


  Osteoimmunology 



      



       Yongwon   Choi     
 Editor 

 Osteoimmunology 

 Interactions of the Immune 
and Skeletal Systems      



   Editor 
   Yongwon   Choi  
   Department of Pathology and Laboratory Medicine 
 University of Pennsylvania School of Medicine 
  Philadelphia ,  PA,   USA 

    ISBN 978-1-4614-5365-9  ISBN 978-1-4614-5366-6 (eBook) 
 DOI 10.1007/978-1-4614-5366-6 
 Springer New York Heidelberg Dordrecht London 

 Library of Congress Control Number: 2012952101 

 © Springer Science+Business Media New York   2013 
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection 
with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and 
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this 
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s 
location, in its current version, and permission for use must always be obtained from Springer. Permissions 
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to 
prosecution under the respective Copyright Law. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
 While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein. 

 Printed on acid-free paper 

 Springer is part of Springer Science+Business Media (www.springer.com)        



v

 Contents

Osteoimmunology: An Introduction ............................................................. 1
Joseph Lorenzo 

NF-kB and Inflammatory Bone Loss: “Alternative” 
Family Members Take Their Place at the Table .......................................... 3
Deborah Novack, Chang Yang, Jennifer Davis, and Katherine McCoy 

Adaptive Immune Responses and Bone ........................................................ 7
Hiroshi Takayanagi 

Intracellular Calcium Signaling for Osteoclast Differentiation ................. 23
Hyung Joon Kim, Youngkyun Lee, and Hong-Hee Kim 

Lessons from Glucocorticoid Receptor Action in Bone: 
New Ways to Avoid Side Effects of Steroid Therapy ................................... 31
Alexander Rauch, Ulrike Baschant, and Jan Tuckermann 

A Tak1/p38 Signaling Axis Regulates Runx2 Activity 
and Osteoblast Functions ............................................................................... 49
Matthew B. Greenblatt, Jae-Hyuck Shim, Weiguo Zou, 
and Laurie H. Glimcher 

Parathyroid Hormone: A Dynamic Regulator of Bone, Immune, 
and Hematopoietic Cells ................................................................................. 57
Sun Wook Cho and Laurie McCauley 

Sphingosine-1-Phosphate and Chemokines in the Control 
of Osteoclast Precursors Migration Visualized by Intravital 
Multiphoton Microscopy ................................................................................ 73
Junichi Kikuta, Atsuko Kubo, and Masaru Ishii 

T Cells Mediate the Effects of PTH in Bone ................................................. 81
Roberto Pacifici 



vi Contents

The Relationship Between Inflammation, Destruction, 
and Remodeling in Chronic Joint Diseases ................................................... 91
Kirsten Braem and Rik J. Lories 

Regulation of RANKL-Induced Osteoclastogenesis by TGF-b .................. 103
Tetsuro Yasui, Hisataka Yasuda, and Sakae Tanaka 

Effects of the Interleukin-1 Cytokine Family on Bone ................................ 109
Georg Schett 

DAP12 Regulates the Osteoclast Cytoskeleton ............................................. 115
Wei Zou and Steven L. Teitelbaum 

Osteoclast Determinants and Implications for Therapy ............................. 121
Anna Teti 

Index ................................................................................................................. 131 



vii

  Contributors 

   Ulrike     Baschant      Institute for Age Research–Fritz Lipmann Institute,        Jena ,  Germany   

   Kirsten     Braem      Laboratory of Tissue Homeostasis and Disease ,  Skeletal Biology 
and Engineering Research Center, Department of Development and Regeneration , 
  Leuven   ,  Belgium   

   Sun Wook     Cho       Department of Periodontics and Oral Medicine ,  Medical School, 
University of Michigan, Ann Arbor ,     MI ,  USA   

   Jennifer     Davis      Division of Bone and Mineral Diseases ,  Departments of Medicine 
and Pathology, Washington University School of Medicine, St. Louis ,     MO ,  USA   

   Laurie   H.   Glimcher      Department of Immunology and Infectious Diseases , 
 Harvard School of Public Health ,   and Department of Medicine, Harvard Medical 
School, Boston ,  MA ,  USA   

   Matthew   B.   Greenblatt      Department of Immunology and Infectious Diseases , 
 Harvard School of Public Health, and Department of Medicine, Harvard Medical 
School ,   Boston ,  MA ,  USA   

        Masaru   Ishii ,  MD, PhD        Laboratory of Cellular Dynamics, WPI-Immunology 
Frontier Research Center, Osaka University, Yamada-oka, Suita ,  Osaka ,  Japan      

     Junichi   Kikuta       Laboratory of Cellular Dynamics ,  WPI-Immunology Frontier 
Research Center, Osaka University, Yamada-oka, Suita ,   Osaka ,  Japan      

     Hong-Hee   Kim       Department of Cell and Developmental Biology ,  BK21 and Dental 
Research Institute, Seoul National University ,   Seoul ,  Republic of Korea      

Department of Cell and Developmental Biology,  School of Dentistry, Seoul National 
University ,   Seoul   ,  Republic of Korea  

     Hyung   Joon Kim         Department of Cell and Developmental Biology, BK21 and 
Dental Research Institute, Seoul National University ,   Chongno-Gu, Seoul 110-749   , 
 Republic of Korea      



viii Contributors

     Atsuko   Kubo         Laboratory of Cellular Dynamics, WPI-Immunology Frontier 
Research Center, Osaka University, Yamada-oka, Suita ,   Osaka ,    Japan      

     Youngkyun   Lee          Department of Cell and Developmental Biology, BK21 and 
Dental Research Institute, Seoul National University ,   Seoul ,    Republic of Korea      

     Joseph   Lorenzo ,  MD       University of Connecticut Health Center ,   Farmington ,  CT , 
 USA      

       Rik   J.   Lories       Laboratory of Tissue Homeostasis and Disease, Skeletal Biology 
and ,  Engineering Research Center, Department of Development and Regeneration , 
  Leuven ,  Belgium      

     Laurie   McCauley       Department of Periodontics and Oral Medicine ,  University of 
Michigan ,   Ann Arbor ,  MI ,  USA     

Pathology Department ,  Medical School, University of Michigan ,   Ann Arbor ,  MI , 
 USA      

     Katherine   McCoy       Division of Bone and Mineral Diseases, Departments of 
Medicine and Pathology ,  Washington University School of Medicine ,   St. Louis , 
 MO ,  USA      

     Deborah   Novack       Division of Bone and Mineral Diseases, Departments of 
Medicine and Pathology ,  Washington University School of Medicine ,   St. Louis , 
 MO ,  USA      

     Roberto   Paci fi ci ,  MD       Division of Endocrinology, Metabolism and Lipids , 
 Department of Medicine ,  Emory University School of Medicine ,   Atlanta ,  GA ,  USA      

                 Immunology and Molecular Pathogenesis Program ,  Emory University ,     Atlanta , 
 GA ,  USA      

     Georg   Schett ,  MD       Department of Internal Medicine 3 ,  University of Erlangen-
Nuremberg ,   Erlangen ,  Germany      

     Alexander   Rauch       Institute for Age Research – Fritz Lipmann Institute ,       Jena , 
 Germany      

     Jae-Hyuck Shim         Department of Immunology and Infectious Diseases, Harvard 
School of Public Health, and Department of Medicine, Harvard Medical School ,      
 Boston, MA ,  USA      

     Hiroshi   Takayanagi       Department of Cell Signaling ,  Graduate School of Medical 
and Dental Sciences, Tokyo Medical and Dental University ,   Bunkyo-ku ,  Tokyo , 
 Japan      

                 Global Center of Excellence (GCOE) Program ,  International Research Center for 
Molecular Science in Tooth and Bone Diseases ,     Tokyo ,  Japan        

                 Japan Science and Technology Agency (JST) ,  ERATO, Takayanagi Osteonetwork 
Project ,     Tokyo ,  Japan        



ixContributors

     Sakae   Tanaka        Department of Orthopaedic Surgery ,  Faculty of Medicine, The 
University of Tokyo, Bunkyo-ku ,   Tokyo ,    Japan      

     Steven   L.   Teitelbaum       Department of Pathology and Immunology ,  Washington 
University in St. Louis School of Medicine ,   St. Louis ,  MO ,  USA      

     Anna   Teti       Department of Biotechnological and Applied Clinical Sciences , 
 University of L’Aquila ,   L’Aquila ,  Italy      

     Jan   Tuckermann       Institute for Age Research – Fritz Lipmann Institute ,   Jena , 
 Germany      

     Chang   Yang       Division of Bone and Mineral Diseases, Departments of Medicine 
and Pathology, Washington University School of Medicine, St. Louis ,   MO ,  USA      

     Tetsuro   Yasui       Department of Orthopaedic Surgery, Faculty of Medicine , 
 The University of Tokyo ,   Bunkyo-ku ,  Tokyo ,  Japan            

     Hisataka   Yasuda       Nagahama Institute for Biochemical Science ,  Oriental Yeast 
Co. ,   Nagahama ,  Shiga ,  Japan        

     Weiguo   Zou       Department of Immunology and Infectious Diseases ,  Harvard 
School of Public Health ,   and Department of Medicine, Harvard Medical School , 
 Boston, MA ,  USA        

     Wei   Zou       Department of Pathology and Immunology ,  Washington University 
in St. Louis School of Medicine ,   St. Louis ,  MO ,  USA        



      



1Y. Choi (ed.), Osteoimmunology: Interactions of the Immune and Skeletal Systems, 
DOI 10.1007/978-1-4614-5366-6_1, © Springer Science+Business Media New York 2013

 It has been almost 40 years since it was  fi rst observed that cells of the immune system 
could in fl uence the functions of bone  [  1  ] . Since that time, signi fi cant strides have 
been made in our understanding of the interactions between hematopoietic, immune, 
and bone cells. This  fi eld is now known as “osteoimmunology,” which is a term that 
was  fi rst coined by Arron and Choi in an commentary in Nature in 2000  [  2  ] . In the 
11 years since the  fi eld has grown markedly. PubMed now lists over 2,000 references 
that combine the terms immunology with osteoclasts or osteoblasts. The 3rd 
International Conference on Osteoimmunology was designed to further nurture the 
development of this  fi eld. It met at the Nomikos Conference Center Fira, Santorini, 
Greece, from June 20 to 25, 2010. Over 145 participants heard a rich program that 
was composed of 22 half hour talks and 11 short 10-min talks. In addition, there were 
65 abstracts presented as posters. The subjects covered in these presentations spanned 
all the current topic areas of this  fi eld. Talks were divided into sessions. These 
included Niche and Soil, three session on the Basic Concepts of Osteoimmunology: 
Osteoblasts, Osteoclasts and Cross Talk, and a session on emerging areas entitled 
“Up and Coming.” 

 However, the most important function of this meeting was to bring together 
researchers from the sometimes-disparate  fi elds of immunology and bone biology 
so that they could interact, exchange ideas, and develop new collaborations. The 
Organizing Committee for this meeting is deeply indebted to its many sponsors in 
both the public and private sector who provided the resources that made the meeting 
an overwhelming success. 

 The goal was to speed our understanding of the mechanisms regulating the 
interactions of immune and bone cells. It has now become clear that both systems 
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interact and regulate each other in both health and disease. By better understanding 
these interactions it is hoped that novel insights will be developed, which may lead 
to new therapies to prevent or reverse human diseases that affect these organ 
systems.     

   References 
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    1   Regulation of Alternative NF- k B Signaling by RANKL 

 In unstimulated cells, alternative NF- k B is negatively regulated in two ways, by 
destabilization of NIK protein and retention of RelB in the cytoplasm (Fig.  1 ). NIK 
binds TRAF3, which recruits cIAP1/2 via TRAF2  [  3,   4  ] . In this complex, the E3 
ubiquitin ligase of cIAP1/2 targets NIK, leading to its proteosomal degradation. 
RelB is held inactive in the cytoplasm by p100, a bifunctional protein that serves as 
a precursor for the NF- k B subunit p52 and contains a C-terminal I k B domain. Upon 
RANKL stimulation, TRAF3 is recruited to its receptor RANK, and intact NIK is 
released. NIK phosphorylates IKK a , which then phosphorylates p100 causing its 
processing via the proteosome. The I k B domain of p100 is degraded and RelB/p52 
dimers are released, allowing their accumulation in the nucleus. Downstream tar-
gets of this NIK/RelB pathway include c-fos and NFATc1, both transcription factors 
required for OC differentiation. NIK-de fi cient mice are unable to process p100 to 
p52, preventing nuclear translocation, and thus activation, of RelB  [  5  ] .   
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    2   NIK-De fi cient Mice Have Defects in Stimulated 
Osteoclastogenesis 

 Unmanipulated NIK−/− mice have only a small increase in bone mass, with a 
normal number of TRAP+ osteoclasts  [  2,   5  ] . Mice lacking RelB, the NF- k B 
subunit downstream of NIK, have a similar phenotype. Strikingly, however, 
NIK−/− precursors are unable to form OCs in vitro with RANKL stimulation or 
in coculture with osteoblasts  [  5  ] , a property shared with RelB−/− precursors  [  2  ] . 
This led us to examine models of stimulated osteoclastogenesis and bone loss 
in vivo. Direct injection of RANKL above the calvarium induced a very weak 
osteoclastogenic response in NIK−/− mice, compared to WT littermates  [  5  ] . 
Using the serum transfer arthritis model, in which arthritogenic serum from K/
BxN mice was injected into WT and NIK−/− mice on days 0, 2, and 7, we found 
that NIK-de fi ciency did not alter the in fl ammatory response, but did block oste-
olysis  [  6  ] . NIK−/− mice had few osteoclasts on periosteal surfaces of the hind-
paw bones, showed signi fi cantly less bone erosion, and had no signi fi cant 
increase in serum TRAP5b levels. Thus, the alternative NF- k B pathway, medi-
ated by NIK and RelB, is important for pathological bone loss, but not basal 
bone homeostasis.  

  Fig. 1    Activation of alternative NF- k B pathway by RANKL. ( a ) In resting cells, NIK protein levels 
are low because cIAP1/2 ubiquitinates NIK within a TRAF3/TRAF2 complex, targeting it for prote-
osomal degradation. Under these conditions, the alternative pathway is off. ( b ) Upon RANKL binding, 
RANK recruits TRAF3, causing a rearrangement of the complex that changes the substrate of cIAP1/2 
from NIK to TRAF3. TRAF3 is degraded by the proteosome, allowing NIK to accumulate. High NIK 
levels activate IKK a , causing processing of p100 to p52 by the proteosome. RelB/p52 dimers are 
released to travel to the nucleus, thus activating the downstream targets of the alternative pathway. In 
OC precursors in vitro, this pathway remains on for several days of RANKL stimulation       
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    3   Expression of Constitutively Active NIK 
in OCs Causes Osteoporosis 

 Mutation of the TRAF3 binding domain of NIK prevents its rapid degradation in 
resting cells  [  7  ] , leading to constitutive activation of the alternative NF- k B path-
way (Fig.  2 ). Recently, transgenic mice bearing cDNA for TRAF3-binding defec-
tive NIK (NIK D T3) in the ROSA26 locus with an upstream lox-STOP-lox 
sequence were generated  [  8  ] . In order to express NIK D T3 in the osteoclast lin-
eage, we mated these mice to both cathepsin K Cre (catK-Cre) and lysozyme M 
Cre (lysM-Cre) mice. In NIK D T3.lysM-Cre bone marrow macrophages, NIK is 
stabilized, processing of p100 to p52 is enhanced, and both p65 and RelB are 
present in the nucleus constitutively  [  9  ] . In the NIK D T3.catK-Cre line, the 
NIK D T3 is recombined with 2–3 days of RANKL stimulation in culture, with an 
associated increase in NIK protein levels and p100 processing. Using either Cre, 
expression of activated NIK drives osteoclastogenesis at lower doses of RANKL, 
leading to increased expression of markers of osteoclast differentiation. 
Furthermore, NIK D T3+ osteoclasts have larger actin rings and have more resorp-
tive activity than nontransgenic controls, in vitro. In vivo, transgenic expression 
of constitutively active NIK in the OC lineage causes osteoporosis. NIK D T3.
catK-Cre mice have low bone mass (BV/TV and BMD) by microCT. Serum levels 
of CTX and osteocalcin are increased; by histomorphometry, numbers of osteo-
clasts are increased along with bone formation rates. Thus, despite expression 
only in the osteoclast lineage, NIK D T3 generates high-turnover osteoporosis. 
Furthermore, NIK D T3.catK-Cre mice demonstrate signi fi cantly more osteolysis 
in response to serum transfer arthritis than littermate controls.   

  Fig. 2    Alternative 
NF- k B pathway is 
activated by NIK D T3. 
NIK lacking its TRAF3 
binding domain 
(NIK D T3) is unable to 
bind the TRAF3/
TRAF2/cIAP complex. 
Therefore, NIK D T3 is 
stabilized in the cell, 
even without RANKL 
stimulation. In 
consequence, p100 is 
constitutively processed 
to p52, and RelB/p52 
can be found in the 
nucleus of resting cells       
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    4   Summary 

 Although it has been known that NF- k B are an important signal for osteoclast 
differentiation since the late 1990s  [  10,   11  ] , the speci fi c role of each NF- k B path-
way has been less de fi ned. By studying both globally NIK-de fi cient mice and mice 
expressing constitutively active NIK in the OC lineage, as well as RelB-de fi cient 
mice, we have demonstrated that the alternative NF- k B pathway controls osteoclas-
togenesis and bone mass in vivo. RANKL-induced NIK activation sends a pro-dif-
ferentiation precursors to OC precursors that are critical for the osteolytic response 
in in fl ammatory arthritis, without large changes in basal bone mass. Constitutive 
NIK activation causes both osteoporosis and enhanced in fl ammatory osteolysis.      
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          1   Introduction 

 The bone enables locomotive activity, the storage of calcium and the harboring of 
hematopoietic stem cells (HSCs)  [  1  ] . The multifunctional tissue is continuously 
renewed by a process, called bone remodeling. This is dependent on the dynamic bal-
ance between bone formation and resorption, which are mediated by osteoblasts and 
osteoclasts, respectively. A delicate regulation of this process is requisite for normal 
bone homeostasis, and an imbalance is often related to bone and joint diseases  [  2  ] . 

 Accumulating evidence has indicated that the immune and skeletal systems share 
a number of regulatory molecules, including cytokines, receptors, signaling mole-
cules, and transcription factors. Furthermore, immune cells are formed and HSCs 
are maintained in the bone marrow where they interact with bone cells. Therefore, 
the evidence that the physiology and pathology of one system might affect the other 
is compelling and the term osteoimmunology was coined to cover these overlapping 
scienti fi c  fi elds. The most typical example of the interaction between the skeletal 
and adaptive immune systems is seen in the abnormal and/or prolonged activation 
of the immune system in autoimmune diseases such as rheumatoid arthritis (RA), 
which is characterized by progressive multiple joint destruction. Since autoreactive 
T lymphocytes are considered to play a key role in the pathogenesis of RA, attention 
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must be paid to the relationship between osteoclast-mediated bone destruction and 
aberrant adaptive immune responses in order to develop effective therapeutic strate-
gies against RA. Here, we summarize recent progress in the understanding of the 
relationship between bone and the adaptive immune system in arthritis by focusing 
mainly on osteoclasts and osteoclastogenic helper T cells, Th17 cells.  

    2   RANK/RANKL in Osteoclastogenesis 

 Osteoclasts are large, multinucleated cells formed by the fusion of precursor cells 
of monocyte/macrophage lineage  [  2  ] . Mature osteoclasts degrade bone matrix 
proteins by secreting proteolytic enzymes, such as cathepsin K and matrix metal-
loproteinase, and decalcify the inorganic components of bone by releasing hydro-
chloric acid. In the late 1980s, an in vitro osteoclast formation system was 
established which utilizes a system of culturing bone marrow-derived cells of 
monocyte/macrophage lineage together with osteoclastogenesis-supporting cells 
such as osteoblasts  [  3,   4  ] . These supporting mesenchymal cells provide certain 
factors that are necessary for osteoclast differentiation  [  5  ] . Analysis of  op / op  mice 
with osteopetrosis revealed one of these essential factors to be macrophage col-
ony-stimulating factor (M-CSF)  [  6  ] . M-CSF stimulation alone, however, does not 
induce the differentiation of osteoclasts. Forced expression of anti-apoptotic mol-
ecule Bcl-2 partially rescues the osteopetrotic phenotype of the  op / op  mice  [  7  ] , 
suggesting that M-CSF is a survival factor for osteoclast precursor cells. Ultimately, 
Yasuda et al. and Lacey et al. did clone the long-sought ligand mediating the 
essential signal for osteoclast differentiation in 1998, which was called ODF and 
osteoprotegerin ligand, respectively  [  8,   9  ] . Interestingly, this cytokine, which 
belongs to the tumor necrosis factor (TNF) family, was shown to be identical to 
receptor activator of nuclear factor- k B ligand (RANKL) and TNF-related activa-
tion-induced cytokine (TRANCE), which had been cloned in the immune system 
 [  10,   11  ] . The cloning of ODF (RANKL, hereafter) enabled investigation of the 
differentiation process in a sophisticated culture system employing recombinant 
RANKL and M-CSF  [  12  ] . 

 The receptor for RANKL is RANK, a type I transmembrane protein which 
possesses a high homology with CD40. RANK is expressed on osteoclast precursor 
cells and mature osteoclasts, and the binding of RANKL to RANK is inhibited by 
the decoy receptor osteoprotegerin (OPG)  [  13,   14  ] . In bone, RANKL is expressed 
by osteoclastogenesis-supporting cells including osteoblasts, in response to osteo-
clastogenic factors, such as 1,25-dihydroxyvitamin D 

3
 , prostaglandin E 

2
 , and para-

thyroid hormone, and is a crucial determinant of the level of bone resorption in vivo 
 [  5,   12  ] . Mice with a disruption of either  Rank  or  Rankl  exhibit severe osteopetrosis 
accompanied by a defect in tooth eruption resulting from a complete lack of osteo-
clasts  [  15–  17  ] . In contrast, mice lacking  Opg  exhibit a severe form of osteoporosis 
caused by both an increased number and enhanced activity of osteoclasts  [  18,   19  ] . 
These genetic  fi ndings clearly demonstrate that RANK/RANKL signaling is essential 
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for osteoclastogenesis in vivo. Furthermore, mutations in RANK, RANKL, and 
OPG have been identi fi ed in human patients with bone disorders such as familial 
expansile osteolysis, autosomal recessive osteopetrosis, and juvenile Paget’s 
disease of bone, respectively  [  20–  23  ] .  

    3   Signal Transduction Downstream of RANK 

 The ligation of RANK with RANKL results in trimerization of RANK and recruit-
ment of adaptor molecules such as the TNF receptor-associated factor (TRAF) 
family of proteins, among which TRAF6 has been shown to be the major adaptor 
molecule  [  24,   25  ] . TRAF6 trimerizes upon RANK stimulation, and activates 
nuclear factor- k B (NF- k B) and mitogen-activated protein kinases, including Jun 
N-terminal kinase (JNK) and p38. RANK also activates the transcription-factor 
complex, activator protein 1 (AP-1), through the induction of its component 
c-Fos  [  26  ] . The induction mechanism of c-Fos is dependent on the activation of 
Ca 2+ /calmodulin-dependent kinase IV (CaMKIV) and cyclic adenosine mono-
phosphate responsive-element-binding protein (CREB)  [  27  ] , as well as the acti-
vation of NF- k B  [  28  ] . Importantly, RANKL speci fi cally and potently induces 
nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulator 
of osteoclast differentiation, and this induction is dependent on both the TRAF6 
and c-Fos pathways  [  29  ] . The activation of NFAT is mediated by a speci fi c phos-
phatase, calcineurin, which is activated by calcium–calmodulin signaling. The 
 NFATc1  promoter contains NFAT binding sites, and NFATc1 speci fi cally auto-
regulates its own promoter during osteoclastogenesis, thus enabling the robust 
induction of NFATc  [  30  ] . The essential role of NFATc1 has been conclusively 
demonstrated by genetic experiments  [  30–  32  ] . NFATc1 regulates a number of 
osteoclast-speci fi c genes, such as cathepsin K, tartrate-resistant acid phosphatase 
(TRAP), calcitonin receptor, osteoclast-associated receptor (OSCAR), and  b 3 
integrin, in cooperation with other transcription factors such as AP-1, PU.1, 
microphthalmia-associated transcription factor (MITF), and CREB (Fig.  1 ).  

 During osteoclastogenesis, activation of calcium signaling is dependent on costimu-
latory receptors for RANK, which are immunoglobulin-like receptors, such as OSCAR 
and triggering receptor expressed in myeloid cells-2 (TREM-2). These receptors asso-
ciate with the adaptor molecules Fc receptor common  g  subunit (FcR g ) and DNAX-
activating protein 12 (DAP12), transducing signals by the phosphorylation of 
immunoreceptor tyrosine-based activation motifs (ITAMs) within the adaptor proteins, 
which, in turn, recruits the spleen tyrosine kinase (Syk)  [  33,   34  ]  (Fig.  1 ). It has been 
recently shown that Tec family tyrosine kinases (Tec and Btk) activated by RANK 
cooperate with Syk to induce ef fi cient phosphorylation of phospholipase C g  (PLC g ), 
which induces the release of calcium from the endoplasmic reticulum through the gen-
eration of inositol trisphosphate  [  35  ] . Although a series of genetically modi fi ed mice 
has clearly shown that ITAM-mediated signals are essential for osteoclastogenesis, the 
ligands for the costimulatory receptors remain to be identi fi ed  [  33–  35  ] .  
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  Fig. 1    Signal transduction during osteoclastogenesis. Receptor activator of nuclear factor- k B 
ligand (RANKL)-RANK binding results in the recruitment of tumor necrosis factor receptor-
associated factor (TRAF)6, which activates nuclear factor- k B (NF- k B) and mitogen-activated 
protein kinases (MAPKs). RANKL also stimulates the induction of c-Fos through NF- k B and 
Ca 2+ /calmodulin-dependent kinase IV (CaMKIV). NF- k B and c-Fos are important for the robust 
induction of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Several costimulatory 
receptors associate with the immunoreceptor tyrosine-based activation motif (ITAM)-harboring 
adaptors, Fc receptor common  g  subunit (FcR g ), and DNAX-activating protein 12 (DAP12): 
osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells-2 
(TREM2) associate with (FcR g ), and signal-regulatory protein  b 1 (SIRP b 1) and paired immuno-
globulin-like receptor-A (PIR-A) associate with DAP12. RANK and ITAM signaling cooperate 
to phosphorylate phospholipase C g  (PLC g ), and activate calcium signaling, which is critical for 
the activation and autoampli fi cation of NFATc1. Tec family tyrosine kinases (Tec and Btk) acti-
vated by RANK are important for the formation of the osteoclastogenic signaling complex com-
posed of Tec kinases, B-cell linker (BLNK)/SH2 domain-containing leukocyte protein of 76 kDa 
(SLP76) (activated by ITAM-spleen tyrosine kinase (Syk)) and PLC g , all of which are essential 
for the ef fi cient phosphorylation of PLC g        
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    4   The Essential Role of Osteoclasts 
in Bone Destruction in RA 

 The bone destruction observed in the joints of patients with RA presents a challenging 
clinical problem. In the early 1980s, researchers observed osteoclast-like cells at the 
bone destruction sites  [  36  ] , but it was not until RANKL was cloned that the impor-
tance of osteoclasts became generally accepted. We previously demonstrated 
ef fi cient osteoclast formation in synovial cell cultures obtained from patients with 
RA  [  37  ] . Moreover, the expression of RANKL was detected speci fi cally in the syn-
ovium of patients with RA  [  38,   39  ] . Recent studies have provided further direct 
genetic evidence: RANKL-de fi cient mice, which lack osteoclasts, were protected 
from bone destruction in an arthritis model induced by serum transfer  [  40  ] . Bone 
erosion was not observed in osteopetrotic  Fos   − / −   mice, even when they were crossed 
with TNF- a  transgenic mice, which develop erosive arthritis spontaneously  [  41  ] . In 
both cases, a similar level of in fl ammation was observed, indicating that RANKL 
and osteoclasts are indispensable for the bone loss but not the in fl ammation. 
Consistent with this, anti-RANKL and anti-osteoclast therapies have been shown to 
be bene fi cial in the treatment of bone damage in animal models of arthritis  [  42,   43  ] . 
In fl ammatory cytokines such as TNF- a , interleukin (IL)-1, and IL-6 have a potent 
capacity to induce RANKL expression on synovial  fi broblasts/osteoblasts and to 
facilitate RANKL signaling, thus directly contributing to the bone destruction pro-
cess. In particular, TNF- a  is considered of special importance since anti-TNF therapy 
reduces bone erosion as well as in fl ammation  [  44  ] .  

    5   Effect of T Cells on Osteoclastogenesis 

 As in fi ltration of T cells into the synovium is a pathological hallmark of RA, it is 
vital to address how T-cell immunity is linked to the enhanced expression of RANKL 
and eventual osteoclastic bone resorption. More speci fi cally, as RANKL is known 
to be expressed in activated T cells, it is important to determine whether this source 
of RANKL can directly induce osteoclast differentiation. In 1999, Kong et al. 
showed that the RANKL expressed on activated T cells directly acts on osteoclast 
precursor cells and induces osteoclastogenesis in vitro  [  42  ] . Horwood et al. also 
reported that osteoclastogenesis could be induced in vitro by activated T cells  [  45  ] . 
However, it is important to note that T cells produce various cytokines, including 
interferon (IFN)- g , IL-4, and IL10, which exert potent inhibitory effects on osteo-
clast differentiation  [  2  ] . In the former study, the T cells were  fi xed by formaldehyde 
and were thus unable to release any humoral factors  [  42  ] . In the latter study, the T 
cells and osteoclast precursor cells were derived from different species, suggesting 
that the effect of cytokines would in all likelihood be much lower than that on cells 
of the same species  [  45  ] . The question then arises as to how T-cell cytokines other 
than RANKL affect osteoclast differentiation. 
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 Upon activation, naïve CD4 +  T cells differentiate into different lineages of helper 
T (Th) cells, depending on the cytokine milieu  [  46  ] . Th1 and Th2 cells are tradition-
ally thought to be the major subsets generated upon antigenic stimulation. Th1 cells, 
which are induced by IL-12, produce mainly IFN- g  and are involved in cellular 
immunity; Th2 cells mainly produce IL-4, IL-5, and IL-10 and contribute to humoral 
immunity. RA was previously considered to be a disease in which the Th1–Th2 bal-
ance is skewed towards Th1. However, IFN- g  is not highly expressed in the joints of 
RA patients  [  47  ] . Notably, IFN- g  strongly inhibits osteoclastogenesis, even at 
 minute concentrations, through ubiquitin-proteasome-mediated degradation of 
TRAF6  [  48  ] . Moreover, the severity of collagen-induced arthritis was reported to be 
exaggerated in the absence of IFN- g  signaling  [  49,   50  ] , suggesting that Th1 cells are 
not linked to bone damage in arthritis.  

    6   Th17 Cells Function as Osteoclastogenic Th Cells 

 It is worthwhile to de fi ne what is believed to be a very rare but pathologically impor-
tant Th cell subset which is responsible for abnormal bone resorption as osteoclas-
togenic Th cells. Previous investigations in our laboratory together with other 
studies on synovial T cells in RA have clari fi ed the characteristics of osteoclasto-
genic Th cells in autoimmune arthritis  [  51  ] . First, osteoclastogenic Th cells do not 
produce a large amount of IFN- g . Second, they trigger both local in fl ammation and 
the production of in fl ammatory cytokines that induce RANKL expression on syn-
ovial  fi broblasts. Third, osteoclastogenic Th cells express RANKL and might 
thereby directly participate in accelerated osteoclastogenesis. Because these Th 
cells have such osteoclastogenic characteristics, they can tip the balance in favor of 
osteoclastogenesis synergistically. 

 Th17 cells have recently been identi fi ed as a new effector Th cell subset char-
acterized by the production of proin fl ammatory cytokines including IL-17, 
IL-17F, IL-21, and IL-22. Th17 cell differentiation is induced by the combination 
of IL-6 and transforming growth factor (TGF)- b . IL-23 is dispensable for the 
lineage commitment of Th17 cells, but is required for the growth, survival, and 
effector functions of Th17 cells  [  52,   53  ] . Importantly, this unique subset plays a 
critical role in host defense against certain extracellular pathogens and also con-
tributes to the pathogenesis of various autoimmune diseases  [  53  ] . Recent data 
from our laboratory indicate that Th17 cells represent the long sought-after osteo-
clastogenic Th-cell subset, ful fi lling all of the criteria mentioned above  [  54  ] . 
IL-17 induces RANKL on osteoclastogenesis-supporting mesenchymal cells, 
such as osteoblasts and synovial  fi broblasts  [  55  ] . IL-17 also enhances local 
in fl ammation and increases the production of in fl ammatory cytokines, which fur-
ther promote RANKL expression and activity. Therefore, the in fi ltration of Th17 
cells into the in fl ammatory lesion is the link between the abnormal T-cell response 
and bone damage (Fig.  2 ).   
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    7   Effects of Regulatory T Cells on Osteoclastogenesis 

 CD4 +  CD25 +  regulatory T (Treg) cells are a specialized T cell subset that engages in 
the maintenance of immunological self-tolerance and immune homeostasis, as evi-
denced by the development of severe autoimmune disease, allergy, and immunopa-
thology in humans and mice with a mutation of forkhead box P3 (Foxp3), an master 
regulator for the Treg cell lineage  [  56  ] . Treg cells can be classi fi ed into two main 
populations, FoxP3 +  naturally occurring Treg cells generated in the thymus and 
FoxP3 +  Treg cells induced by antigen stimulation in a milieu rich in TGF- b  in the 
periphery. Although the differences and similarities between these two populations 
are yet to be fully elucidated, both have been considered to be essential for immune 
homeostasis. Notably, Th17 cells and Treg cells are reciprocally regulated during 
differentiation, but exert the opposite effects on autoimmunity, and the balance 
between these populations is associated with in fl ammation and autoimmune dis-
eases  [  53,   56  ] . In many studies, Treg cells were found in high number within joint 
 fl uid from RA patients  [  57–  59  ] . However, Treg cells in joint  fl uid from RA patients 
failed to suppress effector T cell proliferation or cytokine production. This is because 
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  Fig. 2    Osteoclast regulation by T cells in rheumatoid arthritis. Interleukin (IL)-17-producing 
helper T (Th17) cells have stimulatory effects on osteoclastogenesis and play an important role in 
the pathogenesis of rheumatoid arthritis through IL-17, while Th1 and Th2 cells have inhibitory 
effects on osteoclastogenesis through interferon (IFN)- g  and IL-4, respectively. IL-17 not only 
induces receptor activator of nuclear factor- k B ligand (RANKL) on synovial  fi broblasts of mesen-
chymal origin but also activates local in fl ammation, leading to the upregulation of proin fl ammatory 
cytokines, such as tumor necrosis factor (TNF)- a , IL-1, and IL-6. These cytokines activate osteo-
clastogenesis by either directly acting on osteoclast precursor cells or inducing RANKL on syn-
ovial  fi broblasts. Th17 cells also express RANKL on their cellular membrane, which partly 
contributes to the enhanced osteoclastogenesis       
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in fl ammatory cytokines including IL-6 and TNF- a  attenuate Treg function. Effector 
T cells in joint  fl uid were also reported to be resistant to suppression by Treg cells. 
In addition, serum markers of bone resorption such as CTx inversely correlated with 
the number of CD4 + CD25 +  Treg cells in peripheral blood of healthy control and RA 
patients  [  60  ] . Thus, it is of key interest whether Treg cells affect in fl ammatory-
associated bone destruction. Several groups have reported the inhibitory effect of 
Treg cells on osteoclastogenesis and bone resorption, but no consensus regarding 
their inhibitory mechanisms has been established. Dr. Kim et al. reported the human 
CD4 + CD25 +  Treg cells isolated from peripheral blood mononuclear cells (PBMCs) 
suppress osteoclast differentiation in a cytokine-dependent manner, and proposed 
that TGF- b  and IL-4 are required for the suppressive function of Treg cells  [  61  ] . Dr. 
Zaiss et al. demonstrated the inhibitory effect of CD4 + CD25 +  Treg cells puri fi ed 
from mouse spleen on osteoclast differentiation  [  62  ] . However, they showed that 
CD4 + CD25 +  Treg cells inhibit osteoclastogenesis partially via IL-4 and IL-10 pro-
duction, but mainly through cell-to-cell contact via cytotoxic T lymphocyte antigen 
4. It is notable that wild-type Treg cells failed to inhibit the differentiation of osteo-
clasts from CD80/86 −/−  monocytes  [  63  ] . A decrease in osteoclast number and bone 
resorption was observed after transfer of CD4 + CD25 +  Treg cells into Rag1-de fi cient 
mice, indicating that Treg cells could directly block osteoclastogenesis without 
engaging effector T cells  [  63  ] . Furthermore, Dr. Luo et al. have recently reported 
that human PBMC-derived CD4 + CD25 +  Treg cells suppress osteoclastogenesis and 
bone resorption in a TGF- b 1 and IL-10 cytokine-dependent manner  [  64  ] . Since 
TGF- b , IL-10, and IL-4 are well-known cytokines to inhibit osteoclastogenesis, 
these cytokines produced by Treg cells may be, at least partially, involved in the 
suppressive function of Treg cells on osteoclastogenesis. In all studies by these 
three groups, Treg cells were activated before coculture experiments, but their cul-
ture conditions varied, which may cause the difference among their results. Dr. 
Zaiss et al. also reported increased bone mass and partial protection from bone loss 
after ovariectomy in Foxp3 transgenic mice  [  63  ] . Foxp3 +  Treg cells have been shown 
to protect against local and systemic bone destruction in the mouse model of TNF-
 a -induced arthritis  [  60  ] . Taken as a whole, it is likely that Foxp3 +  Treg cells exert 
inhibitory effects on in fl ammatory-associated bone destruction, but it is important 
to consider the possibility that the characteristics of Treg cells are affected by the 
speci fi c microenvironment such as autoimmune in fl ammation, as described above. 
Additional studies would be needed to determine how Treg cells affect osteoclast-
mediated bone destruction under in fl ammatory conditions.  

    8   Mechanisms Underlying Th17 Cell Differentiation 

 Th17 cell subset has emerged as attractive therapeutic targets for both in fl ammation 
and bone destruction. It is therefore important to understand the molecular mecha-
nism underlying Th17 development in order to develop novel therapeutic strategies. 
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Helper T cell differentiation is initiated by the T cell receptor signal in combination 
with other cytokine receptor signals. These signals induce the activation of speci fi c 
transcription factors to promote lineage-speci fi c cytokine production  [  46  ] . For 
example, the T-box-containing protein expressed in T cells, which is activated by 
IL-12 and IFN- g , is required for Th1 cell differentiation. Th2 cell differentiation 
requires the function of the GATA binding protein 3 which is induced by the IL-4-
activated signal transducer and activator of transcription (Stat) 6. 

 Soon after the discovery of Th17 cells, Dr. Littman and his colleagues reported 
that retinoid-related orphan receptor (ROR) g t is selectively expressed in Th17 cells 
and is required for Th17 cell differentiation  [  65  ] . ROR g t expression is induced by 
the combination of IL-6 and TGF- b  through STAT3. Furthermore, ROR g t de fi ciency 
was shown to lead to an impairment of Th17 cell differentiation both in vitro and 
in vivo. Subsequent studies by Dr. Dong and his colleagues showed that another 
ROR family member, ROR a , is also highly induced during Th17 cell differentia-
tion in a STAT3-dependent manner  [  66  ] . Although ROR a  deletion in mice had 
only a minimal effect on IL-17 production, the de fi ciency of both ROR a  and ROR g t 
completely abolished IL-17 production and protected mice from EAE. Thus, 
ROR g t and ROR a  have redundant functions, but ROR g t seems to be the major 
player in Th17 cell differentiation. Although the mechanisms by which the ROR 
nuclear receptors drive Th17 development and production of Th17-related cytok-
ines such as IL-17 have not yet been fully elucidated, they are considered to be 
essential factors for Th17 development.  

    9   Regulation of Th17 Development by I k B z  

 We found that a nuclear I k B family member, I k B z , was most highly expressed in 
Th17 cells among the helper T cell subsets  [  67  ] . I k B z  is a nuclear protein highly 
homologous to Bcl-3, which interacts with the NF- k B subunit via the ankyrin repeat 
domain  [  68  ] . Its expression is rapidly induced by TLR ligands or IL-1 stimulation 
in peritoneal macrophages. Yamamoto et al. demonstrated using I k B z -de fi cient 
mice that I k B z  is essential for the LPS induction of a subset of secondary response 
genes, including IL-6 and the IL-12 p40 subunit in macrophages  [  69  ] . However, no 
attempt to determine the function of I k B z  in T cells was reported in their study. 

 I k B z  expression was shown to be upregulated by the combination of IL-6 and 
TGF- b . I k B z  induction was mediated by Stat3, but not by ROR g t, in Th17 cells. 
Importantly, not only I k B z -de fi cient mice but also Rag2-de fi cient mice transferred 
with I k B z -de fi cient CD4 +  T cells were shown to be highly resistant to EAE. When 
naïve CD4 +  T cells were activated in vitro under Th1- and Th2-polarizing condi-
tions, I k B z -de fi cient naïve CD4 +  T cells normally produced IFN- g  and IL-4, 
respectively. On the other hand, when activated under Th17-polarizing conditions, 
IL-17 production in I k B z -de fi cient T cells was markedly reduced compared to 
wild-type T cells. Since the expression of ROR g t and ROR a  was shown to be 
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 normal in I k B z -de fi cient T cells, it is unlikely that ROR nuclear receptors function 
downstream of I k B z  or vice versa. 

 Although ROR nuclear receptors have been proposed as essential regulators for 
Th17 development as described above, several groups have reported that the ectopic 
expression of ROR g t or ROR a  leads to only modest IL-17 production in the absence 
of IL-6 and TGF- b   [  66,   70  ] . The ectopic expression of I k B z  in naïve CD4 +  T cells 
did not induce IL-17 production in the absence of IL-6 and TGF- b . Interestingly, 
however, even in the absence of IL-6 and TGF- b , the ectopic expression of I k B z , 
together with ROR g t or ROR a , potently induced IL-17 production. A reporter assay 
system showed that I k B z  moderately activated the promoter of the mouse  Il17  gene 
as well as ROR g t and ROR a . When the ROR nuclear receptor was expressed, I k B z  
highly activated the  Il17  promoter. Previous studies showed that an evolutionarily 
conserved noncoding sequences (CNS) 2 region in the  Il17  locus is associated with 
histone H3 acetylation in a Th17 lineage-speci fi c manner and that the ROR nuclear 
receptor is recruited to the CNS2 region during Th17 development  [  66,   71,   72  ] . In 
combination with ROR g t and ROR a , I k B z  potently induced the CNS2 enhancer 
activity. I k B z  was recruited to the CNS2 region in Th17 cells, and recruitment of 
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  Fig. 3    I k B z  and ROR nuclear receptors are essential for Th17 development. Interleukin (IL)-6 
and transforming growth factor (TGF)- b  induce Th17 cell differentiation, in which the ROR 
nuclear receptors, ROR g t and ROR a , have an indispensable role. The expression of I k B z  is 
induced by the combination of IL-6 and TGF- b . I k B z  induction is mediated by signal transducer 
and activator of transcription (Stat) 3 but not ROR g t. I k B z  and ROR nuclear receptor bind directly 
to the CNS2 region of the  Il17  promoter and cooperatively activate the  Il17  promoter. Notably, 
recruitment of I k B z  to the CNS2 region was dependent on ROR g t, suggesting that the binding of 
both I k B z  and ROR nuclear receptors to the  Il17  promoter leads to an ef fi cient recruitment of 
transcriptional coactivators having histone acetylase activity.  TCR  T cell receptor,  MHC II  major 
histocompatibility complex class II       
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I k B z  to the CNS2 region was dependent on ROR g t function (Fig.  3 ). Moreover, the 
expression of IL-17F, IL-21, and IL-23 receptor was decreased in I k B z -de fi cient T 
cells. I k B z  also bound to the promoter or the enhancer region of these genes in Th17 
cells. Collectively, these  fi ndings indicate that I k B z  is critical for the transcriptional 
program in Th17 cell lineage commitment  [  67  ] .   

    10   Conclusion 

 Th17 cell subset is an auspicious target for future therapeutic investigation, and cytokines 
related to Th17 cell differentiation and function will be of great clinical importance. 
Antibodies against IL-17 or IL-23 would be expected to exert bene fi cial effects in auto-
immune diseases, and antibodies targeting the IL-6 receptor might also inhibit Th17 
development in RA, in addition to effecting a direct inhibition of local in fl ammation 
and osteoclastogenesis  [  73,   74  ] . Although further studies will be required to determine 
whether or how I k B z  synergizes with other transcriptional regulators of Th17 cells, our 
results raise the possibility that the targeting of I k B z  may prove effective in the treat-
ment of autoimmune diseases. Th17 cells are also implicated in host defense against a 
number of microorganism, therefore great care will be required so as to effectively treat 
autoimmune diseases without compromising the host defense system.      
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          1   Introduction 

 The concentration of calcium in the cytoplasm of the cell is tightly regulated to be 
about 100 nM in general  [  1  ] . In contrast, calcium concentrations in the extracellular 
 fl uid (~1 mM) and intracellular endoplasmic reticulum (ER; ~100  m M) are high. 
Various factors signal to the cell via regulation of the cytosolic calcium concentra-
tion by modulating the calcium traf fi cking through the plasma and ER membranes. 
The calcium signaling pathway ultimately results in changes in gene expression and 
cell metabolism and plays critical roles in determining diverse cellular responses 
such as proliferation, differentiation, apoptosis, and secretion  [  2  ] . Interestingly, the 
intracellular calcium response to an external stimulus displays different patterns 
depending on the signaling stimulus and the responding cell type. While a brief rise-
and-fall pattern of spike is one mode of the calcium signal, repetition of transient 
calcium spikes forming an oscillatory pattern is also present in various systems 
 [  1,   3,   4  ] . Variation in both the frequency and the amplitude of the oscillatory cal-
cium spikes may contribute to the modulation of versatile responses by calcium 
signals. In fact, the frequency of calcium spikes has been shown to be as various as 
from a few seconds to several hours. The difference in calcium frequency was even 
reported to be responsible for the activation of different transcription factors  [  5  ] . 
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 Osteoclasts differentiate from monocyte/macrophage lineage of hematopoietic 
cells  [  6  ] . The commitment to osteoclast lineage is triggered by receptor activa-
tor of nuclear factor kappa B ligand (RANKL) that binds to its receptor RANK 
on the precursor cells  [  7,   8  ] . The RANK–RANKL interaction leads to recruit-
ment of TNF receptor-associated factor (TRAF) members to RANK and subse-
quent activation of several intracellular signaling pathways  [  9  ] . The activated 
signaling molecules include mitogen-activated protein kinases (MAPKs) and 
Src family members, PI-3K, Akt, TAK, NIK, and IKK.  [  9,   10  ] . In addition, 
intracellular calcium signaling was found to be essential for osteoclast differen-
tiation by RANKL  [  11  ] . These signaling pathways ultimately converge on the 
regulation of transcription factors that control the expression of genes required 
for osteoclastic phenotype manifestation and bone resorption function. The 
transcription factors targeted downstream RANK include c-Fos, CREB, NFATc1, 
as well as NF k B  [  9,   12  ] .  

    2   Ca 2+  Oscillation in Osteoclasts 

 Genomic approaches to identify genes differentially expressed by RANKL treat-
ment in bone marrow-derived macrophages (BMMs; osteoclast precursor cells) 
led to the identi fi cation of NFATc1 as one of RANKL target genes  [  11  ] . Initial 
increase of the NFATc1 protein level in the cytoplasm is succeeded by accu-
mulation of the transcription factor in the nucleus during RANKL-induced osteo-
clastogenesis  [  11  ] . As the nuclear translocation of NFAT proteins requires 
dephosphorylation by calcineurin which is activated by calcium/calmodulin  [  1, 
  13,   14  ] , it was reasoned that calcium signaling could be involved in the RANKL 
induction of NFATc1. Subsequent time lapse tracing experiments of intracellular 
calcium revealed an oscillatory pattern of calcium spikes in RANKL-treated 
BMMs  [  11  ] . The calcium oscillation appeared to be speci fi c to RANKL as the 
calcium response was not induced in BMMs treated with IL-1 or M-CSF. 
Intriguingly, there was about a 24 h time lag before appearance of calcium oscil-
lation after RANKL treatment, suggesting that new gene transcription and pro-
tein synthesis might be required for the regulation of intracellular calcium levels 
in differentiating osteoclasts. Blocking the calcium response by using a calcium 
chelator-suppressed NFATc1 induction by RANKL and reduced the generation of 
osteoclasts from BMMs  [  11  ] . Therefore, the calcium oscillation seems to be criti-
cal for RANKL stimulation of osteoclastogenesis. However, Kuroda et al. reported 
that, in the presence of osteoblasts, BMMs could generate osteoclasts under con-
ditions where calcium oscillation and calcineurin activation were absent, although 
the extent of osteoclastogenesis was weaker than when calcium oscillation was 
normal  [  15  ] . This observation led to a suggestion that both calcium oscillation-
dependent and -independent signaling operate for the activation of NFATc1 in 
osteoclast differentiation depending on the environment that osteoclast precursors 
encounter.  
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    3   Ca 2+  Channels in OC Intracellular Organelles 

    Since studies linking phosphatidylinositol (PI) hydrolysis to calcium signaling  [  16–  18  ] , 
inositol 1,4,5-trisphosphate (IP 

3
 ) was found to release calcium from ER  [  19–  21  ] . IP 

3
  

binds to its receptor on ER membrane and activates the receptor channel to transport 
calcium to the cytoplasm. The IP 

3
  receptor is also sensitive to calcium  [  22,   23  ] , 

which generates calcium-induced calcium release like the ryanodine receptor in 
muscle cells. The generation of IP 

3
  via hydrolysis of phosphatidylinositol 4,5-bis-

phosphate (PIP 
2
 ) is stimulated by various external signals. When these signals bind 

to their receptors, the activation of phospholipase C (PLC) is triggered  [  2  ] . While 
PLC b  is activated by G-protein-coupled receptors, PLC g  is stimulated by tyrosine 
kinase-coupled receptors. 

 In osteoclast precursor cells, the activation of PLC g  was observed upon RANKL 
treatment  [  24  ] . The PLC g  activation was defective in osteoclast precursors from mice 
lacking immune cell adaptors Fc receptor common  g  subunit (FcR g ) and DNAX-
activating protein (DAP) 12 that harbor immunoreceptor tyrosine-based activation 
motif (ITAM)  [  24  ] . These ITAM-containing adaptors associate with immunoglobulin-
like receptors osteoclast-associated receptor (OSCAR), paired immunoglobulin-like 
receptor (PIR)-A, triggering receptor expressed by myeloid cells (TREM)-2 and sig-
nal-regulatory protein (SIRP)  b 1  [  24  ] . Consistently with the lack of PLC g  activation, 
calcium oscillation and NFATc1 induction were defective in the DAP12 −/−  FcR g  −/−  
precursor cells. Consequently, osteoclast differentiation was severely impaired and 
the DAP12 −/−  FcR g  −/−  mice displayed osteopetrotic phenotype  [  24  ] . This observation 
led to the recognition that RANK signaling needs additional costimulatory signals for 
induction of calcium oscillation for ef fi cient osteoclastogenesis. 

 The activation of PLC g  is achieved by phosphorylation. The ITAM motifs of 
immune adaptor molecules associate with Syk family kinases via SH2 domain bind-
ing  [  25  ] . Indeed, Syk knockout precursor cells showed defective osteoclastogenesis 
and bone resorption  [  26  ] . The defect could be rescued by exogenous expression of 
the SH2 domains of Syk  [  26  ] . Likewise, forced expression of intact ITAM domains 
could reconstitute osteoclast development from DAP12 −/−  FcR g  −/−  cells  [  26  ] . The 
binding of a SH2 domain to an ITAM motif requires the phosphorylation of tyrosine 
residues. In B cells, Btk/Tec family tyrosine kinases form a complex with B cell 
receptor and phosphorylate the ITAM motifs in the BCR  [  27  ] . Shinohara et al. found 
by a genome-wide screening of nonreceptor tyrosine kinases differentially expressed 
during osteoclast differentiation that Btk and Tec kinases are highly expressed in 
osteoclasts  [  28  ] . Btk −/−  Tec −/−  mice displayed osteopetrosis and osteoclastogenesis 
was abrogated in Btk −/−  Tec −/−  cells. RANKL activated Btk and Tec. Btk associated 
with the adaptor protein BLNK, which was abrogated in DAP12 −/−  FcR g  −/−  cells. 
Precursor cells de fi cient in BLNK and SLP-76 (a T-cell homologue of BLNK) also 
showed defective osteoclastogenesis. Furthermore, the activation of PLC g , calcium 
oscillation, and NFATc1 by RANKL was suppressed in Btk −/−  Tec −/−  cells. Taken 
together, both the RANK activation of Btk/Tec and the ITAM-mediated activation 
of BLNK/SLP-76 were required for PLC g  activation and subsequent calcium 
response for osteoclast differentiation. 
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 The generation of IP 
3
  by activated PLC leads to increase in intracellular calcium 

as IP 
3
  binds to its receptor IP 

3
 R in the ER. IP 

3
 R itself is a calcium channel and the 

activity is modulated by ATP, calcium, regulatory proteins as well as IP 
3
   [  29–  31  ] . 

There are three isoforms of IP 
3
 Rs. Kuroda et al. found that BMMs from IP 

3
 R2 

knockout mice were incapable of osteoclastogenesis whereas BMMs from IP 
3
 R1 

and IP 
3
 R3 were able to differentiate to osteoclasts as effectively as wild-type 

BMMs  [  15  ] . IP 
3
 R2 knockout BMMs also could not elicit calcium oscillation and 

NFATc1 induction upon RANKL stimulation. Strikingly, IP 
3
 R2 knockout BMMs 

could generate osteoclasts when cocultured with osteoblasts or stromal cells despite 
lack of calcium oscillation. NFATc1 activation was also achieved in the coculture 
of IP 

3
 R2 knockout BMMs. These  fi ndings suggested that both calcium/calcineu-

rin-dependent and -independent mechanisms of NFATc1 activation operate for 
osteoclastogenesis in the presence of supporting cells. 

 Oscillation in the cytosolic calcium level inevitably requires repetitive activity of 
both calcium channels/pumps that transport calcium from intracellular stores such 
as IP 

3
 R and those that import calcium back into intracellular stores. The sarco/endo-

plasmic reticulum calcium ATPase (SERCA) pump that reuptakes calcium into ER 
is thus critical for cytosolic calcium oscillation  [  32  ] . Indeed, SERCA+/− mice 
displayed reduced frequency of calcium oscillation  [  33  ] . Yang et al. examined 
osteoclastogenesis and bone metabolism with SERCA2+/− mice  [  34  ] . SERCA2+/− 
mice were osteopetrotic and had ~1.5-fold higher bone mineral density. BMMs 
from SERCA2+/− mice did not elicit calcium oscillation during RANKL-induced 
osteoclastogenesis. The extent of osteoclast formation was lower in BMMs from 
SERCA2+/− mice than in wild-type BMMs. Consistently, the induction and activa-
tion of NFATc1 was reduced in SERCA2+/− BMMs.  

    4   Ca 2+  Channels in OC Plasma membranes 

 Calcium in fl ux and ef fl ux through the plasma membrane also play a major role in 
the regulation of cytosolic calcium concentrations. In addition, extracellular 
calcium in fl ux is often coupled with intracellular calcium release  [  2  ] . There was a 
report on a plasma membrane calcium channel involved in intracellular calcium 
signaling in osteoclasts  [  35  ] . In the report it was found that TRPV4 −/−  mice had 
increased bone mass after weaning. The bone mass increase in adult TRPV4 −/−  mice 
was associated with reduced bone resorption, but not with increased bone forma-
tion. Osteoclastogenesis from bone marrow cells of TRPV4 −/−  mice generated lower 
number of large osteoclasts compared with wild-type cells. While NFATc1 mRNA 
level was also lower in TRPV4 −/−  osteoclasts, TRPV4 activation in wild-type osteo-
clasts led to NFATc1 nuclear translocation. Intriguingly, the oscillatory calcium 
response was observed only in small and medium size osteoclasts, but not in large 
osteoclasts  [  35  ] . Instead, calcium in fl ux occurred when TRPV4 was active in large, 
but not in small osteoclasts. Consistent with its function as a calcium in fl ux channel 
for intracellular signaling, TRPV4 was located on the basolateral membrane of large 
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osteoclasts  [  35  ] . From these observations, it appears that the intracellular calcium 
signaling is mediated by calcium oscillations via IP 

3
 R2 in early stage and by baso-

lateral calcium in fl ux via TRPV4 in late stage of osteoclastogenesis. 
 Other calcium channels implicated in calcium in fl ux through the plasma 

membrane of osteoclasts include Na + /Ca 2+  exchangers (NCXs)  [  36  ] , ryanodine 
receptor calcium channel  [  37  ] , receptor-linked calcium channel  [  38  ] , voltage-gated 
calcium channels  [  39  ] , and TRPV5  [  40  ] . Some of these channels were located to the 
apical side of osteoclast plasma membrane and proposed to be involved in calcium 
transcytosis from the bone resorbing surface to the basolateral side of cells  [  36,   40  ] . 
The molecules involved in calcium ef fl ux through plasma membrane in osteoclasts 
have remained elusive. As the NCX is bidirectional transporter, it can mediate cal-
cium ef fl ux depending on the electrochemical gradients. We identi fi ed molecules 
mediating calcium ef fl ux on the basolateral plasma membrane of osteoclasts. The 
expression of these molecules, plasma membrane calcium ATPase (PMCA) 1 and 4, 
increased during RANKL-induced osteoclastogenesis. Gene knockdown of PMCA 
increased intracellular calcium oscillation and osteoclast differentiation (data not 
shown), suggesting involvement of plasma membrane calcium ef fl ux in the regula-
tion of intracellular calcium response during osteoclast differentiation.  

    5   Conclusion 

 Intracellular cytosolic calcium plays a pivotal role in osteoclastogenesis by activating 
calcium-dependent phosphatase calcineurin that activates NFATc1, the transcrip-
tion factor critically involved in the expression of osteoclast marker genes. 

RANK

IP3

PLCγ

IP3R2

Ca2+

ER

Immuno-
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  Fig. 1    Calcium regulators in osteoclasts. Intracellular calcium channel IP 
3
  receptor increases 

cytosolic calcium by exporting calcium from internal stores, while SERCA takes cytosolic calcium 
back to the stores. Plasma membrane proteins including TRPV and NCX also participate in regula-
tion of intracellular calcium concentrations in osteoclasts       
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Intracellular calcium channels IP 
3
 R2 and SERCA mediate calcium transport 

between ER and cytosol generating an oscillatory pattern of calcium concentration 
changes in differentiating osteoclasts. In addition, plasma membrane proteins TRPV 
and NCX channels and PMCA pumps are also involved in regulating calcium trans-
port between cytosol and extracellular environment of osteoclasts (Fig.  1 ). The 
manifestation of bone phenotype of mice de fi cient in these calcium channels and 
pumps suggest that calcium regulators in osteoclasts may be useful targets for devel-
opment of bone-destructive diseases. However, further studies are required to ensure 
selectivity of the identi fi ed calcium channels and pumps toward osteoclasts with a 
reasonable window compared to their contributions to cytosolic calcium regulation 
in other cell types.       
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          1   Introduction 

 Glucocorticoids (GCs) as anti-in fl ammatory agents proved successful for the  fi rst 
time in patients suffering from rheumatoid arthritis (RA) in 1948  [  1  ]  and this  fi nding 
was awarded with the Nobel prize in 1950. RA is currently one of the most investi-
gated diseases in the emerging research area “osteoimmunology” addressing the 
interactions between bone and hematopoietic tissues. RA is still treated with GCs in 
combination with disease modifying antirheumatic drugs (DMARDs)  [  2  ]  to amelio-
rate the most pro-in fl ammatory boosts. Soon it became evident that steroid therapy 
is hampered by a multitude of side effects acting on metabolism, cardiovascular 
system, and tissue integrity. A general loss of bone at long-term GC treatment is 
considered to be one of the major complications. To improve steroid therapy and 
avoiding bone loss in RA, a detailed understanding of the cellular and molecular 
mechanisms is required. Work from our laboratory and others shed some light into 
the molecular mechanisms implicated in GC action in suppression of in fl ammation 
and GC-induced bone loss. We review here these recent advances and also de fi ne 
new criteria for selective acting GCs that avoid GC-induced bone loss, but may 
retain therapeutic potential. 

    1.1   The Glucocorticoid Receptor 

 GCs, such as the endogenous secreted hydrocortisol or corticosterol as well the 
synthetic GCs prednisolone, dexamethasone, and others bind to a member of the 
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nuclear receptor family, the glucocorticoid receptor (GR). The GR is composed of an 
N-terminal transcriptional activation domain (AF-1) followed by a two Zn  fi nger 
containing DNA binding domain (DBD), a short hinge region, the ligand binding 
domain (LBD), and a C-terminal transactivation domain (AF-2)  [  3  ] . The GR resides 
in the absence of ligands in the cytoplasm and is associated with a complex of 
chaperonic molecules composed of heat shock proteins and so called immuno-
phillins. Hypothalamo–pituitary–adrenal axis triggered or pharmacologically applied 
GCs diffuse through the cell membrane. Within the cells 11- b -hydroxysteroid dehy-
drogenase type 1 (11- b -HSD1) converts the inactive GCs, such as cortisone and cor-
ticosterone to their active forms cortisol and corticosterol, respectively. Active GCs 
bind to the high af fi nity GR-heat shock protein complex  [  4  ] . Upon binding this com-
plex disrupts and allows the released GR molecule to interact in the cytoplasm with 
signal transduction components, such as JNK, PI3K, 14-3-3 proteins or in T cells 
with the T cell receptor associated kinases lck and fyn  [  3  ] . The majority of the GR 
molecules translocate to the nucleus, facilitated by HSP90, the co-chaperone immu-
nopholin FKBP52  [  5  ] , importin alpha/beta, and importin 7  [  6  ] . Within the nucleus 
the GR executes two major activities: binding as a homodimer to palindromic 
response elements (GRE) of GC-induced genes and associating to sites of pro-
in fl ammatory transcription factors. Homodimerization of the GR at the DNA is 
mediated by dimerization motifs within the 2nd Zn  fi nger of the DBD  [  7  ] , dimeriza-
tion interfaces at the LBDs and presumably by LBD/DBD interaction as shown for 
other nuclear receptors  [  8  ] . The transactivation domains AF-1 and AF-2 of DNA 
bound GR serve as platforms for the recruitment of coactivators. Chromatin remod-
eling complexes of the SWI/SNF/Brg1 family are interacting with AF-1 in a ligand 
independent manner. In contrast AF-2 recruits proteins of the p160 family and sub-
sequently coactivators such as CBP/p300 only in the presence of ligand. The kind of 
coactivators are recruited further depends on the conformational change of the GR 
in fl uenced by the palindromic DNA binding sequence itself. Different GRE sequences 
lead to different transactivation capacities  [  9  ] . Recent global chromatin-immunopre-
cipitation sequencing combined with studies of  fl uorescence-tagged GR molecules 
at a high time resolution shows a complex dynamic behavior of GR DNA occu-
pancy  [  10  ] . The binding of the GR seems to follow the oscillating GC release during 
the day, which is different from permanent nuclear residing GR by high af fi ne syn-
thetic GCs. Thus a comprehensive picture of GR DNA binding activity—so far only 
de fi ned for a limited amount of cell lines—is just being unraveled. These experi-
ments once performed in mesenchymal and hematopoietic cells will give fundamen-
tal insights into gene regulation of GC effects in osteoimmunological processes. 

 The second mode of GR activity, the interaction with already DNA bound tran-
scription factors had attracted much attention over the last two decades as one of the 
major mechanisms of immune suppression by the GR  [  3  ] . In particular the GR 
represses proin fl ammatory molecules based on tethering to AP-1  [  11  ] , NF- k B  [  12  ] , 
or IRF-3  [  13  ] . These interactions occur in the presence of integrator proteins like 
thyroid hormone receptor interactor 6 (TRIP6)  [  14  ]  or SRC1 and TIF2-associated 
binding protein (STAMP)  [  15  ] . The GR is supposed to prevent the recruitment of 
coactivators to NF- k B  [  16  ]  or to inhibiting RNA-polymerase II phosphorylation on 



335 Lessons from Glucocorticoid Receptor Action in Bone…

the C-terminal domain by recruitment of phosphatases  [  17  ] . In addition the GR 
inhibits Toll-like receptor signaling via sequestration of the p160 protein GRIP1 
from IRF3 and STAT1 sites, thereby interfering with their transactivating activity 
 [  13,   18,   19  ] . Due to the plethora of pro-in fl ammatory mediators, such as cytokines, 
enzymes and adhesion molecules that are under the control of the aforementioned 
transcription factors it became almost a dogma in the  fi eld that immune suppression 
of GCs solely depends on this tethering mode of nuclear GR action. To which extend 
this dogma holds and has to be modi fi ed will be discussed below.  

    1.2   Selective Glucocorticoid Receptor Modulators 

 Based on the two major nuclear mechanisms of GR action—binding as a homodimer 
and tethering as a monomer towards pro-in fl ammatory transcription factors—phar-
maceutical companies started an intensive search for dissociating GR ligands that 
exclusively address the monomer function of the GR  [  20  ] . Such ligands should main-
tain anti-in fl ammatory ef fi cacy, but avoid side effects which were attributed to the GR 
dimer. So far only for the regulation of enzymes involved in glucose metabolism the 
requirement of the GR dimer was clearly demonstrated, at the time these programs 
were launched. Thus, screening programs were mainly based on GRE-, AP-1-, or 
NF- k B-dependent reporter gene assays. Compounds were identi fi ed that exert a cer-
tain GR af fi nity and failed to induce GRE driven reporters, but maintained transre-
pression of AP-1- and/or NF- k B-dependent reporter genes. Whereas the  fi rst 
compounds did not maintain their dissociative properties in vivo  [  21  ] , other  substances, 
including AL-438  [  22  ] , “compound A”  [  23  ] , LGD-5552  [  24  ] , ZK 216348  [  25  ] , and 
ZK 245286  [  26  ]  continued to be successful in some in fl ammatory assays in rodents, 
such as phorbol ester-induced skin irritation, air pouch-induced in fl ammation, contact 
allergy, and EAE  [  27,   28  ] . CpdA also proved therapeutically successful in an example 
of in fl ammatory bone disease, collagen-induced arthritis  [  29  ] . 

 Concerning side effects the AL-438  [  22  ] , CpdA  [  23  ] , and ZK 216348  [  25  ]  failed 
to induce glucose levels and to decrease glucose tolerance in rodent models in 
comparison to the full GR agonist dexamethasone. The investigated selective GR 
modulators SEGRMs spared effects on thymus weight, adrenal weight, and bone 
growth  [  20  ] . Little has been done on the effects of SERGMs on primary bone cells 
and bone integrity. Only for AL-438 and LGD-5552 a lack of bone formation inhi-
bition was reported for rats  [  22,   24  ] . In tissue culture cells a reduced repression of 
the RANKL/OPG ratio in comparison to the classical agonists had been observed 
for AL-438 and ZK 216348  [  30  ] . This might indeed lead to a decreased osteoclas-
togenesis triggered by osteoblastic cells, which remains to be investigated. 

 So far, however, the SEGRMs were only de fi ned on a few selected reporter 
genes and therefore it is not entirely clear, how selective they are in other pro-
moter contexts and whether they act in a tissue selective manner in vivo. To solve 
this issue, even for classical GR action, target tissues and molecular mechanisms 
have to be de fi ned.   
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    2   Cell Type Speci fi c Molecular Mechanisms 
of Anti-in fl ammatory Actions of the GR 

 To de fi ne which molecular action of the GR, homodimerization or the monomeric 
activity contributes to anti-in fl ammation and to GC-induced bone loss as the major 
side effect we utilized an approach using conditional mutant mice of the GR. 

 For the identi fi cation of cell types critical for anti-in fl ammatory effects we uti-
lized mice with a conditional GR allele with exon 3  fl anked with loxP sites. These 
mice are suitable for recombination by transgenic cre expression to create a condi-
tional GRnull allele in selected cell types  [  31,   32  ] . This strategy has the advantage 
to overcome the perinatal lethality in complete GR knockout mice  [  32,   33  ]  to 
address GR function in adult animals. Using this approach we could  fi rst de fi ne for 
GC treatment of contact allergy in the skin using a murine model of contact hyper-
sensitivity (CHS) that antigen presenting dendritic cells, keratinocytes and—inter-
estingly—T cells were not critical for GC therapy. Myeloid cells however, when 
devoid of the GR in vivo in GR LysMCre  mice rendered resistant to GC suppression of 
the in fl ammatory response in CHS  [  34  ] . Myeloid cells including neutrophils and 
macrophages turned out to be also critical for the actions of endogenous GCs in 
septic shock experiments  [  35  ] . In contrast in experimental encephalitis the GR in T 
cells was most critical for GC actions. Mice lacking the GR in T cells in GR LckCre  
mice had a stronger disease progression due to impaired action of endogenous GCs 
and a diminished response to GC therapy. GR LysMCre  mice were comparable to wild-
type animals in their response to GCs  [  36  ] . Thus, these data demonstrate that the 
cell type most important to execute an anti-in fl ammatory effect of GCs depends on 
the type of in fl ammation investigated. 

 The type of in fl ammatory response does not only require the GR in different cell 
types but also dictates whether the monomer GR is suf fi cient for immune suppres-
sion. To discriminate between dimerization dependent and independent action of 
the GR in vivo, mice with a functional GR mutation abrogating the dimerization of 
the receptor were generated (GR dim ). A458T substitution in the 4th exon encoding 
the 2nd zinc  fi nger disrupts the GR dimerization interface of the DBD. Interestingly, 
these mice are viable despite loosing the dimerization dependent DNA binding. 
Furthermore they preserve tethering of the monomeric GR in particular for the 
repression of AP-1 and NF- k B activity  [  37,   38  ] . As expected from the current 
dogma that anti-in fl ammatory effects of GCs rely on the monomer function of the 
GR, GR dim  mice were fully responsive to suppression of phorbol ester-induced 
in fl ammation and of AP-1-mediated Mmp13 expression in skin  [  38,   39  ] . Surprisingly, 
in contact hypersensitivity it was shown that GR dim  mice were not treatable with 
glucocorticoids revealing a potent anti-in fl ammatory action of the dimerized DNA 
bound GR in vivo  [  34  ] . Thus, the classical dogma that GR DNA binding is not 
involved in immunosuppression cannot be applied to all in fl ammatory conditions. 
This is further supported by the identi fi cation of GC-induced anti-in fl ammatory 
genes such as glucocorticoid-induced leucine zipper (GILZ)  [  40  ] , annexin A1  [  41  ] , 
or mitogen-activated protein kinase phosphatase 1 (MKP1/DUSP-1)  [  42,   43  ] . 
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Indeed, DUSP-1 knockout mice failed to respond to GCs in the zymosan-induced 
air pouche model  [  44  ] . 

 We just recently uncovered the requirement for GR dimerization in a model of 
rheumatoid arthritis (Baschant and Tuckermann, unpublished). Thus, although 
so-called dissociating SEGRMs are presumably therapeutically ef fi cative in RA 
models, we clearly show here by genetic in vivo evidence that GR dimerization is 
involved in anti-in fl ammatory activities. This can be possibly explained by recent 
 fi ndings that SEGRMs are capable to induce the GR dimer-dependent anti-
in fl ammatory acting gene  Dusp1  in some in fl ammatory cell types (Egene Jeanny 
poster-abstract on BES meeting 2010;   http://www.endocrine-abstracts.org/ea/0021/
ea0021p361.htm    ). This strongly suggests that SEGRMs are not fully dissociative 
concerning DNA dimerization versus non-dimerization in anti-in fl ammatory 
aspects, but they rather may induce differential coactivator recruitment and ful fi ll 
thereby differential effects in comparison with classical GCs. 

 Besides the identi fi cation of target cells and addressing the mechanism for the 
bene fi cial aspects of GC therapy in greater detail, only recently the critical cell 
types in bone loss as one of the major side effects have been identi fi ed. We discuss 
in the following sections recent advances concerning the mechanisms of GC-induced 
osteoporosis (GIO) and the consequences for the demands on selective ligands that 
spare the bone.  

    3   The Role of the Glucocorticoids Receptor 
in Bone Homeostasis 

    3.1   Glucocorticoid-Induced Osteoporosis 

 Bone homeostasis depends on the balance of bone formation and bone resorption. 
High levels of glucocorticoids are known to negatively in fl uence bone homeostasis 
since the early 1930s due to characterization of people with Cushing syndrome  [  45  ] . 
By the time of their clinical use the detrimental effects on bone turned out to be one 
of the most frequent side effects. Moreover approximately 25% of all clinical rele-
vant osteoporosis in particular with high fracture risk are linked to high GC expo-
sure  [  46  ] . People subjected to more than 7.5 mg prednisolone per day over 3 months 
showed an 50% increase in bone fracture risk. In these patients bone mineral density 
declines very fast with the onset of steroid therapy during the  fi rst 3–6 months  [  47  ] . 
The inhibitory effect on bone formation, osteoid thickness, mineral apposition, and 
mineralization by GCs is undisputed, whereas differences in bone resorption seems 
to be controversial  [  48  ] . Also to which extend systemic effects of GCs, e.g., on 
calcium metabolism may contribute to bone loss was until recently not shown due 
to the lack of respective mouse models. Below we discuss the effects of GCs on 
systemic physiology, osteoclasts and osteoblasts in detail and focus of recent 
advances by our laboratory and others.  

http://www.endocrine-abstracts.org/ea/0021/ea0021p361.htm
http://www.endocrine-abstracts.org/ea/0021/ea0021p361.htm
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    3.2   Systemic Effects by Glucocorticoids 

 Glucocorticoid exposure opposes vitamin D actions on serum Ca 2+  levels by a 
decrease of intestinal calcium absorption  [  49  ]  and an increase in renal Ca 2+  excre-
tion  [  50  ] . Decreased calcium levels cause hyperparathyroidism  [  51  ] . However bone 
turnover in glucocorticoid-induced osteoporosis is low  [  48  ]  in contrast to elevated 
turnover in hyperparathyroidism  [  52  ] . Systemic glucocorticoids may affect bone 
integrity by the reduction of gonadal hormones. First they blunt pituitary luteinizing 
hormone secretion  [  53  ] . Second they inhibit production of testosterone and estrogen 
in testes and ovary, respectively  [  54,   55  ] . However estrogen de fi ciency and gluco-
corticoid excess were described to be additive in rats  [  56  ]  suggesting a minor role 
for regulation of gonadal function in glucocorticoid-induced osteoporosis.  

    3.3   Effects of Glucocorticoids on Osteoclasts 

 In contrast to systemic effects direct GC actions on bone cells seem to be crucial for 
GC-induced osteoporosis (GIO). GCs have been shown to act on osteoclasts directly 
and indirectly via other cells, such as the osteoblasts. Glucocorticoids are potent 
inducers of osteoclastogenesis-promoting RANKL and suppress the osteoclast-
inhibitor OPG  [  57  ] . Suppression of OPG expression was described by interfering 
with JNK activity and transrepression of AP-1 bound to the OPG gene promoter  [  58  ] . 
The mechanism of upregulation of  Tnfsf11  mRNA, encoding for RANKL, is less 
understood. There is a potential GRE in the  Tnfsf11  promoter  [  58  ]  implicating a 
direct transcriptional control, but also evidence for a contribution of enhanced 
mRNA stability  [  59  ] . Cytokines like IL-1 a ,  b , TNF- a   [  60  ] , and IL-6  [  61  ]  are potent 
promoters of osteoclastogenesis in bone in fl ammation, but are rather suppressed by 
GCs, such as IL-6 in osteoblasts  [  62,   63  ] . 

 In the presence of RANKL in monocytic cultures GCs stimulate osteoclastogen-
esis at low concentration, but inhibit osteoclast formation at high concentration  [  64  ] . 
These data might explain the differential effects of GCs observed in vivo. 

 Indeed  fi ndings of GC effects on resorption are controversial. In one study pred-
nisolone treatment increased resorption in Balb/c mice but not in human RANKL 
knock-in mice. Furthermore osteoclast numbers were not increased signi fi cantly in 
both mouse strains  [  65  ] . Also in other studies osteoclast numbers were unaltered in 
prednisolone treated mice, but resorption even decreased around 20–30%  [  62,   66  ] . 

 Although osteoclast numbers seem not to be changed to a large fraction in rodent 
studies, GCs have been reported to increase osteoclast life span, e.g., by inhibiting 
caspase-3 activity  [  66  ] . Mice lacking glucocorticoid signaling in mature osteoclasts, 
but not progenitor cells displayed reduced osteoclast numbers upon steroid expo-
sure in contrast to wild-type mice. This  fi nding suggests that GCs enhance life span 
in mature osteoclasts, whereas osteoclastogenesis from osteoclast progenitors is 
inhibited  [  66  ] . The inhibition of osteoclastogenesis by pharmacological GC 
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concentrations was observed in cocultures of osteoblast and osteoclast precursors 
and was dependent on GR expression in both cell types  [  62  ] . This observation was 
in line with the observed decrease of resorption  in vivo  reported by Teitelbaum and 
colleagues and by our group  [  62,   67  ] . Indeed the reduced resorption could depend 
in part by the GR in osteoblasts, since we found a less severe reduction of resorptive 
activity in prednisolone treated mice lacking the GR in osteoblasts  [  62  ] . 

 Kim et al. explained the cell-autonomouse effects of GCs on osteoclastogenesis 
by prevention of M-CSF-induced activation of Ras homolog gene family GTPases, 
in particular RhoA, Rac, and Vav3, which consequently disrupts actin ring forma-
tion. Reorganization of cytoskeleton is crucial for formation of so-called ruf fl ed 
boarders and consequently resorptive activity  [  67  ] . Thus, the osteoclasts may lose 
their potential to degrade bone. Interestingly reduced osteoclast activity by predni-
solone depends on the monomeric GR in osteoblasts and osteoclasts  [  62  ] . 

 Finally there was a role of the GR in osteoclast suggested to in fl uence bone 
formation  [  67  ]   . Despite there is no doubt that osteoclast communicate to osteoblasts 
in bone remodeling this could not be supported by the analysis of mice with inacti-
vated GC signaling in osteoclasts  [  66  ]  and in our study using mice lacking the GR 
in myeloid cells and thus osteoprogenitors  [  62  ] . 

 Although as we will discuss below the inhibition of bone formation is the major 
mechanism of GIO it should be noted that a full suppression of osteoclastogenesis 
by the monoclonal antibody Desonosumab inhibiting human RANKL in hRANKL 
knock-in mice ameliorates bone loss  [  65  ] .  

    3.4   Effects of Glucocorticoids on Osteoblasts and Osteocytes 

 A hallmark of GC-induced bone loss is the inhibition of bone formation and thus a 
suppression of osteoblast function accompanied with a loss of osteoblast and osteo-
cyte number  [  51  ] . Using conditional knockout mice (GR Runx2Cre  mice) we recently 
demonstrated that the GR in osteoblasts is not only required to mediate suppression 
of bone formation, but is also instrumental for GC-induced bone loss  [  62  ] . 

 The reduced osteoblast activity and numbers are attributed to inhibition of 
proliferation, induction of apoptosis, and suppression of differentiation. 

    3.4.1   Proliferation 

 Most evidence of GC effects on osteoblast proliferation derives from tissue culture 
experiments involving primary calvarial cells and immortalized and/or transformed 
cell lines. For MC3T3-E1 cells there was a postcon fl uent antiproliferative effect by 
GCs postulated as a prerequisite for reduced differentiation  [  68  ] . The inhibition of 
proliferation was explained by antagonizing the Wnt pathway, e.g., activating with 
GSK-3 b  kinase  [  69  ] , suppressing PKB/Akt  [  70  ] , inactivating TCF/LEF or induc-
ing the wnt antagonist DKK-1  [  71,   72  ] . Recently, it was shown that GC-induced 



38 A. Rauch et al.

MAPK phosphatase 1/dual-speci fi c phosphatase (DUSP1) is functionally involved 
in the reduction of mitogenic signaling and thus participates in anti-proliferative 
effects of GCs  [  73  ] . This is in line with our results that GR dim  osteoblasts with a GR 
impaired in dimerization are unable to induce DUSP-1 (Rauch and Tuckermann 
unpublished) and indeed failed to exhibit a reduction of osteoblast proliferation. 
Nevertheless GR dim  mice have impaired bone formation upon GC exposure, indi-
cating that effects of GCs on proliferation are only to a minor part involved in 
GC-induced bone loss  [  62  ] .  

    3.4.2   Apoptosis 

 Apoptosis of osteocytes and osteoblasts is a well-described feature in GC exposed 
rodents and humans  [  74  ] . 

 Interestingly dexamethasone increases caspase-3 activity and induce conse-
quently apoptosis in osteoblasts  [  75  ]  which is opposite to the reduction of caspase-3 
observed in osteoclasts  [  66  ] . 

 Surprisingly the mechanical activation of osteocytes leads to prevention of 
apoptosis  [  76  ] . Mechanical forces signal via focal adhesion kinas (FAK), SRC 
and  fi nally activation of ERK  [  77  ] . This outside-in survival signaling is compro-
mised by the GC-mediated activation of the proapoptotic proline-rich tyrosine 
kinase 2 (PYK2) via phosphorylation at Tyr 402   [  78  ] . Activated PYK2 triggers reor-
ganization of the cytoskeleton, cell detachment by disruption of integrin matrix 
engagement and  fi nally apoptosis  [  79  ] . It is hypothesized that this occurs via 
mechanisms independent of GR-mediated gene regulation  [  78  ] . From our studies 
we could show that induction of apoptosis in primary osteoblastic cells depen-
dents on GR expression but not binding to DNA in vitro  [  62  ] . It remains to be 
clari fi ed whether direct interaction between the GR and PYK2 at the cell mem-
brane occurs in order to induce apoptosis or whether nuclear effects such as inhi-
bition of transcription are involved. 

 Nonetheless GCs could cause apoptosis also by elevation of the potent pro-apop-
totic protein BAX, that was recently found to be upregulated by dexamethasone in 
a proteomic study using MC3T3-E1 cells  [  80  ] . 

 Of note it has to be stressed that the observation of apoptosis of osteoblasts by 
dexamethasone affected only a minor fraction of all osteoblasts in vitro (approx. 
10%)  [  78  ] . The minor role of apoptosis in bone loss is supported by a study from 
O’Brien and colleagues  [  81  ] . Here they used mice overexpressing 11 b -HSD2 
under the osteocalcin promoter, inactivating GC signaling in terminally differen-
tiated osteoblasts and presumably osteocytes. These mice displayed a reduced 
apoptotic rate under prednisolone treatment  [  81  ] . Nonetheless there was still an 
overall bone loss observed, indicating that apoptosis is not suf fi cient to cause 
bone loss. This was corroborated by the fact that in other mouse strains subjected 
to GIO an increase of osteoblast/osteocyte apoptosis was hardly to be observed 
under prednisolone treatment at different time points  [  62  ] .  
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    3.4.3   Differentiation 

 Whereas induction of apoptosis take place to a minor degree, inhibition of 
 differentiation in terms of alkaline phosphatase activity and mineralization occurs 
around 70–90% in primary osteoblasts at high concentration of GCs. This effect of 
GCs is biphasic. Low and physiological concentrations of GCs promote differentia-
tion of pre-osteoblasts in numerous tissue culture systems  [  82,   83  ]  and may depend 
on a speci fi c time window of GC exposure  [  84  ] . These so-called anabolic effects of 
endogenous GCs can be observed in vivo for bone mass. Mice lacking the GR in 
osteoblasts  [  62  ]  as well as osteoblast-speci fi c overexpression of 11 b -HSD2 thereby 
disrupting glucocorticoid signaling  [  85  ]  display a reduced bone mineral density, 
albeit with no abnormalities in bone growth and architecture  [  62,   86  ] . Indeed osteo-
blasts lacking the GR display a reduced differentiation potential when grown in 
normal tissue culture medium with vitamin C and  b -glycerolphosphate ad differen-
tiation conditions  [  62  ] . As GR dim  mice, carrying a dimerization de fi cient GR, have 
no obvious bone phenotype and a unaltered osteoblast differentiation, anabolic GC 
actions on bone are independent of dimerized induced DNA binding  [  62  ] . 

 Nonetheless it has been generally accepted that the treatment of osteoblastic cells 
with high-dose glucocorticoids leads to a suppression of osteoblast differentiation, 
which could be monitored by the reduced expression of Runx2  [  87  ] , the master 
osteoblast transcription factor  [  88  ] , and of other marker genes of differentiation. 
Following reduced differentiation osteoblast function in terms of collagen produc-
tion declines. Transcription of  a 1-(I)-procollagen was shown to be effected by 
 glucocorticoid treatment  [  89  ] . Accordingly we could show that the suppression of 
 Col1a1  mRNA in vivo as well in vitro depends on the expression of the GR in osteo-
blasts  [  62  ]  since mice lacking the GR in osteoblasts had no reduction of  Col1a1  
expression upon glucocorticoid exposure. For this reduction the GR monomer was 
suf fi cient suggesting that tethering mechanisms of the GR with transcriptional acti-
vators of the Col1a1 gene are involved. It is tempting to speculate that the mono-
meric GR interferes with TGF b -triggered smad signaling to reduce collagen 
I expression  [  90  ] , but remains to be proven. Furthermore GR Runx2Cre  mice but not 
GR dim  mice are resistant to glucocorticoid-induced suppression of bone formation. 
Consequently bone mass was not affected after 2 weeks of prednisolone treatment in 
GR Runx2Cre  mice. From these  fi ndings together with the observation of a strong sup-
pression of primary osteoblast differentiation around 70–90% in vitro we conclude 
that inhibition of differentiation is a major mechanism of GIO. 

 The underlying mechanisms of suppression of osteoblast differentiation by GCs 
are not completely understood. A number of evidence was reported from the Smith 
and Frenkel lab although they performed their experiments almost exclusively in the 
MC3T3-E1 cell line. Their data suggest that glucocorticoids suppress differentiation 
by interference with BMP/TGF b  signaling. In particular BMP-2 seems to be a 
promising target for interference with suppression of differentiation.  Bmp2  expres-
sion declines by GC treatment  [  91  ]  and its exogenous administration rescues miner-
alization of glucocorticoid treated cells but not collagen deposition in MC3T3-E1 
cells  [  92  ] . Expression pro fi ling of glucocorticoid-treated MC3T3-E1 cells identi fi ed 
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early growth response 2 (EGR2/Krox20), a zinc  fi nger transcription factor as a 
glucocorticoid suppressed target gene and a potential mediator of suppression  [  93  ] . 
EGR2/Krox20 is involved in chondrocyte–osteoblast interactions and its ablation 
severely attenuates bone formation  [  94  ] . Intriguingly Krox20 is a transcriptional 
activator of follistatin  [  95  ] , an extracellular inhibitor of bone morphogenic proteins 
(BMPs)  [  96  ] . Due to GC prompted downregulation of EGR2 follistatin expression 
increases and thereby potentially inhibits BMP signaling. Thus, by interfering BMP 
signaling on several levels GCs can suppress osteoblast differentiation. 

 Other studies suggest that glucocorticoids might reduce osteoblast differentiation 
by regulation of insulin like growth factor-1 (IGF-1) action. IGF-1 increases osteo-
blast lineage expansion, collagen synthesis, and matrix apposition  [  97,   98  ] . GCs can 
directly suppress  Igf1  transcription by upregulation of CAAT/enhancer binding pro-
teins, in particular C/EBP b  and C/EBP d  that are transcriptional inducers of the  Igf1  
gene  [  99  ] . Furthermore IGF-1 activity can be in fl uenced by the regulation of the IGF 
activating IGF binding protein 5 (IGFBP-5) that is diminished upon GC treatment of 
primary osteoblasts  [  100  ] . However, the decreased bone formation in IGFBP-5 over-
expressing mice  [  101  ]  questions whether this is a major mechanism. 

 The induction of C/EBPs as regulators of adipogenic differentiation by GCs is in 
conformity with the idea that inhibition of osteoblastogenesis leads to a shift towards 
adipogenesis of mesenchymal progenitor cells  [  102  ] . In line with this idea congenic 
mice with allelic suppression of skeletal and hepatic  Igf1  had low bone mass with 
fatty in fi ltration of the bone marrow but no signs of obesity  [  103  ] . Furthermore 
magnetic resonance imaging in humans revealed that the drop in bone mass of 
osteoporotic men correlates with increased bone marrow adiposity  [  104  ] . 
Importantly, we could recently show GR binding to DNA is instrumental for promo-
tion of adipogenesis, in particular by transcriptional activation of KLF-15  [  105  ] . In 
the light that adipogenesis by GCs requires GR dimerization  [  105  ] , which is dis-
pensable for suppression of osteoblast differentiation  [  62  ] , our  fi ndings suggest that 
adipogenic differentiation by GCs can be uncoupled from suppression of osteoblast 
differentiation. This also argues against a transdifferentiation of committed osteo-
blasts towards adipocytes by GCs. Whether the increased bone marrow adiposity in 
osteoporotic bones originates from switching lineage of osteoblast arrested cells by 
mechanisms independent of suppression of differentiation or in fi ltration of mesen-
chymal progenitor cells is still elusive and requires lineage tracing studies. 

 Using osteoblasts from GR dim  mice that are still capable to undergo GC suppres-
sion of osteoblast differentiation we were able to dissect a GR monomer-dependent 
osteoblast gene expression program (Rauch, unpublished). From this analysis we 
identi fi ed genes encoding members of the IL-6 family like  Il6 ,  Lif , and  Il11  being 
suppressed in a GR dimer-independent manner. Interestingly, exogenous supple-
mentation of Il11 in GC-treated cultures reversed GC suppression of differentiation. 
Collagen 1a1 expression, alkaline phosphatase activity and mineralization were at 
normal levels despite the presence of GCs  [  62  ] . We further demonstrated that c-Jun-
dependent  Il11  transcriptional upregulation is targeted by the GR, whereas NF- k B 
interactions were dispensable  [  62  ] . IL-11 act in an autocrine manner via the IL11 
receptor and the common receptor gp130 which leads to STAT3 phosphorylation, 
that is reduced in the presence of Dex  [  63  ] . 
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 Likewise IL-11 itself is a potent inducer of osteoblastogenesis  [  63  ]  and prevents 
adipogenesis in culture  [  106  ] . The importance of IL-11 in osteoblast function is 
underscored by the analysis of mice expressing a human  IL11  transgene  [  106  ]  and 
mice with activated STAT3 signaling by a  Gp130  F759/F759  knock in  [  107  ]  that both 
display increased bone formation. Complementary, targeted deletion of the Il-11 
receptor results in decreased osteoblast numbers and bone formation in vivo  [  108  ]  
similar as in mice with osteoblast-speci fi c ablation of  Stat3   [  107  ] . 

 Thus, interference with IL-11, an active player in bone formation, is one of the 
mechanisms how GC suppress bone formation.    

    4   Novel Criteria for Selective GR Modulators 
for Therapeutic Ef fi cacy and Avoidance of Osteoporosis 

 Our approach to dissect the molecular mechanisms of GC action on bone in vivo by 
the analysis of conditional and function selective GR mutant mice can be summarized 
as followed (Fig.  1 ). In GC-induced bone loss the GR in osteoblasts reduces osteo-
blast activity and numbers mainly by suppression of differentiation. The decreased 
differentiation of osteoblasts engages the monomer GR without interfering with 
NF- k B, but interacting with AP-1 bound at promoters, e.g., the  Il11  gene. Suppression 
of IL-11 release leads to impaired Jak-Stat signaling via gp130/IL11receptors and 
reduced active phospho-STAT3, important for osteoblast differentiation.  

 The requirement of the GR monomer for this side effect of GC action might be 
on the  fi rst glance disappointing, since selective ligands had been designed that 
should maintain the monomeric function, but omit dimerized induced binding of 
DNA by the GR. Due to our results those compounds would still harm the bone. 
However, our  fi nding that NF- k B is not involved in suppression of osteoblast 
 differentiation would allow a new pro fi le required for a dissociating GR ligand. 
A dissociating ligand that should preserve the bone should not induce GR dimeriza-
tion, in order to avoid anti-proliferation of osteoblasts, and not induce GR interac-
tion with AP-1 to spare suppression of osteoblast differentiation. However this 
compound should still be able to reduce NF- k B-controlled cytokine expression. 

 Our analysis of the activity of the GR ligand Compound A (CpdA) on bone cells 
demonstrates that these criteria can be met  [  63  ] . 

 CpdA displays potent anti-in fl ammatory actions in collagen-induced  arthritis  [  29  ] . 
CpdA is in addition capable to suppress pro-in fl ammatory cytokines, such as 
CXCL10 and IL-6, and does not in fl uence RANKL/OPG ratio in osteoblastic cell 
lines and primary cells  [  63,   109  ] . Most importantly expression of  Il11  and subse-
quently osteoblast differentiation are unaffected by CpdA in contrast to classical 
GCs. Finally mice receiving compound A at the immunosuppressive dose of colla-
gen-induced arthritis have strikingly higher serum osteocalcin levels compared to 
dexamethasone-treated animals  [  63  ] . Unpublished results from De Bosscher and 
colleagues indeed demonstrate that CpdA does not favor an AP-1/GR interaction in 
mesenchymal cells in contrast to in fl ammatory cells. Future work will explain this 
cell type-speci fi c differential activity of this dissociating ligand. 
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 Although CpdA has a narrow therapeutic window we demonstrate here that such 
substances with optimized pharmacology could be of help in future to suppress 
in fl ammatory bone diseases and maintain bone integrity.      
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          1   Introduction 

 Skeletal modeling during development and remodeling during adult life depends 
on coupling osteoblast differentiation to extracellular cues. The transcription 
factor Runx2 is the master regulator of osteoblast differentiation and function, 
and therefore its activity must be tied to these extracellular cues  [  1,   2  ] . However, 
relatively little is understood about what signal transduction pathways might 
accomplish this. 

 Prior genetic evidence indicates that the mitogen-activated protein kinases 
(MAPKs), in particular ERK MAPK, might serve this function by regulating 
Runx2  [  3  ] . Some of the MAPKs were  fi rst identi fi ed as mediators of in fl ammatory 
responses, especially signaling by toll-like receptors  [  4–  6  ] . We were interested in 
the possibility that a wide range of molecules identi fi ed as in fl ammatory mediators 
might also function to regulate osteoblast differentiation. In particular, we focused 
on TAK1 (MAP3K7), an MAP3K remarkable in that it is poised at the con fl uence 
of both numerous upstream pathways such as antigen receptors, TLR, IL1, and 
TNF signaling and numerous downstream pathways such as NF-kB, p38, and JNK 
MAPKs  [  7–  11  ] .  
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    2   TAK1 Deletion in Osteoblasts in In Vivo Results    
in Mice with Features of Cleidocranial Dysplasia 

 To evaluate the function of TAK1 in osteoblasts, mice with a conditional deletion of 
a  Tak1   fl oxed allele driven by the osterix promoter were bred ( Tak1   osx  ). The resulting 
 Tak1   osx   strain displays profound osteopenia and stigmata associated with the human 
skeletal disorder cleidocranial dysplasia, calvarial hypomineralization, and clavicu-
lar hypoplasia  [  12  ] . Since human and mouse versions of cleidocranial dysplasia are 
both caused by haploinsuf fi ciency of Runx2, TAK1 might be involved in the regula-
tion of Runx2  [  1,   13  ] . Examination of Runx2 levels revealed no detectable altera-
tions in Runx2 transcript levels in the bones of  Tak1   osx   mice or in Runx2 protein 
levels in TAK1-de fi cient calvarial osteoblasts, suggesting that TAK1 is instead 
involved in the posttranslational regulation of Runx2 activity. 

 When examined in vitro, TAK1-de fi cient osteoblasts displayed defects in both 
early and late stages osteoblast differentiation. Defects in early differentiation were 
apparent though decreased alkaline phosphatase (ALP) and osterix (Osx) levels. 
Both ALP and Osx are known Runx2 target genes  [  14  ] . Additionally, later stage 
markers such as osteocalcin and collagen 1 were also reduced. These reductions 
could also be con fi rmed in vivo using in situ hybridization and real-time PCR. 
Runx2 activity was directly probed using the OG2 luciferase reporter and found to 
be reduced in TAK1-de fi cient osteoblasts. Enforced expression of Runx2 in WT 
osteoblasts, but not in TAK1 de fi cient osteoblasts, greatly potentiates osteoblast dif-
ferentiation, demonstrating that TAK1 is required for Runx2 activity via a posttrans-
lational mechanism. 

 In order to identify the pathway downstream of TAK1 that might regulate Runx2, 
we examined JNK, ERK, and p38 signaling in TAK1-de fi cient osteoblasts. 
Activation of the p38 pathway was de fi cient in response to BMP2/7 stimulation 
both in vivo via immunohistochemistry and in vitro in cultured osteoblasts. In con-
trast, activation of JNK ERK was preserved under the conditions examined. Given 
that TAK1 has been closely associated with activation of JNK in other contexts, this 
suggests that signaling molecules best understood as in fl ammatory mediators are 
likely to have very different the roles and “wiring” to upstream and downstream 
pathways when studied in osteoblasts  [  10,   15  ] . Thus, assumptions regarding the 
basic connectivity of MAPK pathways will have to be revisited in the context of 
bone biology.  

    3   The p38 MAPK Pathway Regulates Early Osteoblast 
Differentiation in In Vivo and In Vitro 

 The  fi ndings that TAK1 is a critical regulator of both osteoblast differentiation and 
p38 MAPK activation suggest that the p38 MAPK pathway in turn plays a critical 
role in osteoblasts. To evaluate this, mice lacking either of the two MAP2Ks 
connecting TAK1 and p38, MKK3 and MKK6, were examined. Both MKK3- and 
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MKK6-de fi cient mice were osteopenic at 3–4 weeks of age, and  Mkk3  −/−  Mkk6  +/−  
mice displayed a more profound phenotype than mice lacking either MAP2K alone. 
Double knockout mice could not be examined due to embryonic lethality  [  16  ] . 

 In contrast to the overlapping roles of MKK3 and MKK6 in the regulation of 
overall bone mass, only  Mkk3  −/−  mice displayed a reduction in calvarial mineraliza-
tion, with no effect seen in  Mkk6  −/−  mice, and no additional contribution was seen in 
 Mkk3  −/−  Mkk6  +/−  mice. Whereas it is well appreciated that the functions of MAP3Ks 
vary from tissue to tissue and from stimulus to stimulus, MAP2Ks tend to behave in 
a more stereotyped fashion. These  fi ndings shed new light on tissue speci fi city at the 
MAP2K level, suggesting that the function of MAP2Ks is also highly context 
speci fi c. This argues that a systematic and parallel analysis of MKK3 and MKK6 
functions in systems where p38 is known to function will likely demonstrate a mix-
ture of overlapping and unique roles that are tissue and stimulus speci fi c. 

 p38 MAPK has 4 isoforms, labeled p38 a ,  b ,  g , and  d   [  17  ] . During in vitro stud-
ies, we found that the p38 inhibitor SB203580, which targets p38  a  and  b , is a 
potent inhibitor of early osteoblast differentiation as monitored by acquisition of 
alkaline phosphatase activity  [  18  ] . Thus, we focused on determining the role of 
p38 a  and  b  in vivo, though we cannot exclude an additional contribution from p38 
 g  and  d . The contribution of p38 a  to bone mineralization was assessed in vivo by 
injecting neonatal homozygous  fl oxed allele mice with a concentrated cre recombi-
nase-encoding lentivirus over the calvarium. One week later, mice were examined 
by microCT, and deletion of p38 a  was found to signi fi cantly retard progression of 
the mineralization fronts along the calvarial sutures. Thus, p38 a  is a physiologic 
regulator of skeletal mineralization. 

 p38 b -de fi cient mice have been examined in detail and have not been appreciated 
to have a detectable phenotype  [  19  ] . In particular, T cell receptor, toll-like receptor, 
and IGF signaling have been examined and found to be normal. However, when the 
bones of 4-week-old p38 b  mice were scanned by  m CT, they were found to be 
osteopenic. Interestingly, whereas p38 a  clearly contributes to calviarial mineraliza-
tion, p38 b  knockout mice show only very subtle alterations in calvarial mineraliza-
tion. Thus, p38 b  is not simply redundant with p38 a  and appears to play a unique 
role in bone metabolism in vivo. 

 Despite the fact that both p38 a  and p38 b  contribute to skeletal mineralization 
in vivo, the phenotype of p38 a - and p38 b -de fi cient osteoblasts in vitro are quite 
distinct. Whereas p38 a -de fi cient osteoblasts display defects in both markers of 
early and late osteoblast differentiation, p38 b -de fi cient osteoblasts only display 
defects in the later stages of osteoblast differentiation. In particular, only p38 a -
de fi cient osteoblasts display reduced ALP levels. This distinction was not simply 
due to redundancy or overlap in the roles of p38 a  and p38 b , as knockdown of p38 a  
in both WT and p38 b  −/−  osteoblasts produced a similar decrease in ALP levels, with 
no additional contribution from the absence of p38 b . 

 Examination of the kinetics of MKK3 and MKK6 expression explains the differ-
ence in function between p38 a  and p38 b  and also ties our observations regarding 
the MAP2Ks and MAPKs in the p38 pathway together. Previous biochemical studies 
have identi fi ed that whereas MKK6 can phosphorylate and activate both p38 a  and 
p38 b , MKK3 can only activate p38 a   [  18  ] . Given that no evidence existed for 
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a physiological role for p38 b , no rationale could be offered for the evolution of this 
speci fi city in MKK3 action. Whereas we found that MKK3 is expressed at steady 
levels throughout early to late osteoblast differentiation, MKK6 is upregulated starting 
after 10 days in culture. This results in the activation of p38 a  throughout osteoblast 
differentiation, whereas p38 b  is activated only during later stages. Moreover, this 
reliance of p38 b  on MKK6 for activation is consistent with their similar phenotypes 
in vivo, in that both contribute to long bone but not calvarial mineralization. 

 Thus, every component of the p38 MAPK pathway examined plays a role in 
skeletal mineralization in vivo, with the observation of osteopenia in p38 b -de fi cient 
mice being the  fi rst recorded function for p38 b  in vivo.  

    4   Activation of the TAK1/p38 MAPK Axis Results 
in Runx2 Phosphorylation 

 The phenotype of  Tak1  osx  mice implicates TAK1 in the regulation of Runx2 activity. 
In order to identify how this occurs, the ability of p38 isoforms to interact with 
Runx2 was examined. All four p38 isoforms were able to bind Runx2 in a co-
expression IP. Additionally, a robust interaction between endogenous p38 and 
Runx2 could be detected using an antibody that recognizes all four p38 isoforms. In 
contrast, we could not detect any direct interaction between TAK1 and Runx2. 

 The p38-mediated phosphorylation sites in Runx2 were mapped by co-express-
ing constitutively active MKK6, p38 a , and Myc-tagged Runx2 in an HEK293 cell 
system. Three inducible Runx2 phosphorylation sites were identi fi ed by phospho 
mass spectrometry, corresponding to serines 17, 261, and 298. 

 To test this observation and examine if TAK1 or the p38 pathway were physio-
logical regulators of Runx2 phosphorylation in osteoblasts, overall Runx2 phospho-
rylation levels in osteoblasts de fi cient for either TAK1 or p38 a  was measured using 
radioactive orthophosphate labeling. Absence of TAK1 caused an approximately 
50% reduction in overall Runx2 phosphorylation levels. Consistent with both p38 a  
and p38 b  playing a role downstream of TAK1, absence of p38 a  caused a more mod-
est ~25% reduction in overall Runx2 phosphorylation levels. The partial rather than 
complete reduction in Runx2 phosphorylation likely re fl ects the action of kinases 
outside the TAK1/p38 MAPK pathway and is consistent with the constitutive phos-
phorylation sites noted in the mass spectrometry study.  

    5   Phosphorylation of Runx2 by p38 Activates Runx2 by 
Promoting Association with the Cofactor CBP 

 To determine how alterations in p38 activation might impact Runx2, the functional 
relationship between p38, Runx2 activity, and osteoblast differentiation was 
explored. As previously published, treatment of osteoblasts with the p38 inhibitor 
SB203580 blocks their differentiation. Additionally, enforcing activation of the p38 
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pathway by expressing a constitutively active MKK6 mutant (Mkk6-glu) augmented 
osteoblast differentiation as measured by ALP acquisition and extracellular matrix 
mineralization. Moreover, expression of Mkk6-glu was able to rescue the defect in 
the differentiation of TAK1-de fi cient osteoblasts, providing functional evidence 
that the p38 MAPK pathway is a key downstream mediator of the TAK1 phenotype. 
Expression of Mkk6-glu also increased the activity of the Runx2-responsive OSE2 
luciferase reporter, and treatment with the p38 inhibitor SB203580-reduced OSE2 
activity. Thus, modulation of p38 activity levels produces a corresponding modula-
tion of Runx2 transcriptional activity. 

 To link this back to the three phosphorylation sites identi fi ed above, a Runx2 
mutant was constructed with these three sites mutated to alanine (Runx2-3SA). 
Mutation of all three sites blunted the induction of Runx2 activity achieved by coex-
pression of Mkk6-glu. Comparison of Runx2-3SA to Runx2 mutants with only 1 or 
2 of the 3 sites mutated to alanine showed a gradual loss of activity corresponding 
to the total number of sites mutated, with no single site showing a dominant effect. 
This makes it unlikely that phosphorylation of Runx2 by p38 is highly processive. 
To tie this observation back to osteoblast differentiation, WT Runx2 was expressed 
in osteoblasts and found to potentiate differentiation. However, this activity was 
ablated in the Runx2-3SA mutant. Thus, the three Runx2 phosphorylation sites 
identi fi ed are crucial to the overall function of Runx2. 

 We postulated that these phosphorylation events might alter Runx2 activity by 
modulating cofactor association. Indeed, expression of Mkk6-glu alongside Myc-
Runx2 promoted association with the cofactor CBP as determined by co-immuno-
precipitation. This ability of Mkk6-glu to promote CBP association was ablated in 
the Runx2-3SA mutant. Endogenous levels of CBP/Runx2 association were exam-
ined in TAK1-de fi cient osteoblasts using co-immunoprecipitation and found to be 
reduced. Thus, activation of TAK1/p38 results in increased recruitment of CBP by 
Runx2 and increased osteoblast differentiation.  

    6   Conclusions and Summary 

 Based on the sum of these studies, we propose a model whereby TAK1 functions 
upstream of MKK3/6 and p38 a / b  to regulate Runx2 activity and osteoblast differ-
entiation (Fig.  1 ). Given the level of context and signal speci fi city that characterize 
MAP3K function, it is highly likely that other MAP3Ks will also contribute to 
osteoblast differentiation, and under conditions different than those tested here, 
these may also function upstream of p38 MAPK. Given that the p38-induced Runx2 
phosphorylation sites we identi fi ed partially overlap with the ERK phosphorylation 
sites, it is likely that p38 and ERK MAPK play overall similar roles in osteoblasts 
 [  20  ] . This is especially true given that both contribute speci fi cally to the early stages 
of osteoblast differentiation in vitro. If so, it will be of particular interest to identify 
the MAP3K responsible for ERK activation in osteoblasts, as this will allow for an 
examination of if and how the p38 and ERK pathways are coordinately regulated to 
achieve roughly similar functional outcomes in osteoblast differentiation.  
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 It is of special note that p38 b  appears to function in the regulation of bone mass 
and osteoblast differentiation, despite having no appreciable contribution to other 
pathways such as TLR signaling where overall p38 activity is known to be crucial. 
Currently, it is unclear if this difference re fl ects factors intrinsic to p38 b  activity or 
extrinsic factors regulating p38 b  activity or substrate association. A better under-
standing of the biochemistry regulating both p38 b  and overall p38 activity will be 
essential to understand how our observations can be leveraged for the development 
of therapeutics to modulate osteoblast activity. One possibility is that p38 inhibitors 
might be useful for treatment of osteoblastic bone metastases or in the treatment of 
nerve entrapment caused by bony overgrowth. Conversely, p38 agonists might pro-
mote increased bone mass, though more needs to be understood regarding the sys-
temic effects of increased p38 activity before implementing such an approach. 

 Lastly, it is of interest that the Runx2 phosphorylation sites identi fi ed are 
conserved and present in Runx1 and Runx3. This suggests the possibility that p38 
might regulate the whole family of Runx transcription factors. Moreover, this role 
may extend beyond bone to other tissues. Runx transcription factors have been 
implicated in the pathogenesis of acute myelogenous leukemia, and perhaps p38 
inhibitors may have clinical utility in that setting  [  21,   22  ] . Additionally, the function 
of Runx transcription factors have been linked to the induction of the Foxp3 tran-
scription factor and the differentiation of regulatory T cells  [  23,   24  ] . Given that 
TAK1 is likely to play a similar role in activating p38 downstream of the regulatory 
T cell differentiation factor TGF b , it is possible that the TAK1/p38/Runx pathway 

TAK1 TAK1

Early osteoblast differentiation Late osteoblast differentiation

MKK3 MKK3 MKK6

p38βp38αp38α

Runx2 Runx2

  Fig. 1    A schematic depicting the Tak1/MAP2K/p38/Runx2 axis in early and later stages of osteo-
blast differentiation       
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we have described in osteoblasts might also contribute to the decision of a T cell to 
commit to the Th17 versus the T regulatory lineages. Thus, we are just beginning to 
understand how MAPKs contribute overall to regulation of Runx transcription 
factors, and there are many avenues to extend how the TAK1/p38/Runx axis con-
tributes to both bone biology and the biology of other systems.      
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          1   PTH Background 

 The bone marrow microenvironment is a rich locale for a wide variety of cells, 
growth factors, hormones, and minerals. Parathyroid hormone (PTH) is an endo-
crine mediator that circulates from the parathyroid gland to the bone marrow where 
it interacts with its classic target receptor on osteoblasts. The actions of PTH in bone 
have focused mainly on its role in stimulating osteoclastogenesis via indirectly tar-
geting cells of the osteoclast lineage as well as its role in stimulating bone formation 
via increasing osteoblast numbers. Less well characterized but a critical component 
of PTH actions is its role in modulating other cells of the hematopoietic lineage in 
the bone marrow microenvironment. Through historic and recent  fi ndings of PTH 
action in a variety of hematopoietic lineage cells, PTH is emerging as a prominent 
and active member of the “osteoimmunology team.” 

 PTH binds to a seven transmembrane domain G-protein-linked receptor on the 
surface of osteoblasts and kidney cells. This receptor is designated the PTH/PTHrP 
receptor, also termed the PTH-1 receptor or PPR. The  PTH1R  gene is located on 
human chromosome 3 and murine chromosome 9. Other cells in the bone marrow 
microenvironment that have been reported to have receptors for PTH include 
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osteoclasts (although most sources argue against biologically active receptors) and 
lymphocytes  [  1–  3  ] . PTH and PTHrP signal through the PPR to evoke second mes-
sengers including protein kinase A (PKA), protein kinase C (PKC) and to a lesser 
extent, the MAPK pathway  [  4–  6  ] . These second messenger pathways lead to a wide 
variety of gene transcription events followed by the production of many different 
proteins identi fi ed especially in cells of the osteoblast lineage. Many of these pro-
teins have noted roles as cytokines impacting cells of the hematopoietic lineage.  

    2   PTH Mediates Cytokines that Impact Hematopoietic Cells 

 Osteoblasts are the source of a wide variety of cytokines that mediate hematopoietic 
cell development and function and PTH drives the production of many of these 
hematotropic factors. The most extensively characterized of these is RANKL. PTH 
increases RANKL synthesis in osteoblasts as well as reducing osteoprotegerin 
(OPG)  [  7  ] . The PTH mediation of RANKL and OPG occur via the cAMP/PKA 
pathway  [  8  ]  and leads to regulation of osteoclast differentiation. PTH also supports 
osteoclastogenesis by stimulating osteoblast production of GM-CSF, M-CSF, and 
interleukin-6 (IL-6)  [  9–  11  ] . IL-6 has been extensively characterized as a highly PTH-
upregulated cytokine in osteoblasts  [  6,   11–  13  ] . Inhibition of osteoclastogenesis is 
also found via PTH-mediated increases in leukemia inhibitory factor (LIF)  [  14,   15  ] . 
Osteoblasts synthesize cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in 
response to PTH which could have effects on a variety of cells in the bone marrow 
microenvironment  [  16,   17  ] . Furthermore, monocyte chemotactic protein (MCP-1) 
also known as CCL2 is a prominent osteoblast-derived cytokine produced in response 
to PTH and important in monocyte chemotaxis, osteoclastogenesis, and angiogenesis 
in bone  [  18  ] . Stem cell factor (SCF; kit ligand) was found more than 10 years ago to 
be upregulated in osteoblasts in response to PTH  [  19  ] . SCF/Kit ligand is the receptor 
for c-kit and has been suggested to be responsible, in the context of increased marrow 
mast cells, for the osteitis  fi brosis associated with hyperparathyroidism. However, 
serum levels were not found to be elevated in human patients with primary hyper-
parathyroidism  [  20,   21  ]  so the physiologic signi fi cance of this cytokine relative to 
PTH is unclear. Vascular cell adhesion molecule-1 (VCAM-1) is well known as an 
adhesion factor for lymphocytes, monocytes, eosinophils, and basophils to vascular 
endothelium  [  22  ] . VCAM-1 is also responsible for hematopoietic stem cell localiza-
tion and traf fi cking. PTH and PTHrP upregulate VCAM-1 expression in a JunB-
dependent manner in osteoblasts  [  23  ] .  

    3   Effect of PTH on Osteoclasts 

 It has long been known that PTH stimulates bone resorption by mediating the 
differentiation of osteoclasts. Although there are reports of PTH receptors on 
osteoclasts, most evidence suggests against a direct effect of PTH to stimulate 
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osteoclastogenesis  [  24,   25  ] . Instead, PTH upregulates RANKL expression in 
osteoblasts and decreases OPG expression resulting in multiple levels of osteoclas-
togenesis promotion. That PTH is catabolic for bone has been widely reported and 
notably, a cardinal sign of the human condition of primary hyperparathyroidism is 
loss of cortical bone. More controversial is the dependence of PTH on osteoclasts 
for anabolic actions in bone. 

 One of the  fi rst studies to suggest that PTH relied on osteoclasts for anabolic 
actions in bone was a description of the lack of a bone forming impact of PTH in 
c- fos  mutant mice  [  26  ] . The proto-oncogene c-Fos is essential for osteoclastogene-
sis and hence mice with deletion of c- fos  are osteopetrotic. Their anabolic response 
to intermittent PTH 1–34 was completely abolished despite typical PTH-mediated 
gene expression in osteoblasts  [  27  ] . Human clinical data corroborated these  fi ndings 
when reports of blunted anabolic responses to PTH were found in patients coadmin-
istered bisphosphonates with teriparatide  [  28  ] . Animal studies have both supported 
and refuted the  fi ndings of anti-resorptives blunting PTH anabolic actions  [  29–  31  ] . 
More recent work suggests a mechanism that involves PTH-mediated resorptive 
activity resulting in release of TGF b  from the bone matrix that in turn supports 
mesenchymal stem cell recruitment and bone formation  [  32  ] . This is an area worthy 
of further clari fi cation as it will likely reveal fundamental processes of musculosk-
eletal homeostasis and repair. 

    4   Effect of PTH on Immune Cells      

 Interactions between PTH and immune cells were  fi rst suggested in the context 
of patients with chronic renal failure (reviewed in ref  [  33  ] ) who have both secondary 
hyperparathyroidism, which results in continuous high blood levels of PTH, as well 
as impaired immunity. These associations suggested that PTH could impact 
 lymphocytic cells and early data reported that immune cells (neutrophils, B and T 
cells) have receptors for PTH  [  3,   34,   35  ] . Several lines of evidence support this 
hypothesis. PTH stimulates rat thymic lymphocyte proliferation  [  36  ]  and both PTH 
1–34 and PTH 1–84 also signi fi cantly stimulate phytohemagglutinin-induced T cell 
proliferation  [  37  ] . This pro-proliferative effect of PTH on T cells is altered in the 
uremic state associated with hyperparathyroidism  [  38,   39  ]  and is reversed by para-
thyroidectomy  [  40–  42  ] . Regarding humoral immunity, high doses of PTH inhibit B 
cell proliferation as well as the production of immunoglobin both in vitro and in vivo 
 [  43,   44  ] . An in vivo rat model of chronic renal failure with secondary hyperparathy-
roidism also showed impaired antibody response to antigens  [  45  ] . Collectively, 
these early reports suggested that continuous exposure of greater than physiologic 
levels of PTH could negatively impact immune cells. Recently with the pharmaco-
logic use of the amino terminal PTH 1–34 analogue (teriparatide) in the manage-
ment of osteoporosis, the immunomodulatory function of PTH is once again under 
consideration.   
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    4.1   B Cells and PTH 

 B lymphocytes are well-characterized antigen producing cells in the bone marrow 
recognized for their ability to produce antibodies. Recently, the regulatory function 
of B cells in bone resorption via the production of OPG was established  [  46  ] . 
Li et al. suggested that cells of the B lineage are more likely the dominant producers 
of OPG in the bone marrow microenvironment rather than osteoblast lineages. 
Consequently, B cell knockout mice have an osteoporotic bone phenotype with 
markedly enhanced osteoclastic bone resorption. Both mRNA expression and pro-
tein production for OPG was reduced in B cell knockout bone marrow and reconsti-
tution of young B cell knockout mice with adoptive transfer completely rescued the 
phenotype of osteoporosis  [  46  ] . 

 The interaction between B cells and PTH is mediated by lymphopoietic cytok-
ines, especially SDF-1 and IL-7. These powerful cytokines are produced by cells of 
the osteoblast lineage, and their production is enhanced in response to PTH  [  47–
  49  ] . Zhu et al. demonstrated that differentiation of B cells from bone marrow pre-
cursor cells requires cell–cell communication with osteoblasts in vitro and this 
process is mediated by VCAM-1, SDF-1, and IL-7 signaling induced in response to 
PTH  [  47  ]  (Fig.  1 ). The G-protein coupled PPR uses the heterotrimeric G protein 
subunit G 

s
  a -protein kinase A signaling as a major downstream mediator  [  5  ] . 

Interestingly, speci fi c deletion of G 
s
  a  in early osteogenic progenitor cells using 

Cre-recombinase driven by osterix (G 
s
  a  OsxKO  mice) showed not only a reduction in 

trabecular bone but also a signi fi cant reduction in B-cell precursors in the bone mar-
row and a consequent reduction in circulating B-cells  [  50  ] . Within the bone marrow, 
impairment of B lymphopoiesis was limited to the pro-B to pre-B cell transition. 
Prepro-B cells which are associated with SDF-1 +  cells are not affected in this model 
and there is no reduction of SDF-1 expression in G 

s
  a  OsxKO  osteoblasts. In contrast, 

mRNA expression of IL-7 is signi fi cantly decreased and the reduction of pre-B cells 
and pro-B cells is similar to that of either IL-7 or IL-7 receptor KO mice  [  51,   52  ] . 
These data suggest that G 

s
  a  signaling within cells of the osteoblast lineage is 

required for normal bone marrow B lymphopoiesis and likely involves IL-7 produc-
tion. Collectively, PTH indirectly affects the proliferation and differentiation of B 
cells by stimulating cytokine production in osteoblastic stromal cells. While B cells 
can affect osteoclast activity by secreting OPG, less is known regarding effects of B 
cells on osteoblastic cells.   

    4.2   T Cells and PTH 

 A molecular link between T lymphocytes and bone emerged prominently with the 
discovery of RANKL and its receptor RANK. These molecules were  fi rst identi fi ed 
in T cells and dendritic cells (DCs) and have been shown to play a pivotal role in 
DC-mediated naïve T cell proliferation and DC survival. Soon after, they were 
identi fi ed as key osteoclastogenic factors (reviewed in ref.  [  53  ] ). Much earlier studies 
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focused on the functional role of T lymphocytes in bone physiology comparing 
athymic (nude) and euthymic mice  [  54  ] . These studies reported that athymic mice 
had altered skeletal phenotypes compared to euthymic mice despite little differ-
ences at the cellular level. Using a classic calvarial bone resorption assay, the calva-
ria of athymic mice was found to respond with similar levels of calcium release 
re fl ecting similar bone resorption in response to PTH as compared to euthymic 
mice. This study suggested that T cells could play a role in the skeleton, but lacked 
de fi nitive identi fi cation of the mediators of the gross skeletal differences. 

 Furthermore, T lymphocytes were found to express functional PPR receptors 
which linked to an intracellular calcium response to PTH/PTHrP  [  55,   56  ]  and 
resulted in the stimulation of osteoblastic differentiation  [  57–  59  ] . More recently 
there has been improved understanding of the role of T cells in PTH-mediated skel-
etal homeostasis. Hory et al.  fi rst reported that transplantation of human parathyroid 
tissues into nude mice failed to stimulate bone resorption which suggested a possi-
ble role of T cells in PTH effects on bone  [  60  ] . Subsequently, Pettway et al. per-
formed intermittent administration of PTH for up to 7 weeks in an ectopic “ossicle” 
implanted nude mice model  [  61  ] . This investigation disclosed that intermittent PTH 
increased the bone content of the implanted ossicles, a structure which contains 
normal bone marrow, but had little effect on vertebral bone growth in host nude 

  Fig. 1    The interaction between osteoblastic/stromal cells and lymphocytes mediated by PTH. In 
response to direct stimulation by PTH, bone marrow T lymphocytes secrete the Wnt ligand 
Wnt10b. After binding to its receptors on osteoblastic/stromal cells, Wnt10b activates canonical 
Wnt/ b -catenin signaling which stimulates osteoblast proliferation/differentiation and inhibits 
apoptosis. PTH also stimulates osteoblastic/stromal cells, however, whether these PTH-stimulated 
osteoblastic/stromal cells can affect T lymphocytes is unclear. Better clari fi ed, PTH-stimulated 
osteoblastic/stromal cells support bone marrow B lymphopoiesis. Differentiation of HSCs to B 
lymphocytes requires cell–cell contact with osteoblastic/stromal cells and this process is mediated 
via VCAM-1, SDF-1, and IL-7 signaling induced by PTH. Less is known about the effect of B 
cells on osteoblastic/stromal cells       
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mice. This site differential response to intermittent PTH in nude mice could be due 
to species-speci fi c phenomenon, T cell de fi ciency in the host, or a responsivity asso-
ciated with the wound healing phenomenon induced with the ossicle model. 
Recently, Terauchi et al. investigated four different strains of T cell de fi cient mice 
(TCRb ko, RAG2 ko, class I and II MHC double KO mice, and nude mice) and 
revealed that mice lacking T cells, exhibit a blunted increase in bone formation and 
trabecular bone volume in response to intermittent PTH  [  62  ] . Furthermore, adoptive 
transfer of T cells into T cell de fi cient mice restored a normal response to intermit-
tent PTH, and T cell produced Wnt10b was suggested as a key player in the mecha-
nism of anabolic actions of intermittent PTH (Fig.  1 ). 

 To summarize the PTH effects on immune cells, PTH has both positive and nega-
tive effects not only on the skeleton but also on the immune system. Based on rodent 
studies, intermittent administration of PTH showed supportive effects on immunity, 
whereas data from hyperparathyroidism studies suggested that continuous increase 
of PTH at pathologic levels has opposite effects. To verify the possibility of clinical 
applications of PTH in altered immune conditions such as end stage renal failure or 
HIV infections, more epidemiologic and basic research is required.  

    5   PTH Support of the Hematopoietic Stem Cell Niche 

 The hematopoietic stem cell (HSC) niche is a speci fi c microenvironment in which 
HSCs exist and contribute to stem cell fate. There is a long-standing interest in the 
effect of PTH on hematopoiesis (reviewed in ref.  [  63  ] ). This story started with Eli 
Lilly’s bovine parathyroid extract which was found to increase the 30-day survival of 
irradiated rats  [  64–  66  ] . Subsequent studies revealed that it was the PTH activity in 
the Lilly parathyroid extract that improved the survival of irradiated rats and that 
PTH controls hematopoiesis in mice and rats  [  67–  69  ] . In 1974, Gallien-Lartigue 
et al. demonstrated that administration of PTH stimulated proliferation of murine 
colony-forming unit spleen and bone marrow cells via cAMP, indicating that PTH 
could directly modulate mouse hematopoietic stem cells  [  70  ] . Recently, these intrigu-
ing  fi ndings have been reevaluated. Regarding the issue of the existence of PTH 
receptor on HSCs, Adams et al. clearly rebutted the old study performed by Gallien-
Lartigue et al. demonstrating that puri fi ed Lin − Sca1 + c-kit +  HSCs showed undetect-
able mRNA for the PPR  [  71  ] . In 2003, Calvi et al. more clearly de fi ned the story of 
the bene fi cial role of PTH in HSC niche and suggested Jagged1/Notch signaling as 
one of the possible mechanisms. Osteoblast-speci fi c overexpression of the PPR 
increased the number of Lin − Sca1 + c-kit +  HSCs and osteoblastic cells in the bone 
marrow. The protein production of Jagged1 from osteoblastic cells was increased and 
the Notch1 intracellular domain in the HSC fraction was activated in vivo. 
Additionally, inactivation of Notch signaling by  g -secretase inhibitor blocked HSC 
expansion in vitro, which suggested that PPR-stimulated osteoblastic cells supported 
HSC expansion via Jagged1/Notch signaling. Furthermore, administration of 
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PTH (1–34) to myeloablated mice showed an increase of bone marrow cellularity 
and a survival bene fi t at 28 days after bone marrow transplantation. This study con-
cluded that the strengthening effect of PTH on the bone marrow microenvironment 
can result in improved engraftment  [  48  ] . The ability of PTH to augment the Jagged1 
expression on osteoblasts in a cAMP/PKA-dependent manner was further con fi rmed. 
Five days of PTH administration to C57/Bl6 mice showed that Jagged1 protein was 
increased in speci fi c populations of osteoblasts including those at the endosteum and 
spindle-shaped cells in the bone marrow cavity  [  72  ]  (Fig.  2 ).  

 Recently, another potential mechanism for PTH actions on hematopoietic cells 
was elucidated using an ex vivo culture model of bone marrow cells  [  73  ] . It is well 
known that PTH induces IL-6 secretion in stromal and osteoblastic cells. In the ex 
vivo culture system, IL-6 supported hematopoietic progenitor cell expansion through 
inhibiting apoptosis of proliferating hematopoietic progenitor cells in response to a 
stem cell factor, Fms-like tyrosine kinase-3 ligand (Flt-3 L). Notably, this report 

  Fig. 2    Working model: How PTH controls the bone marrow microenvironment to support the HSC 
niche. PTH stimulates osteoblastic/stromal cells to increase Jagged1, cyclooxygenase (COX) 2/PGE2 
and IL-6 levels in the HSC niche. Jagged1 with binding to the Notch receptor on HSCs increases HSC 
numbers and inhibits differentiation of HSC/progenitor cells. On the other hand, COX-2/PGE2 
speci fi cally increases short-term HSCs without altering long-term HSCs or inhibiting their lineage-
speci fi c differentiation. Flt-3 ligand (Flt-3L), a stem cell factor which is enriched in the HSC niche, 
increases hematopoietic progenitor cell proliferation. IL-6 produced in response to PTH action on 
stromal cells supports the Flt-3L-mediated HSC expansion by inhibiting apoptosis of responsive cells       
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found no evidence of biologically active PPRs in the hematopoietic cell populations. 
Three weeks of PTH treatment to wild-type mice resulted in increased Lin − Sca1 + c-
kit +  (LSK) hematopoietic cells, whereas in IL-6 de fi cient mice, PTH failed to 
increase LSK cells in the bone marrow. This study suggested that IL-6 plays a criti-
cal role in PTH-dependent hematopoietic cell expansion  [  73  ]  (Fig.  2 ). 

 Another putative mediator of the interaction between HSCs and PTH is PGE2. 
The synthesis of PGE2 in bone is mainly regulated by inducible COX-2, and 
PTH is a potent inducer of COX-2 expression and PGE2 production in osteo-
blasts  [  74,   75  ] . Frisch et al. showed that in vivo treatment with PGE2 (twice 
daily IP injection for 16 days) resulted in an altered bone marrow microenvi-
ronment by decreasing numbers of bony trabeculae and increasing short-term 
HSCs/multipotent progenitor cells without impacting long-term HSC numbers, 
lineage distribution or programmed differentiation. They suggested that unlike 
Jagged1/Notch signaling which inhibits the differentiation of HSCs or progeni-
tor cells  [  76,   77  ] , PGE2 most likely expands short-term HSCs without altering 
long-term HSC or hematopoietic progenitor cells through a combination of direct 
and microenvironmental actions. Considering such an association, it is likely 
that PTH could impact the HSC niche via COX-2/PGE2 (Fig.  2 ), however, fur-
ther investigation is warranted.  

    6   Evidence for Therapeutic Application of PTH 

 The therapeutic potential of PTH-mediated HSC stimulation was further investigated 
with mouse models that are relevant to clinical use  [  71  ] . Stimulation of the HSC 
niche with PTH during multiple rounds of chemotherapy showed that PTH can 
protect or even expand the resident HSC pool in the bone marrow during repetitive 
myelotoxic chemotherapy. Mice received cyclophosphamide every 2 weeks for four 
cycles. One day after chemotherapy, mice were treated with either saline, G-CSF, 
PTH alone, or the combination of PTH and G-CSF. PTH treatment led to an increase 
in the HSC pool in mice which did not receive G-CSF and a preservation of the HSC 
pool in G-CSF-treated mice. In an allogenic myeloablative murine HSC transplant 
model, PTH treatment after transplantation led to increased engraftment of the HSC 
compartment through increased expansion of the HSC pool. These studies pave the 
way to clinical trials aimed at increasing the effectiveness of HS cell therapies 
through targeting of the HSC niche. 

 To date, evidence of the supportive role of PTH in the HSC niche is limited to 
rodent systems and the mechanisms are still unclear. There is an increasing need 
for new therapeutic agents to treat the hematopoietic damage experienced in can-
cer patients and PTH, which is already on the market, could be a feasible tool; 
however, teriparatide has a “black box” warning against its use in patients with 
cancer or radiation therapy. It will be important to con fi rm whether PTH can 
stimulate human as well as rodent HSCs and the precise mechanisms by which 
this occurs.  
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    7   Effect of PTH on Hematopoietic Lineage Cell Mobilization 

 Autologous stem cell transplantation is a key strategy to recover the hematopoietic 
system following myeloablation. Even with current improvements in cell mobi-
lization techniques, low cell numbers of HSCs harvested from peripheral blood 
is a major limitation for successful reconstitution. Recently, several lines of 
evidence suggest that PTH could be a promising agent to facilitate stem cell 
mobilization  [  71,   78  ] . 

 Adams et al. demonstrated that in addition to standard mobilization with G-CSF, 
PTH could increase the number of stem cells mobilized into the circulation  [  71  ] . 
Mice were treated with PTH or vehicle alone for 5 weeks followed by 5 days of 
G-CSF mobilization. There was no difference in the number of CFU-Cs mobiliza-
tion in the vehicle or PTH-treated mobilized mice, demonstrating that PTH has no 
direct effect on progenitor cells. However, circulating HSCs showed a twofold 
increase in PTH mobilized mice assessed using two methods: (1) the number of 
Lin − Sca1 + c-Kit +  Flt-2 −  cells, and (2) the number of cells capable of competitively 
reconstituting irradiated hosts. These data suggest that PTH treatment increases the 
number of HSCs in the bone marrow that can be mobilized into the peripheral cir-
culation, although it does not result in any alteration of mature cell counts or pro-
genitor cell mobilization with a standard mobilization regimen  [  71  ] . Another study 
was designed to test the potency of PTH compared to G-CSF in the mobilization of 
stem cells and its regenerative capacity on bone marrow. Mice were treated with 
PTH, G-CSF, or saline for 6 days and LSK cells, as well as subpopulations (CD31 + , 
c-kit + , Sca-1 + , CXCR4 + ) of CD45 + /CD34 +  and CD45 + /CD34L cells were analyzed. 
Treatment with PTH increased all characterized subpopulations of bone marrow-
derived progenitor cells in peripheral blood similar to G-CSF. In contrast to G-CSF, 
PTH did not result in a depletion of Lin - /Sca-1 + /c-kit +  cells and CD34 +  stem cells in 
bone marrow. PTH treatment was associated with increased G-CSF serum levels 
and the mobilizing effect could be inhibited by blocking endogenous G-CSF pos-
sibly mediating release of progenitor cells from bone marrow  [  78  ] . 

 Recently, several human studies have investigated the effect of PTH on the mobi-
lization of bone marrow-derived progenitor cells (BMCs). A human prospective 
study of patients with primary hyperparathyroidism (PHPT) showed an increased 
number of circulating stem and progenitor cells in the peripheral blood  [  20  ] . Twenty-
two patients with PHPT and 10 controls were recruited and circulating BMCs were 
analyzed with the following markers: (1) CD45 + /CD34 + /CD31 + , representing 
endothelial progenitor cells, (2) CD45 + /CD34 + /c-kit +  representing hematopoietic 
stem cells, and (3) CD45 + /CD34 + /CXCR4 +,  representing progenitor cells with the 
homing receptor CXCR4. Patients with PHPT showed an increase in circulating 
BMCs before surgery which returned to control levels postsurgery. There was a 
positive correlation of PTH levels with the number of BMCs in all subpopulations 
analyzed. Serum levels of G-CSF, EPO, and SCF, all known to mobilize BMCs, 
were reported as decreased or remained unchanged in PHPT patients. This study 
suggested that PTH may have a direct effect on stem cell mobilization in humans. 
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In contrast, patients with hypoparathyroidism treated with PTH showed no increase 
in circulating HSCs  [  79  ] . Nineteen controls and 19 hypoparathyroidism patients 
were recruited and administered PTH (1–84) for 12 months. Unlike osteocalcin-
positive cells which were increased with PTH treatment, the hematopoietic cell 
populations which included total CD34+ cells and OCN−/CD34+ cells, did not 
change with PTH administration. The authors explained that such an increase may 
occur before the 1-month time point that was analyzed in this study. In fact, rodent 
studies which showed the ability of PTH to modulate stem cell mobilization were 
performed after 6 or 14 days of PTH injection  [  78  ] . Another human study was per-
formed with a cohort of uremic patients  [  80  ] . The patients were divided into three 
groups (low—PTH less than 150 pg/ml, intermediate—between 150 and 300 pg/ml, 
and high—PTH levels greater than 300 pg/ml) and hematopoietic and endothelial 
progenitor cells were analyzed. The high-PTH groups showed higher levels of 
hematopoietic progenitor cells (CD45 + /CD34 + /c-kit + ) compared to intermediate or 
low-PTH groups, whereas endothelial progenitor cells (CD45 + /CD34 + /CD31 + ) were 
highest in the intermediate group. All patients  [  13  ]  in the high-PTH group who 
received 4 months of PTH lowering treatment (IV paracalcitriol, IV calcitriol, and 
P binder or cinacalcet) had increased endothelial progenitor cells after achieving 
intermediate PTH levels. Taken together, it seems clear that PTH mediates stem or 
progenitor cell mobilization in humans and the effects of PTH on speci fi c subsets of 
progenitor cells are speci fi c to the pathologic conditions. 

 Interestingly, using a small group of human patients who had previously failed 
to produce a suf fi cient number of CD34 +  HSC in their peripheral blood following 
mobilization, a Phase I trial of pretreatment with PTH for stem cell mobilization 
was performed. Patients who previously had failed one or two attempts at mobili-
zation were treated with PTH for up to 14 days. As a result, 40–50% of patients 
could meet therapeutic mobilization criteria with PTH pretreatment followed by 
G-CSF treatment  [  81  ] . Overall, these studies suggest that an HSC mobilization 
strategy which includes PTH may be an effective means of circumventing low 
HSC yield issues.  

    8   Conclusions 

 Recently, there has been exciting progress relative to new  fi ndings of the impact of 
PTH on the bone marrow microenvironment; however, the precise interactions 
between the cells of hematopoietic and stromal lineages in the bone marrow 
microenvironment still remain unclear. Evidence described here substantiates 
actions of PTH as a key modulator of the bone marrow microenvironment. PTH 
regulates not only osteoclastogenesis but also modulates lymphocytes, monocytes, 
and HSCs by stimulating osteoblast production of various cytokines. T lymphocytes 
have their own PPR and are directly regulated by PTH to support the characteristic 
osteoblastic response of anabolic PTH actions. The recent literature regarding PTH 
and the immune system provides insight that PTH actions are complex, being both 
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direct and indirect and mediated via numerous cytokines produced in the bone marrow. 
The therapeutic potential of PTH-mediated HSC stimulation has been identi fi ed in 
various rodent models that mimic myeloablative conditions in humans. Human 
studies are beginning to embark on the use of PTH to mobilize HSCs into circula-
tion. Although the data discussed here supports the thesis that PTH modulates the 
cells of hematopoietic linage, the physiologic relevance and therapeutic potential 
for humans deserves more investigation yet remains remarkably intriguing.      
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          1   Introduction 

 Bone is a dynamic organ that is continuously turned over during growth, even in 
adults. During bone remodeling, homeostasis is regulated by the balance between 
bone formation by osteoblasts and bone resorption by osteoclasts  [  1,   2  ] . However, 
in pathological conditions such as osteoporosis, osteopetrosis, arthritic joint 
destruction, and bone metastasis, this equilibrium is disrupted. Since osteoclasts 
are excessively activated in osteolytic diseases, the inhibition of osteoclast func-
tion has been a major therapeutic strategy. Bisphosphonates, the most widely used 
group of anti-osteoporosis drugs, bind to hydroxyapatite, enter osteoclasts via 
endocytosis, and induce osteoclast apoptosis  [  3  ] . Recently, the inactivation of 
osteoclasts, as opposed to their elimination, has generated interest as an alternative 
treatment strategy  [  4,   5  ] . One promising regulation point is the recruitment of 
osteoclast precursors. In addition to several chemokines that are known regulators 
of migration, including CXCL12  [  6  ] , we have shown that sphingosine 1-phosphate 
(S1P), a lysophospholipid abundant in the plasma, plays an important role as both 
a chemoattractant and a chemorepellent  [  7,   8  ] . In this review, we summarize the 
bidirectional regulation of osteoclast precursor migration by S1P and describe 
intravital bone imaging in living animals.  
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    2   Biological Function of S1P 

 S1P is a bioactive sphingolipid metabolite that regulates diverse biological functions 
including cell proliferation, motility, and survival  [  9–  12  ] . Sphingolipids are essen-
tial plasma membrane constituents composed of a serine head group and one or two 
fatty acid tails. They are easily metabolized and converted to sphingosines, which 
are ATP-dependently phosphorylated by sphingosine kinases 1 and 2 (SPHK1 and 
SPHK2) in most cells, yielding S1P  [  13  ] . SPHKs, which are regulated by a variety 
of growth factors, hormones, and cytokines, control acute reactive generation of 
S1P and homeostasis in the circulation  [  13  ] . Immediately after its synthesis, free 
S1P is irreversibly degraded by intracellular S1P lyase or dephosphorylated by S1P 
phosphatases. As a result, the levels of S1P in most tissues, including bone marrow, 
are relatively low. In contrast, large amounts of S1P are continuously produced in 
the plasma, especially by erythrocytes, and the serum concentration of S1P is 
extremely high (several hundred nanomolar to low-micromolar range). Most S1P in 
the circulation is bound to high-density lipoprotein (HDL) and albumin, which 
serve as stable reservoirs and ef fi ciently deliver S1P to epithelial cell-surface recep-
tors. In addition, because S1P is an amphiphilic molecule that cannot easily cross 
membranes, an S1P gradient between the blood and tissues is maintained. 

 S1P signals via  fi ve 7-transmembrane receptors or G protein-coupled receptors 
(GPCRs), S1PR1 to S1PR5, previously referred to as endothelial differentiation 
gene (Edg) receptors  [  11,   12  ] . Because of the different distribution of these recep-
tors and their different coupling to signal-transducing G proteins, S1P shows a broad 
range of bioactivities. S1PR1 is ubiquitously expressed and primarily coupled to 
PTX-sensitive Gi/o proteins, whereas S1PR2 and S1PR3, whose distributions are 
more limited, are coupled to G12/13 as well as Gq, Gs, and Gi. The expression of 
S1PR4 and S1PR5 is much lower than that of S1PR1, S1PR2, and S1PR3, and their 
functions remain to be elucidated. However, it has been reported that they are 
coupled to Gi/o and G12/13. 

 S1P receptors have key roles in the regulation of cellular motility. S1PR1 acti-
vates Rac through Gi and promotes cell migration and intercellular connection, 
whereas S1PR2 activates Rho signaling via G12/13, thereby counteracting the 
effects of S1PR1 and inhibiting Rac activity  [  13  ] . These differences account for the 
different biological functions of S1PR1 and S1PR2, which produce opposite effects 
on migration toward/against S1P gradients in vitro  [  14  ] .  

    3   Control of Osteoclast Precursors Migration 
by S1P and Chemokines 

 Osteoclasts are derived from macrophage/monocyte-lineage cells that express both 
S1PR1 and S1PR2  [  7  ] . As described above, S1PR1 and S1PR2 have opposite 
effects on the migration of osteoclast precursors. Osteoclast precursors are chemoat-
tracted to S1P in vitro, a response that is blocked by PTX. In addition, treatment 
with S1P increases osteoclast precursor levels of the active form of Rac (GTP-Rac), 



758 Sphingosine-1-Phosphate and Chemokines in the Control of Osteoclast Precursors…

suggesting that Rac and Gi are involved in S1PR1 chemotactic signaling in 
osteoclast precursors. On the other hand, S1PR2 requires a higher concentration 
of S1P for activation and induces negative chemotactic responses, “chemorepul-
sion,” to S1P gradients. S1PR2 activation causes cells to move from the blood-
stream into bone marrow cavities  [  8  ] . As in leukocytes, the migration of osteoclast 
precursors is regulated by chemokines. Like the S1PRs, chemokine receptors are 
GPCRs and signal via Gi components. One of the best-known chemoattractants 
for osteoclast precursors is CXCL12 (also known as stromal derived factor-1), a 
CXCR4 ligand  [  6  ] . CXCL12 is constitutively expressed at high levels by osteo-
blastic stromal cells and vascular endothelial cells in bone, whereas CXCR4 is 
expressed on a wide variety of cells types, including circulating monocytes and 
osteoclast precursors. CXCL12 has chemotactic effects on osteoclast precursors, 
which express large amounts of CXCR4.  

    4   Intravital Multiphoton Imaging of Bone Tissues Revealing 
Migration of Osteoclast Precursors In Vivo 

    4.1   Development of New Imaging Method for Bone 

 To study the behavior of osteoclasts and their precursors in vivo, we developed a 
new intravital two-photon imaging system for use in the analysis of bone tissues 
 [  7,   8,   15  ] . Recent advances in microscope, laser, and  fl uorophore technology have 
made it possible to visualize living cells in intact organs and to analyze their mobil-
ity and interactions in a quantitative manner. 

 As calcium phosphate, the main structural component of the bone matrix, can easily 
scatter laser beams, it was dif fi cult to access the deep interior of bone tissues, even 
using a near-infrared laser. We decided to use parietal bone in which the distance from 
the bone surface to the bone marrow cavity is 80–120  m m (within the appropriate range 
for two-photon microscopy). Using this new intravital two-photon imaging method, we 
showed that S1P controls the migratory behavior of osteoclast precursors, dynamically 
regulating bone mineral homeostasis, and we identi fi ed a critical control point in osteo-
clastogenesis. While monocytoid cells containing osteoclast precursors (CSF1R-
EGFP-positive or CX3CR1-EGFP-positive cells) were stationary at the steady state, 
osteoclast precursors were stimulated and moved into vessels when a potent S1PR1-
speci fi c agonist, SEW2871  [  16  ] , was injected intravenously.  

    4.2   An Application of This Method for Revealing In Vivo 
Behavior of Osteoclast Precursors 

 To clarify the physiological signi fi cance of S1P-directed chemotaxis of osteoclast 
precursors in bone homeostasis, we examined osteoclast/monocyte-speci fi c S1PR1-
de fi cient (S1PR1 −/− ) mice. Global S1PR1 de fi ciency causes embryonic lethally at 
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e12.5–e14.5 due to defective blood vessel development  [  17  ] . The attachment of 
osteoclast precursors to bone surfaces was signi fi cantly enhanced in S1PR1 −/−  ani-
mals compared with controls. S1PR1 −/−  osteoclasts precursors on bone surfaces sub-
sequently develop into mature osteoclasts and absorb bone tissues. S1P-mediated 
chemotaxis of osteoclast precursors would thus be expected to contribute to their 
redistribution from bone tissues to blood vessels. 

 We also performed intravital two-photon imaging of bone tissues to de fi ne the 
role of S1PR2 in vivo  [  8  ] . We showed that certain osteoclast precursors (CX

3
CR1-

EGFP-positive cells) moved into the bloodstream when a potent S1PR2 antagonist, 
JTE013  [  18  ] , was injected intravenously. The effect of JTE013 was less pronounced 
than that of the S1PR1 agonist SEW2871. Furthermore, to clarify the physiological 
signi fi cance of S1P-directed chemotaxis of osteoclast precursors in bone homeo-
stasis, we examined S1PR2-de fi cient (S1PR2 −/− ) mice. Although S1PR2-de fi cient 
mice suffer auditory impairment due to vessel defects in the inner ear, they survive 
and reproduce  [  19  ] . Although bone resorption of osteoclasts was signi fi cantly 
lower in S1PR2 −/−  animals than in controls, in vitro osteoclast formation was not 
signi fi cantly affected. In a high-S1P environment such as the bloodstream, S1PR1 
is activated and rapidly internalized, allowing S1PR2 to predominate. Osteoclast 
precursors enter the bone marrow as a result of chemorepulsion mediated by 
S1PR2, and other chemokines attract them to bone surfaces. After they enter a low-
S1P environment such as bone marrow, S1PR1 is transported back to the cell sur-
face, and osteoclast precursors return from bone tissues to blood vessels as a result 
of chemotaxis to an S1P gradient.  

    4.3   Migration and Positioning of Osteoclast Precursors In Vivo 

 The number of osteoclast precursors on bone surfaces is determined by the bal-
ance between the traf fi cking of osteoclast precursors to and from the circulation. 
These data provide evidence that S1P controls the migratory behavior of osteo-
clast precursors, dynamically regulating bone mineral homeostasis, and identify a 
critical control point in osteoclastogenesis. Based on our  fi ndings, we propose 
that regulation of the migratory behavior of osteoclast precursors controls osteo-
clast differentiation. This control mechanism is summarized in Fig.  1 . This criti-
cal control point in osteoclastogenesis may represent an attractive target for new 
treatments for osteoporosis. We previously showed that treatment with FTY720, 
which is metabolized by SPHK2 to a compound that acts as an agonist for four of 
the  fi ve S1P receptors (not S1PR2)  [  9,   20  ] , relieved ovariectomy-induced osteo-
porosis in mice by reducing the number of mature osteoclasts attached to bone 
surfaces  [  7  ] . The mechanism of action of S1P is completely different from that of 
conventional treatments such as bisphosphonates, which suppress mature osteo-
clasts. We anticipate that the regulation of osteoclast precursor migration may be 
a useful clinical strategy in the near future.    
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    5   Future Perspective on Intravital Multiphoton Microscopy 

 Intravital multiphoton imaging has revealed, and continues to reveal, dynamic 
 features of physiological and pathological process. Its greatest strength is its ability 
to provide spatiotemporal information in living organisms, which cannot be achieved 
using other methods. However, current two-photon microscopy imaging techniques 
have several limitations. First, we cannot see everything in the visual  fi elds in two-
photon microscopy. Although  fl uorescence labeling and second-harmonic generation 
enable us to observe target cells and organs, the lack of a signal does never re fl ect an 
open  fi eld, as diverse structures and cellular components should be present. To avoid 
misinterpretation, we must interpret our observations with caution. Second, although 
two-photon microscopy has greater penetration depth than conventional confocal 
microscopy, its penetration depth is only 800–1,000  m m in soft tissues (e.g., brain 
cortex) and 200  m m in hard tissues (e.g., bone). Because of these resolution limita-
tions, it may only be applied to small animals, such as mice and rats. Moreover, due 
to the wide scattering of light by the skin, it is necessary that target organs be exteri-
orized. It is possible that the necessary operative invasion and changes in oxygen 
concentration and humidity may in fl uence cellular behavior. To resolve these prob-
lems, technical innovations in  fl uorochrome and optical systems, including improve-
ments in light emission and amelioration of resolution problems  [  21  ] , are needed. 

  Fig. 1    A schematic model for migration and localization of osteoclast precursors by S1P and 
bone-enriched chemokines. The entry of osteoclast precursors from blood vessels, where S1P is at 
high concentration, is initiated by chemorepulsion through S1PR2. Once enter in bone marrow, 
osteoclast precursors migrate toward chemokines enriched in bone marrow cavity, such as 
CXCL12. On the other hand, their recirculation toward blood vessels is regulated by chemoattrac-
tion through S1PR1       
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 Intravital microscopy has begun to be applied not only to observational studies 
but also to functional analysis and interventions. Recently, several new  fl uorescence 
tools have been developed. These include cell-cycle indicators  [  22  ]  and light-sens-
ing devices such as photoactivatable  fl uorescent proteins  [  23  ]  and light-induced 
activators of G protein-coupled receptors  [  24  ] .  

    6   Conclusion 

 As the recruitment of osteoclast precursors during osteoclastogenesis is dynamic 
and dependent on the microenvironment of the bone marrow cavity, temporospatial 
information is very important. Intravital imaging has made a huge contribution to 
improving our understanding of these processes. It enables us to visualize, tempo-
rospatially, complicated systems in living organisms. This new technique has 
revealed that S1P acts in concert with several chemoattractants to shepherd osteo-
clast precursors to appropriate sites. Controlling the recruitment and migration of 
osteoclast precursors represents a promising new therapeutic strategy for combating 
bone diseases. Although their limitations remain to be resolved, the range of appli-
cations for in vivo imaging techniques continues to expand.      
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          1   Introduction 

 Parathyroid hormone (PTH) causes bone loss when produced in a continuous fashion. 
However, PTH induces a potent bone anabolic effect when injected intermittently. 
The mechanism of action of PTH remains largely unknown. This article reviews the 
evidence in favor of the hypothesis that T cells play an unexpected critical role in 
the mechanism of action of PTH in bone.  

    2   Effects of PTH on Bone 

 Primary hyperparathyroidism is a common bone disease caused by continuous 
overproduction of PTH. This disorder causes cortical bone loss  [  1  ]  and leads to a 
loss or gain of trabecular bone, depending on its severity, duration, and age of the 
patient  [  1 – 3  ] . Primary hyperparathyroidism is modeled by continuous PTH (cPTH) 
infusion, which, like hyperparathyroidism, stimulates bone resorption and causes 
cortical bone loss  [  4 – 6  ] . cPTH treatment may lead to modest gain or loss of cancellous 
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bone depending on the age of the mouse and the dose and duration of the cPTH 
treatment  [  4 – 6  ] . By contrast, intermittent PTH (iPTH) treatment markedly increases 
bone volume and strength in the cortical and trabecular compartments. 

 Both cPTH and iPTH increase bone turnover  [  6–  9  ] . The stimulation of bone 
formation induced by iPTH far exceeds bone resorption, leading to a net bone ana-
bolic effect in the cortical and trabecular compartments  [  10  ] . By contrast, the stim-
ulation of bone formation induced by cPTH is not suf fi cient to offset the increase 
in resorption, leading to a net cortical bone loss, which, in some conditions, is 
associated to trabecular bone loss  [  10  ] . PTH stimulates bone resorption by enhanc-
ing the production of RANKL, and M-CSF, and decreasing the production of OPG 
by stromal cells (SCs) and osteoblasts (OBs)  [  11,   12  ] . Recently, we have shown 
that another critical mechanism is the capacity of PTH to increase the production 
of TNF by T cells  [  5  ] . Enhanced bone resorption is accompanied by a stimulation 
of bone formation driven by an increase in the number of OBs  [  13–  15  ]  achieved 
through activation of quiescent lining cells  [  16  ] , increased OB proliferation  [  17,   18  ]  
and differentiation  [  17,   19,   20  ] , attenuation of OB apoptosis  [  21–  24  ] , and signaling 
in osteocytes  [  25  ] . However, the speci fi c contribution of each of these effects of 
PTH remains controversial. The expansion of the osteoblastic pool induced by 
PTH is initiated by the release from the matrix undergoing resorption of TGF b , 
IGF-1 and other growth factors that recruit SCs to remodeling areas  [  26–  29  ] . 
Subsequent events are driven primarily by the activation of Wnt signaling in osteo-
blastic cells  [  30  ] . Activation of Wnt signaling induces OB proliferation  [  31  ]  and 
differentiation  [  30,   32  ] , prevents OB apoptosis  [  23,   24,   33  ] , and augments OB 
production of OPG  [  34  ] . Wnt proteins initiate a canonical signaling cascade by 
binding to receptors of the Frizzled family together with the coreceptors LRP4-5-
6, which results in the stabilization of cytosolic  b -catenin. A nuclear complex of 
beta-catenin and the T cell factor/lymphoid enhancer factor (TCF/LEF) family of 
transcription factors then interacts with DNA to regulate the transcription of Wnt 
target genes  [  35  ] . Wnt proteins also signal through noncanonical pathways which 
involve the Src/ERK and Pi3K/Akt cascades  [  23  ] . 

 PTH is a canonical Wnt signaling agonist which increases  b  catenin levels in 
osteoblastic cells  [  36,   37  ] , an effect which occurs through modulation of both the 
protein kinase A and protein kinase C pathways  [  36  ] . PTH, once bound to PPR, is 
also capable of forming a complex with LRP6 which results in LRP6 signaling and 
 b  catenin activation  [  38  ] . Thus, PTH activates Wnt signaling in osteoblastic cells 
through both Wnt ligands-dependent and Wnt ligands-independent mechanisms. 
Moreover, PTH down regulates the production of sclerostin, an osteocyte-derived 
Wnt antagonist which blocks Wnt signaling by binding to LRP5 and LRP6  [  39,   40  ] . 
Recently, convincing evidence has emerged that PTH receptor signaling in osteo-
cytes and the resulting direct regulation of sclerostin production play a particularly 
relevant role in the anabolic activity of PTH (O’Brien, 2008 #11387). PTH also 
regulates Dickkopf-1, a soluble LRP5 and LRP6 signaling inhibitor  [  37  ] , and  Sfrp-4, 
a factor which binds Wnt proteins thus antagonizing both canonical and noncanonical 
Wnt signaling  [  41  ] . Uncertainty remains with regard to the identity and the source 
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of Wnt ligands which activate Wnt signaling in response to PTH treatment are not 
completely understood.  

    3   Role of T Cells in the Anabolic Activity of Intermittent 
PTH Treatment 

    T cells express functional the PTH receptor PPR  [  42,   43  ]  and respond to PTH. This 
prompted us to investigate whether T cells contribute to the anabolic response to iPTH. 
Studies were conducted in four strains of T cell-de fi cient mice (TCR b −/−, RAG2−/−, 
class I and II MHC double KO mice, and nude mice). Analysis by DEXA and  m CT 
revealed that in mice lacking T cells, iPTH induced a ~ 50 % smaller increase in bone 
density and bone volume as compared to T cell-replete controls  [  43  ] . Furthermore, 
adoptive transfer of T cells into T cell-de fi cient mice restored a normal response to 
iPTH. T cells were found to augment the capacity of iPTH to improve architecture in 
trabecular but not in cortical bone. Although the reason of this selectivity is unknown, 
a lack of access of T cells to cortical surfaces is not a likely explanation, as T cells reach 
endosteal and periosteal bone surface through blood vessels and recirculate in and out 
of the BM. In addition, direct measurements of bone strength by 4-point bending 
revealed that the capacity of iPTH to improve bone strength was abolished in T cell-
de fi cient mice. Although the reason for this discrepancy is unknown, it is possible that 
T cells might be required to improve the material property of bone. 

 With regard of the mechanism by which T cells potentiate the bone anabolic 
activity of iPTH, studies have disclosed that in the absence of T cells iPTH is unable 
to increase the commitment of SCs to the osteoblastic lineage, induce OB prolifera-
tion and differentiation, and mitigate OB apoptosis. All of these actions of PTH 
were found to hinge on the capacity of T cells to activate Wnt signaling in osteo-
blastic cells  [  43  ] . Although it is well established that Wnt activation is a key mecha-
nism by which iPTH expands the osteoblastic pool, little information is available on 
the nature and the source of the Wnt ligand required to activate Wnt signaling in 
OBs. We have found that PTH stimulates BM CD8+ T cells to produce large 
amounts of Wnt10b  [  43  ] , a Wnt protein which activates Wnt signaling in SCs and 
OBs, thus increasing OB proliferation, differentiation, and life span Treatment with 
iPTH also caused a small increase in the production of Wnt10b by BM CD4+ cells 
which was associated with a slightly diminished anabolic response in class II 
MHC−/− mice, suggesting that production of Wnt10b by CD4+ cells contributes, in 
small part, to the anabolic activity of iPTH. The relevance of CD8+ cells was dem-
onstrated by the inability of iPTH to promote bone anabolism in class I MHC−/− 
mice, a strain that lacks CD8+ cells  [  43  ] . Additional studies revealed that iPTH does 
not improve bone architecture in T cell-de fi cient mice reconstituted with CD4+ 
cells, while it does so in mice adoptively transferred with CD8+ cells  [  43  ] . The 
pivotal role of T cell-produced Wnt10b was revealed by the hampered effect of 
iPTH on bone volume in TCR b −/− mice reconstituted with T cells from Wnt10b−/− 
mice. It is likely that iPTH directly targets CD8+ T cells and stimulates their 
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production of Wnt10b as in vitro PTH treatment potently stimulates Wnt10b 
production by T cells. 

 While in vitro PTH treatment increased Wnt10b production by all T cells, iPTH 
upregulated Wnt10b production only by BM T cells. This diversity might be 
explained by the different dose and time of exposure to PTH. However, since adop-
tive transfer of spleen T cells into TCR b −/− mice was followed by a restoration of 
a full responsiveness to iPTH, the data suggest that the capacity of T cells to upregu-
late their production of Wnt10b in response to iPTH is not an intrinsic feature of T 
cells, but rather is induced by environmental cues. 

 Together the data indicate that CD8+ T cells potentiate the anabolic activity of 
PTH by providing Wnt10b, which is a critical Wnt ligand required for activating 
Wnt signaling in osteoblastic cells Therefore in the absence of CD8+ cells, stimula-
tion of osteoblastic cells by PTH is not suf fi cient to elicit maximal Wnt activation 
due to the lack of a critical Wnt ligand (Fig.  1 ). The residual bone anabolic activity 
of PTH observed in T cell-de fi cient mice is presumably due to ligand-independent 
activation of LRP6  [  38  ] , and suppressed production of sclerostin  [  39,   40,   44  ] .  

 The anabolic activity of iPTH is not identical in all strains of T cell-de fi cient 
mice. In fact, while some strains had no increase in bone volume in response to 
PTH, other exhibited a blunted but not a completely absent response. Osteoblastic 
cells produce several bone anabolic Wnt ligands including Wnt10b, Wnt7a and 
Wnt3b  [  45,   46  ] . These factors are likely to contribute to the T cell-independent 

  Fig. 1    Schematic representation of the role of T cells in the mechanism by which intermittent 
PTH treatment stimulates bone formation. PTH stimulates T cells to secrete Wnt10b, a Wnt ligand 
required to activate Wnt signaling in SCs and OBs. In the presence of T cell-produced Wnt10b, 
stimulation of osteoblastic cells by PTH result in the activation of the Wnt signaling pathway. This 
event leads to increased commitment of mesenchimal stem cells to the osteoblastic lineage, 
increased osteoblast proliferation and differentiation, and decreased osteoblast apoptosis       
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anabolic activity of iPTH, and quantitative differences in their production may 
account, in part, to the strain-dependent variability in the response to iPTH observed 
herein. Furthermore, the magnitude of the anabolic response to iPTH in T cell null 
mice may be related to a strain- and age-dependent capacity of iPTH to inhibit the 
bone cells production of Wnt inhibitors such as sclerostin,  [  39,   40  ] , Dickkopf-1  [  37  ]  
and Sfrp-4  [  41  ] . These factors have been shown to contribute to the anabolic activity 
of iPTH through T cell-independent mechanisms. Since B cells are regulated by 
PTH  [  47  ] , the response of RAG2−/− mice to iPTH might also have been determined 
by the lack of B cells which is a feature of RAG2−/− mice. 

 The enhancement of bone formation induced by iPTH is accompanied by a 
stimulation of bone resorption which is driven by increased production of RANKL 
and decreased release of OPG in the bone microenvironment  [  48  ] . The direct 
effects of PTH on RANKL/OPG production are mitigated, in part, by the iPTH-
induced activation of  b  catenin in OBs, as this transcriptional regulator stimulates 
their production of OPG  [  49  ]  and represses that of RANKL  [  50  ] . The latter is one 
of the mechanisms that prevent bone resorption from offsetting the anabolic activ-
ity of iPTH. 

 Osteoblastic cells from WT mice treated with iPTH in vivo exhibited increased 
commitment to the osteoblastic lineage, proliferation, differentiation, and life span 
in vitro, as compared to the corresponding cells from T cell-de fi cient mice. Thus, T 
cells, like PTH, affect all aspects of OB life cycle. Remarkably, these differences 
were demonstrated in OBs puri fi ed from BM cultured for 7 days without the addi-
tion of PTH, suggesting that in vivo the hormone regulates early commitment steps 
of SCs and their osteoblastic progeny through T cell-produced Wnt10b, and that 
these steps are not reversed by the absence of PTH and T cells in vitro. This model 
is consistent with the capacity of Wnt signaling to guide cell fate determination 
 [  51  ] . A similar paradigm has been described in ovariectomized mice, a model where 
estrogen withdrawal in vivo leads to the formation of SCs which exhibit an increased 
osteoclastogenic activity which persists in vitro for 4 weeks  [  52  ] .  

    4   T Cells and PTH-Induced Bone Loss 

 Studies designed to investigate the role of T cells in the bone catabolic activity of 
cPTH revealed that an infusion of cPTH that mimics hyperparathyroidism fails to 
induce OC formation, bone resorption, and cortical bone loss in mice lacking 
T cells  [  35  ] . A second study conducted in older mice, a model in which cPTH 
causes cortical and cancellous bone loss, revealed that T cell-de fi cient mice are also 
protected against trabecular bone loss  [  5  ] . 

 An important  fi nding of these studies was that cPTH equally stimulated bone 
formation in T cell-replete and T cell-de fi cient mice  [  35  ]   [  5  ] . It should be noted that 
while the stimulation of bone formation induced by cPTH was completely T cell 
independent, the lack of T cells blocked the increase in bone formation induced by 
iPTH. The reason for this critical difference remains to be determined. 
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 These studies further revealed the existence of a cross-talk between T cells and 
SCs mediated by the CD40L/CD40 signaling system. T cells provide proliferative 
and survival cues to SCs and sensitize SCs to PTH through CD40L, a surface mol-
ecule of activated T cells that induces CD40 signaling in SCs. An important element 
of this regulatory loop is the capacity of PTH to upregulate the expression of CD40 
in SC from T cell-replete mice but not from T cell-de fi cient mice  [  35  ] . Thus T cells 
contribute to the CD40L/CD40-mediated exchange of information between T cells 
and SCs in two ways:  fi rst, by providing CD40L and secondly, by upregulating the 
expression of CD40 on SCs. As a result, mice lacking T cells or T cell-expressed 
CD40L have lower number of SCs. Furthermore, these SCs produce lower amount 
of RANKL and have an even smaller suppression of OPG secretion in response to 
PTH. Therefore, SCs from T cell-de fi cient mice have a lower capacity to support 
OC formation in vivo and in vitro. The alteration in SC function is the ultimate 
reason why deletion of T cells or T cell-expressed CD40L blunts the bone catabolic 
activity of PTH  [  35  ] . 

 Studies have also shown that cPTH increases the T cell production of TNF. This 
cytokine not only increases OC formation directly, but also TNF upregulates the 

  Fig. 2    Schematic representation of the role of T cells in the mechanism by which continuous 
PTH stimulates OC formation. Continuous PPR signaling in T cells induced by continuous PTH 
(cPTH) treatment stimulates the production of TNF. This cytokine increases CD40 expression by 
SCs. Binding to CD40 of T cell expressed CD40L increases SC sensitivity to PTH resulting in 
enhanced SC production of RANKL and diminished secretion of OPG in response to PTH. T 
cell-produced TNF further stimulates OC formation through its direct effects on maturing OC 
precursors. The  red arrows  represent the main modifi cations induced by activation of PPR 
signaling in T cells       
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expression of CD40 in SCs, thus increasing their response to T cell expressed 
CD40L. Attesting to the relevance TNF, cPTH fails to induce bone loss and stimu-
late bone resorption in mice lacking T cell TNF production  [  5  ] . 

 To determine whether PTH targets T cells directly, we have conditionally silenced 
the PTH receptor PPR in T cells. We found that removal of PPR signaling in T cells 
blunts the stimulation of bone resorption induced by cPTH without affecting bone 
formation. As a result, silencing of PPR signaling in T cells prevents the loss of corti-
cal bone induced by cPTH. Strikingly, the disruption of PPR signaling in T cells 
converts the effects of cPTH in trabecular bone from catabolic to anabolic  [  5  ] . 

 Collectively, our data reveal that the effects of cPTH on bone are the result of a 
mechanism that involves PPR activation and TNF production in T cells (Fig.  2 ). T 
cell-produced TNF stimulates bone resorption directly by potentiating the sensitiv-
ity of maturing OCs to RANKL. In addition, TNF enhances CD40L/CD40 signal-
ing from T cells to SCs by upregulating CD40 expression, an effect resulting in the 
increased capacity of SCs to support OC formation. Thus, a complex cross-talk 
between T cells and the osteoclastogenic machinery of the BM is central for the 
bone catabolic activity of cPTH.       
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    1   Introduction: Chronic Joint Diseases, 
a Major Health Problem 

 Chronic joint diseases are a major health problem as they are linked to pain, loss of 
function, and increasing disability. Osteoarthritis (OA) is the most prevalent disor-
der and is generally considered a degenerative disease associated with aging, tear-
and-wear, trauma, and acquired factors such as obesity  [  1  ] . In contrast, rheumatoid 
arthritis (RA) and the different forms of spondyloarthritis (SpA) are chronic 
in fl ammatory diseases, affecting younger people, steered on by persistent activation 
of the immune system  [  2,   3  ] . These in fl ammatory joint diseases can be further 
de fi ned as a group of chronic musculoskeletal disorders with common in fl ammatory 
pathways, characterized by joint organ and tissue damage, increased morbidity and 
mortality, and reduced quality of life. From a pathological perspective, not only 
changes in the adaptive and innate immune system but also molecular and cellular 
pathways that determine joint tissue homeostasis, repair and remodeling will deter-
mine the outcome of these diseases  [  4  ] . 

 RA is the best-known form of chronic arthritis and typically affects the peripheral 
joints in a symmetric fashion. The small joints of hand and feet are most commonly 
involved. RA affects more females than males and is associated with speci fi c HLA 
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genes (HLA-DRB1) as well as with other polymorphisms in genes with a role in the 
immune system  [  5  ] . Autoantibodies against speci fi c antigens play a role in patho-
genesis, course and diagnosis of the disease. Among these, antibodies directed 
against citrullinated proteins and rheumatoid factor appear most important. RA 
affects between 0.3 and 1% of the population and typically starts between the ages 
of 30 and 60 years. 

 The SpA concept groups distinct diagnostic entities that share common clinical, 
genetic, and morphological characteristics  [  6  ] . Ankylosing spondylitis (AS) 
formerly known as Bechterew’s disease, reactive arthritis, psoriatic arthritis, arthri-
tis associated with in fl ammatory bowel disease, a juvenile and an undifferentiated 
form are all part of the SpA concept (Fig.  1 ). The axial skeleton, in particular the 
sacroiliac joints and the lower spine, are commonly involved. Peripheral arthritis, if 
present, mainly manifests as a nonsymmetrical oligoarticular disease. SpAs and in 
particular AS affect more males than females and are genetically strongly associated 
with the HLA-B27 antigen. Other genetic factors have recently been identi fi ed and 
include a number of genes linked to immunity or in fl ammation  [  7  ] . In contrast with 
RA, these diseases are not associated with autoantibody formation. Like RA, the 
disorders that make up the SpA concept affect between 0.3 and 1% of the popula-
tion in the Western world.   

  Fig. 1    The spondyloarthritis concept. Ankylosing spondylitis represents that paradigm disorder 
for this group of related diseases. Other diagnostic entities include psoriatic arthritis, reactive 
arthritis, arthritis associated with in fl ammatory bowel disease (IBD), a juvenile and an undifferen-
tiated form. As clinical symptoms overlap, the  fi rst diagnosis may be made by the initial presenta-
tion but the disease phenotype may change over time resulting in either reclassi fi cation or  fi t in 
different entities       
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    2   Similar Symptoms But a Strikingly 
Different Outcome of the Diseases 

 Clinical manifestations of RA and the different SpAs are much alike (Fig.  2 ). 
Affected joints show swelling, redness, pain, warmth, and loss of function. As men-
tioned above, the pattern of joints involved may be very different, in particular with 
the dominance of axial disease in SpA. Nevertheless at the tissue level, common 
effector mechanisms and in fl ammation-driving processes are easily recognized  [  8  ] . 
Proin fl ammatory cytokines such as interleukin-1 (IL1) and tumor necrosis factor-
alpha (TNFa) are present, different types of immune cells invade the joint tissues, 
prostaglandins are activated and a number of tissue destructive enzymes are acti-
vated including matrix metalloproteinases (MMPs). However, the speci fi c tissues 
within the joint that are the primary target of the disease process may be different 
between RA and SpA (Fig.  2 )  [  8  ] . In RA, the synovium and the articular cartilage 
appear primarily involved. In SpA, strong evidence links the onset of disease to the 
enthesis, an anatomical zone in which tendons and ligaments insert into the underly-
ing bone and thus a site in which biomechanical stresses are transferred from the 
soft tissues to the skeleton.  

 The most surprising feature when considering both groups of chronic arthritis is 
found in the outcome of the diseases (Fig.  2 ). RA is typically characterized by 
extensive cartilage and bone destruction, whereas in AS and related SpAs often new 

  Fig. 2    Differences and similarities between different rheumatoid arthritis and spondyloarthritis. 
Despite the presence of similar symptoms at the individual joint level and the existence of compa-
rable immune mechanisms, anatomic sites where the disease processes start as well as the long-
term outcome may be very different. Rheumatoid arthritis is associated with the synovium and the 
articular cartilage, whereas increasing evidence supports a central role for the enthesis in spondy-
loarthritis. In rheumatoid arthritis structural damage is characterized by joint destruction, in spon-
dyloarthritis by ankylosis       
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cartilage and bone formation can be seen which is leading to the formation of 
syndesmophytes, osteophytes, or enthesophytes and which may result in progressive 
ankylosis of the sacroiliac joints and the spine.  

    3   Arthritis: Research Progress Translating 
Symptoms into Molecular Pathology 

 Over the last decades considerable progress has been made in our understanding 
of the basic mechanisms that underlie the signs, symptoms, and outcome in the 
different forms of chronic arthritis. Most progress has been made in understand-
ing the in fl ammatory cascades  [  2  ] . This has, among others, resulted in the 
identi fi cation of key cytokines (TNFa and IL6), key cell populations (T cells, 
macrophages, B cells) in these diseases and some of these  fi ndings have been 
translated into new advanced therapeutic strategies that have an unprecedented 
impact on the management and wellbeing of patients. Current biological thera-
pies thus include antibodies and soluble receptors directed against TNFa, anti-
bodies against the IL6 receptors, T cell modulators such as CTLA4-Ig and 
antibodies depleting B cell precursors  [  9  ] . 

 The rapidly emerging  fi eld of osteoimmunology research has also unveiled many 
of the molecular mechanisms that underlie progressive joint destruction. Osteoclasts 
have been identi fi ed as key cells in the destruction of bone and the formation of 
bone erosions and the molecular system supporting their differentiation, maturation, 
and activation has been discovered  [  10  ] . Recently antibodies against receptor of 
NFkB ligand (RANKL), one of the key factors, have also been introduced in clinical 
practice. These are currently used in the treatment of osteoporosis but are also stud-
ied in different joint diseases  [  11,   12  ] . Similarly, the research community has better 
understood mechanisms leading to activation and transformation of synovial 
 fi broblasts, mainly in rheumatoid arthritis  [  13  ] . By producing tissue destructive 
enzymes such as MMPs and by expressing RANKL these cells play an essential 
role in the progression of joint destruction. 

 The molecular cascades underlying new cartilage and bone formation that is 
leading to ankylosis, have been less studied. However, in the last couple of years, we 
and other groups have started to understand some of the basic mechanisms that steer 
ankylosis and how these are linked to the in fl ammation characteristic of chronic 
arthritis  [  14  ] . These studies have been hindered by the limited availability of tissue 
samples from human patients as biopsies from spinal lesions can only rarely be 
obtained. Advanced imaging techniques in patients including the widespread avail-
ability of nuclear magnetic resonance have clearly demonstrated the in fl ammatory 
lesions in AS and related SpAs but new bone formation, which is a slower process, 
remains dif fi cult to dynamically visualize and even consistently measure on 
convential X-ray images  [  15  ] .  
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    4   Successful Treatment of Signs and Symptoms in Arthritis 
May Not Always Be Suf fi cient to Obtain Full Control 
of the Diseases 

 The introduction of anti-TNF treatments in RA has not only transformed the 
management of the patients as signs and symptoms could be more effectively con-
trolled but also changed the outcome of the disease. Anti-TNF therapy, in particular 
when combined with conventional immunomodulating drugs such as methotrexate, 
also appears to successfully stop the radiographic progression of disease  [  16  ] . Joint 
erosions and damage predict loss of function and disability and control of these 
processes therefore adds an additional level of bene fi ts for patients and society. 
However, such a structural effect has only been recognized for joint destructive 
processes as seen in RA and some forms of psoriatic arthritis  [  17  ]  but has not been 
demonstrated for joint remodeling leading to ankylosis in AS and other SpAs. Three 
different studies comparing treatment with anti-TNF to a historical cohort over a 
2-year period could not demonstrate a bene fi t in terms of radiographic disease 
 progression  [  18–  20  ] . Nevertheless, it would be a mistake to downplay the effect 
that anti-TNF drugs have on both the short- and long-term outcome of patients 
with AS  [  21  ] . A recent study demonstrates that this outcome is determined by both 
in fl ammation and structural damage  [  22  ] . However, these observations also show 
that other mechanisms may play a role in the remodeling processes and that there is 
additional room for other or better interventions. Moreover, the differences between 
RA and SpA may also point towards speci fi c mechanisms of disease and change the 
prevalent concepts of chronic arthritis. 

 Different hypotheses have been put forward to explain these differences between 
RA and SpA or between effects of anti-TNF on joint destruction and remodeling. 
Sieper et al. propose the existence of fundamental differences in the pattern and 
duration of in fl ammation between RA and AS  [  23  ] . In RA, in fl ammation is hypoth-
esized to be a continuous and persisting process leading to progressive erosive dis-
ease. In AS and related SpAs, in fl ammation may be more  fl uctuating, leading to 
minor erosive damage and when it subsides, would leave a window of opportunity 
for repair processes to occur. This repair phenomenon, called osteoproliferation, 
however does not respect the original con fi nement of the damaged tissues and is 
exaggerated leading to syndesmophyte formation and ankylosis. 

 Although differences in in fl ammation between RA and AS are clear, some 
aspects of this hypothesis may be challenged. We and others demonstrated that 
inhibition of osteoclasts does not have an effect on joint remodeling and ankylosis 
in different mouse and rat models of arthritis thereby suggesting that erosion of 
bone is not necessary to trigger new bone formation  [  24,   25  ] . Also, in OA, osteo-
phyte formation is often considered a stabilizing effort in a damaged joint. Moreover, 
the striking paradox in AS that new bone formation from the edges of the vertebra 
and trabecular bone loss are occurring at the same time at sites that are in close 
proximity suggests that the mechanisms underlying new bone formation are at least 



96 K. Braem and R.J. Lories

partly independent from in fl ammation (Fig.  3 ). This view is further corroborated by 
ultrasound studies in AS patients, which show that sites of in fl ammation and bone 
erosion are distinct from the sites in which new bone formation occurs  [  26  ] .   

    5   Molecular Aspects of Ankylosis 

 As mentioned above, molecular studies on human bone samples are not easily 
performed and therefore most experimental evidence has been obtained in animal 
models. This  fi rst lead to the observation that ankylosis in different models mainly 
occurs through a process of endochondral bone formation  [  27  ]  that is well known 
from bone development  [  28  ] . Here, progenitor cells at the enthesis or periosteum 
appear to proliferate, condensate and start differentiating into chondrocyte-like 
cells. Subsequently the core of these cells further differentiates into hypertrophic 
chondrocytes. These cells produce not only collagen type X but also MMPs and 
Vascular Endothelial Growth Factor which leads to invasion by vessels, osteoclastic 
breakdown of the matrix and growth of osteoblasts and bone. Much alike the devel-
opmental cascades an outer core of direct bone formation appears present and the 
whole process is driven by a number of feedback mechanisms stimulating growth of 
the osteo- or enthesophyte. 

 Based on this striking resemblance between pathological bone formation leading 
to ankylosis and developmental cascades, different signaling pathways could play a 
role in ankylosis. We have extensively studied the role of bone morphogenetic pro-
teins (BMPs)  [  29,   30  ] . BMPs were originally identi fi ed for their in vivo bone induc-
tive properties but, as members of the transforming growth factor superfamily, have 
distinct effects on a variety of cell types. Some BMPs, including BMP2, play an 
important role in early chondrogenesis. We therefore targeted BMP signaling in a 

  Fig. 3    The bone paradox in ankylosing spondylitis. In fl ammation causes loss of trabecular bone 
leading to osteoporosis and enhanced fracture risk. In the same vertebrae, new bone formation may 
take place at the edges leading to ankylosis       
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speci fi c mouse model. DBA/1 mice, an inbred strain that is considered immunologi-
cally normal, spontaneously develop arthritis in the hind paws upon grouped caging 
of aging males from different litters  [  27  ] . This unusual arthritis is characterized by 
entheseal cell proliferation, local endochondral bone formation, and progressive joint 
ankylosis. Different BMPs are expressed in these processes and overexpression of a 
broad BMP extracellular antagonist noggin inhibits both onset and progression of 
disease. BMP target cells were identi fi ed in the early processes in which progenitor 
cells are progressing towards chondrogenic differentiation  [  29  ] . 

 The Wnt signaling pathway is another key player during skeletal development. 
Wnts are strongly associated with osteoblast differentiation but also have different 
effects depending on the speci fi c family member, on early chondrogenic differentia-
tion during endochondral bone formation  [  14  ] . In a series of experiments, Diarra 
et al. demonstrated that Wnt signaling may determine the phenotypical outcome of 
arthritis in mouse models  [  31  ] . Human TNF transgenic mice typically develop an 
erosive polyarthritis that shares many similarities with RA. However, when these 
mice are treated with an antibody directed against Dickkopf-1 (DKK1), a soluble 
Wnt co-receptor antagonist, bone destruction is inhibited and new bone formation 
by osteophytes becomes apparent. The in fl ammatory reaction however remains 
unchanged. Such observations are not only made in the peripheral joints but also in 
the sacroiliac joints  [  32  ] . Inhibition of DKK1 results in upregulation of osteoprote-
gerin, inhibiting osteoclast formation. At the same time, bone formation appears 
directly stimulated. Additional data suggest that functional levels of DKK1 in AS 
patients are low, although the absolute levels may be increased  [  33  ] .  

    6   An Alternative View on the Relationship Between 
In fl ammation and Ankylosis 

 The cohort observations in patients with AS were further corroborated by data 
obtained in the DBA/1 model  [  34  ] . Treatment with TNF antagonist etanercept had 
no effect on arthritis or ankylosis suggesting that in fl ammation and joint remodeling 
may be largely molecularly uncoupled events. As an alternative or complementary 
approach we have put forward the entheseal stress hypothesis (Fig.  4 ) in which we 
suggests that both in fl ammation and remodeling have a common trigger but then 
evolve separately thereby not excluding the potential crosstalk between the path-
ways  [  14  ] . As AS and related SpAs have been strongly associated with the enthesis, 
we put forward that biomechanical forces and local micro damage to the tissue may 
play a critical role in the onset of the diseases. In most normal individuals, local 
homeostatic and repair mechanisms, including minor acute in fl ammation will be 
suf fi cient to restore the tissue but under speci fi c circumstances, for instance in 
genetically predisposed individuals, in fl ammation may become a chronic process 
and new tissue formation may become a pathological rather than a repair process. In 
the former process cytokines like TNF are essential and their targeting represents an 
effective therapeutic option. In the latter, BMPs and Wnts may be critical mediators 
and could be considered as new therapeutic targets.  
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 The speci fi c anatomic site in which both processes develop may be different. 
In fl ammation develops in the synovium and the bone marrow (osteitis) underlying 
entheseal sites. The enthesis itself is largely resistant to cell invasion. We have 
therefore proposed the existence of a functional synovio-entheseal complex to 
understand the development of in fl ammation in AS, PsA, and other SpAs  [  35  ] . In 
contrast new bone formation develops from these mechanoprivileged sites  [  27  ] . 

 In this context, mesenchymal or stromal cells in the enthesis, bone marrow, and 
synovium may have a key role in the onset and perpetuation of the in fl ammation. In 
a series of elegant experiments in the TNFdARE mice, a mouse model of arthritis 
and colitis caused by the disruption of a regulator element in the mouse TNFa gene 
resulting in enhanced endogenous expression, showed that the presence of a TNF 
receptor on stromal cells is suf fi cient for the model to develop even when the 
in fl ammatory cells cannot respond to the key cytokine  [  36  ] . 

 The “chicken and egg” question whether stromal cells rather than in fl ammatory 
cells and by extension growth factors or proin fl ammatory cytokines, provide the 

  Fig. 4    The entheseal stress hypothesis. The primary event is considered as “entheseal stress.” 
Biomechanical factors and microdamage are likely to play a part in this. Entheseal stress leads to 
triggering of an acute in fl ammatory reaction and of progenitor cells. In most instances, the acute 
events are unnoticed and homeostasis is restored. Under speci fi c circumstances, the acute events 
can turn into a chronic situation in which both in fl ammation or ankylosis appears at the forefront. 
Different pathways regulate chronic in fl ammation and new tissue formation but these pathways are 
likely to in fl uence each other. Genetic factors are likely to steer chronic in fl ammation and new tis-
sue formation. For the latter aspects, clues may be found in other bone forming diseases ( IBD  
in fl ammatory bowel disease,  IL23R  interleukin 23 receptor,  ERAP1  endoplasmic reticulum amino-
peptidase 1). This  fi gure is reproduced from Lories et al., Arthritis Research and Therapy 2009, 
11(2):221  [  14  ]  with permission from the Publisher       
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 fi rst signals for disease onset in AS remains open. Although the cohort data and 
animal studies with anti-TNF suggest some degree of uncoupling between 
in fl ammation and tissue remodeling, recent evidence obtained in studies on a rare 
genetic disorder shed additional light on this issue. Fibrodysplasia ossi fi cans pro-
gressiva (FOP) is a rare disorder characterized by extensive new bone formation in 
muscles upon (mild) injury  [  37  ] . The disease is often lethal at a young age as an 
exoskeleton develops with aging. FOP has been associated with activating muta-
tions in the Activin A type I receptor (ACVR1) gene, which is also a BMP receptor 
 [  38  ] . Yu et al. recently engineered a mouse model with overexpression of a consti-
tutively active ACVR1 gene in the muscle  [  39  ] . However, to allow a controlled 
expression of the transgene, an additional removal of a genomic stop-cassette is 
necessary. Removal of the stop-cassette using an adenovirus overexpressing a cre 
recombinase enzyme leads to new bone formation in the adenovirus-injected mus-
cle. However, chemical induction of the transgene tamoxifen treatment in contrast 
is not suf fi cient to trigger this cascade but requires a nonspeci fi c injection of adeno-
virus in the target muscle. These experiments suggest that a full cascade only devel-
ops after initial microdamage or in fl ammation even in the presence of a constitutively 
active system leading to endochondral bone formation. These data are in line with 
the entheseal stress hypothesis and support its further investigation.  

    7   Conclusions 

 Current evidence from patient cohorts and from animal models suggests that 
in fl ammation and new bone formation are unique features of some forms of arthritis 
that also contribute to disability and thus represent a therapeutic challenge. Current 
strategies based on control of in fl ammation by targeting cytokines such as TNFa 
have no speci fi c effect on these disease features despite their overwhelming effect 
on signs and symptoms. This suggest that in fl ammation and new bone formation in 
AS and related SpAs are linked but largely molecularly uncoupled processes. 

 Further research in AS and related disorders should consider osteoimmunology 
concepts in the context of microdamage and biomechanical factors contributing to 
acute and chronic in fl ammation and also to tissue remodeling. BMP and Wnt sig-
naling pathways have been identi fi ed as targets but their modulation may represent 
speci fi c pharmacological and safety challenges. In addition, further evidence may 
come from genetic disorders such as FOP and also from more common diseases 
such as diffuse idiopathic skeletal hyperostosis in which new tissue formation is 
seen without a clear association with in fl ammation  [  40  ] .      
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          1   Introduction 

 Osteoclasts are multinucleated giant cells primarily responsible for bone resorption. 
Recent studies have revealed that receptor activator of NF- k B ligand (RANKL) and 
macrophage colony-stimulating factor (M-CSF) play central roles in osteoclast dif-
ferentiation  [  1–  3  ] . The binding of RANKL to its receptor RANK recruits TRAF6 to 
activate downstream signaling pathways, such as NF- k B, p38 mitogen-activated 
protein kinase (p38MAPK), and c-Jun N-terminal kinase (JNK), resulting in the 
differentiation, activation, and survival of osteoclasts [  1,   4  ] . It was previously dem-
onstrated that several cytokines either inhibit or promote RANKL and M-CSF-
induced osteoclastogenesis. TGF- b  is a cytokine with ubiquitous proliferation and 
differentiation activity in many types of cells, and is abundantly restored in bone  [  5,   6  ] . 
The binding of TGF- b  to the type II receptor recruits and phosphorylates type I 
receptors, which in turn activate downstream signaling, including both Smad and 
non-Smad pathways  [  6,   7  ] . Although the role of TGF- b  in osteoclast differentiation 
has been controversial, recent studies have revealed that TGF- b  directly acts on 
M-CSF-dependent bone marrow macrophages (BMMs) to promote osteoclastogen-
esis  [  8–  10  ] , whereas it inhibits osteoclastogenesis by stimulating osteoprotegerin 
production in osteoblasts  [  11  ] . 

 We here report that TGF- b  signaling is essential for RANKL and M-CSF-induced 
osteoclastogenesis both in vitro and in vivo. In addition, TGF- b  stimulates Cx3cr1 
expression in BMMs, which may play important roles in osteoclastogenesis.  
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    2   TGF- b  Is Indispensible for In Vitro Osteoclastogenesis 

 We  fi rst analyzed the effect of TGF- b  on RANKL and M-CSF-induced osteoclasto-
genesis in vitro. When BMMs were treated with 10 ng/ml M-CSF and 100 ng/ml 
RANKL for 3 days, many tartrate-resistant acid phosphatase (TRAP)-positive 
osteoclasts were formed. When the cultures were pretreated with TGF- b  (2 ng/ml) 
before RANKL and M-CSF, osteoclastogenesis was increased and a number of 
large osteoclasts were formed (Fig.  1b ). Conversely, when TGF- b  signaling was 
blocked either by administration of a speci fi c inhibitor SB431542 (3  m M) or by 
retroviral overexpression of dominant negative form of type II receptor of TGF- b  
(T b RIIDN), RANKL and M-CSF-induced osteoclastogenesis was almost com-
pletely abolished (Fig.  1c, d ). These results clearly demonstrated that TGF- b  is not 
only a stimulatory cytokine for osteoclastogenesis, but also it is indispensible for 
RANKL and M-CSF-induced osteoclast differentiation.   

    3   TGF- b  Is Indispensable for RANKL-Induced Bone 
Resorption In Vivo 

 We then assessed the effect of TGF- b  inhibition on RANKL-induced osteoclastogen-
esis in vivo. Five weeks old ddY mice were subcutaneously injected with 40 nmol 
GST-RANKL (kindly provided by Oriental Yeast Co.) into calvaria once a day for 
3 days  [  12  ] . They were sacri fi ced 3 days after the last injection, and the calvaria were 
collected for histological analysis. As shown in Fig.  2 , RANKL-induced osteoclast 
formation and bone resorption was strongly suppressed when SB431542 was 
concurrently administered with GST-RANKL. These data suggest that TGF- b  is 
indispensable for RANKL-induced osteoclastogenesis both in vitro and in vivo.   

  Fig. 1    Up- or downregulation of TGF- b  signal enhanced or inhibited RANKL-induced osteoclas-
togenesis, respectively. BMMs were treated with 10 ng/ml M-CSF and 100 ng/ml RANKL for 
3 days. TGF- b  signal was upregulated by pretreatment with 2 ng/ml TGF- b , or downregulated 
either by treatment with SB431542 (3  m M) or by retroviral overexpression of dominant negative 
form of type II receptor of TGF- b  (RxT b RIIDN). Cells were stained with TRAP. ( a ) Control, 
( b ) +TGF- b  (2 ng/ml), ( c ) +SB431542 (3  m M), ( d ) +RxT b RIIDN       
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    4   Cx3cr1 Is a Downstream Molecule of TGF- b  
in BMMs and Plays a Critical Role in Osteoclastogenesis 

 We then underwent cDNA microarray analysis of BMMs in which TGF- b  signal-
ing was up- or downregulated by TGF- b  stimulation or by retroviral overexpres-
sion of dominant negative form of TGF- b  receptor type II (RxT b RIIDN) to 
identify genes regulated by TGF- b  in BMMs. We picked up genes whose expres-
sion was upregulated more than twofold by TGF- b  stimulation and downregu-
lated to less than 0.5-fold by T b RIIDN introduction. Through con fi rmation by 
real-time RT-PCR, we extracted four candidate genes (Cx3cr1, Egr1, Enc1, and 
CD24a) as targets of TGF- b  (Fig.  3 ). Of these four genes, overexpression of 
Cx3cr1 partially rescued the inhibitory effect of RxT b RIIDN on osteoclastogen-
esis (Fig.  4 ). Conversely, its silencing by short hairpin RNA (shCx3cr1) reduced 
the stimulatory effect of TGF- b  on osteoclastogenesis (Fig.  5 ). Cx3cr1 is a recep-
tor of Cx3cl1/fractalkine, a potent chemotactic factor reported to be involved in 
the synovial in fl ammation of rheumatoid arthritis. Recent study has suggested 
that Cx3cl/fractalkine induced migration of bone marrow cells containing osteo-
clast precursors, and anti-Cx3cl1 antibody signi fi cantly suppressed mature osteo-
clast differentiation  [  13  ] , suggesting a critical role of the CX3CL1–CX3CR1 axis 
in osteoclast development.     

  Fig. 2    Five weeks old ddY mice received subcutaneous injection into calvaria of 40 nmol GST-
RANKL or PBS ( control ) together with the indicated amount of SB431542 once a day for 3 days. 
Three days after the last injection, calvaria bones were collected and  fi xed with 4% paraformalde-
hyde. After decalci fi cation and embedment in paraf fi n, coronal sections were cut from the speci-
men. TRAP-stained sections near the sagittal suture were shown. Bar = 200  m m       

 



  Fig. 3    In a comprehensive analysis using DNA array, several genes were picked up whose expres-
sion was upregulated more than twofold by TGF- b  stimulation and downregulated less than 0.5-
fold by retroviral T b RIIDN introduction. Real-time RT-PCR demonstrated that the expression of 
Cx3Cr1, Egr1, Enc1, and CD24a was increased in response to TGF- b  (2 ng/ml) treatment, and 
suppressed by T b RIIDN expression       

  Fig. 4    Retroviral overexpression of Cx3cr1 partially recovered the inhibitory effect of 
SB431542 on RANKL and M-CSF-induced osteoclastogenesis. After Cx3cr1 was retrovirally 
introduced, BMMs were treated with 10 ng/ml M-CSF, 100 ng/ml RANKL in the presence or 
absence of 1  m M SB431542 for 3 days. Cells were stained with TRAP       

  Fig. 5    Gene silencing of Cx3cr1 by retrovirus-mediated overexpression of short hairpin RNA 
(shCx3cr1) suppressed the stimulatory effect of TGF- b  on RANKL and M-CSF-induced osteoclas-
togenesis. After shRNA of Cx3cr1 was retrovirally introduced, BMMs were treated with 10 ng/
ml M-CSF, 100 ng/ml RANKL, and 2 ng/ml TGF- b  for 3 days. Cells were stained with TRAP       
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    5   Conclusion 

 In this study, we demonstrated that TGF- b  signal is indispensable for RANKL and 
M-CSF-induced osteoclastogenesis both in vitro and in vivo, and Cx3cr1 may act as 
an important downstream effector of TGF- b  in BMMs. Further studies are required 
to elucidate the precise mechanism of action of Cx3cr1 in physiological and/or 
pathological bone resorption.      
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          1   Introduction 

 Cytokines are major regulators of bone homeostasis and in fl uence the function of 
both osteoblasts and osteoclasts. For instance, receptor activator of NF-kB ligand 
(RANKL) is a member of the tumor necrosis factor (TNF) family and an essential 
mediator of osteoclastogenesis. Apart from RANKL, proin fl ammatory cytokines 
modulate osteoclast differentiation, amongst them TNF- a  is a potent stimulator of 
osteoclastogenesis. Other proin fl ammatory cytokines like IL-17 and IL-11 are also 
stimulators of bone resorption by inducing osteoclast differentiation, whereas oth-
ers such as interferon-(IFN)- g  and IL-12 suppress osteoclastogenesis and balance 
enhanced bone resorption. In this chapter, we focus on the IL-1 of cytokine family 
and summarize their role on bone homeostasis. Members of the IL-1 cytokine fam-
ily are involved in multiple cellular functions including the innate and adaptive 
immune system. They are key mediators of in fl ammation and govern the complex 
processes of cell traf fi cking, cytokine and matrix enzyme release, fever responses, 
and metabolic changes during in fl ammatory disease.  

    2   Interleukin-1 

 The pro-in fl ammatory cytokine IL-1 is induced by TNF- a  and was  fi rst described as 
factor acting on T and B cells driving immune responses  [  1  ] . Since then, it became 
evident that IL-1 is one of the key players during acute in fl ammation and produced by 
multiple cell lineages including macrophages, lymphocytes as well as mesenchymal cells. 
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There are two polypeptides, IL-1 a  and IL-1 b . Both polypeptides bind to the same cell 
surface receptors and exert similar biological functions. IL-1 a  is predominantly 
expressed in the cytoplasm and already active as a pro-form (pro-IL-1 a ), whereas 
IL-1 b  is functionally inactive as a pro-form and only exerts its action after cleavage by 
the interkeukin-1 converting enzyme. IL-1 has multiple biological functions: it con-
tributes the activation of several leukocyte lineages, endothelial cells, and synovial 
 fi broblasts. In addition, IL-1 is a highly potent inducer of matrix enzyme production 
by chondrocytes. In addition, IL-1 is essentially involved in the fever response and 
also plays an important role in glucose metabolism by promoting the death of beta 
cells in the pancreas and impairing glucose tolerance and promoting diabetes. 

 IL-1 was shown to exert potent effects on bone tissue by enhancing bone resorp-
tion activity in vitro and in vivo  [  2  ] . IL-1 has been shown to prolong the lifespan of 
osteoclasts  [  3  ]  and thereby contributing to osteoclast survival and formation. Together 
with TNF- a , IL-1 appears to play a crucial role in recruiting osteoclasts together with 
in fl ammatory cells to in fl ammation sites and thereby induces local activation of joint 
destruction. Elegant studies by Wei et al. have shown that TNF induces expression of 
IL-1 and IL-1R in mesenchymal cells, which both support their osteoclastogenic 
effects on mononuclear cells  [  4  ] . Thus, IL-1 induces RANKL expression in mesen-
chymal cells and additionally acts directly on osteoclasts by enhancing expression of 
RANK  [  4–  6  ]  (Fig.  1 ). Blockade of IL-1 by its soluble receptor antagonist (IL-1ra) or 
by using mice de fi cient for the type I IL-1R receptor strongly reduced the potential 
of TNF to induce osteoclast formation, suggesting that IL-1 represents a major link 
between TNF and osteoclast formation in vitro and in vivo.  

 The central role of IL-1 in in fl ammatory osteoclastogenesis is also supported 
by the destructive nature of arthritis models, which depend on IL-1, such as colla-
gen-induced arthritis or serum transfer-induced arthritis  [  7  ] . Thus, for instance, 
de fi ciency of the type I IL-1R does not only achieve excellent protection from 
in fl ammatory signs of arthritis in the serum transfer model but also protection 
from local bone destruction. Even in arthritis, where in fl ammatory signs of dis-
ease are fully TNF-dependent (TNFtg mice) and which do not require IL-1, this 
cytokine is pivotal for local bone erosion and systemic bone loss  [  5,   6  ] . These 
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previous data as well as the observation that over-expression of IL-1 causes 
osteopenia  [  8  ]  suggested that IL-1 plays a central role in TNF-mediated systemic 
in fl ammatory bone loss as well.  

    3   Interleukin-18 

 IL-18 has been described as IFNg inducing factor in the mid-1990s  [  9  ] . IL-18 
thereby acts in synergy with Il-12 to stimulate the release of IL-18 from TH1 
cells. Moreover, IL-18 is involved in the regulation of energy intake and insulin 
sensitivity. IL-18, like IL-1 is widely expressed in the hematopoietic lineage and 
also found in mesenchymal cells. It is secreted from the cells and acts in an auto-
crine and paracrine fashion by engaging its receptor, which shares structural 
homologies to the IL-1 receptor. The b-subunit thereby forms high af fi nity com-
plexes with IL-18/IL-18R alpha chain dimmers. IL-18 is expressed in mesenchy-
mal cells such as osteoblasts and its expression is induced by parathyroid hormone 
 [  10  ]  (Fig.  2 ). In fact, the anabolic effect of parathyroid hormone is at least in part 
mediated by the induction of IL-18 in the osteoblast lineage. Furthermore, bind-
ing of IL-18 to osteoblasts stimulates the expression of osteoprotegerin  [  11  ] . It is 
known as a potent suppressor of osteoclastogenesis  [  12  ] . Anti-osteoclastogenic 
activity of IL-18 is particularly strong during the early phase of the differentia-
tion process. The fact that IL-18 induces several potent cytokine inhibitors of 
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  Fig. 2    Interleukin-18 blocks osteoclastogenesis.  OB  osteoblast,  OCP  osteoclast precursor,  PTH  
parathyroid hormone,  OPG  osteoprotegerin,  GMCSF  granulocyte/macrophage colony stimulating 
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 osteoclastogenesis such as IFNg and GM-CSF in T cells and explains its strong 
anti-osteoclastogenic activity, which is re fl ected by impaired bone resorption 
when IL-18 is administered. Thereby the induction of GMCSF appears to be 
essential in mediating the effects of IL-18 on the osteoclast and T cells have been 
identi fi ed as the primary source of GMCSF production elicited by IL-18  [  13  ] . 
Thus IL-18 exerts profoundly different effects to the skeleton as compared to 
IL-1 by fostering osteoblast-mediated bone formation and inhibiting osteoclast-
mediated bone erosion.   

    4   Interleukin-33 

 Interleukin (IL)-33 is a recently described member of the IL-1 family  [  14,   15  ] , 
constitutively expressed in various tissues, particularly in endothelial cells and 
epithelial cells exposed to the environment, such as skin, gastrointestinal tract, 
and the lungs. Similar to IL-1 b , IL-33 may act as both a cytokine and a nuclear 
factor. As a cytokine, IL-33 signals through its interaction with a heterodimeric 
receptor consisting of membrane-bound ST2L (member of the IL-1 receptor family) 
and IL-1R accessory protein (IL-1RAcP), leading to NF-kB and MAPkinase acti-
vation. ST2L is expressed on monocytes, macrophages, neutrophils, T cells, 
particularly TH2 (but not TH1 cells), and mast cells. IL-33 is involved in the 
polarization of IL-5-producing T cells, migration of TH2 cells, activation of baso-
phils, mast cells, eosinophils, and alternatively activated macrophages, contributing 
to allergic response and asthma. IL-33 also promotes chemo-attraction of neutro-
phils to in fl ammatory sites and attenuates poly-microbial sepsis and mediates 
mast cell-dependent arthritis. 

 IL-33 is expressed in the bone tissue and acts as a bone protective cytokine by 
effectively blocking osteoclastogenesis and local bone erosions  [  16  ] . Exogenously 
administered IL-33 also blocks TNF- a -mediated local and systemic bone loss 
in vivo. Conversely, deletion of the IL-33 receptor ST2 in bone marrow cells 
enhances bone loss  [  17  ] . The mechanism by which IL-33 exerts its inhibitory effect 
on osteoclast differentiation is not likely by the regulation of OPG or RANKL 
synthesis. Instead IL-33 directly acts on human and mouse bone marrow CD11b +  
cells by inhibiting their development toward mature osteoclasts. IL-33 appears to 
shift the osteoclast precursor differentiation towards alternatively activated mac-
rophages. IL-33-activated alternatively activated macrophages produce elevated 
levels of IL-4 and GM-CSF, which are known inhibitors of osteoclast differentia-
tion  [  17  ]  (Fig.  3 ). Interestingly, IL-33 is not able to affect osteoclast development 
when added to committed immature osteoclasts, suggesting that IL-33 acts on the 
very early step of cell commitment. This phenomenon may also explain the lack of 
an inhibitory effect of IL-33 on osteoclast development from human peripheral 
blood CD14 +  cells  [  18,   19  ] .   



11312 Effects of the Interleukin-1 Cytokine Family on Bone

    5   Summary 

 IL-1 family members constitute a group of cytokines at the interphase between 
in fl ammation and the skeletal system. All three IL-1 family members have potent 
effects on bone and are particularly involved in the regulation of bone resorption by 
modulating osteoclast differentiation. Whereas IL-1 is a potent inducer of osteoclas-
togenesis and bone loss, IL-18 and IL-33 are strongly inhibitors of bone resorption. 
The pattern of IL-1 family member expression within in fl ammatory tissue is there-
fore of key importance for bone damage elicited by in fl ammation. Clinical relevance 
of this concept is strongly supported by the bone phenotype of gout, which is a 
highly IL-1-driven in fl ammatory process based on uric acid crystal deposition and 
in fl ammasome activation, which is accompanied by vast bone resorption induced 
by IL-1-driven osteoclastogenesis.      
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 The primary ITAM-containing signaling adapters, in osteoclast lineage cells, are 
DAP12 and the Fc e RI g  chain (FcR g ). Each associates with speci fi c immunorecep-
tors. DAP12 associates with the receptors TREM2 and SIRP b 1  [  1  ] , while FcR g  
recognizes OSCAR  [  2,   3  ] . Both molecules also contain an ITAM motif, within their 
cytoplasmic domains, whose phosphorylated tyrosines provide a high-af fi nity bind-
ing site for Syk family kinases. 

 DAP12 de fi ciency is purported to arrest osteoclast formation induced by 
RANKL and M-CSF, a defect rescued by co-culture with osteoblasts  [  4,   5  ] . While 
absence of DAP12 yields mild osteopetrosis, added deletion of FcR g  markedly 
enhances severity  [  4,   5  ] . These observations prompt the current posture that FcR g , 
in association with its co-receptor, OSCAR, compensates for absence of DAP12 
in the osteoclastogenic process. On the other hand, controversy exists as to 
whether DAP12 and/or FcR g  exert their resorptive effects by promoting osteo-
clastogenesis or by enabling the osteoclast to structure its cytoskeleton  [  4–  7  ] . We 
document that Dap12 de fi ciency predominantly dysregulates the osteoclast 
cytoskeleton prohibiting the cell from transmigrating through an osteoblast layer 
and attaching to substrate. In consequence, removal of osteoblasts in co-culture 
with osteoclast precursors also eliminates resorptive polykaryons yielding the 
misconception that osteoclastogenesis is arrested  [  8  ] . 
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    1   Dap12-De fi cient Bone Marrow Macrophages 
in Co-culture Yield Few Osteoclasts Following 
Removal of Osteoblasts 

 To determine if osteoblasts compensate for absence of Dap12, we co-cultured bone 
marrow macrophages (BMMs) lacking the ITAM protein with WT calvarial osteo-
blasts. After 7 days, osteoblasts were removed with collagenase. Sheets of charac-
teristic WT osteoclasts form, which are virtually absent in cells lacking DAP12, 
with or without FcR g . 

 We next retrovirally expressed one or the other ITAM proteins in Dap12−/−/
FcR g −/− (DKO) BMMs and placed them in co-culture. DAP12, but not FcR g  trans-
duction into DKO cells yielded a population of spread osteoclasts indistinguishable 
from WT. Thus DAP12, but not FcR g , mediates osteoclast formation even in the 
presence of osteoblasts. 

 To identify the ITAM adaptor components mediating osteoclast formation and 
function, we retrovirally transduced DKO macrophages with chimeras containing 
various combinations of DAP12 and FcR g  extracellular, transmembrane, and cyto-
plasmic domains. The transduced osteoclast precursors were cultured with WT 
osteoblasts. DAP12’s transmembrane domain is required to induce DKO mac-
rophages to differentiate into normal appearing osteoclasts following removal of 
osteoblasts. While necessary, the DAP12 transmembrane region is not suf fi cient to 
rescue DKO osteoclasts as either the DAP12 extracellular or intracellular domain is 
also required. Consistent with these  fi ndings, substitution of the charged amino acid 
in the DAP12 transmembrane domain, which disrupts receptor association (R231A), 
and a nonfunctional ITAM mutation (2YF), fail to rescue DAP12−/− osteoclasts 
following osteoblast removal. 

 These data differ from the conclusions of Koga et al.  [  4  ]  and Moscai et al. 
 [  5  ]  who claim that the impaired osteoclastogenesis of DAP12-de fi cient mac-
rophages is normalized by osteoblasts. A possible explanation for this discrep-
ancy would be failure of DAP12−/− osteoclasts to transmigrate through the 
osteoblasts and adhere to plastic  [  9  ] . In this circumstance, collagenase treatment 
would remove not only osteoblasts but associated osteoclasts as well. In fact, 
DAP12−/− co-cultures not treated with collagenase contain osteoclasts in num-
bers approximating WT. On the other hand, whereas WT osteoclasts generated 
by osteoblasts form actin rings, these structures are absent in those lacking 
DAP12−/− which also fail to spread indicating cytoskeletal dysfunction (Fig.  1 ). 
To directly examine transmigration, DAP12−/− and WT pre-fusion osteoclasts 
were lifted and placed on osteoblast-like ST-2 cells. Whereas WT osteoclasts 
transit completely through the osteoblast layer and spread on plastic, DAP12−/− 
cells are incapable of doing so.   
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    2   OSCAR-FLAG Activation Induces 
Fusion of Dap12−/− Osteoclasts 

 Evidence suggests that the OSCAR ligand(s) is likely expressed by osteoblasts, thus 
providing a presumptive mechanism for the generation of DAP12−/− osteoclasts in 
co-culture  [  4,   5,   10  ] . The abnormal appearance of DAP12−/− osteoclasts indicates, 
however, that the OSCAR/FcR g  axis, putatively activated by osteoblasts, is 
insuf fi cient to rescue their cytoskeleton. 

 To explore the role of OSCAR in organizing the cytoskeleton of Dap12−/− osteo-
clasts, we designed a construct, with a FLAG-tag at the OSCAR carboxyl terminus 
which localizes to the plasma membrane and co-immunoprecipitates with FcR g . 
FcR g  is phosphorylated in construct-transduced, but not vector bearing, DAP12−/− 
osteoclasts by anti-FLAG mAb. Furthermore, the stimulating antibody promotes 
osteoclast formation in DAP12−/− cells but not in the absence of its co-receptor, 
FcR g .    While activated OSCAR-FLAG substantially increases the size of DAP12−/− 
osteoclasts, façade of their cytoskeleton remains disorganized. In contrast to WT 
OSCAR, a transmembrane mutant, R231A, structurally predicted to inhibit FcR g  
recognition  [  10  ] , bound to FLAG, only partially increases poorly spread DAP12−/− 
osteoclasts. As in cells lacking FcR g , absence of Syk, an OSCAR effector in other 
cells, abolishes OSCAR-mediated osteoclast organization.  

  Fig. 1    Dap12−/− BMMs were cultured with WT osteoblasts. Seven days later some cultures were 
treated with collagenase to remove osteoblasts. All cells were TRAP stained to identify osteoclasts 
which are rare in collagenase-exposed wells. Osteoclasts are abundant in non-collagenase-treated 
co-cultures but their “crenated” appearance is indicative of cytoskeletal dysfunction       
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    3   OSCAR-FLAG Activation Suppresses    Osteoclast 
Apoptosis But Not Differentiation 

 OSCAR-FLAG activation increases DAP12−/− osteoclast size but not cytoskeletal 
organization. Alternatively, markers of osteoclast differentiation are not increased 
in these cells, nor are RANKL-and M-CSF-stimulated osteoclastogenic signals. 
Hence, OSCAR does not impact precursor differentiation into osteoclasts and the 
same holds true regarding BMM proliferation. OSCAR-FLAG activation, how-
ever, inhibits apoptosis of osteoclasts deprived of either M-CSF or RANKL. 

 To determine if OSCAR mediates the capacity of FcR g  to partially compensate 
for DAP12 de fi ciency we generated osteoclasts, retrovirally transduced with 
OSCAR-FLAG, on anti-FLAG mAb- or IgG-coated coverslips. While WT cells 
form classical podosome belts, DAP12−/− transductants on anti-FLAG mAb con-
tain a few small circular actin structures at their periphery. Vector-bearing cells 
exhibit no cytoskeletal organization on bone, but atypical “non-expanded actin 
rings” appear in OSCAR-FLAG-activated osteoclasts. Although smaller than 
those stimulated by anti-FLAG mAb, these abnormal actin structures are also 
induced by IgG. In keeping with this observation, anti-FLAG mAb also rescues 
the failed bone resorptive capacity of DAP12−/− osteoclasts. However, IgG expo-
sure partially does so suggesting an OSCAR-activating ligand may reside in bone 
matrix  [  6,   11,   12  ] . 

 Matrix-derived signals, mediated via the  a v b 3 integrin and M-CSF, are particu-
larly important in organizing the osteoclast cytoskeleton  [  12  ] . This signaling com-
plex includes c-Src, Syk, DAP12, Vav3, the SLP adaptor proteins, and the small 
GTPase, Rac  [  6,   11–  14  ] . Absence of any of these complex-residing proteins yields 
OCs which fail to spread. Indicating that the partial rescue of DAP12−/− osteoclast 
function and cytoskeletal organization, extant in OSCAR-FLAG-overexpressing 
mutant cells, is mediated by the  a v b 3 integrin/M-CSF-activated complex, and 
phosphorylation of the guanine nucleotide exchange factor, Vav3, is phosphory-
lated by FLAG mAb  [  13  ] . 

 This study was prompted by discrepant observations regarding the means by 
which DAP12 mediates bone degradation. Koga et al.  [  4  ]  and Moscai et al.  [  5  ] , 
who established the severe osteopetrosis of mice with combined deletion of the 
two ITAM proteins, conclude that DAP12 de fi ciency arrests osteoclastogenesis 
induced by RANKL and M-CSF. We  fi nd, however, DAP12-de fi cient osteoclasts 
do form when exposed to the cytokines but fail to resorb bone because of 
cytoskeletal dysfunction  [  6,   7  ] . We presently con fi rm our conclusion in living 
osteoclasts. Normal expression of osteoclast differentiation markers in DAP12-
de fi cient M-CSF/RANKL cultures  [  5  ]  challenges the concept of failed 
osteoclastogenesis. 

 Given the capacity of DAP12-de fi cient macrophages to differentiate into sub-
strate-adherent osteoclasts in the presence of RANKL and M-CSF, we were sur-
prised that few such cells were present when generated with osteoblasts if the 
latter cells were removed with collagenase. We therefore suspected that the 
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cytoskeletal abnormalities of DAP12−/− osteoclasts compromise their capacity to 
transmigrate through the osteoblast layer and attach to substrate, and such proves 
to be the case. 

 Indirect evidence suggests that the ligand(s) for the FcR g  co-receptor, OSCAR, 
is expressed by osteoblasts  [  10  ] . This speculation provided the rationale for assum-
ing that the putative rescue of DAP12−/− osteoclastogenesis by the bone-forming 
cells re fl ects FcR g  activation. Because we  fi nd DAP12 de fi ciency does not impair 
recruitment of osteoclasts, but their function, we asked if OSCAR rescues the cell’s 
compromised cytoskeleton. In contrast to their absence on FLAG mAb-coated glass, 
actin ring-like structures, albeit abnormal, form in OSCAR-FLAG-expressing 
DAP12−/− osteoclasts on similarly treated bone. It is therefore possible that, similar 
to its regulation of  a v b 3 integrin conformation, bone matrix contains an OSCAR-
binding molecule(s), which when faced with an abundance of the receptor is 
suf fi cient to partially organize the osteoclast cytoskeleton and promote resorption  [  11  ] . 
Thus, two possible scenarios present themselves. First, endogenous FcR g , interact-
ing with physiological amounts of OSCAR, is incapable of affecting the osteoclast 
cytoskeleton. Second, osteoblasts contain insuf fi cient OSCAR ligand to activate 
FcR g . In consequence, other components of the marrow environment, such as mem-
bers of the immune system, deserve investigation as sources of OSCAR ligand  [  15  ] . 
Hence, the prevalent effect of DAP12 de fi ciency not arrested osteoclast recruitment, 
but cytoskeletal disorganization. Furthermore, failure of osteoblasts to normalize 
DAP12−/− osteoclasts indicates that functionally relevant quantities of OSCAR 
ligand do not reside in bone-forming cells.      
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  CAII    Carbonic anhydrase II   
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  ERK    Extracellular signal-regulated kinase   
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  PLEKHM1     Pleckstrin homology domain containing, family M (with RUN 
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  PRELP    Proline/arginine-rich end leucine-rich repeat protein   
  RANK    Receptor activator of NF-kappaB   
  RANKL    Receptor activator of NF-kappaB ligand   
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  SERM    Selective estrogen receptor modulator   
  SIRP    Signal-regulatory-protein   
  TCIRG1    T-cell immune regulator 1   
  TFG b     Transforming growth factor  b    
  TNFSF11    Tumor necrosis factor ligand superfamily, member 11   
  TNFRSF11A    Tumor necrosis factor receptor superfamily, member 11A   
  TRAcP    Tartrate-resistant acid phosphatase     

        1   Introduction 

 Osteoclasts are exceptionally interesting cells as they belong to the only lineage known 
so far to be able to resorb bone  [  1  ] . They share various features with macrophages, 
including the ability to fuse into syncytial entities to became multinucleated, but 
resorb the bone by an unique mechanism not shared with any other cell type  [  2  ] . 
Isolation and in vitro differentiation of osteoclast precursors have provided over the 
last decades powerful tools to investigate the mechanisms of osteoclast differentiation, 
bone resorption, and interplay with the extracellular matrix and other cell types  [  3  ] . 
The  fi eld is still rapidly expanding providing new knowledge which is expected to 
lead promptly to new interventions to treat osteoclast-dependent diseases. Here I will 
describe the principal features of osteoclast biology, and will highlight new determi-
nants that are likely to represent the basis for innovative therapies.  

    2   Osteoclast Biology and Bone Resorption 

 Osteoclasts are localized on resorbing bone surfaces (Fig.  1 ), both at the trabecular 
and cortical level. They appear polarized, tightly attached to the bone matrix, with 
nuclei and organelles located in the vascular side of the cell, and an apical mem-
brane facing the bone surface, extensively infolded to form the ruf fl ed border  [  4  ]  
(Figs.  1  and  2 ). This area is surrounded by a sealing zone whose cytoplasm is devoid 
of organelles, but is enriched in micro fi laments which contribute to the organization 
of podosomes, the adhesion structures involved in the attachment of the cell to the 
bone surface. They recognize RGD-proteins by speci fi c integrins, especially the 
 a V b 3 receptor  [  5,   6  ] .   

 Polarization is essential for osteoclast function  [  4,   7  ]  and involves not only 
organelle distribution but also the polarized traf fi cking of intracellular acidic vesi-
cles  [  8  ]  which accumulate above the ruf fl ed border and are then secreted with a 
threefold purpose: (1) to increase the extension of the ruf fl ed border membrane, (2) 
to send the ruf fl ed border membrane the ion transporters required for hydroxyapa-
tite dissolution, and (3) to secrete the enzymes involved in the degradation of the 
bone organic matrix  [  8  ] . 

 Bone resorption takes place extracellularly, in the area underneath the osteoclast, 
tightly and dynamically sealed by the sealing membrane, called resorbing lacuna 
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(Figs.  1  and  2 ), in which acidi fi cation and acidic hydrolases, especially the cistein 
proteinase cathepsin K, dissolve all components of the bone matrix  [  1,   9,   10  ] . 
Several mechanisms are important for bone resorption and some of them are altered 
in the typical osteoclast disease, osteopetrosis  [  11  ] , especially in those forms in 
which osteoclast are generated but are unable to resorb the mineralized matrix. 
Indeed, mutations of various genes involved in the generation of an acidic microen-
vironment as well as mutations of the cathepsin K gene are known to impair osteo-
clast function in humans  [  11  ]  (Table  1 ).  

 Osteoclasts originate from the granulocyte-macrophage colony-forming unit 
through a series of steps leading to hematopoietic precursor commitment, differen-
tiation, multinucleation, and activation  [  12,   13  ] . Many genes are involved in this 
process, the earliest being the PU.1 transcription factor which, along with M-CSF 
and the MITF, c-fos and c-jun transcription factors, induces committed precursor to 
differentiate into a pre-osteoclast sensitive to the osteoclastogenic cytokine RANKL 
 [  13,   14  ] . Expression of RANK is indeed the essential mechanism by which precur-
sors are enabled to maturate into multinucleated osteoclasts ( [  15  ] , Table  1 ) through 
the activity of fusion proteins, including DC-STAMP, MFR, and the d2 subunit of 
the V-H + ATPase  [  16  ] . The  fi nal step of osteoclast activation requires cytoskeletal 
remodeling and integrin-mediated signals which induce osteoclast polarization and 
adhesion to bone, and trigger vesicular traf fi cking enabling the organization of the 
ruf fl ed border, the transport of protons, and the secretion of the proteolytic enzymes 
into the resorbing lacuna (Fig.  2 )  [  1,   7–  10  ] . 

 Until recently, osteoclasts were believe to depend on osteoblasts for their function 
with no return signals from osteoclasts to osteoblasts, except those released from 

  Fig. 1    A resorbing osteoclast ( black arrow ) is a polarized, multinucleated cell which attaches to 
the bone matrix delimitating the resorbing lacuna ( red arrow ) toward which it extends the ruf fl ed 
border ( yellow arrow ). Nuclei are located in the area opposing the bone, and the cytoplasm appears 
 fi nely granular. Original magni fi cation ×100       

 



   Table 1    Genes involved in diseases due to osteoclast impairment   

 Gene  Protein  Disease 

  TCIRG1   a3 subunit of the V-ATPase  Osteoclast-rich autosomal recessive 
osteopetrosis 

  CLC7   Cl − /H +  type 7 antiporter  Osteoclast-rich autosomal recessive 
osteopetrosis with neurodegeneration 

  CLC7   Cl − /H +  type 7 antiporter  Autosomal dominant osteopetrosis 
  OSTM1   Ostm1 protein involved in Cl − /H +  type 

7 antiporter stabilization 
 Osteoclast-rich autosomal recessive 

osteopetrosis with neurodegeneration 
  CAII   Carbonic anhydrase type II  Osteoclast-rich autosomal recessive 

intermediate osteopetrosis with 
tubular acidosis and cerebral 
calci fi cations 

  PLEKHM1   Plekhm1 protein involved in vesicle 
acidi fi cation 

 Osteoclast-rich autosomal recessive 
intermediate osteopetrosis 

  TNFSF11   RANKL  Osteoclast-poor autosomal recessive 
osteopetrosis 

  TNFRSF11A   RANK  Osteoclast-poor autosomal recessive 
osteopetrosis 

  NEMO   Nemo protein involved in NF- k B 
signal 

 X-linked osteoclast-poor osteopetrosis 

  CTK   Cathepsin K  Pycnodysostosis or Toulouse-Lautrec 
disease 

  SNX10  [  17  ]    Sorting nexin family  Osteoclast-rich autosomal recessive 
osteopetrosis 

  Fig. 2    The osteoclast and the molecular mechanisms involved in bone resorption       
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bone matrix during resorption (i.e., TGF b , BMPs, IFGs, FGFs, PDGF, etc.)  [  18  ] . 
This vision is now changed and it is generally accepted that osteoclasts may contrib-
ute to correct remodeling through cellular mechanisms which so far are known to 
involve the S1P and the TRAcP proteins released by the cell  [  11,   19  ] . These signals 
are able to recruit osteoblasts and increase their activity  [  20,   21  ] . In addition, the 
ephrinB2, expressed by osteoblasts, and its receptor eph4, expressed by osteoclasts, 
represent a two-ways signal that inhibits osteoclasts while enhancing osteoblast 
activity  [  22  ] . Furthermore, osteoblasts have indirect systemic effects on energy 
metabolism in response to insulin, enhancing osteoclast bone resorption which, in 
turn, releases and decarboxylates the bone matrix protein osteocalcin. Entering the 
circulation, decarboxylated osteocalcin acts as a systemic stimulator of islet  b  cell 
insulin secretion and peripheral tissue sensitivity to insulin  [  23  ]  (Fig.  3 ).  

  Fig. 3    Two-ways osteoblast–osteoclast cross-talk       
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 Osteoblast–osteoclast cross-talk is essential for correct bone remodeling, which 
consists in the sequential and balanced activities of the two cell types at the same 
site, to ensure removal and replacement of the same amount of bone. Imbalance of 
resorption/formation cycles induces bone diseases, with increased bone mass if 
bone resorption is low (Table  1 ), and reduced bone mass if resorption is higher than 
formation  [  2  ] . In both cases, the skeleton becomes fragile and prone to fracture. 

 Antiresorptive treatments are still the gold standard therapy to combat osteoporo-
sis, along with anabolic intervention  [  24  ] . However, existing antiresorptive drugs used 
chronically have revealed a number of pitfalls that are required to be resolved. 

 Bisphosphonates have been considered  fi rst line antiresorptive treatment for 
years  [  25  ] , until their chronic use unveiled adverse effects  [  14  ] . They reduce bone 
turnover and improve trabecular microarchitecture  [  26  ] . However, they have high 
af fi nity for the mineralized bone matrix and persist in the bone matrix for years, 
leading to failure to repair microdamages, thus increasing bone fragility  [  26,   27  ] . 

 Strontium ranelate has a peculiar mechanism of action, stimulating bone forma-
tion and, at the same time, inhibiting bone resorption  [  28  ] . Its anti-catabolic path-
way is due to decrease of RANKL/OPG ratio by osteoblasts through which 
osteoclastogenesis is impaired  [  29  ] . It also has a direct effect on osteoclast function, 
reducing bone resorption with a mechanism that disrupts the actin ring and induces 
osteoclast apoptosis  [  29  ] . 

 Hormone replacement therapy is used as a  fi rst line therapy for postmenopausal 
osteoporosis  [  30  ] . It provides an important osteoclast apoptotic agent, and also pre-
vents osteoclast formation through the supporting cells  [  31,   32  ] . However, the pro-
longed use of the hormone is associated with an increased risk of mammary and 
endometrial cancer  [  33  ]  and, for this reason, selective estrogen receptor modulators, 
SERMs, have been developed as they have an estrogenic activity in some organs, 
including the bone, while sparing the breast and the endometrium from undesirable 
effects as those exerted by the hormone replacement therapy  [  34  ] . However, SERMs 
exacerbate typical menopausal symptoms, including hot  fl ushes, breast pain, vagi-
nal bleeding, and thromboembolic events  [  35  ] . 

 Denosumab is a fully human monoclonal antibody which blocks the principal 
osteoclastogenic cytokine RANKL  [  36  ] . It is being investigated in advanced clinical 
trials for post-menopausal osteoporosis, rheumatoid arthritis, and skeletal metasta-
ses  [  37  ] . However, a few aspects need still accurate assessments as the RANKL/
RANK axis is involved in the development of the immune system, therefore safety 
issues about infection and cancers are currently being considered  [  37  ] . 

 Since all these drugs are still not fully satisfactory, new antiresorptive agents are 
underway. The papain-like cysteine protease cathepsin K is considered targetable as 
antiresorptive drug due to fact that it is the most important enzyme with respect to 
bone resorption for its intense collagenolytic activity  [  38  ] . Odanacatib is a potent, 
reversible non-peptidic cathepsin K inhibitor that neutralizes the catalytic activity of 
the enzyme  [  39  ] . The inhibitor is currently in phase I and II clinical trials to deter-
mine the dose and evaluate safety and ef fi cacy  [  39,   40  ] . The inhibitor showed no 
alteration of bone formation markers, and did not exhibit differences in adverse 
effects compared to placebo, proving ef fi cacious in dose-dependently increasing 
bone mineral density in all sites evaluated  [  41  ] . 
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 A promising antiresorptive molecule that we tested in preclinical studies, is the 
proline/arginine and leucine rich repeat protein PRELP, especially its N-terminal 
domain  [  42  ] , which was isolated for its capacity to bind glycosaminoglycans  [  43  ] . 
This is a protein that anchors the cells to collagen and is expressed in basement 
membranes, cartilage, and developing bone  [  44  ] . Its glycosaminoglycan-binding 
domain recognizes chondroitin sulfates and annexin 2 at the osteoclast precursor 
cell surface, reducing adhesion to substrate and forming a tri-molecular complex 
through which it is actively internalized by the cell (Figs.  4  and  5 ). Internalization 
is osteoclast-speci fi c as it has not been noted in bone marrow macrophages, 
HEK239 and MDA-MB231 cell lines, while it is observed in osteoclast-like 
RAW264.7 cells. The internalized peptide is found in vesicles that translocate to 
the nucleus (Fig.  4 ), where it binds the p65NF- k B transcription factor subunit  [  42  ] . 
This interaction reduces p65NF- k B binding to the DNA and inhibits its transcrip-
tional activity. These events prevent progression of osteoclast precursors toward a 
mature osteoclast phenotype  [  42  ] , thus abolishing bone resorption. In fact, the 
transcription of downstream osteoclast-speci fi c genes, including cathepsin K, cal-
citonin receptor, MMP-9, TRAcP, DC-STAMP, CD44, and RANK, is inhibited in 
the presence of the PRELP peptide. In contrast, the peptide has no effects on cell 
survival and phosphorylation of immediate MAPK signaling proteins, ERK, p38, 
and JNK. The peptide is completely inactive on the osteoblast lineage and its anti-
osteoclastic effect is very potent in vivo  [  42  ] . In fact, in ovariectomized mice, the 
PRELP peptide given i.p. at a dose of 10 mg/kg reduces bone loss by preserving 
bone volume and trabecular number and preventing the increase of the osteoclast 
numbers and of the surface of trabecular bone covered by    osteoclasts (Fig.  6 ). 
Again, no effect on osteoblast numbers and mineral apposition rate was observed 
in vivo upon treatment with the peptide  [  42  ] .    

 In conclusion, osteoclast research is nowadays very active and it is identifying 
new targetable mechanisms which may lead to antiresorptive therapy more effective 
and with less adverse events. It is expected that in the near future insights into new 

  Fig. 4    Internalization of 
the N-terminal domain 
of PRELP in a 
pre-fusion osteoclast 
precursor. Vital 
incubation for 20 min 
with biotin-tagged 
N-terminal PRELP 
revealed by  fl uorescence 
microscopy.  N  nucleus, 
 arrow  intracellular 
vesicles. Original 
magni fi cation ×100       
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osteoclast determinants will be available, which may then translate into innovative 
treatments to relieve patients from suffering from osteoporosis.      
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