋃R
r=1Er and scalars (cγ),

to obtain a quasi-independent set F such that

∑

γ∈⋃
R
r=1 Er∩F

|cγ | >
1

C

∑

γ∈⋃
R
r=1 Er

|cγ | =
R

C
. (7.4.6)

The Riesz product,
∏
γ∈F(1 + Reγ(x)), can be expressed as

∏

γ∈F

(
1 + Reγ(x)

)
=

R∑

r=1

(
− 1 +

∏

γ∈Er∩F

(
1 + Reγ(x)

))
+ T (x),

where T (x) is a polynomial with non-negative Fourier coefficients. Since also
p̂ ≥ 0, it follows that
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∫

p(x)
R∑

r=1

(
− 1 +

∏

γ∈Er∩F

(
1 + Reγ(x)

))
dx (7.4.7)

≤
∫

p(x)
∏

γ∈F

(
1 + Reγ(x)

)
dx ≤ |E0|,

with the final inequality coming from the facts that |p̂| ≤ 1 and E0 is the
support of p̂.

We assert that (7.4.6) and (7.4.7) imply there is r such that

∑

γ∈Er∩F

|cγ | >
1

2C
and

∫

p(x)
∏

γ∈Er∩F

(
1 + Reγ(x)

)
dx < 2.

Indeed, to have (7.4.7) holding, we must have

∫

p(x)

⎛

⎝−1 +
∏

γ∈Er∩F

(1 + Reγ(x))

⎞

⎠ dx ≤ 1

for at least R−|E0| choices of r. But by (7.4.6), if we had only |E0| choices of
r for which

∑
γ∈Er∩F |cγ | > 1/2C, then, since

∑
γ∈Er

|cγ | = 1, those choices
would contribute at most |E0| to (7.4.6), and the remaining R− |E0| choices
would contribute (R − |E0|)/2C, which is insufficient. That gives r.

Since Er ∩ F is quasi-independent, that gives a contradiction and estab-
lishes the existence of a subset E′ with properties (7.4.4)–(7.4.5). Enlarging
E′ if necessary, we may assume E0 ∪ F′ ⊆ E′. ��

Proof (of Theorem 7.4.2 (2) ⇒ (1)). Without loss of generality 1 /∈ E. Fix
the non-empty, open set U . To begin, choose C = C4 satisfying Theorem
7.2.1 (4) for E. Use Exercise C.4.9 to find a trigonometric polynomial p on
G such that p ≥ 0, p̂ ≥ 0,

∫
pdx = 1 and |p(x)| < ε on G � U , where ε > 0

will be chosen later. Let E0 be the support of p̂ (which is symmetric) and use
the assumption that E has step length tending to infinity to find a finite set
F′ ⊆ E such that γχ−1 �∈ E0 for all distinct γ, χ ∈ E� F′.

Let E′ be given by Lemma 7.4.5 for E, E0, F′ and p. Now fix
∑

γ∈E�E′ cγγ
and obtain the associated quasi-independent set F.

For any set of aγ ∈ Δ, Lemma 7.4.4 and (7.4.5) imply
∥
∥
∥p

∏

γ∈F

(
1 + Re(aγγ)

)∥∥
∥
1
< 2. (7.4.8)

In particular, this is true when aγ = sbγ , where bγ = cγ/|cγ | (and bγ = 0
if cγ = 0) and s ∈ (0, 1] is to be determined. It remains to show that the
measure μ ∈M(U) given by

μ = p(x)1U
∏

γ∈F

(1 + Re(aγγ
−1)),
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which has norm at most 2 by (7.4.8), has a sufficiently large integral against
q =

∑
γ∈E�E′ cγγ.

Let

w =

∣
∣
∣
∣
∣
∣

∫

G

p(x)
∏

γ∈F

(
1 + Re(aγγ

−1 )
) ∑

γ∈E�E′
cγγ dx

∣
∣
∣
∣
∣
∣
.

Note that

∏

γ∈F

(
1 + Re

(
aγγ

−1(x)
))

= 1 + s
∑

γ∈F

Re
(
bγγ

−1(x)
)

+
∑

d≥2

sdPd, (7.4.9)

where
Pd(x) =

∑

H⊆F
|H|=d

∏

γ∈H

Re
(
bγγ

−1(x)
)
.

Since F ⊆ E � E0,
∫
p(x)(

∑
γ∈F cγγ(x)) dx = 0, and thus a lower bound

for w is

w ≥ s
∣
∣
∣
∣

∫

p(x)
∑

γ∈F

Re
(
bγγ

−1(x)
) ∑

γ∈E�E′
cγγ(x) dx

∣
∣
∣
∣

−
∑

d≥2

sd
∣
∣
∣
∣

∫

Pd(x)p(x)
∑

γ∈E�E′
cγγ(x) dx

∣
∣
∣
∣. (7.4.10)

We want to bound the last term in (7.4.10). For all d,

∣
∣
∣
∣

∫

p(x)Pd(x)
∑

γ∈F

cγγ(x)dx

∣
∣
∣
∣ ≤ ‖(p Pd)̂ ‖∞

∑

γ∈F

|cγ |.

Lemma 7.4.4 implies that

‖(Pd p )̂‖∞ =
∥
∥
∥
[ ∑

H⊆F
|H|=d

∏

γ∈H

Re
(
bγγ

−1(x)
)
p
]
̂
∥
∥
∥
∞

≤
∥
∥
∥
[ ∏

γ∈F

(1 + Reγ) p
]
̂
∥
∥
∥
∞
≤

∥
∥
∥
∏

γ∈F

(1 + Reγ) p
∥
∥
∥
1
< 2.

We now apply the last estimate to bounding w:

w ≥ s

∣
∣
∣
∣
∣
∣

∫

p
∑

γ∈F

Re(bγγ
−1)

∑

γ∈E�E′
cγγ dx

∣
∣
∣
∣
∣
∣
− 2s2

1− s
∑

E�E′
|cγ |. (7.4.11)

In (7.4.11) we may replace “Re(bγγ
−1)” with “Im(bγγ

−1)” and obtain the
same estimate. Hence,
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w ≥ s

2

∣
∣
∣

∫

p
∑

γ∈F

(bγγ
−1)

∑

γ∈E�E′
cγγ dx

∣
∣
∣−

2s2

1− s
∑

E�E′
|cγ |. (7.4.12)

Recall that F′ was chosen from the step length tending to infinity property
to ensure that if γ �= ψ ∈ E � F′, then γ−1ψ /∈ E0 (the support of p̂). In
particular, this is true for all γ �= ψ ∈ E�E′, and thus the choice of bγ gives

∫

p

⎛

⎝
∑

γ∈F

bγγ
−1

⎞

⎠

(
∑

λ∈E�E′
cλλ

)

dx =

∫

p

⎛

⎝
∑

γ∈F

bγcγ

⎞

⎠ dx

=
∑

γ∈F

|cγ |
∫

p dx =
∑

γ∈F

|cγ | .

This fact, together with (7.4.4) and (7.4.12), implies

w ≥ s

2

∑

γ∈F

|cγ | −
2s2

1− s
∑

γ∈E�E′
|cγ | ≥

(
s

4C
− 2s2

1− s

) ∑

γ∈E�E′
|cγ | .

Since p ≤ ε on U c,

∣
∣
∣
∣
∣
∣

∫

Uc

p(x)
∏

γ∈F

(
1 + Re(aγγ(x))

) ∑

γ∈E�E′
cγγ(x)dx

∣
∣
∣
∣
∣
∣

≤ ε

∥
∥
∥
∥
∥
∥

∏

γ∈F

(1 + Re(aγγ(x)))

∥
∥
∥
∥
∥
∥
1

∑

γ∈E�E′
|cγ | ≤ ε

∑

γ∈E�E′
|cγ | .

Putting these bounds together yields

∣
∣
∣
∣
∣
∣

∫ ∑

γ∈E�E′
cγγ(x)dμ

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

U

p(x)
∏

γ∈F

(1 + Re(aγγ(x)))
∑

γ∈E�E′
cγγ(x)dx

∣
∣
∣
∣
∣
∣

≥ w −

∣
∣
∣
∣
∣
∣

∫

Uc

p
∏

γ∈F

(1 + Re(aγγ(x)))
∑

γ∈E�E′
cγγdx

∣
∣
∣
∣
∣
∣

≥
(
s

4C
− 2s2

1− s − ε
) ∑

γ∈E�E′
|cγ | .
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Substituting s = 1/18C and ε = 1/288C2 gives the desired result,

sup
u∈U

∣
∣
∣

∑

γ∈E�E′
cγγ(u)

∣
∣
∣ ‖μ‖ ≥

∣
∣
∣

∫ ∑

γ∈E�E′
cγγ(x)dμ

∣
∣
∣ ≥

1

288C2

∑

γ∈E�E′
|cγ |.

Since ‖μ‖M(G) ≤ 2, that proves E � E′ is Sidon(U) with constant δ =
1/576C2. ��

7.5 Remarks and Credits

The Pisier Characterization. Theorem 7.2.1 has a complicated history. (1)
⇒ (2) is due to Zygmund [199] and Rudin [166]; the other direction is due
to Pisier [147, 148]. The equivalence of Theorem 7.2.1 (1) and (3) is also
due to Pisier [150, 151]. The equivalence of Theorem 7.2.1 (1) and (5) can
be found in Pisier’s paper [149]. Related characterizations may be found in
Pisier’s [151].

Bourgain in [18, 19] later provided a different proof of the equivalence
of (1)–(3) by including the then new (4) in the circle of equivalences. It is from
this later proof that the argument given in this chapter is derived, following
the excellent French exposition of Li and Queffélec [119, pp. 482–499].

We give an indirect proof that the Pisier ε-net condition implies Sidonicity
in Theorem 9.2.1. The characterization of Sidonicity by the ε-net condition
is in [150].

Sidon Sets with Step Length Tending to Infinity. Theorem 7.4.2 is due to
Déchamps–Gondim [27, Theorem 5.2] for the case that G = Z N

p , where p
is prime; the general case is due to Bourgain [19]. Its proof is adapted from
[19, Corollary 2]. Corollary 7.4.3 is due to Déchamps(-Gondim) (see [123,
Theorem 9.1]) for countable E and Bourgain for the general case. Sets that
are Sidon(U) with bounded constants are called “Sidon sets of the first type”
in [27, 130].

Other Characterizations of Sidonicity.
1. Random continuity. Let {πn} be the Rademacher functions on D. Given a

trigonometric polynomial P (t) =
∑N
n=1 anγn(t) defined on G and ω ∈ D,

let Pω(t) =
∑N

n=1 πn(ω)anγn(t) and put

‖P‖R = E (‖Pω‖∞) =

∫

D

sup
t∈G
|Pω(t)|dm(ω).

If E ⊆ Γ is Sidon, then for all E-polynomials P and each ω ∈ D,

‖P‖∞ ≤
∑
|P̂ (γn)| =

∑
|πn(ω)P̂ (γn)| =

∑
|P̂ω(γn)| ≤ S (E) ‖Pω‖∞ .
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Hence, if E is Sidon, then ‖P‖∞ ≤ S(E) ‖P‖R for all E-polynomials P .
Rider in [162] showed that the converse is true, as well: E is Sidon if and

only if there is a constant C such that
∑∣

∣
∣P̂ (γn)

∣
∣
∣ ≤ C ‖P‖R for all E-

polynomials P . This characterization was used by Marcus and Pisier [127,
p. 118ff] to give another proof of the equivalence of Theorem 7.2.1 (1)
and (2). An exposition of Rider’s result can be found in [119, p. 220ff,
pp. 499ff.].

2. Orlicz spaces. Pisier [149] gave a characterization using the Orlicz space
Lψq (G), where ψq(x) = exp(|x|q) − 1: E is Sidon if and only if there is
some q ≥ 2 and constant C such that for every finite F ⊆ E we have

‖
∑
γ∈F γ‖ψq ≤ C|F|1/p. Here 1/p+ 1/q = 1.

3. Arithmetic diameter. The arithmetic diameter (or “diametre banachi-
que”) of a finite dimensional Banach space X is the least integer N =
N(X) such that there is a subspace Y ⊆ �∞N and an isomorphism T :
X → Y with ‖T ‖ ‖T−1‖ ≤ 2. Bourgain [18] proved that E ⊆ Γ is Sidon
if there exist δ > 0 such that N(CF(G)) ≥ 2δ|F| for all finite subsets
F ⊆ E. See also [119, pp. 545–546]. A simple proof that this condition
implies that E satisfies Pisier’s ε-net condition can be found at [113, p.
892].

4. Cotype. A Banach space X has cotype q ∈ [2,∞) if for some C > 0

and all finite sequences xj ∈ X ,
(∑
‖xj‖q

)1/q ≤ C
( ∫
‖
∑
εjxj‖2dP

)1/2
,

where the εj are independent Bernoulli random variables and dP is the
related probability measure. Pisier [146] and Kwapień and Pe�lczyński
[117] proved (independently) that E is Sidon if CE has cotype 2. A proof
is in [119, p. 226]. This was improved by Bourgain and Milḿan [21] or
[119, pp. 226, 544]: either CE(G) has cotype q for some 2 ≤ q < ∞ and
E is Sidon or CE(G) has no finite cotype.

5. Unconditional structure. Hare and Tomczak–Jaegermann [77] character-
ize Sidon sets in terms of an “unconditional structure” of related invari-
ant subspaces. Sidon sets are also characterized as Λ(2) sets such that for
some p > 2 the dual of LpE(G) is a complemented subspace of a Banach
lattice, that is, has Gordon–Lewis unconditional structure. See [113, p.
886ff] for a discussion.

Exercises. Exercise 7.6.7 is [158, Theorems 16-17]. The proof asked for here
is simpler than the original.

7.6 Exercises

Exercise 7.6.1. Show that the Sidon constant of a union of two sets is
bounded by a function that depends only on the Sidon constants of the
uniands.
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Exercise 7.6.2. Can a set be Sidon(U) with bounded constants and I0(U)
for all non-empty, open U but not I0(U) with bounded constants? Hint:
Consider a union of two Hadamard sets.

Exercise 7.6.3. Suppose there are constants C and δ > 0 with the property
that for each finite set F ⊆ E there is a subset F1 ⊆ F such that F1 has
Sidon constant at most C and δ|F| ≤ |F1|. Determine a value of δ0 > 0 such
that every finite subset F ⊆ E contains a quasi-independent subset F1 with
δ0|F| ≤ |F1|.
Exercise 7.6.4. Show thatN(ω) (defined on page 120) is at least the number
of quasi-relations of length �+1 or greater, with equality if Γ has no elements
of order two.

Exercise 7.6.5. Let Ej ⊆ Γ be disjoint. The union (finite or not)
⋃
Ej is

an independent union if γj ∈ Ej , εj ∈ Z, J ∈ N and 1 =
∏J
j=1 γ

εj
j imply all

εj = 0. Suppose that
⋃
Ej is an independent union and that the Ej are Sidon

sets with C = supj S(Ej) <∞. Show that
⋃
Ej is Sidon with S(E) ≤ 6C.

We do not know if the independent union of I0(N, 1/2) sets is I0 [P 6].

Exercise 7.6.6. 1. Suppose Fn are finite, quasi-independent subsets of Z�

{0}. Let k1 = 1 and kn >
∑
{|�| : � ∈

⋃n−1
j=1 kjFj} for n ≥ 2. Show that

⋃∞
n=1 knFn is quasi-independent.

2. Suppose Fn are finite Sidon sets in Z with uniformly bounded Sidon con-
stants for n = 1, 2, . . .. Show that there exist kn ∈ N such that

⋃∞
n=1 knFn

is Sidon.
3. Suppose Fn ⊂ Γn are quasi-independent subsets of the discrete groups

Γn for n = 1, 2, . . .. Show that
⋃∞
n=1 Fn ⊂

⊕
Γn is quasi-independent.

Exercise 7.6.7. 1. Given E ⊆ Γ, let N (E) be the least N such that E is
I0(N, 1/2). Show that N (E) = sup{N (F) : F ⊆ E is finite}.

2. Put η(E, N) =∞ if E is not a finite union of I0(N, 1/2) sets and otherwise
let η(E, N) be the least k such that E is the union of k I0(N, 1/2) sets.
Prove that

η(E, N) = sup{η(F, N) : F is a finite subset of E}. (7.6.1)

Hint: See Bourgain’s technique in Lemma 6.4.5.
3. Show that if every Sidon subset of Z is a finite union of I0 sets, then there

is a function f : R+ → Z
+ such that for all Sidon sets E ⊆ Z with Sidon

constant S = S(E),
η(E, f(S)) ≤ f(S).

Hint: Use Exercise 7.6.6, as well as the previous parts of this exercise.
4. Show that if every Sidon subset of every discrete Γ is a finite union of I0

sets, then there is a function f : R+ → Z
+ such that for all Sidon sets E

(in any Γ) with Sidon constant S = S(E),

η(E, f(S)) ≤ f(S).



Chapter 8

How Thin Are Sidon Sets in the Bohr
Compactification?

If a Sidon set clusters at n ∈ Z then there is a Sidon set that is dense in Z.
Statistical evidence for non-density of Sidon sets in Z is given.

8.1 Introduction

Throughout the book we have focused on the theme of thinness from two
perspectives, the “size” of a given set E when viewed as a subset of Γ, or
as a subset of Γ. The definitive statement on the size of Sidon sets in Γ is
Pisier’s characterization of Sidon as those sets which are proportional quasi-
independent, Theorem 7.2.1 (3).

In this chapter, we explore what is known about the thinness of Sidon
sets as subsets of Z. It is a long-standing problem whether Sidon subsets
can be dense in the Bohr compactification of Γ [P 2] . Although there are
no definitive answers in general, there is an answer for one class of groups:
When G = Z

a
p where p is prime, then [126] every Sidon set in the dual of G

is a finite union of independent sets. Since independent sets are I0 (Exercise
3.7.11), this gives an answer of no to [P 2] (and yes to [P 1]) in that case.

For Z there are some partial answers. We first prove that the existence
of a Sidon set in Z that clusters at one continuous character is equivalent
to the existence of a Sidon set that is dense in Z. Then, we show that, in
a probabilistic sense, Sidon sets in Z are not dense in Z. The first of these
results relies upon Pisier’s proportional characterization. The second uses
deep probabilistic techniques.

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 8,
© Springer Science+Business Media New York 2013
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8.2 If a Sidon Set Clusters at a Continuous Character

Theorem 8.2.1 (Ramsey cluster). Suppose there is a Sidon set in Z which
clusters at some integer. Then there is a Sidon set which is dense in Z.

The plan of the proof of Theorem 8.2.1 is this: Let (m�, N�, p�)
∞
�=1 be a

fixed, exhaustive enumeration of N× N× Z. We recall that an integer, q, is
a cluster point of E ⊆ Z in the Bohr topology if and only if for every ε > 0,
J ∈ N and (t1, . . . , tJ ) ∈ T

J , there exists m ∈ E such that

max
1≤j≤J

∣
∣eimtj − eiqtj

∣
∣ < ε. (8.2.1)

We will say E approximates q to within ε on T
J if for each (t1, . . . , tJ) ∈ T

J

there exists m ∈ E such that (8.2.1) holds.
Assume E clusters at q. A compactness argument will be given to prove

there are finite sets E� ⊆ E which approximate q to within 1/m� on T
N� .

Let S =
⋃
�(p� + k�(E�− q)). For any set of dilation factors, k�, the set S will

be seen to be dense in Z. We will use Theorem 7.2.1(3) to show that for a
suitably, rapidly growing sequence, {k�}, the subset S is also Sidon.

We begin the proof with preliminary lemmas.

Lemma 8.2.2. Suppose E ⊆ Z clusters at q ∈ Z. For each ε > 0 and J ∈ N

there is a finite set E′ ⊆ E which approximates q to within ε on T
J .

Proof. Since E clusters at q, for each (t1, . . . , tJ) ∈ T
J there is some m ∈

E (depending on (t1, . . . , tJ )) such that (8.2.1) holds. By continuity of the
functions eimx and eiqx on T, there exists a neighbourhood, U = Ut1,...,tJ ⊆ T

J

of (t1, . . . , , tJ), for which (8.2.1) holds with (t1, . . . , tJ ) replaced by each and
every (u1, . . . , uJ) ∈ U . Since T

J is compact, finitely many of the sets Ut1,...,tJ
cover it. Let E′ be the finite set of m′s which correspond to the finitely many
J-tuples, (t1, . . . , tJ). ��

Lemma 8.2.3. Suppose k, q, p ∈ Z and J ≥ 1. If S ⊆ Z approximates q to
within ε > 0 on T

J , then p+ k(S− q) approximates p to within ε on T
J .

Proof. Let (t1, . . . , tJ) ∈ T
J and pick m ∈ S which approximates q at

(kt1, . . . , ktJ) to within ε, that is, max1≤j≤J
∣
∣eimktj − eiqktj

∣
∣ < ε. Simple

calculation shows that

max
1≤j≤J

∣
∣ei(p+k(m−q)tj) − eiptj

∣
∣ = max

1≤j≤J
∣
∣eimktj − eiqktj

∣
∣ < ε. ��

Lemma 8.2.4. Suppose E ⊆ Z clusters at integer q. For each � there is a
finite subset E� ⊆ E such that for all k� ∈ N, the set S =

⋃
�(p� + k�(E�− q))

is dense in Z.
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Proof. It will be enough to prove that for every p ∈ Z, ε > 0 and J ∈
N, the set S approximates p to within ε on T

J . Fix such p, ε and J , and
choose a positive integer m such that 1/m < ε. Take � such that (m,J, p) =
(m�, N�, p�).

We appeal to Lemma 8.2.2 to obtain a finite set E� ⊆ E which
approximates q to within 1/m� on T

J� and then apply Lemma 8.2.3. ��

It remains to see that one can choose integers, k�, so that
⋃
�(p�+k�(E�−q))

is still Sidon. For this, it is convenient to adapt the notation for the set of all
quasi-words from a given (finite) set F ⊆ Z (see Definition 6.2.9):

Q(F) =

{
∑

x∈F

εxx : εx = 0,±1

}

. (8.2.2)

Lemma 8.2.5. Suppose finite quasi-independent sets E� are given and that
integers k1, k2, . . . satisfy the inequalities

k1 > |p1||E1| and

k� > max
{
|x| : x ∈ Q

(�−1⋃

j=1

(pj + kjEj)
)}

+ |p�||E�| for 2 ≤ � <∞. (8.2.3)

Then the sets p� + k�E� are pairwise disjoint and
⋃∞
�=1(p� + k�E�) is

quasi-independent.

Proof. To simplify notation, put F� = p� + k�E�. The disjointness follows
easily from the choice of k�, so it suffices to show

⋃L
�=1 F� is quasi-indepen-

dent for each L. The argument proceeds by induction on L.
L = 1: Suppose

∑
εxx = 0 for x ∈ F1, εx = 0,±1. Each x ∈ F1

can be written in a unique way as p1 + k1ux for some ux ∈ E1, and
thus we have p1

∑
x∈F1

εx = −k1
∑
εxux. We note that if not all εx = 0,

then, since E1 is quasi-independent,
∑
εxux is a non-zero integer. Therefore,

k1 ≤
∣
∣k1

∑
εxux

∣
∣ =

∣
∣p1

∑
x∈F1

εx
∣
∣ ≤ |p1||E1|. That contradicts the definition

of k1 and shows F1 is quasi-independent.
Now assume that L ≥ 2,

⋃L−1
�=1 F� is quasi-independent and

∑

x∈FL

εxx+
∑

y∈⋃L−1
�=1 F�

εyy = 0. (8.2.4)

Writing x ∈ FL as x = pL + kLux for some ux ∈ EL gives

kL
∑

x∈FL

εxux = −pL
∑

x∈FL

εx −
∑

y∈⋃L−1
�=1 F�

εyy.

If
∑

x∈FL
εxux �= 0, then
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kL ≤
∣
∣
∣
∣
∣
kL

∑

x∈FL

εxux

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
pL

∑

x∈FL

εx

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

y∈⋃L−1
�=1 F�

εyy

∣
∣
∣
∣
∣
∣

≤ pL|FL| + max

{

|z| : z ∈ Q
(
L−1⋃

�=1

F�

)}

. (8.2.5)

But inequality (8.2.5) contradicts the definition of kL. That shows that∑
x∈FL

εxux = 0. Since the ux belong to the quasi-independent set EL, it
follows that εx = 0 for all x. But then (8.2.4) can hold only if

∑
{εyy :

y ∈
⋃L−1
j=1 F�} = 0, and then, by the induction assumption, we must have all

εy = 0. Hence,
⋃L
�=1(p� + k�E�) is quasi-independent. ��

We now complete the proof of the theorem.

Proof (of Theorem 8.2.1). Since translates of Sidon sets are Sidon, there is
no loss of generality in assuming 0 is a cluster point of the Sidon set E.
Apply Lemma 8.2.4 to choose finite subsets E� ⊆ E such that for all choices
of integers, k�, the set

⋃∞
�=1(p� + k�E�) is dense in Z. Now pick integers k�

satisfying (8.2.3) and let S =
⋃∞
�=1(p� + k�E�).

Let λ > 0 be a Pisier constant for E (Remarks 7.2.2), meaning that each
finite subset H of E contains a further finite subset F ⊆ H that is quasi-
independent, with |F| ≥ λ|H|. By Pisier’s proportional quasi-independent
characterization of Sidonicity, it will suffice to show λ is also a Pisier constant
for S.

To see that λ has that property, let H ⊆ S be a finite subset and put
H� = H ∩ (p� + k�E�). Using the fact that λ is a Pisier constant for E and
that the map n �→ p� + k�n is one-to-one from E� → S, we can find a quasi-
independent subset F� ⊆ E� with |F�| ≥ λ|H�|. Put F =

⋃∞
�=1(p� + k�F�).

Since the integers k� satisfy condition (8.2.3) with the sets E� in (8.2.3)
replaced by F�, Lemma 8.2.5 implies F is quasi-independent. Furthermore,
because the sets p� + k�F� are disjoint,

|F| =
∑

| p� + k�F�| =
∑

|F�| ≥ λ
∑

|H�| = λ|H|.

This proves S is proportional quasi-independent and hence Sidon. ��

Essentially the same argument proves the analogous result for quasi-inde-
pendent sets.

Proposition 8.2.6. If there is a quasi-independent set which clusters at
some integer, then there is a quasi-independent set which is dense in Z.
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8.3 Probabilistic Evidence for a Sidon Set Having
No Bohr Cluster Points in Γ

In this section we will prove that random sets of integers, of the appropriate
size, are almost surely Sidon and do not cluster at any integers, while sets
that are too “big” to be Sidon are almost surely dense in Z.

8.3.1 Random Sets of Integers

Let Ω be a probability space and let Xn be independent, Poisson random
variables defined on Ω, with Poisson parameters pn.1 By a “random set of
integers” we mean a set E = E(ω) given by

E(ω) = {n ∈ N : Xn(ω) > 0} = {n ∈ N : Xn(ω) ≥ 1}.

Here are the precise statements of the theorems proved in this section.

Theorem 8.3.1 (Kahane–Katznelson). If there is a constant α such that
pn ≤ α/n for all n, then almost surely E(ω) is Sidon and has no integers as
cluster points in Z.

Theorem 8.3.2 (Kahane–Katznelson). If limn npn = ∞, then almost
surely E(ω) is not Sidon and is dense in Z.

8.3.2 Proof of Theorem 8.3.1

First, we reduce α. Choose an integer q > 9α. For each i = 0, 1, . . . , q− 1, let

Y
(i)
n = Xqn+i and consider the random sets E(i)(ω) = {n ∈ N : Y

(i)
n (ω) > 0}.

Then E(ω) =
⋃q−1
i=0 E(i)(ω). Since a finite union of Sidon sets is Sidon, and the

closure of a finite union of sets is the union of their closures, it will be enough
to show that almost surely each set E(i)(ω) is Sidon and has no integers as
cluster points in Z.

The functions Y
(i)
n are independent, Poisson random variables with

parameters pqn+i ≤ α/(qn + i) < 1/(9n). Hence, there is no loss of gen-
erality in assuming α < 1/9 < 1/ ln 64 (it will be convenient to have both
bounds).

1 Appendix C.2 summarizes basic background material in probability theory.
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Almost Surely E Is Sidon When pn = O(1/n)

This part of the theorem will be shown by establishing that, under these
assumptions, E(ω) is a finite union of quasi-independent sets for almost ev-
ery ω. Since finite unions of quasi-independent sets are Sidon (Cors. 6.2.12
and 6.3.3) that will prove that E is a.s. Sidon. We continue to use the notation
Q(F) for the set of all quasi-words from F.

Lemma 8.3.3. For almost every ω ∈ Ω, there exists M(ω) such that for all
J ≥M(ω), the set E(ω) ∩ [4J−1,∞) ∩Q

(
E(ω) ∩ [1, 4J ]

)
is empty.

First, we will use Lemma 8.3.3 to prove that E(ω) is a.s. Sidon, and then
we will prove Lemma 8.3.3. Indeed, we claim that Lemma 8.3.3 implies that
for all ω ∈ Ω0, a set of full measure2, the set E(ω) � [1, 4M(ω)] is quasi-in-
dependent. Of course, that would ensure that E(ω) is Sidon for all ω ∈ Ω0,
being a union of a quasi-independent set and a finite set.

To prove the claim, suppose otherwise, say
∑L

�=1 ε�n� = 0 for some
ε� = 0,±1, n� ∈ E(ω) � [1, 4M(ω)] and ω ∈ Ω0. We may assume nL =
max(n1, . . . , nL) and that εL �= 0. Thus, nL ∈ Q({n1, . . . , nL−1}). Pick the
integer k such that nL ∈ E(ω)∩(4k−1, 4k]. Then also {n1, . . . , nL−1} ⊆ [1, 4k].
Since n� �∈ [1, 4M(ω)], we have k > M(ω). Hence,

nL ∈ E(ω) ∩Q
(
E(ω) ∩ [1, 4k]

)
∩ [4k−1,∞).

But this is an impossibility since that last intersection is empty by
Lemma 8.3.3.

Remark 8.3.4. Exercise 8.5.3 shows that, if
∑
n pn <∞, then for each q > 1

the set E(ω) is a.s. a union of a finite set with a Hadamard set of ratio q.

Proof (of Lemma 8.3.3). For m ≥ 1, let �Lm(ω) = E(ω) ∩ [1, 4m]. For ω ∈ Ω,
define K(ω) to be the least positive integer k for which | �Lm| ≤ m for all
m ≥ k, if such k exist, and otherwise, K(ω) =∞.

We will use the conditional probability formula, P(A |B)P(B) = P(A∩B),
for events

A = Ak = {ω : E(ω) ∩ [4k−1,∞) ∩Q(�Lk) �= ∅} and

B = Bk = {ω : K(ω) ≤ k}.

There are several steps to the proof.
Step I: K(ω) <∞ almost surely. Equivalently, we show P(Bk)→ 1 as k →

∞. To prove the assertion of Step I, let Mk denote the random variable
Mk = Mk(ω) = | �Lk| for 1 ≤ k < ∞. Of course, Mk(ω) ≥ k if and only if
Xn(ω) is non-zero for at least k choices of n ∈ [1, 4k]. Thus,

2 All subsets of Ω will be chosen to be measurable.
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{
ω : Mk(ω) ≥ k} ⊆

{

ω :

4k∑

n=1

Xn(ω) ≥ k
}

and

P(Mk ≥ k) ≤ P

(

ω :
4k∑

n=1

Xn ≥ k
)

.

But
∑4k

n=1Xn is a Poisson distribution with parameter

mk =

4k∑

n=1

pn ≤
4k∑

n=1

α

n
≤ k

3
.

(Here we used the assumption that α < 1/(ln 64).) Thus, a geometric series
argument (Exercise 8.5.6) gives

P

( 4k∑

n=1

Xn ≥ k
)

≤ e−mk

∞∑

j=k

mj
k

j!
≤ C

(e

3

)k
. (8.3.1)

Hence,
∑∞
k=1 P (Mk ≥ k) <∞. The Borel–Cantelli Lemma C.2.3 tells us that

P (Mk ≥ k i.o.) = 0. Therefore, for a.e. ω, there exists an integer K(ω) such
that Mk(ω) ≤ k for all k ≥ K(ω). That completes Step I.

Step II: For every finite set F,

P
(
Q(F) ∩E(ω) ∩ [4k−1,∞) �= ∅

)
≤ α3|F|

4k−1
.

The argument will be similar to Step I. Let bk be the Poisson parameter of∑
n∈Q(F),n≥4k−1 Xn. Then the probability that Q(F) ∩ E(ω) ∩ [4k−1,∞) is

not empty is bounded above by

P

( ∑

n∈Q(F)

n≥4k−1

Xn ≥ 1

)

= 1− e−bk ≤ bk ≤
∑

n∈Q(F)

n≥4k−1

α

n
≤ α|Q(F)|

4k−1
≤ α3|F|

4k−1
,

since |Q(F)| ≤ 3|F|. That completes Step II.

Step III: Completing the proof of Lemma 8.3.3. Step II gives the estimate
P(Ak|Bk) ≤ α3k/4k−1 and thus P(Ak ∩ Bk) ≤ 3kα/4k−1. Using the
Borel–Cantelli lemma we see that P(Ak ∩ Bk i.o. ) = 0. Step I tells us
that P(Bk)→ 1 therefore, also, P(Ak i.o.) = P(Ak ∩Bk i.o.) = 0. ��
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Almost Surely E(ω) Has No Integers as Cluster Points
When pn = O(1/n)

We introduce new notation for this part of the theorem. It is convenient to
take T = [−1/2, 1/2] here. For ω ∈ Ω, let

Dω
m =

{
t ∈ T : t ([m,∞) ∩E(ω)) ⊆ [−1/4, 1/4]

}
and Dω

∞ =

∞⋃

m=1

Dω
m.

The key step is to prove:

Lemma 8.3.5. Almost surely Dω∞ is dense in T.

Once this lemma is proved, the argument can be completed quickly. Indeed,
suppose q ∈ Z is non-zero. Since Dω

∞ is almost surely dense in T, there is a
subset Ω1 ⊆ Ω, of full measure, such that for each ω ∈ Ω1 we can choose
t ∈ Dω∞ such that |qt− 1/2| < 1/16. Let U = {n ∈ Z : |nt − qt| < 1/16}, a
basic neighbourhood of q in Z with respect to the relative topology from Z.

Since t ∈ Dω
∞, there is some m such that t ∈ Dω

m. This means that for all
N ∈ E(ω)∩ [m,∞), |Nt| < 1/4. But then N /∈ U. That shows E(ω)∩U is a
finite set and therefore q cannot be a limit point of E(ω) for any ω ∈ Ω1.

A translation argument (Exercise 8.5.4) shows that 0 /∈ E(ω) a.s.

Proof (of Lemma 8.3.5). We note that if E ⊆ E′, then t ([m,∞) ∩E) ⊆
t ([m,∞) ∩E′) , so we may assume pn = α/n for all n.

We proceed by contradiction and suppose Dω
∞ is not dense for all ω in a

subset of Ω of positive measure. For each such ω there is some closed (non-
trivial) interval, Iω, with rational endpoints, such that Dω∞ ∩ Iω is empty.
Because there are only countably many such intervals, there is a single in-
terval, J0, such that Dω

∞ ∩ J0 = ∅ for all ω in a (further) subset, Ω1 ⊆ Ω,
of positive measure. Thus, for every t ∈ J0 and ω ∈ Ω1, t /∈ Dω

m for every
positive integer m.

That implies that if we put IN = {t : Nt /∈ [−1/4, 1/4]}, then for every
ω ∈ Ω1 and integer m, J0 ⊆

⋃
N∈E(ω) IN where the union is over N ≥ m.

But the sets IN are open and J0 is compact, so for each ω ∈ Ω1 and m, there
is a finite cover, say J0 ⊆ IN1 ∪ · · · ∪ INk

, with the Ni ∈ E(ω) ∩ [m,∞).
Set Nω

m = maxNi.
If f is a function supported on [−1/4, 1/4], then f(Nt) = 0 for each t ∈ IN .

In particular, this is true when f is the even, positive-definite, piecewise linear
function supported on [−1/4, 1/4] given by

f(t) = 16(1/4− t) for t ∈ [0, 1/4].

Let cn(t) = E(f(nt)Xn(ω)), where we define f(nt)Xn(ω) = 1 if Xn(ω) = 0,
even if f(nt) = 0. If A is any positive constant and X is a Poisson random
variable with parameter β, then
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E(AX(ω)) =

∞∑

k=0

P(X(ω) = k)Ak =
∑

k

e−ββkAk/k! = eβ(A−1). (8.3.2)

Thus,

cn(t) = exp
(α

n
(f(nt)− 1)

)
> 0. (8.3.3)

Define independent random variables, Fωn (t), and random measures,

mμn, by

Fωn (t) =
1

cn
f(nt)Xn(ω) and mμ

ω
n =

n∏

j=m

Fωj (t)dt for 1 ≤ m ≤ n.

Notice FωN (t) = 0 if t ∈ IN and N ∈ E(ω). Hence, if ω ∈ Ω1 and n ≥ Nω
m,

then
∏n
j=m F

ω
j (t) = 0 for all t ∈ J0 and

mμ
ω
n(J0) =

∫

J0

n∏

j=m

Fωj (t)dt = 0 for all n ≥ Nω
m and ω ∈ Ω1. (8.3.4)

Since the functions Fωn are non-negative, independent, random variables
with expectation 1, {

∏n
j=m F

ω
j (t)}n≥m is a martingale for each m ∈ N and

t ∈ T. It follows from the independence of the functions Fωj and properties
of conditional expectation that {mμωn(I)}n≥m is also a martingale for each
interval I and positive integer m. Moreover, for each interval I, mμ

ω
n(I) ≥ 0

and, by the definition of the cn(t),

E(mμ
ω
n(I)) = E

( ∫

I

n∏

j=m

Fωj dt
)

=

∫

I

n∏

j=m

E(Fωj )dt = |I|. (8.3.5)

The martingale convergence Theorem C.2.7, says that the martingales
{mμωn(I)}n converge almost surely, with limit denoted mμ

ω(I). Let Ω2 be
the set of ω ∈ Ω such that for every m ∈ N and for every interval I with
rational endpoints, {mμωn(I)} converges. Then Ωc2 is a set of measure zero and
Ω1 ∩ Ω2 has positive measure. Moreover, (8.3.4) implies that mμ

ω(J0) = 0
on Ω1 ∩Ω2, for all m.

We need more than almost sure convergence, however.

Claim. For each I and m, the martingale {mμωn(I)}n is L2 bounded.

It is in proving this claim that the hypothesis on pn = α/n is used.
Assuming the claim, the martingale convergence Theorem C.2.8 for L2

bounded martingales and (8.3.5) imply that E(mμ(I)) = limn E(mμn(I)) = |I|
for each integer m and interval I.

The set

T = {ω : ∀j ∃m ≥ j with mμ
ω(J0) > 0}
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is a tail event and hence by the zero-one law has probability 0 or 1. But, for
every I, mμ(I) = 0 implies jμ(I) = 0 for all j ≤ m. Therefore,

T = {ω : ∃m with mμ(J0) > 0}.

Since E(mμ(I)) > 0 for all m, T cannot have probability zero. But T is
disjoint from Ω1 ∩Ω2, so it cannot have probability one. This contradiction
will complete the proof of Lemma 8.3.5 once we establish the claim that the
martingales {mμω(I)}n are L2 bounded.

Proof (of the claim). It will be enough to prove the martingales, {mμωn(T)}n,
are L2 bounded. Linearity, independence and Fubini’s theorem give

E

((
mμn(T)

)2
)

= E

⎛

⎝
∫

T

∫

T

n∏

j=m

n∏

k=m

Fωj (s)Fωk (t)ds dt

⎞

⎠

=

∫

T

∫

T

⎛

⎝
n∏

j=m

E
(
Fωj (s)Fωj (t)

)
⎞

⎠ds dt.

As Fωn (t) = f(nt)Xn(ω) exp
(

−α
n (f(nt) − 1)

)
, (8.3.2) applied with A =

f(jt)f(js) gives

E

(
(mμn(T))2

)

=

∫

T

∫

T

n∏

j=m

E
(
[f(jt)f(js)]Xj

)
exp

(−α
j

[(f(jt)− 1) + (f(js)− 1)]
)

ds dt

=

∫

T

∫

T

n∏

j=m

exp
(α

j
[f(jt)f(js)− 1− (f(jt)− 1)− (f(js)− 1)]

)
ds dt

≤ Cm
∫

T

∫

T

exp

⎛

⎝
n∑

j=1

α

j
[f(jt)f(js)−1−(f(jt)− 1)− (f(js)− 1)]

⎞

⎠ ds dt.

The Cm comes from inserting the terms from 1 to m− 1.
In the (absolutely summable) Fourier series f(s) =

∑
n f̂(n)eins, we note

that f̂(n) ≥ 0 for all n, f̂(0) = 1 and f is even. Thus, by symmetry,

f(s)f(t)− 1− (f(s)− 1)− (f(t)− 1)

=
∑

k,� �=0

f̂(k)f̂(�)eiksei�t = 2
∑

k,�≥1

f̂(k)f̂(�) cos 2π(ks+ �t).

For n ≥ 1 we put

Rn(x) =
n∑

j=1

cos 2πjx

j
. (8.3.6)
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We will use below an inequality of Zygmund, [199, V.2.28], which says there
is a constant C, independent of n, such that

|Rn(x)| ≤ C − log |sinπx| . (8.3.7)

In terms of Rn, we have

E
(
(mμn(T))2

)
≤ Cm

∫

T

∫

T

∏

k,�≥1

exp
(
αf̂(k)f̂(�)Rn(ks+ �t)

)
ds dt.

Hölder’s inequality gives the bound

E
(
(mμn(T))2

)
≤ Cm

∏

k,l≥1

(∫

T

∫

T

exp
(
rk,�αf̂(k)f̂(�)Rn(ks+ �t

)
)ds dt

)1/rk,�

whenever rk,� are non-negative numbers whose reciprocals sum to 1. We will
make the choice

r−1
k,� =

⎛

⎝
∑

i,j �=0

f̂(i)f̂(j)

⎞

⎠

−1

f̂(k)f̂(�),

so that for all k, �,

rk,�f̂(k)f̂(�) =
∑

i,j �=0

f̂(i)f̂(j) =

⎛

⎝
∑

j �=0

f̂(j)

⎞

⎠

2

= (f(0)− 1)2 = 9.

Upon making a change of variable and using (8.3.7), we have

∫

T

exp
(
rk,�αf̂(k)f̂(�)Rn(ks+ �t)

)
ds

=

∫

T

exp
(
rk,�αf̂(k)f̂(�)Rn(ks)

)
ds

≤
∫

exp
(
9α(− log |sinπks|+ C)

)
ds

≤ C′
∫

T

|sinπks|−9α
ds.

The final integral is bounded independent of k because α was chosen less

than 1/9. Since
∑
r−1
k,� = 1 it follows that E

((
mμn(T)

)2)
is bounded by a

constant independent of n.
That proves the claim and completes the proof of Lemma 8.3.5. ��
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8.3.3 Proof of Theorem 8.3.2

Almost Surely E Is Not Sidon When npn → ∞

If E(ω) is Sidon, then there exists (Corollary 6.3.13) a constant C = Cω
such that

|E(ω) ∩ [1, N ] | ≤ C logN for all N. (8.3.8)

We will show this a.s. fails to be true.
Let Sk(ω) = |E(ω) ∩ [22

k

, 22
k+1

] |. Define the indicator random variables,
Zn(ω) = 1 if Xn(ω) �= 0 (equivalently, n ∈ E(ω)) and Zn(ω) = 0 otherwise.
Then also

Sk(ω) =

22
k+1

∑

n=22k

Zn.

Put pn = an/n. We may assume an/n→ 0 and {an} is increasing to infinity.
Then E(Zn) = 1− e−an/n and

E(Sk) =

22
k+1

∑

n=22k

1− e−an/n ≥
22

k+1

∑

n=22k

an
3n
≥ C0a22k 2k,

where the constant C0 is independent of k.
By Markov’s inequality (C.2.1) applied to X = (Sk − E(Sk))2,

P

(

|Sk − E(Sk)| > E(Sk)

2

)

≤ E(|Sk − E(Sk)|2)
(
E(Sk)/2

)2 . (8.3.9)

A computation using Z2
n = Zn and the independence of the Zn shows that

the right-hand side of (8.3.9) is bounded by

4
∑

E(Zn)(1− E(Zn))

(
∑

E(Zn))
2 ≤ 4

E(Sk)
≤ C1

2k
.

That implies the probability that Sk ≤ E(Sk)/2 is at most C1/2
k. By the

Borel–Cantelli lemma, P
(
Sk ≤ E(Sk)/2 i.o.

)
= 0. Thus, for almost every ω

and for all sufficiently large k,

Sk(ω)

2k+1
=

|E(ω) ∩ [22
k

, 22
k+1

] |
2k+1

≥ E(Sk)

2k+2
≥ C0

4
a22k →∞,

which contradicts (8.3.8). ��
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Almost Surely E(ω) Is Dense When npn → ∞

To show E = E(ω) is dense in Z it is enough to prove that the closures of
Et and Zt in T

M coincide for all positive integers M and for all t ∈ T
M

(Exercise 8.5.5). In fact, since homomorphisms are uniquely determined by
their values on a generating set, it is enough to show this for the subset
{(t1, . . . , tM ) : tm ∈ S} ⊆ T

M , where the set S generates T. So our strategy
will be to prove that, with probability one, E(ω)t ∩ O �= ∅ for every non-
empty, open set O ⊆ T

M and every t ∈ {(t1, . . . , tM ) : tm ∈ S}, where S is
the set of irrationals in T.

Let M = 1. Then Zt = T for all t ∈ S, so it suffices to show Et = T. There
is no loss of generality in assuming the open set O is an interval I. Choose α
such that α |I| > 1 and choose N0 such that for all n ≥ N0, npn ≥ α. Let I ′

be a proper subinterval of I, with d(I ′, Ic) = d > 0. To show that Et ∩ I is
non-empty, it will be enough to prove that there exists t′ ∈ T and

n ∈ EωN := E(ω) ∩ [N0, N ]

such that nt′ ∈ I ′ and |t− t′| < d/N because these assumptions ensure
nt ∈ I.

Pick the subinterval I ′ such that α |I ′| > 1. Choose a function f ∈ C2(T)
that is a suitably good approximation to 1I′ so that 0 ≤ f ≤ 1I′ and
αf̂(0)> 1. Then pick ε > 0 such that

αf̂(0)(1 − ε) > 1.

For each t, the set (EωN t)∩ I ′ is empty if and only if
∑

n∈Eω
N

1I′(nt) = 0 if

and only if
∑

N0≤n≤N Xn(ω)1I′(nt) = 0. Since
∑

N0≤n≤N Xn1I′(nt) is a ran-
dom variable with Poisson parameter

∑
N0≤n≤N pn1I′(nt), we can calculate

the probability that EN t ∩ I ′ is empty:

P (EN t ∩ I ′ = ∅) =P

⎛

⎝
∑

N0≤n≤N
Xn1I′(nt) = 0

⎞

⎠= exp

⎛

⎝
∑

N0≤n≤N
−pn1I′(nt)

⎞

⎠

≤ exp

⎛

⎝
∑

N0≤n≤N

−α
n
f(nt)

⎞

⎠ . (8.3.10)

Since f ∈ C2(T), the Fourier series of f is absolutely convergent, so we
may write

f(t) = f̂(0) +
∑

1≤|j|≤J
f̂(j)eijt +

∑

|j|>J
f̂(j)eijt = f̂(0) + g(t) + h(t),



148 8 How Thin Are Sidon Sets in the Bohr Compactification?

where J is chosen such that ‖h‖∞ < εf̂(0). Then

exp

⎛
⎝ ∑

N0≤n≤N

−α

n
f(nt)

⎞
⎠

= exp

⎛
⎝ ∑

N0≤n≤N

−αf̂(0)

n

⎞
⎠ exp

⎛
⎝ ∑

N0≤n≤N

−αg(nt)

n

⎞
⎠ exp

⎛
⎝ ∑

N0≤n≤N

−αh(nt)

n

⎞
⎠ .

(8.3.11)

Clearly, exp
(∑

N0≤n≤N
−αf̂(0)

n

)
≤ C0 exp(−αf̂(0) logN) = C0N

−αf̂(0) and

exp

⎛

⎝
∑

N0≤n≤N

−αh(nt)

n

⎞

⎠ ≤ exp (α ‖h‖∞ logN) ≤ Nεαf̂(0). (8.3.12)

Since
∑N

n=N0
(sin 2πnjt) /n is uniformly bounded (see Exercise 8.5.8),

∑

N0≤n≤N

g(nt)

n
=

∑

1≤j≤J

⎛

⎝aj
∑

N0≤n≤N

cos 2πnjt

n
+ ibj

∑

N0≤n≤N

2 sinπnjt

n

⎞

⎠

=
∑

1≤j≤J
aj(RN (jt)−RN0−1(jt)) + CN (t), (8.3.13)

where the CN (t) are uniformly bounded over all N and t and the aj , bj are
the real Fourier coefficients of g. Here, Rn is given by (8.3.6).

Fix δ > 0 and put

G = G(δ) = {t : |sinπjt| ≥ δ for 1 ≤ j ≤ J}.

As noted in (8.3.7), there is a constant C such that supn |Rn(t)| ≤ C −
log |sinπt|. Thus, for every t ∈ G and 1 ≤ j ≤ J,

|RN (jt)−RN0−1(jt)| ≤ 2(C − log |sinπjt|) ≤ 2(C + |log δ|) = C1,

where C1 depends only on δ (but not on N, N0, j or t). Because CN (t) is
uniformly bounded,

exp

( N∑

n=N0

−αg(nt)

n

)

≤ eCN (t) exp

(

α

J∑

j=1

|aj | |RN (jt)−RN0−1(jt)|
)

≤ C2 (8.3.14)

for every t ∈ G, where C2 depends only on δ. Using (8.3.10)–(8.3.14), we
conclude that for every t ∈ G,
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P (EN t ∩ I ′ = ∅) ≤ exp

(

−
∑

N0≤n≤N

α

n
f(nt)

)

≤ C0C2N
−αf̂(0)(1−ε).

Integrating over all t ∈ G gives

∫

G

P (EN t ∩ I ′ = ∅) dt ≤ C0C2N
−αf̂(0)(1−ε).

Choose MN = !Nd ". Since each t ∈ T can be written as x+m/MN where
x ∈ [0, 1/MN ] and m = 0, 1, . . . ,MN − 1,

∫

G

P
(
EN t ∩ I ′ = ∅) dt =

MN∑
m=1

∫

G∩[m−1
MN

, m
MN

]

P
(
EN t ∩ I ′ = ∅) dt

=

∫ 1/MN

0

∑
{m:x+m/MN∈G}

P

(
EN (x+

m

MN
) ∩ I ′ = ∅

)
dx.

Since MN/N → 1/d as N →∞, there must be an x ∈ [0, 1/MN ] such that

∑

{m:x+m/MN∈G}
P (EN(x+ m/MN) ∩ I ′ = ∅) ≤ C0C2MNN

−αf̂(0)(1−ε)

≤ C3N
1−αf̂(0)(1−ε).

Fix such an x. The probability that there is some m with x + m/MN ∈ G
and EN (x+m/MN) ∩ I ′ = ∅ is at most C3N

1−αf̂(0)(1−ε).
Put GN = {t ∈ G : ∃t′ = x + m/MN ∈ G, |t− t′| < 1/MN}. If there

exists t ∈ GN such that EN t ∩ I = ∅, then there exists t′ = x+m/MN with

|t− t′| < d/N and hence EN t
′ ∩I ′ is empty. Since αf̂(0)(1− ε) > 1,

P (∃t ∈ GN : EN t ∩ I = ∅) ≤ C3N
1−αf̂(0)(1−ε) → 0 as N →∞.

Using this, we will now deduce that P (∃t ∈ G : Et ∩ I = ∅) = 0. Take
η > 0 and choose Nk →∞ such that

∑

k

P (∃t ∈ GNk
: ENk

t ∩ I = ∅) < η.

Let t ∈ G. Since G is open, there exists nt such that if n ≥ nt and
|t− t′| < 1/Mn, then t′ ∈ G. Thus, t ∈ Gn for all n ≥ nt and so G ⊆

⋃
GNk

.
Furthermore, Et ∩ I = ∅ only if ENk

t ∩ I = ∅ for all k, hence

P (∃t ∈ G : Et ∩ I = ∅) ≤
∑

k

P (∃t ∈ GNk
: Et ∩ I = ∅)

≤
∑

k

P (∃t ∈ GNk
: ENk

t ∩ I = ∅) < η.
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Since η > 0 was arbitrary, this proves that for every fixed δ,

P (∃t ∈ G = G(δ) : Et ∩ I = ∅) = 0.

Recall that S is the set of irrationals in T. If t ∈ S, then sinπjt �= 0 for
every integer j. Thus, if δn is chosen tending to 0, then S ⊆

⋃∞
n=1G(δn).

Hence, P (∃t ∈ S : Et ∩ I = ∅) = 0, as well, and therefore Et ∩ I �= ∅ for all
t ∈ S with probability one.

This completes the proof for the case N = 1. The general case follows by
similar reasoning. ��

8.4 Remarks and Credits

Theorem 8.2.1 is due to Ramsey [158]. The probabilistic results, Theorems
8.3.1 and 8.3.2, are due to Kahane and Katznelson [104], where more is
proven: (i) Under the assumptions of Theorem 8.3.1, the closures of the ran-
dom sets, E(ω), are also shown to have m

Z
-measure zero almost surely. (ii)

Under the assumptions of 8.3.2, the E(ω) are a.s. “analytic” (see [56]).
In [105], the random sets are shown to be a.s. uniformly distributed in Z

under slightly more restrictive hypotheses than that of Theorem 8.3.2. These
results improve earlier results of Katznelson and Malliavin [109].

Exercise 8.5.8 can be found in [108, p. 22] and [7, p. 90].

8.5 Exercises

Exercise 8.5.1. Construct pn such that lim supnpn = ∞ and E(ω) is a.s.
Sidon.

Exercise 8.5.2. Prove that if there is a k-independent set which clusters at
an integer, then there is a k-independent set which is dense in Z.

Exercise 8.5.3. Suppose Xn are independent, Poisson random variables,
with Poisson parameters pn. Let E(ω) = {n : Xn(ω) ≥ 1}. Prove that if∑∞
n=1 pn <∞, then for each q > 1, E(ω) is a.s. the union of a finite set with

a Hadamard set of ratio q.

Exercise 8.5.4. Finish the explanation of how the proof of Theorem 8.3.1
can be completed once Lemma 8.3.5 is proven by showing that 0 /∈ E(ω) a.s.
(see p. 142).

Exercise 8.5.5. Show that E ⊆ Z is dense in Z if and only if for all positive
integers N and for all t ∈ T

N the closures of Et and Zt in T
N coincide.
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Exercise 8.5.6. Prove the inequality stated in (8.3.1).

Exercise 8.5.7. Prove the generalized Hölder’s inequality for 1 ≤ pj < ∞:

If
∑J
j=1 1/pj = 1, then

∣
∣
∣
∣
∣
∣

∫ J∏

j=1

fj

∣
∣
∣
∣
∣
∣
≤

J∏

j=1

(∫

|fj |pj
)1/pj

.

Exercise 8.5.8. Show that
∑N

n=1 (sin 2πnjt) /n is uniformly bounded over
N and t.



Chapter 9

The Relationship Between Sidon
and I0

Sidon sets are proportional I0. When Γ has few elements of order a power of
two, Sidon sets are also proportional ε-Kronecker. A set satisfying a Pisier
ε-net condition is Sidon. The Ramsey–Wells–Bourgain Bd(E) = B(E) char-
acterization of I0 is proved.

9.1 Introduction

In this chapter the relationship between Sidon and I0 will be further explored.
We begin with several results that provide evidence to support a positive
answer to the question, “Is every Sidon set a finite union of I0 sets?” [P 1],
which is unknown even for Z.

First, a combinatorial argument, due to Pajor and stated in the next
section, is used in Sect. 9.2 to show that if a set satisfies a Pisier ε-
net condition, then it is proportional I0. Of course, proportional I0 im-
plies proportional Sidon, and Theorem 7.2.1 shows this implies Sidonicity.
Since Proposition 7.3.2 says Sidon sets satisfy a Pisier ε-net condition, that
gives a second set of equivalences to Sidonicity, in addition to those of The-
orem 7.2.1.

Similar arguments are used in Sect. 9.3 to show that if Γ does not contain
too many elements of order 2, then every Sidon set in Γ is characterized by
the property that it is proportional ε-Kronecker for an ε <

√
2 depending

only on the Sidon constant. An example is given to show that not all Sidon
sets are proportional ε-Kronecker.

Lastly, in Sect. 9.4, we prove the Ramsey–Wells–Bourgain characterization
of I0 as those sets satisfying B(E) = Bd(E). In the proof of that result, the
Pisier ε-net characterization of Sidon is used; that proof also introduces and
uses sup-norm partitions.

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 9,
© Springer Science+Business Media New York 2013
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9.2 Sidon Sets Are Proportional I0

Recall the notation AP (E, N, ε), introduced in Notation 3.2.7: AP (E, N, ε)
is the set of all ϕ ∈ Ball(�∞(E)) for which there is a discrete measure μ,
of length N , such that |ϕ(γ)− μ̂(γ)| ≤ ε for all γ ∈ E. Corollary 3.2.17
characterizes I0 sets as those sets E having the property that for some N
and ε < 1, AP (E, N, ε) contains Z

E
2 .

Theorem 9.2.1. Let E ⊆ Γ with 1 /∈ E. The following are equivalent:

1. The set E ⊆ Γ is Sidon.
2. There exists ε > 0 such that E satisfies a Pisier ε-net condition: For

every finite F ⊆ E, there is a set Y ⊆ G such that |Y | ≥ 2ε|F| and

sup
γ∈F
|γ(x)− γ(y)| ≥ ε for all x �= y ∈ Y. (9.2.1)

3. There exist constants δ > 0 and ε < 1 such that each finite subset F ⊆ E
contains a finite subset F′ ⊆ F with |F′| ≥ δ|F| and AP (F′, 2, ε) ⊇ Z

F′
2 .

4. There exist constants C and δ > 0 such that each finite subset F ⊆ E
contains a finite subset F′ ⊆ F whose I0 constant is at most C and has
|F′| ≥ δ|F|.

Remark 9.2.2. Only (2)⇒ (3) is new to this theorem. The fact that Sidon sets
satisfy (2) is the content of Proposition 7.3.2. That (3)⇒ (4) is a consequence
of Corollary 3.2.17. The implication (4) ⇒ (1) follows from the Pisier char-
acterization Theorem 7.2.1 (5) since proportional I0 sets are proportional
Sidon and the Sidon constant is bounded by the I0 constant.

In the proof of (2) ⇒ (3) and for the characterization of Sidon sets as
proportional ε-Kronecker, established in the next section, we will make use of
the following combinatorial results. To state these, we introduce the notation
PI : XN → XI for the natural projection map, where X is any set and I is
a subset of {1, . . . , N}.

Proposition 9.2.3 (Pajor). Let X be a finite set of integers. For each β > 0
there exists δ > 0, depending only on β and the cardinality of X, such that for
all N ≥ 1 and S ⊆ XN , with |S| > 2βN , there are distinct integers a, b ∈ X
and I ⊆ {1, . . . , N} having the property that | I| ≥ δN and {a, b}I ⊆ PI(S).

Proposition 9.2.4 (Pajor). Suppose X = X+ ∪X− where |X+| = p ≥ 1
and |X−| = q ≥ 1. For N ≥ 1 define a mapping π : XN → Z

N
2 by

π(x)n =

{
+1 if xn ∈ X+ and

−1 if xn ∈ X−,

for x ∈ XN . There exists τ > 0 (dependent on p and q, but not N) such
that if S ⊆ XN has π(S) = Z

N
2 , then there exist t ∈ X+, u ∈ X− and

I ⊆ {1, . . . , N}, with | I| ≥ τN and PI(S) ⊇ {t, u}I.
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We also introduce further terminology used throughout this section and
the next. We will say that two arcs, I1, I2, on the unit circle are separated
by a gap of length at least β when the shorter of the other two arcs of the
circle, complementary to the original pair, has length at least β. We call this
shorter arc the gap between I1, I2 and write gap(I1, I2) = β for the length of
that shorter arc. (If the two complementary arcs have the same length, either
can be taken as the gap.)

Proof (of Theorem 9.2.1 (2) ⇒ (3)). We begin by sketching the idea of the
proof. So assume the existence of a Pisier ε-net, as in (9.2.1).

Let F = {γj}J1 ⊆ E be finite. Let M > 4π/ε and partition T into M
pairwise disjoint half-open arcs, I1, . . . , IM , having a common length, λ < ε.
Define i : T→ {1, . . . ,M} by i(z) = m if z ∈ Im, 1 ≤ m ≤M . Then each y ∈
Y defines an element, f(y), of {1, . . . ,M}F by f(y) =

(
i(γ1(y)), . . . , i(γJ (y))

)
.

Because of (9.2.1), for every pair x �= y ∈ Y , there exists a j such that
i(γj(x)) �= i(γj(y)), and therefore | f(Y )| ≥ 2ε|F|. Applying Proposition 9.2.3,
we find δ = δ(ε) and F′ ⊆ F with |F′| ≥ δ|F| and 1 ≤ a < b ≤ M with
{a, b}F′ ⊆ PF′(f(Y )).

Thus, we see that for every subset A ⊆ F′, there exists g ∈ Y such that

γ(g) ∈
{
Ia if γ ∈ A and

Ib if γ ∈ F′
�A.

Suppose these intervals, Ia, Ib, have a gap of at least β. We will see that
then there is an angle t and constant σ > 0, depending only on β, such that
ν = 1

2i(e
itδg−1 − e−itδg) has ν̂(γ) > σ if γ ∈ F′ and ν̂(γ) < −σ if γ ∈ F′

�A.
Thus, F′ would satisfy Theorem 9.2.1(3).

Having given the general idea, we will next show how to complete the
argument once given the existence of such intervals. Thus, we suppose that
there are positive constants 0 < β, δ, λ ≤ π/4 (all depending only on ε) such
that for each finite F ⊆ E there are a set F′ ⊆ F and two arcs I1, I2 ⊆ T

with
|F′| ≥ δ|F|, length I1 = length I2 ≤ λ, gap(I1, I2) ≥ β (9.2.2)

and

∀ A ⊆ F′ ∃g ∈ Y with γ(g) ∈
{
I1 if γ ∈ A and

I2 if γ ∈ F′
�A.

(9.2.3)

Lemma 9.2.5 will prove that Theorem 9.2.1(2) implies this set-up.
We now apply (9.2.2)–(9.2.3), assuming Lemma 9.2.5. Given ϕ ∈ Z

F′
2 , put

A = {γ ∈ F′ : ϕ(γ) = 1} and obtain g ∈ G such that if μ is the point mass
measure at g−1, then μ̂(γ) = γ(g) ∈ I1 if γ ∈ A and μ̂(γ) = γ(g) ∈ I2 if
γ ∈ F′

�A. By multiplying these arcs by a suitable choice eit and replacing
μ by eitμ, we can assume the gap separating I1 and I2 is centred at 1 and
that there is a discrete, length one measure μA with

μ̂A(γ) ∈
{
I1 if γ ∈ A and

I2 if γ ∈ F′
�A.
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Since the gap centred at 1 is the smaller of the two separating arcs, without
loss of generality (replacing μ by −μ, if necessary), I1 intersects quadrant 1
and I2 quadrant 4. Because length I1 = length I2 ≤ π/4 and gap(I1, I2) ≥ β,
whenever eiθ ∈ I1 we have Imeiθ ≥ sin(β/2) =: σ > 0, while if eiθ ∈ I2, then
Imeiθ ≤ − sin(β/2) = −σ < 0. Hence,

Imμ̂A(γ) ∈
{

[σ, 1] if γ ∈ A and

[−1,−σ] if γ ∈ F′
�A.

Let ν = (μA − μ̃A)/2i. Then ν is a discrete measure of length two with
ν̂(γ) = Imμ̂A(γ), and

|ϕ(γ)− ν̂(γ)| ≤ 1− σ for all γ ∈ F′.

This shows ϕ ∈ AP (F′, 2, 1−σ) for all ϕ ∈ Z
F′
2 . Because both σ and δ depend

only on ε, the proof now needs only the following lemma. ��

Lemma 9.2.5. Let F ⊆ Γ be a finite set. Assume Y ⊆ G has cardinality at
least 2ε|F| and supγ∈F |γ(x) − γ(y)| ≥ ε for all x �= y ∈ Y. Then there exist
constants 0 < β, δ, λ ≤ π/4, depending only on ε, a subset F′ of F and two
arcs, I1, I2 ⊆ T having the same length and satisfying (9.2.2)–(9.2.3).

Proof. Without loss of generality ε ≤ π/8. Choose any positive integer L
such that 2π/L < ε/2. Put λ′ = 2π/L and β′ ≤ λ′/M where M is an integer
satisfying M−1 ≤ 1− 2−ε/2. The quantities β, λ and δ will be defined later.

Partition T into L disjoint arcs:

T� = {eiθ : �λ′ ≤ θ < (�+ 1)λ′}, 0 ≤ � < L,

and further partition each T� into M disjoint arcs:

U�,m = {eiθ : �λ′ +mβ′ ≤ θ < �λ′ + (m+ 1)β′}, 0 ≤ m < M.

Let F = {γj}Jj=1 and put Y0 = Y . For j = 1, . . . , J , define Yj inductively,
as follows. For 0 ≤ � < L and 0 ≤ m < M , let

Y j� = {g ∈ Yj−1 : γj(g) ∈ T�} and Y j�,m = {g ∈ Yj−1 : γj(g) ∈ U�,m}, so

Yj−1 =

L−1⋃

�=0

Y j� and Y j� =

M−1⋃

m=0

Y j�,m.

For each pair j, �, pick the index m = m(j, �) for which the cardinality of
Y j�,m is minimal. Clearly, | Y j�,m| ≤M−1| Y j� |, and therefore

∣
∣
∣
∣
∣
∣
L−1⋃

�=0

Y j�,m(j,�)

∣
∣
∣
∣
∣
∣ ≤M−1|Yj−1|.
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Finally, put Yj = Yj−1 �
⋃L−1
�=0 Y

j
�,m(j,�). Then |Yj| ≥ (1 −M−1)| Yj−1| for

all j, and therefore |YJ | ≥ (1 −M−1)J |Y0|. The choice of M implies that
|YJ | ≥ 2−Jε/2| Y0| ≥ 2Jε/2.

For each pair (j, �), let Ij,� be the arc between U�−1,m(j,�−1) and U�,m(j,�).
Since U�,m ⊆ T�, length Ij,� ≤ 2λ′ − 2β′ < ε. Some of the arcs Ij,� may be
empty, but that will not matter.

For g ∈ YJ , define hg ∈ �∞(F) by hg(γj) = �j where γj(g) ∈ Ij,�j . The
construction of YJ guarantees that these functions are all distinct, and hence
there are at least 2Jε/2 such functions, a lower bound on | YJ |.

We now appeal to the combinatorial Proposition 9.2.3, with X =
{0, 1, . . . , L − 1} and S = {hg : F → X : g ∈ YJ} ⊆ XF. There are a
constant δ > 0 depending only on ε (and L, but L depends on ε), indices
a, b with 0 ≤ a < b < L and a subset F′ ⊆ F with |F′| ≥ δ|F| such that
{a, b}F′ ⊆ {hg|F′ : g ∈ YJ}. That identifies two arcs, Ij,a and Ij,b, for each
index j = 1, . . . , J , such that

A ⊆ F′ ⇒ ∃g ∈ YJ with γj(g) ∈
{
Ij,a if γj ∈ A and

Ij,b if γj ∈ F′
�A.

Case I: Suppose first that |b− a| ≥ 2 modL. Note that

I1 := {eiθ : (a− 1)λ′ + β′ ≤ θ < (a+ 1)λ′ − β′} ⊇ Ij,a and

I2 := {eiθ : (b− 1)λ′ + β′ ≤ θ < (b + 1)λ′ − β′} ⊇ Ij,b.

The two arcs I1, I2 are separated by a gap of size at least (b−a−2)λ′ +2β′ ≥
2β′ and have length 2λ′ − 2β′. Moreover, for some g ∈ Y0, γ(g) belongs to I1
if γ ∈ A and belongs to I2 if γ ∈ F′

�A.
Case II: If |b− a| = 1 modL, then for suitable yj,

Ij,a ⊆ [(a− 1)λ′ + β′, yj ] and Ij,b ⊆ [yj + β′, (b+ 1)λ′ − β′].

In Case II, put

I1:=[−3λ′ + 2β′,−β′]⊇ Ij,a − Ij,b and I2:=[β′, 3λ′ − 2β′] ⊇ Ij,b − Ij,a.

The arcs I1, I2 are of length 3λ′ − 3β′ and are separated by at least 2β′. By
choosing appropriate g1, g2 ∈ Y0 and putting g = g1g

−1
2 ∈ Y0Y −1

0 , we have
γ(g) ∈ I1 if γ ∈ A and γ(g) ∈ I2 if γ ∈ F′

�A .

In either case, the construction produces two arcs, I1, I2, having the re-
quired properties, with common length at most λ = 3λ′ ≤ 3π/16 ≤ π/4 and
separated by a gap of length at least β = 2β′. ��

Corollary 9.2.6. Let E ⊆ Γ with 1 /∈ E. The following are equivalent:

1. The set E is Sidon.
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2. There exists δ > 0 such that each finite subset F ⊂ E has a subset
F′ = {γ1, . . . , γN} with N ≥ δ|F| and the property that whenever cn ∈ Δ
for 1 ≤ n ≤ N and 0 < τ < 1, then

mG{x ∈ G : inf
n
|Re(cnγn(x))| > τ} ≤ 2(1 + τ2)−N .

Proof. (1) ⇒ (2) is immediate from Theorem 7.2.1 (1) ⇒ (3) and Lemma
7.3.1.

(2) ⇒ (1). The proof of Proposition 7.3.2 shows that E satisfies a Pisier
ε-net condition. An application of Theorem 9.2.1 completes the proof. ��

9.3 Sidon Sets Are Proportional ε-Kronecker

Given that Sidon sets are characterized as both proportional quasi-indepen-
dent and proportional I0, it is natural to ask whether they may also be
characterized as proportional ε-Kronecker, meaning that there exists τ > 0
and ε <

√
2 such that for every finite F ⊆ E there is some ε-Kronecker set

F′ ⊆ F with |F′| ≥ τ |F|.
Of course, if E is the Rademacher set in D̂, then E is I0 but not propor-

tional ε-Kronecker for any ε <
√

2. The example below shows that a set E
may have no elements of order 2, be I0, but not be proportional ε-Kronecker.
Theorem 9.3.2 gives conditions (involving elements of order 2 and powers
thereof) under which that characterization does hold.

Example 9.3.1. An I0 set that is not proportional ε-Kronecker for any ε <
√

2:
We use the I0 set of Example 4.3.4, E = {(j, πj) : j ∈ N} ⊆ Z ⊕ D̂ where

{πj} is the Rademacher set in D̂.
Suppose E were proportional angular (π/2−ε)-Kronecker, for some ε > 0,

with proportionality constant τ . For M even and sufficiently large, we select a
set, {w1, . . . , wM}, of Mth roots of unity that is ε-dense in T. For each m, let
pm be any Mth root of wm. Put N = M3. Szemeredi’s theorem [49, 182] says
there exists L = L(τ,N) such that any subset of {1, . . . , L} with density at
least τ contains an arithmetic progression of length N . By the proportionality
assumption, the set {(�, π�) : � = 1, . . . , L} contains an angular (π/2 − ε)-
Kronecker subset {(�, π�) : � ∈ FL}, where FL is a subset of {1, . . . , L} of
density τ , and hence contains a further subset F′ = {(jk0 +d0, πjk0+d0) : j =
1, . . . , N}.

Define numbers t
(m)
i ∈ T recursively, as follows: Let t

(1)
1 = 1. Define

t
(m)
i+1 = t

(m)
i /(pmwn) for i = (n− 1)M + 1, . . . , nM and m,n = 1, . . . ,M.
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Then set t
(m+1)
1 = t

(m)
M2+1. We think of these as ordered by fixing m and

ordering in index i and then letting m increase. Denote this ordered set by
{zr}.

Suppose ϕ : F′ → T satisfies ϕ(rk0 +d0, πrk0+d0) = zr. Since F′ is angular
(π/2 − ε)-Kronecker, there exist a point (x, y) and error term εr such that
εr ≤ π/2− ε so that

zr = ei(rk0+d0)xπrk0+d0(y)eiεr .

Because πm(y) = ±1 for all m, y, there are sr = ±1 with

zr
zr+1

= sre
−ik0xei(εr−εr+1).

Let I be the union of the two subintervals of T of length 2ε, which are
angular distance at least π/2 − ε away from both ±e−ik0x. For each m, the
set {pmwn : n = 1, . . . ,M} is ε-dense, and hence there is some n = n(m)

such that pmwn ∈ I. That compels all the pairs (t
(m)
i , t

(m)
i+1) with ratio pmwn

(and there are M such pairs, those with i = (n− 1)M + 1, . . . , nM) to have

error terms opposite in sign. Thus, ε
(m)
i alternates in sign as i varies. But

t
(m)
(n−1)M+1

t
(m)
nM+1

= (pmwn)M = wm = s′m,ne−iMk0xei(ε
′
m,n), (9.3.1)

where s′m,n = ±1 and ε′m,n = ε
(m)
(n−1)M+1−ε

(m)
nM+1. Since M is even, ε

(m)
(n−1)M+1

and ε
(m)
nM+1 are the same sign, so |ε′m,n| ≤ π/2− ε.

Because the set {wm} is ε-dense, at least one wm belongs to I and so
has angular distance at least π/2 − ε from both of ±e−iMk0x. That contra-
dicts (9.3.1) and proves that E is not proportional angular (π/2 − ε)-Kron-
ecker.

However, under a suitable restriction on the order two elements, one can
deduce that Sidon sets are proportional ε-Kronecker.

Let Γ(2) be the set of characters in Γ whose orders are powers of 2.

Theorem 9.3.2. Suppose Γ(2) is finite and E ⊆ Γ � {1} has no elements
of order two. Then E is Sidon if and only if there are constants τ > 0 and
ε <

√
2 such that if F ⊆ E is finite, then F contains a subset F′ which is

ε-Kronecker and satisfies |F′| ≥ τ |F|.
Proof. Since an ε-Kronecker set with ε <

√
2 is Sidon with Sidon constant

bounded by a function of ε, proportional ε-Kronecker implies proportional
Sidon, which implies Sidon by Pisier’s Theorem 7.2.1(5).

For the other direction, we assume that E is Sidon. Since Γ(2) is finite,
finitely many translates of its annihilator, G2, cover G. An application of
the ε-net property (Corollary 7.3.3) yields constants δ = δ(E) ≤ 1/4 and
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α = α(E, G2) with the property that for every finite F ⊆ E with |F| ≥ α,
there is a set Y = {gj} ⊆ G2 with | Y | ≥ 2δ|F| and satisfying

sup
γ∈F
|γ(gj)− γ(gi)| ≥ δ for i �= j.

Given such a finite set F, apply Lemma 9.2.5 with the subset Y ⊆ G2 to
obtain F′ ⊆ F, with |F′| ≥ τ |F| and two intervals I1, I2 of equal length at
most λ and separated by a gap of length at least β (with τ, λ and β positive
constants depending only on E) having the property that for all A ⊆ F′ there
is some g ∈ Y such that γ(g) ∈ I1 for g ∈ A and γ(g) ∈ I2 for γ ∈ F′

�A.
We reduce the set of g slightly by putting

Y ′ = {g ∈ Y : γ(g) ∈ I1 ∪ I2 for all γ ∈ F′}.

Partition each of I1 and I2 into s disjoint subintervals, I ′1, . . . , I ′s and
I ′s+1, . . . , I

′
2s, respectively, having equal lengths at most min(π/32, β/4). Let

X+ = {1, . . . , s}, X− = {s+ 1, . . . , 2s} and X = X+ ∪X−.

View Y ′ as a subset of XF′
by identifying g ∈ Y ′ with (z

(g)
γ )γ∈F′ according

to the rule γ(g) ∈ I
z
(g)
γ

for γ ∈ F′. Define π : XF′ → {−1, 1}F′
by

π(z(g)γ ) = (rγ)γ∈F′ where rγ =

{
+1 if zγ ∈ X+,
−1 if zγ ∈ X−.

(Equivalently, rγ = 1 if γ(g) ∈ I1 and rγ = −1 if γ(g) ∈ I2.) By taking

suitable choices of g we can obtain all elements of {±1}F′
, and hence π(S) =

{±1}F′
.

Appealing to Proposition 9.2.4, it follows that there exist 1 ≤ t ≤ s <
u ≤ 2s and τ1 > 0, depending only on δ (which in turn depends only on
E), and F′

1 ⊆ F′ with |F′
1| ≥ τ1|F′| such that {t, u}F′

1 ⊆ PF′
1
(S) (where

PF′
1
(f) = f |F′

1
). This means for every A ⊆ F′

1, there exists g ∈ Y ′ with
γ(g) ∈ I ′t if γ ∈ A and γ(g) ∈ I ′u for γ ∈ F′

1 �A.
To summarize, the intervals I ′t and I ′u have length ρ ≤ min(π/32, β/4) and

are separated by a gap of length at least β ≥ 4ρ, and both β and ρ depend
only on E. Also, |F′

1| ≥ ττ1|F| and this (new) proportionality constant
τ0 = ττ1 depends only on E.

If the gap length, β, exceeds 5π/8, Corollary 2.5.5 implies F′
1 is weak

angular 3π/8-Kronecker. Otherwise, there is some k ≥ 1 such that

β ∈ π
4

[
1

k + 1
+

1

k
,

1

k
+

1

k − 1

)

(or [3π/8, 5π/8] if k = 1). The two gaps between the intervals (k + 1)I ′t and
(k + 1)I ′u have lengths at least (k + 1)β and 2π − 2(k + 1)ρ− (k + 1)β. It is
an easy calculation to verify the smaller gap has length at least π/2 + εk for
some εk > 0.
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If g ∈ G2 has the property that γ(g) ∈ I ′t if γ ∈ A and γ(g) ∈ I ′u for γ ∈
F′

1�A, then gk+1, which is still in the subgroup G2, satisfies γ(gk+1) ∈ (k+
1)I ′t if γ ∈ A and γ(gk+1) ∈ (k+ 1)I ′u for γ ∈ F′

1 �A. Again, Corollary 2.5.5
implies F′

1 is weak angular π/2 − εk-Kronecker, and hence ε-Kronecker for
some ε <

√
2.

Finally, suppose |F| < α. Since E contains no elements of order two, a
singleton subset of E is weak 1-Kronecker. Thus, simply take F′ to be any
(one) element from F to obtain a weak 1-Kronecker subset of size at least
|F|/α. This concludes the proof that E is proportional ε-Kronecker for some
ε <
√

2. ��
Corollary 9.3.3. Suppose that E ⊆ Γ � {1} has no elements of order two
and that the subgroup generated by E contains only finitely many elements of
order a power of 2. Then E is proportional ε-Kronecker for some ε <

√
2 if

and only if E is Sidon.

Proof. Apply Theorem 9.3.2 with Γ the subgroup generated by E and G its
dual. ��

9.4 The Ramsey–Wells–Bourgain Characterization
of I0 Sets

In Theorems 9.2.1 and 9.3.2 we saw that Pisier’s ε-net condition implies that
Sidon sets could be characterized as those which were proportional I0 or
ε-Kronecker. In this section, the ε-net condition will be used to prove the
Ramsey–Wells–Bourgain characterization of I0 sets as those sets E for which
B(E) = Bd(E) (Theorem 9.4.15). Of course, every I0 set has this property
since then �∞(E) = Bd(E). The other direction is the interesting and difficult
part of the theorem.

There are two main steps. First, we show that the hypothesis implies
that E, if not Sidon, would have a non-Sidon subset, E′, with the property
that for every ε > 0 there is an integer M ≥ 1 and c = (c1, . . . , cM ) ∈
ΔM such that for each ϕ ∈ Ball(B(E′)) there exist x1, . . . , xM ∈ G with

‖ϕ −
∑M

m=1 cmδ̂xm‖B(E′) ≤ ε. That is done in Lemma 9.4.13 and involves
sup-norm partitions.

Second, in Lemma 9.4.14, it will be shown that if E satisfies the conditions
of Lemma 9.4.13, then E satisfies a Pisier ε-net condition for a suitable choice
of ε. This second step uses some simple ideas from metric entropy. Theorem
9.4.15 will then follow easily from the main steps.

We note that when Bd(E) = B(E), the norms are equivalent, but the
Bd(E) norm may be larger. We will do our calculations using that larger
norm.

Before those main steps, we prove a number of technical lemmas. The first
is somewhat surprising.
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Lemma 9.4.1 (Varopoulos’s Lemma). For every finite Y ⊆ G and γ ∈ Γ,

‖1− γ‖A(Y ) ≤ π(e − 1)‖1− γ‖�∞(Y ). (9.4.1)

Remark 9.4.2. It is obvious that
∥
∥δ̂γ − δ̂ρ

∥
∥
�∞(Y )

≤
∥
∥δ̂γ − δ̂ρ

∥
∥
A(Y )

, so Lemma

9.4.1 says the two norms are equivalent for those differences.

Proof (of Lemma 9.4.1). Since Y is finite, Bd(Y ) = B(Y ) = A(Y ) and A(Y )∗

consists of the bounded functions on Γ with Fourier transforms supported on
Y , that is the Y -polynomials. Thus,

‖1− γ‖A(Y ) = sup
{
|ν̂(1)− ν̂(γ)| : ν ∈M(Y ), ‖ν̂‖∞ ≤ 1

}
.

Because ‖1− γ‖A(Y ) ≤ 2, (9.4.1) trivially holds if ‖1− γ‖�∞(Y ) ≥ 2/π. So

we may assume ε := ‖1 − γ‖�∞(Y ) ≤ 2/π. We will be replacing γ with eiθ.

Exercise 9.6.6 (3) says there exists f ∈ A(T) such that f(eiθ) = 1 − eiθ for
|θ| ≤ δ ≤ 1 and ‖f‖A([−δ,δ]) < 2(e − 1)δ. Thus, f(eiθ) =

∑
m cmeimθ, with∑

m |cm| ≤ 2(e− 1)δ.
Since |1− eiθ| ≤ ε implies |θ| ≤ επ/2, we see that

‖1− eiθ‖A([−επ/2, επ/2]) ≤ π(e − 1)ε.

Now put g(x) = 1 − γ(x) − f(γ(x)), x ∈ G. Then g ∈ A(G) and if x ∈ Y
then g(x) = 0.

Suppose ν ∈M(Y ) with ‖ν̂‖∞ = 1. These observations imply

0 =

∫

gdν = ν̂(1)− ν̂(γ)−
∫

f ◦ γ dν,

and so

|ν̂(1)− ν̂(γ)| =
∣
∣
∣

∫

f ◦ γdν
∣
∣
∣ ≤ ‖ν̂‖∞

∑

m

|cm|

≤ π(e− 1)ε ≤ π(e − 1)‖1− γ‖∞. ��

Lemma 9.4.3. Let ε > 0 and assume F is a finite subset of Γ. Then there
exists a compact e-neighbourhood U ⊆ G such that, for all γ ∈ F,

‖δ̂1 − δ̂γ‖A(U) ≤ ε. (9.4.2)

Proof. Choose an e-neighbourhood U1 such that

|δ̂1 − δ̂γ(x)| < ε/(2π(e− 1)) for x ∈ U1 and γ ∈ F.

We shall find an e-neighbourhood U ⊆ U1 such that (9.4.2) holds. By Lemma

9.4.1, ‖1 − δ̂γ‖A(Y ) < ε/2 for all finite sets Y ⊆ U1. For each such Y , let
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μY ∈ M(Γ) be such that μ̂Y = 1 − δ̂γ on Y and ‖μY ‖M(Γ) < ε/2. Note

that {μY : Y ⊂ U1 is finite} is a bounded net in M(Γ). Let μ be any weak*
cluster point of that net. Then

‖μ‖M(Γ) ≤ ε/2 and μ̂ = 1− δ̂γ on U1.

By the corollary to the local units theorem, Corollary C.1.7, we may choose
h ∈ A(G) such that h = 1 in an e-neighbourhood U , Supp h ⊆ U1 and

‖h‖A(G) < 2. Thus, hμ̂ = 1− δ̂γ on U and ‖hμ̂‖B(Gd) < ε. We note that hμ̂ is
continuous onG. Since the subalgebraM(Γ) is characterized by the Bochner–
Eberlein Theorem C.1.8 as the measures in M(Γ) whose Fourier-Stieltjes

transforms are continuous on G, hμ̂ ∈ B(G) = A(G). Hence, ‖1− δ̂γ‖A(U) =
‖hμ̂‖A(U) < ε. ��

Corollary 9.4.4. Let F ⊆ Γ be finite and ε > 0. There exists a compact
e-neighbourhood U ⊆ G such that if λγ−1 ∈ F, then

|μ̂(γ)− μ̂(λ)| < ε‖μ̂‖∞ for all μ ∈M(U).

Proof. Let U be given by Lemma 9.4.3. The conclusion follows from the
estimate

|μ̂(γ)− μ̂(λ)| ≤ ‖μ̂‖∞‖δ̂γ − δ̂λ‖A(U) = ‖μ̂‖∞ ‖δ̂1 − δ̂λγ−1‖A(U),

where the first inequality comes from duality. ��

9.4.1 Sup-Norm Partitions

Definition 9.4.5. A decomposition E =
⋃∞
j=1 Ej is a sup-norm partition of

E ⊆ Γ if the sets Ej are finite and there is a constant C such that for all
ϕ ∈ B(E)

‖ϕ‖B(E) ≤ C sup
j
‖ϕ|Ej‖B(Ej). (9.4.3)

Equivalently, whenever J ≥ 1 and μj ∈M(Ej) for 1 ≤ j ≤ J <∞, we have

J∑

j=1

‖μ̂j‖∞ ≤ C ‖
J∑

j=1

μ̂j‖∞. (9.4.4)

To prove the Bd(E) = B(E) theorem, we will need to find sup-norm
partitioned subsets of a given set. We now develop tools to do that.

A collection of trigonometric polynomials, p1, . . . , pJ , defined on G, will
be called ε-additive if for each choice of t1, . . . , tJ ∈ G, there exists t ∈ G
such that ∣

∣
∣
∣
∣
∣

J∑

j=1

pj(t)−
J∑

j=1

pj(tj)

∣
∣
∣
∣
∣
∣
≤ ε

π

J∑

j=1

‖pj‖∞.
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This property is useful because it ensures that the norm of the sum of the
polynomials is comparable to the sum of their norms. It can be thought of
as an “individualistic” version of sup-norm partitioning.

Lemma 9.4.6. Suppose p1, . . . , pJ are ε-additive polynomials with Fourier
transforms disjointly supported. If p̂j(1) = 0, then

J∑

j=1

‖pj‖ ≤
π

1− ε

∥
∥
∥
∥

J∑

j=1

pj

∥
∥
∥
∥.

Proof. An elementary fact is that any finite set of complex numbers, X ,
contains a subset, Y , with

∑
z∈X |z| ≤ π

∣
∣∑

z∈Y z
∣
∣; see Exercise 9.6.5.

Temporarily fix δ > 0 and choose uj ∈ G such that for each j, |pj(uj)| ≥
(1 − δ) ‖pj‖ . With X = {pj(uj) : j = 1, . . . , J}, choose Y ⊆ {1, . . . , J} such
that ∣

∣
∣
∣

∑

j∈Y
pj(uj)

∣
∣
∣
∣ ≥

1

π

J∑

j=1

|pj(uj)| ≥
1− δ
π

J∑

j=1

‖pj‖∞. (9.4.5)

Put tj = uj if j ∈ Y .

The task is to suitably redefine uj for j /∈ Y so that
∣
∣∑J

j=1 pj(uj)
∣
∣ is still

large. For this we write
∑
j∈Y pj(uj) = reiθ, where θ ∈ [0, 2π) and r ≥ 0. The

inequality (9.4.5) shows

r ≥ 1− δ
π

J∑

j=1

‖pj‖∞. (9.4.6)

Because 0 = e−iθ p̂j(1) is the average value of Re(e−iθpj), it cannot be
the case that for all x ∈ G, Re(e−iθpj(x)) < −‖pj‖∞δ/π. Hence, for each j,
there is some vj ∈ G with

Re(e−iθpj(vj)) ≥ −‖pj‖∞δ/π. (9.4.7)

Define tj = vj if j /∈ Y . Obtain t ∈ G from the definition of ε-additive for
this choice of t1, . . . , tJ . Then

∥
∥
∥

J∑

j=1

pj

∥
∥
∥
∞
≥

∣
∣
∣

J∑

j=1

pj(t)
∣
∣
∣ ≥

∣
∣
∣

J∑

j=1

pj(tj)
∣
∣
∣ −

ε

π

J∑

j=1

‖pj‖∞.

Inequalities (9.4.6) and (9.4.7) give

∣
∣
∣

J∑

j=1

pj(tj)
∣
∣
∣ =

∣
∣
∣eiθ

(
r + e−iθ

∑

j /∈Y
pj(tj)

)∣∣
∣

≥ Re
(
r + e−iθ

∑

j /∈Y
pj(tj)

)
≥ 1− 2δ

π

J∑

j=1

‖pj‖∞ .
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Thus, π
∥
∥
∑J

j=1 pj
∥
∥
∞ ≥ (1 − 2δ − ε)

∑J
j=1 ‖pj‖∞. Since δ > 0 was arbitrary,

the proof is complete. ��

Proposition 9.4.7. Let E ⊆ Γ be a non-Sidon set. Then E contains a count-
able non-Sidon set F, which can be sup-norm partitioned.

The proof of Proposition 9.4.7 is not direct; we first prove a version for
non-discrete groups. For that, we will need the norm relationships of functions
and measures on Helson sets (defined in Remark 3.5.5). Those are given in
Remarks 9.4.8.

Sup-Norm Partitions and Countable Non-Helson Sets

Remarks 9.4.8. (i) An easy application of the closed graph theorem shows
that X is a Helson subset of the group H if and only if there is a constant
C > 0 such that for every ϕ ∈ C(X) there exists ν ∈M(Ĥ) such that ν̂ = ϕ
and ‖ν‖ ≤ C‖ϕ‖∞. And that holds if and only if for every μ ∈ M(X) we
have ‖μ̂‖∞ ≤ C‖μ‖ (same C). The infimum of such C is called the Helson
constant of E. A duality argument shows that the dual of A(E) is M(E)
when E is Helson.

(ii) When E is a finite or countable, compact subset of Λ, then E is Helson
if and only if E is Sidon in Λ when Λ is given the discrete topology. In that
case, the Sidon and Helson constants agree. It is evident that a countable
subset E is non-Sidon (or non-Helson if it is a compact subset of a non-
discrete group) if for each C > 0 there exists a finitely supported measure μ ∈
Md(E) such that ‖μ‖M(E) ≥ C‖μ̂‖∞. Equivalently, there are finite subsets
En ⊂ E such that the Sidon constants satisfy S(En) ≥ n for n ≥ 1.

(iii) If E is a finite subset of the discrete group Γ, then each f ∈ Bd(E)
can be represented using Fourier-Stieltjes transforms of discrete measures
concentrated on any dense subset, H , of G. In this case,

‖f‖Bd(E) = inf{‖μ‖ : μ ∈Md(H), μ̂|E = f}.

That is because each character (i.e., δ̂x for x ∈ G) on E may be approximated

uniformly by a character (δ̂xα) from H . Consequently, the Sidon constant can
be calculated using the discrete measures from H .

Here is the non-discrete group version of Proposition 9.4.7.

Proposition 9.4.9. Let G be compact and metrizable and T ⊆ G be non-
Helson, compact and countable. Then T contains a compact, non-Helson
subset, Y , such that Y has a unique cluster point x0 and Y � {x0} has a
sup-norm partition.

We begin the proof of Proposition 9.4.9 with several preliminary results.
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Lemma 9.4.10. Let μ ∈ M(G) have finite support, T . Then ‖μ‖M(G) ≤
|T |‖μ̂‖�∞(Γ).

Proof. It will suffice to show that |μ({x})| ≤ ‖μ̂‖∞ for all x ∈ G. Because μ
is finitely supported, μ̂ extends to a trigonometric polynomial on Γ, say

p(γ) =
∑

xj∈T
aj δ̂xj (γ), γ ∈ Γ.

Since the coefficients of a trigonometric polynomial on a compact abelian
group are dominated by the polynomial’s supremum, the lemma follows. ��

Lemma 9.4.11. Let T ⊆ G be finite and ε > 0. Then there exists a finite set
F ⊆ Γ such that for every γ ∈ Γ, each translate of F contains λ ∈ Γ such
that

|μ̂(λ)− μ̂(γ)| ≤ ε‖μ̂‖∞ for all μ ∈M(T ).

Proof (of Lemma 9.4.11). By Lemma 9.4.10, ‖μ‖M(G) ≤ |T | ‖μ̂‖∞ for μ ∈
M(T ). Hence, for any λ ∈ Γ,

|μ̂(γ)− μ̂(λ)| =
∣
∣
∣
∣
∣

∑

t∈T
μ({t})(γ(t)− λ(t))

∣
∣
∣
∣
∣
≤ |T | ‖μ̂‖∞ sup

t∈T
|1− (λγ−1)(t)|.

Let �L = {τ ∈ Γ : supt∈T |1 − τ(t)| < ε/|T |}. Then �L is an open set

in Γ, so Γ =
⋃
ρ∈Γ ρ �L. The compactness of Γ implies there is a finite set

ρ1, . . . , ρJ ∈ Γ, with
⋃
j ρj �L = Γ, and so

⋃
j ρj(�L ∩ Γ) = Γ. Of course,⋃

j λρj(�L ∩ Γ) = Γ for each λ ∈ Γ.

Put F = {ρj}Jj=1. For any γ, ω ∈ Γ, there is some j such that γ ∈ ωρj �L.

Put λ = ωρj . Then λ ∈ ωF and λγ−1 ∈ �L. Hence, |1−λγ−1(t)| < ε/|T |, and
the lemma follows. ��

Lemma 9.4.12. Let G be a compact, metrizable abelian group and T ⊆ G be
a countable set which satisfies

sup{S(T1) : T1 ⊂ T, T1 finite} =∞. (9.4.8)

Then T contains a convergent subsequence, T ′, which satisfies (9.4.8) with
T ′ in place of T .

Here, S(T1) is the Sidon constant of T1.

Proof (of Lemma 9.4.12). We say an x ∈ G is a non-Helson point for T
if every neighbourhood U of x has the property that (9.4.8) holds with T
replaced with U ∩ T .
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Claim. G has a non-Helson point for T .

Assuming the claim, let x be a non-Helson point for T and let {Un} be a
neighbourhood base at x. Then for each n there exists a finite subset Tn ⊂
T ∩Un such that the Helson (= Sidon) constant S(Tn) ≥ n. Let T ′ =

⋃∞
1 Tn.

Clearly, T ′ is non-Sidon and T ′ accumulates only at x.
We now prove the claim. If the claim were false, there would exist (by the

compactness of G) a finite number of open sets Un and constant C such that

sup{S(T1) : T1 ⊂ T ∩ Un, T1 finite} ≤ C (9.4.9)

and
⋃N

1 Un = G.
Suppose T ′ ⊂ T is finite. Then S(T ′∩Un) ≤ C for 1 ≤ n ≤ N . That means

that each T ∩Un is a Sidon set in the discrete version, Gd, of G. By repeated
application of Drury’s union Theorem 6.3.1 for Sidon sets,

⋃N
n=1 T ∩Un = T

is a Sidon set in Gd. Then S(T ′) ≤ S(T,Gd) for all finite T ′ ⊂ T , where
S(T,Gd) is the Sidon constant in Gd. Since the Sidon (or Helson) constant
of a finite set is independent of the topology of the group (Remarks 9.4.8),
(9.4.8) cannot hold, a contradiction. ��

Proofs of Propositions 9.4.9 and 9.4.7

Proof (of Proposition 9.4.9). By Lemma 9.4.12 we may assume that T has
only one accumulation point, (by translating) that the accumulation point is
the identity, e, and that e �∈ T . Thus, if U is any e-neighbourhood, then U∩T
contains all but finitely many points of T and hence cannot be a Helson set.

Choose a finite set T1 ⊂ T with S(T1) > 8. By Lemma 9.4.11 there exists
a finite, symmetric F1 ⊂ Γ which satisfies Lemma 9.4.11 with T = T1 and
ε = 1/8.

Let F0 = ∅. Suppose J ≥ 1 and that for each 1 ≤ j ≤ J pairwise disjoint,
finite sets Tj ⊂ T and finite sets Fj ⊂ Γ have been found such that (a)

S(Tj) ≥ 8j , (b) Fj ⊇ Fj−1 and (c) Fj satisfy Lemma 9.4.11 with T =
⋃j
�=1 T�

and ε = 8−j.
Apply Corollary 9.4.4 with F = F1 · F2 · · ·FJ and ε = 8−J−1 to find a

compact e-neighbourhood U . We may assume that U ∩
⋃J
j=1 Tj = ∅. Choose

a finite set TJ+1 ⊂ T ∩U with S(TJ+1) ≥ 8J+1. Finally, apply Lemma 9.4.11
to find FJ+1. That completes our induction.

We claim that
⋃∞
j=1 Tj is sup-norm partitioned. Of course {e}∪

⋃∞
j=1 Tj is

a compact non-Helson set. To establish the sup-norm partitioned property, it
will suffice to show that if measures νj ∈M(Tj) are given, then the trigono-
metric polynomials pj = ν̂j are π/4-additive. We may apply Lemma 9.4.6
since the identity is not in any of the Tj .

Fix 1 < J < ∞. Let νj ∈ M(Tj) and γj ∈ Γ for 1 ≤ j ≤ J . Set ρJ = γJ .
By the Lemma 9.4.11, there exists ρJ−1 such that

|ν̂J−1(ρJ−1)− ν̂J−1(γJ−1)| ≤ 8−J+1‖ν̂J−1‖∞ and ρJ−1ρ
−1
J ∈ FJ−1.
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Inducting down, we find ρJ−2, . . . , ρ1 such that for 1 < j ≤ J

|ν̂j−1(ρj−1)− ν̂j−1(γj−1)| ≤ 8−j+1‖ν̂j−1‖∞ and ρj−1ρ
−1
j ∈ Fj−1.

Then the conditions on the ρjρ
−1
j−1 show that ρ1ρ

−1
j ∈ F1 ·F2 · · ·Fj−1. Since

νj ∈M(Tj), Corollary 9.4.4 gives

|ν̂j(ρ1)− ν̂j(ρj)| ≤ 8−j‖ν̂j‖∞, and so

|ν̂j(ρ1)− ν̂j(γj)| ≤ 2 · 8−j‖ν̂j‖∞.

Therefore,

∣
∣
∣
∣
∣

J∑

1

ν̂j(ρ1)−
J∑

1

ν̂j(γj)

∣
∣
∣
∣
∣
≤ 2

J∑

j=1

8−j‖ν̂j‖∞ ≤
1

4

J∑

j=1

‖ν̂j‖∞.

Thus, the ν̂j are π/4-additive, completing the proof of Proposition 9.4.9. ��

Proof (of Proposition 9.4.7). We note first that we may assume that E and
Γ are countable. Therefore, G will have a dense, countable subgroup H (Ex-

ercise C.4.18 (4)). We give H the discrete topology and let Λ = Ĥ = Γ/H⊥,
the compact, metrizable dual group. Because H is dense in G, the natural
embedding i : Γ ↪→ Λ is one-to-one into a dense subgroup of Λ. If F ⊆ Γ is
finite, then, by Exercise 6.6.14, S(F) = S(i(F)). Here, S(i(F)) is either the
Helson constant of i(F) in Λ or the Sidon constant of i(F) in Λ with the
discrete topology.

By Lemma 9.4.12 i(E) has a countable subset that is a convergent se-
quence, whose closure is non-Helson. We may assume i(E) is that sequence.
By Proposition 9.4.9, i(E) without its limit point has a sup-norm partitioned,
non-Sidon (considered as a subset of the discrete Λd) subset which we can
write as i(E′) for some E′ ⊂ E. Since i(E′) is non-Sidon, E′ is non-Sidon. An
easy computation shows that E′ is sup-norm partitioned. ��

9.4.2 Completing the Proof of the Bd(E) = B(E)
Characterization of I0 Sets

We have two more lemmas, these specific to the Bd(E) = B(E) context.

Lemma 9.4.13. If Bd(E) = B(E) and E =
⋃∞
j=1 Ej are a sup-norm parti-

tion, then for every ε > 0 there exist M = M(ε), c1, . . . , cM ∈ Δ and a finite
J ≥ 1 such that if ϕ ∈ Bd(E) has norm 1, then there exist x1, . . . , xM ∈ G
such that

∥
∥
∥ϕ−

M∑

m=1

cmδ̂xm

∥
∥
∥
Bd(

⋃∞
j>J Ej)

≤ ε. (9.4.10)
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Proof. Let C > 0 be the product of sup{‖ϕ‖Bd(E) : ‖ϕ‖B(E) ≤ 1} and the
constant, C′, for the sup-norm partition (‖ϕ‖B(E) ≤ C′ supj ‖ϕ‖B(Ej) for all
ϕ ∈ B(E)).

Since the Ej are finite, each Ball(Bd(Ej)) is isometrically isomorphic to
Ball(B(Ej)) (Exercise 9.6.2) and is compact. Thus, we may include or omit
the subscript d on the B(Ej), as we wish.

Let X =
∏∞
j=1 Ball(Bd(Ej)). Then X is compact in the product topology.

If ϕ ∈ Ball(Bd(E)), then we may identify ϕ with (ϕ|Ej ) ∈
∏
j Ball(Bd(Ej)).

Also, any (ϕj) ∈
∏
j Ball(Bd(Ej)) may be identified with ϕ ∈ C Ball(Bd(E))

where ϕ|Ej = ϕj . That gives Ball(Bd(E)) ⊆ X ⊆ C Ball(Bd(E)). Of course,
for ϕ and ϕα ∈ Ball(Bd(E)),

‖ϕα − ϕ‖Bd(E) → 0 ⇐⇒ sup
j
‖(ϕ− ϕα)|Ej‖Bd(Ej) → 0, and (9.4.11)

ϕα → ϕ weak* ⇐⇒ ‖(ϕ− ϕα)|Ej‖Bd(Ej) → 0 for all j. (9.4.12)

For each M ≥ 1, let DM be a countable, dense subset of ΔM . For M ≥ 1
and c = (c1, . . . , cM ) ∈ DM , set

Y (M, c) =

{

ϕ ∈ X : ∃xm ∈ G with sup
j

∥
∥ϕ−

M∑

m=1

cmδ̂xm

∥
∥
B(Ej)

≤ ε

C

}

.

Then
⋃
M≥1, c∈DM

Y (M, c) = X. Because G and X are compact, (9.4.11)
implies each Y (M, c) is closed in X . The Baire category theorem and the
definition of the product topology say at least one Y (M, c) has non-empty
interior in X in the product topology on X , that is, there exist an integer
J and ψ ∈

∏J
j=1 Ball(B(Ej)) such that {ψ}×

∏
j>J Ball(B(Ej)) ⊂ Y (M, c);

see p. 209. Therefore, the lemma holds with M , J and c = (c1, . . . , cM ). ��

Lemma 9.4.14. Let E =
⋃
j Ej be sup-norm partitioned and Bd(E) = B(E).

Then a cofinite subset of E satisfies a Pisier ε-net condition for some 0 <
ε < 1.

Proof. Apply Lemma 9.4.13 to find J , M < ∞ and c ∈ ΔM such that for
every ϕ ∈ Bd(

⋃
j>J Ej) there are xm ∈ G with

∥
∥
∥
∥
∥

M∑

1

cmδ̂xm − ϕ
∥
∥
∥
∥
∥
Bd(E′)

≤ 1/8,

for E′ =
⋃
j>J Ej.

We will show that ε = 1/(1000M) will do. By Exercise 9.6.8 each F ⊂ Γ
with |F| ≤ M + 1 satisfies a Pisier 1/(M + 1)-net condition. We therefore
may assume that |F| > M + 1.

Let F ⊂ E′ be finite and non-empty. Use Exercise 9.6.9 with ε = 1/4 to
find L ≥ 4|F| = 22|F| elements, f�, of Ball(Bd(F)) such that

‖fj − f�‖B(F) ≥
1

4
for 1 ≤ j �= � �= L. (9.4.13)
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Let μj =
∑M

m=1 cmδxj,m be measures with ‖μ̂j − fj‖Bd(F) ≤ 1/64 for all
j. Let {xk : 1 ≤ k ≤ K} ⊆ G be a subset of maximal cardinality such that

‖δ̂x�
− δ̂xk

‖�∞(F) ≥
1

1000M
for 1 ≤ k �= � ≤ K. (9.4.14)

Let Uk = {x ∈ G : ‖δ̂x − δ̂xk
‖�∞(F) < 1/(1000M)} for 1 ≤ k ≤ K. Then the

union of the sets Uk covers G. We claim that

K ≥ 22|F|/(M+1) ≥ 2|F|/(1000M).

Suppose not. By the Pigeon hole principle, there exists k(1) such that
xj,1 ∈ Uk(1) for at least

L/K ≥ 22|F|(1−1/(M+1))

of the xj,1. Let J (1) denote that set of j’s, so |J (1)| ≥ 22|F|(1−1/(M+1)).
Then there exists an integer k(2) such that for at least

22|F|(1− 2
M+1 )

elements j ∈ J (1) we have xj,2 ∈ Uk(2). Proceeding inductively, we see that
there exists a set J (M) and k(1), . . . , k(M) such that xj,m ∈ Uk(m) for all
j ∈ J (M) and 1 ≤ m ≤M and

|J (M)| ≥ 22|F|(1− M
M+1 ) = 22|F|/(M+1) ≥ 4

since |F | ≥M + 1. We note that for j, � ∈ J (M), Lemma 9.4.1 implies that

∥
∥μ̂j − μ̂�

∥
∥
B(F)

≤
M∑

m=1

|cm|
∥
∥δ̂xj,m − δ̂x�,m

∥
∥
B(F)

≤ π(e− 1)

M∑

m=1

|cm|
∥
∥δ̂xj,m − δ̂x�,m

∥
∥
�∞(F)

<
π(e − 1)2M

1000M
≤ 1

64
,

since xj,m, x�,m ∈ Uk(M). Since |J (M)| ≥ 4 we may find j �= � ∈ J (M).
Then the above shows that

‖fj − f�‖B(F) ≤ ‖fj − μ̂j‖B(F) + ‖μ̂j − μ̂� ‖B(F) + ‖μ̂� − f�‖B(F)

≤ 1/64 + 1/64 + 1/64 < 1/4,

a contradiction of (9.4.13). This establishes the claim. Simple calculations
now show the required conclusion holds. ��

Here is the Ramsey–Wells–Bourgain theorem.
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Theorem 9.4.15 (Ramsey–Wells–Bourgain). A subset E of Γ is I0 if
and only if Bd(E) = B(E).

Proof (of Theorem 9.4.15). Suppose E ⊆ Γ with Bd(E) = B(E) (the other
direction being trivial). It will suffice to show that E is Sidon since then
�∞(E) = Bd(E). We proceed by contradiction. We may assume that 1 �∈ E
and that E is infinite.

If E were not Sidon, apply Proposition 9.4.7 to obtain a non-Sidon E′ =⋃∞
j=1 Ej ⊆ E which is sup-norm partitioned and satisfies Bd(E

′) = B(E′).
Lemma 9.4.14 and Theorem 9.2.1 (2) show that

⋃
j≥J Ej is Sidon for suitable

J . Because
⋃
j<J Ej is a finite set, it too is Sidon, and hence the union of

those two last sets, E′, must have been Sidon. That contradiction proves the
theorem. ��

9.5 Remarks and Credits

Sidon Sets Are Proportional I0 or ε-Kronecker. Theorem 9.2.1 is due to
Ramsey [158]; the proof given here follows his closely. The material in Sect.
9.3 is from [55]. In [55] it is also shown that Sidon sets are characterized by
the property of being proportional RI0. A different proof that Pisier’s ε-net
condition implies Sidonicity can be found in [119, Theorem 13.V.5].

Propositions 9.2.3 and 9.2.4 were announced by Pajor without proof in
[140, p. 742]. Proofs can be found in [141, pp. 143–4] and [142, pp. 69–74]. A
proof of Proposition 9.2.4 is also given in [119, pp. 418–420].

Characterization of I0 Sets as Bd(E) = B(E). The Ramsey–Wells–Bour-
gain Theorem 9.4.15 appeared in [18], answering a question implicit in [50].
Ramsey and Wells earlier proved Theorem 9.4.15 for subsets of groups of
bounded order and for subsets of E1 ·E2 where E1,E2 are disjoint and E1∪E2

is ε-Kronecker [159].
Lemma 9.4.1 appears, with proof for G = T, in Varopoulos’s [186]; vari-

ants can also be found in [13, 125], both of which reference [186]. The proof
here uses the main idea of [186], while avoiding the complication of apply-
ing Bernstein’s lemma to pseudomeasures on T. Varopoulos gives no explicit
constant. Bourgain stated Lemma 9.4.1 in [18] and gave a proof in [20]. A
longer proof [119, p. 555] of Lemma 9.4.1, attributed to Rodŕıguez–Piazza,
gives a better constant.

The propositions on sup-norm partitions are adapted from [13]. Lemma
9.4.3 is essentially the assertion that singletons are sets of spectral synthesis;
see, for example, [167, Theorem 7.6.2(a)] or [88, Lemma 39.27]) for other
proofs of that fact. Lemma 9.4.12 is a version (due to Blei [13]) of Kahane’s
[100, Theorem 1]; Lemma 9.4.13 is adapted from one due to Ramsey [18].

Exercises. Exercise 9.6.2 is from [65] and [158, Theorem 1]. Exercise 9.6.5
is a special case of the Kaufman–Rickert inequality [110] or [56, 12.2.3]. Other
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proofs are given in [2] and Asmar and Montgomery–Smith [4]. Exercise 9.6.10
is [13, Lemma 1.7]. Exercise 9.6.9 is standard. For more on the subject of
metric entropy, to which it belongs, see [1], for example.

9.6 Exercises

Exercise 9.6.1. Show that A(Y ) is isomorphic (but not necessarily isomet-
rically) to B(Y ) for all compact subsets of the locally compact abelian group
G.

Exercise 9.6.2. Show that if F is a finite set, then B(F) and Bd(F) are
isometrically isomorphic.

Exercise 9.6.3. For F ⊆ Γ, let ς(F) denote the minimum integer N such
that given any A ⊆ F, there is a measure μ ∈ Md(G) of length at most N,
such that Imμ̂(γ) ≥ 1/2 if γ ∈ A and Imμ̂(γ) ≤ −1/2 if γ ∈ F�A.

1. Show that E is I0 if and only if ζ(E) <∞.
2. Find a bound on the I0 constant of E if ς(E) ≤ N .
3. Show that the set E ⊆ Γ is Sidon if and only if there exists τ > 0 and

integer N such that each finite subset F ⊆ E contains a further finite
subset F′ ⊆ F with |F′| ≥ τ |F| and ς(F′) ≤ N.

Exercise 9.6.4. Call a subset of N “proportional Hadamard” if all finite
subsets contain proportional-sized subsets that are Hadamard with ratios
bounded away from one. Show that Sidon sets in N, and even ε-Kronecker
sets, need not be proportional Hadamard.

Exercise 9.6.5. Show that any finite set of complex numbers, X , contains
a subset Y with

∑
z∈X |z| ≤ π|

∑
z∈Y z|.

Exercise 9.6.6. 1. Show that f = (1/2h)1[−h,h] ∗ 1[−h,h] has A(T)-norm 1
and that f has graph the triangle of width 4h and height 1.

2. Use two triangles to find f ∈ A(T) of norm at most 3, support in [−2h, 2h]
and equal to 1 on [−h, h].

3. (i) Use two triangles to show that f(x) = x on [−h, h] has A([−h, h])-
norm at most 2h.

(ii) Use those same two triangles to show that f(x) = xn on [−h, h] has
A([−h, h])-norm at most 2hn.

(iii) Use power series to show that ‖1 − eix‖A([−h,h]) ≤ 2(eh − 1) ≤
2(e− 1)h.

4. (i) Show that the “valley-high” function f , supported on [−2h, 2h], has
norm at most

√
2h. Here, f(−2h) = f(0) = f(2h) = 0, f(−h) = −h,

f(h) = h and f is linear in the gaps. Hint: Write f as a convolution
of two L2 functions.

(ii) Improve the estimate of 3c to (
√

2 + 2(e− 2))h.
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Exercise 9.6.7. Let T ⊆ G be finite and ε > 0. Show that there exists a
finite subset F ⊂ Γ such that for every ρ ∈ Γ there exists γ ∈ F such that
‖γ − ρ‖�∞(T ) < ε.

Exercise 9.6.8. Fix 1 ≤ M < ∞. Show that every finite F ⊂ Γ � {1} with
|F| ≤M + 1 satisfies a Pisier 1/(M + 1)-net condition.

Exercise 9.6.9. If X is an N -dimensional Banach space, then for every ε > 0
there exist at least J = �1/εN� elements xj ∈ Ball(X) such that ‖xj−xk‖X ≥
ε for all 1 ≤ j �= k ≤ J .

Exercise 9.6.10. Prove Lemma 9.4.12 using Varopoulos’s Theorem 10.3.4.



Chapter 10

Sets of Zero Discrete Harmonic
Density

Sets with zdhd and zhd are defined. Finite unions of I0 sets have zdhd.
A “Hadamard gap” theorem holds for sets with zhd.

10.1 Introduction

Two important themes have motivated much of the research on Sidon and
related special sets: determining which classes of special sets have the prop-
erty that every Sidon set is a finite union of sets from the class and under-
standing the “size” of Sidon sets. Much progress has been made on these
themes, as discussed in Chaps. 6–9. Two specific problems which remain
outstanding are:

1. Is every Sidon set a finite union of I0 sets? [P 1]
2. Can a Sidon set be dense in Γ? [P 2]

These questions are not independent. A finite union of I0 sets cannot be
dense in Γ (Theorem 3.5.1), and hence, a “yes” answer to the first question
implies “no” to the second.

In this chapter we approach these two questions by introducing the notion
of zero (discrete) harmonic density, abbreviated z(d)hd. A set E ⊆ Γ is
said to have property z(d)hd if for each non-empty, open U ⊆ G, the Fourier
transform of every (discrete) measure agrees on E with the Fourier transform
of a (discrete) measure concentrated on U . The characterizations given of
z(d)hd in Sect. 10.2 will make it easy to show that property zdhd implies zhd.

The definition is motivated by the facts that when G is connected every
Sidon (or I0) set is Sidon(U) (resp., I0(U)) (see Corollary 6.3.7 and Theorem
5.3.6) for all non-empty, open U . It follows that Sidon sets have the property
zhd and I0 sets have the property zdhd. In particular, every finite set has
zdhd. But there are also non-Sidon sets with property zdhd; several examples

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5 10,
© Springer Science+Business Media New York 2013
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are given in Sect. 10.4. It is unknown if every Sidon set has zdhd or even if
every ε-Kronecker (for ε ≥

√
2) or dissociate set has zdhd [P 11].

It is easy to see that a set with the zdhd property cannot be dense in Γ
(Proposition 10.2.6). A deeper result, Theorem 10.3.5, is that finite unions
of I0 sets have property zdhd. Thus, if it could be resolved whether every
Sidon set has zdhd (either way), then one of the two questions stated in the
opening paragraph could be answered: If every Sidon set has zdhd, then a
Sidon set cannot be dense in Γ. If, instead, there is a Sidon set which does
not have zdhd, then that Sidon set is not a finite union of I0 sets.

Another motivation for the study of the z(d)hd property is a “globalization
principle”, which is illustrated in Sect. 10.4.1 by a novel proof of the classical
Hadamard gap Theorem 1.2.2.

10.2 Characterizations and Closure Properties

Throughout this chapter, the compact group G is assumed to be connected.
That is a natural assumption to make because a set of two elements of finite
order will not even have zhd; just take for U any open subset of G on which
the two elements coincide.

Definition 10.2.1. Let U ⊆ G. We say that E ⊆ Γ has U -hd (respectively,
U -dhd) if for every μ ∈ M(G) (respectively, μ ∈ Md(G)) there exists ν ∈
M(U) (resp., ν ∈Md(U)) satisfying μ̂ = ν̂ on E.

Clearly, E has zhd (respectively, zdhd) if and only if E has U -hd (resp.,
U -dhd) for every non-empty, open set U ⊆ G. A translation argument shows
that E has zhd (zdhd) if and only if E has U -hd (U -dhd) for every e-neigh-
bourhood U ⊆ G.

Sets with the U -dhd property can be characterized in an analogous fashion
to Kalton’s characterization of I0(U) sets, Theorem 3.2.5. Similar statements
characterize U -hd but with Md(G) and Md(U) replaced by M(G) and M(U)
and Bd(E) replaced by B(E).

Theorem 10.2.2. Let U ⊆ G be open and E ⊆ Γ. The following are
equivalent:

1. E has U -dhd.
2. There is a constant N such that for all μ ∈Md(G) there exists ν ∈Md(U)

with ‖ν‖M(G) ≤ N ‖μ‖M(G) and ν̂(γ) = μ̂(γ) for all γ ∈ E.

3. There is a constant N such that for all x ∈ G there exists ν ∈ Md(U)

with ‖ν‖M(G) ≤ N and ν̂(γ) = δ̂x(γ) for all γ ∈ E.

4. There exists 0 < ε < 1 and constant N = N(ε) such that for every
μ ∈Md(G) there exists ν ∈Md(U) with ‖ν‖M(G) ≤ N ‖μ‖M(G) and

‖μ̂− ν̂‖Bd(E) < ε ‖μ‖M(G) .
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As in the characterizations of I0(U) sets, the proof will show that the
phrase, “There exists 0 < ε < 1”, can be replaced by “For every 0 < ε < 1”.

Proof. (1) ⇒ (2) is the closed graph theorem. The implications (2) ⇒(3)
⇒(4) are clear. (4) ⇒(1) is a variation on the standard iteration argument.
The details are left as Exercise 10.6.1. ��

The proof of the analogous theorem for zdhd is also left as Exercise 10.6.2.

Theorem 10.2.3. The subset E ⊆ Γ has zdhd if and only if any of the
following conditions hold:

1. Any one of properties Theorem 10.2.2 (1)–(4) is satisfied for all
e-neighbourhoods U ⊆ G.

2. For every x ∈ G and for every e-neighbourhood U ⊆ G, there exists
ν ∈Md(U) with ν̂(γ) = δ̂x(γ) for all γ ∈ E.

3. For every e-neighbourhood U ⊆ G and 0 < ε < 1 there exists N = N(U, ε)
such that for every x ∈ G there are scalars cn ∈ Δ and elements un ∈ U
such that

∥
∥
∥δ̂x −

N∑

n=1

cnδ̂un

∥
∥
∥
Bd(E)

< ε. (10.2.1)

Remark 10.2.4. In Theorem 10.2.3(3), δx cannot be replaced by arbitrary
μ ∈ Ball(Md(G)). Here is why. Suppose ω ∈ Ball(M(G)). Let μα ∈
Ball(Md(G)) converge weak* to ω, and let cn,α ∈ Δ and un,α ∈ U have

‖μ̂α−
∑N

n=1 cn,αδ̂un,α‖B(E) < ε for all α. Letting cn be a cluster point of cn,α

and un a cluster point of un,α, we see that ‖ω̂ −
∑N

1 cnδ̂un‖B(E) ≤ ε. That
shows that E satisfies the conclusion of Lemma 9.4.13. By the completion
(Sect. 9.4.2) of the proof of the Ramsey–Wells–Bourgain Theorem 9.4.15, E
is I0. But there are non-I0 sets (even non-Sidon sets) that have zdhd; see Sect.
10.4 for several examples.

Corollary 10.2.5. A set with zdhd has zhd.

Proof. It will be enough to verify that if E has U -dhd, then E has U -hd.
Let μ ∈ M(G) and choose να ∈ Md(G) with ‖να‖M(G) ≤ ‖μ‖M(G) and

να → μ weak* in M(G). Since E has U -dhd, by Theorem 10.2.2(2), there are
discrete measures σα ∈Md(U) and a constant N such that σ̂α = ν̂α on E and
‖σα‖M(G) ≤ N ‖να‖M(G) ≤ N ‖μ‖M(G). Being norm bounded, the net {σα}
has a weak* cluster point σ ∈M(G). Because the measures σα are supported
on U, the same is true of σ and since ν̂α(γ) → μ̂(γ) for all γ ∈ Γ, σ̂ = μ̂ on
E. Thus, E has U -hd. ��

Here are some easy facts about the “size” of a set with zdhd. In particular,
Proposition 10.2.6 (1) implies a set with zdhd is not dense in Γ.
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Proposition 10.2.6. Suppose E ⊆ Γ has zdhd.

1. If Λ is a non-trivial, closed subgroup of Γ, then E ∩Λ �= Λ.
2. The interior of E in Γ is empty.

Proof. (1) Suppose E ∩ Λ is dense in the non-trivial, closed subgroup Λ.
Let H ⊆ G be the annihilator of Λ. Since Λ is non-trivial, its dual group
G/H contains a proper open subset UH . Choose x ∈ G such that the coset
xH /∈ UH . The set UH can also be viewed as an open subset of G. Hence,
there is a discrete measure ν =

∑
cjδxj ∈ Md(UH) with ν̂ = δ̂x on E. Put

μ =
∑
cjδxjH . Then μ is a discrete measure on G/Hconcentrated on UH.

If γ ∈ Λ, then, since γ(H) = 1,

μ̂(γ) =
∑

cj δ̂xjH(γ) = ν̂(γ) = δ̂x(γ) = δ̂xH(γ).

Thus, the Fourier–Stieltjes transforms of μ and δxH agree on Λ. But xH /∈
UH , so this is not possible.

(2) Suppose E contains a non-empty, open set in Γ. There is no loss of
generality in assuming this open set is a neighbourhood of the identity since
translates of sets with property zdhd also have zdhd. Thus, E contains a
set of the form {γ : |γ(xj) − 1| < ε for j = 1, . . . , J}. In particular, E will
contain H⊥, where H = 〈{x1, . . . , xJ}〉. By the first part of the proposition,
this subgroup must be trivial and so H must be dense in G.

Consider the map T : Γ → T
J given by T (γ) = (γ(x1), . . . , γ(xJ )).

The map T is clearly continuous and, since H is dense, T is 1 − 1. Thus,
T : Γ → T (Γ) is a homeomorphism. This shows Γ is homeomorphic to a
compact subgroup of TJ , and so G is countable. But there are no countably
infinite, compact abelian groups (Exercise C.4.17 (1)). ��

Remark 10.2.7. It is known that, unlike I0 sets, a set E with zdhd can cluster
at a continuous character; see Corollary 10.4.5, but it is unknown if E is a
U0 set [P 12], for example.

Proposition 10.2.8. A subset E ⊆ Z which has zhd cannot contain
arbitrarily long arithmetic progressions of fixed step length.

Proof. Since translation and dilation do not affect the property zhd, or even
the zhd constants, there is no loss of generality in assuming E contains
arbitrarily long arithmetic progressions of step length 1.

Let U ⊆ T be a non-empty, open subset that is not dense and choose
x /∈ U . Let N be the U -hd constant of E, that is, for every μ ∈ M(G)
there is some ν ∈ M(U) such that ‖ν‖M(G) ≤ N ‖μ‖M(G) and ν̂ = μ̂ on E.

By translating E repeatedly, we can obtain measures νj ∈ Md(U) such that

ν̂j = δ̂x on [−j, j] and ‖νj‖M(G) ≤ N . Let ν be a weak* limit. This measure

is supported on U and its transform agrees with δx on all of Z. But this is
impossible because x /∈ U . ��
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10.3 Union Results

It is unknown if the union of two sets with zdhd has zdhd [P 11] . In this
section it will be shown that a finite union of zdhd sets has property zdhd
under additional assumptions. In particular, we will prove that a finite union
of I0 sets, although not necessarily I0, has zdhd.

10.3.1 Unions of Zdhd Sets with Disjoint Closures

We begin by showing that a finite union of zdhd sets with disjoint closures
has zdhd.

Proposition 10.3.1. Suppose E,F ⊆ Γ have V -dhd for some symmetric
e-neighbourhood V and that E ∩ F is empty. Then E ∪ F has V 6-dhd.

Proof. We claim it will be enough to find ν ∈ Md(V
5) with ν̂ = 1 on E and

ν̂ = 0 on F. To see this, note that for each μ ∈ Md(G) there exist ωE, ωF ∈
Md(V ) such that ω̂E = μ̂ on E and ω̂F = μ̂ on F. Set ω = ν∗ωE+(1−ν)∗ωF.
We have ω ∈Md(V

6) and ω̂ = μ̂ on E ∪ F.
We turn to finding ν. That is done exactly as in the proof of

Proposition 5.2.2, up to the point at which the I0(V ) property for F is
called upon. In the notation of the proof of Proposition 5.2.2, for each γ ∈ E
there is a measure τ1 ∈ Md(V ), with τ̂1 ≥ 1/2 on F and τ̂1(γ) = 0. In the
present context, we call upon Gel’fand’s Theorem C.1.12. Applying that
theorem to A(F) and τ̂1, we see that there exists τ̂0 ∈ A(F) such that
τ̂0 = 1/τ̂1 on F. We may assume τ0 ∈ Md(G). Because F has V -dhd, there
exists τ ∈Md(V ) with τ̂ = τ̂0 on F. Then ωγ = (1− τ1 ∗ τ) ∗ (1− τ̃1 ∗ τ̃ ) has
ω̂γ(γ) = 1, ω̂γ = 0 on F and ω̂γ ≥ 0 everywhere. Also, ωγ ∈Md(V

4).

By the compactness of E, there are γ1, . . . , γM such that τ ′1 :=
∑M

1 ωγm
has τ̂ ′1 ≥ 1/2 on E (and 0 on F). Again, by Gel’fand’s theorem, there exists

τ ′0 ∈ Md(G) such that τ̂ ′0 = 1/τ̂ ′1 on E. Because E has V -dhd, there exists

τ ′ ∈ Md(V ) such that τ̂ ′ = τ̂ ′0 on E. Then ν = τ ′1 ∗ τ ′ has ν̂ = 1 on E and
ν̂ = 0 on F. Also, ν ∈Md(V

5). ��

Corollary 10.3.2. If E,F have zdhd and E ∩ F is empty, then E ∪ F has
zdhd.

Corollary 10.3.3. If E has zdhd and F is finite, then E ∪F has zdhd.

Proof. There is no loss in assuming F = {γ}. If μ and ν are discrete measures
whose Fourier transforms agree on E, then by continuity μ̂ = ν̂ on E. Thus,
if γ ∈ E, then E ∪ {γ} has zdhd. Otherwise, E ∩ F is empty and we may
apply the previous corollary. ��
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10.3.2 A Finite Union of I0 Sets Has Zdhd

The goal of this section is to prove the theorem stated in its title. The proof
will require the notion of a Helson set (Remark 3.5.5). Recall that the Helson
constant (p. 165) of a closed set S ⊂ Γ is the infimum of the numbers C such
that ‖f‖Bd(S) ≤ C‖f‖∞ for all f ∈ Bd(S).

Helson sets are relevant here because, as was observed in Remark 3.5.5,
the closure of an I0 set is a Helson set. Like Sidon sets, a finite union of
Helson sets is Helson. This deep result, stated below, will be used in what
follows.

Theorem 10.3.4 (Varopoulos’s union theorem).
The union of two Helson sets is Helson.

Here is our union theorem for I0 sets.

Theorem 10.3.5. If E, F ⊆ Γ are I0 sets, then E ∪ F has zdhd.

One can immediately deduce that there are non-I0 sets with zdhd (such
as Example 1.5.2). We will see later (Proposition 10.4.4) that there are
non-Sidon sets that have zdhd.

First we prove a technical lemma.

Lemma 10.3.6. Suppose E,F ⊆ Γ are I0 sets. Let V ⊆ G be an e-neigh-
bourhood. Then there is an open set ΩΩΩ ⊆ Γ, containing E ∩ F, such that
(E ∪ F) ∩ΩΩΩ has V -dhd.

Proof (of Lemma 10.3.6). The characterization of V -dhd given in Theorem
10.2.2 (4) implies that it will suffice to show that there is an open set ΩΩΩ ⊇
E∩F and constant N such that for every μ ∈Md(G) with ‖μ‖M(G) ≤ 1 there

exists ν ∈Md(V ) such that ‖ν‖M(G) ≤ N and ‖μ̂− ν̂‖Bd((E∪F)∩ΩΩΩ) ≤ 1/2.

Choose an e-neighbourhood W ⊆ G such that W 2 ⊆ V . By compactness,
there are finitely many points xk, k = 1, . . . ,K, such that

⋃K
k=1 xkW = G.

Being I0, the set E has zdhd, and hence there are measures νk ∈ Md(W )

and a constant CE such that ‖νk‖M(G) ≤ CE and ν̂k = δ̂xk
on E. Continuity

implies that this equality continues to hold on E.
The sets E,F are both Helson, and therefore so is their union. Let C0 be

the Helson constant of E ∪F. Put

ΩΩΩ =

K⋂

k=1

{γ ∈ Γ :
∣
∣
∣ν̂k(γ)− δ̂xk

(γ)
∣
∣
∣ < 1/ (4C0)} ⊆ Γ.

The set ΩΩΩ is open as each of the sets {γ :
∣
∣
∣ν̂k(γ)− δ̂xk

(γ)
∣
∣
∣ < 1/ (4C0)} is

open in Γ. Since ν̂k = δ̂xk
on E, ΩΩΩ contains all of E.
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Let μ be any discrete measure on G with ‖μ‖M(G) ≤ 1. Then μ can be
written as

μ =
∑

j,k

cj,kδxkwj,k
=

K∑

k=1

∞∑

j=1

cj,kδxk
∗ δwj,k

,

where wj,k ∈ W and
∑
j,k |cj,k| = ‖μ‖M(G) ≤ 1.

Consider the measure ν =
∑

j,k cj,kνk ∗ δwj,k
∈ Md(W

2) ⊆ Md(V ). This
measure satisfies ‖ν‖M(G) ≤

∑
j,k |cj,k| ‖νk‖M(G) ≤ CE. Furthermore, the

definition of ΩΩΩ ensures that for each γ ∈ ΩΩΩ,

|ν̂(γ)− μ̂(γ)| =
∣
∣
∑

j,k

cj,k(ν̂k(γ)− δ̂xk
(γ))δ̂wj,k

(γ)
∣
∣

≤
∑

j,k

|cj,k| |ν̂k(γ)− δ̂xk
(γ)| ≤ 1

4C0
‖μ‖ ≤ 1

4C0
.

Thus, the function ν̂ − μ̂, viewed as an element of C((E∪F)∩ΩΩΩ), has norm
at most 1/ (4C0) . Since E ∪ F is Helson, it follows that there is a measure
σ ∈Md(G) such that σ̂ = ν̂− μ̂ on (E∪F)∩ΩΩΩ and ‖σ‖M(G) ≤ 2C0/ (4C0) =

1/2. Therefore, ‖ν̂ − μ̂‖Bd((E∪F)∩ΩΩΩ) ≤ ‖σ‖M(G) ≤ 1/2, which proves that ν
has the desired properties. ��

Proof (of Theorem 10.3.5). Let U ⊆ G be an e-neighbourhood and let V ⊆ G
be an e-neighbourhood with V 5 ⊆ U. As in Lemma 10.3.6, choose ΩΩΩ ⊆ Γ, an
open set containing E∩F, such that (E∪F)∩ΩΩΩ has V -dhd. The regularity of
the topology of Γ implies there is an open setΩΩΩ1 ⊇ E∩F, such thatΩΩΩ1 ⊆ ΩΩΩ.

Because E has zdhd, there is a measure μE ∈Md(V ) such that μ̂E = 0 on
E �ΩΩΩ1 and μ̂E = 1 on the disjoint closed set E ∩ F. Similarly, there exists
a measure μF ∈ Md(V ) such that μ̂F = 0 on F � ΩΩΩ1 and μ̂F = 1 on the
disjoint set E∩F. Put σ = μE ∗ μF ∈Md(V

2). Then σ̂ = 0 on (E∪F) �ΩΩΩ1

and σ̂ = 1 on E ∩ F. Let

ΩΩΩ2 = {γ ∈ E ∪ F : |σ̂(γ)| > 1/2}.

The choice of σ ensures that E ∩F ⊆ ΩΩΩ2 ⊆ΩΩΩ2 ⊆ ΩΩΩ1.
Since σ̂|ΩΩΩ2

is bounded away from 0, an application of Gel’fand’s theorem
(as in Proposition 10.3.1) implies there exists σ1 ∈Md(G) such that σ̂ ·σ̂1 = 1
onΩΩΩ2. Since (E∪F)∩ΩΩΩ has V -dhd, the same is true for its subset (E∪F)∩ΩΩΩ2.
Hence, we can choose σ2 ∈Md(V ) such that σ̂2 = σ̂1 on (E ∪F) ∩ΩΩΩ2.

Because the closed sets ΩΩΩ2 and ΩΩΩc1 are disjoint, there is a discrete measure
ν such that ν̂ = 1 on ΩΩΩ2, ν̂ = 0 on ΩΩΩ1 and 0 ≤ ν̂ ≤ 1. Again, because
(E ∪ F) ∩ ΩΩΩ has V -dhd, there exists ν1 ∈ Md(V ) such that ν̂1 = ν̂ on
(E ∪ F) ∩ΩΩΩ. Finally, put

μ = σ ∗ σ2 ∗ ν1 ∈Md(V
4).

By construction, μ̂ = 1 on (E ∪F) ∩ΩΩΩ2 and μ̂ = 0 on (E ∪ F) �ΩΩΩ1.
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Let ρ ∈Md(G) be given. To prove that E∪F has U -dhd it will be enough
to prove there exists ρ0 ∈Md(V

5) such that ρ̂0 = ρ̂ on E ∪ F.
The closed sets E � ΩΩΩ2 and F � ΩΩΩ2 are disjoint since E ∩ F ⊆ ΩΩΩ2.

By Corollary 10.3.2, (E�ΩΩΩ2) ∪(F � ΩΩΩ2) = (E ∪ F) � ΩΩΩ2 has zdhd and
this ensures there is a discrete measure ρ1 ∈ Md(V ) such that ρ̂1 = ρ̂ on
(E∪F)�ΩΩΩ2. Since (E∪F)∩ΩΩΩ has V -dhd, there is also a measure ρ2 ∈Md(V )
such that ρ̂2 = ρ̂ on (E ∪ F) ∩ΩΩΩ. Set

ρ0 = ρ1 ∗ (δe − μ) + ρ2 ∗ μ ∈Md(V
5).

We claim this measure interpolates ρ̂ on E ∪ F. To see this, observe the
following:

• On (E ∪ F) ∩ (ΩΩΩ1 �ΩΩΩ2), ρ̂1 = ρ̂ = ρ̂2; hence, ρ̂0 = ρ̂1(1− μ̂) + ρ̂2μ̂ = ρ̂.
• On (E ∪ F) �ΩΩΩ1, ρ̂1 = ρ̂ and μ̂ = 0; thus, ρ̂0 = ρ̂1 = ρ̂.
• Finally, on (E ∪ F) ∩ΩΩΩ2, ρ̂2 = ρ̂ and μ̂ = 1, and so ρ̂0 = ρ̂2 = ρ̂.

These observations demonstrate that ρ̂0 = ρ̂ on E ∪ F, as claimed. ��

10.3.3 Other Union Results for Zdhd Sets

The union of two zdhd sets can also be shown to have zdhd if their closures
have finite intersection, though we know of no non-trivial instances of this.
This is a consequence of a more general result which relies on the property
of spectral synthesis (p. 213).

Theorem 10.3.7. Suppose E, F ⊆ Γ have zdhd and E ∩ F obeys spectral
synthesis. Then E ∪ F has zdhd.

Corollary 10.3.8. If E,F have zdhd and E ∩ F is finite, then E ∪ F has
zdhd.

Proof. This follows since finite sets have spectral synthesis (see p. 213). ��

The theorem is deduced from a technical lemma similar to Lemma 10.3.6.
We remark that the definition of zdhd extends to subsets of Γ in the obvious
fashion and the characterization results, Theorems 10.2.2 and 10.2.3, continue
to hold in this setting.

Lemma 10.3.9. Suppose E has zdhd, E ∩ F obeys spectral synthesis and
V ⊆ G is an e-neighbourhood. Then there is an open set ΩΩΩ ⊇ E∩F such that
ΩΩΩ has V -dhd.

Proof (of Lemma 10.3.9). We begin in the same manner as the proof

of Lemma 10.3.6. Let W 2 ⊆ V be open and assume
⋃K
k=1 xkW = G. Use

the zdhd property of E to obtain a constant C and measures νk ∈ Md(W )
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such that ‖νk‖M(G) ≤ C and ν̂k = δ̂xk
on E for k = 1, . . . ,K. Since E ∩ F

obeys spectral synthesis, there is a neighbourhood ΩΩΩ of E ∩ F such that

‖ν̂k − δ̂xk
‖Bd(ΩΩΩ) < 1/ (2K) for each k = 1, . . . ,K (see Lemma C.1.14). This

inequality is enough to prove that if μ =
∑
j,k cj,kδxkwj,k

is any norm one,
discrete measure, with wj,k ∈ W , then ν =

∑
j,k cj,kνk ∗ δwj,k

∈ Md(V ) has
measure norm at most C and satisfies ‖μ̂− ν̂‖Bd(ΩΩΩ) ≤ 1/2. ��

Proof (of Theorem 10.3.7). The proof is like that of Theorem 10.3.5 but
without the intersections with E ∪F and using Lemma 10.3.9. ��

10.4 Examples and Applications

Proposition 10.4.1. Let E ⊆ Γ and suppose the cluster points of E are
contained in the intersection of cosets of the form γnH

⊥
n ⊆ Γ, where Hn are

finite subgroups of G and
⋃∞
n=1Hn is dense in G. Then E has zdhd.

Proof. Fix an e-neighbourhood U ⊆ G and let V be a symmetric e-neigh-
bourhood such that V 12 ⊆ U . Assume G =

⋃K
k=1 xkV . Since

⋃
nHn is dense

in G, for each k, there are elements hk ∈ xkV ∩(
⋃
nHn), say hk = xkvk ∈ Hnk

with vk ∈ V . Because V is symmetric,

K⋃

k=1

hkV
2 =

K⋃

k=1

xkvkV
2 ⊇

K⋃

k=1

xkV = G.

We first check that Λ =
⋂K
k=1 γnk

H⊥
nk

has V 2-dhd by verifying Theo-
rem 10.2.2 (3). Let x ∈ G. Then x = hkv for some k = 1, . . . ,K and
v ∈ V 2. Fix γ0 ∈ γnk

H⊥
nk

and let σ be the discrete, norm one measure

σ = γ0(hk)δv−1 ∈Md(V
2). If γ ∈ Λ, then γ ∈ γnk

H⊥
nk
, so γ(hk) = γnk

(hk) =

γ0(hk). Thus, σ̂(γ) = γ0(hk)γ(v) = γ(hkv) = γ(x) = δ̂x−1(γ), showing that
Theorem 10.2.2 (3) is satisfied with N = 1.

Since Hn is a finite group, Λ is open. By assumption, all the cluster points
of E belong to Λ. Thus, E�Λ must be finite. Since Λ is also closed, E has
V 12-dhd by Proposition 10.3.1. ��

Definition 10.4.2. Sets E ⊆ Γ which satisfy the hypotheses of the
proposition will be said to have strong zdhd.

Example 10.4.3. Hadamard sets of the form {rn}∞n=1, with integer r ≥ 2, are
strong zdhd. Just take Hn to be the subgroup of the rnth roots of unity.
Similarly, the set {k · 100j! : k = 1, . . . , j, 1 ≤ j < ∞} is another example of
a strong zdhd set, and this set is not Sidon since it contains arbitrarily long
arithmetic progressions.

The next proposition gives another example of a non-Sidon, zdhd set.
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Proposition 10.4.4. If E = {rn}∞n=1 ⊂ Z with r ≥ 3 an integer, then E+E
and E−E have zdhd.

Proof. Let Hn be the subgroup consisting of the rnth roots of unity and let
Λ =

⋂
nH

⊥
n ⊆ Z. Fix a non-empty, open set U ⊆ T and choose h1, . . . , hK ∈⋃∞

n=1Hn such that
⋃K
k=1(hk + U) = T.

Being a compact subgroup, Λ is a set of spectral synthesis (p. 213) and,

since δ̂hk
= 1 on Λ, it follows that there is a neighbourhoodΩΩΩ ⊆ Z containing

Λ such that
∥
∥
∥δ̂hk

− δ̂1
∥
∥
∥
Bd(ΩΩΩ)

< 1 for each k = 1, . . . ,K. By an argument

similar to the proof that Theorem 10.2.3(3) implies zdhd (see Exercise 10.6.3),
we conclude that ΩΩΩ has U -dhd.

Notice that (E + E)�ΩΩΩ consists of a finite number of elements of E +E,
plus a finite number of sets of the form rn+E. Each of these finitely many sets
has zdhd and their closures in Z are pairwise disjoint (see Exercise 10.6.6).
Therefore, their union has zdhd by Proposition 10.3.1.

The argument is similar for E−E. ��

Corollary 10.4.5. A zdhd set can cluster at a continuous character.

Proof. 1 is a cluster point of E ·E−1 whenever E is an infinite set. ��

Remark 10.4.6. Being Hadamard, the E of Proposition 10.4.4 is I0(U) with
bounded length (Remark 3.2.15 (i)). In [30] it is shown that if E = {nj} is any
Hadamard set with ratio at least 3, then for each k the set {nj1±···±njk : j1 <
··· < jk} has zhd. It is unknown, in general, if E·E±1 has zdhd whenever E has
bounded length (or bounded constants) and if all such “sums” of Hadamard
sets have zdhd [P 11].

10.4.1 The Hadamard Gap Theorem for Sets with Zhd

We began this book by introducing Hadamard sets and giving examples of
some of the unusual properties possessed by power series and trigonometric
series with frequencies supported on a Hadamard set. Throughout the book,
we have seen various generalizations these properties. To conclude, we give a
short proof of a generalization of the classical Hadamard gap Theorem 1.2.2
for sets with property zhd.

Proposition 10.4.7. Suppose {nj}∞j=1 is an increasing sequence of positive

integers and has property zhd. The function f(z) =
∑∞

j=1 cjz
nj cannot be

analytically continued, at any point, across the circle of convergence.

Remark 10.4.8. This proves the classical Hadamard gap theorem since
Hadamard sets, being Sidon, have property zhd.
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Proof. Suppose that f could be analytically continued at z0 on the circle of
convergence. There is no loss of generality in assuming the circle of conver-
gence has radius 1 and that z0 = 1. Then f can be continued to be analytic
in the open set Uε = {z ∈ C : |z − 1| < ε} for some ε > 0.

Let t ∈ [0, 2π]. Since {nj} has zhd, it is possible to obtain a measure ν on

T, concentrated on T ∩Uε/3 (an open subset of T), such that ν̂(nj) = δ̂t(nj)
for all j.

The function g(z) =
∫
f(e−iθz)dν(θ) is analytic in the interior of the unit

disk, as well as in the set Uε/3. Since

∫

e−iθnjdν(θ) = ν̂(nj) = eitnj ,

the Taylor coefficients of g are the same as those of the function z �→ f(eitz).
Thus, f has an analytic continuation to {z ∈ C :

∣
∣z − eit

∣
∣ < ε/3}. Since t was

arbitrary, f can be continued to {z : |z| < 1 + ε/3}, which contradicts the
assumption that 1 is the radius of convergence. ��

10.5 Remarks and Credits

The term “zero harmonic density” seems to have first appeared in Déchamps-
Gondim’s 1976 note [28]. In [29], she gave the proof that if {γj} is dissociate,
then {±γj ± γk : 1 ≤ j < k < ∞} has zhd. Déchamps and Selles in 1996
[30] gave a lengthy construction to establish that the sets {nj1 ± · · · ± njk :
j1 < · · · < jk}, where {nj} is Hadamard with ratio at least 3, have zhd.
Lust [125] showed that if E ⊆ Z is such that for each k ≥ 1, CkE (where
kE = E + · · · + E k times) does not contain a subspace isomorphic to c0,
then E has zhd.

The concept of zero discrete harmonic density was introduced in [58]
and most of the results of this chapter can be found there. The property zdhd
with bounded constants, defined analogously to that of I0(U) with bounded
constants, was also studied in that paper. It is shown there that a set which
has zdhd with bounded constants has at most one cluster point in Γ and
that M0(E) = {0} if E is a finite union of sets having zdhd with bounded
constants. Like Sidon sets, a set which contains the sum of two disjoint infi-
nite sets cannot be a finite union of sets with zdhd with bounded constants.
Thus, {3n} + {3n} is a zdhd set that is not a finite union of sets with zdhd
with bounded constants. The proof of Proposition 10.4.1 actually shows that
strong zdhd sets have zdhd with bounded constants.

Theorem 10.3.4 was proved by Varopoulos for compact Helson sets, one of
which was metrizable [188, 189]. It was extended to the non-metrizable (but
still compact) case by Lust [124] and then to the general case by Saeki [170].
Other proofs can be found in [56, Chapter 2], [86, 120]. See also [177], which
improves on the original constants.
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The connection between zero harmonic density and zero density for subsets
of Z (meaning lim sup |E∩[−N,N ]|/(2N+1) = 0) is unclear [P 13]. It is only
known that not all sets of zero density have zero harmonic density. The set
{100j! + k : k ≤ j} is such an example since it contains arbitrarily long
arithmetic progressions of fixed step length (see Proposition 10.2.8).

10.6 Exercises

Exercise 10.6.1. Prove Theorem 10.2.2 (4) ⇒ (1).

Exercise 10.6.2. Prove Theorem 10.2.3.

Exercise 10.6.3. Let V ⊆ G be open and ε < 1. Show that if there exist
finitely many points {xj}Nj=1 ⊆ G with

⋃N
j=1 xjV = G and νj ∈Md(V ) with

∥
∥
∥ν̂j − δ̂xj

∥
∥
∥
Bd(E)

< 1, then E ⊆ Γ has V 2-dhd.

Exercise 10.6.4. Suppose that U ⊆ [−π/k, π/k) ⊆ T. Show that E ⊆ Z

is kU -dhd with constant N (as in Theorem 10.2.2 (2)) if and only if kE is
U -dhd with constant N .

Exercise 10.6.5. Show that if E has U -dhd for some proper open subset
U ⊆ G, then E is not dense in Γ.

Exercise 10.6.6. Suppose E = {rn}∞n=1 with r ≥ 3 an integer. Show that
the sets rn + E and rm + E for m �= n have disjoint closures.

Exercise 10.6.7. One can define the notion of zdhd with bounded constants
analogously to that of I0 sets with bounded constants.

1. Prove that a set which has zdhd with bounded constants has at most one
cluster point in Γ.

2. Prove that a set with strong zdhd has zdhd with bounded constants.

Exercise 10.6.8. Prove that the union of a set with strong zdhd and a set
with zdhd has zdhd.



Appendix A

Interpolation and Sidon Sets for
Groups That Are Not Compact
and Abelian

Interpolation and Sidon subsets of non-discrete abelian groups. Distinction
between metrizable and non-metrizable Γ. Perturbations of I0 and Sidon sets.
A survey of I0 and Sidon sets for compact non-abelian groups. Characteriza-
tion in terms of FTR sets. Central lacunarity.

In the main part of this book, Sidon and interpolation sets in duals of
compact abelian groups were investigated. Here we briefly review what is
known about these special sets in duals of groups that are either abelian
and locally compact, but not compact (Sect. A.1), or compact, but not
abelian (Sect. A.2). While there are similarities, there are also many dif-
ferences and these will be highlighted. Only some proofs will be given, but
extensive references to the literature will be provided.

A.1 Interpolation and Sidon Sets in Non-compact
Abelian Groups

In this section G will denote a locally compact abelian group that is not
(necessarily) compact. We also assumeG is not discrete. Thus, the dual group,
Γ, is locally compact abelian, non-compact and not (necessarily) discrete.
One such example is the group R with the usual topology, whose dual is
itself.

We begin by generalizing the definition of an I0 set.

Definition A.1.1. A set E ⊆ Γ is an interpolation or I-set if every uniformly
continuous function f on E extends to an almost periodic function on Γ. In
this case there exists a continuous function on the Bohr compactification, Γ,
of Γ that agrees on E with f .

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
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Definition A.1.2. E ⊆ Γ is an I0 set if every bounded function on E extends
to an almost periodic function.

A.1.1 Interpolation Sets When Γ Is Metrizable

The properties of I-sets and I0 sets in a non-discrete group Γ depend
on whether G is σ-compact (equivalently, Γ is metrizable; see Exer-
cise C.4.18 (1)). The metrizability of Γ will be assumed throughout this
subsection.

Since G is σ-compact, all the results about I0 subsets of discrete groups Γ
that used the Baire category theorem in their proofs have essentially identical
versions for I0 subsets of metrizable groups. These results include:

• Kalton’s characterization of I0 sets (Theorem 3.2.5)
• Kahane’s AP theorem (Theorem 3.3.1)
• Méla’s decomposition of an I0 set into a finite union of I0(U) sets with

bounded length (Theorem 5.3.1)
• The assertion that an I0 set does not cluster at a continuous character

(Theorem 3.5.1)
• The assertion that if E is I0 with bounded length, then the only continuous

character at which E · E−1 clusters is 1 (Theorem 5.3.9).

The only difference in those results is the addition to the conclusions of a
compact set K ⊂ G on which all the interpolating measures are supported,
and the addition to the proofs of a sequence of compact subsets Kn with⋃
nKn = G.
We have seen that the closure of an I0 set in a discrete group supports no

non-zero measures in M0(Γ) (Proposition 3.5.3). Even more is true when Γ
is not discrete.

Proposition A.1.3. Let E ⊂ Γ be an I0 set and V ⊆ Γ compact. Then E ·V
supports no non-zero measure in M0(Γ).

It is unknown if mΓ(E · Γ) = 0 whenever E ⊆ Γ is an I0 set and Γ is

metrizable, discrete or not [P 15].

Proof. The proof will make good use of the fact that if μ ∈ M0 and ν  μ,
then ν ∈M0 (Lemma C.1.9).

Suppose μ ∈ M0(Γ) has support in E · V. Let E =
⋃N

1 En be a
decomposition of E into I0(U) sets with bounded length (Exercise A.4.3).
Since the restriction of μ to each En · V is also in M0(Γ), it will suffice to
show that each such restriction is the zero measure. Thus, we may assume
that E is I0(U) with bounded length.

We may assume that μ is a probability measure and has no mass on any
set of the form γV, where γ ∈ Γ. Indeed, let ν be the restriction of μ to γV.



A.1 Interpolation and Sidon Sets in Non-compact Abelian Groups 189

If μ ∈M0(Γ), then also ν ∈M0(Γ). Now, ν ∈M(Γ), so ν̂ is continuous on G
with its original topology. If there existed x ∈ G with ν̂(x) �= 0, then ν̂ would
have an uncountable number of non-zero values. Since ν ∈ M0(Γ), that is
impossible, unless ν = 0.

Let C be the bound for the length and let U ⊆ G be an open
e-neighbourhood such that |μ̂| < 1/(10C) on U � {e}. That is possible
because μ̂ ∈ c0(Gd). Let U also be so small that |1− γ(u)| < 1/(10C) for all
γ ∈ V and u ∈ U . The openness of U ′ = U � {e} implies the existence of
ν ∈ Md(U

′) and a finite F ⊂ E such that ν̂(γ) = 1 for all γ ∈ E � F and
‖ν‖ < 2C. Hence, |1 − ν̂| < 1/5 on (E � F) · V and, as μ is a probability
measure, |1−

∫
ν̂dμ| < 1/5. But

∣
∣
∣
∣

∫

ν̂dμ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

μ̂dν

∣
∣
∣
∣ ≤ 2C sup

u∈U
|μ̂(u)| < 1

5
,

a contradiction. ��

Another similarity with the discrete Γ case is that the elements of an I0
set are discrete subsets of Γ, as the next proposition shows.

Lemma A.1.4. If E ⊆ Γ is I0, then there exists a 1-neighbourhood U ⊂ Γ
such that (γU) ∩ (χU) = ∅ for all γ �= χ ∈ E.

Proof. Let d be a metric for Γ. Suppose to the contrary that for each n ≥ 1
there existed γn �= χn ∈ E such that limn→∞ d(γn, χn) = 0.

Case I. There is a subsequence n(j) and γ ∈ Γ such that γn(j) = γ for all
j (or, alternatively, χn(j) = χ for all j). Without loss of generality we may
assume the χn(j) are distinct. Then the sequence χn(j) also converges to γ. Let
ϕ : E→ {−1, 1} have ϕ(χn(j)) = (−1)j for all j. Since ϕ extends to an almost
periodic function, ϕ is continuous on Γ, contradicting ϕ(χn(j)) = (−1)j.
Case II. Otherwise, there is a subsequence n(j) such that the γn(j) are dis-
tinct, the χn(j) are distinct and no γn(j) is a χn(k). Let ϕ : E → {−1, 1}
have ϕ(γn(j)) = 1 and ϕ(χn(j)) = −1 for all j. Let ψ be any extension
of ϕ to an almost periodic function. Since ψ is uniformly continuous on Γ,
there exists δ > 0 such that d(γ, χ) < δ implies |ψ(γ) − ψ(χ)| < 1/2. But
d(γn(j), χn(j)) → 0, so for sufficiently large j, |ψ(γn(j)) − ψ(χn(j))| < 1/2,
a contradiction. Therefore, there exists δ > 0 such that d(γ, χ) > δ for all
γ �= χ ∈ E. ��

Remarks A.1.5. (i) A discrete (in Γ) I-set E is I0 if and only if every bounded
function on E is uniformly continuous, and that occurs only if there is a
1-neighbourhood W ⊂ Γ such that γ �= ρ ∈ E implies (γW) ∩ (ρW) = ∅.

(ii) A compact, infinite E ⊂ Γ is always an I-set and never an I0 set (Ex-
ercise A.4.1 (2)).

This property allows us to show that given an I-set E, one can extract a
“thick” I0 subset.
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Proposition A.1.6. Let E be an I-set and suppose V ⊂ Γ is a symmetric
1-neighbourhood. Then there exists an I0 set F ⊆ E such that E ⊆ F ·V2.

Proof. Let E be the set of subsets F of E such that for all γ �= ρ ∈ F,
(γV) ∩ (ρV) = ∅ for γ �= ρ ∈ F. By Remark A.1.5(i), each such F is I0. We
note that E is not empty since it contains singletons. Zorn’s lemma gives us a
maximal subset F ∈ E . We claim that E ⊆ F ·V2. Indeed, if ρ ∈ E�F ·V2,
then for all γ ∈ F, γρ−1 �∈ V2, that is, (γV)∩ (ρV) is empty. Hence, we may
adjoin ρ to F and F would not have been maximal. ��

Corollary A.1.7. Suppose E ⊆ Γ is an I-set and W ⊆ Γ is compact. Then
E ·W supports no non-zero measure in M0(Γ). In particular, E has zero
Haar measure in Γ.

Proof. Fix a compact 1-neighbourhood V ⊆ Γ. Use Proposition A.1.6 to
find an I0 set F ⊆ E such that E ⊆ F · V2. Proposition A.1.3 shows that
F ·V2W supports no non-zero measure in M0(Γ). Since E ·W ⊆ F ·V2W,
the corollary follows. ��

There is also a partial converse to the proposition.

Theorem A.1.8 (Hartman–Ryll-Nardzewski extension). If E is an I0
set, then there exists a compact 1-neighbourhood V ⊆ Γ such that E · V is
an I-set.

Exercise A.4.4 shows that V may be limited in size.

Proof. The σ-compact G version of Kalton’s Theorem 3.2.5, gives us a com-
pact set K ⊂ Γ and integer N such that for every ϕ : E → Δ, there exists
μ ∈ Md(K) of length at most N such that |ϕ − μ̂| < 1/5 on E. Let V ⊂ Γ
be a compact 1-neighbourhood such that |1− γ(x)| < 1/(5N) for all x ∈ K.

We claim that χV ∩ ρV = ∅ for all distinct χ, ρ ∈ E. Indeed, if χ �= ρ
are given in E, then there exists E1 ⊂ E such that χ ∈ E1 and ρ �∈ E1. Let
γ, λ ∈ V and use Kalton’s theorem to find μ ∈ Md(K) with length at most
N , |1 − μ̂| < 1/5 on E1 and |μ̂| < 1/5 on E � E1. Then for all γ, λ ∈ V,
|1− μ̂(χγ)| < 2/5 and |μ̂(ρλ)| < 2/5, so χγ �∈ ρV, proving the claim.

Now suppose that χαγα and χ′
αγ

′
α are nets in E ·V with common limit

in E ·V and that f : E ·V → Δ is uniformly continuous in the topology of
Γ. We must show that the limits lim f(χαγα) and lim f(χ′

αγ
′
α) exist and are

equal. By passing to subnets, we may assume lim f(χαγα) and lim f(χ′
αγ

′
α)

exist and that γα, γ
′
α converge, respectively to γ, γ′ ∈ V.

The claim above tells us that if χ = limχα and χ′ = limχ′
α were different,

then the nets χαγα, χ′
αγ

′
α could not have a common limit point.

Let ε > 0. The uniform continuity of f gives us cofinal nets χβγ and χ′
βγ

′

such that for all β, |f(χβγ)− f(χβγβ)| < ε and |f(χ′
βγ

′)− f(χ′
βγ

′
β)| < ε.

Because γE is I0 and χβ , χ
′
β have a common limit point, lim f(χβγ) =

lim f(χ′
βγ). The continuity of multiplication in E · V implies γ = γ′ so

lim f(χβγ) = lim f(χβγ
′) = lim f(χ′

βγ) = lim f(χ′
βγ

′). Thus,
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| lim f(χβγβ)− lim f(χ′
βγ

′
β)| < 2ε.

That holds for all ε > 0 and so E ·V is an I-set. ��

Finally, we note that the elements of an I0 set can be perturbed and the
resulting set will still be I0.

Corollary A.1.9. If E is an I0 set, then there exists a 1-neighbourhood W ⊆
Γ such that if f : E → Γ has the property that f(γ) ∈ γW for all γ ∈ E,
then F = f(E) is I0.

Proof. Let symmetric 1-neighbourhoods U,V ⊆ Γ be given by Lemma A.1.4
and Theorem A.1.8, respectively, both applied to E. Let W ⊆ Γ be a
symmetric 1-neighbourhood such that W4 ⊆ U ∩ V. Then E ·W is an
I-set.

Suppose f(γ) ∈ γW for all γ ∈ E and F = f(E). Then F ⊆ E ·W and
therefore F is an I-set. By Remark A.1.5, F is I0 if (γ′W) ∩ (ρ′W) = ∅ for
all γ′ �= ρ′ ∈ F. To see that this is the case, assume otherwise. Let γ, ρ ∈ E
be such that γ′γ−1, ρ′ρ−1 ∈ W. Then γρ−1 ∈ W4 ⊆ U2, contradicting the
choice of U. Therefore, F is I0. ��

A.1.2 Interpolation Sets When Γ Is Non-metrizable

In the absence of metrizability many of the preceding results fail. Here is an
example.

Example A.1.10. Let Γ = R × Z. Fix an I0 set, E1 = {nj}∞1 ⊆ Z, and let
{xj}∞1 be a dense subset of R. Set E = {(xj , nj) : j = 1, 2, . . .}. Then E is
I0 since the interpolation can be done in the second factor. This example has
the following properties, whose verification we leave to Exercise A.4.2:

1. If xj(�) converges to x ∈ R, then each cluster point of {(xj(�), nj(�))} is a
continuous character (Theorem 3.5.1 fails).

2. There is no compact U ⊆ R×Td for which E�F is I0(U), whatever the
finite set F.

3. E · Γ has non-zero Γ-Haar measure and therefore supports non-zero
measures in M0(Γ) (Proposition A.1.3 fails).

4. E · Γ is not an I-set.
5. There does not exist any ε < 1, integer N and σ-compact U ⊆ G such

that E is I0(U , N , ε) (Kalton’s characterization Theorem 3.2.5 of I0 sets
fails in this sense).

6. E is not a finite union of sets with step tending to infinity (Corollary 5.3.5
fails).
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We do not know if there exist a non-metrizable Γ and subset E such that
every bounded function on E extends to an almost periodic function, but not
all bounded functions extend to elements of B(Γ) (Kahane’s characterization
fails) [P 14].

A.1.3 Sidon Sets in Non-compact Abelian Groups

Definition A.1.11. A subset E ⊆ Γ is a topological Sidon set if and only if
�∞(E) = B(E).

Since elements of B(Γ) are uniformly continuous, we see that if E is a
topological Sidon set, then there exists a 1-neighbourhood V ⊂ Γ such that
γ �= ρ ∈ E implies γρ−1 �∈ V.

Again, most of the results concerning Sidon sets have topological Sidon
set versions when Γ is metrizable. The examples of I0 sets in non-metrizable
Γ apply here, of course. In the remainder of this section we assume Γ is
metrizable.

Theorem A.1.12. The union of two disjoint topological Sidon sets, E and F,
is a topological Sidon set provided that there exists a 1-neighbourhood V ⊂ Γ
such that γ ∈ E, ρ ∈ F implies γρ−1 �∈ V.

There is a connection between Sidon sets in Γd (Γ with the discrete
topology) and topological Sidon sets.

Theorem A.1.13. A subset E ⊂ Γ is a topological Sidon set if and only if
E is a Sidon set in Γd and there exists a compact subset K ⊂ G such that
�∞(E) = M(K )̂ |E.

Topological Sidon sets have an enlargement property. A consequence
(Exercise A.4.5) is that if E is topological Sidon and F is “close” in the
sense of Corollary A.1.9, then the perturbed set F is also topological Sidon.

Theorem A.1.14. If a subset E is Sidon(U), where U ⊂ G is compact, then
there exists a 1-neighbourhood V ⊂ Γ such that for each ϕ ∈ �∞(E) and
f ∈ A(V), the function ψ(λγ) = ϕ(λ)f(γλ−1) belongs to B(E ·V).

A.2 Interpolation and Sidon Sets in Compact,
Non-abelian Groups

A.2.1 Introduction to Compact, Non-abelian Groups

Sidon and I0 sets have also been defined and investigated in the setting of
a compact, non-abelian group G. Although there are similarities with the
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abelian theory, there are very significant differences. For example, there are
infinite non-abelian groups whose dual contains no infinite Sidon set.

In fact, the general harmonic analysis theory is quite different in the
non-abelian case. We begin with a brief overview of some of the most impor-
tant aspects of this theory and refer the reader to [88] for a more thorough
explanation.

It is customary to let Ĝ denote the set1of irreducible, inequivalent, unitary
representations of G. When G is abelian, all irreducible representations of G
are one dimensional, and hence Ĝ is the dual group Γ. When G is non-
abelian, Ĝ is no longer a group and is called the dual object. All irreducible
representations of a compact group are finite dimensional, and thus we may
view Ĝ as a set of matrix-valued functions σ : G→ U(dσ), where dσ denotes
the degree of σ and U(dσ) is the group of unitary matrices of size dσ × dσ.

Important examples of compact, non-abelian groups include the classical
Lie groups such as the unitary groups, U(n), the group of orthogonal matrices,
O(n), and their subgroups consisting of the matrices of determinant 1, SU(n)
and SO(n), respectively. Much is understood about the representations of
these classical matrix groups; see, for example, [185].

Compact groups all admit a left Haar measure, mG, and consequently one
can speak of the integrable functions on G, the spaces Lp(G) = Lp(G,mG)
and the absolutely continuous measures on G, identified with L1(G) (all with
respect to mG).

Given an integrable function, f , defined on G, the Fourier transform of f
is the function f̂ defined on Ĝ by

f̂(σ) =

∫

G

f(x)σ(x)dmG.

The integration should be understood coordinatewise, and thus f̂(σ) is a
matrix of size dσ × dσ. The Fourier series of f is given by

∑

σ∈Ĝ
dσ Tr

(
f̂(σ)σ(x)

)

where “Tr” denotes the trace of the matrix. When f̂ is non-zero for only
finitely many σ, then f is called a trigonometric polynomial.

The Fourier–Stieltjes transform of a measure on G is defined similarly.
Given an n × n matrix A, let ‖A‖op be the maximum eigenvalue of |A|,

where |A| is the operator which is the positive square root of AA∗. Then
‖A‖op is the operator norm of A when viewed as a map on C

n.

1 This should be the set of equivalence classes, but, as usual, we shall assume that a
convenient representative is chosen from each class.



194 A Interpolation and Sidon Sets for Groups That Are Not Compact and Abelian

Let �∞(Ĝ) denote the Banach space of all (Aσ)σ∈Ĝ, where Aσ is a dσ ×
dσ matrix, with norm ‖(Aσ)σ‖∞ = supσ∈Ĝ ‖Aσ‖op < ∞. We define �∞(E)

similarly for E ⊆ Ĝ by restricting the representations to E.
There is a non-abelian version of the Riemann–Lebesgue lemma and an

analogue of Parseval’s theorem, known as the Peter–Weyl theorem.

Lemma A.2.1 (Riemann–Lebesgue). If f ∈ L1(G), then
∥
∥f̂(σ)

∥
∥
op
→ 0

as σ →∞.

Theorem A.2.2 (Peter–Weyl). Let f : G→ C. Then

∥
∥f

∥
∥2
2

=
∑

σ∈Ĝ
dσ Tr

(
f̂(σ)f̂ (σ)∗

)
.

A measure μ is called central if μ commutes with all other measures under
convolution. Equivalently, μ(gXg−1) = μ(X) for all Borel sets X ⊆ G and
g ∈ G. Similarly, central functions satisfy f(gxg−1) = f(x) for all g, x ∈
G. Central measures are characterized by the property that their Fourier
transforms are central matrices, that is, μ̂(σ) = cσIdσ for all σ, where Idσ
denotes the identity matrix of size dσ × dσ and cσ is a scalar. In this case,
‖μ̂(σ)‖op = |cσ| and ‖μ̂‖∞ = supσ |cσ|.

A.2.2 Sidon and I0 Sets

Definition A.2.3. A subset E ⊆ Ĝ is called a Sidon set if whenever
(Aσ)σ∈E ∈ �∞(E), there is a measure μ on G satisfying μ̂(σ) = Aσ for
all σ ∈ E. If μ can be chosen to be discrete, then E is said to be an I0 set.

Sidon(U), I0(U), RI0(U) and FZI0(U) are all defined analogously, with
the understanding that ϕ ∈ �∞(E) is Hermitian if ϕ(σ) = ϕ(σ) whenever
σ, σ ∈ E are not equivalent and if σ and σ are equivalent, say σ = PσP−1

with P unitary, then ϕ(σ) = Pϕ(σ)P−1. Of course, every set that is I0(U) is
Sidon(U).

There are many equivalent characterizations of Sidon and I0 in the same
spirit as Theorems 6.2.2 and 3.2.5.

Theorem A.2.4. Let E ⊆ Ĝ and U be a compact subset of G. The following
are equivalent:

1. E is a Sidon(U) set.
2. There is a constant S(E, U) such that given any (Aσ)σ∈E ∈ �∞(E), there

is a measure μ ∈M(U) such that μ̂(σ) = Aσ for all σ ∈ E and

‖μ‖M(G) ≤ S(E, U) ‖(Aσ)σ‖∞ .
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3. For every (Aσ)σ∈E ∈ �∞(E), with Aσ unitary, there is some μ ∈ M(U)
such that μ̂(σ) = Aσ for all σ ∈ E.

4. There exists 0 < ε < 1 (equivalently, for every 0 < ε < 1) such that for
each (Aσ)σ∈E ∈ Ball(�∞(E)) there is some μ ∈M(U) such that

sup{‖μ̂(σ) −Aσ‖op : σ ∈ E} < ε.

5. There is a constant S(E, U) such that if f(x) =
∑
σ∈E dσ Tr (Aσσ(x)) is

a trigonometric polynomial with Fourier transform supported on E, then

∑

σ∈E
dσ Tr |Aσ| ≤ S(E, U) ‖f |U‖∞ .

A proof for Sidon sets can be found in [88, 37.2], where many other basic
facts about Sidon sets are also demonstrated. A proof for Sidon(U) sets can be
given by making the obvious modifications. In addition to the usual iteration
argument, a key idea in the equivalence of (1) and (3) is the observation that
every matrix of norm at most one is half the sum of four unitary matrices.

Theorem A.2.5. Let E ⊆ Ĝ and U be a compact subset of G. The following
are equivalent:

1. E is I0(U).
2. There is a constant Sd(E, U) such that given any (Aσ)σ∈E ∈ �∞(E), there

is a measure μ ∈Md(U) such that μ̂(σ) = Aσ for all σ ∈ E and

‖μ‖M(G) ≤ Sd(E, U) ‖(Aσ)σ‖∞ .

3. For every (Aσ)σ∈E ∈ �∞(E), with Aσ unitary, there is some μ ∈Md(U)
such that μ̂(σ) = Aσ for all σ ∈ E.

4. There exists 0 < ε < 1 (equivalently, for every 0 < ε < 1) such that for
each (Aσ)σ∈E ∈ Ball(�∞(E)) there is some μ ∈Md(U) such that

‖μ̂(σ)−Aσ‖op < ε for all σ ∈ E.

5. There exists 0 < ε < 1 (equivalently, for every 0 < ε < 1) and integer
N = N(ε) such that for each (Aσ)σ∈E ∈ �∞(E) with Aσ unitary, there is

some μ =
∑N
j=1 cjδxj ∈Md(U) with |cj | ≤ 1 and

‖μ̂(σ)−Aσ‖op < ε for all σ ∈ E.

I0 and I0(U) sets for non-abelian groups were introduced in [54, 75],
respectively, where proofs can be found of the above characterizations. In [54]
a similar characterization is given for FZI0(U) sets. It is also shown there
that FZI0(U) sets are I0(U) and that finite sets are I0(U).
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As in the abelian case, every finite union of Sidon sets is Sidon; proofs
have been given by Rider [162], Wilson [196], Marcus and Pisier [127] and
Baur [8]. It is unknown if Sidon (or I0) sets in duals of compact, connected
groups are necessarily Sidon(U) (resp., I0(U)) for every non-empty, open U
[P 16].
Λ(p) sets are defined in the non-abelian setting exactly as in abelian

groups, and, as in the abelian case, Sidon sets are Λ(p) for all p < ∞ with
Λ(p) constant O(

√
p ) for every p > 2 [38].

Let G =
∏∞
n=1 U(dn) be the product of unitary groups with the product

topology. If sup dn = ∞, then Ĝ contains an infinite Sidon set with un-
bounded degree, as follows. Let πn denote the projection of G onto U(dn) and
put E = {πn : n = 1, 2, . . .}. Each πn is an irreducible, unitary representation
of G of degree dn. It is easy to see that E is an I0 set. Let (An)n ∈ �∞(E)

with An unitary and take x = (An) ∈ G. Then δ̂x(πn) = πn(x) = An, and
thus condition (3) is satisfied in both theorems.

More generally, groups which have infinitely many irreducible representa-
tions of bounded degree contain infinite Sidon sets [96].

However, in contrast to the situation for abelian groups, there are infinite,
compact, non-abelian groups whose dual object contains no infinite Sidon set.
Even those groups whose dual admits infinite Sidon sets need not have the
property that every infinite subset of the dual contains an infinite Sidon sub-
set. Cartwright and McMullen [23] used the relationship between Sidon and
Λ(p) sets to effectively describe the infinite Sidon sets. The typical example
of a Sidon set with unbounded degree, called the FTR set (defined below),
is a generalization of the set of projections onto the product group

∏
U(dn).

Definition A.2.6. Suppose G is one of the matrix groups SU(n), O(n),
SO(n) or Sp(n). Let σ : G → U(n) be the self-representation, σ(x) = x.
If G = Spin(n) let q : G → SO(n) be the canonical covering map and let
σ be the composition of the self-representation with q. The Figà–Talamanca
and Rider set (denoted FTR(G)) is {σ, σ, 1}.

Suppose for each j that Gj is one of the groups SU(nj), O(nj), SO(nj),
Sp(nj) or Spin(nj) and G =

∏
j Gj . Let πj : G→ Gj denote the projection

maps. Then the FTR set of G is defined as

FTR(G) =
⋃

j

{σ ◦ πj : σ ∈ FTR(Gj)}.

In the abelian case, every singleton is an I0 set with the I0 constant equal
to 1 since the interpolating measure can be taken to be a suitable multiple
of the point mass measure at the identity. That is not true for non-abelian
groups, and hence it is of interest to consider sets where singletons have
uniformly bounded Sidon or I0 constants.
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Definition A.2.7. A set E ⊆ Ĝ is called a local Sidon (resp., local I0) set
if there is a constant S1(E) such that whenever σ ∈ E and Aσ is a dσ × dσ
matrix of norm one, then there is a (resp., discrete) measure μ on G with
‖μ‖M(G) ≤ S1(E) and μ̂(σ) = Aσ.

Characterizations similar to Theorems A.2.4 and A.2.5 can be proved for
local Sidon and local I0 sets.

Obviously, a Sidon (I0) set is local Sidon (I0). The converse is false, even in
abelian groups, since the dual of an infinite compact abelian group is local I0,
but not Sidon. In contrast, in the non-abelian setting, the dual object need
not even be local Sidon. Indeed, in [23, Prop 5.5], Cartwright and McMullen
gave an elegant characterization of local Sidon sets in terms of the FTR set.

Theorem A.2.8 (Cartwright–McMullen). Let G =
∏
Gj where each Gj

is one of the groups SU(nj), SO(nj), Sp(nj) or Spin(nj). Let E ⊆ Ĝ be
a local Sidon set. Then there are a partition J = J1 ∪ J2 ∪ J3 and subsets
Ej ⊆ Ĥj where Hj =

∏
i∈Jj

Gi for j = 1, 2, 3, such that:

1. E ⊆ E1 ×E2 ×E3

2. E1 = {1}
3. sup{rank Gi : i ∈ J2} <∞ and sup{dσ : σ ∈ E2} <∞
4. E3 = FTR(H3)

Conversely, all such sets are local Sidon.

This theorem is useful because a structure theorem states that all compact
connected groups are homomorphic to a product of the form A×

∏
j Gj where

Gj are classical, simple, simply connected Lie groups [153, 6.5.6] and A is
abelian. Consequently, a compact connected group admits infinite Sidon sets
if and only if it admits infinite local Sidon sets.

It is known that FTR(G) is an I0 set [75] and FTR(G) �{1} is FZI0
[54]. Moreover, given any non-empty, open set U ⊆ G, there is a finite subset
F ⊆ FTR(G) such that FTR(G) � F is FZI0(U). From these observations
the following can be deduced.

Theorem A.2.9. If G is a compact, connected group, then every infinite
local Sidon set in Ĝ contains an infinite subset E that is FZI0 and has the
property that given any non-empty, open set U ⊆ G, there is a finite subset
F ⊆ E such that E� F is FZI0(U).

Remark A.2.10. It is unknown if the set E can be chosen with the same
cardinality as the local Sidon set [P 17].

Corollary A.2.11. Every infinite local Sidon set contains an infinite I0 set.

Just as sums of Hadamard sets in Z are examples of Λ(p) sets that are not
Sidon (Example 6.3.14), “products” of FTR sets provide examples of Λ(p)

sets that are not Sidon. Given E ⊆ Ĝ, let



198 A Interpolation and Sidon Sets for Groups That Are Not Compact and Abelian

Em = {σ ∈ Ĝ : σ ≤ γ1 ⊗ · · · ⊗ γm, γ1, . . . , γm ∈ E}

where σ ≤ γ means σ is a subrepresentation of γ. It is shown in [78] that if P
is an asymmetric subset of the FTR set of the product group G (as in Defi-
nition A.2.6), then Pm is a Λ(p) set for all p <∞.

A.2.3 Central Lacunarity

The weaker notions of central Sidon and central Λ(p), where the function
and measure spaces are replaced by their centres, were introduced by Parker
[143].

Definition A.2.12. The subset E ⊆ Ĝ is said to be central Sidon if whenever
(aσIdσ)σ∈E ∈ �∞(E), there is a central measure μ ∈M(G) such that μ̂(σ) =
aσIdσ for all σ ∈ E. Equivalently, there is a constant Sc such that if f is a
central trigonometric polynomial with transform supported on E, then

∑

σ∈E

dσ Tr |f̂(σ)| ≤ Sc‖f‖∞ .

Central Λ(p) sets are defined similarly.
It is clear from the second statement in the definition that Sidon implies

central Sidon and similarly that Λ(p) implies central Λ(p). But the converse
does not hold; for example, see [143, 161]. In fact, Rider proved in [161] that
a set E is Λ(p) if and only if E is both local Λ(p) (meaning singleton subsets
of E are Λ(p) with uniform constant) and central Λ(p). He gave an example
of a set that is central Sidon and central Λ(p) for all p < ∞, but not local
Λ(p) for any p, and also showed that the union property fails for central Sidon
sets. Arithmetic properties of central Λ(p) sets, similar to those of Λ(p) sets
in abelian groups (see Sect. 6.3.2), were established in [10].

Although central Sidon is a weaker property than Sidon, it is still not
true that all infinite groups admit infinite central Sidon sets. This follows
from a geometric result of Ragozin [155] which states that if G is a compact,
simple, simply connected Lie group and ν is a continuous, central measure on
G, then νdimG is absolutely continuous with respect to mG. Consequently,
the Riemann–Lebesgue lemma implies ν̂ → 0. If μ is a central measure, then
μ = μc+μd, where μc is central and continuous and μd is central and discrete.
Since the central, discrete measures are supported on a finite set, namely
the centre of G, the vector space consisting of their transforms is a finite
dimensional space. Hence, when E is infinite, it is not possible to interpolate
all central elements in �∞(E) with the transforms of central measures, and
therefore G does not admit an infinite central Sidon set.
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More generally, with these ideas and the structure theorem, Rider [161]
proved the following.

Theorem A.2.13. Let G be compact and connected. Then G has an infinite
central Sidon set if and only if G is not a semi-simple Lie group.

One could analogously define central I0 sets, but since central, discrete
measures must be supported on the centre of G, there would be groups for
which not even all finite sets would be central I0. Thus, instead of requiring
interpolation by central, discrete measures in the definition of central I0 we
ask, instead, for interpolation from the subspace generated by the orbital
measures. The orbital measures are the central, probability measures, μx,
supported on the conjugacy class containing x ∈ G and defined by

∫

G

fdμx =

∫

G

f(gxg−1)dmG(g)

for all continuous functions f onG. Clearly, any central I0 set is central Sidon.
Any I0 set can be shown to be central I0 and all finite sets are central I0
[67]. Parker’s [143] independent-like so-called I-sets are examples of infinite
central I0 sets in the product group setting.

A.3 Remarks and Credits

Interpolation and Sidon Sets in Non-compact Abelian Groups. Sect. A.1 is
adapted from [81–83]. Example A.1.10 was suggested by [156, Theorem 2].
For more on topological Sidon sets, including the proofs of Theorems A.1.12–
A.1.14, see [27, 128, 132].

Thin Sets in Other Settings. The notion of interpolation has been extended
in a variety of other directions, as well. For instance, the problem of approx-
imating random choices of signs by characters was addressed in [67]. This is
related to the study of “weighted” Sidon or I0 sets; see, for example, [68].
Thin sets in the setting of discrete non-abelian groups have been studied
using ideas from operator spaces in [71], while in [68, 191], Sidon and I0-like
sets in duals of compact abelian hypergroups are investigated.

A.4 Exercises

In the following exercises Γ is a locally compact abelian group.

Exercise A.4.1. 1. Let E be an infinite, compact subset of Γ with non-
empty interior. Show that
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(i) For each j ≥ 1, E contains sets of the form F1 · F2 with |F1| =
|F2| = j.

(ii) E supports a non-zero measure in M0(Γ).
(iii) E is neither Helson nor I0.

2. Show that an infinite compact subset E of a metrizable Γ is always an
I-set and never an I0 set.

Exercise A.4.2. Prove the assertions of Example A.1.10.

Exercise A.4.3. Prove that if E is an I0 subset of a metrizable group Γ,
then there exists a finite number of I0 sets En such that each En is I0 with
bounded length and E =

⋃N
1 En.

Exercise A.4.4. Show that one cannot always make V arbitrarily large
in Theorem A.1.8. Hint: Consider a set E contained in two disjoint subsets
of Z and V = [−1, 1].

Exercise A.4.5. Let Γ be a metrizable group and let E ⊂ Γ be topological
Sidon.

1. Let F ⊂ Γ be finite. Show that E ∪F is topological Sidon without using
the union theorem for topological Sidon sets.

2. Show that there exist C > 0, a compact K ⊆ G and finite F ⊆ E such
that for every ϕ : E→ Δ there exists μ ∈M(K) such that ‖μ‖ ≤ C and
μ̂ = ϕ on E� F.

3. Let V ⊂ Γ be a compact 1-neighbourhood. Show that there exist C > 0,
a compact 1-neighbourhood D ⊆ V and finite F ⊆ E such that for every
ϕ : E ·D→ Δ, that is constant on each γD with γ ∈ E�F, there exists
μ ∈M(K) such that ‖μ‖ ≤ C and |μ̂− ϕ| ≤ 1/2 on (E� F) ·D.

4. Formulate and prove a Sidon set version of Corollary A.1.9.



Appendix B

Combinatorial Results

Combinatorial results needed for the proportional quasi-independent charac-
terization of Sidon sets.

B.1 Words and Quasi-independent Sets

We recall Definition 6.2.9: For a subset F of Γ and positive integer k, let

Wk(F) =
∏

γ∈F

{
γεγ : γ ∈ F, εγ ∈ Z and

∑

γ

|εγ | ≤ k
}

and

Qk(F) =

⎧
⎨

⎩

∏

γ∈F

γεγ : γ ∈ F, εγ ∈ {0,−1, 1} and
∑

γ

|εγ | = k

⎫
⎬

⎭
.

The elements of Wk(F) are called words from F of length at most k and
the elements of Qk(F) are called quasi-words from F of presentation length k.
Of course, Qk(F) ⊆Wk(F). We note that |Qk(F)| ≤ 3|F|.

The number of words of length k in F ⊆ Γ can be estimated as follows.

Lemma B.1.1. Let F ⊆ Γ be finite and k ≥ 1. Then

|Wk(F)| ≤

⎧
⎪⎨

⎪⎩

(
4e |F|

k

)k
if k ≤ |F|

(
4e k

|F|
)|F|

if |F| ≤ k.
(B.1.1)
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Proof. Let N = |F| and put N0 = N ∪ {0}. Then

|Wk(F))| ≤ | {(k1, . . . , kN ) ∈ Z
N :

N∑

n=1

|kn| ≤ k}|

≤ min(2k, 2N ) | {(k1, . . . , kN ) ∈ N
N
0 :

N∑

n=1

kn ≤ k}|

= min(2k, 2N ) | {(k1, . . . , kN+1) ∈ N
N+1
0 :

N+1∑

n=1

kn = k}|.

Let ak = | {(k1, . . . , kN+1) ∈ N
N+1
0 :

∑
kn = k}|. Then a0 = 1 and

∞∑

k=0

akx
k =

( ∞∑

k=0

xk

)N+1

=
1

(1 − x)N+1
.

Therefore ak =
(
N+k
k

)
for all k ≥ 0. We use Stirling’s formula [37, p. 52] in

the form
√

2π nn+
1
2 e−n ≤ n! ≤

√
2π nn+

1
2 e−ne

1
12n . Applying this to ak, we

have

ak =
(N + k)!

k!N !
≤ e1/(12N)

√
2π

√
2

(

1 +
k

N

)N (

1 +
N

k

)k
.

Now suppose N ≤ k. Then
(

1 + k
N

)N
≤ 2N( kN )N and

(
1 + N

k

)k
≤ eN , so

|Wk(F)| ≤ min(2k, 2N ) 2N
(
k

N

)N
eN ≤

(

4e
k

N

)N
,

and (B.1.1) holds in this case. The case k ≤ N is similar. ��

We now use these results to find quasi-independent subsets.

Proposition B.1.2. There is a constant A > 10 such that whenever the
finite sets E1, . . . ,EJ are quasi-independent, pairwise disjoint and satisfy
|Ej+1|/|Ej| ≥ A for 1 ≤ j < J , we can find subsets E′

j ⊆ Ej such that
⋃J
j=1 E

′
j is quasi-independent and |E′

j| ≥ |Ej|/10 for 1 ≤ j ≤ J .

Proposition B.1.2 is used on page 121. The proof of Proposition B.1.2 is
first reduced to a combinatorial criterion in Lemma B.1.3 and then further
technical probabilistic and combinatorial arguments, involving Riesz prod-
ucts, are used to show that under the assumptions of the proposition, the
hypotheses of the lemma can be satisfied.

Lemma B.1.3. Let E1, . . . ,EJ be finite, disjoint subsets of Γ. Suppose that
for each j there is a subset Fj ⊆ Ej, with |Fj| ≥ 1

5 |Ej|, and such that
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J∏

�=1

λ� �= 1 (B.1.2aj)

whenever λj ∈ Qpj (Fj) with pj ≥ |Fj|/2 and (B.1.2bj)

λk ∈Wdj,k(Ek) with dj,k =
|Ej|
|Ek|pj for k �= j. (B.1.2cj)

Then there are subsets E′
j ⊆ Ej such that

⋃J
j=1 E

′
j is quasi-independent and

|E′
j| ≥ |Ej|/10 for 1 ≤ j ≤ J.

Proof (of Lemma B.1.3). We first construct the E′
j ⊆ Ej and then show that

their union is quasi-independent. Temporarily fix j ∈ {1, . . . , J}. There are
two cases to consider.

Case I. Assume there are words λ� for � = 1, . . . , J , such that λj ∈ Qpj (Fj),
λk ∈ Wdj,k(Ek) for each k �= j, k = 1, . . . , J (where dj,k is as in (B.1.2cj))

and
∏J
�=1 λ� = 1.

Since the sets E1, . . . ,EJ are finite and since Fj ⊆ Ej , there can be only
finitely many such collections of (quasi-)words. Among that set of collections,

let σ
(j)
1 , . . . , σ

(j)
J be a choice with the presentation length, p(σ

(j)
j ), of the quasi-

word, σ
(j)
j , maximal. Of course, pj := p(σ

(j)
j ) ≤ |Fj|/2.

Because σ
(j)
j is a quasi-word in Qpj (Fj), there are characters γ ∈ Fj and

scalars εγ ∈ {0,−1, 1} such that σ
(j)
j =

∏
γ∈Fj

γεγ . Let F′
j = {γ ∈ Fj : εγ �=

0} and E′
j = Fj � F′

j . Then |E′
j| ≥ |Fj| − |F′

j| ≥ |Fj|/2 ≥ |Ej|/10, as
desired.

Case II. Otherwise, there is no such collection of words. In this case, we set
E′
j = Fj . Clearly, |E′

j| ≥ |Ej|/10.

We repeat the above to define the sets E′
1, . . . ,E

′
J for each 1 ≤ j ≤ J .

We now prove that E′ =
⋃J
j=1 E

′
j is quasi-independent. Assume not. Then

there is a non-trivial quasi-relation in E′, say
∏J
j=1 λj = 1, where for each j,

λj is a quasi-word from E′
j and not all presentation lengths, p(λj), are zero.

Choose the index j0 such that |Ej0 |p(λj0 ) = maxj |Ej|p(λj).
The choice of j0 ensures that for each k �= j0, λk is a quasi-word from Ek of

presentation length p(λk) ≤ |Ej0 |p(λj0 )/|Ek|. In particular, Case I applies

to the index j = j0. For notational ease, we set σk = σ
(j0)
k , 1 ≤ k ≤ J .

Consider the words ω� = σ�λ�, 1 ≤ � ≤ J . Clearly
∏J
�=1 ω� = 1. Since

σj0 is a quasi-word from F′
j0

and λj0 is a quasi-word from the disjoint set
E′
j0

, ωj0 is a quasi-word from F′
j0
∪ E′

j0
= Fj0 with presentation length

p(ωj0) = p(σj0)+p(λj0 ) > p(σj0). Furthermore, for k �= j0, ωk is a word from
Ek of length at most

|Ej0 |
|Ek| p(σj0 ) +

|Ej0|
|Ek| p(λj0) =

|Ej0|
|Ek| p(ωj0).
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That shows that the collection of words ω1, . . . , ωJ satisfies the criteria of
Case I with the index j = j0. But the presentation length of ωj0 is greater
than that of σj0 , contradicting the choice of σj0 . ��

Proof (of Proposition B.1.2). The strategy will be to construct sets Fj ⊆ Ej
satisfying the three conditions of (B.1.2j).We note that equations (B.1.2j)
depend on the set Fj , but not on any other sets Fk for k �= j. Thus, we can
construct the sets Fj independently of each other and verify (B.1.2j) for each
index j separately.

We put A = ( 480
log 2 )2. Fix an index j and first suppose |Ej| ≥ A. The subset

Fj will be defined probabilistically. To begin, choose independent, Bernoulli
random variables ξγ , for γ ∈ Ej, such that

P(ξγ = 1) =
1

4
and P(ξγ = 0) =

3

4
.

For each ω define subsets of Γ by Fj(ω) = {γ ∈ Ej : ξγ(ω) = 1}. For � ∈ N

and 1 ≤ k ≤ J , k �= j (and remembering that j is temporarily fixed) we put
dk(�) = �|Ej|/|Ek| and define functions

gj(ω, x) =

|Ej |∑

�=� |Ej |
10 �

( ∑

H⊆Ej

|H|=�

∏

γ∈H

ξγ(ω)qγ(x)
∏

1≤k≤J
k �=j

∑

λ∈Wdk(�)(Ek)

λ(x)
)
,

where qγ(x) = 2Reγ(x) if γ is not of order two and qγ = γ otherwise.
Then

∫
G gj(ω, x)dmG(x) is the number of J-tuples (λ1, . . . , λJ ) with

∏J
k=1 λk = 1 for which λj ∈ Q�(Fj(ω)) for some � ≥ |Ej|/10 and

λk ∈ Wdk(�)(Ek) for each k �= j.
Thus, to verify that the three conditions of (B.1.2j) hold for this index j,

it will be enough to show that there exists ω such that
∫
G
gj(ω, x)dmG(x) =

0 and |Fj(ω)| ≥ 1
5 |Ej|. Let

Ω1 =
{
ω ∈ Ω :

∫

G

gj(ω, x)dmG(x) = 0
}

and

Ω2 =
{
ω : |Fj(ω)| ≥ 1

5
|Ej|

}
.

It will suffice to show that P(Ω1 ∩ Ω2) > 0. We argue by contradiction and
assume that P(Ω1 ∩Ω2) = 0. Then Ω2 would be a subset of the complement
Ωc1 (up to a P-null set), and so P(Ω2) ≤ P(Ωc1).

Let us first obtain a lower bound for P(Ω2). Because P(ξγ �= 0) = 1/4,

|Ej|
4

= E

⎛

⎝
∑

γ∈Ej

ξγ

⎞

⎠ =

∫

Ω

|Fj(ω)|dP(ω)

≤ |Ej|
5

P(Ωc2) + |Ej|P(Ω2) ≤ |Ej|
5

+
4|Ej|

5
P(Ω2).
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Hence, 1
16 ≤ P(Ω2) ≤ P(Ωc1). Because

∫
G gj(ω, x)dx ≥ 1 on Ωc1,

P(Ωc1) ≤
∫

Ωc
1

∫

G

gj(ω, x)dxdP(ω) ≤
∫

Ω

∫

G

gj(ω, x) dxdP(ω).

It will now suffice to show that
∫
Ω

∫
G
gj(ω, x) dxdP(ω) < 1/16 to obtain

a contradiction. Note that the independence of the functions ξγ , γ ∈ Ej ,
implies that for each H ⊆ Ej with |H| = �,

∫ ∏
γ∈H ξγ(ω)dP(ω) = 4−�. We

interchange the order of integration and use this fact to get
∫

Ω

∫

G

gj(ω, x) dxdP(ω) =

∫

G

∫

Ω

gj(ω, x) dP(ω) dx

=

|Ej |∑

�=� |Ej |
10 �

1

4�

∫

G

( ∑

H⊆Ej

|H|=�

∏

γ∈H

qγ

)( ∏

1≤k≤J
k �=j

∑

λ∈Wdk(�)(Ek)

λ
)

dx,

where we have suppressed the variable x in the integrands. The expansion of
the Riesz product p(x) :=

∏
γ∈Ej

pγ(x), where pγ(x) = 1 + 1
2 (γ(x) + γ(x)) if

γ is not of order two or pγ(x) = 1 + 1
2γ(x) if γ is of order two, includes all

the terms of the sum

1

2�

∑

H⊆Ej

|H|=�

∏

γ∈H

qγ ,

as well as other terms. Since each term in the expansion of p(x) has a real,
non-negative contribution to the integral over G,

∫

Ω

∫

G

gj(ω, x) dxdP(ω) ≤
|Ej |∑

�=� | Ej |
10 �

1

2�

∫

G

( ∏

γ∈Ej

pγ
∏

k �=j

∑

λ∈Wdk(�)(Ek)

λ
)

dx.

Since Ej is quasi-independent, p(x) has L1(G)-norm 1, and so
∫

G

( ∏

γ∈Ej

pγ
∏

k �=j

∑

λ∈Wdk(�)(Ek)

λ
)

dmG(x)≤
∥
∥
∥
∏

k �=j

∑

λ∈Wdk(�)(Ek)

λ
∥
∥
∥
∞

≤
∏

k �=j
|Wdk(�)(Ek)|≤

∏

k �=j
|Wdk(Ek)|,

where dk = |Ej|2/|Ek|. The sets Ek are increasing in cardinality, and hence
dk ≤ |Ek| if j ≤ k and dk ≥ |Ek| if j ≥ k. Therefore, Lemma B.1.1 gives

|Wdk(Ek)| ≤

⎧
⎪⎨

⎪⎩

(
4e |Ek|2

|Ej |2
)|Ej |2/|Ek|

if j < k

(
4e

|Ej |2
|Ek|2

)|Ek|
if k < j.
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Now use the fact that log x ≤ 2
√
x for x ≥ 1 to obtain

log |Wdk(Ek)| ≤

⎧
⎪⎨

⎪⎩

|Ej |2
|Ek| × 8

√
|Ek|
|Ej | = 8

|Ej |3/2
|Ek|1/2 if j < k

|Ek| × 8
√

|Ej |
|Ek| = 8|Ej|1/2|Ek|1/2 if k < j.

Since |Ej+1|/|Ej| ≥ 10 and A > 10,

log
∏

k �=j
|Wdk(Ek)| ≤ 8 |Ej|

[∑

k<j

( |Ek|
|Ej|

)1/2

+
∑

k>j

( |Ej|
|Ek|

)1/2 ]

≤ 8 |Ej|
[∑

k<j

(
1

Aj−k

)1/2

+
∑

k>j

(
1

Ak−j

)1/2 ]

≤ 8 |Ej|× 2√
A
× 1

1− 1/
√
A
≤ 8 |Ej| 3√

A
.

Thus,

∫

Ω

∫

G

gj(ω, x)dxdP(ω) ≤ exp
(

24 |Ej|/
√
A

) ∑

�≥|Ej |/10

1

2�

≤ exp
(24 |Ej|√

A

)
× 2× 2−|Ej |/10

= 2 exp

(

|Ej|
(

− log 2

10
+

24√
A

))

= 2 exp

(

|Ej|
(
− log 2

20

))

,

because A =
(

480
log 2

)2
. Since we have assumed |Ej| ≥ A, we conclude that

∫
Ω

∫
G gj(ω, x)dxdP(ω) < 1/20, a contradiction.

Finally, suppose |Ej| < A. Of course, the condition |E�+1|/|E�| ≥ A for
all � ensures that j = 1. In this case, set F1 = E1. Since the presentation
length of a quasi-word from F1 is at most |F1|, an easy computation shows
that (in the notation of Lemma B.1.3) d1,k < 1 for k ≥ 2. Thus, Wd1,k(Ek) =
{1} for all k ≥ 2. Consequently, if λ1 ∈ Qp1(F1) with p1 ≥ |F1|/2 > 0 and

λk ∈ Wd1,k(Ek) for k ≥ 2, then
∏J
k=1 λk = λ1 �= 1. Therefore, the three

conditions of (B.1.2j) are satisfied in this case, as well. ��

This material is from [119, pp. 496–8]. Proposition B.1.2 is in Bourgain
[19].



Appendix C

Background Material

Background material required from abstract harmonic analysis and
probability.

C.1 Overview of Harmonic Analysis on Locally
Compact Abelian Groups

C.1.1 Topological Groups

A topological group is a Hausdorff space, G, that is also a group, and for
which the map (x, y) �→ xy−1 is continuous from the product space G × G
to G. If the topology is compact, G is called a compact group. G is called
locally compact if there is a neighbourhood base of compact sets.

The definition of a topological group implies that neighbourhoods of x ∈ G
are those sets of the form xU where U is a neighbourhood of the identity
e ∈ G. Every e-neighbourhood U contains a symmetric e-neighbourhood V
(i.e. V = V −1) with V 2 ⊆ U . Thus, every topological group G is a regular
topological space, meaning that if A is a closed subset of G and x /∈ A, then
there are disjoint open sets U, V such that x ∈ U and A ⊆ V . It also follows
that every compact group is locally compact.

Every locally compact abelian group G or compact group G admits a
Haar measure mG – a non-negative, regular, Borel measure, not identically
0 and satisfying mG(E) = mG(xE) for all x ∈ G and Borel sets E ⊆ G. A
Haar measure is also invariant under inversion (mG(E) = mG(E−1) for all
Borel sets E), the measure of any non-empty, open set is strictly positive and
the measure of any compact set is finite. Up to scaling, the Haar measure
is unique. When the group is compact it is customary to normalize mG so
that mG(G) = 1 and when it is discrete to normalize so the measure of a
singleton is 1.

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,

© Springer Science+Business Media New York 2013
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For the remainder of this section G will denote a locally compact abelian
group.

Dual Groups

A complex-valued function γ : G → T is called a character if γ(xy) =
γ(x)γ(y) for all x, y ∈ G. The set of all continuous characters on G forms a

special abelian group, denoted Ĝ or Γ, known as the dual group of G. It is a
separating family, that is, if γ(xy−1) = 1 for all γ ∈ Γ, then x = y. We note
that γ−1 = γ.

When G is compact, the continuous characters are orthonormal in the
sense that

∫
G
γχdmG = 0 if γ �= χ and 1 otherwise.

The group Γ is given the compact-open topology as follows. Let ε > 0 and
K ⊆ G be compact. A basic neighbourhood of γ0 ∈ Γ is the set

{γ ∈ Γ : |γ(x)− γ0(x)| < ε for all x ∈ K}.

With this topology, Γ is also a locally compact abelian group.
If x ∈ G, then x can be viewed as a continuous character, α(x) on Γ

defined by α(x)(γ) = γ(x). Thus, there is a natural map α : G → Γ̂ given
by α : x �→ α(x). The Pontryagin duality theorem says that under this
identification the dual of Γ is G.

Theorem C.1.1 (Pontryagin duality theorem). The map α, described
above, is a homeomorphism of G onto the dual group of Γ.

When G = T, then Γ = Z, and the Haar measure on G is normalized
Lebesgue measure. When G = R, Γ = R, and Lebesgue measure is Haar
measure. More generally, we have the following.

Proposition C.1.2. G is compact if and only if its dual group Γ is discrete.

Many other properties of the group have “dual” properties in the dual
group.

Theorem C.1.3. Suppose G is a compact group.

1. G is metrizable if and only if Γ is countable.
2. G is connected if and only if Γ has no non-trivial elements of finite order

if and only if Γ is divisible.
3. G = {x2 : x ∈ G} if and only if Γ has no elements of order two.
4. If every element of Γhas finite order, then G is totally disconnected.

If H is a closed subgroup of a (locally) compact abelian group G, then the
quotient group G/H is also a (locally) compact abelian group. The quotient
group is discrete if and only if H is open.
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The annihilator of H , denoted H⊥, is the set of all γ ∈ Γ such that
γ(x) = 1 for all x ∈ H . H⊥ is a closed subgroup of Γ and (H⊥)⊥ = H .
If q : G→ G/H is the quotient map, then for each γ ∈ H⊥ the function Φγ :

G/H → T given by Φγ(q(x)) = γ(x) belongs to Ĝ/H. The correspondence

γ �→ Φγ is a homeomorphism between H⊥ and Ĝ/H. By duality, the dual of

Ĥ is the quotient Γ/H⊥. This shows that every continuous character on H
extends to a continuous character on G.

Product Groups

Let Xα, α ∈ B, be compact, Hausdorff spaces. The direct product is the set

∏

α∈B
Xα =

{

ψ : B →
⋃

α

Xα : ψ(α) ∈ Xα for all α ∈ B
}

.

A base for the product topology consists of the sets
∏

α∈B
Uα, where Uα is open

in Xα for each α ∈ B and for all but finitely many coordinates, Uα = Xα.
This makes the product space a compact, Hausdorff space.

Theorem C.1.4 (Tychonoff’s theorem). If Xα are compact spaces, then∏

α∈B
Xα is compact.

By definition, each non-empty, open set contains a set of the form V ×∏

α∈B\F
Xα, where F is a finite subset of B and V ⊆

∏

α∈F
Xα is open. If all the

sets Xα are finite, then each open set in the direct product will contain an
open set of the form {ψ} ×

∏

α∈B\F
Xα, where F is finite and ψ ∈

∏
α∈F Xα.

Furthermore, each open set in the product contains a set of that form, even
if the sets Xα are not finite.

When the Xα are all compact abelian groups, then
∏

α∈B
Xα is again a

compact abelian group and its dual is the direct sum,
⊕

α∈B X̂α, the set of

all ϕ : B →
⋃

α
X̂α such that ϕ(α) ∈ X̂α for all α ∈ B and ϕ(α) = 1 for all

but finitely many α.

C.1.2 Fourier and Fourier–Stieltjes Transforms

The Fourier transform of f ∈ L1(G) := L1(G,mG) is the function f̂ defined
on Γ by

f̂(γ) =

∫

G

f(x)γ(x)dmG.
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f̂ is a continuous function on Γ and ‖f̂‖∞ ≤ ‖f‖1. The complex numbers

{f̂(γ)}γ∈Γ are called the Fourier coefficients of f and they uniquely
determine f ∈ L1(G).

Whenever f, g ∈ L1(G), we can define their convolution

f ∗ g(x) =

∫

G

f(xy−1)g(y)dmG.

The function f ∗ g belongs to L1 with ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1. An application

of Fubini’s theorem proves f̂ ∗ g = f̂ ĝ.

Theorem C.1.5 (Plancherel). The Fourier transform restricted to L1(G)∩
L2(G) is an isometry (with respect to the L2 norm) onto a dense subspace of
L2(Γ) and thus extends uniquely to an isometry of L2(G) onto L2(Γ).

One can deduce from this Parseval’s formula: For all f, g ∈ L2(G) and
suitable normalizations of the Haar measures,

∫

G

f(x)g(x)dmG =

∫

Γ

f̂(γ)ĝ(γ)dmΓ.

When G is compact, the formal series
∑
γ∈Γ f̂(γ)γ is known as the Fourier

series of f . A finite linear combination of continuous characters, P =∑N
j=1 ajγj , is called a trigonometric polynomial. The orthogonality property

of characters implies P̂ (γj) = aj for all j. The Stone–Weierstrass theorem
implies the set of trigonometric polynomials is dense in C(G) and hence also
dense in Lp(G) for all p <∞. Plancherel’s theorem implies the partial sums
of the Fourier series of f converge to f in L2 norm.

The Riemann–Lebesgue lemma says f̂(x)→ 0 as x→∞ for all f ∈ L1(Γ),

and hence A(G) = {f̂ : f ∈ L1(Γ)} ⊆ C0(G). Being a separating, self-adjoint
subalgebra, it is dense in C0(G). The property known as “local units” is one
illustration of the richness of the set A(G). It applies whether G is compact,
discrete or neither.

Theorem C.1.6 (Local units theorem). Let C, V be compact subsets of
G with the interior of V non-empty. Then there exists f ∈ A(G) such that

1. f(x) = 1 on C, f(x) = 0 off C · V · V −1 and 0 ≤ f(x) ≤ 1 for all x ∈ G
2. ‖f‖A(G) ≤

(
mG(C · V −1)/mG(V )

)1/2

Corollary C.1.7. If U ⊆ G is an e-neighbourhood, then there exists h ∈
A(G) such that Supp h ⊆ U , h = 1 on an e-neighbourhoodand ‖h‖A(G) ≤ 2.

The Fourier transform has an extension, the Fourier–Stieltjes transform,
to μ ∈M(G) given by

μ̂(γ) =

∫

G

γ(x)dμ.
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This function is uniformly continuous and is bounded by the measure norm of
μ. The uniqueness theorem states that if μ̂(γ) = 0 for all γ ∈ Γ, then μ = 0.
When f ∈ L1(G), then f can be identified with the absolutely continuous

measure dμf = fdmG. One can easily see that f̂(γ) = μ̂f (γ) for all γ ∈ Γ.
If μ, ν ∈ M(G), then their convolution, μ ∗ ν, is defined as the linear

transformation on C0(G) that maps

f �→
∫

G

fdμ ∗ ν =

∫

G

∫

G

f(xy)dμ(x)dν(y).

Thus, μ∗ν is another finite, regular Borel measure on G, with ‖μ ∗ ν‖M(G) ≤
‖μ‖M(G) ‖ν‖M(G) and μ̂ ∗ ν = μ̂ ν̂.

The space B(Γ) = {μ̂ : μ ∈M(G)} is a self-adjoint algebra of C(Γ), which
is invariant under the group action and multiplication by γ(x) for any x ∈
G, and contains an identity, δ̂e. Since L1(G) ⊆ M(G), A(Γ) ⊆ B(Γ). The
Bochner–Eberlein theorem gives one way to conclude that a function belongs
to B(Γ).

Theorem C.1.8 (Bochner–Eberlein). Let Γ be a locally compact abelian
group. Suppose that f ∈ B(Γd), where Γd is Γ with the discrete topology. If f
is continuous on Γ, then f ∈ B(Γ).

Given a non-discrete, abelian group Λ, denote by

M0(Λ) = {μ ∈M(Λ) : μ̂ ∈ C0(Λ̂)}.

Similarly, for a Borel set E ⊆ Λ, write M0(E) for the set of μ ∈M0(Λ) that
are concentrated on E.

Lemma C.1.9. 1. M0(Λ) is a norm-closed ideal in M(Λ).
2. If μ ∈M0(Λ) and ν  μ, then ν ∈M0(Λ).
3. M0(Λ) is a subspace of the continuous measures on Λ.

Proof. (1) is easy. For (2), it is also easy to see that γμ ∈ M0(Λ) whenever

μ ∈M0(Λ) and γ ∈ Λ̂. Hence, pμ ∈M0(Λ) for all trigonometric polynomials
p. If ν  μ, then ν = fμ for some f ∈ L1(|μ|). Being a finite measure, there
are compactly supported measures μn → μ and fμn → fμ in measure norm.
Thus, by (1), there is no loss in assuming μ is compactly supported. Then for
every ε > 0 there exists a trigonometric polynomial p ∈ Trig(Λ) such that
‖fμ− pμ‖M(Λ) < ε. Again, because M0(Λ) is norm closed, ν ∈M0(Λ).

(3) If μ ∈ M0(Λ) had a discrete component, then there would be a point
mass δx  μ. But, of course, a point mass cannot be in M0(Λ). ��

More generally, a continuous measure can be characterized by the average
decay in its Fourier transform.

Lemma C.1.10 (Wiener). Let {Vα} be a neighbourhood base at e ∈ G
and suppose for each α that fα is a positive-definite function1, compactly

1 That is, f̂α ≥ 0 with
∫
Γ
f̂αdγ < ∞.
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supported on Vα, such that fα(e) = 1. Then for every μ ∈M(G),

lim
α

∫

Γ

f̂α(γ)|μ̂(γ)|2dγ =
∑

x∈G
|μ({x})|2.

C.1.3 The Bohr Compactification and the Bohr
Topology

Suppose G is a compact abelian group but now considered as a topological
group with the discrete topology, denoted Gd. The dual of Gd is a compact
topological group known as the Bohr compactification of Γ and denoted Γ.
Since all functions defined on G are continuous functions on Gd, Γ consists
of all characters (continuous or otherwise) on G. If G is infinite, Γ is not
metrizable and |Γ| = 2|G|. (See Exercises C.4.17 and 4.7.8.)

The compact-open topology on Γ is known as the Bohr topology. The basic
neighbourhoods of γ0 ∈ Γ are the sets of the form

{γ ∈ Γ : |γ(xj)− γ0(xj)| < ε for j = 1, . . . , N},

where ε > 0 and {x1, . . . , xN} is any finite set (equivalently, compact set)
in Gd. Thus, the Bohr topology restricted to Γ is the weakest topology that
makes all the maps γ �→ γ(x) continuous for x ∈ G. These maps are all the
continuous characters on Γ since the dual group of Γ is equal to Gd by the
Pontryagin duality theorem.

The subgroup Γ naturally embeds into Γ as a dense subgroup because if

x ∈ ̂
Γ satisfies γ(x) = 1 for all γ ∈ Γ, then x = e ∈ G. When Γ is not discrete

(equivalently, when Γ is infinite), then every element of Γ is a cluster point.
It follows that every element of Γ is a limit of a net from Γ.

Being a compact topological group, Γ admits a normalized Haar measure.
The mΓ-measure of Γ must be zero (except in the trivial case that Γ is a

finite group); for otherwise, being a subgroup Γ would be open and hence
closed in Γ, and therefore Γ = Γ (as topological groups), a contradiction.

The Fourier–Stieltjes transform of the point mass measure, δx ∈ Md(G),

naturally extends to a continuous function on Γ by defining δ̂x(γ) = γ(x)
for γ ∈ Γ. If μ =

∑∞
j=1 cjδxj is any finite discrete measure on G, then μ̂

is a continuous function on Γ being the uniform limit of the partial sums,
∑N
j=1 cj δ̂xj . By the Stone–Weierstrass theorem, the algebra {μ̂ : μ ∈Md(G)}

is dense in C(Γ). Since M(Gd) = Md(G) = �1(G) = L1(
̂
Γ), this subalgebra

is equal to both A(Γ) and B(Γ).
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C.1.4 Consequences of the Local Units Theorem

In Exercise C.4.20 we ask that local units be used to prove the next theorem.

Theorem C.1.11 (Wiener–Levy). Let E ⊂ Γ be compact. If f ∈ A(E) and
F is analytic in a neighbourhood of f(E), then F ◦ f ∈ A(E). In particular,
if f ≥ 1 on E, then 1/f ∈ A(E).

A more general version of the Wiener–Levy theorem is due to Gel’fand.
We use x̂ to denote the Gel’fand transform of an element x of a commutative
Banach algebra.

Theorem C.1.12 (Gel’fand). Let A be a commutative, semi-simple, unital
Banach algebra with maximal ideal space M. Let x ∈ A. If F is analytic
in a neighbourhood of the spectrum of x, then there exists y ∈ A such that
ŷ = F (x̂) on M.

Spectral Synthesis

Local units can be avoided by using a Cauchy integral formula proof of
Theorem C.1.11, but local units are essential when discussing ideals of A(G).
EveryX ⊆ G defines a closed ideal (the hull) I(X), consisting of all f ∈ A(G)
which are zero on X . By continuity, X and its closure in G define the same
ideal, so we shall assume X is closed in this discussion.

Because of the local units property, for each x �∈ X , there exists f ∈
I(X) with f(x) = 1. Therefore, we may identify A(G)/I(X) with the set of
restrictions of elements of A(G) to X . We call this quotient A(X) and give
elements the quotient norm. We can, of course, do this whether G is compact
or non-compact, discrete or non-discrete.

Each closed ideal I ⊂ A(G) gives rise to a closed set (the kernel of I)
consisting of those x ∈ G for which f(x) = 0 for all f ∈ I. For some sets
there are other closed ideals of interest. We let J0(X) be the set of elements
of A(G) that are zero in a neighbourhood of X and J(X), the norm closure
of J0(X).

Definition C.1.13. The set X is said to be a set of spectral synthesis if
I(X) = J(X).

Important examples of sets of spectral synthesis include singletons and
compact subgroups. In fact if X is a compact subgroup, then X is a Ditkin
set : there exists a bounded net gα ∈ J0(X) such that gαf → f in A(G)
norm for all f ∈ I(X). That singletons are sets of spectral synthesis can be
deduced from Lemma 9.4.3. The argument goes as follows. Suppose f ∈ A(G),
x ∈ G, f(x) = 0 and ε > 0. By translating f , we may assume x = e. There

exists a trigonometric polynomial, g =
∑N

1 cnγn, with ‖f−g‖A(G) < ε/4 and
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g(e) = 0. Apply Lemma 9.4.3 to obtain a compact neighbourhood U of x such
that ‖1 − γn‖A(U) < ε/4N for each n. Then ‖g‖A(U) < ε/4. Let h ∈ A(G)
agree with g on U and have ‖h‖A(G) < ε/4. Then g − h = 0 on U and
‖f − (g − h)‖A(G) < ε.

The following property of spectral synthesis is used in Sect. 10.3.3.

Lemma C.1.14. Suppose the compact set V ⊂ Γ obeys spectral synthesis
and f, g ∈ A(Γ) with f = g on V. Then for each ε > 0 there exists a closed
neighbourhood U ⊃ V such that ‖f − g‖A(U) < ε.

Proof. Let ε > 0. Since f − g ∈ I(V), the spectral synthesis property of V
implies that there exists h ∈ J0(V) with ‖f − g − h‖A(Γ) < ε. Let U = {χ ∈
Γ : h(χ) = 0}. Then U is a compact neighbourhood of V.

Since h ∈ I(U), ‖h‖A(U) = 0 by the definition of the quotient norm in

A(U) = A(Γ)/I(U). Therefore, ‖f − g‖A(U) = ‖f − g − h‖A(U) ≤ ‖f − g −
h‖A(Γ) < ε. ��

C.1.5 Elements of Order Two

In the study of ε-Kronecker and I0 sets, elements of order two cause compli-
cations. Recorded here are some useful facts.

Lemma C.1.15. 1. Let G2 be the annihilator of Γ(2), the subgroup consist-
ing of the set of characters of order 2k for some k. Then every element
of G2 is a square.

2. If Γ has only finitely many elements of order two, then each character on
G of order two is continuous.

Proof. (1) Apply Exercise C.4.11(1) because Ĝ2 = Γ/Γ(2) has no elements
of order two.

(2) Let Gs be the set of squares in G. As Γ has only finitely many elements
of order two by Exercise C.4.11(3) |G/Gs| <∞, so Gs is an open and closed
subgroup. If γ ∈ Γ is of order two, then γ(g2) = 1. Hence, γ is constant on
the cosets of G/Gs and thus is a continuous character. ��

Proposition C.1.16. Suppose Γ contains only finitely many elements of or-
der two. For each non-empty, open set U ⊆ G there is some δ = δ(U) > 0
such that

Γ1 =
{
γ ∈ Γ : min{|γ(u)− 1| , |γ(u) + 1|} < δ for all u ∈ U

}

is finite. Moreover, if γ ∈ Γ1, then γ(u) = ±1 for all u ∈ U.

Proof. Let U be an open subset of G. By compactness, there exist finitely
many x1, . . . , xJ ∈ G such that G =

⋃J
j=1 xjU . Take 0 < δ ≤ π/4J , consider

γ ∈ Γ and assume
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arg γ(u) ∈ (−δ, δ) ∪ (π − δ, π + δ) (C.1.1)

for every u ∈ U .
For every g ∈ G, there exist u ∈ U and 1 ≤ j ≤ J such that g = uxj . Thus,

γ(g) = γ(u)γ(xj), and hence arg γ(g) ∈ T0, where if tj = argγ(xj), then

T0 =
J⋃

j=1

(tj − δ, tj + δ) ∪ (tj + π − δ, tj + π + δ).

The range of a character is either a finite subgroup of the circle or is dense in
T. Since T0 is not dense (indeed, there is an interval I of width (π − 2Jδ)/J
disjoint from T0) it follows that range γ is a finite subgroup and therefore
γ has finite order, say p. But then range γ must contain all pth roots of
unity and since I will contain a pth root of unity for each p sufficiently large,
say p > p0(δ), we see that γ has order ≤ p0. By reducing δ, if necessary,
we can assume (−δ, δ) ∪ (π − δ, π + δ) contains no pth roots of unity for
any p ≤ p0, other than ±1. With this choice of δ = δ(U) we deduce that
if (C.1.1) holds for all u ∈ U , then γ|U = ±1. Thus, we have established that
Γ1 =

{
γ ∈ Γ : γ|U = ±1

}
and, furthermore, that every element in Γ1 is of

order p for some p ≤ p0.
Put S =

{
γ2 : γ ∈ Γ1

}
⊆ Γ. Then U ⊆ S⊥ and thus S⊥ is a subgroup

of G with interior. Consequently, G is a finite union of translates of S⊥ and
this ensures that {χ ∈ Γ : χ(x) = 1 for all x ∈ S⊥} is finite. As this latter
set contains S, S is a finite set of characters, {χ1, . . . , χK}. Hence, if γ ∈ Γ1,
then γ2 = χk for some 1 ≤ k ≤ K.

Let Gs = {g2 : g ∈ G}. Because Γ contains only finitely many elements of

order two, G =
⋃N
n=1 ynGs for suitable y1, . . . , yN ∈ G. When γ ∈ Γ1, γ(yn)

is a pth root of unity for some p ≤ p0, and thus the set of N -tuples,

{(γ(y1), . . . , γ(yN)) : γ ∈ Γ1} ⊆ T
N ,

is finite. Furthermore, if γ, β ∈ Γ1 with γ2 = β2 = χk and γ(yn) = β(yn) for
n = 1, . . . , N , then for each g ∈ G, say g = ynh

2, we have

γ(g) = γ(yn)γ2(h) = γ(yn)χk(h) = β(yn)β2(h) = β(g).

Thus, γ = β and this implies that Γ1 is a finite set. ��

Corollary C.1.17. Suppose Γ contains only finitely many elements of order
two. Let U ⊂ G be an e-neighbourhood and H be the subgroup of G generated
by U . Then Ĥ contains only finitely many characters of order two.

Proof. Let δ > 0 and Γ1 ⊂ Γ be given by Proposition C.1.16 for U . If γ ∈ Ĥ
has order two, then γ = ±1 on U , so γ ∈ Γ1. Since Γ1 is finite, the corollary
follows. ��
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Corollary C.1.18. Suppose Γ contains only finitely many elements of order
two, U ⊂ G is an e-neighbourhood and γ ∈ Γ satisfies γ(u) = ±1 for all
u ∈ U . Then γ is continuous.

Proof. Let H be the open subgroup generated by U . Since γ(u) = ±1 for all

u ∈ U , γ|H is of order two. Corollary C.1.17 implies Ĥ contains only finitely
many characters of order two and therefore Lemma C.1.15 (2) implies that
each character on H of order two is a continuous character on H . ��

C.2 Basic Probability

Suppose Ω is a set and M (the measurable sets) is a σ-algebra of subsets
of Ω. A probability is a positive measure, P, defined on M, with P(Ω) = 1.
A probability space is a triple (Ω,M,P). A measurable set is also called an
event. An event E is said to occur almost surely (a.s.) if P(E) = 1.

A random variable X : Ω → C is an M-measurable function. By σ(X)
we mean the smallest σ-algebra that makes X measurable. The expectation
(or mean) of a random variable X is denoted E(X) and is given by

E(X) =

∫

Ω

X(ω)dP(ω).

An elementary fact is Markov’s inequality, for which a proof is asked in
Exercise C.4.1 (1).

Lemma C.2.1 (Markov’s inequality). For a random variable X,

P(|X | ≥ d) ≤ E( |X |)
d

. (C.2.1)

Two important classes of random variables are the Bernoulli random
variables and the Poisson random variables. Bernoulli random variables take
on only the values 0 and 1, with probabilities p and 1 − p, respectively.
The expectation of such a random variable X is E(X) = p. A Poisson ran-
dom variable X with parameter λ > 0 takes on non-negative integer values
and

P(ω : X(ω) = k) =
λke−λ

k!
for k = 0, 1, . . . .

It is easy to see that E(X) = λ and that the sum of Poisson r.v.’s with
parameters pn is again Poisson, with parameter

∑
pn.

Sub-σ-algebras, σ1, σ2, . . . of M, are said to be independent if whenever
Yi ∈ σi and i1, . . . , iN are distinct, then

P(Yi1 ∩ · · · ∩ YiN ) =

N∏

n=1

P(Yin).
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Random variables X1, X2, . . . are said to be independent if their associated
σ-algebras σ(X1), σ(X2) , . . . are independent. If X1, X2, . . . are independent,
then E(

∏
nXin) =

∏
n E(Xin)

Here is one application of Markov’s inequality.

Lemma C.2.2. Let X1, . . . , XK be real, mean 0, independent random vari-
ables, with |Xk| ≤ 1 a.s. for all k. Suppose c2 ≥

∑K
k=1 E(X2

k). Then for all
a > 0,V

P

(∣
∣
∣
∑

k

Xk

∣
∣
∣ ≥ a

)

≤ 2 exp

(

− a2

2(a+ c2)

)

.

Proof. For τ > 0,

exp(τXk) = 1 + τXk +

∞∑

j=2

τ j

j!
Xj
k ≤ 1 + τXk +

∞∑

j=2

τ j

j!
X2
k ,

so

E(exp(τXk)) ≤ 1 + E(X2
k)(eτ − τ − 1)

≤ exp
(
E(X2

k )(eτ − τ − 1)
)
. (C.2.2)

Markov’s inequality (C.2.1) applied to Y = exp(τ
∑

kXk) and d = eτa,
and the independence of the Xk give

P

(
∑

k

Xk ≥ a
)

= P

(

exp

(

τ
∑

k

Xk

)

≥ exp(τa)

)

≤ e−τa
∏

k

E(eτXk ).

Applying (C.2.2) and the assumption that c2 ≥
∑

E(X2
k) yields

P

(
∑

k

Xk ≥ a
)

≤ exp(−τa+ c2(eτ − τ − 1)).

The value τ = log(1 + a
c2 ) minimizes the last term, and so

P

(
∑

k

Xk ≥ a
)

≤ exp
(
a− (a+ c2) log

(
1 +

a

c2

))

= exp
(
a+ (a+ c2) log(1− u)

)
,

where u = a/(a+ c2). Thus,

P

(
∑

k

Xk ≥ a
)

≤ exp

(

a− (a+ c2)

(

u+
u2

2

))

= exp

(

− a2

2(a+ c2)

)

.

The same bound holds for P(
∑
k −Xk ≥ a), and hence the result follows. ��
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C.2.1 Zero-One Laws

Suppose {An}n is a sequence of events. By {An i.o.} ( i.o. being short for
infinitely often) we mean the measurable set

{An i.o.} =
⋂

m

⋃

n≥m
An = {ω : ω ∈ An for infinitely many n}.

A very useful result is the Borel–Cantelli lemma (Exercise C.4.1 (2)).

Lemma C.2.3 (Borel–Cantelli). Suppose An are events.

1. If
∑∞

n=1 P(An) <∞, then P(An i. o.} = 0.
2. If the An are independent and

∑∞
n=1 P(An) =∞, then P(An i. o.} = 1.

The Borel–Cantelli lemma is one example of a zero-one law. For another
example, we first introduce the notion of the tail σ-algebra. Let {Xn}n be a
sequence of random variables and let

Tn = σ(Xn, Xn+1, . . . } and T =
⋂

n

Tn.

The σ-algebra T is called the tail σ-algebra of the sequence {Xn} and con-
tains many important events. Examples include:

1. {ω : limnXn(ω) exists}
2. {ω :

∑
nXn(ω) converges}

3. {ω : Xn(ω) ∈ An i.o. } where {An} is a sequence of measurable subsets
of C.

The Kolmogorov 0− 1 law is an important example of a zero-one law.

Theorem C.2.4 (Kolmogorov 0 − 1 law). Let {Xn}n be a sequence of
independent random variables and let T be the associated tail σ-algebra. If
F ∈ T , then either P(F ) = 0 or P(F ) = 1.

C.2.2 Martingales

Suppose X is a random variable with E(|X |) <∞ and F is a sub-σ-algebra
ofM. The conditional expectation of X with respect to F , denoted E(X |F),
is any F -measurable, integrable, random variable Z such that

∫

A

ZdP =

∫

A

XdP for every A ∈ F . (C.2.3)

The Radon–Nikodym theorem guarantees the existence of the conditional
expectation and its uniqueness, up to sets of measure zero. In other
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words, if both Z1 and Z2 are F -measurable, integrable random variables
satisfying (C.2.3), then Z1 = Z2 a.s. In this sense we can speak of “the”
conditional expectation E(X |F). Listed below are some important properties
of the conditional expectation, most of which follow easily:

1. E(E(X |F)) = E(X)
2. If X is F -measurable, then E(X |F) =X a.s.
3. If X is independent of F , then E(X |F) =E(X) a.s.
4. If Z is F -measurable and bounded, then E(XZ|F) =ZE(X |F) a.s.

Definition C.2.5. Suppose {Xn : n = 0, 1, . . . } is a sequence of integrable
random variables. Let Fn = σ{X0, X1, . . . , Xn}. The sequence {Xn} is called
a martingale if

E(Xn+1|Fn) = Xn a.s. for every n ≥ 0.

Example C.2.6. A typical martingale: Suppose {Yn}n≥1 are independent ran-
dom variables with mean 1. Let Xn =

∏n
k=1 Yk and X0 = 1. Let Fn =

σ{X0, X1, . . . , Xn}. Then {Xn} is a martingale because the properties above
yield the defining condition

E(Xn+1|Fn) = E(XnYn+1|Fn) = XnE(Yn+1|Fn) = XnE(Yn+1) = Xn a.s.

One reason for the importance of martingales is their good convergence
properties.

Theorem C.2.7 (Martingale convergence). Let {Xn} be a martingale
with supE(|Xn|) <∞. Then limn→∞Xn exists and is finite almost surely.

Theorem C.2.8 (Martingale convergence for L2 bounded martin-

gales). Let {Xn} be a martingale with supE(|Xn|2) <∞. Then Xn converges
a.s. and in L2.

The first theorem says that L1-bounded martingales converge. The second
says that under the stronger assumption of L2-boundedness of the martingale,
the martingale even converges in L2 (and hence in L1) norm. These are deep,
important results.

C.3 Remarks and Credits

Overview of Harmonic Analysis on Locally Compact Abelian Groups. Most
of the results in Sect. C.1.1–C.1.4 can be found in standard references for
harmonic analysis on locally compact abelian groups such as [87, 136, 167].
Theorem C.1.8 is due to Bochner [15] when Γ = R and Eberlein [34] in the
general case. A proof is also given in [167, 1.9.1].
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The Cauchy integral proof of the Wiener–Levy Theorem C.1.11 is Satz 20
in Gel’fand’s fundamental—and still worth reading—paper [43]. That paper
contains the proof of Gel’fand’s Theorem C.1.12, as well. The statement and
proof of Theorem C.1.12 can also be found in standard references on Banach
algebras. See also [56, 9.1–2] and [167, D7] for further discussion on these
results.

Spectral synthesis is discussed in many books, including [56, Chap. 3,
Sect. 11.2], [88, Chap. 10], [106, Chap. 9] and [167, Chap. 7]. All those refer-
ences contain a proof of the existence of sets that are not of spectral synthesis.

The results of Sect. C.1.5 are adapted from [62, 63].
Basic Probability. The probability definitions and results are standard and

can be found in any graduate probability text, such as [25, 69].
Exercises. Many of the exercises can be found in the standard references,

such as [56, 87, 88, 136, 167].

C.4 Exercises

In all exercises “G” will denote a locally compact abelian group (with possibly
additional properties, as specified) and “Γ” its dual.

Exercise C.4.1. 1. Prove Markov’s inequality, Lemma C.2.1.
2. Prove the Borel–Cantelli Lemma C.2.3.

Exercise C.4.2. 1. Prove that every e-neighbourhood U of a topological
group contains a symmetric e-neighbourhood V with V 2 ⊆ U .

2. Prove that every open subgroup of a topological group is closed.
3. Prove that every topological group is regular.
4. Prove that every compact group is locally compact.

Exercise C.4.3. 1. Describe the dual group of Zn.
2. Suppose γ ∈ Γ has finite order. Show that {x : γ(x) = 1} is open.

Exercise C.4.4. Construct a uniformly continuous function on R which is
not almost periodic.

Exercise C.4.5. Let S ⊆ Γ be compact and ε > 0. Prove there is an
e-neighbourhood U such that |1− γ(u)| < ε for all γ ∈ S and u ∈ U .

Exercise C.4.6. 1. Suppose f ∈ Lp(G) and g ∈ Lq(G) where 1 < p, q <∞
and 1/p+ 1/q = 1. Prove that f ∗ g ∈ C0(G).

2. Show that if f ∈ L1(G) and g ∈ L∞(G), then f∗g is uniformly continuous
and bounded.

3. Show that if f ∈ Lp(G) for 1 ≤ p ≤ ∞ and μ ∈ M(G), then μ ∗ f ∈ Lp
and ‖μ ∗ f‖p ≤ ‖f‖p ‖μ‖M(G).
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4. Prove that if A,B are Borel sets with mG(A) > 0,mG(B) > 0, then A ·B
has non-empty interior.

Exercise C.4.7. 1. Prove the local units Theorem C.1.6. Hint: Take func-
tions g, h ∈ L2(G) whose Fourier transforms are the characteristic
functions of V and C · V −1, respectively. (Why do these exist?) Put
f(x) = 1

m(V )g(x)h(x).

2. Give an example in R to show that C compact and mR(V ) < ∞ do not
imply mR(C + V ) <∞.

Exercise C.4.8. 1. Prove that if S is any subset of G, then S⊥ = {γ ∈ Γ :
γ(x) = 1 ∀x ∈ S} is a closed subgroup of Γ.

2. Prove that every closed subgroup of Γ is equal to H⊥ for some closed
subgroup H of G.

Exercise C.4.9. Let U ⊆ G be an e-neighbourhood and ε > 0. Find a
trigonometric polynomial p ≥ 0 such that p̂ ≥ 0,

∫
pdx = 1 and |p(x)| ≤ ε

for x �∈ U .

Exercise C.4.10. Assume G is compact and Γ0 is the torsion subgroup of Γ.

1. Show that every element of Γ/Γ0 has infinite order.
2. Show that G is connected if and only if Γ0 is trivial if and only if G is

divisible.
3. Show that Γ0 is finite if and only if G has a finite number of connected

components and that the annihilator, Γ⊥
0 , of Γ0 is connected.

4. A topological group is said to be locally connected if it has a neighbour-
hood base of connected sets. Show that if G is locally connected, then Γ0

is finite.

Exercise C.4.11. Assume G is compact.

1. Show that Γ has no elements of order two if and only if every element of
G is a square. Show that “compact” is a necessary hypothesis.

2. Show that Γ has no elements of order two if and only if Γ has no elements
of order two.

3. Show that Γ has only finitely many elements of order two if and only if
the quotient of G by the subgroup of squares in G is finite.

4. Show that if G is not of bounded order, then G contains a dense set of
elements of infinite order.

Exercise C.4.12. For a prime p > 2, formulate and prove p-versions of the
results in Sect. C.1.5.

Exercise C.4.13. Give an example of G such that its dual group Γ has
no elements of order 2, but G has a closed subgroup H whose dual has an
infinite number of elements of order 2. Thus, “neighbourhood” (or non-empty
interior) is essential in Corollary C.1.17.
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Exercise C.4.14. Give an example of an open set in Z that contains a non-
trivial subgroup of Z.

Exercise C.4.15. 1. Given any ε > 0 and t1, . . . , tN ∈ T, show there is
some integer n �= 0 such that

∣
∣eintj − 1

∣
∣ < ε for all j = 1, . . . , N .

2. Show that every element of Γ is a cluster point of Γ. This generalizes the
first part. Explain.

Exercise C.4.16. 1. Let H ⊆ G be a compact sub-semigroup (i.e. closed
under multiplication) of the compact group G. Show that H is a group.

2. Show that 0 is a Bohr cluster point of {j, j+1, j+2, . . .} for all j ≥ 0 in Z.
3. Show that {10j}∞j=1 and {10j + j}∞j=1 have a common cluster point.

Exercise C.4.17. 1. Show that a countable, locally compact group G is
discrete. (This can be done in at least two quite different ways.) Hint:
Consider mG({e}) or Baire category.

2. Show that Γ is uncountable if Γ is infinite.

Exercise C.4.18. 1. Prove that G is metrizable if and only if Γ is
σ-compact.

2. Show that a compact group is metrizable if and only if the complement
of {e} is σ-compact.

3. Show that every open subset of a compact metrizable group is σ-compact.
4. Show that a compact metrizable group has a countable dense subgroup.

Exercise C.4.19. 1. Show that if Γ is not compact, then Γ contains a σ-
compact, non-compact, open subgroup.

2. Show that if every metrizable quotient of G is discrete, then G is discrete.
3. Say that G ∈ G if Γ = Γ as discrete groups. Show that G ∈ G implies

that every subgroup of G is closed and every quotient group of G belongs
to G.

4. If Γ is not compact, prove Γ �= Γ (as sets). Hint: G has a metrizable
quotient.

Exercise C.4.20. 1. We say “f ∈ A(E) locally at γ ∈ E” if there exists a
closed neighbourhood U of γ such that f |U∩E ∈ A(U ∩E). Show that if
E is compact and f ∈ E locally at every point, then f ∈ A(E).

2. Formulate “f ∈ E locally at infinity”. Then show that if f ∈ E locally at
every γ ∈ E and at infinity, then f ∈ A(E).

3. Prove Theorem C.1.11.
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http://archive.numdam.org/ARCHIVE/SAF/SAF 1977-1978 /
SAF 1977-1978 A13 0/SAF 1977-1978 A13 0.pdf.

[148] G. Pisier. Ensembles de Sidon et processus Gaussiens. C. R. Acad. Sci.
Paris, 286(15):A671–A674, 1978.

[149] G. Pisier. De nouvelles caractérisations des ensembles de Sidon. In
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Lipiński, J. S.

[121], 16, 64

[122], 16, 64

Louveau, A.

[111], 45

Lust(-Piquard), F.

[124], 185

[125], 171, 185

Malliavin, P.
[109], 150
[126], 114

Malliavin-Brameret, M. P.
[126], 114

Marcus, M. B.

[127], 133, 196
Marczewski, E., 16

McGehee, O. C.
[56], 15, 43, 45, 65, 114, 150, 171, 185,

220
McMullen, J., 197

[23], 196
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Queffélec, H.
[119], xii, xvi, 111, 112, 132, 133, 171
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Déchamps(-Gondim)
–Bourgain

Sidon(U) bounded constants
characterization, 127

step length theorem, 111

Sidon(U) characterization, 103

dissociate

set, 16, 97

has Fatou–Zygmund property, 99

is Sidon, 99

union, 116

Drury’s union theorem, 102

dual object, 193

Eberlein

Bochner–Eberlein theorem, 211

ε-additive, 163

ε-free set, 43

ε-Kronecker set, xi, 19–47, 158–161

angular constant, 21

angular ε-Kronecker, 20

constant, 20

does not cluster in Γ, 38

Hadamard set is, 21

independent set is, 22

is ε-Kronecker(U), 23

is FZI0(U), 25

is I0, 25

large, 28

not finite union of Hadamard sets,
21

product does/does not cluster in Γ, 39,
44

products are U0, 42

Sidon but not I0, 27

Sidon sets are proportional, 159

weak, 20

1-Kronecker not independent, 23

angular ε-Kronecker, 21

ε-Kronecker(U) set, 20

C.C. Graham and K.E. Hare, Interpolation and Sidon Sets for Compact Groups,
CMS Books in Mathematics, DOI 10.1007/978-1-4614-5392-5,
© Springer Science+Business Media New York 2013

241



242 Subject Index

Fabry gap theorem, 14
Fatou–Zygmund property, 94

dissociate set has, 99

relation to FZI0, 64
Sidon set has, 102

Fourier algebra, xv

FZI0 set, 51
not FZI0(U), 71
not I0(U) with bounded constants, 80

real, 70
not RI0, 71

relationship with RI0, 69
FZI0(U) set, 51

bounded length, 58

characterization, 52
ε-Kronecker set is, 25
FZI0(U,N, ε) set, 57

Hadamard set is, 8
independent set is, 66
large, 73

product does/does not cluster in Γ, 73
pseudo-Rademacher that is not, 71

Rademacher set is, 72
RI0(U) sets are union of, 88

Gel’fand’s theorem, 179, 213

Haar measure, xv, 207
Hadamard gap theorem, 2, 184

Hadamard set, xi, 1–18, 42
dissociate, 17, 98
does not cluster in Z, 12

finite unions not all ε-Kronecker sets, 21
in R, 29

is ε-Kronecker, 3, 21
is FZI0(U), 8
is I0, 8

is Sidon, 18
quasi-independent, 17
ratio, 1

sum does not cluster in Z, 12
sum is U0, 42
union not I0, 14

Hartman
–Ryll-Nardzewski

characterization theorem, 60, 70

existence theorem, 73
extension theorem, 190

–Wells theorem, 112
HRN characterization, 60, 70

Helson set, 64, 180

constant, 165, 180
Fatou–Zygmund property of, 69
union theorem, 180

Helsonian set, 51, 64

characterized, 66

Hermitian function, 51, 194

HRN characterization, see Hartman–Ryll-
Nardzewski characterization theorem,
70

I-set, 187

I0 set, xi, 49–66, 77–91, 153–173, 187–200

asymmetric, not RI0, 68

central, 199

characterization

Bd(E) = B(E) (Ramsey–Wells–
Bourgain theorem), 59, 171

HRN, 60, 64, 70

Kalton’s, 52

topological, 60

constant, 56

does not cluster in Γ, 62

E ∪E−1 not I0, 68

ε-Kronecker is, 25

finite set is, 57

Hadamard set is, 8

is Helsonian, 64

is union of I0(U) sets, 82

is union of RI0 sets, 86

local, 197

non-abelian, 194

non-discrete, 188
not bounded constants, 80

not finite union ε-Kronecker sets, 35

not finite union of RI0(U) sets, 90

not proportional ε-Kronecker, 158

not real RI0, 70

Sidon sets are proportional, 154

step length to infinity, 80

union has zdhd, 180

union not I0, 14

I0(U) set, 51

bounded constants, 79

step length to infinity, 80

bounded length, 58

constant, 56

does cluster in Γ, 90

I0(U,N, ε) set, 57

independent set is, 66

Kalton’s characterization, 52

large, 73

product does/does not cluster in Γ, 82,
83

pseudo-Rademacher is, 71

union not I0, 14, 60

independent set, xi
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is ε-Kronecker, 22
is FZI0(U), 66

interpolating measure, 4
interpolation set, xi, 187

k-independent set, 98, 107
Kahane

AP theorem, 59
separation theorem, 61

Kolmogorov
0 − 1 law, 218

a.e. convergence theorem, 3
Kunen–Rudin theorem, 38, 82, 89

for ε-Kronecker set, 39
for Hadamard set, 12

for I0(U) bounded length, 82, 83

lacunary set, 1
Λ(p) set, 103, 112

central, 198
constant, 103

non-Sidon, 106
Pisier characterization of Sidon, 118
Sidon set is, 103

length

bounded (I0 set), 58
of discrete measure, 53
presentation, 99, 201

Levy
Wiener–Levy theorem, 213

Markov’s inequality, 216, 220

martingale, 143, 219
convergence theorem, 143, 219
L2 bounded, 144, 219

measure, xi

Méla
decomposition theorem, 81, 89
Ryll-Nardzewski–Méla–Ramsey theorem,

62
union of Hadamard sets not I0, 13

Weiss–Strzelecki–Méla theorem, 8

non-Sidon point, 166

p-Sidon set, 15, 114

parallelepiped, 36, 106
Parseval’s formula, 210
periodic extension, 16
Picard-type theorem, 2

Pisier
constant, 118
ε-net condition, 125, 133, 169, 173
Λ(p) characterization of Sidon sets, 118

proportional characterization of Sidon
sets, 118

Plancherel’s theorem, 105, 210

presentation length, 99, 201

product topology, 23, 55, 63, 72, 209

proportional, 118

ε-Kronecker, 159

I0, 154

quasi-independent, 118

pseudo-Rademacher set, 71

is I0(U) with bounded length, 72

product does/does not cluster in Γ, 75

quasi-independent set, 16, 97, 102

is Rider, 99

is Sidon, 100

not finite union of Hadamards, 115

proportional characterization of Sidon
sets, 118

Rider set is union of, 101

Sidon constant, 101

quasi-relation, 119

Rademacher

function, xv, 71

set, xv, 71

is FZI0(U), 71

FZI0(U) bounded length, 72

large, 75

Rajchman set, 112

Ramsey

–Wells–Bourgain theorem, 59, 171

cluster theorem, 136

Ryll-Nardzewski–Méla–Ramsey theorem,
62

RI0 set, 51

characterization

FZI0 if excludes 1, 69

topological, 69

characters of order 2, 86

is RI0(U), 82

product does/does not cluster in Γ, 90

RI0(U) set, 51

characterization, 53

product does/does not cluster in Γ, 83

Rider

constant, 99

set, 99

is Sidon, 100

is union of quasi-independent sets, 101

products are Λ(p), 105

theorem, 100

Riemann–Lebesgue lemma, 41, 194, 210



244 Subject Index

Riesz product, 2, 18, 98, 100, 112, 123, 127,
202

generalized, 116

Rosenthal set, 111

Rudin

Kunen–Rudin theorem, 38

for ε-Kronecker set, 39

for Hadamard set, 12

for I0(U) bounded length, 82, 83

–Shapiro polynomials, 116

Zygmund–Rudin theorem, 3, 103

Ryll-Nardzewski

–Méla–Ramsey theorem, 62

Hartman–Ryll-Nardzewski

characterization theorem, 60, 70

existence theorem, 73

extension theorem, 190

HRN characterization, 60, 70

Shapiro

Rudin–Shapiro polynomials, 116

Shields–Kneser–Kemperman theorem, 64

Sidon set, xi, 35, 93–151, 153–173, 175,
192–200

arithmetic properties, 106

central, 198

characterization

basic, 95, 97

Λ(p) constants, 118

Pisier ε-net condition, 154

proportional ε-Kronecker, 159

proportional I0, 154

proportional quasi-independent, 118

proportional Sidon, 118

constant, 94

dissociate set is, 99

ε-Kronecker set is, 35

Fatou–Zygmund property, 102

finite, constant of, 116

first type, see Sidon(U), bounded
constants

Hadamard set is, 18

has zhd, 175

is Λ(p), 103

is Sidon(U), 103

local, 197

non-abelian, 194

quasi-independent set is, 100

Rider set is, 100

topological, 192

union of

k-independent sets, 107

sets with step length to infinity, 111

Sidon(U) sets with bounded constants,
127

Sidon(U), 111

union theorem, 102, 118
Sidon(U), 94, 103

bounded constants, 126, 132

Sidon set is union of, 127
characterization, 95

constant, 94
Sidon set union of, 111

step length to infinity, 127
spectral synthesis set, 182, 184, 213

singleton is, 171

standard iteration, 4–6, 17, 25, 55, 57, 60,
177

step length to infinity, 40

algebraic characterization, 111
I0 set, 80

Sidon set characterization, 110

Sidon set union of sets with, 127
Strzelecki

Weiss–Strzelecki–Méla theorem, 8
sup-norm partition, 163, 165, 171

symmetric set, 4

2-large, 28

Tychonoff’s theorem, 23, 209

U -dhd set, 176

U -hd set, 176
U0 set, 41

closure of I0 set is, 63
products of ε-Kronecker set are, 42

uniqueness in the weak sense, 41

Varopoulos

lemma, 162
union theorem, 180

Weierstrass’s nowhere differentiable
function, 2

Weiss–Strzelecki–Méla theorem, 8

Wells
Hartman–Wells theorem, 112

Ramsey–Wells–Bourgain theorem, 59,
171

Wiener’s lemma, 211

Wiener–Levy theorem, 213

word, 99, 201
length, 201

quasi-, 99, 201
presentation length, 99, 201
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zdhd set, 175–186
bounded constants, 185, 186
clusters at continuous character, 184
is zhd, 177
non-Sidon, 184
not dense in subgroup of Γ, 178
strong, 183
union of I0 sets is, 182

zhd set, 175

arithmetic progressions, 178

Hadamard gap theorem proof, 184

Sidon set is, 175

zdhd is, 177

Zorn’s lemma, 30, 73, 190

Zygmund–Rudin theorem, 3, 103



Notation Index

2-large, 28

A(E) - restriction of Fourier transforms to
E, 50

A(Γ) - Fourier algebra, xv
α(E) - weak angular Kronecker constant of

E, 21
||A||op - operator norm of matrix, 193
AP (E), 50

AP (E, U, N, ε), 53
AP+(E, U, N, ε), 53
APr(E, U, N, ε), 53
arg(t) - argument of complex number, 20

Ball(X) - the unit ball of X, xvi
B(Γ) - Fourier–Stieltjes transforms, xv
Bd(Γ) - Fourier–Stieltjes transforms of

discrete measures, xv
B(E) - restriction of FS transforms to E,

50
Bd(E) - restriction of FS transforms of

discrete to E, 50

C - complex numbers, xv
C(p∞), 28
C(X) - bounded, continuous f : X → C,

xv

C0(X) - uniform closure of compactly
supported continuous f : X → C, xv

|X| - cardinality of X, 10

· · · � - ceiling, 61

d(w, z) - angular distance, 20
D = Z N

2 , xv

D̂ - dual of D, xv
Δ = {z ∈ C : |z| ≤ 1}, 4
δx - unit point mass at x, 6

e - the identity of G, xv
ε(E) - Kronecker constant of E, 20

f̂ - Fourier transform of f , 209
· · · � - floor, 119
FZI0, 51
FZI0(U), 51
FZI0(U,N, ε), 57

G - lca group, usually compact with dual
Γ, xi

G2 - annihilator of characters of orders 2k,
33

Γ - lca group, usually discrete with dual G,
xi

Γ0 - torsion subgroup, 30
gap(I, J), 155
Ĝ - dual object, 193

HE, 53
Hγ , 53

I0, xi
I0(U), 51
I0(N, ε), 57
I0(U,N, ε), 57
Im - imaginary part, 26

Λ(p), 103

� - μ � ν if the measure μ is absolutely
continuous wrt. ν, 211

�∞(E) - bounded functions on E, xv

M(U) - measures concentrated on U , xi
M+(U) - non-negative measures on U , xi
M0(X), 41
Md(U) - discrete measures on U , xi
M+

d (U) - discrete non-negative measures
on U , xi
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248 Notation Index

Mr
d (U) - real discrete measures on U , xi

mG - Haar measure on G, xv
mΓ - Haar (usually counting) measure on

Γ, xv
μ̂ - Fourier–Stieltjes transform of μ, 210
μ̃ - the adjoint of μ, 5

N - natural numbers, xv

1 - the identity of Γ, xv

⊥ - X⊥ is the set of characters with value
1 on X, 209

Q - rational numbers, xv
Q(F) - quasi-words from F, 137
Qk(F) - quasi-words from F of length k, 99

R - real numbers, usual topology, xv
Rd - real numbers, discrete topology, 30
Re - real part, 5
RI0, 51
RI0(U), 51

rk(E, γ), 105
Rk(E, χ), 99

S(E) - Sidon constant, 94
S(E, U) - Sidon(U) constant, 94
sgn z = z/|z| if z �= 0 and 0 otherwise, 96

T - circle group, xv
Tr - trace of matrix, 193
TrigE(G) - trigonometric polynomials on

G with coefficients in E, xvi
Trig(G) - trigonometric polynomials on G,

xv

U -(d)hd, 176
U0, 41

Wk(F) - words from F of length k, 99

Z - integers, xv
Z - Bohr group of Z, 12
z(d)hd, 175
Zn - cyclic group of order n, 22



Open Problem Index

1. Is every Sidon set a finite union of: I0 sets? ε-Kronecker sets? quasi-in-
dependent sets? v, xii, 102, 107, 114, 135, 153, 175

2. Can a Sidon set be dense in the Bohr group? v, xii, 114, 135, 175,

3. Is every Hadamard set an ε-Kronecker set? 44

4. Is every ε-Kronecker set (ε < 2) Sidon? 20, 35

5. Determine the Kronecker constant of {1, . . . , N}. 44

6. Is every dissociate set, quasi-independent set or independent union of
I0(N, 1/2) sets an I0 set? 101, 134

7. Is every I0 set in Z a finite union of ε-Kronecker sets? 25

8. Does every infinite subset of Γ contain a FZI0 subset of the same cardi-
nality? 73

9. Suppose E is I0(U) with bounded constants. Is E I0(U) with bounded
length? Is E ∪E−1 I0(U)? 79, 80

10. Is there always a co-finite subset of an RI0(U) set that is FZI0(U)? 69,
87

11. Do any of the following classes of sets have zdhd? Sidon sets? quasi-
independent sets? dissociate sets? ε-Kronecker sets? Sums (no repeti-
tions) of Hadamard sets? finite unions of zdhd sets? 176, 179, 184

12. If E has zdhd, is E a U0 set? 178

13. When does a set of zero density have zhd? 186

14. Does Kahane’s characterization of I0 sets fail for non-metrizable Γ? 192

15. When E is I0, is the Haar measure of E · Γ equal to zero? 188

16. Is every Sidon set a Sidon(U) set (non-abelian G)? 196

17. Does every local Sidon set have a Sidon (or FZI0) subset of same cardi-
nality? 197

18. Can the periodic extension results for R be extended to R
n? 16
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