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Preface

Infinite Blaschke products were introduced by Blaschke in 1915. However, finite
Blaschke products, as a subclass of rational functions, has existed long before with-
out being specifically addressed as finite Blaschke products. In 1929, R. Nevan-
linna introduced the class of bounded analytic functions with almost everywhere
unimodular boundary values. Then the term inner function was coined much later by
A. Beurling in his seminal study of the invariant subspaces of the shift operator. The
first extensive study of the properties of inner functions was made by W. Blaschke,
W. Seidel and O. Frostman. The Riesz technique in extracting the zeros of a function
in a Hardy space is considered as the first step of the full canonical factorization of
such elements. The disposition of zeros of an inner function is intimately connected
with the existence of radial limits of the inner function and its derivatives.

For almost a century, Blaschke products have been studied and exploited by
mathematicians. Their boundary behaviour, the asymptotic growth of various in-
tegral means of Blaschke products and their derivatives, their applications in several
branches of mathematics in particular as solutions to extremal problems, their mem-
bership in different function spaces and their dynamics are examples from a long list
of active research domains in which they show their face.

With the exclusive help of Fields Institute, we held a conference on Blaschke
Products and their Application from July 25 to 29, 2011, at the University of
Toronto. The purpose of the conference was to bring together a wide spectrum of
mathematicians in this area. With more than 50 specialists and young researchers
from around the globe, we had 36 talks. There were 28 one-hour talks and 8 thirty-
minute talks. Besides discussing Blaschke products, or more generally inner func-
tions, and their properties, their applications in other domains were also extensively
discussed. In particular, the following topics were of primary attention:

i. Approximation theory (L. Baratchart, A. Boivin, P. Gorkin, V. Prokhorov),
ii. Boundary values (W. Ross),

iii. Conformal metrics (O. Roth),
iv. Critical points (S. Favorov, D. Kraus),
v. Differential equations (J. Benbourenane, J. Heittokangas),

vi. Dynamical systems (O. Ivrii),
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viii Preface

vii. Geometry (U. Daepp),
viii. Harmonic analysis (M. Pap),

ix. Hyperbolic geometry (L. Baribeau),
x. Integral means (D. Vukotic),

xi. Inner functions (A. Nicolau),
xii. Interpolation (P. Gorkin, G. Semmler),

xiii. Morse theory (L. Baratchart),
xiv. Operator theory (H. Bommier, S. Charpentier, D. Drissi),
xv. Pluripotential theory (A. Edigarian, W. Zwonek),

xvi. Riemann-Hilbert problem (C. Glader),
xvii. Ritt’s theory (P. Tuen-Wai Ng),

xviii. Spectral theory of Toeplitz operators (E. Shargorodsky),
xix. Theory of analytic functions (I. Chyzhykov, R. Fournier, Q. Rahman),
xx. Theory of computation (T. McNicholl),

xxi. Truncated Toeplitz operators (J. Cima, W. Ross).

These talks were highly appreciated by the participants. It also confirms the fact
that Blaschke products impressively appear in a large number of various fields and
this conference allowed us to bring together a wide spectrum of prominent mathe-
maticians of different domains.

This proceedings is the outcome of the conference. It contains 15 research-survey
papers which are presented in alphabetical order of their titles. We would like to
thank all the participants, the authors for their valuable contributions, and the Fields
Institute for its unique and generous support of this event.

Javad Mashreghi
Emmanuel Fricain



Contents

Applications of Blaschke Products to the Spectral Theory of Toeplitz
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Sergei Grudsky and Eugene Shargorodsky

Approximating the Riemann Zeta-Function by Strongly Recurrent
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
P.M. Gauthier

A Survey on Blaschke-Oscillatory Differential Equations, with Updates . 43
Janne Heittokangas

Bi-orthogonal Expansions in the Space L2(0,∞) . . . . . . . . . . . . . . 99
André Boivin and Changzhong Zhu

Blaschke Products as Solutions of a Functional Equation . . . . . . . . . 113
Javad Mashreghi

Cauchy Transforms and Univalent Functions . . . . . . . . . . . . . . . . 119
Joseph A. Cima and John A. Pfaltzgraff

Critical Points, the Gauss Curvature Equation and Blaschke Products . . 133
Daniela Kraus and Oliver Roth

Growth, Zero Distribution and Factorization of Analytic Functions of
Moderate Growth in the Unit Disc . . . . . . . . . . . . . . . . . . . 159
Igor Chyzhykov and Severyn Skaskiv

Hardy Means of a Finite Blaschke Product and Its Derivative . . . . . . . 175
Alan Gluchoff and Frederick Hartmann

Hyperbolic Derivatives Determine a Function Uniquely . . . . . . . . . . 187
Line Baribeau

Hyperbolic Wavelets and Multiresolution in the Hardy Space of the
Upper Half Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Hans G. Feichtinger and Margit Pap

ix



x Contents

Norms of Composition Operators Induced by Finite Blaschke Products
on Möbius Invariant Spaces . . . . . . . . . . . . . . . . . . . . . . . 209
María J. Martín and Dragan Vukotić
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Applications of Blaschke Products
to the Spectral Theory of Toeplitz Operators

Sergei Grudsky and Eugene Shargorodsky

Abstract The chapter is a survey of some applications of Blaschke products to the
spectral theory of Toeplitz operators. Topics discussed include Toeplitz operators
with bounded measurable symbols, factorisation with an infinite index, composi-
tions with Blaschke products, representation of functions with a given asymptotic
behaviour of the argument in a neighbourhood of a discontinuity in the form of a
composition of a continuous function with a Blaschke product, and applications to
the KdV equation.

Keywords Toeplitz operators · Spectral theory · Discontinuous symbols ·
Blaschke products

Mathematics Subject Classification Primary 47B35 · 30J10 · Secondary 47A10 ·
30H10

1 Introduction

Let T = {ζ ∈ C : |ζ | = 1} be the unit circle and let Hp(T), 1 ≤ p ≤ ∞ denote
the Hardy space, that is Hp(T) := {f ∈ Lp(T) : fn = 0 for n < 0}, where fn is
the nth Fourier coefficient of f . Let T (a) : Hp(T) → Hp(T), 1 < p < ∞ denote
the Toeplitz operator generated by a function a ∈ L∞(T), i.e. T (a)f = P(af ), f ∈
Hp(T), where P is the Riesz projection:

Pg(ζ ) = 1

2
g(ζ )+ 1

2πi

∫
T

g(w)

w − ζ dw, ζ ∈ T. (1)
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2 S. Grudsky and E. Shargorodsky

P : Lp(T) → Hp(T), 1<p < ∞ is a bounded projection and

P

( +∞∑
n=−∞

gnζ
n

)
=

+∞∑
n=0

gnζ
n.

Toeplitz operators on the real line are defined similarly: let

Pf (x) = 1

2
f (x)+ 1

2πi

∫
R

f (τ)

τ − x dτ, x ∈ R. (2)

Then P : Lp(R) → Lp(R), 1 < p < ∞ is a bounded projection and its range
Hp(R) := PLp(R) is the Hardy space corresponding to the upper half plane. The
Toeplitz operator generated by a function (symbol) a ∈ L∞(R) is defined as follows

T (a)f := P(af ), T (a) : Hp(R) → Hp(R).

Linear fractional transformations usually allow one to switch between Toeplitz op-
erators on R and those on T without difficulty. Most of the present paper deals with
the case of T, although we pass to Toeplitz operators on R when discussing symbols
with discontinuities of the (semi-)almost periodic type.

Toeplitz operators are closely related to the Riemann-Hilbert problem. They rep-
resent a universal and a most powerful tool that has been applied to a wide va-
riety of problems in elasticity theory, fluid dynamics, physics, geometry, combi-
natorics, integrable systems, orthogonal polynomials, random matrices, probability
and stochastic processes, information and control theory, and in many other fields.
Toeplitz operators constitute one of the most important classes of non-self-adjoint
operators with a very rich spectral theory, which utilizes methods of operator the-
ory, function theory and the theory of Banach algebras. Their spectral properties
are well understood in the case of piece-wise continuous, almost periodic or semi-
almost periodic symbols (see the next section for more information and references).
Unfortunately much less is known about properties of Toeplitz operators with gen-
eral bounded measurable symbols.

The aim of the present survey is to describe an approach to the study of spectral
properties of Toeplitz operators with symbols having “bad” discontinuities. This ap-
proach is based on a generalisation of the Wiener-Hopf factorisation that involves
inner functions (Sect. 4) and on results on representation of functions with a given
asymptotic behaviour of the argument in a neighbourhood of the discontinuity in the
form of a Blaschke product or, more generally, in the form of a composition of a con-
tinuous function with a Blaschke product (Sect. 5). When dealing with compositions
involving Blaschke products in the context of Toeplitz operators, one needs to study
compositions of Muckenhoupt weights with Blaschke products. The corresponding
results are described in Sect. 3. Section 2 is a brief introduction to the spectral the-
ory of Toeplitz operators. Section 6 is devoted to applications of Blaschke products
to the KdV equation. The final Sect. 7 contains a list of some open problems.

In order to keep the presentation simple, we do not consider Toeplitz operators
on weighted Hardy spaces and block Toeplitz operators, i.e. Toeplitz operators with
matrix symbols (a ∈ L∞

N×N ).
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2 Spectra of Toeplitz Operators

A bounded linear operator A on a Banach space X is said to be normally solvable
if its range RanA is closed. We put KerA = {f ∈ X : Af = 0} and CokerA :=
X/RanA. If A is normally solvable and dim KerA < ∞, then A is called a Φ+-
operator. If dim CokerA < ∞, then A is normally solvable and is called a Φ−-
operator. A Fredholm operator is an operator that is both Φ− and Φ+. The index
of a Fredholm operator A is the integer IndA := dim KerA − dim CokerA. The
operator A is right (left) invertible if there is a bounded linear operator B on X such
that AB = I (BA = I ), where I is identity operator on X, and the operator A is
invertible if there is a bounded operator B on X such that AB = BA = I . It is easy
to see that if A is left (right) invertible, then A is a Φ+(Φ−)-operator.

The spectrum and the essential spectrum of A are defined as follows:

Spec(A) := {λ ∈ C : A− λI is not invertible},
Spece(A) := {λ ∈ C : A− λI is not Fredholm}.

For any algebra A, we denote by GA the group of invertible elements of A.

Theorem 1 ([46]) The spectrum of T (a) : Hp(T) → Hp(T) is connected.

Theorem 2 ([9, 42], see also [17, Chap. 7, Theorem 5.1] or [5, Theorem 2.38]) Let
a ∈ L∞(T), a �= 0. Then T (a) : Hp(T) → Hp(T) has a trivial kernel or a dense
range.

This theorem implies that a nonzero Toeplitz operator T (a) : Hp(T) → Hp(T)

is normally solvable if and only if it is Φ− or Φ+.

Theorem 3 ([22, 42], see also [17, Chap. 7, Theorem 4.1] or [5, Theorem 2.30])
Let a ∈ L∞(T), a �= 0. If T (a) : Hp(T) → Hp(T) is normally solvable then a ∈
GL∞(T), i.e.

ess inf
t∈T

∣∣a(t)∣∣> 0.

Theorem 4 ([10, 44], see also [5, Proposition 2.32]) Let a ∈ L∞(T). Then T (a) :
Hp(T) → Hp(T) is invertible (Fredholm, Φ− or Φ+) if and only if a ∈ GL∞(T)
and T (a/|a|) : Hp(T) → Hp(T) is invertible (Fredholm, Φ− or Φ+ respectively).
Moreover, if a ∈ GL∞(T), then

dim KerT (a) = dim KerT (a/|a|), dim CokerT (a) = dim CokerT (a/|a|).

Let C(T) be the space of all continuous functions on the unit circle T. Suppose
b ∈ C(T) and b(t) �= 0, ∀t ∈ T. Then the winding number of b is defined as follows

windb := 1

2π
[argb]T,
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where [argb]T denotes the total increment of argb(t) as the variable t travels around
T in the counterclockwise direction.

Theorem 5 ([15], see also [17, Chap. 3, Theorem 7.1] or [5, Theorem 2.42]) Let
a ∈ C(T). Then Spece(T (a)) = a(T) and

Ind
(
T (a)− λI)= − wind(a − λ), ∀λ ∈ C \ a(T).

Theorem 6 ([16], see also [17, Chap. 9, Theorem 3.1] or [5, Proposition 5.39]) Let
a ∈ L∞(T) be piecewise continuous and let

Arcp(a; t) :=
{
ζ ∈ C

∣∣∣∣ arg
a(t − 0)− ζ
a(t + 0)− ζ = 2π

p

}

if a(t − 0) �= a(t + 0). Then

Spece
(
T (a)

)=
(⋃
t∈T

{
a(t ± 0)

})∪
( ⋃
a(t−0)�=a(t+0)

Arcp(a; t)
)
.

LetH∞(T)+C(T) be the Banach algebra of all functions of the form h+f with
h ∈ H∞(T) and f ∈ C(T) (see [34, 35]). An element a is invertible in H∞(T) +
C(T) if and only if its harmonic extension to the unit disk is bounded away from
zero in some annulus 1 − δ < |z| < 1 ([11], [12, 7.36], see also [5, Theorem 2.62]).

Theorem 7 ([11], [12, 7.36], see also [5, Theorem 2.65] and [13, Theorem 2.7])
Suppose a ∈ H∞(T)+C(T) and ess inft∈T |a(t)| > 0.

(1) T (a) : Hp(T) → Hp(T) is Fredholm if and only if 1/a ∈ H∞(T) + C(T), in
which case Ind(T (a)) = − wind(ar ), where r ∈ (0,1) is sufficiently close to 1,
ar(e

iθ ) := â(reiθ ) and â is the harmonic extension of a to the unit disk.
(2) If 1/a /∈ H∞(T) + C(T), then T (a) is left invertible and T (1/a) : Hp(T) →

Hp(T) is its left inverse.

A number c ∈ C is called a (left, right) cluster value of a measurable function
a : T → C at a point t ∈ T if 1/(a − c) /∈ L∞(W) for every neighbourhood (left
semi-neighbourhood or right semi-neighbourhood respectively)W ⊂ T of t . Cluster
values are invariant under changes of the function on measure zero sets. We denote
the set of all left (right) cluster values of a at t by a(t − 0) (by a(t + 0)), and use also
the following notation a(t) = a(t − 0) ∪ a(t + 0), a(T) =⋃t∈T

a(t). It is easy to
see that a(t − 0), a(t + 0), a(t) and a(T) are closed sets. Hence they are all compact
if a ∈ L∞(T).

It follows from Theorem 3 that

a(T) ⊆ Spece

(
T (a)

)
. (3)

Suppose that for each t ∈ T the set a(t) consists of two points

a1(t), a2(t) ∈ C



Applications of Blaschke Products to Toeplitz Operators 5

(which may coincide). We say that t ∈ TI if a1(t) �= a2(t) and each of the sets
a(t − 0) and a(t + 0) consists of one point, i.e. if a has a left and a right limits at
t and they do not coincide. We say that t ∈ TII if at least one of the sets a(t − 0),
a(t + 0) consists of two points, i.e. if a does not have a left or a right limit at t .

Let

Rp(a; t) :=
{
ζ ∈ C

∣∣∣∣ 2π

max{p,p′ } ≤ arg
a1(t)− ζ
a2(t)− ζ ≤ 2π

min{p,p′ }
}
, (4)

where p′ = p/(p − 1).

Theorem 8 ([7, 8, 43], see also [5, 5.50–5.58]) Suppose a ∈ L∞(T) and for each
t ∈ T the set a(t) consists of at most two points. Then

Spece
(
T (a)

)= a(T)∪
(⋃
t∈TI

Arcp(a; t)
)

∪
(⋃
t∈TII

Rp(a; t)
)
.

A complete description of the (essential) spectrum of T (a) in terms of a(t ± 0),
t ∈ T is no longer possible if a(t) is allowed to contain more than two points (see
[5, 4.71–4.78] and [38]). We return to this topic in Sect. 4. Here, we continue with
a general result on factorisation.

Definition 1 Let 1 < p < ∞. We say that a function a ∈ GL∞(T) admits a p-
factorisation if it can be represented in the form

a(t) = a−(t)tκa+(t), t ∈ T, (5)

where κ is an integer, called the index of factorisation, and the functions a± satisfy
the following conditions:

(1) a− ∈ Hp(T), a−1− ∈ Hp′
(T), a+ ∈ Hp′

(T), a−1+ ∈ Hp(T), p′ = p/(p − 1);
(2) the operator (1/a+)Pa+I is bounded on Lp(T).

It is not difficult to see that a p-factorisation is unique up to a constant factor.
The set of all functions a ∈ GL∞(T) that admit a p-factorisation will be denoted
by fact(p).

Theorem 9 ([42, 44, 45], see also [17, Chap. 8, Theorems 4.1 and 4.2] or [5,
Theorem 5.5]) Let a ∈ GL∞(T). The Toeplitz operator T (a) : Hp(T) → Hp(T),
1< p < ∞ is Fredholm if and only if a ∈ fact(p). If representation (5) holds, then
IndT (a) = −κ , and for κ = 0 (κ > 0 or κ < 0) the operator T (a) is invertible (left
invertible or right invertible respectively); moreover,

[
T (a)

]−1 = P 1

tκa+
P

1

a−
I (6)
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is the corresponding inverse operator. Further, for κ < 0 we have

dim KerT (a) = |κ| and KerT (a) = span

{
tj−1

a+ , j = 1,2, . . . , |κ|
}
, (7)

while for κ > 0 we have dim CokerT (a) = κ , and f ∈ RanT (a) if and only if the
following orthogonality conditions are satisfied:

∫
T

f (t)
1

tj a−(t)
dt = 0, j = 1,2, . . . , κ. (8)

It is not always easy to check whether or not a ∈ fact(p). The following result
describes a rather broad subclass of fact(p). A function a ∈ GL∞(T) is called lo-
cally p-sectorial if for every t ∈ T there exist an open arc 
(t) ⊂ T containing t and
functions g(t)± ∈ GH∞(T) such that

⋃
τ∈
(t)

(
g
(t)

− ag
(t)

+
)
(τ ) ⊂

{
z = reiθ ∈ C : r > 0, |θ | < π

max{p,p′ }
}
.

It is easy to see that a ∈ GL∞(T) is locally p-sectorial if a(t) lies in an open sector
with the vertex at the origin and an angular opening not exceeding 2π/max{p,p′ }
for every t ∈ T.

Theorem 10 ([41, 42], see also [17, Chap. 12] or [5, 5.12–5.21]) Let a ∈ GL∞(T)
be locally p-sectorial. Then T (a) : Hp(T) → Hp(T), 1<p < ∞ is Fredholm.

In the case of the space Lp(R) the notion of a p-factorisation takes the following
form. We say that a function a ∈ GL∞(R) admits a p-factorisation with respect to
the real line R if it can be represented in the form

a(x) = a−(x)
(
x − i
x + i

)κ
a+(x), x ∈ R, (9)

where κ is an integer, called the index of factorisation, and the functions a± satisfy
the following conditions:

(1) a−(x)
x−i ∈ Hp(R), 1

a−(x)(x−i) ∈ Hp′
(R), a+(x)

x+i ∈ Hp′
(R), 1

a+(x)(x+i) ∈ Hp(R),
p′ = p/(p − 1);

(2) the operator (1/a+)Pa+I is bounded in Lp(R).

The algebra AP(R) of almost periodic functions is defined as the smallest closed
subalgebra of L∞(R) that contains the set {eλ : λ ∈ R}, where eλ(x) = eiλx . We
denote by C(R) the set of all continuous functions f on R that have finite limits
f (−∞) and f (+∞) at ±∞, and by C(Ṙ) the subspace of C(R) consisting of func-
tions continuous at infinity, i.e. such that f (−∞) = f (+ ∞). Finally, the smallest
closed subalgebra of L∞(R) that contains AP(R)∪C(R) is denoted by SAP(R) and
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is called the algebra of semi-almost periodic functions. Every function b ∈ SAP(R)
can be represented in the form

b(x) = (1 −w(x))bl(x)+w(x)br(x)+ c0(x), (10)

where bl, br ∈ AP(R), c0 ∈ C(Ṙ) with c0(∞) = 0, and w is a function from C(R)

such that

w(−∞) = 0 and w(+∞) = 1 (11)

(see [36]). The functions bl and br are uniquely determined and independent of the
choice of w. They are called the left and the right almost periodic representatives
of b.

According to H. Bohr’s theorem, every function b ∈ GAP(R) can be written in
the form

b(x) = eiμ(b)x+c(x), x ∈ R (12)

with μ(b) ∈ R and c ∈ AP(R). The number μ(b) is called the mean motion of b and
it is given by the formula

μ(b) = lim
T→∞

1

2T
argb(x)

∣∣∣∣
T

x=−T
,

where argb is any continuous branch of the argument of b. If μ(b) = 0, the geomet-
ric mean λ(b) is defined by

λ(b) = eM(c), (13)

whereM(c) is the mean value of c,

M(c) = lim
T→∞

1

2T

∫ T
−T
c(x)dx.

Note that the function c ∈ AP(R) in (12) is unique up to an additive constant in
2πiZ. Hence definition (13) does not depend on a particular choice of c.

For a b ∈ SAP(R), set

μ−(b) := μ(bl), μ+(b) := μ(br)
(see (10)). If μ±(b) = 0, set

λ−(b) := λ(bl), λ+(b) := λ(br).

Theorem 11 ([31–33, 36], see also [13, Theorem 4.24]) Let a ∈ SAP(R). If T (a) :
Hp(R) → Hp(R), 1<p < ∞ is normally solvable, then

inf
x∈R

∣∣a(x)∣∣> 0.

Suppose this condition is satisfied.
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(1) If μ±(a) = 0, then T (a) is Fredholm if and only if

1

2π
arg
λ+(a)
λ−(a)

− 1

p
/∈ Z.

If this condition is not satisfied, then the T (a) : Hp(R) → Hp(R) is not nor-
mally solvable.

(2) If μ±(a) ≥ 0 and μ2+(a) + μ2−(a) �= 0, then T (a) is left invertible and
dim CokerT (a) = ∞.

(3) If μ±(a) ≤ 0 and μ2+(a) + μ2−(a) �= 0, then T (a) is right invertible and
dim KerT (a) = ∞.

(4) If μ+(a)μ−(a) < 0, then T (a) is not normally solvable in any of the spaces
Hp(R), 1<p < ∞ and dim KerT (a) = dim CokerT (a) = 0.

3 Compositions with Blaschke Products and the Ap Condition

The results in Sect. 2 give an explicit description of the (essential) spectrum of T (a)
if a(t) consists of at most two points for every t or if a is semi-almost periodic.
Both cases include piecewise continuous symbols treated in Theorem 6. Suppose
now a ∈ L∞(T) has a “bad” discontinuity at t = 1 or at any other point of T. Then
one cannot, in general, tell whether or not T (a) : Hp(T) → Hp(T) is Fredholm.
A possible way of approaching this problem is to try representing a in the form
a = a0 ◦ v, where a0 is a simple, e.g., piecewise continuous function and v : T → T

is a suitable measurable transformation. If v(1) = T, then a = a0 ◦ v ∈ L∞(T) has
a bad discontinuity at t = 1, namely a(1) = a0(T).

Suppose T (a0) : Hp(T) → Hp(T) is Fredholm. Then a0 admits a factorisation
of the form (5)

a0(t) = a−(t)tκa+(t), t ∈ T (κ ∈ Z)

(see Theorem 9). Hence

a(t) = a−
(
v(t)
)
vκ(t)a+

(
v(t)
)
, t ∈ T. (14)

Since we would like to have

a− ◦ v ∈ Hp(T), (a− ◦ v)−1 ∈ Hp′
(T),

a+ ◦ v ∈ Hp′
(T), (a+ ◦ v)−1 ∈ Hp(T),

(15)

we need v to have an analytic extension to the unit disk. Given that |v| = 1 on T, it
is natural to assume that v is a nonconstant inner function. Since v(1) = T, natural
choices for v are the singular inner function

v(ζ ) = exp

(
σ
ζ + 1

ζ − 1

)
, σ = const> 0 (16)

and infinite Blaschke products with zeroes converging to t = 1.
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Suppose v is an inner function. Then the following variant of Littlewood’s sub-
ordination principle shows that (15) does indeed hold.

Theorem 12 ([28], [37, Sect. 1.3] and [13, Theorem 5.5]) Let v be a nonconstant
inner function and let γv be defined by

(γvf )(t) = f (v(t)), t ∈ T.

(1) The mapping γv is a bounded linear operator on the space Lp(T), 1 ≤ p < ∞.
The subspace Hp(T) is invariant under γv .

(2) The mapping γv is an automorphism of the algebra L∞(T). The subalgebra
H∞(T) is invariant under γv .

(3) For any f ∈ Lp(T), 1 ≤ p ≤ ∞,

(
1 − |v(0)|
1 + |v(0)|

)1/p

‖f ‖p ≤ ‖γvf ‖p ≤
(

1 + |v(0)|
1 − |v(0)|

)1/p

‖f ‖p. (17)

The middle factor in the factorisation (5) is the finite Blaschke product tκ and
the index of the corresponding Toeplitz operator is −κ . If κ �= 0 in (14) and if v
is an inner function which is not a finite Blaschke product, then one would expect
T (a) : Hp(T) → Hp(T) to be semi-Fredholm with an infinite index. This is indeed
the case under natural conditions on the first and the third factors, and the corre-
sponding representation is called a generalised factorisation with an infinite index.
The function a = a0 ◦ v is called v-periodic. These notions are discussed in Sect. 4
(see Theorems 16 and 17).

Finally, we need to find out whether or not the factorisation (14) satisfies condi-
tion (2) of Definition 1, i.e. whether or not the operator

1

a+ ◦ v P (a+ ◦ v)I : Lp(T) → Lp(T)

is bounded.
Let ρ : T → [0,+∞] be a measurable function. According to the Hunt–Mucken-

houpt–Wheeden theorem ([24]), the operator (1/ρ)PρI is bounded on Lp(T), 1<
p < ∞ if and only if ρ satisfies the Ap condition:

sup
I

(
1

|I |
∫
I

ρp(t)|dt |
) 1
p
(

1

|I |
∫
I

ρ−p′
(t)|dt |

) 1
p′

= Cp < ∞, (18)

where I ⊂ T is an arbitrary arc, |I | denotes its length, and p′ = p/(p − 1).
Hence we arrive at the following question:

does ρ ∈ Ap imply ρ ◦ v ∈ Ap for an arbitrary inner function v? (19)
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Note by the way that if v(0) = 0, then v : T → T is measure preserving, i.e.
|v−1(E)| = |E| for any measurable E ⊂ T (see, e.g., [28] or take f equal to the
indicator function of E in (17) with p = 1).

Using Theorem 9 one can easily show (see [2, Sect. 1]) that (19) is equivalent to
the following question: does the invertibility of T (b) : Hp(T) → Hp(T) imply that
of T (b ◦ v) : Hp(T) → Hp(T)?

The answer is positive in the case p = 2 (see, e.g., [2, Theorem 3]). This follows,
e.g., from the Helson–Szegö theorem ([23], see also [14, Chap. IV, Theorem 3.4]):

ρ ∈ A2 ⇐⇒ ρ = exp(f + g̃), f, g ∈ L∞(T,R), ‖g‖ ∞ < π/4,

where g̃ is the harmonic conjugate of g.
Similarly, a theorem by N.Ya. Krupnik ([25, 26], see also [17, Sect. 12.5]) says

that

ρ ∈ Ap ∩Ap′ ⇐⇒ ρ = exp(f + g̃), f, g ∈ L∞(T,R),

‖g‖ ∞ <
π

2 max{p,p′ } , p′ = p

p − 1
,

and it is not difficult to show that

ρ ∈ Ap ∩Ap′ =⇒ ρ ◦ v ∈ Ap ∩Ap′

(see [2, Theorem 4]).
One can also prove that the reverse of the implication in (19) is true.

Theorem 13 ([2]) Let 1<p < ∞, p′ = p/(p − 1) and let v be an inner function.

(1) Suppose ρ is a weight such that ρ ∈ Lp and ρ−1 ∈ Lp′
. If ρ ◦ v ∈ Ap then

ρ ∈ Ap .
(2) Suppose a ∈ L∞(T). If T (a ◦ v) : Hp(T) → Hp(T) is invertible then T (a) :

Hp(T) → Hp(T) is invertible.

In spite of all the above results, the answer to (19) turns out to be negative.
Let {zk}∞

k=−∞ be a sequence of nonzero points in the open unit disk satisfying

lim
k→±∞ zk = 1 and

∞∑
k=−∞

(
1 − |zk|)< ∞. (20)

The first condition in (20) guarantees that the Blaschke product

B(t) :=
∞∏

k=−∞

|zk|
zk

zk − t
1 − zk t , t ∈ T (21)

extends to an analytic function on C\(⋃k{z−1
k } ∪ {1}). In particular, B is continuous

on T \ {1}.
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Write zk = rkeiθk with 0< rk < 1 and −π < θk ≤ π . Put

θk :=
{
(sign k)e−|k| for k �= 0,

−1 for k = 0,

Δk :=
{
θk − θk+1 for k = 1,2,3, . . . ,

θk−1 − θk for k = 0,−1,−2, . . . ,
(22)

δk := min

{(
Δk

logΔk

)2

,

(
Δk−1

logΔk

)2}
,

choose a numberM > 1, and define rk ∈ (0,1) by

rk := (1 − δk/M)/(1 + δk/M). (23)

Theorem 14 ([2]) Let p ∈ (1,2) ∪ (2,∞), 1/p + 1/p′ = 1 and let σ be any
number in the interval (1/p′,1/p) if 1 < p < 2 and any number in the interval
(−1/p′,−1/p) if 2<p < ∞. Then

w(t) := |t − 1|−σ (24)

is a weight in Ap , but if M > 1 is sufficiently large and BM = B is the Blaschke
product (21) with the zeroes given by (22)–(23), then

w
(
BM(t)

)= ∣∣BM(t)− 1
∣∣−σ (25)

is not a weight in Ap .

Theorem 14 shows that there exists a Blaschke product for which the implication
in (19) does not hold. We now describe a class of Blaschke products for which this
implication does hold.

Consider the Blaschke product

B
(
eiθ
)=

∞∏
k=1

rk − eiθ
1 − rkeiθ , θ ∈ [−π,π], (26)

where rk ∈ (0,1) and
∑∞
k=1(1 − rk) < ∞.

Theorem 15 ([21]) Suppose r1 ≤ r2 ≤ · · · ≤ rn ≤ · · · , and

inf
k≥1

1 − rk+1

1 − rk > 0. (27)

If ρ satisfies the Ap condition, then ρ ◦B also satisfies the Ap condition.

Corollary ([21]) Let 1<p < ∞, a ∈ L∞(T), and let a Blaschke product B satisfy
the conditions of Theorem 15. Then T (a) : Hp(T) → Hp(T) is invertible if and
only if T (a ◦B) : Hp(T) → Hp(T) is invertible.
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Proof The invertibility of T (a ◦ B) implies that of T (a) according to Theorem 13
(see [2, Theorem 12]). The opposite implication follows from Theorem 15 (see [2,
Sect. 1]). �

Theorem 15 and its Corollary remain true if the Blaschke product (26), (27) is
substituted with the singular inner function (16) (see [19, 21]).

4 More on the Spectra of Toeplitz Operators

We start with extending Definition 1 and Theorem 9 to the case of Φ± operators.
We say that a function a ∈ L∞(T) admits a generalised factorisation with an infinite
index in the space Lp(T), 1<p < ∞ if it admits a representation

a = bh or a = bh−1, (28)

where

(1) b ∈ fact(p) (see Definition 1);
(2) h ∈ H∞(T), 1/h ∈ L∞(T);
(3) q/h /∈ H∞(T) for any polynomial q .

In this case, we also say that a admits an (h,p)-factorisation.
The class of functions admitting a generalized factorisation with an infinite index

in Lp(T) will be denoted by fact(∞,p).
Let Q := I − P , where P is the projection defined by (1).

Theorem 16 ([13, Theorem 2.6]) Assume a ∈ fact(∞,p) and indb = 0. If a =
bh−1, then the operator T (a) : Hp(T) → Hp(T) is right invertible, dim KerT (a)
= ∞, and the operator

[
T (a)

]−1 = h

b+ P
1

b− I, (29)

where b = b+b− is the p-factorisation of the function b, is a right inverse of T (a).
For a function ϕ to belong to KerT (a) it is necessary and sufficient that

ϕ = h

b+ Q
b+

h
ψ, where ψ ∈ KerT

(
h−1). (30)

If a = bh, then T (a) : Hp(T) → Hp(T) is left invertible, dim CokerT (a) = ∞,
and the operator

[
T (a)

]−1 = P 1

b+h
P

1

b− I (31)

is a left inverse for T (a). For a function f to belong to RanT (a) it is necessary and
sufficient that ∫

Γ

ψj (t)f (t)dt = 0, j = 1,2, . . . , (32)
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where

ψj = 1

b− Q
(t − z0)

−j

hb+ ∈ Lp′
− (T) := QLp′

(T), p′ = p/(p − 1),

and z0 ∈ C is a fixed point such that |z0 | > 1.

Functions admitting a generalized factorisation with an infinite index often arise
as compositions with inner functions (cf. (14)). A function a ∈ L∞(T) is called
u-periodic if it admits a representation

a(t) = g(u(t)), (33)

where g ∈ L∞(T) and u is an inner function.

Theorem 17 ([18, Theorem 5.2]) Let g ∈ C(T) and suppose g(t) �= 0, ∀t ∈ T and
windg = κ . Then for every 1 < p < ∞ and every inner function u ∈ H∞(T) the
u-periodic function (33) admits a (u|κ|,p)-factorisation

a(t) = g−
(
u(t)
)
uκ(t)g+

(
u(t)
)
,

where g(t) = g−(t)tκg+(t) is a factorisation of the type (5). Moreover, if g is a
rational function, then

(g+ ◦ u)±1 ∈ H∞(T), (g− ◦ u)±1 ∈ H∞(T).

Remark 1 Theorem 17 cannot be extended to arbitrary symbols g ∈ fact(p) due to
the difficulty described by Theorem 14. However, it can be extended to all locally
p-sectorial symbols g (see [13, Theorem 5.8]). It also holds for all g ∈ fact(p) if
one restricts the class of inner functions u to those for which the conclusions of
Theorem 15 and its Corollary hold.

Similarly to the situation with Theorem 9, it is not always easy to check whether
or not a ∈ fact(∞,p). A broad subclass of fact(∞,p) is desribed in Sect. 5 in terms
of the asymptotic behaviour of the argument in a neighbourhood of a discontinuity.

Let us now consider compositions with homeomorphisms α : R → R in the con-
text of Toeplitz operators with (semi-)almost periodic symbols on R. We will con-
fine ourselves to the H 2(R) setting to avoid difficulties related to Theorem 14. We
start with a negative result.

Theorem 18 ([3]) There exist b ∈ GAP(R) and an orientation preserving homeo-
morphism α : R → R such that T (b) : H 2(R) → H 2(R) is Fredholm while T (a)
with a(x) = b(α(x)) is not.

In order to obtain positive results, one needs to restrict the class of home-
omorphisms α : R → R. Let, similarly to the case of T considered in Sect. 2,
H∞(R) + C(Ṙ) be the Banach algebra of all functions of the form h + f with
h ∈ H∞(R) and f ∈ C(Ṙ) (see [34, 35]).
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Theorem 19 ([3]) Let b ∈ AP(R) and suppose

eiλα ∈ H∞(R)+C(Ṙ), ∀λ > 0. (34)

Put a(x) = b(α(x)). We then have the following.

(i) If T (b) : H 2(R) → H 2(R) is invertible, then T (a) is a Φ-operator.
(ii) If T (b) : H 2(R) → H 2(R) is left invertible, then T (a) is a Φ+-operator.

(iii) If T (b) : H 2(R) → H 2(R) is right invertible, then T (a) is a Φ−-operator.

Theorem 36 provides sufficient conditions for (34) to hold (see also Theorem 37).
The following result extends Theorem 19 to semi-almost periodic symbols and it

is natural to substitute condition (34) with the following one

(1 −w)eiλα, weiλα ∈ H∞(R)+C(Ṙ) for all λ > 0, (35)

where w ∈ C(R) is a fixed function subject to (11).

Theorem 20 ([3]) Let the homeomorphism α satisfy condition (35) and let b ∈
SAP(R). Put a(x) = b(α(x)). If T (b) : H 2(R) → H 2(R) is aΦ-operator, then T (a)
is also a Φ-operator.

Let us now return to the comment made after Theorem 8. Consider, for example,
a ∈ L∞(T) such that a(1) consists of three points, a(1 ± 0) = a(T) = {c1, c2, c3 } ⊂
C and the closed triangle �(c1, c2, c3) with the vertices c1, c2, c3 is non-degenerate.
Then the (essential) spectrum of T (a) : H 2(T) → H 2(T) is a connected set which
contains {c1, c2, c3 } and is contained in �(c1, c2, c3) ([12, Theorem 7.45], [6, 22],
see also Theorems 1, 3, 10 above). It turns out however that this set is not determined
solely by c1, c2, c3. A. Böttcher has constructed examples where the spectrum of
T (a) : H 2(T) → H 2(T)

(i) does not contain any points of the boundary of the triangle �(c1, c2, c3) other
than c1, c2, c3;

(ii) contains a side of �(c1, c2, c3) and no other point of the boundary apart from
c1, c2, c3;

(iii) coincides with the union of two sides of �(c1, c2, c3);
(iv) coincides with the boundary of �(c1, c2, c3);
(v) coincides with �(c1, c2, c3)

(see [5, 4.71–4.78]). These striking examples and the results obtained in [38, 39]
imply that if a(t) is not required to contain at most two points for every t ∈ T, then
it is no longer possible to describe the (essential) spectrum of T (a) in terms of the
cluster values of a. In other words, it is no longer sufficient to know the values of a,
it is rather important to know “how these values are attained” by a. This field seems
to be wide open at present.

Since a complete description of the essential spectrum of T (a) in terms of the
cluster values of a ∈ L∞(T) is impossible, it is natural to try finding “optimal”
sufficient conditions for a point λ to belong to the essential spectrum.
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We need the following notation. Let K ⊂ C be an arbitrary compact set and
λ ∈ C \K . Then the set

σ(K;λ) =
{
w − λ

|w − λ|
∣∣∣∣ w ∈ K

}
⊆ T

is compact as a continuous image of a compact set. Hence the set Δλ(K) := T \
σ(K;λ) is open in T. So, Δλ(K) is the union of an at most countable family of
open arcs.

We call an open arc of T p-large if its length is greater than or equal to
2π/max{p,p′ }, where p′ = p/(p − 1), 1< p < ∞.

We know that a(T) ⊆ Spece(T (a)) (see (3)). Böttcher’s examples mentioned
above show that no point from C \ a(T) will always belong to the (essential) spec-
trum of T (a) : H 2(T) → H 2(T), unless a(T) lies on a straight line. The following
result shows that the situation is somewhat different for p �= 2.

Theorem 21 ([40]) Let 1 < p < ∞, a ∈ L∞(T), λ ∈ C \ a(T) and suppose that,
for some t ∈ T,

(i) Δλ(a(t − 0)) (or Δλ(a(t + 0))) contains at least two p-large arcs,
(ii) Δλ(a(t + 0)) (or Δλ(a(t − 0)) respectively) contains at least one p-large arc.

Then λ belongs to the essential spectrum of T (a) : Hp(T) → Hp(T).

Suppose a(t) consists of two points. Then condition (ii) in the above theorem is
automatically satisfied, while condition (i) means that a does not have a left limit
at t (or a right limit at t respectively) and that λ belongs to the set (4). Hence,
Theorem 21 is in a sense an extension of Theorem 8.

Condition (i) is optimal in the following sense.

Theorem 22 ([39]) Let t ∈ T, K ⊂ C be a compact set, λ ∈ C \ K , and suppose
Δλ(K) contains at most one p-large arc. Then there exists a ∈ L∞(T) such that

a(t ± 0) = a(t) = a(T) = K
and

T (a)− λI : Hr(T) → Hr(T)

is invertible for any r ∈ [min{p,p′ },max{p,p′ }].

While condition (i) is the main reason why λ belongs to Spece(T (a)), the rôle
of (ii) is to make sure that the behaviour of a(τ) as τ approaches t from the other
side does not counterbalance the effect of (i). It turns out that condition (ii) cannot
be dropped.

Theorem 23 ([21]) There exists a ∈ L∞(T) such that a(1 − 0) = {±1}, |a| ≡ 1,
T (a) : Hp(T) → Hp(T) is invertible for any p ∈ (1,2), and T (1/a) : Hp(T) →
Hp(T) is invertible for any p ∈ (2,+∞).



16 S. Grudsky and E. Shargorodsky

The proof of this theorem relies on the Corollary of Theorem 15 and on Theo-
rem 34.

5 Modelling of Monotone Functions with the Help of Blaschke
Products

Suppose a ∈ GL∞(T). Then Theorem 4 allows one to reduce the study of the oper-
ator T (a) : Hp(T) → Hp(T), 1< p < ∞ to that of T (a/|a|) : Hp(T) → Hp(T).
We can therefore assume without loss of generality that |a| = 1, i.e. that

a
(
exp(iθ)

)= exp
(
2πif (θ)

)
, θ ∈ (−π,π], (36)

where f is a measurable real-valued function. Suppose a has a discontinuity at
t = 1. We aim at finding conditions on the behaviour of f in a neighbourhood of
t = 1 under which a can be represented in terms of Blaschke products in such a way
that one can then apply Theorems 16 and 17. Although our motivation comes from
the theory of Toeplitz operators, we believe that the results presented in this section
may be of some interest in their own right.

Since the discontinuity is at t = 1, it is natural to consider Blaschke products with
zeroes converging to 1. Our first result is about the argument of such a Blaschke
product. Let

B
(
eiθ
)=

∞∏
k=1

zk

|zk|
zk − eiθ

1 − zk eiθ , θ ∈ (−π,π], (37)

where zk = rk exp(iθk) �= 0, θk ∈ (−π,π], rk = |zk| < 1,
∑∞
k=1(1 − rk) < ∞.

Theorem 24 ([13, Theorem 2.8]) Suppose B has the form (37) and

lim
k→∞ zk = 1.

Then one can choose a branch of argB(eiτ ) which is continuous and increasing on
(0,2π), and which satisfies the following conditions

lim
τ→0+0

argB
(
eiτ
)=: A+ < 0, lim

τ→2π−0
argB

(
eiτ
)= : A− > 0.

Moreover, at least one of these limits is infinite and

argB
(
eiθ
)=
{

−2(
∑
θk≥θ (π + ϕk(θ))+∑θk<θ

ϕk(θ)), θ ∈ (0,π],
2(
∑
θk≤θ (π − ϕk(θ))−∑θk>θ

ϕk(θ)), θ ∈ [−π,0), (38)

where

ϕk(θ) = arctan

(
εk cot

θ − θk
2

)
, εk = 1 − rk

1 + rk . (39)
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The next result shows that the argument of a Blaschke product may grow arbi-
trarily slowly or arbitrarily fast as t → 1 and that the growth on the left from 1 may
be different from that on the right.

Theorem 25 ([13, Theorem 2.9]) Suppose that a real-valued function f is con-
tinuous and increasing on (−π,0) and (0,π), and that at least one of the limits
limθ→0±0 f (θ) is infinite. Then there exists a Blaschke product B of the form (37)
such that ∣∣argB

(
eiθ
)− f (θ)∣∣≤ const, θ ∈ (−π,π) \ {0}. (40)

Theorem 25 allows one to factor out a Blaschke product from the symbol of a
Toeplitz operator in such a way that the resulting Toeplitz operator has a symbol
with a bounded and continuous argument on T \ {1}. Unfortunately not much is
known about such operators, so the above theorem is not sufficient for our purposes.

Suppose a has the form (36), where the function f is continuous and monotoni-
cally increasing on the intervals (−π,0) and (0,π), and satisfies

lim
θ→0±0

f (θ) = ∓ ∞. (41)

With no loss of generality we can take f (−π + 0) = f (π − 0) = 0. Let

ϑ(x) := f−1(−x), x ∈ R \ {0}. (42)

Then ϑ is monotonically decreasing on (−∞,0) and (0,∞), and

ϑ(±∞) = 0, ϑ(0 ± 0) = ±π.
Further, let

Δ(n) =
{
ϑ(n)− ϑ(n+ 1), n = +0,1,2, . . . ,

ϑ(n− 1)− ϑ(n), n = −0,−1,−2, . . . .

Consider the sequence of functions

ψn(s) = ϑ(n)− ϑ(n+ s)
Δ(n)

, s ∈ I := [−1/2,1/2].

We assume that this sequence converges monotonically on I and that

lim
n→+∞ψn(s) = ψ(s),

lim
n→−∞ψn(s) = −ψ(−s),

(43)

where the function ψ is monotonically increasing and continuous on I . Finally, we
put

ξ(n) =
{
ϑ(n+ 1)/ϑ(n), n = +0,1,2, . . . ,

ϑ(n− 1)/ϑ(n), n = −0,−1,−2, . . . ,
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α(n) = 1 − ξ(n).
We will need the following technical result.

Theorem 26 ([13, Proposition 5.6]) Suppose the function ϑ has the form (42) and
satisfies condition (43). Then

lim
n→±∞

Δ(n± 1)

Δ(n)
= d, 0 ≤ d ≤ 1. (44)

Moreover,

lim
n→∞ ξ(n) = d, lim

n→∞α(n) = 1 − d,

lim
n→∞

α(n+ 1)

α(n)
= 1,

(45)

and

ψ(1/2)− dψ(−1/2) = 1.

We will need the following two auxiliary functions

A(θ) =
∑
ϑ(j)>θ

arctan
(
α(j)

)−
∑

ϑ(j)<−θ
arctan

(
α(j)

)
, θ ∈ (0,π), (46)

and

C(n) =
n−σ∑
j=m(n)

arctan
Δ(j)

ϑ(j)− ϑ(n) −
M(n)∑
j=n+σ

arctan
Δ(j)

ϑ(n)− ϑ(j) , (47)

where σ = signn, the number m = m(n) is the j of the smallest modulus for
which |ϑ(j)| ≤ 3

2 |ϑ(n)|, whileM = M(n) is the j of the largest modulus for which
|ϑ(j)| ≥ 1

2 |ϑ(n)|.
The quantity A(θ) relates the behaviour of ϑ(x) as x → +∞ to its behaviour

as x → −∞; in other words, it connects the behaviour of f in a right semi-
neighbourhood of zero to its behaviour in a left semi-neighbourhood (see (42)).
The quantity C(n) characterises the behaviour of ϑ(x) near the point x = n.

Theorem 27 ([13, Theorem 5.10]) Suppose the function a ∈ GL∞(T) is continuous
on T \ {1} and has the form (36) with a function f that is monotonically increasing
on (−π,0) and (0,π) and satisfies condition (41). In addition, assume that condi-
tion (43) is satisfied, that d = 1 in (44), and that the limits

lim
θ→0±0

A(θ) = a, a ∈ R, (48)

lim
n→±∞C(n) = 0 (49)
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exist, where A(θ) and C(n) are defined by (46) and (47).
Then a admits the representation

a(t) = B(t)g(B(t))d(t), (50)

which is a (B,p)-factorisation, with g,d ∈ C(T). Moreover, the winding number of
the function g is equal to zero, the Blaschke product B is constructed from the zeroes
zj = rj exp{iϑ(j)}, where rj = (1 −Δ(j)/2)/(1 +Δ(j)/2), j = ±1,±2, . . . , and
the product

b(t) := g(B(t))d(t)
admits a p-factorisation of the form (5) for any 1<p < ∞.

Theorem 28 ([13, Theorem 5.12]) Suppose the function f satisfies all the condi-
tions of Theorem 27 and that in condition (43)

ψ(s) = s. (51)

Then the function a given by (36) belongs to H∞(T)+C(T) and admits the repre-
sentation

a(t) = U(t)c(t), (52)

where c is a continuous function on T and the inner function U has the form

U(t) = r0 +B(t)
1 + r0B(t) , r0 = e−2,

with the same Blaschke product B as in (50).

Conditions (43), (48), (49), under which Theorems 27 and 28 hold, cover a very
large class of symbols with arguments that increase in a neighbourhood of the dis-
continuity. However, they are not always easy to verify. The following theorems
provide more convenient sufficient conditions. We assume as above that f is mono-
tonically increasing on [−π,0) and (0,π], and satisfies (41).

Theorem 29 ([13, Proposition 5.8]) Let f be twice continuously differentiable on
[−π,π] \ {0} and let f ′ be monotonically decreasing (increasing) on (0,π) (on
(−π,0) respectively) and satisfy

lim
θ→0

f ′ ′(θ)
(f ′(θ))2

= 0. (53)

Then (43) holds with the function ψ(s) ≡ s.

It is not difficult to see that (53) implies

lim
θ→0

1

θf ′(θ)
= 0. (54)
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Theorem 30 ([13, Proposition 5.9]) Suppose that f is twice continuously dif-
ferentiable on [−π,π] \ {0} and that f ′ is monotonically nonincreasing (nonde-
creasing) on (0,π) (on (−π,0) respectively) and satisfies (54) and

lim
θ→0

f ′ ′(θ)|θ |1/2

(f ′(θ))3/2
= 0. (55)

Then (49) holds.

Theorem 31 ([13, Proposition 5.10]) Suppose that all the assumptions of Theo-
rem 29 are satisfied and that

∣∣∣∣ f
′(θ)

f ′( 3
2θ)

∣∣∣∣≤ g, (56)

where g > 1 does not depend on θ ∈ (−π,π) \ {0}. Then (49) holds.

Theorem 32 ([13, Proposition 5.11]) Suppose the function f is odd: f (−θ) =
−f (θ). Then (48) holds.

Theorem 33 ([13, Proposition 5.12]) Suppose f is continuously differentiable on
(−π,π) \ {0} and the function ψ(θ) = (θf ′(θ))−1 tends monotonically to zero as
θ → 0. Then (48) holds whenever one of the following three conditions is satisfied:

∫ π
0

[
f ′(s) arctan

1

sf ′(s)
− f ′(−s) arctan

1

sf ′(−s)
]
ds < ∞; (57)

∫ π
0

∣∣∣∣ 1

(sf ′(s))2
− 1

(sf ′(−s))2
∣∣∣∣dss < ∞; (58)

∫ π
0

1

(sf ′(s))2
ds

s
< ∞ and

∫ π
0

1

(sf ′(−s))2
ds

s
< ∞. (59)

Below are several examples where the conditions of Theorem 27 are satisfied
(see [13, Sect. 5.6]).

Example 1 Power whirls.
Consider the function

f (θ) =
{

−c+θ−λ+ , θ > 0,

c− |θ |−λ− , θ < 0,

where c± > 0 and λ± ∈ (0,∞). It obviously satisfies the conditions of Theorems 29
and 30 (and of Theorem 31), as well as condition (59), and consequently all the
conclusions of Theorem 27 are valid for f .
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One can consider a more general case that often arises in the theory of the
Riemann-Hilbert problem with an infinite index

f (θ) =
{

−c+(θ)θ−λ+ , θ > 0,

c−(θ)|θ |−λ− , θ < 0,
(60)

where λ± > 0, and the functions c± are continuous on [0,π] and [−π,0] respec-
tively. Let us assume that c±(θ) are twice continuously differentiable on [−π,0)
and (0,π] and that

lim
θ→0±0

c′±(θ)θ = 0, lim
θ→0±0

c′ ′±(θ)θ2 = 0. (61)

The conditions of Theorem 27 can be verified with the help of Theorems 29, 30,
and 33.

Example 2 Power-logarithmic whirls. Now let

f (θ) =
{

−c+θ−λ+(log |θ |−1)β+ , θ > 0,

c− |θ |−λ−(log |θ |−1)β− , θ < 0,

where c± > 0 and λ± ∈ (0,∞), β± ∈ R. The applicability of Theorem 27 in this
case is verified in the same way as in Example 1.

Example 3 Exponential and superexponential growth of the argument. Let

f (θ) =
{

−c+ exp{d+θ−λ+ }, θ > 0,

c− exp{d− |θ |−λ− }, θ < 0,

where c± > 0, d± > 0 and λ± ∈ (0,∞), or let

f (θ) =
{

−c+ exp{g+ exp(d+θ−λ+)}, θ > 0,

c− exp{g− exp(d− |θ |−λ−)}, θ < 0,
(62)

where c± > 0, d± > 0, g± > 0, and λ± ∈ (0,∞). The conditions of Theorem 27 are
verified as in the preceding cases. Let us mention only that Theorem 31 does not
apply here, while Theorem 30 does.

These examples show that the conditions of Theorem 27 are well suited to rapidly
growing arguments f (θ). In particular, it is easy to see that a function f constructed
via a composition of a finite number of exponentials similarly to (62) also satisfies
(53), (55) and (59).

Let us now consider the case of slowly growing arguments f (θ).

Example 4 Logarithmic whirls.
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Let

f (θ) =
{

−c(log θ−1)β, θ > 0,

c(log |θ |−1)β, θ < 0,
(63)

where β > 0, c > 0. If β > 1, then f satisfies the conditions of Theorem 27, which
can be verified by evaluating the limits (53), (55) and applying Theorem 32. On the
other hand, if β ∈ (0,1], then f fails to satisfy the condition d = 1 in Theorem 27.
The critical case β = 1 is the most important for us and we will consider it below
(see Theorems 34, 35).

Similarly to Example 1, one can replace the constants c± in Examples 2–4 with
continuous functions.

Example 5 Asymmetric whirls.
In Examples 1–3, condition (49) can be verified separately for left and right semi-

neighbourhoods of the point θ = 0 with the help of (59). This allows one to construct
new examples that satisfy the conditions of Theorem 27 from the ones mentioned
above by combining different types of whirling to the left and to the right. For in-
stance, one can take

f (θ) =
{

−c+ exp(g exp(θ−λ)), θ > 0,

c− logβ(|θ |−1), θ < 0,
(64)

where c± > 0, g > 0, λ > 0, and β > 3/2. The corresponding function (36) com-
bines very fast oscillations to the right of the point θ = 0 with very slow oscillations
to the left of it.

It was mentioned in Example 4 that Theorem 27 does not cover the case of slow
oscillations and that the natural boundary of its domain of applicability is the case
of pure logarithmic whirls. In this case, we have the following result which was a
key ingredient in the proof of Theorem 23.

Theorem 34 (See [13, Theorem 2.10 and the end of the proof of Theorem 5.9])
Suppose a ∈ GL∞(T) is continuous on T\ {1} and has the form (36) with a function
f satisfying the condition

lim
θ→±0

(
f (θ)± 1

2
log |θ |−1

)
= 0.

Then a admits the representation

a(t) = B(t)g(B(t))d(t), (65)
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where g,d ∈ C(T), the winding number of g is 0, and B is the infinite Blaschke
product with the zeroes

zk = 2 − exp(−k + 1/2)

2 + exp(−k + 1/2)
.

Note by the way that B in the above theorem is an interpolating Blaschke product
(see the end of Sect. 5.4 in [13]).

The following result is a generalisation of Theorem 34 (see [13, Sect. 5.7]).

Theorem 35 ([13, Theorem 5.11]) Let a function a ∈ GL∞(T) be continuous on
T \ {1} and have the form (36) with a function f that is monotonically increasing on
(−π,0)∪ (0,π) and satisfies the condition (41). Assume, in addition, that condition
(43) is satisfied, that (45) holds with some number 0< d < 1, and that

lim
n→+∞

(
− ϑ(n)

ϑ(−n)
)

= 1.

Then the function a admits the following representation, which is a (B,p)-factori-
sation simultaneously for all 1<p < ∞:

a(t) = B(t)g(B(t))d(t),
where g,d ∈ C(T). Moreover, the winding number of the function g is equal to
zero and the Blaschke product B is constructed from the zeroes zj = rj exp{iϑ(j)},
where

rj = (1 −Δ(j)/2)/(1 +Δ(j)/2), j = ±1,±2, . . . .

Using a linear fractional transformation, one can easily transplant the above re-
sults from T to R. The following analogue of a special case of Theorem 28 is of a
direct relevance to Theorem 19.

Theorem 36 ([3, 4]) Let α : R → R be an orientation preserving homeomorphism
that is twice continuously differentiable for all sufficiently large values of x > 0 and
is such that

lim inf
x→+∞

xα′ ′(x)
α′(x)

> −2, (66)

lim
x→+∞

α′ ′(x)
(α′(x))2

= 0, (67)

lim
x→+∞x

1/2 α′ ′(x)
(α′(x))3/2

= 0, (68)

lim
x→+∞

(
α(x)+ α(−x))= 0. (69)
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Then

eiλα ∈ H∞(R)+C(Ṙ), ∀λ > 0.

Moreover the following representation holds

eiλα(x) = Bλ(x)Cλ(x), (70)

where Bλ is a Blaschke product with an infinite number of zeroes accumulating at
infinity and Cλ is a unimodular function belonging to C(Ṙ).

Condition (66) is equivalent to the requirement that x2α′(x) is strictly increasing
for large values of x. Conditions (66)–(68) are satisfied for large classes of functions.
Here are some examples:

α(x) = c xγ , γ > 0,

α(x) = c lnδ(x + 1), δ > 1,

α(x) = c xγ lnδ(x + 1), γ > 0, δ ∈ (− ∞,∞),

α(x) = c1 exp
(
c2x

γ
)
, γ > 0

with some positive constants c, c1, c2 (cf. Examples 1–4).
On the other hand, there are plenty of orientation preserving homeomorphisms

α : R → R for which eiα /∈ H∞(R)+C(Ṙ). This is a consequence of the following
result.

Theorem 37 ([1, 3]) Given any orientation preserving homeomorphism η : R → R,
there exists an orientation preserving homeomorphism α : R → R such that α−η ∈
L∞(R) and eiα /∈ H∞(R)+C(Ṙ).

Theorem 36 implies the following sufficient condition for (35) to hold.

Theorem 38 ([3]) Suppose there exists δ > 1 such that β(x) := α(x) − (logx)δ

is strictly increasing and twice continuously differentiable for all sufficiently large
values of x > 0, and suppose β satisfies (66)–(68) (with β in place of α). Then
weiλα ∈ H∞(R)+C(Ṙ) for all λ > 0, where w is the same as in (10)–(11).

The final topic of this section is motivated by applications to the KdV equation
(see Sect. 6). We are interested in conditions under which the argument of the quo-
tient of two Blaschke products with purely imaginary zeroes in the upper half-plane
is continuous on the real line. Consider the Blaschke product

B(z) =
∞∏
k=1

z − ixk
z + ixk , z ∈ C+ := {z ∈ C| Im z > 0} (71)
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with purely imaginary zeroes such that

x1 > · · · > xk > xk+1 > · · · > 0 and lim
k→∞xk = 0. (72)

In this case, the standard Blaschke condition (see, e.g., [14, Chap. II, (2.3)] or [27,
(13.13)]) reads

∞∑
k=1

xk < ∞. (73)

Theorem 24 takes the following simple form.

Theorem 39 Let argB denote the branch of the argument of the Blaschke prod-
uct (71)–(73) which is continuous on R \ {0} and satisfies limx→±∞ argB(x) = 0,
and let the branch of arctan be chosen so that arctanx ∈ (−π

2 ,
π
2 ). Then argB is

increasing on R \ {0},

argB(x) = − argB(−x), x ∈ R, (74)

lim
x→±0

argB(x) = ∓ ∞, (75)

and

argB(x) = −2
∞∑
k=1

arctan
xk

x
, x �= 0. (76)

Let fB be a continuous and decreasing on (0,+ ∞) function such that

fB(k) = xk.

Let Δk = xk − xk+1 and Δ(2)k (s) = fB(k + s) − fB(k) + s(xk − xk+1), s ∈
[−1/2,1/2].

Theorem 40 ([20]) Suppose the sequence {xk} is such that

lim
k→∞

xk − xk+1

xk
= 0 (77)

and

lim
k→∞ sup

s∈[−1/2,1/2]

( |Δ(2)k (s)|
Δk

)
= 0. (78)

Then

argB(x) = −2
∫ ∞

1/2
arctan

fB(u)

x
du+O(x), (79)

where limx→0O(x) = 0.
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Theorem 41 ([20]) Let a function fB be continuously differentiable on (0,+ ∞)

and satisfy all the conditions of Theorem 40. Then, for x > 0

argB(x) = −2x
∫ 1

0

ϕB(y)

x2 + y2
dy + π

2
+O1(x), (80)

where ϕB(y) := f−1
B (y) is the inverse function of fB and

lim
x→0

O1(x) = 0.

Let now R(x) = B1(x)/B2(x), where B1(x) and B2(x) are Blaschke products
with the zeroes ifBj (k), j = 1,2, where the functions fBj satisfy the conditions of
Theorem 41. Introduce the function

r(y) := ϕB1(y)− ϕB2(y),

where ϕBj (y) := f−1
Bj
(y), j = 1,2.

Theorem 42 ([20]) Suppose at least one of following two conditions holds:

(i)

r(y) = r0 +O2(y)

with some r0 ∈ R, limy→0O2(y) = 0;
(ii) ∫ y

0
r(s)ds = r1y +O3(y)

with some r1 ∈ R, limy→0(
O3(y)
y
) = 0.

Then

argR(x) = r2 +O4(x),

with some r2 ∈ R, limx→0O4(x) = 0.

The following corollary of Theorem 42 together with Theorem 36 play an im-
portant rôle in the proof of Theorem 43.

Corollary ([20]) Let

Bj (z) =
∞∏
k=1

z − ix(j)k
z + ix(j)k

, j = 1,2

be two Blaschke products with interlacing (x(1)k > x
(2)
k > x

(1)
k+1) imaginary zeroes

accumulating at 0, and let f be a real continuously differentiable function such that
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f (2x) and f (2x − 1) satisfy the conditions of Theorem 41 and

f (k) =

⎧⎪⎨
⎪⎩
x
(1)
k+1

2
, k is odd,

x
(2)
k
2
, k is even.

Then argB1/B2 is continuous on the real line.

6 Applications to the KdV Equation

Let P be the projection defined by (2), Q := I − P and let

(Jf )(x) = f (−x) : L2(R) → L2(R) (81)

be the reflection operator. The Hankel operator with the symbol a ∈ L∞(R) is de-
fined by the formula

(
H(a)f

)
(x) := (JQaf )(x): H 2(R) → H 2(R). (82)

The symbol

φ(x) = ei(tx3 +cx)d(x), t > 0, c ∈ R (83)

arises in the inverse scattering transform method for the Korteweg-de Vries (KdV)
equation (see [29, 30]). The form of the unimodular function d(x) depends on the
properties of the initial data for the KdV equation. In certain important cases the
function d has the form

d(x) = B1(x)

B2(x)
I (x), (84)

where B1, B2 are Blaschke products with zeroes converging to 0 along the imag-
inary axis and I is an inner function (I ∈ H∞(R) and |I (x)| = 1 a.e. on the real
line).

The proof of the following result relies on Theorems 7, 36 and 42.

Theorem 43 ([20]) Let φ(x) = ei(tx
3 +cx) B1(x)

B2(x)
I (x), t > 0, c ∈ R, where Bj , j =

1,2 are Blaschke products with zeroes {ifBj (k)} and the real-valued functions fBj ,
j = 1,2 satisfy the conditions of Theorems 40–42. Then the Toeplitz operator

T (φ): H 2(R) → H 2(R)

is left invertible, the Hankel operator

H(φ): H 2(R) → H 2(R)

is compact and the operator

I + H(φ): H 2(R) → H 2(R)

is invertible.
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Theorem 43 plays a crucial rôle in the proof of case 3 in the following theorem.
Consider the Cauchy problem for the Korteweg-de Vries equation

∂u(x, t)

∂t
− 6u(x, t)

∂u(x, t)

∂x
+ ∂3u(x, t)

∂x3
= 0, t ≥ 0, x ∈ R, (85)

u(x,0) = q(x), (86)

and the Schrödinger operator Hq = −d2/dx2 + q(x) on L2(R). Let HDq =
−d2/dx2 + q(x) be the corresponding operator on L2(− ∞,0) with the Dirichlet
boundary condition u(0) = 0.

Theorem 44 ([20]) Assume that the initial profile q(x) in (86) is real-valued, lo-
cally integrable, supported in (−∞,0) and such that

inf Spec(Hq) = −a2 > −∞. (87)

Then the Cauchy problem for the KdV equation (85)–(86) has a unique solution
u(x, t) which is a meromorphic function in x on the whole complex plane with no
real poles for any t > 0 if at least one of the following conditions holds:

1. The operator HDq has a non-empty absolutely continuous spectrum;
2. Spec(HDq )∩ R− is a set of uniqueness of an H∞(R) function;

3. {Spec(HDq )∪ Spec(Hq)} ∩ R− is a discrete set {−x2
n}n≥1 such that the sequence

{xn}n≥1 satisfies the conditions of the Corollary of Theorem 42.

7 Some Open Problems

There are of course many open problems in the spectral theory of Toeplitz operators.
Here we list just a few of them, mainly those that are directly related to the topics
discussed above.

1. Describe inner functions/Blaschke products v for which ρ ∈ Ap =⇒ ρ ◦ v ∈
Ap (cf. Theorems 14 and 15). In particular, is the condition (27) necessary for
this implication to hold in the case of Blaschke products with positive zeroes?
Perhaps one should try to describe pairs (ρ, v), where ρ ∈ Ap and v is an inner
function, such that ρ ◦ v ∈ Ap .

2. Find conditions on an orientation preserving homeomorphism α : R → R that
are necessary and sufficient for

eiλα ∈ H∞(R)+C(Ṙ), ∀λ > 0

to hold (cf. Theorem 36).
3. According to Theorem 16, a ∈ fact(∞,p) is a sufficient condition for the

right/left invertibility of T (a) : Hp(T) → Hp(T), 1 < p < ∞. Is this also a
necessary condition for the right/left invertibility or even for the Φ± property of
T (a)? The answer is positive for p = 2 (see [13, Sect. 2.7]).
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4. Study spectral properties of T (a) : Hp(T) → Hp(T) when a belongs to a Dou-
glas algebra, i.e. to a closed subalgebra of L∞(T) containing H∞(T) (cf. Theo-
rem 7). According to the Chang–Marshall theorem, every such algebra is gener-
ated by H∞(T) and the complex conjugates of some inner functions (see, e.g.,
[14, Chap. IX]).

Finally, we would like to reiterate that very little is known about the (essential)
spectrum of T (a) : Hp(T) → Hp(T), 1<p < ∞ for a general a ∈ L∞(T).
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Approximating the Riemann Zeta-Function
by Strongly Recurrent Functions

P.M. Gauthier

Abstract Bhaskar Bagchi has shown that the Riemann hypothesis holds if and only
if the Riemann zeta-function ζ(z) is strongly recurrent in the strip 1/2 < �z < 1.
In this note we show that ζ(z) can be approximated by strongly recurrent functions
sharing important properties with ζ(z).

Keywords Riemann hypothesis · Strong recurrence
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1 Introduction

In 1982, Bagchi ([1, 2]) showed a surprising equivalence between the Riemann hy-
pothesis and a statement in topological dynamics, a subject which has its origins in
the motion of particles. One is reminded of the amazing similarity between quan-
tum dynamical systems and zeros of the Riemann zeta-function discovered by the
chance encounter of Freeman Dyson and Hugh Montgomery in 1972.

For −∞ ≤ α < β ≤ + ∞, we denote by S = S(α,β) the strip α < �s < β and by
O(S) the set of functions holomorphic in S. We denote by meas(E) the Lebesque
measure of a Borel subset E of R. For a Borel set E ⊂ R, we denote by dR(E) and
d
R
(E) respectively the upper and lower densities of E in R, defined as follows.

dR(E) := lim sup
T→+∞

meas(E ∩ [−T ,T ])
2T

d
R
(E) := lim inf

T→+∞
meas(E ∩ [−T ,T ])

2T
.

A function f ∈ O(S) is said to be strongly recurrent if, for each compact setK ⊂ S,
and for each ε > 0, the set of t ∈ R such that maxK |f (z) − f (z + it)| < ε is of
positive upper density.
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Theorem 1 (Bagchi) The Riemann hypothesis holds if and only if the Riemann
zeta-function is strongly recurrent in the strip 1/2< �z < 1.

We shall also consider a discrete form of strong recurrence. If E is a finite subset
of Z, we denote by #E the number of elements of E. For a subset E of Z, we denote
by dZ(E) and d

Z
(E) respectively the upper and lower densities of E in Z, defined

as follows.

dZ(E) := lim sup
N→+∞

#(E ∩ {−N, . . . ,N})
2N + 1

d
Z
(E) := lim inf

N→+∞
#(E ∩ {−N, . . . ,N})

2N + 1
.

For Δ ∈ R, Δ �= 0 we say that a function f ∈ O(S) is strongly recurrent modulo
Δ, if for each compact set K ⊂ S, and for each ε > 0, the set of k ∈ Z such that
maxK |f (z)− f (z + i(kΔ))| < ε is of positive upper density in Z.

The following particular case of a theorem of Walter H. Gottschalk and Gustav
A. Hedlund [8] allows us to pass between continuous and discrete dynamics.

Theorem 2 (Inheritance Theorem) Let f ∈ O(S) and Δ ∈ R,Δ �= 0. Then, f is
strongly recurrent if and only if f is strongly recurrent modulo Δ.

Our main results are the following.

Theorem 3 For each Δ ∈ R different from 0, there exists a sequence of functions
ϕn meromorphic on C, each of which is strongly recurrent in 1/2< �z < 1 modulo
Δ and hence strongly recurrent. Moreover:

(1) ϕn → ζ uniformly on compact subsets of C;
(2) ϕn has only a simple pole at z = 1 with residue 1;
(3) ϕn(x) ∈ R, ∀x ∈ R \ {1}.

Theorem 4 Let S be the fundamental strip 0 < �z < 1. There is a function h ∈
O(S) which is strongly recurrent and which satisfies the functional equation of the
Riemann zeta-function.

The functional equation for the Riemann zeta-function is the following:

ζ(z)π−z/2Γ
(
z

2

)
= ζ(1 − z)π−(1−z)/2Γ

(
1 − z

2

)

and we say that a function h satisfies the functional equation for the Riemann zeta-
function if the previous equation is satisfied, when ζ is replaced by h. Regarding
this functional equation, we recall the famous theorem of Hans L. Hamburger [10],
which states that the only function which satisfies this functional equation and has
the same general character as ζ is ζ itself.
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Theorem 5 (Hamburger) If f is a Dirichlet series convergent in �z > 1 with a
meromorphic continuation to C as a function of finite order with only finitely many
poles and, if f satisfies the functional equation for the Riemann zeta-function ζ ,
then f = ζ .

Theorem 3 was presented at the 2011 Winter Meeting of the Canadian Math-
ematical Society, in the session on Composition Operators, organized by Javad
Mashreghi and Nina Zorboska. We shall give the proofs after introducing some
preparatory material.

2 Symmetric Function Theory

Let C denote the closed complex plane C = C ∪ {∞}. For a subset E ⊂ C, denote
E = {z : z ∈ E} and ∞ = ∞. Let us say that E is real-symmetric if E = E. For a
function f defined on a set E, we denote by f the function defined on E by the
formula f (z) = f (z). We shall say that a function f defined on a real-symmetric
set E is real-symmetric if f = f . A meromorphic function on a real-symmetric
domain meeting the real-axis is real-symmetric if and only if f (z) ∈ R ∪ {∞} for
z ∈ R ∪ {∞}. Some theorems in function theory remain true in the real-symmetric
category.

A function is said to be meromorphic (holomorphic) on a set E if it is meromor-
phic (holomorphic) in an open neigborhood of E. We denote by M(E) and O(E)
the family of meromorphic respectively holomorphic functions on E. If E is real-
symmetric we define MR(E) to be the family of functions f meromorphic on E
and real-symmetric. We denote by OR(E) the subfamily of functions in MR(E)

which are holomorphic on E.

Theorem 6 (Symmetric Mittag-Leffler) Let P be a discrete subset of C with P =
P . For each p ∈ P , let Qp be a non-constant polynomial and suppose Qp = Qp .
Then, there is a function h ∈ MR(C) whose poles are precisely the points of P and
with principal parts Qp(1/(z − p)),p ∈ P .

Proof Let h+ be a meromorphic function on C whose poles are precisely the points
p ∈ P with �p > 0 and with the prescribed principal parts. Set h− = h+. Let φ
be a meromorphic function on C whose poles are precisely the real points of P
and with the prescribed principal parts. Set ho = (φ + φ)/2. Then, the function
h = h+ + h− + ho has the required properties. �

For a closed set E, we denote by A(E), as usual, the family of functions contin-
uous on E and holomorphic on the interior Eo. We shall say that a closed set E ⊂ C

is a set of uniform approximation if, for each f ∈ A(E), and each ε > 0, there is an
entire function g such that |f (z) − g(z)| < ε, for each z ∈ E. The following result
is due to Norair U. Arakelian (see [6]).
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Theorem 7 A closed set E ⊂ C is a set of uniform approximation if and only if
C \E is connected and locally connected.

We may also state a real-symmetric theorem on uniform approximation.

Theorem 8 (Symmetric Approximation) If E is a set of uniform approximation,
E is real-symmetric and f ∈ MR(E), then, for each ε > 0, there is a function
g ∈ MR(C), whose poles in C are the same as those of f on E and with same
principal parts, such that

∣∣f (z)− g(z)∣∣< ε exp
(−|z|1/4), for all z ∈ E.

Proof By Theorem 6, there is an h ∈ MR(C) with f − h ∈ OR(E). By another
theorem of Arakelian (see [6]), there is a Φ ∈ O(C) which approximates f − h as
required. Then, φ = (Φ + Φ)/2 also approximates f − h. Set g = φ + h. Then, g
has the required properties. �

We shall require a stronger approximation than uniform approximation. A closed
set E ⊂ C is a set of tangential approximation if, for each f ∈ A(E), and each
positive continuous function ε, there is an entire function g such that |f (z)−g(z)| <
ε(z), for each z ∈ E. Of course, a set of tangential approximation is a fortiori a set
of uniform approximation. Let us say that a family Eα of subsets of C has no long
islands if, for each compact K ⊂ C there is a (larger) compact set Q such that each
Eα which intersects K is contained in Q. The following theorem gives a condition
which characterizes sets of tangential approximation. I discovered this condition
and proved the necessity. The sufficiency was established by Ashot H. Nerssesian
(see [6]).

Theorem 9 A set E ⊂ C of uniform approximation is a set of tangential approxi-
mation if and only if the family of components of the interior has no long islands.

Just as for uniform approximation, there is a real-symmetric version of this the-
orem. Let us say that a real-symmetric set E of uniform approximation is a set of
real-symmetric tangential approximation if for each real-symmetric f ∈ A(E) and
each real-symmetric positive continuous function ε, there is a real-symmetric entire
function g such that |f (z) − g(z)| < ε(z), for each z ∈ E. Just as for uniform ap-
proximation, and with a similar proof, we have the following symmetric tangential
approximation theorem.

Theorem 10 A real-symmetric set E ⊂ C of uniform approximation is a set of real-
symmetric tangential approximation if and only if the family of components of the
interior has no long islands.
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3 Frequent Hypercyclicity

Let T : X → X be an operator from a linear space X into itself. The (forward) orbit
of a vector x ∈ X under the action of T is the set of vectors O(x) = {T x,T 2x, . . .},
where T nx is defined inductively as T (T n−1x). A vector x ∈ X is said to be a cyclic
vector for the operator T if the subspace generated by the orbit O(x) is dense in X
and the operator T is said to be a cyclic operator if it has a cyclic vector. A vector
x ∈ X is said to be hypercyclic for T if the orbit itself O(x) is dense in X. We
shall say that x is hypercyclic for T in a subset Y ⊂ X if for each y ∈ Y , there is a
sequence {nk} in N such that T nkx → y. For an excellent overview of hypercyclicity,
see the survey [9] by Carl-Goswin Grosse-Erdmann.

For a ∈ C, let ϕa : C → C denote the translation ϕa(z) = z+ a and let Ca denote
the composition operator on the space of complex-valued functions on C, defined as
Caf (z) = (f ◦ϕa)(z) = f (z+ a). George D. Birkhoff showed that, for each a �= 0,
the composition operator Ca is hypercyclic on the space of entire functions. That is,
there exists a (hypercyclic) entire function f . This means that the translates of f are
dense in the space of all entire functions. More precisely, for each entire function g,
there is a sequence of natural numbers {nk} such that f (z+nka) → g(z) uniformly
on compact. Such a hypercyclic function f is also said to be a universal function.

My advisor, Wladimir Seidel, and Joseph L. Walsh [15] established an analog
of Birkhoff’s theorem in the disc, replacing translation by non-euclidian transla-
tion. There is no difficulty in extending the results of Birkhoff, Seidel and Walsh to
several complex variables. Maurice Heins [11] showed the existence of a Blaschke
product universal in the unit ball of H∞(D), where D is the unit disc. Pak-Soong
Chee [5] showed the existence of a function universal in the unit ball of H∞(Bn),
where B

n is the unit ball in C
n. XIAO Jie and I [7] showed the existence of such a

universal function in H∞(Bn) which is inner.
It turns out (see [9]) that hypercyclicity is a generic phenomenon. For example,

most entire functions are hypercyclic (universal). But no explicit example is known!
The only known universal function in the sense of Birkhoff is the Riemann zeta-
function ζ(s) (and some closely related zeta-functions). Of course, ζ(s) is not entire,
but it is as close to being entire as possible. It has only one simple pole and that
pole has residue 1. Let S be the strip 1/2 < �s < 1, O(S) the set of functions
holomorphic in S and Oo(S) the set of zero-free functions in O(S). The remarkable
Universality Theorem of Sergei Mikhailovich Voronin (as extended by Steven M.
Gonek and Bagchi) states that for any real number a, different from zero, there
exists a sequence {tk} of real numbers such that the sequence of translates ζ(s +
itka) comes arbitrarily close to each function in Oo(S). In fact, one can choose the
sequence {tk} to be natural numbers {nk}. Thus, the Riemann zeta-function ζ(s) is
hypercyclic for the composition operator Cia on the space Oo(S). That is, for each
zero-free function g holomorphic in the strip S, there is a sequence {nk} of natural
numbers, such that ζ(s + inka) → g(s).

Frédéric Bayart and Sophie Grivaux [3] introduced the notion of frequent hyper-
cyclicity [3]. For a subset E of N, we denote by dN(E) and d

N
(E) respectively the
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upper and lower densities of E in N, defined as follows.

dN(E) := lim sup
N→+∞

#(E ∩ {1, . . . ,N})
N

d
N
(E) := lim inf

N→+∞
#(E ∩ {1, . . . ,N})

N
.

A vector x is frequently hypercyclic for an operator T on a space X if, for each
open set U in X, the set of n ∈ N for which T nx ∈ U has positive lower density
in N. If such a frequently hypercyclic vector exists for T , then the operator T is said
to be frequently hypercyclic. Bayart and Grivaux [3] gave a criterion for frequent
hypercyclicity. In contrast to hypercyclicity, frequent hypercyclicity is not a generic
phenomenon.

The following lemma is stated in [3].

Lemma 1 If there is a frequent hypercyclic vector in X for T , then the set of fre-
quent hypercyclic vectors for T is dense in X.

Proof Let x be a frequently hypercyclic vector for T and let V be a fixed open set
in X. Choose a positive integer p such that T px ∈ V . By Theorem 6.30 in [4], x is
also a frequently hypercyclic vector for T p . Consequently, for each open set U ⊂ X,

d
{
m : T m(T px) ∈ U}≥ d{n : (T p)nx ∈ U}> 0.

This shows that T px is frequently hypercyclic for T . Thus, for an arbitrary open set
V ⊂ X, we have found a frequently hypercyclic vector for T in V . �

Birkhoff’s theorem extends to frequent hypercyclicity by Example 2.5 in [3].
That is, for each a �= 0, the composition operator Ca is frequently hypercyclic on
the space of entire functions.

The above-mentioned Universality Theorem of Voronin was further refined by
Reich, who showed that, for each real number a, not equal to 0, for each compact
set K ⊂ S with connected complement, for each holomorphic zero-free function on
K and for each ε > 0, the set of real t , such that maxK |f (s)− ζ(s + ita)| < ε, is of
positive lower density. He also showed that the t may be chosen from an arbitrary
arithmetic progression {mΔ},m ∈ N,Δ > 0 with lower density taken with respect
to N. Thus, for each Δ> 0, the Riemann zeta-function is frequently hypercyclic in
Oo(S), for the composition operator CiΔ.

Markus Nieß in [12, 13], and [14] investigated approximation in a strip, by func-
tions having universality properties outside the strip. The following theorem yields
functions which approximate everywhere and have universality properties inside a
strip.

Theorem 11 Fix − ∞ ≤ α < β ≤ +∞. Then, for each f ∈ MR(C) having no poles
in S(α,β)), for each compact set L ⊂ C, for each δ > 0, and for each Δ> 0, there



Approximating the Riemann Zeta-Function by Strongly Recurrent Functions 37

is a function ϕ ∈ MR(C) having the same poles and principal parts as f , such that
ϕ is frequently hypercyclic in O(S(α,β)) for the vertical translation operator CiΔ
and moreover |ϕ − f | < δ on L.

Proof We may assume that C \ L is connected and L = L. Let 
 = max{y : z =
x + iy ∈ L}. For each p ∈ N

+, choose a real number Np > (
 + 2p)/Δ and take
pairwise disjoint subsets Np of N as in Lemma 6.19 in [4], each of which is of
positive lower density. For each p ∈ N

+ and n ∈ Np , we form the closed intervals
I+
n = [nΔ − p,nΔ + p] and I−

n = {y : −y ∈ I+
n }. The sets I±

n , n ∈ Np,p ∈ N
+,

form a locally finite family of disjoint closed intervals. Moreover, these intervals are
all disjoint from the closed interval [−
, 
].

Let αk ↘ α and βk ↗ β . We arrange the n ∈ ∪Np in an increasing sequence
{n(k)}. Now fix p. For n(k) ∈ Np , let D+

k , D−
k and Dk be the closed rectangles

D+
k = {z = x + iy : αk ≤ x ≤ βk, y ∈ I+

n(k)

}

D−
k = {z = x + iy : αk ≤ x ≤ βk, y ∈ I−

n(k)

}

Dk = {z = x + iy : αk ≤ x ≤ βk, |y| ≤ p}.
Then,

D+
k − in(k)Δ = Dk = D−

k + in(k)Δ.
Set

Ep =
⋃

n(k)∈Np

(
D+
k ∪D−

k

)
.

We may do the same for each p and denoting the pole set of f by f−1(∞), put

E = L∪ f−1(∞)∪
⋃
p

Ep.

Then, E = E and, by Theorem 7, the set E is a set of uniform approximation.
Let P be the family of all polynomials with coefficients in Q + iQ. We arrange

these polynomials in a sequence {Pp} in such a way that each polynomial is repeated
infinitely often. We define a function h ∈ MR(E) as follows. For z ∈ L ∪ f−1(∞),
we put h = f . If z ∈ Ep , then z ∈ (D+

k ∪ D−
k ), for some n(k) ∈ Np . We set

h(z) = Pp(z− in(k)Δ), for z ∈ D+
k and h(z) = Pp(z+ in(k)Δ), for z ∈ D−

k . By the
Symmetric Approximation Theorem, there is a function ϕ ∈ MR(C), whose poles
are precisely those of h and with the same principle parts, such that

∣∣ϕ(z)− h(z)∣∣< δ exp
(−|z|1/4), for all z ∈ E.

Thus, ϕ has the same poles as f and with the same principal parts and |ϕ − f | < δ
on L.

We claim that the function ϕ is frequently hypercyclic for the vertical trans-
lation operator CiΔ, on the space O(S(α,β)). Indeed, suppose g ∈ O(S(α,β)),
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K ⊂ S(α,β) is compact and ε > 0. For all but finitely many values of p and for
all but finitely many n(k) ∈ Np ,

K ⊂ {z = x + iy : αk ≤ x ≤ βk, |y| ≤ p}.
We have already noted that this latter set is Dk , whenever n(k) ∈ Np . We may
choose such a p for which

max
K

{∣∣g(z)− Pp(z)
∣∣}< ε/2.

Thus, if n ∈ Np and z ∈ K , then z + inΔ ∈ Ep ⊂ E, so
∣∣ϕ(z + inΔ)− g(z)∣∣ ≤ ∣∣ϕ(z + inΔ)− h(z + inΔ)∣∣+ ∣∣h(z + inΔ)− g(z)∣∣

≤ δ exp
(−|z + inΔ|1/4)+ ∣∣Pp(z)− g(z)∣∣.

Hence, this is less than ε for all but finitely many n ∈ Np . Therefore,

d
{
n : ∣∣ϕ(z + inΔ)− g(z)∣∣

K
< ε
}≥ d(Np) > 0. �

4 Proof of Theorem 3

Lemma 2 Fix −∞ ≤ α < β ≤ + ∞ and Δ > 0. If φ ∈ O(S(α,β)) is frequently
hypercyclic for the vertical translation operator CiΔ, then φ is strongly recurrent.

Proof Let K be a compact subset of the strip S(α,β) and ε > 0. Set S = S(α,β)

and

U =
{
f ∈ S : max

z∈K
∣∣f (z)− φ(z)∣∣< ε}.

Since U is an open subset of O(S) and φ is frequently hypercyclic for the operator
CiΔ,

dZ

{
k ∈ Z : max

z∈K
∣∣φ(z + k(iΔ))− φ(z)∣∣< ε}

≥ d
Z

{
n ∈ N : max

z∈K
∣∣φ(z + n(iΔ))− φ(z)∣∣< ε}

= 1

2
dN
{
n ∈ N : CniΔφ ∈ U}> 0.

Thus, φ is strongly recurrent modulo Δ and by the Inheritance Theorem 2, it is also
recurrent. �

Now, to prove Theorem 3, we may assume that Δ > 0. For n = 1,2, . . . , let
Ln = {z : |z| ≤ n} and choose {εn} decreasing to zero. For each n = 1,2, . . . , we
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invoke Theorem 11 for the strip S = (1/2< �z < 1), f = ζ,L = Ln, and δ = εn to
obtain a function φn, frequently hypercyclic in the strip S for the translation operator
CiΔ. By Lemma 2, the functions φn are also strongly recurrent. This concludes the
proof of Theorem 3.

5 Proof of Theorem 4

It is not in general true that the product of strongly recurrent functions is strongly
recurrent. It is not even true that if fg and hg are strongly recurrent, then fghg is
strongly recurrent, but the following lemma gives us a step in this direction.

Lemma 3 Let S be the fundamental strip 0< �z < 1 and g ∈ O(S) be zero free. Let
{Dk : k = 1,2, . . .} be a regular exhaustion of S by closed (filled) rectangles centered
at 1/2. Let {nk} be an increasing sequence in N such that the rectangles D+

k =
Dk + ink are disjoint and, for each k, the rectangles Dk and D+

k are also disjoint.
Let {εk} be a sequence of positive numbers. Then, there exists f ∈ O(S), f �≡ 0,
such that, for k = 1,2, . . . ,

max
z∈Dk
∣∣f (z)f (1 − z)g2(z)− f (z + ink)f (1 − z − ink)g2(z + ink)

∣∣< εk. (1)

Proof Set D−
k = Dk − ink and let Bk be an exhaustion of S by closed (filled)

rectangles, centered at 1/2, containing Dj, j ≤ k and D±
j , j < k but disjoint from

D±
j , j ≥ k. We may assume that ε1 <maxz∈B2 |g(z)| and

∑
j>k εj < εk .

To prove (1) it is sufficient to obtain a function f ∈ O(S) satisfying

max
z∈D+

k

∣∣∣∣f (z)− f (z − ink)f (1 − z + ink)g2(z − ink)
f (1 − z)g2(z)

∣∣∣∣
<

εk

maxz∈D+
k

|f (1 − z)g2(z)| . (2)

We shall construct inductively a sequence fk, k = 0,1,2, . . . of zero-free entire
functions such that, for k = 1,2, . . . ,

max
z∈Bk
∣∣fk(z)− fk−1(z)

∣∣< ε; (3)

max
z∈D+

k

∣∣∣∣fk(z)− fk(z − ink)fk(1 − z + ink)g2(z − ink)
fk(1 − z)g2(z)

∣∣∣∣
<

εk

maxz∈D+
k

|fk(1 − z)g2(z)| . (4)

First, we define an auxiliary function ϕ1 on D−
1 ∪ B1 ∪ D+

1 . We set ϕ1 = 1 on
B1 ∪D−

1 . On D+
1 we set ϕ1 equal to a polynomial zero-free on D+

1 and performing
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the approximation

max
z∈D+

1

∣∣∣∣ϕ1(z)− ϕ1(z − in1)ϕ1(1 − z + in1)g
2(z − in1)

ϕ1(1 − z)g2(z)

∣∣∣∣
<

ε1

maxz∈D+
1

|ϕ1(1 − z)g2(z)| .

Now, let f0 = 1 and let f1 be a zero-free entire function which approximates ϕ1 so
well on D−

1 ∪B1 ∪D+
1 , that f1 satisfies (3) and (4).

Now, suppose we have functions f1, . . . , fk−1 satisfying (3) and (4). We define
an auxiliary function ϕk on D−

k ∪ Bk ∪ D+
k . First, we set ϕk = fk−1 on Bk . Then,

we set ϕk(z) = ϕk(z+ ink) on D−
k . Finally, on D+

k we set ϕk equal to a polynomial
zero-free on D+

k and performing the approximation

max
z∈D+

k

∣∣∣∣ϕk(z)− ϕk(z − ink)ϕk(1 − z + ink)g2(z − ink)
ϕk(1 − z)g2(z)

∣∣∣∣
<

εk

maxz∈D+
k

|ϕk(1 − z)g2(z)| .

Let fk be a zero-free entire function which approximates ϕk so well on D−
k ∪ Bk ∪

D+
k , that fk satisfies (3) and (4). By induction, we now have our sequence fk, k =

0,1, . . . .
To prove the lemma, we need a single function that has the behavior of the se-

quence {fk}. For this we shall employ tangential approximation. Set E = ⋃k D+
k .

Then, E is a set of tangential approximation. Thus, by Theorem 9, for an arbitrary
sequence δk > 0, there is an entire function f such that maxz∈D+

k
|f (z) − fk(z)| <

δk , for each k = 1,2, . . . . Considering formula (4), we may choose δk sufficiently
small so that f satisfies (2). Consequently, f also satisfies (1). Since f0 = 1, if
our approximation is sufficiently good, the function f is not identically zero. This
completes the proof of the lemma. �

Lemma 4 Let S be the fundamental strip 0 < �z < 1 and g ∈ O(S) be zero free.
Then, there exists f ∈ O(S),f �≡ 0, such that f (z)f (1 − z)g2(z) is strongly recur-
rent.

Proof For p ∈ N choose disjoint sets of natural numbers Np of positive lower den-
sity, as in the proof of Theorem 11 and writing nk = n(k), let Dk and D+

k be the
corresponding sets. Note thatDk andD+

k are disjoint, sinceNp > 2p. Thus, the sets
Dk and D+

k satisfy the hypotheses of Lemma 3.
Fix a compact set K ⊂ S and ε > 0. Choose p so that maxz∈K |�z| < p. Then,

for all but finitely many n = nk ∈ Np ,

K ⊂ Dk.



Approximating the Riemann Zeta-Function by Strongly Recurrent Functions 41

For all but finitely many k, we have εk < ε. Thus, from (1),

2dZ
{
n ∈ Z : max

z∈K
∣∣f (z)f (1 − z)g2(z)− f (z + in)f (1 − z − in)g2(z + in)∣∣< ε}

> d
N

{
nk ∈ Np : max

z∈Dk
∣∣f (z)f (1 − z)g2(z)

− f (z + ink)f (1 − z − ink)g2(z + ink)
∣∣< εk

}

= d
N
(Np) > 0.

Thus, f (z)f (1 − z)g2(z) is strongly recurrent modulo 1, and therefore strongly
recurrent by Theorem 2. This concludes the proof of the lemma. �

Finally we present the proof of Theorem 4. Namely, we show the existence of a
strongly recurrent function f in the fundamental strip, which satisfies the functional
equation of the Riemann zeta-function.

Proof Since the zeros of ζ(z) are symmetric with respect to the point 1/2, there
is an entire function φ(z) such that φ(z) = φ(1 − z) and ζ(z)/φ(z) has no ze-
ros in the fundamental strip S. Let g = √

ζ/φ be a branch of (ζ/φ)1/2 in S. By
Lemma 4, there is a function f ∈ O(S), f �≡ 0, such that h(z) = f (z)f (1 − z)g2(z)

is strongly recurrent in S. Now, set μ(z) = f (z)f (1 − z)/φ(z). Then, h = μζ , with
μ(z) = μ(1 − z) and therefore h satisfies the functional equation of the Riemann
zeta function. That is,

h(z)π−z/2Γ
(
z

2

)
= h(1 − z)π−(1−z)/2Γ

(
1 − z

2

)
. �
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A Survey on Blaschke-Oscillatory Differential
Equations, with Updates

Janne Heittokangas

Abstract In the celebrated 1949 paper due to Nehari, necessary and sufficient con-
ditions are given for a locally univalent meromorphic function to be univalent in the
unit disc D. The proof involves a second order differential equation of the form

f ′ ′ +A(z)f = 0, (†)

where A(z) is analytic in D. As an immediate consequence of the proof, it follows
that if |A(z)| ≤ 1/(1 − |z|2)2 for every z ∈ D, then any non-trivial solution of (†)
has at most one zero in D.

Since 1949 a number of papers provide with different types of growth conditions
on the coefficientA(z) such that the solutions of (†) have at most finitely many zeros
in D. If there exists at least one solution with infinitely many zeros in D, then (†) is
oscillatory. If the zeros still satisfy the classical Blaschke condition, then (†) is called
Blaschke-oscillatory. This concept was introduced by the author in 2005, but the
topic was considered by Hartman and Wintner already in 1955 (Trans. Am. Math.
Soc. 78:492–500). This semi-survey paper provides with a collection of results and
tools dealing with Blaschke-oscillatory equations.

As for results, necessary and sufficient conditions are given, and notable effort
has been put in dealing with prescribed zero sequences satisfying the Blaschke con-
dition. The concept of Blaschke-oscillation also extends to differential equations of
arbitrary order. Many of the results given in this paper have been published earlier
in a weaker form. All questions regarding the zeros of solutions can be rephrased
for the critical points of solutions. This gives rise to a new concept called Blaschke-
critical equations. To intrigue the reader, several open problems are pointed out in
the text.

Some classical tools and closely related topics that are often related to the finite
oscillation case include the Schwarzian derivative, properties of univalent functions,
Green’s identity, conformal mappings, and a certain Hardy-Littlewood inequality.
The Blaschke-oscillatory case also makes use of interpolation theory, various growth
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estimates for logarithmic derivatives of Blaschke products, Bank-Laine functions
and recently updated Wiman-Valiron theory.

Keywords Blaschke-critical · Blaschke-oscillatory · Blaschke product ·
Differential equation · Logarithmic derivative · Oscillation theory · Prescribed
zeros · Zero sequence

Mathematics Subject Classification Primary 34M10 · Secondary 30J10 · 30H15

1 Prologue

Two basic topics in the theory of complex linear differential equations in the case
of the unit disc D are the growth and oscillation of solutions. Indeed, if these two
properties are known for a given solution, then by a classical factorization of an
analytic function into a product of inner and outer functions, we have a pretty good
understanding on how the solution looks like.

In the case of the complex plane C, the importance of zeros of solutions is often
justified by the fact that the value zero is the only possible deficient value for the
solutions [4]. This makes the zero distribution of solutions all the more interesting.
Indeed, in the case of D, it is not uncommon that a solution is a bounded analytic
function, and hence has uncountably many Picard values. This is just one aspect that
makes oscillation theory in the cases of C and D different from one another. When
comparing the existing literature in the cases of C and D, see [55], the oscillation
results in the case of D seem to call for further attention.

The early results on oscillation theory in the case of D go back to the work of
Nehari and his students Beesack and Schwarz in the 1940’s and 1950’s. In the 1960’s
and 1970’s results on non-oscillation were obtained by Hadass, Kim, Lavie and
London, to name a few. After a quiet period, the unit disc oscillation theory begins
to flourish again, starting from the late 1990’s. In particular, a sequence of papers
due to Chuaqui, Duren, Osgood and Stowe continue the classical considerations
in oscillation theory, while Belaidi, Cao and Yi are inspired by the complex plane
case, and consider oscillation of solutions in terms of the exponent of convergence.
Oscillation results in terms of Blaschke sequences can be seen to form a midway
between these two extremes.

Blaschke sequences and Blaschke products go hand in hand with many classical
function spaces. Meanwhile, function spaces are associated to solutions of differen-
tial equations in [39, 67, 69].

2 Introduction

It is well-known that if A(z) belongs to H(D), the space of all analytic functions
in D, then all solutions of the differential equation

f ′ ′ +A(z)f = 0 (1)
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belong to H(D) as well. In 1982 Pommerenke showed [67] that if in addition
∫
D

∣∣A(z)∣∣ 1
2 dm(z) < ∞, (2)

where dm(z) is the usual Euclidean area measure, then all solutions f of (1) belong
to the Nevanlinna class N , that is, T (r, f ) = O(1) [29]. By the classical factoriza-
tion theorem in N , it follows that the zero sequence {zn} of f satisfies the Blaschke
condition ∑

n

(
1 − |zn|)< ∞. (3)

If this is true in general, then (1) is called Blaschke-oscillatory [34, 35]. This
makes (2) a sufficient condition for (1) to be Blaschke-oscillatory. Conversely, if
A ∈ H(D) is such that (1) is Blaschke-oscillatory, then a reasoning based on Nevan-
linna’s second fundamental theorem and on certain logarithmic derivative estimates
for meromorphic functions yield

∫
D

∣∣A(z)∣∣α dm(z) < ∞ (4)

for every α ∈ (0,1/2), see [35].

Example 1 ([40, Example 5.3]) Let A(z) = C/(1 − z)4 for some C ∈ C \ {0}, and
denote D(0, r) = {z ∈ D : |z| < r}. Then the reasoning in [40] shows that

∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = |C| 1

2π log
1

1 − r2
,

and that (1) is Blaschke-oscillatory if and only if arg(C) = π . This illustrates that
neither (2) nor a condition of the form

∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log

e

1 − r
)

is necessary for (1) to be Blaschke-oscillatory.

In Sect. 4 we will improve (4) to
∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log2 e

1 − r
)
. (5)

The reasoning relies on recent estimates for integrated logarithmic derivatives of
meromorphic functions and on a special treatment of exceptional sets. These find-
ings were not available at the time when [35] was written. Keeping Example 1 in
mind, the estimate (5) does not seem to be too far from the best possible one. We
will also prove the following somewhat surprising statement: There exists Blaschke-
oscillatory equations of the form (1) with all solutions being of unbounded Nevan-
linna characteristic.
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In addition to (3) there are plenty of other requirements for {zn} needed in os-
cillation theory. Typical cases are when {zn} is separated, uniformly separated, ex-
ponential, or belongs to a Stolz angle, to name a few. These requirements, plus a
recently developed concept of q-separation, will be reviewed in Sect. 3.

The equation (1) is called non-oscillatory if all non-trivial solutions of (1) have at
most finitely many zeros in D. If (1) possesses a non-trivial solution with infinitely
many zeros in D, then (1) is called oscillatory. The early results due to Nehari [59]
and Hille [46] indicate that

∣∣A(z)∣∣= O((1 − |z|)−2) (6)

is an extremal growth rate between non-oscillatory and oscillatory. In Sect. 5 we
will state a number of results and examples on equation (1) in the case when the
coefficient A(z) satisfies (6). Some of these findings are new.

The extremal growth rate (6) led Cima and Pfaltzgraff [13] to raise the question
whether (1) can be oscillatory if A(z) belongs to the Schlicht class S of normal-
ized univalent functions. This discussion, together with some updates on geometric
distribution of zeros, will be outlined in Sect. 6.

Various estimates for logarithmic derivatives of meromorphic functions have
proven to be valuable tools in the field of complex differential equations both in
the plane and in the unit disc. Such estimates for Blaschke products are indispens-
able in the field of Blaschke-oscillatory equations. Section 7 contains a variety of
pointwise and integrated estimates for Blaschke products, and culminates in proving
a new result of the form

∫
D

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) < ∞, k ∈ N, (7)

valid for certain interpolating Blaschke products B(z).
Given a Blaschke sequence {zn}, it is natural to ask whether a function A ∈ H(D)

can be found such that (1) possesses a solution f having zeros precisely at the
points zn. In such a case, {zn} is called a prescribed zero sequence [34, 42]. Writ-
ing (1) in the form A(z) = −f ′ ′/f , we see that each zn must be simple, for other-
wise A(z) fails to be analytic at the points zn.

For the sake of an argument, let B(z) be a Blaschke product with {zn} as its zero
sequence, and write f = Beg for a candidate solution of (1), where g ∈ H(D) is yet
to be found. A simple substitution of f into (1) gives us

B ′ ′ + 2g′B ′ + ((g′)2 + g′ ′ +A)B = 0. (8)

We conclude that f = Beg is a solution of (1) if and only if (8) holds. However, it is
not clear at the outset that A ∈ H(D). Considering (8) at the points zn, we find that

g′(zn) = −B ′ ′(zn)/2B ′(zn) =: σn, n ∈ N. (9)
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Writing (8) in the form

A = −B ′ ′ − 2g′B ′

B
− (g′)2 − g′ ′, (10)

we conclude that if g ∈ H(D) can be found such that its derivative g′ satisfies the
interpolation problem (9), then A(z) in (10) belongs to H(D), and f = Beg is a so-
lution of (1). For example, if {zn} is uniformly separated, then standard interpolating
results from the theory of Hp spaces become available. It is desirable to aim for the
target growth (2) since that forces (1) to be Blaschke-oscillatory. This is where the
estimate (7) kicks in. In general, we see that the distribution of the zeros zn will
affect the distribution of the points σn in (9), and eventually contribute to the growth
of A(z). More details are carried out in Sect. 8.

Recall that any solution base of (1) consists of two linearly independent solutions
f1, f2 ∈ H(D). This gives raise to the following problem involving two prescribed
zero sequences: Given two Blaschke sequences {an} and {bn}, find A ∈ H(D) such
that (1) possesses two linearly independent solutions f1, f2 having zeros precisely
at the points an and bn, respectively. Again the points an and bn must be simple for
otherwiseA(z) fails to be analytic in D. Moreover, the sequences {an} and {bn} must
be pairwise disjoint for otherwise the solutions f1, f2 fail to be linearly independent.
Indeed, the Wronskian determinant of f1, f2 vanishes at any possible common zero
of f1, f2.

A solution to the problem of two prescribed zero sequences exists [35] the rea-
soning being based on Bank-Laine functions. So far the best known growth condi-
tion for the solution A(z) of this problem seems to be A ∈ N . In Sect. 9 we will
show that the solution A(z) has in fact a growth rate not too far from (6), which is
extremal between non-oscillatory and oscillatory cases. In addition to Bank-Laine
functions, this new approach relies on recent developments of Wiman-Valiron the-
ory [19] as well as on BMOA-interpolation [63].

We note that prescribed zeros for solutions of (1) in the case when A(z) is entire
have been studied much earlier. The early results go back to Borůvka and Šeda in
the 1950’s, and the research was continued independently by Bank in the 1980’s and
by Sauer in the 1990’s. See [42] for a historical review to these studies.

Section 10 contains a short and elementary discussion about finite prescribed zero
sequences. In Sect. 11 we give necessary and sufficient conditions for Blaschke-
oscillatory equations of arbitrary order, and give a condition under which a solution
f and a few of its first derivatives belong to N . Recall that the zeros of f ′ are
called the critical points of f . If f,f ′ ∈ N , then the zeros and the critical points
of f both satisfy the Blaschke condition. This gives raise to the study of critical
points of solutions, to be carried out in Sect. 12. If the sequence of critical points
of any non-trivial solution of (1) satisfies the Blaschke condition, then (1) is called
Blaschke-critical. Section 13 contains concluding remarks about replacing Blaschke
products with Horowitz products in the oscillation theory.

The topic of Blaschke-oscillatory equations is relatively new and still evolving.
The author apologizes if some of the open problems stated in the text are trivial, as
this may indeed be the case.
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3 Typical Requirements for Blaschke Sequences

A sequence {zn} of non-zero points in D satisfying (3) is called a Blaschke sequence.
This requirement on {zn} ensures that the Blaschke product

B(z) =
∏
n

|zn|
zn

zn − z
1 − znz

converges uniformly on compact subsets of D, and hence represents an analytic
function in D having zeros precisely at the points zn.

3.1 Measurements for the Quantity of Points

In the literature the condition (3) is typically strengthened by requiring that

S :=
∑
n

(
1 − |zn|)α < ∞ (11)

holds for some α ∈ (0,1]. This is in particular the case when the membership of B ′
in the Bergman spaces or in the Hardy spaces is considered [23, 50, 68]. For p > 0
the Bergman space Ap [17, 32] consists of functions g ∈ H(D) satisfying

∫
D

∣∣g(z)∣∣p dm(z) < ∞,

while the Hardy space Hp [15] consists of functions g ∈ H(D) such that

sup
0≤r<1

Mp(r, g) < ∞, p < ∞,

sup
z∈D

∣∣g(z)∣∣< ∞, p = ∞,

where

Mp(r, g) =
(

1

2π

∫ 2π

0

∣∣g(reiθ )∣∣p dθ
) 1
p

.

Integral means of derivatives of Blaschke products have been widely investigated
recently. To name a few, Gotoh, Kutbi, Protas, and the complex analysis research
group in Spain (Girela, Peláez, Vukotić, et al.) have been among the key authors in
this field, with publications too numerous to be listed here.

Let h be a continuous and positive function on (0,1) satisfying h(t) → 0 as t →
0+. In 2008 Fricain and Mashreghi introduced [21] a general convergence condition
for a Blaschke sequence {zn} by requiring that

∑
n

h
(
1 − |zn|)< ∞. (12)
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For example, by choosing h(t) = tα , we obtain (11).
It is well-known that Blaschke products have radial limits or even angular limits

almost everywhere on ∂D, and that |B| = 1 almost everywhere on ∂D. Angular
limits are taken within Stolz angles. For ξ ∈ ∂D and σ ∈ (1,∞), the set

Ωσ (ξ) = {z ∈ D : |1 − ξ̄ z| ≤ σ (1 − |z|)} (13)

is called a Stolz angle with vertex at ξ . If the constant σ is close to 1, then the angle
Ωσ (ξ) is acute. We note that there are other ways to define a Stolz angle. The exact
shape, however, is irrelevant. The important fact is that all points of the angle have
bounded non-euclidean distance from the radius [0, ξ ].

A point on ∂D at which a radial limit of a given Blaschke product ceases to
exist must be an accumulation point of the zeros due to the well-known Frostman
condition. This makes it justified to consider Blaschke products with zeros zn accu-
mulating to a single boundary point ξ ∈ ∂D. Typically the sequence {zn} converges
to ξ either tangentially or non-tangentially. In the former case the zeros zn may be-
long to some circle internally tangent to ∂D at ξ , while in the latter case the zeros
zn always belong to some Stolz angle Ωσ (ξ). The special case when the zeros zn
lie on the interval [0, ξ ] has also drawn abundant attention.

3.2 Measurements for the Density of Points

Alongside the various convergence conditions presented above, the density of points
in a given Blaschke sequence turns out to be very important also. We say that an
arbitrary sequence {zn} of non-zero points in D is separated if

inf
n�=kρ(zn, zk) > 0, (14)

and uniformly separated if

δ := inf
k

∏
n�=k
ρ(zn, zk) > 0. (15)

Here ρ(z, ζ ) = |ζ − z|/|1 − ζ̄ z| is the pseudo-hyperbolic metric between the points
z, ζ ∈ D, see [17, Sect. 2.5]. It turns out that a uniformly separated sequence is
always a separated Blaschke sequence, while a separated sequence need not be a
Blaschke sequence. In this connection we recall the following result, which will be
useful later on in the paper.

Theorem 1 ([24, Theorem 1.3]) Let D1 ⊂ D be a disc internally tangent to ∂D at
z = 1. Let {zn} be any separated sequence in D1. Then

n(r) = O
((

1

1 − r
) 1

2
)
, r → 1−, (16)
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where n(r) denotes the number of elements of {zn}, counted according to multiplic-
ity, in D(0, r)∩ D1.

Supposing that (16) holds, a simple reasoning based on Riemann-Stieltjes inte-
gration and integration by parts reveals that

∑
|zn|≤r

(
1 − |zn|)=

∫ r
0
(1 − t) dn(t) = O(1)+

∫ r
0
n(t) dt = O(1).

Hence the sequence {zn} in Theorem 1 is a Blaschke sequence.
A classical result due to Carleson [17, p. 157] states that {zn} is an interpolating

sequence forH∞ if and only if it satisfies (15). This means that, given any sequence
{wn} ∈ 
∞, there exists a function f ∈ H∞ such that f (zn) = wn for all n. In addi-
tion, Tse has proved [74] that if {zn} lies in a Stolz angle, then the requirement (15)
in Carleson’s theorem can be weakened to (14). Due to these connections to in-
terpolation theory, a Blaschke product with a uniformly separated zero sequence
is known as an interpolating Blaschke product in the literature. A search from the
MathSciNet database produces over 110 matches on interpolating Blaschke prod-
ucts. In particular, an interested reader is encouraged to get acquainted with papers
due to Gorkin, Mortini and Nicolau.

A sequence {zn} of points in D is called exponential if there is a constant q ∈
(0,1) such that

1 − |zn+1 | ≤ q(1 − |zn|), n ∈ N. (17)

An exponential sequence is uniformly separated by [15, Theorem 9.2]. The converse
is also true if the points zn lie in a Stolz angle. In fact, a separated sequence in a Stolz
angle is a finite union of exponential sequences [24, Proposition 3.1].

Let φ : [1,∞) → [1,∞) be a continuous and increasing function such that
∫ ∞

1

dx

φ(x)
< ∞. (18)

It is observed in [37] that an exponential sequence {zn} then satisfies (12) for h(t) =
φ(log( 1

t
))−1, and that the function φ cannot in general be chosen to be the identity

mapping. Due to this reason, a sequence {zn} is called strongly exponential [37] if
it is exponential and satisfies (12) for h(t) = (log( 1

t
))−1.

New density conditions for a point sequence, generalizing the concepts of sepa-
ration and uniform separation, are introduced in [27] as follows. A sequence {zn} in
D is called q-separated if there exist constants q ≥ 0 and δ ∈ (0,1) such that

ρ(zn, zk) ≥ δ(1 − |zk|)q (19)

for all pairs of indices k,n with k �= n, and uniformly q-separated if

inf
n∈N

{(
1

1 − |zk|
)q∏

k �=n
ρ(zn, zk)

}
> 0. (20)
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The case q = 0 reduces to the classical separation concepts. Note that the case q < 0
is impossible since every term of the form ρ(zn, zk) as well as the Blaschke prod-
uct in (20) are bounded above by the constant 1. The convergence of the Blaschke
product implies, in particular, that a uniformly q-separated sequence is a Blaschke
sequence. Moreover, every uniformly q-separated sequence is also q-separated.
A concrete example is given in [27].

For q ≥ 0 the weighted Hardy space H∞
q consists of functions g ∈ H(D) such

that

sup
z∈D

(
1 − |z|2)q ∣∣g(z)∣∣< ∞.

Recall that the Korenblum space A−∞ is defined as A−∞ = ⋃q≥0H
∞
q , see [52].

The following result deals with interpolation in the weighted spaceH∞
q , and reduces

to Carleson’s result on H∞ interpolation in the case when q = 0.

Lemma 1 ([27, Lemma 6.1]) Let s ≥ 0, and suppose that {σn} is any sequence of
points in C (not necessarily distinct) satisfying

sup
n∈N

(
1 − |zn|2)s |σn| < ∞. (21)

(a) If {zn} is a uniformly q-separated Blaschke sequence in D satisfying (11) for
some α ∈ (0,1], then there exists a function G ∈ H∞

α+q+s such that G(zn) = σn
for all n ∈ N.

(b) If {zn} is a uniformly q-separated sequence, which consist of a finite union of
separated sequences, then there exists a function G ∈ H∞

q+s such that G(zn) =
σn for all n ∈ N.

4 The Converse Direction

Assuming that (1) is Blaschke-oscillatory, we investigate the properties of the coef-
ficient function A(z) and of the solutions of (1).

4.1 Improvement of (4)

We state and prove an improvement of (4) under the assumption that (1) is Blaschke-
oscillatory.

Theorem 2 Let A ∈ H(D) be such that (1) is Blaschke-oscillatory. Then
∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log2 e

1 − r
)
. (22)
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The proof of Theorem 2 requires integrated estimates for logarithmic derivatives
of meromorphic functions. An exceptional set of arbitrarily small upper density is
involved. For a measurable set E ⊂ [0,1), the upper and lower densities are given
respectively by

d(E) = lim sup
r→1−

m(E ∩ [r,1))
1 − r and d(E) = lim inf

r→1−
m(E ∩ [r,1))

1 − r ,

where m(F) is the Lebesgue measure of the set F . It is clear that

0 ≤ d(E) ≤ d(E) ≤ 1

for any measurable set E ⊂ [0,1). If d(E) = d(E), then d(E) = d(E) = d(E) is
called the density of E.

Theorem 3 ([11, Theorem 5]) Let k and j be integers satisfying k > j ≥ 0, and let
b, δ ∈ (0,1). Let f be a meromorphic function in D such that f (j) does not vanish
identically. Then there exists a measurable set E ⊂ [0,1) with d(E) ≤ δ, and a
constant C = C(b, δ, k, j) > 0, such that

∫ 2π

0

∣∣∣∣f
(k)(reiθ )

f (j)(reiθ )

∣∣∣∣
1
k−j
dθ ≤ CT (1 − b(1 − r), f )− log(1 − r)

1 − r , r /∈ E. (23)

Moreover, if k = 1 and j = 0, then the logarithm in (23) can be dropped out.

The next auxiliary result allows us to avoid exceptional sets E with d(E) < 1.
This is an important property in the applications involving logarithmic derivatives.

Lemma 2 Let g(r) and h(r) be nondecreasing real-valued functions on [0,1) such
that g(r) ≤ h(r) for every r ∈ [0,1)\E, where d(E) < 1. Then there exist constants
b ∈ (0,1) and r0 ∈ [0,1) such that g(r) ≤ h(1 − b(1 − r)) for all r ∈ [r0,1).

The proof of Lemma 2 is a rather simple modification of that of [3, Lemma C].
To begin with, let F = [0,1) \ E and b = (1 − d(E))/2. We claim that there exists
a constant r0 ∈ [0,1) such that, for every r ∈ [r0,1), the interval [r,1 − b(1 − r)]
meets the set F . Suppose on the contrary to this claim that there exists a sequence
{rn} on [0,1) such that rn → 1− and [rn,1 −b(1 − rn)] ⊂ E for every n ∈ N. Define

I =
∞⋃
n=1

[
rn,1 − b(1 − rn)

]
.

Then I ⊂ E, but

d(I) ≥ lim
n→∞

m(I ∩ [rn,1))
1 − rn ≥ lim

n→∞
m([rn,1 − b(1 − rn)])

1 − rn = 1 − b = 1 + d(E)
2

,
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and hence d(I) > d(E), which leads to a contradiction. Finally, let r ∈ [r0,1), and
take t ∈ [r,1 − b(1 − r)] ∩ F . Then

g(r) ≤ g(t) ≤ h(t) ≤ h(1 − b(1 − r))

by the monotonicity of g(r) and h(r). This completes the proof of Lemma 2.
The class F of non-admissible functions consists of meromorphic functions g in

D such that

lim sup
r→1−

T (r, g)

− log(1 − r) < ∞.

Note thatN ⊂ F , and that this inclusion is clearly proper even for analytic functions.
Some basic properties of F are obtained in [73].

To prove Theorem 2, let {f1, f2 } be a fundamental solution base of (1), and
define F = f2/f1. Since (1) is Blaschke-oscillatory, a reasoning based on Nevan-
linna’s second fundamental theorem1 reveals that F ∈ F , see the proof of [35, The-
orem 1.1]. Moreover, it follows by [10, Lemma 5.3] that all derivatives F (n) are
non-admissible also. Note that 2A(z) = SF (z), where

SF = F ′ ′ ′

F ′ − 3

2

(
F ′ ′

F ′

)2

(24)

is the Schwarzian derivative of F . If δ ∈ (0,1), we conclude by Theorem 3 that there
exists a measurable set E ⊂ [0,1) with d(E) ≤ δ such that

∫ 2π

0

∣∣A(teiθ )∣∣ 1
2 dθ = O

(∫ 2π

0

∣∣∣∣F
′ ′ ′(teiθ )
F ′(teiθ )

∣∣∣∣
1
2

dθ +
∫ 2π

0

∣∣∣∣F
′ ′(teiθ )
F ′(teiθ )

∣∣∣∣dθ
)

= O
(

1

1 − t log
e

1 − t
)
, t /∈ E. (25)

The left-hand side of this is a nondecreasing function of t by [15, Theorem 1.5].
Hence Lemma 2 can be used to avoid the exceptional set E. We then multiply both
sides by t and integrate with respect to t from 0 to r . This gives (22).

It remains to show that (22) actually improves (4). Indeed, we prove that (22)
implies (4) for every α ∈ (0,1/2). Suppose that A ∈ H(D) satisfies (22), and let
α ∈ (0,1/2). Then

πr(1 − r)M 1
2
(r,A)

1
2 = 2πrM 1

2
(r,A)

1
2

∫ 1+r
2

r

dt ≤ 2π
∫ 1+r

2

r

M 1
2
(t,A)

1
2 t dt

≤
∫
D(0, 1+r

2 )

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log2 e

1 − r
)
.

1This part of the proof can be done without appealing to the second fundamental theorem, see
Sect. 4.2
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Using Hölder’s inequality with conjugate indices p = 1
2α and q = 1

1−2α , we now
obtain

∫
D(0,r)

∣∣A(z)∣∣α dm(z) ≤ (2π) 1
1−2α

∫ r
0

(∫ 2π

0

∣∣A(teiθ )∣∣ 1
2 dθ

)2α

dt = O(1),

which implies (4). This completes the proof of Theorem 2.
The condition (2) is, by means of Herold’s comparison theorem, sufficient for (1)

to be Blaschke-oscillatory [67]. Alternatively, by relying on Gronwall’s lemma, the
condition ∫

D

∣∣A(z)∣∣(1 − |z|)dm(z) < ∞ (26)

is sufficient also [33]. It is proved in [40, Theorem 4.1] that neither of the condi-
tions (2) or (26) implies the other. Assuming that (1) is Blaschke-oscillatory, the
best converse condition to (2) known to the author is (22), while finding a reason-
ably sharp converse to (26) is an open problem.

Remark 1 Prior to [34], the paper [28] due to Hartman and Wintner seems to be
the one and only research associating infinite zero sequences of solutions of (1) to
the Blaschke condition. Note that the concept of Blaschke-oscillation was not used
in [28]. We recall the following result from [28]: Let A ∈ H(D), and let λ(r) be a
positive, continuously differentiable and nondecreasing function on [0,1) satisfying

∫ 2π

0

∣∣A(reiθ )∣∣dθ ≤ λ(r) (27)

and dλ/dr = O(λ(r)2). If in addition

∫ 1

0
λ(r)2(1 − r) dr < ∞, (28)

then the zeros of any solution f �≡ 0 of (1) satisfies the Blaschke condition.
The integral M1(r,A) on the left-hand side of (27) is a nondecreasing function

of r by [15, Theorem 1.5]. Keeping (28) in mind, we might as well assume that λ(r)
and M1(r,A) are both unbounded functions. Hence, if the term λ(r)2 in (28) could
be replaced by λ(r), the result would become stronger. This possible improvement
was presumed to be true in [28], but the case was left undecided. An elementary
proof can be given by means of (26).

4.2 Basic Properties of Solutions

By making use of Nevanlinna’s second fundamental theorem, we proved above that
F = f2/f1 ∈ F , where {f1, f2 } is an arbitrary solution base of (1). The next result
shows that even more can be obtained.
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Lemma 3 Suppose that A ∈ H(D), and let {f1, f2 } be any solution base of (1).
Then F = f2/f1 ∈ N if and only if (1) is Blaschke-oscillatory.

Suppose that F = f2/f1 ∈ N , and let c ∈ Ĉ. Then the sequence of c-points of F
satisfies the Blaschke condition by [75, Theorem V.7]. In particular, the zeros and
the poles of F are Blaschke sequences. Let f be an arbitrary solution of (1). It is
well-known that f = C1f2 + C2f2 for some constants C1,C2 ∈ C. Then the zeros
of f correspond to the c-points of F for c = −C1/C2, which we just noted to be a
Blaschke sequence. This shows that (1) is Blaschke-oscillatory.

Conversely, suppose that (1) is Blaschke-oscillatory. Let K ⊂ C be a compact
set, and let c ∈ K . If c is not a Picard value of F = f2/f1, denote the sequence of
c-points of F by {zn(c)}. Then {zn(c)} must be a Blaschke sequence, for otherwise
the solution f = f2 − cf1 of (1) has a non-Blaschke sequence of zeros. Moreover,
there must be a uniform upper bound C > 0 such that

∑
n

(
1 − ∣∣zn(c)∣∣)<C

for every c ∈ K . If this were not true, there would be a sequence {ck} of ck-points
of F such that

k ≤
∑
n

(
1 − ∣∣zn(ck)∣∣)< ∞, k ∈ N.

Since K is compact, the sequence {ck} converges to a point c ∈ K , while the se-
quence of c-points of F would not satisfy the Blaschke condition. This contradiction
shows that the integrated Nevanlinna counting function N(r,f, c) of the c-points of
f in the disc D(0, r) must be a uniformly bounded function of r for any c ∈ K . By
choosing K = ∂D and by appealing to the classical Cartan identity [29, p. 8]

T (r, f ) = 1

2π

∫ 2π

0
N
(
r, f, eiθ

)
dθ + log+∣∣f (0)∣∣,

we conclude that F ∈ N . This completes the proof of Lemma 3.
For curiosity, we give an alternative proof of the converse part. Suppose on the

contrary to the assertion that F = f2/f1 /∈ N . We conclude by [61, p. 276] that

lim
r→1−

N(r,F, c)

T (r,F )
= 1 (29)

for all c ∈ C outside a set of zero capacity. Let c ∈ C \ {0} be a point satisfying (29),
and let {zn(c)} be the corresponding sequence of c-points of F . Note that {zn(c)} is
the zero sequence of the solution f = f2 − cf1 of (1). Since T (r,F ) is unbounded,
it follows by (29) that {zn(c)} does not satisfy the Blaschke condition, and hence (1)
is not Blaschke-oscillatory.

There are two further observations regarding the case F ∈ N . First, Theorem 3
does not give anything better than (25) even though F ∈ N . Second, we will prove
that F ∈ N does not necessarily imply f1, f2 ∈ N .
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Theorem 4 Suppose that A ∈ H(D).
(a) If (1) is Blaschke-oscillatory, then either all solutions of (1) belong to N or all

solutions of (1) belong to F \N .
(b) If (1) possesses a solution f ∈ N , then (22) holds. If in addition f ′ ∈ N , then

∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log

e

1 − r
)
. (30)

It is somewhat surprising that there are Blaschke-oscillatory equations with so-
lutions in F \ N , see Sect. 4.3. Conversely, not every equation (1) with solutions
in F \ N is Blaschke-oscillatory, see Example 1 and its original reference in [40,
Example 5.3]. We make two further remarks on Theorem 4 after its proof.

Suppose that (1) is Blaschke-oscillatory. By Lemma 3, all solutions lie either in
N or in H(D) \N . Indeed, something may cancel out in such a way that f2/f1 ∈ N
even though f1, f2 /∈ N . Let f be any solution of (1). To prove (a), it suffices to
show that f ∈ F . Let g be any other solution of (1), linearly independent of f , and
define F = g/f . Since F ∈ N , we have F ′ ∈ F by [10, Lemma 5.3]. It is well-
known that W(f,g) = fg′ − f ′g, the Wronskian of f and g, reduces to a nonzero
constant.2 Since F ′ = W(f,g)/f 2, we have f ∈ F .

Suppose then that (1) has a solution f ∈ N . If δ ∈ (0,1), we conclude by Theo-
rem 3 that there exists a measurable set E ⊂ [0,1) with d(E) ≤ δ such that

∫ 2π

0

∣∣A(teiθ )∣∣ 1
2 dθ =

∫ 2π

0

∣∣∣∣f
′ ′(teiθ )
f (teiθ )

∣∣∣∣
1
2

dθ

= O
(

1

1 − t log
e

1 − t
)
, t /∈ E. (31)

Similarly as above, the claim (22) follows by using Lemma 2 and by integrating (31)
with respect to t . If in addition f ′ ∈ N , then the proof of Theorem 3 in [11] shows
that (31) can be replaced with

∫ 2π

0

∣∣A(teiθ )∣∣ 1
2 dθ = O

(
1

1 − t
)
, t /∈ E.

This completes the proof of Theorem 4.

Remark 2

(1) Clunie has given [14] an elementary proof for the following result, originally
due to Valiron and Whittaker: If f and g �≡ 0 are entire functions of orders ρf
and ρg with ρf > ρg , then f ′g − g′f is of order ρf . Šeda has refined [71] this
result to the case where the orders are equal but the types are different, that

2Since W ′(f, g)(z) ≡ 0 by (1), we have W(f,g)(z) ≡ c. If c = 0, then f ′/f = g′/g, and hence f
and g are linearly dependent.
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is, ρf = ρg and τ(f ) > τ(g) implies that τ(f ′g − g′f ) = τ(f ). Noting that
W(g,f ) = f ′g − g′f , we see that there is a close connection to Theorem 4(a)
and its proof. In particular, any two linearly independent solutions f and g
of (1) (in the plane case or in the unit disc case) must be of the same growth, or
otherwise their Wronskian fails to be equal to a constant.

(2) We emphasize that if f ∈ N , then in general neither f ′ nor any primitive func-
tion of f need to belong to N , see [30]. However, if the condition (2) is slightly
strengthened to

sup
0≤r<1

∫ 2π

0

∣∣A(reiθ )∣∣ 1
4 dθ < ∞,

then f,f ′f ′ ′ ∈ N for any solution f of (1). This result follows as a special case
of Corollary 3 below.

4.3 Solutions in F \ N are Possible

Our goal is to show that there are Blaschke-oscillatory equations of the form (1)
with solutions in F \N . This proves the sharpness of Theorem 4(a).

The Bloch space B consists of functions g ∈ H(D) with norm

‖g‖B = ∣∣g(0)∣∣+ sup
z∈D

(
1 − |z|2)∣∣g′(z)

∣∣< ∞.

The little Bloch space B0 consists of all g ∈ B such that

(
1 − |z|2)|g(z)| → 0 as |z| → 1−.

Lemma 4 If h ∈ B is univalent, then h ∈⋂0<p<∞Hp and eh ∈ N .

If h ∈ B, then it is well-known [17, p. 43] that

∣∣h(z)∣∣≤ ‖h‖B
(

1 + 1

2
log

(
1 + |z|
1 − |z|

))
, z ∈ D. (32)

If in addition h is univalent, then by making use of (32), a simple modification of
the proof of [15, Theorem 3.16] shows that h ∈ Hp for any p > 0. In particular,
h ∈ H 1, and hence eh ∈ N . This completes the proof of Lemma 4.

The assumption on the univalence of h in Lemma 4 cannot be dropped out since
there exists a function g ∈ B having radial limits almost nowhere on ∂D, see [17,
p. 80]. In particular this means that g /∈ N . Further, a reasoning based on Privalov’s
uniqueness theorem as in [67, p. 28] shows that eg /∈ N . An alternative proof for
eg /∈ N relying on Kolmogorov’s theorem is given in [44, p. 344].

By relying on a more general reasoning given in [44, Sect. 5], we outline a
method for constructing Blaschke-oscillatory equations (1) with zero-free solution
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bases belonging to F \ N . Let g,h ∈ H(D) be any non-constant functions depend-
ing on one another by means of the differential equation h′ ′ + 2g′h′ = 0. This means
that

h′ = Ce−2g (33)

for some C ∈ C \ {0}. We find that the functions

fj (z) = exp
(
g(z)+ (−1)jh(z)

)
, j = 1,2, (34)

are zero-free and linearly independent solutions of (1), where

A = −g′ ′ − (g′)2 − (h′)2. (35)

If g ∈ B0, then

∣∣g(z)∣∣≤
∫ |z|

0

∣∣g′(ζ )
∣∣ |dζ | + ∣∣g(0)∣∣= o

(
log

e

1 − |z|
)
, |z| → 1−,

and so h ∈ B0 by (33). In such a case,

∣∣A(z)∣∣= o(1)

(1 − |z|2)2
, |z| → 1−. (36)

Multiplying g by a suitable constant, if necessary, we may suppose that

(
1 − |z|2)∣∣zg′(z)

∣∣≤ 1/2, z ∈ D. (37)

Then

(
1 − |z|2)∣∣∣∣zh

′ ′(z)
h′(z)

∣∣∣∣≤ 1, z ∈ D,

and h is univalent by the Becker condition [66, p. 172]. Choose, for example,

g(z) = 1

2B2

∞∑
n=1

n−1/2z2n ,

where B2 is the constant from [25, Theorem 4] satisfying 2e−1 ≤ B2 ≤ 2.8913.
Then (37) is valid, while g ∈ B0 has angular limits almost nowhere on ∂D, see
[25] or [6]. It follows that g /∈ N , and hence eg /∈ N by [44, Lemma 3]. However,
eh ∈ N by Lemma 4, and so e−h ∈ N by the first fundamental theorem. This shows
that f1, f2 /∈ N , and hence all solutions lie outside of N . The ratio f2/f1 = e2h is
clearly in N , and hence the differential equation in question is Blaschke-oscillatory
by Lemma 3.

Remark 3 It will be seen in Sect. 5 that the condition (36) in general forces (1) to
be non-oscillatory. The construction above has been used earlier in special cases. In
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particular, by choosing

g(z) = log(1 − z) and h(z) =
√
C

2

1 + z
1 − z

for C �= 0, we have Example 1.

5 Disconjugate, Non-oscillatory and Oscillatory

Thus far our emphasis has been in Blaschke sequences as potential zero sequences
for solutions of (1). The early results in oscillation theory, however, were in fact
results on non-oscillation. In this section we will demonstrate that there is a fine line
between non-oscillatory and oscillatory cases.

5.1 Pointwise Growth Restrictions for A(z)

Nehari proved in [59] that if A ∈ H(D) satisfies

∣∣A(z)∣∣≤ 1

(1 − |z|2)2
(38)

for all z ∈ D, then each non-trivial solution of (1) has at most one zero in D. Equa-
tion (1) is then called disconjugate [28]. Nehari’s basic idea combines disconjugacy
with univalence: If f1, f2 are linearly independent solutions of (1), then F = f2/f1
is a solution of the differential equation SF (z) = 2A(z), where SF is the Schwarzian
of F given in (24), see [60, pp. 203–204]. It follows that F = c �= 0,∞ if and only
if f2 − cf1 = 0, while the zeros and poles of F are the zeros of f2 and of f1, respec-
tively. Hence (1) is disconjugate if and only if F is meromorphic univalent in D. In
addition, F ∈ N by Lemma 3.

It is clear that disconjugacy implies non-oscillatory, which in turn implies
Blaschke-oscillatory. Due to this connection, we will review some results involv-
ing disconjugate and non-oscillatory equations. The presentation that follows is by
no means complete due to the vast literature in this field, but still gives some flavor
of the existing results.

In 1955 Schwarz showed [70] that if Nehari’s condition is relaxed in the sense
that there exists a constant R ∈ (0,1) such that (38) holds for all z ∈ D with R ≤
|z| < 1, then (1) is non-oscillatory. In this case, there exist constants α,β > 0 such
that the number of zeros of any solution f can be estimated as

#
{
z ∈ D : f (z) = 0

}≤ α

1 −R + β
∫ R

0

√
M(r,A)

1 − r dr, (39)

see [9, Theorem 1]. As proved in Sect. 2, all zeros are simple, and hence the left-
hand side of (39) is the number of all zeros of f in D, counting multiplicities. The
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constant R on the right-hand side of (39) depends only on the annulus R < |z| < 1
in which the estimate (38) holds. Schwarz also pointed out that if

A(z) = 1 + 4γ 2

(1 − z2)2
, (40)

where γ > 0 is a fixed constant, then (1) is oscillatory. We note that the example (40)
is a special case of an earlier example due to E. Hille [46].

Example 2 ([37, Example 11]) If A(z) is given by (40), then the reasoning in [37]
reveals that (1) possesses a zero-free solution base {f1, f2 }, and that solutions of the
form C1f1 + C2f2 have infinitely many zeros in D, provided that the inequalities
e− γπ

2 < |C1/C2 | < e γπ2 are satisfied. This example is in fact a special case of the
construction given in Sect. 4.3 by choosing g,h to be the Bloch functions

g(z) = log
√

1 − z2 and h(z) = γ i

2
log

1 + z
1 − z .

It is proved in [37] that every zero sequence is a union of two infinite exponential
sequences converging non-tangentially to the points ±1 along an arc of a certain
circle passing through the points ±1 and having its center on the imaginary axis. All
constant multiples of the particular solution f1 + f2 have all zeros on the interval
(−1,1) and accumulate to its end points ±1.

It seems plausible that the condition above due to Schwarz could still be weak-
ened. In fact, it is conjectured in [9, p. 564] that the condition

∣∣A(z)∣∣≤ 1 +C(1 − |z|)
(1 − |z|2)2

, z ∈ D, (41)

for some C > 0 would imply finite oscillation. Note that if (41) is still weakened to

∣∣A(z)∣∣≤ 1 + β(|z|)
(1 − |z|2)2

, z ∈ D, (42)

where β satisfies

lim
r→1−

β(r)

1 − r = ∞,

then (1) can be oscillatory by [9, Theorem 5].
The following necessary and sufficient conditions for zero sequences to be sepa-

rated are also due to Schwarz.

Theorem 5 ([70, Theorems 3 and 4]) Let A ∈ H(D), and let f be any solution
of (1) having at least two distinct zeros z1, z2. If there exists a constant α > 1 such
that ∣∣A(z)∣∣≤ α

(1 − |z|2)2
, z ∈ D, (43)
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then

ρ(z1, z2) > α
− 1

2 . (44)

Conversely, if there exists a constant α > 1 such that (44) holds for any zeros z1, z2

of any solution f , then (43) holds with α being replaced by 3α.

Herold has obtained [45] an improvement of (44) under the assumption (43). Re-
garding Theorem 5, it is an open problem to find necessary and sufficient conditions
for the zero sequences of solutions of (1) to be uniformly separated.

We will show that the growth condition (43) does not imply (2). Therefore it is
not clear at the outset whether the condition (43) is sufficient for (1) to be Blaschke-
oscillatory. Our counterexample is the lacunary series

A(z) =
∞∑
k=0

22kz2k

with Hadamard gaps. We have

sup
z∈D

(
1 − |z|2)3∣∣A′(z)

∣∣< ∞

by [76, Theorem 1]. Using the representation

A(z) =
∫ z

0
A′(ζ ) dζ +A(0),

we see that (43) holds for some α > 1. However, (2) fails by [5, Proposition 2.1].
Provided that the constant α in (43) is small enough, we are able to show that (1) is
Blaschke-oscillatory.

Theorem 6 Suppose that A ∈ H(D) satisfies (43) for some 0 < α <
√

210/2 ≈
7.246. Then (1) is Blaschke-oscillatory.

Our proof covers the case 0 < α <
√

210/2 although by relying on Nehari’s
theorem it would suffice to consider the case 1< α <

√
210/2. Let β be the positive

solution of β(β + 1)(β + 2)(β + 3) = 16α2, that is,

β = 1

2

√
5 + 4

√
1 + 16α2 − 3

2
.

If f solves (1), then [67, Example 1] shows that

∫ 2π

0

∣∣f (reiθ )∣∣2 dθ = O
((

1

1 − r
)β)

, r → 1−.
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Thus a simple application of Hölder’s inequality yields

∫ 2π

0

∣∣f (reiθ )∣∣ 1
2 dθ = O

((
1

1 − r
) β

4
)
, r → 1−.

Since 0 < α <
√

210/2, we have 0 < β < 4. Therefore (2) holds, and so (1) is
Blaschke-oscillatory.

Every separated sequence lying in a disc internally tangent to ∂D is a Blaschke
sequence by Theorem 1. This gives rise to the following conclusion: If (1) under the
assumption (43) possesses a solution with a non-Blaschke zero sequence {zn}, then
at least one of the following two claims must hold.

(1) The sequence {zn} has infinitely many accumulation points on ∂D.
(2) A subsequence of {zn} converges tangentially with high degree of tangency to

a boundary point on ∂D, see [24, p. 165].

Also note that the growth condition (43) forces all solutions of (1) in the Korenblum
space A−∞ by [67, Lemma 2], while the zeros of a function in A−∞ do not in
general satisfy the Blaschke condition [17, 32, 52].

If (1) under the assumption (43) possesses two linearly independent solutions
such that their ratio is not in the Nevanlinna class N , then (1) is not Blaschke-
oscillatory by Lemma 3. The construction in Sect. 4.3 makes it tempting to reason
towards this conclusion. In the notation of Sect. 4.3, we aim for e2h /∈ N . To achieve
this, it suffices to have h /∈ N . Recall that h is obtained by integrating in (33). How-
ever, even if g is a badly behaving lacunary series, it is not guaranteed that any
primitive of e−2g would be of unbounded characteristic [30]. Note that h ∈ H(D)
satisfying e2h /∈ N is easy to find. Take h(z) = i/(1 − z), for example. However, the
resulting A(z) then does not satisfy (43). On the other hand, the constant

√
210/2 in

Theorem 6 is probably not the best possible. All this being said, the chips may fall
either way on this matter.

5.2 Integrated Growth Restrictions for A(z)

So far the growth restrictions for the coefficient function A(z) have been pointwise.
In 1962 London showed [57] that if A ∈ H(D) satisfies

∫
D

∣∣A(z)∣∣dm(z) ≤ π, (45)

then (1) is disconjugate. The condition (45) is sharp in the following sense. Using
computer software on [34, Example 3.1], it follows that there exists a function A ∈
H(D) satisfying ∫

D

∣∣A(z)∣∣dm(z) ≤ 2.502π (46)
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such that (1) possesses a solution with two zeros in D. Note that the upper bound
5π/(2z2

1) for (46) as claimed in [34, Example 3.1] is incorrect. However, it is tempt-
ing to presume that the best possible upper bound in (45) is 5π/2.

Moving on to non-oscillatory equations, we recall the following result due to
London [57]: If A ∈ H(D) satisfies

∫
D

∣∣A(z)∣∣dm(z) < ∞, (47)

then (1) is non-oscillatory. An alternative and a rather simple proof of this is given
in [13]. As for the sharpness of (47), we note that if A(z) is given by (40), then (1)
is oscillatory, and a calculation based on Poisson’s kernel gives us

∫
D(0,r)

∣∣A(z)∣∣dm(z) = 2π
∫ r

0

1 + 4γ 2

1 − t4 t dt = (1 + 4γ 2)π
2

log
1 + r2

1 − r2
.

It seems reasonable to presume, however, that (47) can still be weakened, for exam-
ple to ∫

D(0,r)

∣∣A(z)∣∣dm(z) = O
(

log log
e

1 − r
)
,

and (1) would remain non-oscillatory. We take this opportunity to give the following
slight improvement of (47).

Theorem 7 Let A ∈ H(D) be such that there exists a constant b ∈ (0,1) for which

lim
r→1−

∫
D(0,s(r))\D(0,r)

∣∣A(z)∣∣dm(z) = 0, (48)

where s(r) = 1 − b(1 − r). Then (1) is non-oscillatory.

Our reasoning is a modification of the proof of [16, Theorem 3], and is also
reminiscent to the reasoning given at the end of Sect. 4.1. We have

2πρ(1 − ρ)M1(ρ,A) = (1 − b)−12πρM1(ρ,A)

∫ s(ρ)
ρ

dt

≤ (1 − b)−12π
∫ s(ρ)
ρ

M1(t,A)t dt

≤ (1 − b)−1
∫
D(0,s(ρ))\D(0,ρ)

∣∣A(z)∣∣dm(z) = o(1),

as ρ → 1−. Let z ∈ D, and denote ρ = (1 + |z|)/2. Then Cauchy’s formula gives

∣∣A(z)∣∣≤ 1

2π

∫
|ζ |=ρ

|A(ζ )|
|ζ − z| |dζ | ≤ M1(ρ,A)

2π(1 − ρ) .
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By combining these observations, we conclude that

∣∣A(z)∣∣= o(1)

(1 − ρ)2 = o(1)

(1 − |z|2)2
, |z| → 1−.

Hence there exists a constant R ∈ (0,1) such that (38) holds for all z ∈ D with
R ≤ |z| < 1, so that (1) is non-oscillatory.

It remains to show that (48) actually improves (47). Supposing that (47) holds, it
follows that the right-hand side of

0 ≤
∫
D(0,s(r))\D(0,r)

∣∣A(z)∣∣dm(z) ≤
∫
D\D(0,r)

∣∣A(z)∣∣dm(z)

tends to zero as r → 1−. Hence (47) implies (48) for any b ∈ (0,1). This completes
the proof of Theorem 7.

Let A ∈ H(D) be any function satisfying the asymptotic relation

M1(r,A) ∼ O(1)

(1 − r) log e
1−r
. (49)

Then it is easily seen that (47) is not valid, while (48) holds for any b ∈ (0,1).
Functions A ∈ H(D) satisfying (49) do exist, as is seen next.

Example 3 Define

A(z) = 1

(1 − z)2 log e
1−z
,

which clearly belongs to H(D). Writing

M1(r,A) = 1

2π

∫
|θ |≤1−r

∣∣A(reiθ )∣∣dθ+ 1

2π

∫
1−r≤|θ |≤π

∣∣A(reiθ )∣∣dθ = J1(r)+J2(r)

and observing that log e
1−z = log e

|1−z| + i arg( e
1−z ), where arg( e

1−z ) ∈ (−π
2 ,
π
2 ), a

simple computation as in [75, p. 226] yields (49). In particular, since cos(x) ≥ 1 −x2

for all x ∈ R, we have cos(1 − r) ≥ 2r − r2 for all r ∈ [0,1), and hence

(1 − r)2 ≤ ∣∣1 − reiθ ∣∣2 = 1 − 2r cos θ + r2

≤ 1 − 2r cos(1 − r)+ r2

= (1 − r)2 + 2r
(
1 − cos(1 − r))

≤ (1 − r)2(1 + 2r) ≤ 3(1 − r)2

for |θ | ≤ 1 − r . It follows that J1(r) has precisely the asymptotic growth in (49),
while J2(r) ≥ 0 has at most the asymptotic growth in (49).
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6 Univalent Coefficient Function

Let S denote the Schlicht class consisting of univalent functions g ∈ H(D) satisfying
the normalization g(0) = 0 = g′(0) − 1. In 1972 Cima and Pfaltzgraff considered
[13] the oscillatory behavior of (1) under the assumption thatA ∈ S. It is well-known
[31, Chap. 1] that if A ∈ S, then

∣∣A(z)∣∣≤ |z|
(1 − |z|)2 , z ∈ D, (50)

and

1

2π

∫ 2π

0

∣∣A(reiθ )∣∣dθ ≤ r

1 − r , 0 ≤ r < 1. (51)

By (38) the question of the oscillatory behavior of (1) for A ∈ S is of interest only
for those functions A(z) that attain the maximum growth O((1 − |z|)−2) near the
boundary ∂D. The following result is a consequence of the discussion above.

Corollary 1 If A ∈ S, then the zero sequence of any solution of (1) is a separated
Blaschke sequence. In particular, (1) is Blaschke-oscillatory.

Using Hölder’s inequality on (51), we conclude that (2) holds, and therefore (1)
is Blaschke-oscillatory. Since (50) implies (43) for α = 4, it follows that every zero
sequence is separated. Alternatively, (1) is Blaschke-oscillatory by Theorem 6 be-
cause 4<

√
210/2.

It may seem at this point that the conditionA ∈ S would make (1) non-oscillatory.
This is not true in general. Indeed, the functions hε ∈ S given by

hε(z) = z

1 − z + εz2

(1 − z)2 , 0 ≤ ε ≤ 1, (52)

are taken as the candidates for univalent coefficients of (1) in [13]. The special cases
h0(z) = z/(1 − z) (Loewner function) and h1(z) = z/(1 − z)2 (Koebe function) are
worth pointing out. If A(z) = hε(z), then (1) is non-oscillatory for 0 ≤ ε < 1/4 and
oscillatory for 1/4 < ε ≤ 1. Indeed, if 1/4 < ε ≤ 1, then the corresponding real
differential equation f ′ ′ + hε(x)f = 0 is oscillatory on [0,1) by [13, Lemma 1].
It follows then that there are non-trivial complex solutions of f ′ ′ + hε(z)f = 0
which have infinitely many zeros on [0,1). If ε = 1/4, then the corresponding real
differential equation f ′ ′ + h1/4(x)f = 0 has at most finitely many zeros on [0,1)
by [8, Theorem 1]. However, a complete description of the case ε = 1/4 is still an
open problem.

The following result gives a partial description of the geometric distribution of
zeros of solutions of (1) in the case when A(z) = h(z)/(1 − z)q , where h ∈ H(D)
has restricted growth. This covers the special cases A(z) = hε(z).
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Fig. 1 The unit disc minus
the disc |z − √

2| ≤ 1

Theorem 8 Let A(z) = h(z)/(1 − z)q , where q ≥ 0 and h ∈ H(D) is such that

∣∣h(z)∣∣≤ o(1)

(1 − |z|2)2
, |z| → 1−. (53)

Then z = 1 is the only possible accumulation point of zeros of solutions of (1).

The following auxiliary result is needed.

Lemma 5 ([48, p. 394], [67, Lemma 1]) Let T map D conformally into D. If f is a

solution of (1), then g(z) = f (T (z))T ′(z)− 1
2 solves

g′ ′ +B(z)g = 0, (54)

where

B(z) = A(T (z))T ′(z)2 + ST (z)/2, (55)

and ST denotes the Schwarzian derivative of T . In particular, if (54) is non-
oscillatory in D, then (1) is non-oscillatory in T (D).

We will be dealing with circular domains bounded by an arc of ∂D and by an-
other circular arc lying in D and meeting ∂D at angles απ for some α ∈ (0,1). Such
a domain is obtained for example by subtracting the closure of some disc that in-
tersects with D from D, see Fig. 1. A suitable linear fractional transformation will
map this circular domain onto a sector of opening απ . A rotation and the principal
branch of the power function z1/α will map this sector onto the right half-plane,
which is then mapped conformally onto D by (z − 1)/(z + 1). An inverse of this
composition mapping is a conformal map from D onto the given circular domain.
Such mappings turn out to be of the form

T (z) = a(1 − z)α + b(1 + z)α
c(1 − z)α + d(1 + z)α , (56)
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where α ∈ (0,1) and a, b, c, d ∈ D are such that bc − ad �= 0. This requirement is
necessary so that the derivative

T ′(z) = 2α(bc − ad)
(1 − z2)1−α(c(1 − z)α + d(1 + z)α)2

would not vanish identically. It is stated as an exercise in [60, pp. 208–209] that the
Schwarzian of T reduces to just

ST (z) = 2(1 − α2)

(1 − z2)2
. (57)

This can be verified by using standard mathematical software. Note in particular
that T is univalent for every α > 0 by [59, Theorem I].

To prove Theorem 8, let φ ∈ (0,π/4), and let Dφ be the lens shaped domain
bounded by ∂D and by the hyperbolic line Lφ intersecting ∂D orthogonally at z =
e±iφ and lying in D. The limiting case Dπ/4 is illustrated in Fig. 1. We will show
that (1) is non-oscillatory in D \ Dφ . As φ > 0 can be chosen arbitrarily small, the
assertion follows. The key idea is to construct a suitable conformal mapping of the
form (56), and then use Lemma 5.

The linear fractional transformation w1 = (1 + z)/(1 − z) maps D conformally
onto the right half-plane H = {z ∈ C : �z > 0}. Choosing the principal branch for
the square root, H will be mapped conformally onto the first quadrant F = {z ∈ C :
arg(z) ∈ (0,π/2)} by means of w2 = √

zei
π
4 . Then we use w3 = (z − 1)/(z + 1) =

w−1
1 to map F conformally onto DU = {z ∈ D : �z > 0}, which is the upper half of

the unit disc. The image of DU under the mapping w4 = −iz sinφ/(1 − cosφ) is
the half discΔ = {z ∈ C : |z| < sinφ/(1 − cosφ),�z > 0} lying entirely in the right
half-plane and intersecting the imaginary axis at the points z = ±i sinφ/(1 − cosφ).
Finally, we use w3 again to map Δ onto D \ Dφ . Note in particular that w3 maps
the points z = ±i sinφ/(1 − cosφ) to w = e±iφ , respectively. The composition T =
w3 ◦ w4 ◦ w3 ◦ w2 ◦ w1 is therefore a conformal map from D onto D \ Dφ . After
simplification,

T (z) = a
√

1 − z + b√
1 + z

c
√

1 − z + d√
1 + z , (58)

where a = i(eiφ − 1), b = iei
π
4 (e−iφ − 1), c = −i(e−iφ − 1), and d = −iei π4 ×

(eiφ − 1).
Let B(z) be the function given in (55). By symmetry, the equation for the circle

that determines the hyperbolic line Lφ must be of the form |z− a| = r , where a > 1
and r > 0. Since Lφ meets ∂D orthogonally at z = eiφ , a simple implicit differenti-
ation reveals that a = 2 cosφ. This gives us r = |eiθ − a| = 1. The shortest distance
from Lφ to the point z = 1 is 2 − 2 cosφ. Since T (z) /∈ Dφ , we have

∣∣1 − T (z)∣∣−q ≤ (2 − 2 cosφ)−q =: C(φ,q), z ∈ D.



68 J. Heittokangas

Note that C(φ,q) → ∞ as φ → 0+. Then (53) and the Schwarz-Pick lemma yield

∣∣A(T (z))∣∣∣∣T ′(z)
∣∣2 ≤ o(1)C(φ, q)

(1 − |T (z)|2)2

∣∣T ′(z)
∣∣2 ≤ o(1)

(1 − |z|2)2
, |z| → 1−.

Next (57) for α = 1/2 gives us

∣∣ST (z)∣∣≤ 3

2(1 − |z|2)2
, z ∈ D. (59)

Putting all together, we have

∣∣B(z)∣∣≤ 3 + o(1)
4(1 − |z|2)2

, |z| → 1−. (60)

This shows that B(z) has the growth (38) for Rφ < |z| < 1, where Rφ → 1− as
φ → 0+. Hence (54) is non-oscillatory in D. Lemma 5 then implies that (1) is non-
oscillatory in D \Dφ . This completes the proof of Theorem 8.

Remark 4 We may replace the hyperbolic line Lφ by a circular arc of any circle
of the form |z − a| = r , where a > 1 and r > 0. Suppose such an arc meets ∂D at
angles απ . Then the linear fractional transformation (e−iφ − z)/(eiφ − z) will map
the analogue of D \Dφ onto a sector of opening απ .

The discussion above on the univalent coefficient can be formulated in terms of
Hayman’s index. Recall from [31] that if g ∈ S, then the Hayman index

α(g) = lim sup
r→1−

(1 − r)2M(r,g)

exists and satisfies 0 ≤ α(g) ≤ 1. For example, α(hε) = ε, where hε(z) is given
by (52). In general, we have α(g) = 1 if and only if g is a rotation of the Koebe
function. If α(g) > 0, then g has a unique radius of maximal growth, i.e., there
exists a unique θ ∈ [0,2π) such that (1 − r)2 |g(reiθ )| → α(g) as r → 1−. In all
other directions ϕ �= θ , we have (1 − r)2 |g(reiϕ)| → 0 as r → 1−.

Theorem 9 Let A ∈ S. If α(A) < 1/4, then (1) is non-oscillatory. If (1) is oscilla-
tory and arg(z) = θ is the unique radius of maximal growth of A(z), then z = eiθ is
the only possible accumulation point of zeros of solutions of (1).

Define F(z) = f (ze−iθ ). Then F satisfies the equation F ′ ′ + C(z)F = 0, where
C(z) = ei2θA(ze−iθ ) does not belong to S but is univalent and has [0,1) as its
radius of maximal growth. Since all growth properties of A(z) can be applied to
C(z) without difficulty, we may, without loss of generality, assume that θ = 0.

Suppose that α(A) < 1/4. Then there exists an r0 ∈ (0,1) such that

M(r,A) ≤ 1

4(1 − r)2 ≤ 1

(1 − r2)2
, r0 < r < 1.
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Then (38) holds for r0 < |z| < 1, and (1) is non-oscillatory by Schwarz’ theorem.
Suppose next that (1) is oscillatory. Let φ ∈ (0,π/4), and let T be the conformal

mapping given in (58). Let R be the unique inverse of T , and define B(z) by (55).
By the change of variable, we have

∫
D

∣∣A(T (z))∣∣∣∣T ′(z)
∣∣2 dm(z) =

∫
D\Dφ

∣∣A(w)∣∣∣∣T ′(R(w))∣∣2∣∣R′(w)
∣∣2 dm(w).

Using the Schwarz-Pick lemma twice, it follows that

∣∣T ′(R(w))∣∣2∣∣R′(w)
∣∣2 ≤ |T ′(R(w))|2(1 − |R(w)|2)2

(1 − |w|2)2

≤ (1 − |T (R(w))|2)2

(1 − |w|2)2
= 1

for every w ∈ D. Hence we conclude by [31, Theorem 2.7] that

∫
D

∣∣A(T (z))∣∣∣∣T ′(z)
∣∣2 dm(z) ≤

∫
D\Dφ

∣∣A(w)∣∣dm(w) < ∞.

Finally, by making use of [17, Theorem 1, p. 80], we get

M
(
r, (A ◦ T )(T ′)2)≤ o(1)

(1 − r2)2
, r → 1−.

Since (59) is again clearly valid, we conclude that (60) holds. Just as above, this
shows that (54) is non-oscillatory in D, and, a fortiori, (1) is non-oscillatory in D \
Dφ . This completes the proof of Theorem 9.

We recall that (1) is oscillatory for A(z) = hε(z) with ε > 1/4. The proof in [13]
rests on the fact that hε(z) is typically real [31, p. 13]. It seems quite likely that (1)
is oscillatory for A ∈ S with α(A) > 1/4. In such a case, A(z) is not necessarily
typically real. This is left as an open problem.

Suppose that A ∈ S with [0,1) being the radius of maximal growth. In light of
Example 2 and of Theorem 9, it seems plausible that all zeros of a fixed solution
of (1) lie in some Stolz angle with vertex at z = 1, with at most finitely many ex-
ceptions. Further it seems unlikely that any fixed Stolz angle at z = 1 would contain
all zeros of all solutions of (1). However, a circle lying in D and being internally
tangent to ∂D at z = 1 could be sufficient. The associated conformal mapping is
given in the following example.

Example 4 Let D1 ⊂ D be any open disc internally tangent to ∂D at z = 1. We wish
to construct a conformal mapping T from D onto D \ D1. First we map D onto the
upper half-plane by means of w1 = (1 + z)i/(1 − z), which is then mapped onto the
infinite strip S = {z ∈ C : 0< �(z) < π} by w2 = log z. Second we use the rotation
w3 = −iz, a magnification w4 = βz for some suitable β > 0, and finally the linear
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fractional transformation w5 = (z − 1)/(z + 1). The composition T = w5 ◦ w4 ◦
w3 ◦w2 ◦w1 is the conformal mapping we are looking for. After simplification,

T (z) = −1 − iβ log( 1+z
1−z i)

1 − iβ log( 1+z
1−z i)

.

The construction already guarantees that T ∈ H(D). This can also be verified inde-
pendently by observing that 1/iβ = −i/β /∈ S, and hence log( 1+z

1−z i) cannot assume
this value or even approach it asymptotically. By using standard mathematical soft-
ware, we have

ST (z) = 2

(1 − z2)2
.

This is in line with (57) as ∂D1 meets ∂D at a zero angle. Note that T is univalent
by [59, Theorem I].

Example 5 Let D1 and T be as in Example 4, and set A(z) = g(z)/(1 − z)2, where
g ∈ H∞. This covers the special cases A(z) = hε(z). Then

A
(
T (z)

)
T ′(z)2 = g(T (z))T ′(z)2

(1 − T (z))2 = −4bg(T (z))

(1 − z2)2(1 − iβ log( 1+z
1−z i))2

.

It follows that this function is bounded in D with the exception of some neighbor-
hoods of the points z = ±1. At the neighborhoods of the points z = ±1 (and hence
in all of D), we have

∣∣A(T (z))T ′(z)2
∣∣≤ O(1)

(1 − |z|2)2 log2 e
1−|z|

, |z| → 1−.

If now B(z) is the mapping given by (55), we have shown that

∣∣B(z)∣∣≤ 1 + β(|z|)
(1 − |z|2)2

, |z| → 1−,

where

lim sup
r→1−

β(r)

log2 e
1−r

< ∞.

Unfortunately this doesn’t seem to be enough for (1) to be non-oscillatory in D \ D1.
The reader is invited to compare this situation to the Chuaqui-Stowe conjecture
in (41) and to the growth in (42).

The conformal mappings considered in this section are not convex. For new re-
sults on the Schwarzian derivative of convex conformal mappings, see [7].

Finally we point out that Theorem 1 is closely related to all results and open
problems listed in the present section.
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7 Logarithmic Derivatives of Blaschke Products

Using estimates for logarithmic derivatives, both pointwise and integrated, is crucial
in the theory of complex differential equations. Some estimates that can be found
in the literature (e.g. Theorem 3) are valid for meromorphic functions. In this sec-
tion we emphasize estimates for Blaschke products because they are directly related
to Blaschke-oscillatory equations. Due to an extensive literature in this field, the
selection of results is by no means complete.

Estimates for logarithmic derivatives are typically associated with exceptional
sets of some kind. Two basic types for exceptional sets on the interval [0,1) are
a set of finite logarithmic measure and a set of small upper density. We say that
E ⊂ [0,1) is of finite logarithmic measure, provided that

∫
E

d log
1

1 − r =
∫
E

dr

1 − r < ∞. (61)

Exceptional sets of small upper density are treated in Sect. 4 above. Note that if E
satisfies (61), then m(E ∩ [r,1)) = o(1 − r), and hence d(E) = 0. This observation
makes Lemma 2 applicable for sets of finite logarithmic measure.

7.1 Pointwise Estimates

We will begin with a pointwise estimate that follows by combining the methods in
[20, 37]. The details are omitted.

Theorem 10 ([20, 37]) Let B(z) be a Blaschke product with zeros zn �= 0 such
that (12) holds, and let k ∈ N. Suppose that ω : [1,∞) → [1,∞) is a continuous
and increasing function such that

∫ ∞

1

x

ω(x)
dx < ∞. (62)

Then there exists a set E ⊂ [0,1) which satisfies (61) such that for all z ∈ D satisfy-
ing |z| /∈ E, we have

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣= O
((

1

(1 − |z|)h(1 − |z|)
)k
ω

(
log

e

1 − |z|
)k)

. (63)

If instead of (12) we assume that (11) holds for some α ∈ (0,1], then (63) reduces
to ∣∣∣∣B

(k)(z)

B(z)

∣∣∣∣= O
((

1

1 − |z|
)(1+α)k

ω

(
log

e

1 − |z|
)k)

. (64)

An estimate of the type (64) has been obtained in [36], but in a slightly weaker form.
The sharpness of Theorem 10 is discussed in the next example.
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Example 6 Let 0 < α < 1, and let B(z) be the Blaschke product with zeros at the
points zn = 1 − ( 1

n
)1/α . If ω is as in Theorem 10, then the change of variable x =

1 + 1
α

log t in (62) shows that

∫ ∞

1

1 + 1
α

log t

t ·ω(1 + 1
α

log t)
dt < ∞.

Hence
∞∑
n=1

(
1 − |zn|)α log e

1−|zn|
ω(log e

1−|zn| )
=

∞∑
n=1

1 + 1
α

logn

n ·ω(1 + 1
α

logn)
< ∞,

so that we may choose h(t) = tα(log e
t
)ω(log e

t
)−1 for (12) to hold. The estimate

in (63) now gives

∣∣∣∣B
′(z)
B(z)

∣∣∣∣= O
((

1

1 − |z|
)1+α ω(log e

1−|z| )
2

log e
1−|z|

)
, |z| /∈ E.

In comparison, by [36, Proposition 6.1] there exists a set F ⊂ [0,1) satisfying∫
F
dr

1−r = ∞, and a constant C = C(α) > 0, such that

∣∣∣∣B
′(x)
B(x)

∣∣∣∣≥ C

(1 − x)1+α log
1

1 − x , x ∈ F \E.

Since ω(x) can be chosen such that its asymptotic growth is not too far from that of
x2, we see that the estimate (63) is somewhat sharp.

For interpolating Blaschke products the function ω can be dropped out.

Theorem 11 ([20, 37]) Let B(z) be a Blaschke product with a uniformly separated
sequence of zeros zn �= 0 such that (12) holds, and let k ∈ N. Then there exists a set
E ⊂ [0,1) which satisfies (61) such that

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣= O
((

1

(1 − |z|)h(1 − |z|)
)k)

, |z| /∈ E. (65)

Theorem 11 generalizes to uniformly q-separated sequences as follows.

Theorem 12 ([20, 27]) Let B(z) be a Blaschke product with a uniformly q-
separated sequence of zeros zn �= 0 such that (12) holds, and let k ∈ N. Then there
exists a set E ⊂ [0,1) which satisfies (61) such that

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣= O
((

1

(1 − |z|)h(1 − |z|)
)k(

1 + q log
e

1 − |z|
)k)

, |z| /∈ E. (66)
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A simple geometric series argument shows that an exponential sequence {zn}
satisfies (11) for any α > 0. If B(z) denotes the corresponding Blaschke product, it
is natural to ask whether the function h(t) in (65) could be dropped out. This was
stated as an open problem in [20]. Unfortunately, Proposition 9 in [37] shows that
this is not the case. The next result, however, shows that h(t) in (65) can almost be
ignored.

Theorem 13 ([37, Theorem 8 and Sect. 6]) Let B(z) be a Blaschke product
whose zeros zn �= 0 form an exponential sequence, and let k ∈ N. Suppose that
φ : [1,∞) → [1,∞) is a continuous and increasing function satisfying (18). Then
there exists a set E ⊂ [0,1) which satisfies (61) such that

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣= O
((

1

1 − |z|
)k
φ

(
log

e

1 − |z|
)k)

, |z| /∈ E. (67)

If {zn} is a strongly exponential sequence, then the function φ in (67) can be replaced
with the identity mapping.

7.2 Integrated Estimates

So far the estimates for logarithmic derivatives of Blaschke products that we have
considered have been pointwise. The first integrated estimate known to the author is
the following one due to Linden.

Theorem 14 ([56, Theorem 1]) Let k ∈ N, and let B(z) be a Blaschke product with
zeros {zn} such that (11) holds for some α ∈ (0, 1

k+1 ). Then, if m = 1−α
k

, there is a
constant C = C(α, k) > 0 such that

∫ 2π

0

∣∣∣∣B
(k)(reiθ )

B(reiθ )

∣∣∣∣
m

dθ ≤ CS, 1

2
< r < 1.

In particular, B(k) ∈ Hp for each p ∈ (0,m].

Further integrated estimates as well as areally integrated estimates can be found
in [58]. We take this opportunity to introduce the following new result that will be
applied to Blaschke-oscillatory equations (1) later on.

Theorem 15 Let k ∈ N, and let B(z) be an interpolating Blaschke product with
zeros {zn} satisfying (11) for α ∈ (0,1). Then

∫
D

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) < ∞.
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Let δ > 0 be the interpolation constant defined in (15). Let Kn = Kn(zn, δ/2) for
n ∈ N denote a pseudo-hyperbolic disc with center zn and radius δ/2, and define
K =⋃n Kn. Then [62, Lemma 3.4] implies

1

|B(z)| ≤
(

2

δ

)2

, z ∈ D \K,

which gives us

∫
D\K

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) ≤
(

2

δ

) 2
k
∫
D

∣∣B(k)(z)∣∣ 1
k dm(z).

In the case k = 1 [26, Theorem 1.1] yields immediately

∫ 2π

0

∣∣B ′(reiθ )∣∣dθ = o
((

1

1 − r
)α)

.

If k ≥ 2, then we use Hölder’s inequality and [26, Theorem 1.1] to obtain

∫ 2π

0

∣∣B(k)(reiθ )∣∣ 1
k dθ ≤ (2π) k−1

k

(∫ 2π

0

∣∣B(k)(reiθ )∣∣dθ
) 1
k = o

((
1

1 − r
) k+α−1

k
)
,

where k+α−1
k

< 1 by the assumption α ∈ (0,1). Hence, for every k ∈ N, we have

∫
D\K

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) < ∞. (68)

Integration over the discs Kn will be considered in two cases. We need the
Green’s function g(z, a) = − logρ(z, a) with logarithmic singularity at a ∈ D.

(1) Suppose k = 1. For n ∈ N, we use Hölder’s inequality to conclude that

∫
Kn

∣∣∣∣B
′(z)
B(z)

∣∣∣∣dm(z) =
∫
Kn

∣∣∣∣B
′(z)
B(z)

∣∣∣∣g(z, zn)g(z, zn)
dm(z)

≤
(∫
Kn

∣∣B ′(z)
∣∣2g2(z, zn) dm(z)

) 1
2 ·
(∫
Kn

dm(z)

|B(z)|2g2(z, zn)

) 1
2

= I1(1, n) · I2(1, n).

It is well-known that B ∈ B, and hence, by [1, p. 43], there exists a constant C(1) >
0, depending only on B(z), such that

I1(1, n) ≤ sup
a∈D

(∫
D

∣∣B ′(z)
∣∣2g2(z, a) dm(z)

) 1
2 ≤ C(1).
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A careful inspection of the proof of [62, Theorem A] shows that

I2(1, n) ≤ 8(1 − |zn|2)

δ(2 − δ)2
(∫ 2π

0

∫ δ/2
0

drdθ

r log2 r

) 1
2 = 8

δ(2 − δ)2
(

2π

log 2
δ

) 1
2 (

1 − |zn|2).

(2) Suppose k ≥ 2. For n ∈ N, we use Hölder’s inequality to conclude that

∫
Kn

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) =
∫
Kn

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k
(
(1 − |z|)k−1g(z, zn)

(1 − |z|)k−1g(z, zn)

) 1
k

dm(z)

≤
(∫
Kn

∣∣B(k)(z)∣∣2(1 − |z|)2(k−1)
g2(z, zn) dm(z)

) 1
2k

·
(∫
Kn

dm(z)

(|B(z)|(1 − |z|)g(z, zn)) 2
2k−1

) 2k−1
2k

= I1(k, n) · I2(k, n).
Since B ∈ B, we obtain by [1, Theorem 1] that there exists a constant C(k) > 0,
depending only on B(z) and k, such that

I1(k, n) ≤ sup
a∈D

(∫
D

∣∣B(k)(z)∣∣2(1 − |z|)2(k−1)
g2(z, a) dm(z)

) 1
2k ≤ C(k).

By [17, Lemma 3, p. 41] there exists a constant C(δ) > 0 such that

I2(k, n) ≤ C(δ) 1
k
(
1 − |zn|2)− 1

k

(∫
Kn

dm(z)

(|B(z)|g(z, zn)) 2
2k−1

) 2k−1
2k

.

Let |Kn| denote the non-normalized area of the pseudo-hyperbolic disc Kn. Using
Hölder’s inequality, with conjugate indices p = 2k − 1 and q = 2k−1

2k−2 , we find that

I2(k, n) ≤ C(δ)
1
k
(
1 − |zn|2)− 1

k |Kn| k−1
k

(∫
Kn

dm(z)

|B(z)|2g2(z, zn)

) 1
2k

= C(δ)
1
k
(
1 − |zn|2)− 1

k |Kn| k−1
k I2(1, n)

1
k

≤
(

8C(δ)

δ(2 − δ)2
) 1
k
(

2π

log 2
δ

) 1
2k |Kn| k−1

k .

By [17, p. 40] it follows that

|Kn| = 4δ2π

(4 − δ2 |zn|2)2

(
1 − |zn|2)2 ≤ 4δ2π

9

(
1 − |zn|2)2,
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and, a fortiori,

I2(k, n) ≤
(

8C(δ)

δ(2 − δ)2
) 1
k
(

2π

log 2
δ

) 1
2k
(

4δ2π

9

) k−1
k (

1 − |zn|2).

In both cases (1) and (2) there exists a constant C0(δ, k) > 0 independent on n
such that

∫
Kn

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) ≤ C0(δ, k)
(
1 − |zn|2),

and hence

∫
K

∣∣∣∣B
(k)(z)

B(z)

∣∣∣∣
1
k

dm(z) ≤ C0(δ, k)

∞∑
n=1

(
1 − |zn|2)< ∞.

By combining this with (68), we complete the proof of Theorem 15.
By [64, Theorem 1] there exists an interpolating Blaschke product B(z) (with

zeros {zn} satisfying (11) for α = 1) such that B ′ /∈ B1. Since
∫
D

∣∣∣∣B
′(z)
B(z)

∣∣∣∣dm(z) ≥
∫
D

∣∣B ′(z)
∣∣dm(z) = ∞,

the requirement α < 1 in Theorem 15 cannot be dropped in the case k = 1. There is,
however, some indication that the assumption (11) for α < 1 could be weakened to

∞∑
n=1

(
1 − |zn|) log2

(
e

1 − |zn|
)
< ∞,

and the assertion in Theorem 15 would still hold. This requires updating the proof
of [26, Theorem 1.1] accordingly. The details are left as an open problem.

8 One Infinite Prescribed Zero Sequence

As already observed in [34], for any given Blaschke sequence {zn} of distinct points
in D, the problem of one prescribed zero sequence has uncountably many solutions.
We give the following alternative proof for this. Let g ∈ H(D) be a function satisfy-
ing the interpolation problem (9), and let G ∈ H(D) be arbitrary. Then the function
gG(z) = g(z)+ ∫ z0 B(ζ )G(ζ ) dζ satisfies

g′
G(zn) = g′(zn) = σn, n ∈ N, (69)

and gives raise to a coefficient A(z) = AG(z) of (1) that depends on G, see (10).
Moreover, given two distinct functions G1,G2 ∈ H(D), the associated coefficient
functions AG1(z) and AG2(z) are also distinct. To see this, assume on the contrary
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to this claim that AG1 ≡ AG2 , and denote fj = BegGj for j = 1,2. Then f1, f2 are
solutions of (1) with the same zeros. Hence f1 ≡ f2, so that gG1 ≡ gG2 + 2πni.
Differentiating both sides gives us G1 ≡ G2, which is a contradiction.

We note that the growth of AG(z) is influenced by that of G. For now, we settle
for finding just one coefficient A(z) for (1) with the desired properties. Later on in
Sect. 12 we are forced to make full use of gG(z) for G �≡ 0.

The problem of one prescribed zero sequence was solved in [37] with a pointwise
growth estimate for A(z). This result has recently been improved as follows.

Theorem 16 ([27, Corollary 2.3]) If {zn} is a uniformly separated (or exponential)
sequence of non-zero points in D, then there exists a function A ∈ H∞

2 satisfying

lim sup
|z|→1−

(
1 − |z|2)2∣∣A(z)∣∣> 1 (70)

such that (1) possesses a solution whose zero sequence is {zn}.

We note that (70) follows directly by (38) since the prescribed zero sequence is
infinite. Theorem 16 is sharp in the sense that the minimal growth rate in (70) has
the same magnitude as the maximal growth rate allowed in the H∞

2 space.
If the prescribed zero sequence consists of a union of two exponential sequences

{an} and {bn} that are pairwise close to one another in the sense that

0< |an − bn| < exp
(−2n

)
, n ∈ N,

then the corresponding coefficient function A(z) cannot belong to A−∞ by [27,
Theorem 2.1]. Recalling that all solutions of (1) are of finite order of growth, pro-
vided that A ∈ A−∞ [67, Lemma 2], this observation justifies the need for the con-
cept of q-separation stated earlier in Sect. 3. Note in particular that the union of
{an} and {bn} is not q-separated for any q ≥ 0. We are now motivated to state a
generalization of Theorem 16 as follows.

Theorem 17 ([27, Theorem 2.2]) Let {zn} be a uniformly q-separated sequence of
non-zero points in D.

(a) Suppose that {zn} satisfies (11) for some α ∈ (0,1]. Then there exists a function
A ∈ H∞

2(1+α+2q) satisfying (70) such that (1) possesses a solution whose zero
sequence is {zn}.

(b) Suppose that {zn} is a finite union of uniformly separated (or exponential) se-
quences in D. Then there exists a function A ∈ H∞

2(1+2q) satisfying (70) such
that (1) possesses a solution whose zero sequence is {zn}.

The following result can be considered as a solution to a problem of a prescribed
sequence of c-points, where c ∈ C \ {0}.

Theorem 18 ([27, Theorem 2.4]) Let {zn} be a Blaschke sequence of non-zero
points in D. Then there exists a function A ∈ H∞

2 such that for each c ∈ C \ {0}, (1)
possesses a solution fc ∈ H∞ taking the value c precisely at the points zn.
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The proof of Theorem 18 is so short and elementary that we repeat it here. Let
B(z) be the Blaschke product with zeros {zn}, and define

A(z) = 2B ′ ′(z)+B ′ ′(z)B(z) − 2(B ′(z))2

(B(z) + 2)2
.

Using Cauchy’s formula and the fact that |B(z) + 2| > 1 for z ∈ D, we have A ∈
H∞

2 . For each fixed c ∈ C \ {0}, the function fc(z) = 2c(B(z) + 2)−1 is then the
desired solution of (1).

So far the growth estimates for the coefficient function A(z) have been point-
wise. Some first attempts to solve the problem of one prescribed zero sequence such
that the coefficient A(z) belongs to the Bergman space Bα for some α ∈ (0,1/2]
were given in [34]. It is of particular interest to aim for A ∈ B 1

2 under weakest pos-
sible assumptions, as then (1) becomes Blaschke-oscillatory by (2). In [34, Theo-
rem 4.2] this is achieved by assuming that the prescribed zero sequence is uniformly
separated and satisfies (11) for α ∈ (0,1/3). By using Theorem 15 we are able to
improve this result for α ∈ (0,1).
Theorem 19 Let {zn} be an interpolating Blaschke sequence of nonzero points in D

satisfying (11) for some α ∈ (0,1). Then there exists a functionA ∈ B 1
2 such that (1)

possesses a solution f with zeros precisely at the points zn.

We rely heavily on the proof of [34, Theorem 4.2]. Let B(z) be the Blaschke
product with zeros at the points zn. Then a function g ∈ H(D) can be found such
that f = Beg solves (1), where

A(z) = −B
′ ′(z)
B(z)

− 2g′(z)B
′(z)
B(z)

− g′(z)2 − g′ ′(z)

belongs to H(D). In particular, g′ ∈ B1 and g′ ′ ∈ B 1
2 even if the assumption α ∈

(0,1/3) in [34] is weakened to α ∈ (0,1). Since

∣∣A(z)∣∣ 1
2 ≤
∣∣∣∣B

′ ′(z)
B(z)

∣∣∣∣
1
2 + √

2
∣∣g′(z)

∣∣ 1
2

∣∣∣∣B
′(z)
B(z)

∣∣∣∣
1
2 + ∣∣g′(z)

∣∣+ ∣∣g′ ′(z)
∣∣ 1

2 ,

we have by Theorem 15 and by Hölder’s inequality that A ∈ B 1
2 . This completes the

proof of Theorem 19.

9 Two Infinite Prescribed Zero Sequences

The problem of two prescribed zero sequences is solved in [35] as follows.

Theorem 20 ([35, Theorem 1.2]) Let {an} and {bn} be two infinite Blaschke se-
quences in D such that the sequence {zn} defined by z2n−1 = an and z2n = bn is
uniformly separated.
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(a) If {zn} satisfies

∑
n

(
1 − |zn|) log

1

1 − |zn| < ∞,

then we may construct a function A ∈ F such that (1) possesses linearly inde-
pendent solutions f1, f2 with zeros precisely at the points an, bn, respectively,
such that E = f1f2 ∈ N .

(b) If {zn} satisfies

∑
n

(
1 − |zn|) 1

3 log
1

1 − |zn| < ∞, (71)

then we may construct a function A ∈ N such that (1) possesses linearly inde-
pendent solutions f1, f2 with zeros precisely at the points an, bn, respectively,
such that E = f1f2 ∈ N and E′,E′ ′ ∈ N .

We note that in [35] a stronger condition of the form (11) for α ∈ (0,1/3) is
assumed instead of (71). However, the proof in [35] shows that (71) suffices. See, in
particular, formula (4.8) in [35].

Just like in the case of one prescribed zero sequence, the problem of two pre-
scribed zero sequences has uncountably many solutions. This will be proved at the
end of Sect. 9.4. For now, we settle for finding just one coefficient A(z) for (1) with
the desired properties.

9.1 New Result Involving Two Sequences

So far the best growth condition for the solution A(z) of the problem of two pre-
scribed zeros seems to be A ∈ N . Note that g(z) = exp( 1+z

1−z ) is an extremal function
in N , and hence functions in N may be of exponential growth. It would be desir-
able to obtain a growth condition as close as possible to (2) since (2) forces (1) to
be Blaschke-oscillatory. A growth condition on |A(z)| as close as possible to the
minimal growth in (70) would also be acceptable.

The proof of Theorem 20 in [35] culminates in showing that a Bank-Laine func-
tion E satisfies a certain interpolation property, which contributes to the growth of
E, and, a fortiori, to the growth of A(z). Recall that g ∈ H(D) is a Bank-Laine
function if at every zero ζ of g we have either g′(ζ ) = 1 or g′(ζ ) = −1.

We take this opportunity to get some new insight about the growth of A(z) in
the case of two prescribed zero sequences. First, instead of using interpolation in
the Hp spaces as in [35], we apply interpolation in a certain subspace of the Bloch
space B [63]. This approach forcesE in the Korenblum space A−∞. Second, we use
an upgraded Wiman-Valiron theory introduced quite recently by Fenton and Rossi
in [19]. This will show that the coefficient A(z) has a growth rate not far from the
minimal growth in (70). The new result is stated as follows.
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Theorem 21 Let {an} and {bn} be two infinite Blaschke sequences in D such that
the sequence {zn} defined by z2n−1 = an and z2n = bn is separated and satisfies

sup
z∈D

∑
n

(
1 − ρ(z, zn)2

)α
< ∞ (72)

for some α ∈ (0,1). Then we may construct a function A ∈ G2 satisfying (70) such
that (1) possesses linearly independent solutions f1, f2 with zeros precisely at the
points an, bn, respectively, such that E = f1f2 ∈ A−∞ ∩N .

We recall [10] that the growth spaceGp for p > 0 consists of functions g ∈ H(D)
such that

lim sup
r→1−

log+M(r,g)
− log(1 − r) = p.

The questions whether the function A(z) in Theorem 21 satisfies (2) or belongs to
H∞

2 are left as open problems. We make three remarks on the assumptions.

(1) By taking z = 0 in (72), we have (11).
(2) By Lemma 6 below, we conclude that {zn} is uniformly separated.
(3) Let B(z) be a Blaschke product with zeros {zn}. Then B ′ ∈ Qα if and only if

{zn} satisfies (72), see [18] and the definition (73) below. Hence there might
be a deeper connection between the condition (72) and Blaschke-oscillatory
equations than what is described below.

Lemma 6 ([47, Lemmas 4–5]) A sequence {zn} in D is uniformly separated if and
only if the following two conditions hold:

(a) {zn} is separated,
(b) supz∈D

∑
n(1 − ρ(z, zn)2) < ∞.

Moreover, {zn} is a finite union of uniformly separated sequences if and only if the
condition (b) holds.

The proof of Theorem 21 is conducted in three steps. We build the necessary ma-
chinery in Sects. 9.2–9.3, while Sect. 9.4 contains the actual proof. Before entering
the proof, we point out that a two sequences analogue of Theorem 18 for a single
prescribed value c ∈ C \ {0} is still an open problem.

9.2 Interpolation in the BMOA Space

Recall that the hyperbolic distance between the points z,w ∈ D is

d(z,w) = 1

2
log

1 + ρ(z,w)
1 − ρ(z,w) .
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For p > 0, the Qp space [2] consists of functions g ∈ H(D) such that

sup
a∈D

∫
D

∣∣g′(z)
∣∣2(1 − ρ(z, a)2)p dm(z) < ∞. (73)

Note in particular that Q1 = BMOA, the space of analytic functions of bounded
mean oscillation, and that Qp = B for every p > 1 [2]. This shows that BMOA
⊂ B. In the early literature the space BMOA is defined as the intersection of the
Hardy space H 1 and BMO(∂D), so that BMOA ⊂ H 1.

Theorem 22 ([63, p. 2129]) Let {zn} be a separated sequence in D satisfying (72)
for some α ∈ (0,1). Let {wn} be any sequence in C satisfying the Lipschitz condition

|wj −wk| = O(d(zj , zk)). (74)

Then there exists a function f ∈ BMOA such that f (zn) = wn for all n ∈ N.

We make two remarks. First, for any α ∈ (0,1), a concrete example of an inter-
polating sequence for B (in fact for BMOA) satisfying (72) is constructed in [22,
Lemma 5.2]. Second, let {zn} be an exponential sequence. Since {zn} is uniformly
separated, it satisfies (72) for α = 1. In fact, it is shown in [77, Lemma 3] that {zn}
satisfies (72) for any α ∈ (0,∞). In particular, exponential sequences are interpo-
lating for BMOA.

9.3 Wiman-Valiron Theory in D

Let f (z) =∑∞
n=1 anz

n be analytic in D. The maximum term is defined as

μ(r) = μ(r,f ) = max
n≥0

|an|rn,

while the central index ν(r) = ν(r, f ) is the largest integer n for which the maxi-
mum is attained. Since a Taylor series converges uniformly in compact subsets of
D, the maximum term certainly exists. TheM-order of f is given by

σM(f ) = lim sup
r→1−

log+ log+M(r,f )
− log(1 − r) .

One of the advantages of Wiman-Valiron theory is a representation of a logarith-
mic derivative of an analytic function in the form of an algebraic expression. The
recent improvements due to Fenton and Rossi in [19] deal with the cases σM(f ) > 0
and σM(f ) = 0. We will make use of the case σM(f ) = 0 only.

Theorem 23 ([19, Theorem 2]) Let f ∈ H(D) with σM(f ) = 0. Suppose that γ :
(0,1) → R is positive such that γ (t) → 0 as t → 1−. If ζ ∈ D is such that |f (ζ )| ≥
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ν(|ζ |)−γ (|ζ |)M(|ζ |, f ), then, for every k ∈ N and ε > 0, we have

f (k)(ζ )

f (ζ )
= O
((

1

1 − |ζ |
)k+ε)

as |ζ | → 1− outside of a set of zero density.

In proving Theorem 21 we will make use of Theorem 23 in the case f ∈ A−∞.
In addition, we will need the estimate

ν(r) = O
(

1

1 − r log
1

1 − r
)
, (75)

which is valid for the central index ν(r) of a given function f ∈ A−∞. To prove (75),
we note that, for any b > 2, there exists a constant r0(b) ∈ (0,1) such that

(1 − r)ν(r) ≤ b logμ
(
r + (1 − r)/b), r0(b) < r < 1,

see formula (1.5.6) in [49]. Combining this with the trivial estimate μ(r) ≤ M(r,f )
and the fact that f ∈ A−∞ proves the claim.

9.4 Proof of Theorem 21

Let B(z) be the Blaschke product with zeros zn. Since the points zn are simple, we
have B ′(zn) �= 0. Define a sequence {wn} of complex points by setting

wn = log

(
(−1)n

B ′(zn)

)
, n ∈ N,

where the principal branch for the logarithm has been chosen for every n. Now

wj −wk = log

∣∣∣∣B
′(zk)
B ′(zj )

∣∣∣∣+ i(arg
(
(−1)kB ′(zk)

)− arg
(
(−1)jB ′(zj )

))
,

and hence

|wj −wk| ≤
∣∣∣∣log

∣∣∣∣B
′(zk)
B ′(zj )

∣∣∣∣
∣∣∣∣+ 2π.

Suppose first that |zk| > |zj |. Since {zn} is uniformly separated, it follows by the
proof of [35, Lemma 4.1] that

|wj −wk| ≤ log
1 − |zj |2

1 − |zk|2
+ 2π + log

1

δ
, (76)
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where δ > 0 is the constant from (15). Since

(
1 − |zj |2)2 ≤ 4

(
1 − |zj |)2 ≤ 4

(
1 − |zk||zj |)2 ≤ 4|1 − zkzj |2,

we have

log
1 − |zj |2

1 − |zk|2
≤ log

4|1 − zkzj |2

(1 − |zk|2)(1 − |zj |2)

= log
1

1 − ρ(zj , zk)2 + log 4

≤ log
1 + ρ(zj , zk)
1 − ρ(zj , zk) + log 4.

Combining this with (76), we conclude that (74) holds in the case |zk| > |zj |. If
|zk| < |zj |, then (76) is replaced with

|wj −wk| ≤ log
1 − |zk|2

1 − |zj |2
+ 2π + log

1

δ
,

and a calculation similar to the one above shows that (74) again holds. Finally, if
|zk| = |zj |, then |wj − wk| ≤ 2π + log 1

δ
= O(d(zj , zk)). It now follows by Theo-

rem 22 that there exists a function g ∈ BMOA such that g(zn) = wn.
Define E = Beg , so that {zn} is the zero sequence of E. Since E′ = B ′eg +

Bg′eg , we have E′(zn) = (−1)n by the interpolation property of g, and hence E is
a Bank-Laine function. In particular, E′(an) = −1 and E′(bn) = 1. Define A(z) by
the equation

−4A(z)E2 = 1 − (E′)2 + 2EE′ ′.

Then it is known (see [35, Sect. 5] and the references therein) that A ∈ H(D), and
that E is a product of two linearly independent solutions f1, f2 of (1) having zeros
precisely at the points an, bn, respectively.

We are down to estimate the growth ofA(z) and ofE. Since B ∈ H∞ and BMOA
⊂ B, it follows by (32) that E ∈ A−∞. Since BMOA ⊂ H 1, we have eg ∈ N , and
hence E ∈ N . Finally, let ε > 0 and write A(z) in the form

A(z) = − 1

4

(
1

E2
−
(
E′

E

)2

+ 2
E′ ′

E

)
.

Let ν(r) be the central index of E. Using Theorem 23 on E, we conclude that

∣∣A(z)∣∣= ν(|z|)2γ (|z|)

4M(|z|,E)2 +O
((

1

1 − |z|
)2+ε)

,
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as |z| → 1− outside of a set of zero density. By (75) we have

M(r,A) = O
((

1

1 − r
)2+ε)

,

as r → 1− outside of a set of zero density. The exceptional set can be dealt with
Lemma 2. Since ε > 0 is arbitrary, and since A(z) must satisfy (70), this completes
the proof of Theorem 21.

Remark 5 The problem of two prescribed zero sequences has uncountably many
solutions. This was observed in [42, Sect. 6] in the case of complex plane. We
may cut corners in this reasoning. Let g ∈ BMOA and B(z) be as in the proof
above, and let G ∈ H(D) be arbitrary. Then the function gG = g + BG satisfies
gG(zn) = g(zn) = wn for all n. This gives raise to E = EG, and finally to a coeffi-
cient A(z) = AG(z) of (1). Moreover, given two distinct functions G1,G2 ∈ H(D),
the associated coefficient functionsAG1(z) andAG2(z) are also distinct. Suppose on
the contrary to this claim that AG1 ≡ AG2 . This gives raise to two fundamental sys-
tems of solutions for (1), one depending on G1 and the other one on G2. Since the
solutions in these systems share the same zeros by the assumption AG1 ≡ AG2 , they
must be pairwise equal, and hence EG1 ≡ EG2 . In particular, gG1 ≡ gG2 + 2nπi,
so that B(G1 −G2) ≡ 2nπi. Since B(z) has zeros, we must have n = 0, and hence
G1 ≡ G2, which is a contradiction.

10 Finite Prescribed Zero Sequences

A zero-free function f = eg with g ∈ H(D) is a solution of (1) if and only if A(z) =
−g′ ′ − (g′)2. Methods for constructing equations (1) with zero-free solution bases
{f1, f2 } can be found in [44], see also Sect. 4.3.

Let then z1, . . . , zN be distinct points in D. It is easy to construct a function
A ∈ H(D) such that (1) possesses a solution f with zeros precisely at the (finitely
many) points zn. To begin with, let P(z) = (z − z1) · · · (z − zN) be a polynomial
with zeros at the points zn, and let f = Peg be a candidate solution of (1) for some
g ∈ H(D). We require that the derivative of g satisfies the interpolation property

g′(zn) = wn = − P ′ ′(zn)
2P ′(zn)

, n = 1, . . . ,N.

For example, we may take for g′ the Lagrange interpolation polynomial

g′(z) =
N∑
n=1

P(z)

(z − zn)P ′(zn)
wn.

As for the function g we may then take any primitive of g′. Then the function

A = −P ′ ′ − 2g′P ′

P
− (g′)2 − g′ ′
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is analytic in D and in fact belongs to H∞. Now f = Peg ∈ H∞ solves (1) and has
the prescribed zeros z1, . . . , zN .

As for the case of two finite prescribed zero sequences, we may proceed as in
Sect. 9 with Lagrange interpolation polynomial taking the role of BMOA interpo-
lation. This results in the fact that the Bank-Laine function E in the construction
belongs to H∞. Regarding the growth of A(z), this method does not seem to give
anything better than A ∈ G2.

11 Blaschke-Oscillatory Equations of Arbitrary Order

Let A0, . . . ,Ak−1 ∈ H(D), where k ∈ N. Then the solutions of

f (k) +Ak−1(z)f
(k−1) + · · · +A1(z)f

′ +A0(z)f = 0 (77)

are analytic in D. The (possible) zeros of solutions are of multiplicity at most k − 1.
For if f has a zero of multiplicity p ≥ k at z0, then dividing (77) by f and noticing
that (1) f (k)/f has a pole of multiplicity k at z0, (2) all other terms of the form
Aj(z)f

(j)/f in (77) have a pole of multiplicity at most j ≤ k − 1 at z0, we arrive at
a contradiction.

Following the second order case above, we call (77) Blaschke-oscillatory if the
zero sequence of any nontrivial solution of (77) satisfies the Blaschke condition.
Problems related to prescribed zeros in the general case (77) seem quite difficult.
There seems to be some hope to obtain such results in the case f (k) + A(z)f = 0,
but the author is unaware of any existing results.

We then proceed to finding necessary and sufficient conditions for (77) to be
Blaschke-oscillatory. Based on the general growth estimates in [38], it is proved
in [40] that if A0, . . . ,Ak−1 ∈ H(D) are such that

∫
D

∣∣Aj(z)∣∣ 1
k−j dm(z) < ∞, j = 0, . . . , k − 1, (78)

then all solutions of (77) belong to N . Slightly more delicate conditions on the co-
efficients A0, . . . ,Ak−1 ∈ H(D) given in [69, Theorem 1.7] imply that the solutions
of (77) belong to the Hardy space Hp . In both cases, (77) is Blaschke-oscillatory.
Conversely, if (77) is assumed to be Blaschke-oscillatory, then it would be desirable
to get a growth condition for the coefficients of (77) as close as possible to (78). In
particular, we aim to generalize Theorem 2, but first we make two remarks.

(1) When studying the oscillatory behavior of the solutions of (77), we may suppose
that Ak−1(z) ≡ 0. For if φ denotes a primitive function of Ak−1(z), then the

standard substitution g = f e− 1
k
φ has no effect on the zeros, and it transforms

(77) to an equation where the coefficient function corresponding to the (k− 1)th
derivative vanishes.

(2) In the proof of Theorem 2, the converse part of Pommerenke’s result, the crucial
step is to represent the sole coefficient function A(z) in terms of a ratio of two
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linearly independent solutions of (1). An analogous maneuver can be done for
the coefficients of (77), provided that Ak−1(z) ≡ 0. This was shown by Kim
already in 1969, see [51].

Theorem 24 Let A0, . . . ,Ak−2 ∈ H(D) be such that

f (k) +Ak−2(z)f
(k−2) + · · · +A1(z)f

′ +A0(z)f = 0 (79)

is Blaschke-oscillatory. Then
∫
D(0,r)

∣∣Aj(z)∣∣ 1
k−j dm(z) = O

(
log2 e

1 − r
)
, j = 0, . . . , k − 2.

The basic idea of the proof is the same as that of Theorem 2, relying either on
the second fundamental theorem or on the following analogue of Lemma 3.

Lemma 7 Suppose that A0, . . . ,Ak−1 ∈ H(D), and let {f1, . . . , fk} be any solution
base of (77). Then fn/fm ∈ N for any pair n,m ∈ {1, . . . , k} if and only if (77) is
Blaschke-oscillatory.

Suppose that fn/fm ∈ N for any pair n,m. Since fn and fm have no common ze-
ros for n �= m, it follows by the assumption that the zeros of fj satisfy the Blaschke
condition for every j ∈ {1, . . . , k}. Let then f be an arbitrary solution of (77). It is
clear that f can be written as f = C1f1 + · · · + Ckfk for some C1, . . . ,Ck ∈ C.
At least one of the coefficients Cj must be nonzero, for otherwise f ≡ 0. The case
where precisely one coefficient Cj is nonzero has been treated above. Hence we
may suppose that Cj1Cj2 �= 0 for some j1, j2 ∈ {1, . . . , k}. Then the zeros of f are
precisely the −Cj1 -points of the nontrivial meromorphic function

F =
k∑
j=1
j �=j1

Cj
fj

fj1
.

Since T (r,F ) = O(1) by the assumption (and by some arithmetic properties of the
characteristic function), it follows by [75, Theorem V.7] that the −Cj1 -points of F
is a Blaschke sequence. This shows that (77) is Blaschke-oscillatory.

Conversely, suppose that (77) is Blaschke-oscillatory. Then suppose on the con-
trary to the assertion that fn/fm /∈ N for some pair n,m. By the proof of Lemma 3
there exists a point c ∈ C such that the sequence of c-points of fn/fm do not satisfy
the Blaschke condition. Hence the solution f = fn−cfm of (77) has a non-Blaschke
sequence of zeros, which is a contradiction. This completes the proof of Lemma 7.

Lemma 8 Let g1, . . . , gk be linearly independent and non-admissible meromorphic
solutions of a linear differential equation

g(k) +Bk−1(z)g
(k−1) + · · · +B1(z)g

′ +B0(z)g = 0
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with coefficients B0(z), . . . ,Bk−1(z) meromorphic in D. Then

∫
D(0,r)

∣∣Bj (z)∣∣ 1
k−j dm(z) = O

(
log2 e

1 − r
)
, j = 0, . . . , k − 1.

We give an outline of the proof of Lemma 8. The proof of [43, Theorem E(b)]
gives raise to the following conclusion: If g is meromorphic and non-admissible in
D, and if k, j are integers satisfying k > j ≥ 0, then

∫
D(0,r)

∣∣∣∣g
(k)(z)

g(j)(z)

∣∣∣∣
1
k−j
dm(z) = O

(
log2 e

1 − r
)
. (80)

Now the special case Bj (z) ≡ 0 for every j ∈ {1, . . . , k − 1} in Lemma 8 is easy
to prove. Indeed, it suffices to write B0(z) = −g(k)(z)/g(z) for any non-admissible
meromorphic solution g, and then make use of (80). In the general case one may
follow the course of proof of [54, Lemma 7.7], keeping in mind that non-admissible
meromorphic functions in D form a differential field [10, Lemma 5.3]. In particular,
the function

hk+1 =
(
d

dz

W(g1, . . . , gk+1)

W(g1, . . . , gk)

)/
W(g1, . . . , gk+1)

W(g1, . . . , gk)

on [54, p. 134] is a logarithmic derivative of a non-admissible meromorphic func-
tion, and hence satisfies

∫
D(0,r)

∣∣hk+1(z)
∣∣dm(z) = O

(
log2 e

1 − r
)

by (80). The calculations culminate in (7.15) of [54], where (80) and Hölder’s in-
equality are the key tools. We omit the details.

The next step in proving Theorem 24 is to represent the coefficients of (79) in
terms of ratios of linearly independent solutions of (79). Such a representation is
given in the case of complex plane in [51]. A unit disc analogue of this result is
nothing but a trivial modification of the original result, see [43, Theorem D]. Note
in particular that the coefficients of (79) have a representation in terms of functions
of bounded characteristic by Lemma 7. The rest of the proof follows the method in
[43, Sect. 4], where Lemma 8 takes the role of [43, Lemma 2.1(b)]. We omit the
details.

The next result is a generalization of Theorem 4(a).

Theorem 25 Let A0, . . . ,Ak−2 ∈ H(D) be such that (79) is Blaschke-oscillatory.
Then either all solutions of (79) belong to N or all solutions of (79) belong to
F \N .

Suppose that (79) possesses two solutions, one in the classN and the other one in
H(D) \N . These two solutions are obviously linearly independent, while their ratio
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does not belong to N . Hence, by Lemma 7, (79) is not Blaschke-oscillatory, which
is a contradiction. Therefore all solutions of (79) are either in N or they belong to
H(D) \N . Let f be an arbitrary non-trivial solution of (79). It suffices to show that
f ∈ F . We note that any fundamental base of (79) contains precisely k linearly inde-
pendent solutions. Since f is one solution, there must be k − 1 other solutions, say
f2, . . . , fk . Recall that the Wronskian determinantW(f,f2, . . . , fk) of f,f2 . . . , fk
reduces to a non-zero constant c by [54, Proposition 1.4.8]. By appealing to [54,
Proposition 1.4.3(e)], we may write

c = W(f,f2, . . . , fk) = f kW
((
f2

f

)′
, . . . ,

(
fk

f

)′)
. (81)

We have fj/f ∈ N for every j ∈ {2, . . . , k} by Lemma 7. Finally, using [10,
Lemma 5.3] on (81), it follows that f k is non-admissible, and hence f ∈ F . This
completes the proof of Theorem 25.

Assuming that the “middle” coefficients in (77) vanish identically, we are easily
able write the following analogue of Theorem 4(b). The proof is nothing but an easy
application of Theorem 3 and Lemma 2, and hence is omitted.

Corollary 2 Suppose that A ∈ H(D). If the equation

f (k) +A(z)f = 0

possesses a solution f ∈ N , then

∫
D(0,r)

∣∣A(z)∣∣ 1
k dm(z) = O

(
log2 e

1 − r
)
.

If in addition f ′, . . . , f (k−1) ∈ N , then

∫
D(0,r)

∣∣A(z)∣∣ 1
k dm(z) = O

(
log

e

1 − r
)
.

We will now continue the discussion that was started at the end of Sect. 4.2.
According to the isoperimetric inequality [17, p. 77], the inclusion H

p
2 ⊂ Bp holds

for every p ∈ (0,∞). Hence, if Aj ∈ H 1
2(k−j) for j ∈ {0, . . . , k− 1}, then (78) holds,

and, a fortiori, all solutions of (77) belong to N . Even more can be said, as is seen
next.

Corollary 3 Suppose that Aj ∈ H 1
2(k−j) for j ∈ {0, . . . , k − 1}. Then every solution

f of (77) satisfies f,f ′, . . . , f (k) ∈ N .

The fact that f,f ′, . . . , f (k−1) ∈ N follows by a general growth estimate for the
solutions (and for their derivatives), see [41, Theorem 5]. Recalling that Hp ⊂ N

for every p ∈ (0,∞), we then conclude that f (k) ∈ N by (77).
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12 Critical Points and Blaschke-Critical Equations

We point out that if A ∈ H 1
4 , then all solutions f of (1) satisfy f,f ′ ∈ N by Corol-

lary 3. In particular, the sequence of critical points of f (the zeros of f ′) satisfies
the Blaschke condition (3). This observation leads to a bunch of new questions: Is
it possible to find A ∈ H(D) such that (1) possesses a solution with a prescribed
Blaschke sequence of critical points? If this can be done for one sequence of fixed
points, then how about for two sequences? Note that two linearly independent so-
lutions of (1) have distinct critical points, for otherwise their Wronskian vanishes
identically. How is the geometric distribution of critical points like when compared
to the geometric distribution of zeros? Note in particular that if A(z) has no zeros,
like in the case of (40), then f and f ′ ′ have precisely the same zeros by (1). What
conditions are necessary for the critical points to satisfy the Blaschke condition?

We propose a new terminology: If the sequence of critical points of any non-
trivial solution of (1) satisfies the Blaschke condition, then (1) is called Blaschke-
critical. Obviously this concept generalizes to equations of the form (77). Partial
answers to the questions above on Blaschke-critical equations of the form (1) are
given below.

12.1 Zeros Versus Critical Points

In general, the zeros and the critical points of a given solution of (1) may be of
different “category”. To support this claim we give an example of a non-oscillatory
equation (1) with a solution f ∈ H∞ such that the sequence of critical points of
f does not satisfy the Blaschke condition. In particular, Blaschke-oscillatory equa-
tions (1) are not always Blaschke-critical.

Example 7 Define

g(z) =
∞∑
n=1

1

n1/22n
z2n .

Then g ∈ H∞, while g′ ∈ B0 has radial limits almost nowhere on ∂D, see [6].
Clearly e−2g ∈ H∞ and g′ /∈ N . In particular, g′e2g /∈ N . By [61, p. 276] there
are uncountably many choices for C �= 0 such that the zeros of g′ − Ce−2g do not
satisfy the Blaschke condition. Let C0 be such a constant, and let h ∈ H(D) be any
function such that h′ = C0e

−2g . Since h′ ∈ H∞, it is well-known that h belongs
to the disc algebra. Next we find that the functions f1, f2 in (34) are linearly inde-
pendent solutions of (1), where A(z) is given by (35). Moreover, f1, f2 ∈ H∞, and
since g′ ∈ B0, we have

∣∣g′ ′(z)
∣∣= o

(
1

1 − |z|
)
, |z| → 1−.
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Using the triangle inequality on (35) then gives us

∣∣A(z)∣∣= o
(

1

1 − |z|
)
, |z| → 1−.

This is a stronger condition than (38) near the boundary ∂D, and hence (1) is non-
oscillatory. Meanwhile, the zeros of

f ′
1 = (g′ − h′)eg−h = (g′ −C0e

−2g)eg−h

do not satisfy the Blaschke condition.

The question whether a Blaschke-critical equation (1) is always Blaschke-
oscillatory is still open. In this task the following two observations may be use-
ful. First, recall that f ′ ∈ N does not in general imply that f ∈ N , see [30]. Sec-
ond, let A ∈ H(D), and let {f,g} be a fundamental solution base of (1). If (1) is
both Blaschke-oscillatory and Blaschke-critical, then Lemma 3 and Lemma 9 be-
low show that (f ′/f )/(g′/g) ∈ N .

12.2 Necessary and Sufficient Conditions

The proof of Lemma 3 yields the following necessary and sufficient condition for
Blaschke-critical equations.

Lemma 9 Suppose that A ∈ H(D), and let {f1, f2 } be any solution base of (1).
Then F∗ = f ′

2/f
′
1 ∈ N if and only if (1) is Blaschke-critical.

As noted above, the condition A ∈ H 1
4 is sufficient for (1) to be Blaschke-

critical as well as Blaschke-oscillatory. This condition is sharp for both equation
types in the sense of Example 1. The following result contains necessary conditions
for Blaschke-critical equations, resembling to Theorems 2 and 4 about Blaschke-
oscillatory equations.

Theorem 26 Let A ∈ H(D) be such that (1) is Blaschke-critical. Then every solu-
tion f of (1) satisfies either f ′ ∈ N or f ′ ∈ F \N .

(a) If (1) has a solution f with f ′ ∈ N , then f ∈ F and A(z) satisfies (22).
(b) If (1) has a solution f with f ′ ∈ F \N , then

T (r, f ) = O
(

log2 e

1 − r
)

(82)

and ∫
D(0,r)

∣∣A(z)∣∣ 1
2 dm(z) = O

(
log

5
2
e

1 − r
)
. (83)
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Suppose that (1) possesses solutions f and g such that f ′ ∈ N and g′ /∈ N . Then
f and g are obviously linearly independent, and g′/f ′ /∈ N . According to Lemma 9
the equation (1) is not Blaschke-critical, which is a contradiction. Hence every so-
lution f of (1) satisfies either f ′ ∈ N or f ′ ∈ H(D) \N .

Let f be any solution of (1). We then proceed to prove that f ′ ∈ F . Let g be
a solution of (1), linearly independent of f . Denote F∗ = g′/f ′. Then F∗ ∈ N by
Lemma 9, while F ′∗ ∈ F by [10, Lemma 5.3]. Using (1), we have

F ′∗ = g′ ′f ′ − g′f ′ ′

(f ′)2
= A · g

′f − gf ′

(f ′)2
= A · W(f,g)

(f ′)2
= −f

′ ′

f
· W(f,g)
(f ′)2

, (84)

whereW(f,g) is the Wronskian of f and g. As noted in Sect. 4.2,W(f,g) reduces
to a non-zero constant. In general, the functions f and f ′ have the same T -order
of growth [75, Theorem V.28], defined in terms of the Nevanlinna characteristic as
follows:

σT (f ) = lim sup
r→1−

log+ T (r, f )
− log(1 − r) .

Moreover, f and A(z) do not have the same T -order, unless σT (f ) = 0 = σT (A).
This claim is easily verified by means of the standard lemma on the logarithmic
derivative: We have

T (r,A) = m(r,A) = m
(
r,
f ′ ′

f

)
= O
(

log+ T (r, f )+ log
e

1 − r
)

outside of a possible exceptional set of finite logarithmic measure. Hence the equa-
tion F ′∗ = AW(f,g)/(f ′)2 in (84) shows that σT (f ′) = 0, for otherwise we have a
contradiction. Applying the lemma on the logarithmic derivative to (84) in the finite
order case, it follows that

2T
(
r, f ′) = m

(
r,
(
f ′)2)≤ m

(
r,
f ′ ′

f

)
+m
(
r,
W(f,g)

F ′∗

)

= O

(
log

e

1 − r
)
, r /∈ E,

where E ⊂ [0,1) is of finite logarithmic measure. The exceptional set E can be
avoided by means of [3, Lemma C] or by means of Lemma 2. Hence f ′ ∈ F .

Next we turn to the proofs of (a) and (b). By [30] we conclude the following: If
f ′ ∈ N , then f ∈ F , while if f ′ ∈ F \N , then (82) holds. Suppose first that f ′ ∈ N ,
and write

A = −f
′ ′

f
= −f

′ ′

f ′ · f
′

f
.
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By making use of Theorem 3 and Hölder’s inequality, we have

∫ 2π

0

∣∣A(teiθ )∣∣ 1
2 dθ ≤

(∫ 2π

0

∣∣∣∣f
′ ′(teiθ )
f ′(teiθ )

∣∣∣∣dθ
) 1

2 ·
(∫ 2π

0

∣∣∣∣f
′(teiθ )
f (teiθ )

∣∣∣∣dθ
) 1

2

= O
(

1

1 − t log
e

1 − t
)
, t /∈ E,

where E ⊂ [0,1) is of arbitrarily small upper density. The exceptional set E can
be avoided by means of Lemma 2. A simple integration then yields (22). A similar
reasoning applies to the case f ′ ∈ F \N . This completes the proof of Theorem 26.

12.3 Prescribed Critical Points

We construct a coefficient A ∈ H(D) of (1) such that a solution of (1) has prescribed
Blaschke sequences of zeros and critical points. This construction is in fact a rather
simple modification of the analogous reasoning due to Šeda [72], who considered
the case of entire solutions in terms of Riccati differential equations.

Let {zn} and {ζn} be two given Blaschke sequences of distinct points with no
points in common. Let B(z) and Bc(z) be the corresponding Blaschke products,
where the subindex c refers to “critical”. We prove that a function g ∈ H(D) satis-
fying (9) exists. The Mittag-Leffler type of argument allows us to construct a mero-
morphic function F with principal parts σn/B ′(zn)(z− zn) at every zn, and no other
poles. The product P = BF is analytic in D except perhaps at the points zn. For a
fixed zn, the Taylor series expansion of B(z) at zn gives us the representation

B(z) = B ′(zn)(z − zn)
(
1 +Bn(z)

)
,

where Bn(z) is analytic at zn and satisfies Bn(zn) = 0. By the Laurent series expan-
sion for the function F at zn, we find that Fn(z) = (z− zn)F (z) is analytic at zn and
satisfies Fn(zn) = σn/B

′(zn). Now P(zn) = σn, and hence P ∈ H(D). If g is any
primitive of P , then g′ satisfies (9).

Now gG = g + ∫ z0 B(ζ )G(ζ ) dζ satisfies (69), where G ∈ H(D) will be con-
structed later on. A simple computation reveals that the function f = BegG is a
solution of (1), where

A = −B ′ ′ − 2g′
GB

′

B
− (g′

G

)2 − g′ ′
G. (85)

Moreover, f has prescribed zeros at the points zn, and due to (69) the coefficient
A(z) in (85) belongs to H(D). This is true for any G ∈ H(D).

We proceed to define G in such a way that f = BegG has prescribed critical
points ζn. Since f ′ = (B ′ +Bg′

G)e
gG , we must have

B ′ +Bg′
G = Bceh (86)
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for some suitable h ∈ H(D). Solving this for G yields

G = Bce
h −B ′ −Bg′

B2
=: H
B2
. (87)

For G to be analytic in D, the function H needs to have at least a double zero at
every point zn. Hence H(zn) = 0 and H ′(zn) = 0 must hold for every n.

(1) The requirement H(zn) = 0 leads to the interpolation property

h(zn) = log

(
B ′(zn)
Bc(zn)

)
=: sn, n ∈ N, (88)

because B(zn) = 0.
(2) Since H ′ = (B ′

c + Bch
′)eh − B ′ ′ − B ′g′ − Bg′ ′, we obtain the interpolation

property

h′(zn) = B ′ ′(zn)
2B ′(zn)

− B ′
c(zn)

Bc(zn)
=: tn, n ∈ N, (89)

by using (9) and (88) together with the fact that B(zn) = 0.

Define h = h1 + Bh2, where h1, h2 ∈ H(D) are constructed such that h1(zn) = sn
and h2(zn) = (tn − h′

1(zn))/B
′(zn) for all n. Obviously h1 needs to be constructed

first. Then it is clear that h satisfies (88) and (89). Hence the function G in (87)
belongs to H(D), and (86) holds in D. This means that f ′ has zeros precisely at the
points ζn, that is, f has prescribed critical points ζn.

Remark 6 The distribution of the points zn and ζn will affect to the growth of the
functions h1 and h2, and eventually to the growth of the coefficient A(z) in (85).
Target growth A ∈ A−∞ seems more realistic, yet difficult, than either (2) or A ∈
G2. This would follow from G ∈ A−∞, which in turn would be a result of h ∈
B. Assuming that {zn} and {ζn} are both uniformly separated such that the union
{zn} ∪ {ζn} is separated seems to yield

|sn| ≤ log
1

1 − |zn| +O(1), n ∈ N,

see [35, Lemma 4.1] and [12, Theorem 1]. This may enable BMOA-interpolation
for h1, as described in Sect. 9.2. The function h2 is another story. Finding suitable
conditions (even harsh ones) for the sequences {zn} and {ζn} such that h ∈ B satis-
fying (88) and (89) can be found is left as an open problem.

13 Concluding Remarks

The previous sections contain several open problems relating Blaschke products and
Blaschke sequences to linear differential equations. However, neither the zeros nor
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the critical points of functions in the Bergman spaces Bp or in the Korenblum space
A−∞ need to satisfy the Blaschke condition [17, 32, 52]. Meanwhile, functions of
this character have been associated to solutions of linear differential equations (77)
in [39, 69]. This indicates that the next step in the unit disc oscillation theory could
be to replace Blaschke products with Horowitz products

H(z) =
∞∏
n=1

|zn|
zn

zn − z
1 − znz

(
2 − |zn|

zn

zn − z
1 − znz

)

which act as universal divisors in the Bergman spaces [17, Chap. 4]. It is known [17,
p. 102] that if ∑

n

(
1 − |zn|)2 < ∞, (90)

then the associated Horowitz product H(z) converges uniformly in compact sub-
sets of D, and hence represents an analytic function in D with zeros precisely at
the points zn. Replacing (3) with (90), the definitions for Horowitz-oscillatory and
Horowitz-critical differential equations are obvious. For example, [53, Theorem 5]
can now be restated as follows: If A0, . . . ,Ak−1 ∈ H(D) are such that

∫
D

∣∣Aj(z)∣∣ 1
k−j (1 − |z|2)dm(z) < ∞, j = 0, . . . , k − 1,

then (77) is Horowitz-oscillatory. As noted above, when oscillation of solutions
of (77) is considered, we might as well restrict to considering (79). Now [43, The-
orem 1.3] yields the following converse claim: Let A0, . . . ,Ak−2 ∈ H(D) be such
that (79) is Horowitz-oscillatory. Then, for every ε > 0, we have

∫
D

∣∣Aj(z)∣∣ 1
k−j (1 − |z|2)1+ε

dm(z) < ∞, j = 0, . . . , k − 2. (91)

A more complicated approach reveals that the constant ε in (91) can be dropped out,
see the discussion in [65] following the proof of [65, Theorem 7.9].

The discussion in Sect. 12 shows that Blaschke-oscillatory and Blaschke-critical
equations are not the same in general. In particular, see Example 7. However, these
two concepts are tied together by means of Horowitz products.

Corollary 4 LetA ∈ H(D). Concerning (1), Blaschke-oscillatory implies Horowitz-
critical, while Blaschke-critical implies Horowitz-oscillatory.

Suppose first that (1) is Blaschke-oscillatory. Then all solutions f of (1) belong
to F by Theorem 4. Let n(r) denote the counting function of the zeros of f ′. Since
f ′ ∈ F , [73, Theorem 1] yields

n(r) = O
(

1

1 − r log
e

1 − r
)
.
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A simple Riemann-Stieltjes integration now gives us

∑
|zn|<r

(
1 − |zn|)2 =

∫ r
0
(1 − t)2 dn(t) = O(1),

and hence (1) is Horowitz-critical. Suppose then that (1) is Blaschke-critical. Now
every solution f of (1) satisfies (82). A simple modification of the reasoning above
reveals that (1) is Horowitz-oscillatory.

As for existing tools, we point out that the interpolation theory has been con-
nected to the spaces Bp and A−∞, and hence to Horowitz products, see [17,
Chap. 6] and [32, Chap. 5]. The author is unaware of any existing estimates for
logarithmic derivatives of Horowitz products.
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Bi-orthogonal Expansions in the Space L2(0,∞)

André Boivin and Changzhong Zhu

Abstract In this paper we deduce bi-orthogonal expansions in the space L2(0,∞)

with respect to two special systems of functions from the corresponding expansions
in the Hardy space H 2+ for the upper half-plane.
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1 Introduction

Assume that the sequence of complex numbers

{λk} (k = 1,2, . . .) (1)

satisfies the conditions: Re(λk) > 0, λk �= λj for k �= j , and

∞∑
k=1

Re(λk)

1 + |λk|2
< +∞. (2)

It is known that under this (Blaschke) condition, the exponential system

{
e−λkx} (k = 1,2, . . .) (3)

is incomplete in L2(0,∞) (see [5] for example). Hence the closed linear span of the
system (3), namely E, is a proper subspace of L2(0,∞). It is also well known that,
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under this condition, the Blaschke product

W(ξ) =
∞∏
k=1

[
ξ − λk
ξ + λk

· |1 − λ2
k|

1 − λ2
k

]
(4)

converges to an analytic functionW(ξ) in the right half-plane Re(ξ) > 0.
Let us consider the following system of functions introduced in [5]:

ψk(x) = − 1

W ′(λk)
· 1

2π

∫ +∞

−∞
e−iτx

W(iτ )(iτ + λk)
dτ (k = 1,2, . . .), (5)

i.e.,

ψk(x) = 1

2π

∫ ∞

−∞
e−iτx

W(iτ )

[
1

2πi

∫
ck

dξ

W(ξ)(iτ − ξ)
]
dτ (k = 1,2, . . .), (6)

where ck is a circle with centre at λk , lying entirely in the right half-plane Re(ξ) > 0
and containing no other λj (j �= k), and traced in the counterclockwise direction.

It is not difficult (see [5]) to show that:

(i) the systems (3) and (5) are bi-orthogonal in L2(0,+ ∞), i.e.

∫ +∞

0
e−λkx ·ψj (x)dx =

∫ +∞

0
e−λkx ·ψj(x)dx = δkj =

{
1 if k = j ;
0 if k �= j. (7)

(ii) all the elements of the system (5) belong to the closed linear span E of the
system (3); hence the system (5) is also incomplete in L2(0,+ ∞), and the
closed linear span, namely P, of the system (5), is also a proper subspace of
L2(0,+∞).

The representation of the projection (PE)f (x) of any function f (x) ∈ L2(0,+ ∞)

onto E was also obtained in [5]. The same representation was deduced in [6] using
the Fourier transform. The purpose of this paper is to give the bi-orthogonal expan-
sions of f (x) in L2(0,+∞) with respect to the systems (3) and (5), respectively.
To do so, we will also use the Fourier transform as a “bridge”, and borrow the cor-
responding results in the Hardy space H 2+ of the upper half-plane with respect to
some corresponding systems of functions.

2 Two Systems of Analytic Functions in H 2+

Recall that (see, for example, [3] and [1, Chap. 11]) the Hardy space H 2+ is the set
of functions F(z) analytic in the upper half-plane Im(z) > 0 such that

∥∥F(z)∥∥
H 2+

= sup
0<y<+∞

[∫ +∞

−∞
∣∣F(x + iy)∣∣2dx

]1/2

< + ∞. (8)
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Moreover, the function F(z) ∈ H 2+ has non-tangential boundary values F(x) for
almost every x ∈ (− ∞,∞) with F(x) ∈ L2(−∞,∞).

With the inner product

(F1,F2) =
∫ +∞

−∞
F1(x)F2(x)dx

for F1(z),F2(z) ∈ H 2+ and the norm ‖F(z)‖H 2+ = (F,F )1/2, H 2+ is a Hilbert space,
and

∥∥F(z)∥∥
H 2+

= ∥∥F(x)∥∥
L2(−∞,+∞)

=
[∫ +∞

−∞
∣∣F(x)∣∣2dx

]1/2

. (9)

We will use the following known properties (see, for example, [3, Theorems A
and C], [1]):

Lemma 1 If G(z) ∈ H 2+, then

1

2πi

∫ +∞

−∞
G(x)

x − zdx =
{
G(z), Im(z) > 0,

0, Im(z) < 0.
(10)

If g(x) ∈ L2(−∞,+∞), then

G(z) := 1

2πi

∫ +∞

−∞
g(x)

x − zdx (11)

belongs to H 2+ and
∥∥G(x)∥∥

L2(−∞,+∞)
≤ C∥∥g(x)∥∥

L2(−∞,+∞)
, (12)

where C is a constant independent of g.

Lemma 2 (Paley-Wiener) If F(z) ∈ H 2+, then its Fourier Transform (FT) satisfies

1√
2π

∫ +∞

−∞
F(t)e−itxdt =

{
f (x), x ∈ (0,+ ∞);
0, x ∈ (− ∞,0)

(13)

with f (x) ∈ L2(0,+∞). And conversely, if f (x) ∈ L2(0,+ ∞), then its Inverse
Fourier Transform (FT−1)

F(z) := 1√
2π

∫ +∞

0
f (x)eixzdx (14)

belongs to H 2+ and ∫ ∞

0

∣∣f (x)∣∣2dx =
∫ ∞

−∞
∣∣F(t)∣∣2dt.
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The class of functions in H 2+ coincides with the set of functions representable in the
form (14) where f (x) ∈ L2(0,+∞).

Let z = iξ which transforms the right half-plane Re(ξ) > 0 onto the upper half-
plane Im(z) > 0, let {λk} be the sequence considered in (1) and let ak = iλk (k =
1,2, . . .), then all elements of the sequence

{ak} (k = 1,2, . . .) (15)

are located in the upper half-plane and are pairwise distinct. And, since |λk| = |ak|
and Re(λk) = Im(ak) (k = 1,2, . . .), condition (2) becomes

∞∑
k=1

Im(ak)

1 + |ak|2
< +∞, (16)

and the Blaschke product

B(z) =
∞∏
k=1

[
z − ak
z − ak · |1 + a2

k |
1 + a2

k

]
= W(iz) (17)

converges to an analytic function B(z) in the upper half-plane Im(z) > 0. It is well
known that B(z) ∈ H 2+, |B(z)| ≤ 1 for Im(z) > 0; and |B(x)| = 1 for almost every
x ∈ (−∞,+∞). Let

Wn(ξ) :=
n∏
k=1

[
ξ − λk
ξ + λk

· |1 − λ2
k|

1 − λ2
k

]
(18)

and

Bn(z) :=
n∏
k=1

[
z − ak
z − ak · |1 + a2

k |
1 + a2

k

]
= Wn(iz). (19)

It is easy to verify that, for 1 ≤ k ≤ n,

(
B(ak)

Bn(ak)

)
= W(λk)

Wn(λk)
. (20)

We also have (see [4]):

Lemma 3 For any g(x) ∈ L2(−∞,+∞), as n → ∞,
∥∥g(x)[Bn(x)−B(x)]∥∥

L2(−∞,+∞)
−→ 0. (21)

For F(z) ∈ H 2+, denote

HF (z) := B(z)

2πi

∫ +∞

−∞
F(x)

B(x)(x − z)dx, Im(z) > 0. (22)
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It is known (see, for example, [4]) that HF (z) ∈ H 2+.
For the above sequence ak = iλk (k = 1,2, . . .), consider the following two sys-

tems of functions:

ek(z) = 1

2πi
· 1

z − ak (k = 1,2, . . .), (23)

φk(z) = − B(z)

(z − ak)B ′(ak)
(k = 1,2, . . .). (24)

By the Residue Theorem, φk(z) has the following integral expression:

φk(z) = B(z)

2πi

∫
c′
k

dξ

B(ξ)(ξ − z) , k = 1,2, . . . , (25)

where c′
k is a small circle in the upper half-plane Im(z) > 0 and centred at ak con-

taining no points aj different from ak , and the closed disc bounded by c′
k does not

contain z. Indeed, −c′
k is the image of ck (which appears in (6)) under the map

z = iξ and traced in the clockwise direction.
It is known that (see, for example, [3, 4])

(i) under the condition (16), both the systems (23) and (24) are incomplete in H 2+.
Hence the closed linear span of the system (23) in H 2+, namely E, is a proper
subspace of H 2+, and so is the closed linear span in H 2+ of the system (24),
namely Φ .

(ii)

E = Φ. (26)

(iii) the systems (23) and (24) are bi-orthogonal on (− ∞,+ ∞):

∫ +∞

−∞
ek(x)φj (x)dx =

∫ +∞

−∞
ek(x)φj (x)dx = δkj . (27)

3 Bi-orthogonal Expansions in H 2+

In [4],1 we find the bi-orthogonal expansion with respect to the system (23):

Lemma 4 For any F(z) ∈ H 2+, the bi-orthogonal expansion of F(z) with respect to
the system (23) is

F(z) = lim
n→∞

n∑
k=1

α(F,φk)

(
B(ak)

Bn(ak)

)
ek(z)+HF (z), Im(z) > 0, (28)

1See (15) in [4] with mk = 1 for k = 1,2, . . . .
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where the limit is in the sense of L2(−∞,+∞),

α(F,φk) =
∫ +∞

−∞
F(x)φk(x)dx, k = 1,2, . . . , (29)

and the function HF (z) is given by (22).

In the expression (28),

(PEF)(z) = lim
n→∞

n∑
k=1

α(F,φk)

(
B(ak)

Bn(ak)

)
ek(z), Im(z) > 0 (30)

is the orthogonal projection of F(z) onto E, since
∫ +∞

−∞
(
F(x)− (PEF)(x)

)
ek(x)dx

=
∫ +∞

−∞
HF (x)ek(x)dx

= 1

2πi

∫ +∞

−∞
HF (x)

x − ak dx = HF (ak) = 0 (k = 1,2, . . .) (31)

by Lemma 1.
Now we give a parallel result with respect to the system (24):2

Lemma 5 For any F(z) ∈ H 2+, the bi-orthogonal expansion of F(z) with respect to
the system (24) is

F(z) = lim
n→∞

n∑
k=1

α(F, ek)
B(ak)

Bn(ak)
φk(z)+HF (z), Im(z) > 0, (32)

where the limit is in the sense of L2(−∞,+∞),

α(F, ek) =
∫ +∞

−∞
F(x)ek(x)dx = −F(ak), k = 1,2, . . . , (33)

and HF (z) is given by (22).
In the expression (32),

(PΦF)(z) = lim
n→∞

n∑
k=1

α(F, ek)
B(ak)

Bn(ak)
φk(z), Im(z) > 0 (34)

is the orthogonal projection of F(z) onto Φ .

2A similar result can be found in [2, Theorem 2.3.1], but here we use a different method to prove
the result.
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Proof First, we point out that if z = aj (j = 1,2, . . .), then (32) must hold. In fact,
since φk(aj ) = −δkj , α(F, ej ) = −F(aj ), HF (aj ) = 0, we have

lim
n→∞

n∑
k=1

α(F, ek) · B(ak)
Bn(ak)

· φk(aj )+HF (aj ) = lim
n→∞F(aj ) · B(aj )

Bn(aj )
= F(aj ).

Now assume that Im(z) > 0 and z �= ak (k = 1,2, . . .). Choose sufficiently small
circle c′

k as in (25). We have

(PΦ(n)F )(z) =
n∑
k=1

α(F, ek) · B(ak)
Bn(ak)

· φk(z)

=
n∑
k=1

[−F(ak)
] · B(ak)
Bn(ak)

·
[

− B(z)

B ′(ak)(z − ak)
]

=
n∑
k=1

B(z) · F(ak)B(ak)

Bn(ak)B ′(ak)(z − ak)

=
n∑
k=1

−B(z)
2πi

∫
c′
k

F (ξ)B(ξ)

Bn(ξ)B(ξ)(ξ − z)dξ (Residue Theorem)

=
n∑
k=1

−B(z)
2πi

∫
c′
k

F (ξ)

Bn(ξ)(ξ − z)dξ

=
n∑
k=1

−B(z)
2πi

∫
c′
k

[
1

2πi

∫ +∞

−∞
F(x)dt

x − ξ
]

dξ

Bn(ξ)(ξ − z) (Lemma 1)

=
∫ +∞

−∞
F(x)

[
n∑
k=1

−B(z)
(2πi)2

∫
c′
k

dξ

Bn(ξ)(ξ − z)(x − ξ)

]
dx

=
∫ +∞

−∞
F(x)Gn(z, x)dx,

where for Im(z) > 0, −∞ < x < +∞,

Gn(z, x) =
n∑
k=1

−B(z)
(2πi)2

∫
ck

dξ

Bn(ξ)(ξ − z)(x − ξ) .

Note that the function

g(ξ) = 1

Bn(ξ)(ξ − z)(ξ − x)
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is analytic in the ξ plane except at ak (k = 1,2, . . . , n), z and x which are all poles
of g(ξ) with order 1. Thus, by the Residue Theorem,

n∑
k=1

1

2πi

∫
ck

g(ξ)dξ = −Res(g, z)− Res(g, x)− Res(g,∞)

= 1

Bn(z)(x − z) − 1

Bn(x)(x − z) − 0,

where Res(g,∞) = 0 since, as ξ → ∞,

∣∣g(ξ)∣∣= O
(

1

|ξ |2

)
.

Thus, we have

Gn(z, x) = B(z)

2πi

[
1

Bn(z)(x − z) − 1

Bn(x)(x − z)
]
,

and by Lemma 1,

(PΦ(n)F )(z) = B(z)

Bn(z)
F (z)− B(z)

2πi

∫ +∞

−∞
F(x)dx

Bn(x)(x − z) .

It is seen that as n → ∞, (PΦ(n)F )(z) converges to (PΦF)(z) = F(z)−HF (z) in
the sense ofL2(−∞,+∞). Indeed, by Lemmas 1 and 3, and noting that |Bn(x)| = 1
on (−∞,+∞), and |B(x)| = 1 almost everywhere on (− ∞,+ ∞), we have

∥∥∥∥B(z)2πi

∫ +∞

−∞
F(x)dx

Bn(x)(x − z) − B(z)

2πi

∫ +∞

−∞
F(x)dx

B(x)(x − z)
∥∥∥∥
L2(−∞,+∞)

=
∥∥∥∥B(z)2πi

∫ +∞

−∞
[B(x)−Bn(x)]F(x)

Bn(x)B(x)
· dx

x − z
∥∥∥∥
L2(−∞,+∞)

≤ C∥∥F(x)[B(x)−Bn(x)
∥∥
L2(−∞,+∞)

−→ 0 as n → ∞,

and
∥∥∥∥ B(z)Bn(z)

F (z)− F(z)
∥∥∥∥
L2(−∞,+∞)

= ∥∥F(x)[B(x)−Bn(x)
]∥∥
L2(−∞,+∞)

−→ 0 as n → ∞.

Thus, (32) holds.
By (28) and (32),

(PΦF)(z) = (PEF)(z) = F(z)−HF (z), Im(z) > 0.
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As mentioned in Lemma 4, (PΦF)(z) is the orthogonal projection of F(z) onto E
(i.e. Φ). The proof is complete. �

By [4], if F(z) ∈ E (i.e. Φ), then HF (z) ≡ 0 for Im(z) > 0. Thus, by Lemma 4
or Lemma 5, we have

Lemma 6 F(z) ∈ E (i.e. Φ) if and only if HF (z) ≡ 0 for Im(z) > 0.

4 Main Results and Their Proofs

Our main results are:

Theorem 1 For any f (x) ∈ L2(0,+∞), the bi-orthogonal expansion of f (x) with
respect to the system (3) is

f (x) = lim
n→∞

n∑
k=1

β(f,ψk)
W(λk)

Wn(λk)
e−λkx + hf (x), 0< x < + ∞, (35)

where the limit is in the sense of L2(0,+∞), β(f,ψk) is defined by

β(f,ψk) =
∫ +∞

0
f (x)ψk(x)dx, k = 1,2, . . . , (36)

and hf (x) is determined by the following steps: (i) Inverse Fourier Transform (14)
of f (x) to obtain F(z) ∈ H 2+, (ii) using (22) to obtain HF (z) ∈ H 2+ from F(z), and
(iii) the Fourier Transform (13) of HF (z) to obtain hf (x) ∈ L2(− ∞,+ ∞):

1√
2π

∫ +∞

−∞
HF (t)e

−itxdt =
{
hf (x), x ∈ (0,+ ∞);
0, x ∈ (− ∞,0).

(37)

In the expression (35),

(PEf )(x) = lim
n→∞

n∑
k=1

β(f,ψk)
W(λk)

Wn(λk)
e−λkx, 0< x < + ∞ (38)

is the orthogonal projection of f (x) onto the subspace E.

Theorem 2 For any f (x) ∈ L2(0,+∞), the bi-orthogonal expansion of f (x) with
respect to the system (5) is

f (x) = lim
n→∞

n∑
k=1

β
(
f (x), e−λkx)

(
W(λk)

Wn(λk)

)
ψk(x)+ hf (x), 0< x < + ∞,

(39)
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where the limit is in the sense of L2(0,+∞),

β
(
f (x), e−λkx)=

∫ +∞

0
f (x)e−λkxdx, k = 1,2, . . . , (40)

and hf (x) is the same as in Theorem 1.
In the expression (39),

(PPf )(x) = lim
n→∞

n∑
k=1

β
(
f (x), e−λkx)

(
W(λk)

Wn(λk)

)
ψk(x), 0< x < + ∞ (41)

is the orthogonal projection of f (x) onto the subspace P.

We can prove Theorems 1 and 2 using Lemmas 4 and 5, respectively. We will
only prove Theorem 2, the proof of Theorem 1 being similar.

Before proving Theorem 2, first, we point out that the two pairs of bi-orthogonal
systems (3) and (5), and (23) and (24), are connected via the Fourier Transform (14)
and (13). Indeed we have (FT−1)

φk(z) = 1√
2π

∫ +∞

0

[−√
2πψk(x)

]
eixzdx ∈ H 2+, (42)

and (FT)

1√
2π

∫ +∞

−∞
φk(t)e

−itxdt =
{

−√
2πψk(x), x ∈ (0,+ ∞);

0, x ∈ (− ∞,0).
(43)

We also have (FT−1)

ek(z) = 1√
2π

∫ +∞

0

−1√
2π
e−λkxeixzdx ∈ H 2+, (44)

and (FT)

1√
2π

∫ +∞

−∞
ek(t)e

−itxdt =
{ −1√

2π
e−λkx, x ∈ (0,+ ∞);

0, x ∈ (− ∞,0).
(45)

Indeed, for example, we can verify (43) as follows: Noting that W(iτ) = B(τ)

for τ ∈ (−∞,∞), and under z = iξ , W(ξ) = B(z), ck is changed to −c′
k , by (6),

we have for x ∈ (0,+∞),

ψk(x) = 1

2π

∫ ∞

−∞
e−iτx

B(τ)
·
[

1

2πi

∫
−c′
k

idz

B(z)(iτ − iz)
]
dτ

= − 1

2π

∫ ∞

−∞
B(τ)e−iτx

[
1

−2πi

∫
c′
k

−idz
B(z)(−iτ + iz)

]
dτ
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= 1

2π

∫ ∞

−∞

[
−B(τ)

2πi

∫
c′
k

dz

B(z)(z − τ)
]
e−iτxdτ

= 1

2π

∫ ∞

−∞
[−φk(τ )

]
e−iτxdτ

and by Paley-Wiener’s Theorem [3, Theorem C], since φk(z) ∈ H 2+, we have that
for x ∈ (−∞,0),

1√
2π

∫ ∞

−∞
φk(τ )e

−iτxdτ = 0.

Note that by (26), and the continuity of Fourier Transform, this implies:

Corollary 1

E = P. (46)

(Note that this also follows immediately from [5, Theorems 1 and 2].)
Now we prove Theorem 2:

Proof Let f (x) ∈ L2(0,+∞), and F(z) be defined by (14), i.e. the Fourier inverse
transform of f (x), then F(z) ∈ H 2+. By Lemma 5, we have

F(z) = lim
n→∞

n∑
k=1

α
(
F(x), ek(x)

) B(ak)
Bn(ak)

φk(z)+HF (z), Im(z) > 0. (47)

By the generalized Parseval equality, and (45) and (40),

α
(
F(x), ek(x)

) =
∫ +∞

−∞
F(x)ek(x)dx

=
∫ +∞

0
f (x)

( −1√
2π
e−λkx

)
dx

= −1√
2π
β
(
f (x), e−λkx) (k = 1,2, . . .).

By (20), we have

B(ak)

Bn(ak)
=
(
W(λk)

Wn(λk)

)
.

Thus, noting (43), the Fourier transform of the summation

n∑
k=1

α
(
F(x), ek(x)

) B(ak)
Bn(ak)

φk(z)
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is the summation
n∑
k=1

β
(
f (x), e−λkx)

(
W(λk)

Wn(λk)

)
ψk(x).

And, by the continuity of the Fourier transform, the Fourier transform of the limit

lim
n→∞

n∑
k=1

α
(
F(x), ek(x)

) B(ak)
Bn(ak)

φk(z)

is the limit

lim
n→∞

n∑
k=1

β
(
f (x), e−λkx)

(
W(λk)

Wn(λk)

)
ψk(x).

Noting that hf (x) is the Fourier transform of HF (z), and passing the Fourier trans-
form for the two sides of (47), we obtain (39).

Using the same argument as above, we also can obtain (35). Thus, we have

f (x)− (PPf )(x) = f (x)− (PEf )(x) = hf (x), 0< x < + ∞.

By the Parseval equality,

∫ +∞

0
hf (x)e−λk(x)dx

= −√
2π
∫ +∞

−∞
HF (x)ek(x)dx = 0, k = 1,2, . . . .

Hence (PPf )(x) = (PEf )(x) is the orthogonal projection of f (x) onto E (i.e. P).
The proof is complete. �

By Lemma 6 and Theorem 1 or Theorem 2, we have

Corollary 2 f (x) ∈ E if and only if hf (x) ≡ 0 for x ∈ (0,+ ∞).

Remark 1 We can also give an integral expression for the function hf (x) by using
of Laplace transform.3 For f (x) ∈ L2(0,+∞), the Laplace transform of f (x) is

f̂ (ξ) =
∫ ∞

0
f (t)e−ξ t dt, Re(ξ) > 0.

Denote

F(λ) = − 1

2π

∫ ∞

−∞
f̂ (iτ )dτ

W(iτ )(iτ − λ) , Re(λ) > 0.

3We are indebted to M. Martirosian for helpful discussions concerning this integral expression.
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By [5], we have

lim
n→∞

n∑
k=1

β(f,ψk)
W(λk)

Wn(λk)
e−λkx

= lim
n→∞

[
− 1

2π

∫ ∞

−∞
F(iτ )

Wn(iτ )
e−iτxdτ

]

= − 1

2π

∫ ∞

−∞
F(iτ )

W(iτ )
e−iτxdτ

where the limits are in the sense of L2(0,+∞) convergence, and the integrals are
in the sense of principal value.

Noting that

f (x) = 1

2πi

∫ +i∞

−i∞
f̂ (ξ)eξxdξ = 1

2π

∫ +∞

−∞
f̂ (iτ )eiτxdτ,

hence

f (x) = 1

2π

∫ ∞

−∞
f̂ (iτ )e−iτxdτ, 0< x < + ∞,

by (35), we get

hf (x) = 1

2π

∫ ∞

−∞

[
f̂ (iτ )+ F(iτ )

W(iτ )

]
e−iτxdτ, 0< x < + ∞. (48)

The techniques in this paper can also be used to study when the above sequences
are bases in the subspaces E (i.e. Φ) and E (i.e. P).

Clearly, if ak = iλk (k = 1,2, . . .), then the sequence (15) satisfies the Carleson
condition

inf
k

∏
j �=k

∣∣∣∣aj − ak
aj − ak

∣∣∣∣≥ δ > 0 (49)

if and only if the sequence (1) satisfies the Carleson condition

inf
k

∏
j �=k

∣∣∣∣λj − λk
λj + λk

∣∣∣∣≥ δ > 0. (50)

It is also well known (see for example [2, p. 1347]) that if (15) satisfies the
Carleson condition then it satisfies (16); and if (1) satisfies the Carleson condition
then it satisfies (2).

By [2, Theorems 4.1 and 5.2], we have

Lemma 7 Both the systems (23) and (24) are bases of E if and only if the se-
quence (15) satisfies the Carleson condition.
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Thus, we have

Theorem 3 Both the systems (3) and (5) are bases of E if and only if the se-
quence (1) satisfies the Carleson condition.

It will be interesting to consider the above problems in Lp(0,∞).
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Blaschke Products as Solutions of a Functional
Equation

Javad Mashreghi

Abstract In this paper, a family of Blaschke products, as non-trivial inner solutions
of Schröder’s equation, is introduced. This observation leads to the construction of
a surjective composition operator on an infinite dimensional model subspace ofH 2.

Keywords Schröder’s equation · Blaschke products

Mathematics Subject Classification Primary 30D55 · Secondary 30D05 · 47B33

1 Introduction

The functional equation

ψ
(
ϕ(z)
)= λψ(z), (1)

where the function ϕ is given but ψ and λ are unknown, is known as Schröder’s
equation and has a very long and rich history [3, 4]. In classifying the composition
operators with inner symbols on model subspaces of H 2, we faced with a gener-
alized version of this equation in [6, 7]. More precisely, we needed to find inner
functions ϕ, φ and ψ which satisfy the functional equation

ψ
(
ϕ(z)
)× φ(z) = ψ(z) (z ∈ D). (2)

We thoroughly discussed the case when φ is not a unimodular constant. However, it
was shown that the general case (2), simplifies to (1) with λ = 1, i.e.

ψ
(
ϕ(z)
)= ψ(z). (3)

We did not provide an explicit non-trivial solution to (3). As a matter of fact, a com-
plete characterization of the solutions of this case is still an open question. In this
paper, as the first step in this direction, we introduce a family of Blaschke products
which serve as non-trivial solutions of (3). Then, we will study the model subspaces
created by these Blaschke products and study some composition operators on them.
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2 A Two-Sided Blaschke Sequence

Let t be a fixed parameter in the interval (−1,1). Then the function

ϕt (z) = z + t
1 + tz

is an automorphism of the open unit disc with a simple zero at −t [5, p. 155]. One
can easily check that the members of this family satisfy the composition rule

ϕs ◦ ϕt = ϕ s+t
1+st
. (4)

In particular,

ϕt ◦ ϕ−t = ϕ0 = id. (5)

The identity (4) is the main key to study the iterations ϕ[n]
α , where n ∈ Z and 0 <

α < 1. As a matter of fact, if we write

ϕ[n]
α = ϕαn (n ∈ Z),

then, by (4) and (5), the two-sided sequence (αn)n∈Z satisfies the recursive relation

αn = α + αn−1

1 + ααn−1
(n ∈ Z), (6)

with α0 = 0 and α±1 = ±α. Note that αn ∈ (0,1) if n ≥ 1, and αn ∈ (−1,0) if
n ≤ −1.

To proceed, write

1 − αn = (1 − α) (1 − αn−1)

1 + ααn−1
.

Hence,

1 − αn ≤ (1 − α) (1 − αn−1),

which, by induction, gives

1 − αn ≤ (1 − α)n (n ≥ 1).

Similarly, we can show that

1 + αn ≤ (1 − α)|n| (n ≤ −1).

Therefore, (αn)n∈Z is a two-sided Blaschke sequence. This fact allows us to define
the two-sided Blaschke product

Bα =
∏
n≤−1

(−1)ϕαn × z ×
∏
n≥1

ϕαn.
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Note that to ensure the convergence of product, the factor −1 is needed when n ≤
−1. The one-sided version of this Blaschke product was first introduced in [6].

Clearly, since ϕ[n]
α = ϕαn , n ∈ Z, we can also write

Bα =
∏
n≤−1

(−1)ϕ[n]
α ×

∏
n≥0

ϕ[n]
α .

This format has an advantage. It reveals that B fulfils a functional equation. To
detect this functional equation, write

Bα ◦ ϕα =
∏
n≤−1

(−1)ϕ[n]
α ◦ ϕα ×

∏
n≥0

ϕ[n]
α ◦ ϕα

=
∏
n≤−1

(−1)ϕ[n+1]
α ×

∏
n≥0

ϕ[n+1]
α

=
∏
n≤0

(−1)ϕ[n]
α ×

∏
n≥1

ϕ[n]
α

= −z ×
∏
n≤−1

(−1)ϕαn ×
∏
n≥1

ϕαn.

Thus,

Bα ◦ ϕα = −Bα. (7)

In other words, given ϕ = ϕα , then Bα is a solution of the functional equation (1)
with λ = −1. Moreover, if we apply (7) twice, we get

Bα ◦ ϕα2 = Bα. (8)

This means that, with ϕ = ϕα2 , the Blaschke product Bα is also a solution of the
functional equation (3).

We end this section with an interesting open question. To explain the situation,
note that the fixed points of ϕα are ±1, and the point 1 is the Denjoy–Wolff point
of ϕα . But

ϕ′
α(1) = 1 − α

1 + α ,

which is never equal to 1. Let us recall that the value of derivative at the Denjoy–
Wolff point is always restricted to real numbers in the interval (0,1].

Open Question Can we construct an inner function ϕ whose Denjoy–Wolff point
is 1 and, moreover, ϕ′(1) = 1, and for which the functional equation (3) has a non-
trivial solution (preferably, a Blaschke product)?
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3 A Surjective Composition Operator on KB

A. Beurling [1] characterized the closed subspaces of H 2 which are invariant under
the forward shift operator

S: H 2 −→ H 2

f  −→ zf.

In this classical work, he show that they are precisely of the form ΘH 2 where Θ
is an inner function. The corresponding model subspace KΘ is, by definition, the
orthogonal complement of ΘH 2, i.e.,

KΘ = H 2 !ΘH 2.

Therefore, model subspaces are in fact the closed subspaces of H 2 which are in-
variant under the backward shift operator S∗. For a detailed treatment of S∗ and its
invariant subspaces see [2] and [8]. There are several equivalent ways to describe
model subspaces. In particular, if Θ is a Blaschke product, there is an easy way to
characterize KΘ , which suites this work. Write

Θ(z) =
∏
n

|zn|
zn

zn − z
1 − z̄n z .

Then KΘ is precisely the closure of linear span of

fn(z) = 1

1 − z̄n z
in H 2.

We now study the model subspace created by the Blaschke product introduced
in Sect. 2. A part of the following theorem follows from the results in [6]. However,
for the sake of completeness, we provide a more direct and different proof.

Theorem 1 Let 0< α < 1, and let

Bα = z2 ×
∏
n≤−1

(−1)ϕαn ×
∏
n≥1

ϕαn.

Then the mapping

Cϕα : KBα −→ KBα

f  −→ f ◦ ϕα
is well-defined, bounded and surjective.
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Proof Let

fn(z) =
{ 1

1+αn z if n �= 0,
z if n = 0

and f00 = 1. The reason for this indexing is clarified below. For simplicity, let R
denote the range of Cϕα .

We know that the span of the set {f00, fn : n ∈ Z} is precisely KBα . Hence, to
show that Cϕα is well-defined and bounded, in the light of Littlewood’s theorem and
that model subspaces are closed inH 2, it is enough to verify that Cϕαf00 ∈ KBα and
that

Cϕαfn ∈ KBα (n ∈ Z).

We start with the trivial, but important, identity Cϕαf00 = f00 to deduce that
Cϕαf00 ∈ KBα and

f00 ∈ R. (9)

Since

Cϕαf0 = Cϕαz = ϕα
and we can write ϕα = f00/α − (1 − α2) f1/α, we have

Cϕαf0 = 1

α
f00 + α2 − 1

α
f1.

Therefore, on one hand, we immediately see that

Cϕαf0 ∈ KBα ,

and, on the other hand since Cϕαf00 = f00, we rewrite the preceding identity as

Cϕα

(
f0 − 1

α
f00

)
= α2 − 1

α
f1

to deduce

f1 ∈ R. (10)

For n �= 0 and n �= −1, by direct evaluation and using (6), we get

Cϕαfn = α

αn+1
f00 +

(
1 − α

αn+1

)
fn+1.

But, for n = −1, we have

Cϕαf−1 = 1

1 − α2
f00 + α

1 − α2
f0.
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The last two relations imply

Cϕαfn ∈ KBα
(
n ∈ Z \ {0}),

and if we properly rewrite those identities, we get

fn ∈ R
(
n ∈ Z \ {1}). (11)

Finally, the relations (9), (10) and (11) ensure that Cϕα is surjective. �
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Cauchy Transforms and Univalent Functions

Joseph A. Cima and John A. Pfaltzgraff

Abstract We use a formula of Pommerenke relating the primitives of functions
which are the Cauchy transforms of measures on the unit circle to their behavior
in the space of functions of bounded mean oscillation. This is a linear process and
it has some smoothness. Further, there is a non-linear map from the Cauchy trans-
forms into the normalized univalent functions. We show that for the subspaceH 1 of
Cauchy transforms the univalent functions so obtained have quasi-conformal exten-
sions to all of the plane.

Keywords Cauchy transform · BMOA · Bloch

Mathematics Subject Classification Primary30H35 · Secondary47G10

1 Introduction

Classical Banach spaces have played a key role in the development of modern anal-
ysis. The principal thrust of many studies is to understand various properties of in-
dividual vectors in the space as well as to define and study bounded (usually linear)
operators on the various spaces. In this paper we restrict ourselves to some classical
spaces of analytic functions on the unit disc. The goal of our work is to consider
the Banach space CT (Cauchy Transforms of measures on the unit circle) and relate
it to the set U of univalent functions h on D normalized by h(0) = 0, h′(0) = 1.
Some of these spaces that become involved along the way are the Bloch spaces, B
and B0, the space of analytic functions of bounded mean oscillation, BMOA, and
the classical Hardy spaces, Hp all on the unit disc. The term “Cauchy Transforms”
appearing in the title of this print (and written for brevity as CT) appears in different
settings. The one of primary interest in this work is the following.
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Definition 1 For μ a finite Borel measure on the unit circle T and z in the unit disc
D, set

f (z) ≡
∫
T

dμ(ζ )

(1 − z̄ζ ) = C ∗ dμ(z).

The norm and further properties of CT are given in Sect. 1 below. The reader will
find copious materials on these spaces in the books of Cima, Matheson and Ross
[3], Garnett [5], Pommerenke [8], and Mashreghi [7] in the references.

One of the most important operators on such spaces is the operator of forming
the primitive,

f ∗(z) = P(f )(z) =
∫ z
o

f (w)dw, |z| < 1.

For example it is known that if f ∈ H 1, then f ∗ is in the disc algebra A and
has absolutely continuous boundary values, and if f ∈ Hp with 0 < p < 1, then
f ∗ ∈ Hq for q = p

1−p (see Duren [4]). We limit our study of this primitive opera-
tor to the space CT . In this case it is easily checked that f ∗ ∈ B. We show that P
is compact from CT into CT . Further, there is an interesting non-linear mapping
between CT and U. This leads us to a class of such univalent h that have quasi-
conformal extensions to all of C ≡ R2. Moreover, there is a natural measure (see
definitions below) associated to the complex dilatation of this h which is shown to
be a vanishing Carleson measure. We include the necessary definitions and a few
important facts concerning earlier results in Sect. 1.

2 Definitions and Known Results

The unit disc in the complex plane is denoted byD and its boundary (the unit circle)
is written as T. The notations Hp , B, Bo, BMOA and CT (on the unit disc D) are
all well known and can be found in the text material in the references. We mention
a few necessary facts about the CT space. The space CT can be realized as the dual
of the disc algebra and the duality yields the following

CT ∼= (A)∗ ∼= L1

H
1
o

+ Ms ,

where the term Ms denotes the set of singular Borel measures on the circle.
This space is realized as a Banach space of analytic functions on the unit disc in

the following way. For μ a finite Borel measure on T define

f (z) = C ∗ dμ(z) ≡
∫
T

dμ(ζ )

(1 − zζ ) |z| < 1, ζ = exp(ıθ).
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Note that there are many measures which produce the same analytic f . One uses
the coset norm on CT .

‖f ‖CT = inf
(‖dμ‖ | f (z) = C ∗ dμ(z)),

where the inf is taken over all measures producing the given f and where ‖dμ‖ is
the total variation norm for the measure.

Given f ∈ CT there is a measure, say dμf with f (z) = C ∗ dμf (z) and
‖dμf ‖ = ‖f ‖CT and it is useful to use this measure in our work. See [3] for more
detail.

Definition 2 Assume F(Z) is an orientation preserving homeomorphism of a pla-
nar domain E into C " R

2. f is a quasiconformal mapping on E if f satisfies:

(i) f is ACL (absolutely continuous on line (segments) in E) and
(ii) there exists a constant k with 0 ≤ k < 1 such that

|fz̄| ≤ k|fz| a.e. in E.

If h is a quasiconformal mapping of E into C and h̃ is a mapping from C into C

which is quasiconformal and if h̃|W = h, then h is a quasiconformal extension of h.

Results of Becker (Pommerenke [8]) show that if a univalent h on D satisfies
certain conditions then h admits a quasiconformal extension to all of C given by

h̃(z) = h
(

1

z̄

)
−
(
z − 1

z̄

)
h′
(

1

z̄

)

and with complex dilatation μ defined by

μ(z) = − 1

(z̄)2

(
z − 1

z̄

)(
h′ ′

h′

)(
1

z̄

)
.

In some sense the dilatation is a measure of how far the map h is from being con-
formal.

In the paper [1] they address the following two problems.

Problem 1 Suppose that f is a local homeomorphism defined on the domain
E ⊂ C. What additional conditions on f and E allow one to conclude that f is
injective?

The second problem they study involves the Bers universal Teichmuller space T .
With Sf the Schwarzian of f on E and

M ≡ {Sg : g is conformal on D with g(B) ⊆ R̄
2}

define

T ≡ {g ∈ M | g has a quasiconformal extension to R̄
2}.
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The set M can be given a norm (see [1]). T is known as the universal Teichmuller
space.

The second problem is a follows.

Problem 2 Describe the closure of the Bers universal space in S.

In their paper [1], Astala and Gehring give a partial answer to Problem 1. They
use their solution of Problem 1, in the locally quasiconformal case, to obtain new
useful information concerning Problem 2.

Define a set S as follows.

Definition 3 S is the set defined by the functions logh′, where h is conformal onD.

By the Koebe distortion theorem S is a norm bounded subset of B. Let T denote
the interior of S in B. T is a model for the universal Teichmuller space. In this
setting the following defined quantities are significant in certain characterizations.

Definition 4 A Jordan curve Γ is called a quasi-circle if there is a constant C > 0
such that for every z and ζ in Γ ,

diameter(γ ) ≤ C|z − ζ |

where γ is the shortest sub arc of Γ joining z to ζ .

Definition 5 A Jordan curve Γ is said to be a Lavrentiev curve if there is a constant
C > 0 such that for every z and ζ in Γ ,

l(γ ) ≤ C|z − ζ |

where γ is the shortest sub arc of Γ joining z to ζ and l(γ ) is the arc length of γ .

We will use the following two important theorems relating T to quasiconformal
extensions (see [2] Astala and Zinsmeister). They also give the flavor of results
relating to our work.

Theorem 1 The function logh′ belongs to T if and only if h has a quasiconformal
extension from D to all of R2.

Theorem 2 The function logh′ belongs to T if and only if Γ = ∂(h(T)) is a quasi-
circle (a Jordan curve for which there exists a constant C > 0 such that ∀z, ζ ∈ Γ ,
diam(γ ) ≤ C|z − ζ | where γ is the smaller of the two subarcs of Γ joining z to ζ ).

Assume Ω ⊆ C is a simply connected domain. We require the following defini-
tion (see Zinsmeister [9]).
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Definition 6 A measure dν on Ω is said to be a Carleson measure if and only if
there is a constant C > 0 such that

|dν|(D(z, r))≤ Cr
for every z ∈ ∂(Ω) and r ≤diameter (∂Ω).

D(z, r) is the disc with center z and radius r .
In the context of Definition 5 above, there are conditions on the complex dilata-

tion of a quasiconformal mapping h on D, admitting a quasiconformal extension to
C, so that by using the Fefferman-Stein characterization of BMO one can prove that
the measure

dν(z) = μh(z)
(|z|2 − 1

)−1
dxdy

is a Carleson measure on (C\D). In the case we are considering for h univalent on
D and log h′ in the Bloch space, we will obtain a subset of CT for which Theorem 2
holds. In this case the form of the complex dilatation becomes simpler in that one
can replace the term h′ ′

h′ by a function in H ′. One of the strengths of producing Car-
leson measures dν is to show that the identity map f → f from H ′ into L′(dν) is
continuous. This has many applications. If the “big oh” estimate required on mea-
sure dν is strengthened to a “little oh” condition, then frequently the operator is
compact.

3 The Primitive of a CT Function

For z,w ∈ D and ζ = exp(ıθ) let P denote the primitive map

f → P(f )(z) =
∫ z
o

f (w)dw ≡ f ∗(z)

from the space CT . For f = C ∗μ ∈ CT by a change of variables we may write

f ∗(z) =
∫
T

log

(
1

(1 − zζ )
)
(−ζ )dμ(ζ ) ≡

∫
T

log

(
1

(1 − zζ )
)
dν(ζ ). (1)

Proposition 1 The map P from CT to the Bloch space B is linear, one to one and
continuous.

Proof Clearly P is linear and one to one into B. We check the continuity. Given
f (z) = C ∗ dμ(z) where we may choose ‖f ‖CT = ‖dμ‖ (the total variation norm)
we have

(
1 − |z|2)∣∣(f ∗)′

(z)
∣∣= (1 − |z|2)∣∣∣∣

∫
T

dμ(ζ )

(1 − zζ )
∣∣∣∣≤ 2‖μ‖. �
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This is sharp in the sense that CT ⊂⋂Hp,p < 1 and f (z) = (log(1−z))
(1−z) ∈ Hp �

CT , p < 1 but f ∗ is not in B.
A bit more is true.

Theorem 3 The map P maps L1

H 1
o

into the small Bloch space Bo.

Proof Given F ∈ L1(T) it is known that the Cesaro sums (σn(ζ,F )) tend to F in
L1(T). As above there is a unique measure dμ (absolutely continuous with respect
to the normalized Lebesgue measure dθ

2π ) for which

f (z) =
∫
T

F(ζ )dm(ζ )

(1 − zζ ) =
∫
T

dμ(ζ )

(1 − zζ )
and with ‖f ‖CT = ‖μ‖ ≤ ‖F‖L1 .

On the unit circle we write σn(θ) = An(θ)+Bn(θ) whereAn and Bn are analytic
polynomials in ζ = exp(ıθ) and Bn has zero constant term.

Since P(An)(z) = A∗
n(z) is in Bo, and Bo, is closed in B, it suffices to show that

A∗
n converges in B, to f ∗. To this end consider

(
1 − |z|2)∣∣(A∗

n

)′
(z)− (f ∗)′

(z)
∣∣= (1 − |z|2)∣∣∣∣

∫
T

σn(ζ )dm(θ)

(1 − zζ ) −
∫
T

F(ζ )dm(θ)

(1 − zζ )
∣∣∣∣

≤ C
∫
T

∣∣σn(ζ )− F(ζ )∣∣dm(θ) → 0

as |z| → 1. �

4 The Connection to Univalent Functions

We begin this section by recalling a result of Pommerenke [8].

Theorem 4 A function F analytic on the unit disc is in the Bloch space B if and
only if there exist constants α, and β and a function h in U so that F satisfies the
equality

F(z) = α logh′(z)+ β,
for z ∈ D.

We are considering F(z) = P(f )(z) = f ∗(z) ∈ B for f ∈ CT . Note F(0) =
0 = α log 1 + β so we have β = 0, and we may choose any number α ≥ ‖F‖B. In
studying the proof of this result one can choose the constant α larger than or equal to
the Bloch norm of F but this changes the choice of the univalent mapping. Solving
for h in this equation with γ = 1

α
> 0 we find

h(z) =
∫ z
o

exp
(
γf ∗(w)

)
dw =

∫ z
o

exp

(
γ

∫ w
o

f (u)du

)
dw. (2)
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As an easy example assume we choose f (z) = 1
(1−z) , α = 2 and calculate to

produce h(z) = (−2)(
√
(1 − z)− 1).

Proposition 2 The nonlinear mapping given in Theorem 4 is continuous from the
space CT with its topology into the space U in the compact open topology.

The proof is straight forward using normal family arguments a few times.
The map above considered from the Banach CT into the Banach space BMOA is

analytic and its Frechet Derivative can be computed by expanding the exponential
in the integral. Since this has no applications to our work we omit the computation.

5 Connection to BMOA and Teichmuller Space

In [6] Hallenbeck and Samotij have proven the following result (which deserves to
be more will known).

Theorem 5 For f ∈ CT , f ∗ ∈ BMOA.

We offer two proofs of this result. The first is our proof. In their paper [4], they
state a key lemma and leave it to the reader to prove the lemma. We feel this result
is so significant in its own right we offer a proof of this as well.

Proof 1 We use the duality statement

(
H 1)∗ " BMOA.

To this end it suffices to show that for every analytic polynomial p, the inequality

∣∣〈p,f ∗〉∣∣≤ C‖p‖L1(T)

holds where C is independent of p. The integral above reads as

∣∣〈p,f ∗〉∣∣≤
∣∣∣∣
∫
T

p(t)

(∫
T

log(1 − tζ )ζdμ(ζ )
)
d|t |
∣∣∣∣.

Since log(1 − tζ ) is in BMOA and its norm is independent of |t | = 1 we have

∣∣〈p,f ∗〉∣∣≤ ‖dμ‖(‖p‖L1(T)

∥∥log(1 − t̄ ζ )∥∥BMOA

)

and this establishes the theorem and ends the first proof. �

Note that the example given earlier shows that one can not improve this inclusion
(i.e. f ∗(z) = (log(1 − z))2 is not in BMOA).



126 J.A. Cima and J.A. Pfaltzgraff

For the second proof we establish their mean oscillation (MO) inequality on in-
tervals in T. For g ∈ L′(T) and μ a finite Borel measure on T and I an interval in
T, set the following notation:

MO(g, I ) = 1/|I |
∫
I

(∣∣∣∣g(w)− 1/|I |
∫
I

g(ζ )dζ

∣∣∣∣
)

|dw|,

g ∗ dν(w) ≡
∫
T

g(wx)dν(x),

with T the unit circle, w,x ∈ T.

Lemma 1 Let dμ be a finite Borel measure on T, and let g ∈ L1(T). With I an arc
in T one has

MO(g ∗μ, I) ≤ ‖μ‖
(

sup
w∈ supp μ

MO(g,wI)
)
.

Proof We wish to prove

MO(g ∗μ, I) ≤ ‖μ‖
(

sup
w∈ supp μ

MO(g,wI)
)
.

where w ∈ supp dμ.

MO(g ∗ dμ, I) = 1/|I |
∫
I

∣∣∣∣
(
g ∗ dμ(w)− 1/|I |

∫
I

g ∗ dμ(u)|du|
)∣∣∣∣ |dw|.

We compute with the integrand in the parenthesis.
∣∣∣∣
∫
T

(
g(wx)dμ(x)−

∫
T

1/|I |
∫
I

g(ux)|du|
)
dμ(x)

∣∣∣∣.
This is less than or equal to

∫
T

∣∣∣∣g(wx)− 1/|I |
∫
I

g(ux)du

∣∣∣∣
∣∣dμ(x)∣∣.

Now do the integration with respect to the remaining w variable.
∫
T

(
1/|I |

∫
I

∣∣∣∣
(
g(wx)− 1/|I |

∫
I

g(ux)du

)∣∣∣∣
) ∣∣dμ(x)∣∣.

Replace the term (wx) = m and note |dw| = |dm| and the interval I is replaced by
the interval xI . Do the same computation in the u integration, with ux = n. Again
|du| = |dn| and the interval I is replaced by the interval xI .

Now rewrite the last integral with these changes to obtain
∫
T

∣∣dμ(x)∣∣MO(g, xI).
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Take the sup over the x ∈ supp dν and obtain

MO(g ∗ dν, I ) ≤ ‖ν‖
(

sup
x∈ supp μ

MO(g, xI)
)
,

where the x is in the support of the measure dν.
Using this key lemma it is straightforward to complete the proof of Theo-

rem 5. �

At times it is easier to check sequential convergence of specific sequences in CT
rather than in the image of CT in BMOA (e.g. our example with Cesaro means). So
it would be useful to prove the linear map P is compact from CT with its topology
into BMOA with its topology. Counter examples have not been forth coming and we
have been unable to prove this. However, the following holds.

Theorem 6 The linear map P is compact from CT into CT .

Proof Recall that BMOA ⊂ H 2 ⊂ CT so P maps CT into H 2. We also have the
inequality ‖f ∗ ‖H 2 ≥ ‖f ∗ ‖CT . Thus it suffices to prove that P is compact into H 2.
First, if f (k) is a sequence in the unit ball of CT with f (k)(z) = ∑∞

n=o fn(k)zn
then

P
(
f (k)

)
(z) =

∑
n

fn(k)

(n+ 1)
zn+1 ≡ F(k)(z).

The coefficients |fn(k)| are bounded by one (by assumption). The H 2 norm in
this case is

∥∥F(k)∥∥
L2 =

√∑
n=o

|fn(k)|2

(n+ 1)2
≤
√∑
n=o

1

(n+ 1)2
≤ C.

These bounds imply {F(k)} is a normal family and hence there is a subsequence
(which we again label as F(k)) and a holomorphic function g(z) on D with

lim
k→∞F(k)(z) = g(z)

uniformly on compacta of D.
As noted we may, with out loss of generality, choose measures μk with ‖μk‖ ≤ 1

and

f (k)(z) = C ∗ dμk(z).
By the Banach-Alaoglu theorem there is a subsequence of these measures (again
written as μk) that converge weak* to a measure μ with ‖μ‖ ≤ 1. For each fixed
z ∈ D the kernel 1

(1−zζ ) is continuous on T and we have

f (k)(z) = C ∗ dμk(z) → C ∗ dμ(z) ≡ h(z)
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with k → ∞. Hence, h ∈ CT , P(h)(z) = g(z) ∈ H 2 and

lim
k→∞F(k)(z) = g(z)

uniformly on compacta in D.
It remains to prove the convergence in H 2,

lim
k→∞

∥∥F(k)− g∥∥
H 2 = 0.

To simplify the notation we define

Mk(z) = F(k)(z) − g(z)
and show ‖Mk‖H 2 → 0 as k → ∞.

Let ε > 0 be given. Choose K so large that

∑
k=K+1

1

(k + 1)2
≤ ε.

Then writingMk(z) =∑∞
p=o Bp(k)zp we have

‖Mk‖2
H 2 =

K∑
p=o

∣∣Bp(k)∣∣2 +
∞∑
K+1

∣∣Bp(k)∣∣2

≤
K∑
p=o

∣∣Bp(k)∣∣2 + 2

( ∞∑
p=K+1

|fp(k)|2

(p + 1)2
+

∞∑
p=K+1

|gp|2

(p + 1)2

)

≤
K∑
p=0

∣∣Bp(k)∣∣2 + 2ε. (3)

Now Mk is a normal family so using the Cauchy integral formula all the derived
families (Mk)j , j = 1,2, . . . ,K are normal families. Some subsequence of each of
these families tend to zero uniformly on compacta (and using the same notation as
the original sequence) we may assume that there is one sequence (keeping the same
sequence notation) (Mk), k = 0,1,2, . . . ,K converging uniformly on compacta to
zero. Hence, for each fixed integer 0 ≤ p ≤ K ,

Mp(k)(0)

p! = Bp(k) → 0

as k → ∞. Thus there is a positive integer Q>K with

∣∣Bp(k)∣∣≤ ε

K
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for all p = 0,1, . . . ,K with k >Q. Thus from (3) it follows that

lim
k→∞ ‖Mk‖H 2 = 0.

This shows that P is compact on CT into H 2 and consequently into CT . �

A natural question in the light of Theorem 1 and Proposition 1 is the following.
“For which f ∈ CT does the associated normalized conformal map h associated

to f ∗ by Theorem 4 have a quasiconformal extension to R2?”
We have the following result.

Theorem 7 Let f ∈ H 1(⊂ CT ) and let h be the associated normalized univalent
map on the disc satisfying Theorem 4. Then h has a quasiconformal extension to R2.
Further, the complex dilatation D(h)(z) of the extension is given by the formula

D(h)(z) = −1

z2

(
z − 1

z

)(
1

α
f

(
1

z

))
.

Proof Assume f ∈ H 1 and h is the univalent map associated to f in Theorem 4.
By Theorem 2 it is sufficient to prove that h satisfies the Ahlfors condition. The

following stronger result is true. Namely, ∂(h(D)) satisfies the Lavrentiev condition.
Consider, as earlier, the integral

∫
T

ζ
(
log(1 − uζ ))f (ζ )dm(θ), u = exp(ıφ), ζ = exp(ıθ).

The function ζ (log(1 −uζ )) is in BMOA and by theH 1-BMOA duality the above
integral is bounded by the numberM = ‖ log(1 − ūζ )‖BMOA ‖f ‖H 1 .

Hence, in the arclength integral for h (with z′ = h(exp(ıφ1)), ζ
′ = h(exp(ıφ2))

and γ the shorter arc of ∂(h(D)) (joining these two points) we have

l(γ ) =
∣∣∣∣
∫ φ2

φ1

h′(u)dφ
∣∣∣∣≤
∫ φ2

φ1

exp

(
γ�
(∫
T

ζ
(
log(1 − uζ ))f (ζ )dm(θ)

))
dφ

≤ C
∫ φ2

φ1

dφ = C|φ2 − φ1 |. �

Note that in our earlier example with f (z) = 1
(1−z) and h′(z) = 1√

(1−z) the arc

length estimate for the points exp(−ıδ) to exp(ıδ) is approximately log(δ), whereas
the integral is order δ so that the inequality

l(γ ) ≤ C(δ)

fails.
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The natural measure induced by the complex dilatation in the above theorem

ν(z) = |D(z)|2dxdy

(|z|2 − 1)

will satisfy a vanishing Carleson condition.

Theorem 8 The measure ν indicated above is a vanishing Carleson measure.

Proof Our domain Ω = {|z| > 1} and we consider |s| = 1. Without loss of general-
ity (and for simplicity of notation), we may assume s = 1. Let r > 0 and ε > 0 be
given. The coefficient of our measure dν (or d|ν|) can be estimated by the quantity

|D(z)|2

(|z|2 − 1)
"
∣∣∣∣f
(

1

z̄

)∣∣∣∣
[∣∣∣∣f
(

1

z̄

)∣∣∣∣
(|z|2 − 1

)]
.

For |z| > 1 there is r0 > 0 so that if 0< |z|2 − 1< r ≤ r0 then
∣∣∣∣f
(

1

z̄

)∣∣∣∣
(|z|2 − 1

)
< ε.

Consider the domain

A ≡ D(1, r)∩Ω
and, with z = 1 +w where w = ρeiθ , |θ | ≤ π

2 , ρ < r , we have

|z|2 − 1 ∼= ρ2 + 2ρ cos θ.

Evaluating the integral

∫
A

d|ν|(z) ≤ C · ε
∫
A

∣∣∣∣f
(

1

z̄

)∣∣∣∣dxdy,

we may rewrite the last integral

∫ r
0

∫
|θ |≤ π

2

ρdρdθ

ρ2 + 2ρ cos θ
=
∫ r

0

(∫ π
2

0

dθ

((
√
ρ)2 + 2 cos θ)

)
dρ.

Using tables we evaluate

∫ π
2

0

dθ

((
√
ρ)2 + 2 cos θ)

= −1√
4 − ρ2

(tanh)−1 (2 − ρ) tan( θ2 )√
4 − ρ2

∣∣∣∣
π
2

0

=
2(tanh)−1(

2−ρ√
4−ρ2

)

√
4 − ρ2

≤ M√
4 − ρ2

.
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Hence, the integral ∫
A

d|ν|(z) ≤ ε ·M → 0

as r → 0.
Thus the measure

d|ν|(z) = |D(z)|2dxdy

(|z|2 − 1)

is a vanishing Carleson measure. �

6 Questions

In concluding we raise the following questions.

Q.1. If f ∈ L1

H
1
o

does the associated h have a quasiconformal extension to C?

Q.2. Is the span of the range of P on CT dense in BMOA?
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Critical Points, the Gauss Curvature Equation
and Blaschke Products

Daniela Kraus and Oliver Roth

Abstract In this survey paper we discuss the problem of characterizing the critical
sets of bounded analytic functions in the unit disk of the complex plane. This prob-
lem is closely related to the Berger–Nirenberg problem in differential geometry as
well as to the problem of describing the zero sets of functions in Bergman spaces. It
turns out that for any non-constant bounded analytic function in the unit disk there
is always a (essentially) unique “maximal” Blaschke product with the same criti-
cal points. These maximal Blaschke products have remarkable properties similar to
those of Bergman space inner functions and they provide a natural generalization of
the class of finite Blaschke products.

Keywords Blaschke products · Elliptic PDEs · Bergman spaces
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1 Critical Points of Bounded Analytic Functions

A sequence of points (zj ) in a subdomain Ω of the complex plane C is called
the zero set of an analytic function f : Ω → C, if f vanishes precisely on this
set. This means that if the point ξ ∈ Ω occurs m times in the sequence, then f
has a zero at ξ of precise order m, and f (z) �= 0 for z ∈ Ω\(zj ). The following
classical theorem due to Jensen [32], Blaschke [7] and F. and R. Nevanlinna [53]
characterizes completely the zero sets of bounded analytic functions defined in the
open unit disk D := {z ∈ C : |z| < 1}.

Theorem A Let (zj ) be a sequence in D. Then the following statements are equiv-
alent.
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(a) There is an analytic self-map of D with zero set (zj ).
(b) There is a Blaschke product with zero set (zj ).
(c) The sequence (zj ) fulfills the Blaschke condition, i.e.

∑∞
j=1(1 − |zj |) < + ∞.

We call a sequence of points (zj ) in a domain Ω ⊆ C the critical set of an an-
alytic function f : Ω → C, if (zj ) is the zero set of the first derivative f ′ of the
function f . There is an extensive literature on critical sets. In particular, there are
many interesting results on the relation between the zeros and the critical points of
analytic and harmonic functions. A classical reference for all this is the book of
Walsh [63].

The first aim of this survey paper is to point out the following analogue of The-
orem A for the critical sets of bounded analytic functions instead of their zeros
sets.

Theorem 1 Let (zj ) be a sequence in D. Then the following statements are equiva-
lent.

(a) There is an analytic self-map of D with critical set (zj ).
(b) There is a Blaschke product with critical set (zj ).
(c) There is a function in the weighted Bergman space

A2
1 =
{
g : D → C analytic :

∫∫
D

(
1 − |z|2)∣∣g(z)∣∣2 dσz < + ∞

}

with zero set (zj ).

Here, and throughout, σz denotes two-dimensional Lebesgue measure with re-
spect to z.

For the special case of finite sequences, a result related to Theorem 1 can be found
in work of Heins [27, §29], Wang & Peng [64], Zakeri [68] and Stephenson [60].
They proved that for every finite sequence (zj ) in D there is always a finite Blaschke
product whose critical set coincides with (zj ), see also Remark 2 below. A recent
generalization of this result to infinite sequences is discussed in [41]. There it is
shown that every Blaschke sequence (zj ) is the critical set of an infinite Blaschke
product. However, the converse to this, known as the Bloch–Nevanlinna conjecture
[14], is false. According to a result of Frostman, there do exist Blaschke products
whose critical sets fail to satisfy the Blaschke condition, see [13, Theorem 3.6]. Thus
the critical sets of bounded analytic functions are not just the Blaschke sequences
and the situation for critical sets is much more complicated than for zero sets.

Theorem 1 identifies the critical sets of bounded analytic functions as the zeros
sets of functions in the Bergman space A2

1. The simple geometric characterization
of the zero sets of bounded analytic functions via the Blaschke condition (c) in
Theorem A has not found an explicit counterpart for critical sets yet. However, con-
dition (c) of Theorem 1 might be seen as an implicit substitute. The zero sets of
(weighted) Bergman space functions have intensively been studied in the 1970’s
and 1990’s by Horowitz [29, 30], Korenblum [37], Seip [56, 57], Luecking [46] and
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many others. As a result quite sharp necessary conditions and sufficient conditions
for the zero sets of Bergman space functions are available. In view of Theorem 1 all
results about zero sets of Bergman space functions carry now over to the critical sets
of bounded analytic functions and vice versa. Unfortunately, a geometric characteri-
zation of the zero sets of (weighted) Bergman space functions is still unknown, “and
it is well known that this problem is very difficult”, cf. [25, p. 133].

The implications “(b) =⇒ (a)” and “(a) =⇒ (c)” of Theorem 1 are easy to prove.
In fact, the statement “(a) =⇒ (c)” follows directly from the Littlewood–Paley iden-
tity (see [58, p. 178]), which says that for any holomorphic function f : D → D the
derivative f ′ belongs to A2

1. Hence the critical set of any non-constant bounded an-
alytic function is trivially the zero set of a function in A2

1. It is however not true that
any A2

1 function is the derivative of a bounded analytic function, so “(c) =⇒ (a)” is
more subtle.

In the following sections, we describe some of the ingredients of the proofs of the
implications “(a) =⇒ (b)” and “(c) =⇒ (a)” in Theorem 1 as well as some further
results connected to it. In particular, we explain the close relation of Theorem 1 to
conformal differential geometry and the solvability of the Gauss curvature equation.
This paper is expository, so there are essentially no proofs. For the proofs we refer
to [39–41, 43]. Background material on Hardy spaces and Bergman spaces can be
found e.g. in the excellent books [15, 19, 22, 25, 36, 47].

Finally, we draw attention to the recent paper [20] of P. Ebenfelt, D. Khavinson
and H.S. Shapiro and the references therein, where the difficult problem of con-
structing a finite Blaschke product by its critical values is discussed.

2 Conformal Metrics and Maximal Blaschke Products

An essential characteristic of the proof of the implication “(a) =⇒ (b)” in Theorem 1
is the extensive use of negatively curved conformal pseudometrics. We give a short
account of some of their properties and refer to [5, 27, 35, 38, 42, 59] for more
details. In the following, G and D always denote domains in the complex plane C.

2.1 Conformal Metrics and Developing Maps

We recall that a nonnegative upper semicontinuous function λ on G, λ : G →
[0,+∞), λ �≡ 0, is called conformal density on G. The corresponding quantity
λ(z) |dz| is called conformal pseudometric on G. If λ(z) > 0 for all z ∈ G, we say
λ(z) |dz| is a conformal metric on G. We call a conformal pseudometric λ(z) |dz|
regular on G, if λ is of class C2 in {z ∈ G : λ(z) > 0}.
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Example 1 (The Hyperbolic Metric) The ubiquitous example of a conformal metric
is the Poincaré metric or hyperbolic metric

λD(z) |dz| := |dz|
1 − |z|2

for the unit disk D. Clearly, λD(z) |dz| is a regular conformal metric on D.

The (Gauss) curvature κλ of a regular conformal pseudometric λ(z) |dz| on G is
defined by

κλ(z) := −Δ(logλ)(z)

λ(z)2

for all points z ∈ G where λ(z) > 0. Note that if λ(z) |dz| is a regular conformal
metric with curvature κλ = κ on G, then the function u := logλ satisfies the partial
differential equation (Gauss curvature equation)

Δu = −κ(z) e2u (1)

onG. If, conversely, a real-valued C2-function u is a solution of the Gauss curvature
equation (1) on G, then λ(z) := eu(z) induces a regular conformal metric eu(z) |dz|
on G with curvature κ .

Example 2 The hyperbolic metric λD(z) |dz| on D has constant negative curvature1

−4.

Using analytic maps, conformal metrics can be transferred from one domain to
another as follows. Let λ(w) |dw| be a conformal pseudometric on a domain D and
let w = f (z) be a non-constant analytic map from another domain G to D. Then
the conformal pseudometric

(
f ∗λ
)
(z) |dz| := λ(f (z)) ∣∣f ′(z)

∣∣ |dz|,
defined on G, is called the pullback of λ(w) |dw| under the map f . Now, Gauss
curvature is important since it is a conformal invariant in the following sense.

Theorem B (Theorema Egregium) For every analytic map w = f (z) and every
regular conformal pseudometric λ(w) |dw| the relation

κf ∗λ(z) = κλ
(
f (z)

)

is satisfied provided λ(f (z)) |f ′(z)| > 0.

1Warning: A rival school of thought calls 2 |dz|
1−|z|2 the hyperbolic metric of D. This metric has con-

stant curvature −1.
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Hence pullbacks of conformal pseudometrics can be used for constructing con-
formal pseudometrics with various prescribed properties while controlling their cur-
vature. For instance, if λ(w) |dw| is a conformal metric on D (without zeros) and
w = f (z) is a non-constant analytic map fromG toD, then (f ∗λ)(z) |dz| is a pseu-
dometric on G with zeros exactly at the critical points of f . In order to take the
multiplicity of the zeros into account, it is convenient to introduce the following
formal definition.

Definition 1 (Zero Set of a Pseudometric) Let λ(z) |dz| be a conformal pseudomet-
ric on G. We say λ(z) |dz| has a zero of order m0 > 0 at z0 ∈ G if

lim
z→z0

λ(z)

|z − z0 |m0
exists and �= 0.

We will call a sequence C = (ξj ) ⊂ G
(ξj ) := (z1, . . . , z1︸ ︷︷ ︸

m1-times

, z2, . . . , z2︸ ︷︷ ︸
m2-times

, . . .), zk �= zn if k �= n,

the zero set of a conformal pseudometric λ(z) |dz|, if λ(z) > 0 for z ∈ G\C and if
λ(z) |dz| has a zero of order mk ∈ N at zk for all k.

Now, every conformal pseudometric of constant curvature −4 can locally be rep-
resented by a holomorphic function. This is the content of the following result.

Theorem C (Liouville’s Theorem) Let C be a sequence of points in a simply con-
nected domain G and let λ(z) |dz| be a regular conformal pseudometric on G with
constant curvature −4 on G and zero set C. Then λ(z) |dz| is the pullback of the
hyperbolic metric λD(z) |dz| under some analytic map f : G → D, i.e.

λ(z) = |f ′(z)|
1 − |f (z)|2

, z ∈ G. (2)

If g : G → D is another analytic function, then λ(z) = (g∗λD)(z) for z ∈ G if and
only if g = T ◦ f for some conformal automorphism T of D.

A holomorphic function f with property (2) will be called a developing map for
λ(z) |dz|. Note that the critical set of each developing map coincides with the zero
set of the corresponding conformal pseudometric.

Example 3 The developing maps of the hyperbolic metric λD(z) |dz| are precisely
the conformal automorphisms of D, i.e., the finite Blaschke products of degree 1.

For later applications we wish to mention the following variant of Liouville’s
Theorem.
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Theorem 2 Let G be a simply connected domain and let h : G → C be an analytic
map. If λ(z) |dz| is a regular conformal metric with curvature −4 |h(z)|2, then there
exists a holomorphic function f : G → D such that

λ(z) = 1

|h(z)|
|f ′(z)|

1 − |f (z)|2
, z ∈ G.

Moreover, f is uniquely determined up to postcomposition with a unit disk auto-
morphism.

Liouville [45] stated Theorem C for the special case that λ(z) |dz| is a regular
conformal metric. We therefore refer to Theorem C as well as to Theorem 2 as
Liouville’s theorem. Theorem C and in particular the special case that λ(z) |dz| is a
conformal metric has a number of different proofs, see for instance [8, 11, 12, 49,
55, 65]. Theorem 2 is discussed in [41].

Liouville’s theorem plays an important rôle in this paper. It provides a bridge
between the world of bounded analytic functions and the world of conformal pseu-
dometrics with constant negative curvature. The critical points on the one side cor-
respond to the zeros on the other side. Unfortunately, this bridge only works for
simply connected domains, see Remark 7.

2.2 Maximal Conformal Pseudometrics and Maximal Blaschke
Products

Apart from having constant negative curvature the hyperbolic metric on D has an-
other important property: it is maximal among all regular conformal pseudometrics
on D with curvature bounded above by −4. This is the content of the following
result.

Theorem D (Fundamental Theorem) Let λ(z) |dz| be a regular conformal pseu-
dometric on D with curvature bounded above by −4. Then λ(z) ≤ λD(z) for every
z ∈ D.

Theorem D is due to Ahlfors [1] and it is usually called Ahlfors’ lemma. How-
ever, in view of its relevance Beardon and Minda proposed to call Ahlfors’ lemma
the fundamental theorem. We will follow their suggestion in this paper. As a result
of the fundamental theorem we have

λD(z) = max
{
λ(z) : λ(z) |dz| is a regular conformal pseudometric on D

with curvature ≤ −4
}

for any z ∈ D.
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Remark 1 (Developing Maps and Universal Coverings) Let G be a hyperbolic sub-
domain of the complex plane C, i.e., the complement C\G consists of more than
one point. In analogy with the Poincaré metric for the unit disk, a regular con-
formal metric λG(z) |dz| of constant curvature −4 on G is said to be the hyper-
bolic metric for G, if it is the maximal regular conformal pseudometric with curva-
ture ≤ −4 on G, i.e. λ(z) ≤ λG(z), z ∈ G, for all regular conformal pseudomet-
rics λ(z) |dz| on G with curvature bounded above by −4. Then λG(z) |dz| and
λD(z) |dz| are connected via the universal coverings π : D → G of G by the for-
mula (π∗λG)(z) |dz| = λD(z) |dz|, see for example [27, §9] and [42, 48]. Hence,
every branch of the inverse of a universal covering map π : D → G is locally the
developing map of the hyperbolic metric λG(z) |dz| of G. In particular, if G is a
hyperbolic simply connected domain, then the developing maps for λG(z) |dz| are
precisely the conformal mappings from G onto D.

We now consider prescribed zeros.

Theorem E Let C = (ξj ) be a sequence of points in G and

ΦC := {λ : λ(z) |dz| is a regular conformal pseudometric in G

with curvature ≤ −4 and zero set C∗ ⊇ C
}
.

If ΦC �= ∅, then

λmax(z) := sup
{
λ(z) : λ ∈ ΦC

}
, z ∈ G,

induces the unique maximal regular conformal pseudometric λmax(z) |dz| on G
with constant curvature −4 and zero set C.

Thus, if ΦC �= ∅, i.e., if there exists at least one regular conformal pseudometric
λ(z) |dz| on G with curvature ≤ −4 whose zero set contains the given sequence
C, then there exists a (maximal) regular conformal pseudometric λ(z) |dz| on G
with constant curvature −4 whose zero set is exactly the sequence C. In particular,
Theorem E can be applied, if there exists a non-constant holomorphic function f :
G → D with critical set C∗ ⊇ C since then the pseudometric (f ∗λD)(z) |dz| belongs
to ΦC . The proof of Theorem E relies on a modification of Perron’s method and can
be found in [27, §12 & §13] and [39].

Example 4 If G is a hyperbolic domain and C = ∅, then the maximal regular con-
formal pseudometric λmax(z) |dz| on G with constant curvature −4 and zero set C
is exactly the hyperbolic metric λG(z) |dz| for G.

Thus maximal pseudometrics are generalizations of the hyperbolic metric and
their developing maps are therefore of special interest.

Definition 2 (Maximal Functions) Let C be a sequence of points in D such that there
exists a maximal regular conformal pseudometric λmax(z) |dz| on D with constant
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curvature −4 and zero set C. Then every developing map for λmax(z) |dz| is called
maximal function for C.

Some remarks are in order. First, in view of Theorem C every maximal function
is uniquely determined by its critical set C up to postcomposition with a unit disk
automorphism and, conversely, the postcomposition of any maximal function with
a unit disk automorphism is again a maximal function. Second, if C = ∅, then the
maximal functions for C are precisely the unit disk automorphisms, i.e., the finite
Blaschke products of degree 1.

Now, we have the following result, see [39].

Theorem 3 Every maximal function is a Blaschke product.

It is to emphasize that since the postcomposition of any maximal function with a
unit disk automorphism is again a maximal function, every maximal function is an
indestructible Blaschke product.

We note that Theorem E combined with Theorem 3 immediately gives the impli-
cation “(a) =⇒ (b)” in Theorem 1. In fact, if f is a non-constant analytic self-map
of D with critical set C, then λ(z) |dz| := (f ∗λD)(z) |dz| is a regular conformal
pseudometric on D with zero set C. Thus Theorem E guarantees the existence of a
maximal conformal pseudometric on D with zero set C. Now, Theorem 3 says that
the corresponding maximal function for C is a Blaschke product.

In the special case that the maximal function has finitely many critical points,
the statement of Theorem 3 follows from the next result which is due to Heins [27,
§29].

Theorem F Let C = (z1, . . . , zn) be a finite sequence in D and f : D → D analytic.
Then the following statements are equivalent.

(a) f is a maximal function for C.
(b) f is Blaschke product of degree n+ 1 with critical set C.

We shall give a quick proof of Theorem F in Remark 5 below.

Remark 2 (Constructing Finite Blaschke Products with Prescribed Critical Points)
In his proof of Theorem F, Heins showed that for any finite sequence C =
(z1, . . . , zn) in D there is always a finite Blaschke product B of degree n + 1 with
critical set C. The essential step is nonconstructive and consists in showing that
the set of critical points of all finite Blaschke products of degree n + 1, which is
clearly closed, is also open in the poly disk D

n by applying Brouwer’s fixed point
theorem. The same result was later obtained by Wang & Peng [64] and Zakeri [68]
by using similar arguments. A completely different approach via Circle Packing is
due to Stephenson, see Lemma 13.7 and Theorem 21.1 in [60]. Stephenson builds
discrete finite Blaschke products with prescribed branch set and shows that under
refinement these discrete Blaschke products converge locally uniformly in D to the
desired classical Blaschke product.
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We are not aware of any efficient constructive method for computing a (nondis-
crete) finite Blaschke product from its critical points.

Maximal functions form a particular class of Blaschke products. It is therefore
convenient to make the following definition.

Definition 3 (Maximal Blaschke Products) A non-constant Blaschke product is
called a maximal Blaschke product, if it is a maximal function for its critical set.

As was mentioned earlier, every maximal Blaschke product is indestructible and
every finite Blaschke product is a maximal Blaschke product. Moreover, if C is the
critical set of any non-constant analytic function f : D → D, then there is maximal
Blaschke product with critical set C. A maximal Blaschke product is uniquely de-
termined by its critical set C up to postcomposition with a unit disk automorphism.

Geometrically, the finite maximal Blaschke products are just the finite branched
coverings of D. One is therefore inclined to consider maximal Blaschke products
for infinite branch sets as “infinite branched coverings”:

Critical set Maximal Blaschke product Mapping properties

C = ∅ Automorphism of D Unbranched covering of D;
Conformal self-map of D

C finite Finite Blaschke product Finite branched covering of D
C infinite Indestructible infinite maximal

Blaschke product
“Infinite branched covering of D”

The class of maximal conformal pseudometrics and their corresponding maximal
functions have already been studied by Heins in [27, §25 & §26]. Heins obtained
some necessary conditions as well as sufficient conditions for maximal functions
(see Theorem G and Theorem H below), but he did not prove that maximal functions
are always Blaschke products. He also posed the problem of characterizing maximal
functions, cf. [27, §26 & §29].

3 Some Properties of Maximal Blaschke Products

It turns out that maximal Blaschke products do have remarkable properties and pro-
vide in some sense a fairly natural generalization of the class of finite Blaschke
products. In this section we take a closer look at some of the properties of maximal
Blaschke products. In the following, we denote by H∞ the set of bounded analytic
functions f : D → C and set ‖f ‖∞ = supz∈D |f (z)|. This makes (H∞,‖ · ‖ ∞) a
Banach space.
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3.1 Schwarz’ Lemmas

Theorem 4 (Maximal Blaschke Products as Extremal Functions) Suppose C is a
sequence of points in D such that

FC := {f ∈ H∞ : f ′(z) = 0 for z ∈ C
}

contains at least some non-constant function and let

m := min
{
n ∈ N : f (n)(0) �= 0 for some f ∈ FC

}≥ 1.

Then the unique extremal function to the extremal problem

max
{
Ref (m)(0) : f ∈ FC, ‖f ‖∞ ≤ 1

}
(3)

is the maximal Blaschke product F for C normalized by F(0) = 0 and F (m)(0) > 0.

We refer to [43] for the proof of Theorem 4. To put Theorem 4 in perspective,
note that if m = 1, then the extremal problem (3) is exactly the problem of maxi-
mizing the derivative at a point, i.e., exactly the character of Schwarz’ lemma.

Remark 3 (The Nehari–Schwarz Lemma) If C = ∅, then FC = H∞, i.e., the set
of all bounded analytic functions in D. In this case, Theorem 4 is of course just
the statement of Schwarz’ lemma. If C is a finite sequence, then Theorem 4 is ex-
actly Nehari’s 1947 generalization of Schwarz’ lemma (Nehari [52], in particular
the Corollary to Theorem 1). Hence Theorem 4 can be considered as an extension
of the Nehari–Schwarz Lemma.

Remark 4 (The Riemann Mapping Theorem and the Ahlfors Map) We consider
a domain Ω ⊆ C containing 0. Let C = (zj ) be the critical set of a non-constant
function f in H∞(Ω), where H∞(Ω) denotes the set of all functions analytic and
bounded inΩ . We letN denote the number of times that 0 appears in the sequence C
and set

FC(Ω) := {f ∈ H∞(Ω) : f ′(z) = 0 for any z ∈ C
}
.

Then, by a normal family argument, there is always at least one extremal function
for the extremal problem

max
{
Ref (N+1)(0) : f ∈ FC(Ω), ‖f ‖ ∞ ≤ 1

}
. (∗)

In the following three cases there is a unique extremal function to the extremal
problem (∗).

(i) Ω �= C is simply connected and C = ∅ (conformal maps):
In this case, N = 0 and the extremal problem (∗) has exactly one extremal
function, the normalized Riemann map Ψ for Ω , that is, the unique conformal
map Ψ from Ω onto D normalized such that Ψ (0) = 0 and Ψ ′(0) > 0.
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(ii) Ω �= C is simply connected and C �= ∅ (prescribed critical points):
Let Ψ be the normalized Riemann map for Ω . Then Ψ (C) is the critical set of
a non-constant function in H∞ = H∞(D). If BΨ(C) is the extremal function in
FΨ (C) according to Theorem 4, then BΨ(C) ◦Ψ is the unique extremal function
for (∗).

(iii) Ω �= C is not simply connected and C = ∅ (Ahlfors’ maps):
If Ω has connectivity n ≥ 2, none of whose boundary components reduces to
a point, then the extremal problem (∗) has exactly one solution, namely the
Ahlfors map Ψ : Ω → D. It is a n : 1 map from Ω onto D such that Ψ (0) = 0
and Ψ ′(0) > 0, see Ahlfors [2] and Grunsky [23].

The Schwarz lemma (i.e., the case C = ∅ of Theorem 4) can be stated in an
invariant form, the Schwarz–Pick lemma which says that

|f ′(z)|
1 − |f (z)|2

≤ 1

1 − |z|2
, z ∈ D, (4)

for any analytic map f : D → D, with equality for some point z ∈ D if and only if f
is a conformal disk automorphism. Hence maximal Blaschke products without crit-
ical points serve as extremal functions. In a similar way, the more general statement
of Theorem 4 admits an invariant formulation as follows (see [39]).

Theorem 5 (Sharpened Schwarz–Pick Inequality) Let f : D → D be a non-
constant analytic function with critical set C and let C∗ be a subsequence of C.
Then there exists a maximal Blaschke product F with critical set C∗ such that

|f ′(z)|
1 − |f (z)|2

≤ |F ′(z)|
1 − |F(z)|2

, z ∈ D.

If C∗ is finite, then F is a finite Blaschke product.
Furthermore, f = T ◦ F for some automorphism T of D if and only if

lim
z→w

|f ′(z)|
1 − |f (z)|2

1 − |F(z)|2

|F ′(z)| = 1

for some w ∈ D.

If C∗ = C �= ∅, this gives the sharpening

|f ′(z)|
1 − |f (z)|2

≤ |F ′(z)|
1 − |F(z)|2

<
1

1 − |z|2

for all f ∈ FC of the Schwarz–Pick inequality (4), which is best possible in some
sense.
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3.2 Related Extremal Problems in Hardy and Bergman Spaces

Let C be a sequence in D, assume that C is the critical set of a bounded analytic func-
tion f : D → D and letN denote the multiplicity of the point 0 in C. Then according
to Theorem 4 the maximal Blaschke product F for C normalized by F(0) = 0 and
F (N+1)(0) > 0 is the unique solution to the extremal problem

max
{
Ref (N+1)(0) : f ∈ H∞, ‖f ‖ ∞ ≤ 1 and f ′(z) = 0 for z ∈ C

}
.

This extremal property of a maximal Blaschke product is reminiscent of the well-
known extremal property of

(i) Blaschke products in the Hardy spaces H∞ and

Hp := {f : D → C analytic : ‖f ‖p < + ∞},
where 1 ≤ p < +∞ and

‖f ‖p :=
(

lim
r→1

1

2π

∫ 2π

0

∣∣f (reit)∣∣p dt
)1/p

;

and

(ii) canonical divisors in the (weighted) Bergman spaces

Apα = {f : D → C analytic : ‖f ‖p,α < + ∞},
where −1< α < +∞ and 1 ≤ p < +∞ and

‖f ‖p,α :=
(

1

π

∫∫
D

(
1 − |z|2)α ∣∣f (z)∣∣p dσz

)1/p

.

Note that in (i) and (ii) the prescribed data are not the critical points, but the zeros.
More precisely, let the sequence C = (zj ) in D be the zero set of an Hp function

and let N be the multiplicity of the point 0 in C. Then the (unique) solution to the
extremal problem

max
{
Ref (N)(0) : f ∈ Hp, ‖f ‖p ≤ 1 and f (z) = 0 for z ∈ C

}

is a Blaschke product B with zero set C which is normalized by B(N)(0) > 0, see
[19, §5.1].

In searching for an analogue of Blaschke products for Bergman spaces, Heden-
malm [24] (see also [17, 18]) had the idea of posing an appropriate counterpart of



Critical Points, the Gauss Curvature Equation and Blaschke Products 145

the latter extremal problem for Bergman spaces. As before, let C = (zj ) be a se-
quence in D where the point 0 occurs N times and assume that C is the zero set of a
function in Apα . Then the extremal problem

max
{
Ref (N)(0) : f ∈ Apα, ‖f ‖p,α ≤ 1 and f (z) = 0 for z ∈ C

}

has a unique extremal function G ∈ Apα , which vanishes precisely on C and is nor-
malized by G(N)(0) > 0. The function G is called the canonical divisor for C. It
plays a prominent rôle in the modern theory of Bergman spaces.

In summary, we have the following situation:

Prescribed data Function space Extremal function

Critical set C H∞ Maximal Blaschke product for C
Zero set C Hp Blaschke product
Zero set C Apα Canonical divisor for C

In light of this strong analogy, one expects that maximal Blaschke products enjoy
similar properties as finite Blaschke products and canonical divisors. An example is
their analytic continuability. It is a familiar result that a Blaschke product has a
holomorphic extension across every open arc of ∂D that does not contain any limit
point of its zero set, see [22, Chap. II, Theorem 6.1]. The same is true for a canonical
divisor in the Bergman spaces Ap0 . This was proved by Sundberg [62] in 1997, who
improved earlier work of Duren, Khavinson, Shapiro and Sundberg [17, 18] and
Duren, Khavinson and Shapiro [16]. Now following the model that critical points
of maximal functions correspond to the zeros of Blaschke products and canonical
divisors respectively, one hopes that a maximal Blaschke product has an analytic
continuation across every open arc of ∂D which does not meet any limit point of its
critical set. This in fact turns out to be true:

Theorem 6 (Analytic Continuability, [43]) Let F : D → D be a maximal Blaschke
product with critical set C. Then F has an analytic continuation across each arc of
∂D which is free of limit points of C. In particular, the limit points of the critical set
of F coincide with the limit points of the zero set of F .

Another rather strong property of finite Blaschke products is their semigroup
property with respect to composition. In contrast, the composition of two infinite
Blaschke products does not need to be a Blaschke product (just consider destruc-
tible Blaschke products). However, in the case of maximal Blaschke products the
following result holds.

Theorem 7 (Semigroup Property, [43]) The set of maximal Blaschke products is
closed under composition.
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It would be interesting to get some information about the critical values of
maximal Blaschke products and to explore the possibility of factorizing maximal
Blaschke products in a way similar to the recent extension of Ritt’s theorem for
finite Blaschke products due to Ng and Wang (see [51]).

3.3 Boundary Behaviour of Maximal Blaschke Products

We now shift attention to the boundary behaviour of maximal Blaschke products.
Ideally, one should be able to determine whether a bounded analytic function F :
D → D is a maximal Blaschke product either from the behaviour of

|F ′(z)|
1 − |F(z)|2

as |z| → 1

or from the behaviour of

∫ 2π

0
log

|F ′(reit )|
1 − |F(reit )|2

dt as r → 1.

We only have some partial results in this connection and we begin our account
with the case of finite Blaschke products.

Theorem 8 (Boundary Behaviour of Finite Blaschke Products) Let I ⊂ ∂D be some
open arc and let f : D → D be an analytic function. Then the following statements
are equivalent.

(a) limz→ζ (1 − |z|2)
|f ′(z)|

1−|f (z)|2 = 1 for every ζ ∈ I ,

(b) limz→ζ
|f ′(z)|

1−|f (z)|2 = + ∞ for every ζ ∈ I ,
(c) f has a holomorphic extension across the arc I with f (I) ⊂ ∂D.

In particular, if I = ∂D, then f is in either case a finite Blaschke product.

The equivalence of conditions (a) and (b) in Theorem 8 for the special case
I = ∂D is due to Heins [28]; the general case is proved in [40]. We now extend
Theorem 8 beyond the class of finite Blaschke products and start with the following
auxiliary result.

Proposition 1 (See [39]) Let f : D → D be an analytic function and I some subset
of ∂D.

(1) If

∠ lim
z→ζ

(
1 − |z|2) |f ′(z)|

1 − |f (z)|2
= 1 for every ζ ∈ I,
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then f has a finite angular derivative2 at a.e. ζ ∈ I . In particular,

∠ lim
z→ζ

∣∣f (z)∣∣= 1 for a.e. ζ ∈ I.

(2) If f has a finite angular derivative (and ∠ limz→ζ |f (z)| = 1) at some ζ ∈ I ,
then

∠ lim
z→ζ

(
1 − |z|2) |f ′(z)|

1 − |f (z)|2
= 1.

In particular, when I = ∂D, we obtain the following corollary.

Corollary 1 (See [39]) Let f : D → D be an analytic function. Then the following
statements are equivalent.

(a) ∠ limz→ζ (1 − |z|2)
|f ′(z)|

1−|f (z)|2 = 1 for a.e. ζ ∈ ∂D.
(b) f is an inner function with finite angular derivative at almost every point of ∂D.

We further note that conditions (1) and (2) in Proposition 1 do not complement
each other. Therefore we may ask if an analytic self-map f of D which satisfies

∠ lim
z→1

|f ′(z)|
1 − |f (z)|2

(
1 − |z|2)= 1

does have an angular limit at z = 1; this might then be viewed as a converse of the
Julia–Wolff–Carathéodory theorem, see [58, p. 57].

For maximal Blaschke products whose critical sets satisfy the Blaschke condition
one can show that condition (a) in Corollary 1 holds:

Theorem 9 (See [39]) Let C = (zj ) be a Blaschke sequence in D.

(a) The maximal conformal pseudometric λmax(z) |dz| on D with constant curva-
ture −4 and zero set C satisfies

∠ lim
z→ζ

λmax(z)

λD(z)
= 1 for a.e. ζ ∈ ∂D.

(b) Every maximal function for C has a finite angular derivative at almost every
point of ∂D.

Remark 5 The boundary behaviour of a maximal Blaschke product contains use-
ful information. For instance, it leads to a quick proof of Theorem F. To see this,
let F : D → D be a maximal function for a finite sequence C and λmax(z) |dz| =
(F ∗λD)(z) |dz| be the maximal conformal metric with constant curvature −4 and

2See [58, p. 57].



148 D. Kraus and O. Roth

zero set C. By Theorem 3, the maximal function F is an indestructible Blaschke
product. Now, let B be a finite Blaschke product with zero set C. Then

λ(z) |dz| := ∣∣B(z)∣∣λD(z) |dz|
is a regular conformal pseudometric on D with curvature −4/|B(z)|2 ≤ −4 and zero
set C. Thus, by the maximality of λmax(z) |dz|,

λ(z) ≤ λmax(z) for z ∈ D

and consequently

∣∣B(z)∣∣≤ λmax(z)

λD(z)
for all z ∈ D. (5)

Since B is a finite Blaschke product, we deduce from (5) and the Schwarz–Pick
lemma (4) that

lim
z→ζ

λmax(z)

λD(z)
= lim
z→ζ

|F ′(z)|
1 − |F(z)|2

(
1 − |z|2)= 1 for all ζ ∈ ∂D.

Applying Theorem 8 shows that F is a finite Blaschke product. The branching or-
der of F is clearly 2n. Thus, according to the Riemann–Hurwitz formula, see [21,
p. 140], the Blaschke product F has degree m = n+ 1.

On the other hand, assume that F is a finite Blaschke product of degree n + 1.
Then, by Theorem 8,

lim
z→ζ

|F ′(z)|
1 − |F(z)|2

(
1 − |z|2)= 1 for all ζ ∈ ∂D.

Theorem 10 below shows that F is a maximal Blaschke product.

The next result gives a sufficient condition for maximality of a Blaschke product
F in terms of the boundary behaviour of the integral means of the quantity

(
1 − |z|2) |F ′(z)|

1 − |F(z)|2
= λ(z)

λD(z)
.

Theorem 10 (See [39]) Let λ(z) |dz| be a conformal pseudometric on D with con-
stant curvature −4 and zero set C such that

lim
r→1

∫ 2π

0
log

λ(reit )

λD(reit )
dt = 0. (6)

Then λ(z) |dz| is the maximal conformal pseudometric λmax(z) |dz| on D with con-
stant curvature −4 and zero set C.

If C is a Blaschke sequence, then the corresponding maximal conformal pseudo-
metric λmax(z) |dz| on D with constant curvature −4 and zero set C satisfies condi-
tion (6):
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Theorem 11 (See [39]) Let C be a Blaschke sequence in D. A conformal pseudo-
metric λ(z) |dz| on D with constant curvature −4 and zero set C is the maximal
conformal pseudometric λmax(z) |dz| on D with constant curvature −4 and zero set
C if and only if (6) holds.

We don’t know whether this result is true for any sequence C for which there is a
non-constant bounded analytic function with critical set C.

3.4 Heins’ Results on Maximal Functions

For completeness, we close this section with a discussion of Heins’ results on maxi-
mal functions, cf. [27, §25 & §26]. A first observation is that every maximal function
is surjective. In fact more is true; a maximal function is “locally” surjective. Here is
the precise definition.

Definition 4 Let f : D → D be an analytic function. A point q ∈ D is called locally
omitted by f provided that either q ∈ D\f (D) or else q ∈ f (D) and there exists a
domainΩ , q ∈ Ω , such that for some component U of f−1(Ω) the restriction of f
to U omits q , i.e. q /∈ f (U).

Theorem G (Heins [27]) A maximal function has no locally omitted point.

So far, the results about maximal functions leave an important question unan-
swered, namely, how to tell whether a given function in H∞ is a maximal function?
Heins’ second result gives a topological sufficient criterion and provides therefore a
source of “examples” of maximal functions. It is based on the following concept.

Definition 5 A holomorphic function f : D → D is called locally of island type if
f is onto and if for each w ∈ D there is an open disk K(w) about w such that each
component of f−1(K(w)) is compactly contained in D.

Obviously, every surjective analytic self-map of D with constant finite valence,
that is, every finite Blaschke product is locally of island type.

Theorem H (Heins [27]) Every function locally of island type is a maximal func-
tion.

4 The Gauss Curvature PDE and the Berger–Nirenberg Problem

We return to a discussion of Theorem 1. The results of Sect. 2 (Theorem E and
Theorem 3) provide a proof of implication “(a) =⇒ (b)” in Theorem 1. In this
section, we discuss implication “(c) =⇒ (a)”. The key idea is the following.
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Theorem 12 Let h : D → C be a non-constant holomorphic function with zero
set C. Then the following statements are equivalent.

(a) There exists a holomorphic function f : D → D with critical set C.
(b) There exists a C2-solution u : D → R to the Gauss curvature equation

Δu = 4
∣∣h(z)∣∣2e2u. (7)

Let us sketch a proof here. If f : D → D is a holomorphic function with critical
set C, then a quick computation shows that

u(z) := log

(
1

|h(z)|
|f ′(z)|

1 − |f (z)|2

)

is a C2-solution to (7). This proves “(a) =⇒ (b)”. Conversely, if there is a
C2-solution u : D → R to the curvature equation (7), then

λ(z) |dz| := eu(z) |dz|
is a regular conformal metric with curvature −4|h(z)|2 on D. Hence, by Theorem 2,

u(z) = log

(
1

|h(z)|
|f ′(z)|

1 − |f (z)|2

)

with some analytic self-map f of D. Thus the zero set of h agrees with the critical
set of f .

In view of Theorem 12, the task is now to characterize those holomorphic func-
tions h : D → C for which the PDE (7) has a solution. In fact this problem is a
special case of the Berger–Nirenberg problem from differential geometry:

Berger–Nirenberg Problem Given a function κ : R → R on a Riemann sur-
face R. Is there a conformal metric on R with Gauss curvature κ?

The Berger–Nirenberg problem is well-understood for the projective plane, see
[50] and has been extensively studied for compact Riemannian surfaces, see [3, 9,
33, 61] as well as for the complex plane [4, 10, 54].3 However much less is known
for proper domains D of the complex plane, see [6, 31, 34]. In this situation the
Berger–Nirenberg problem reduces to the question if for a given function k : D → R

the Gauss curvature equation

Δu = k(z) e2u (8)

has a solution on D. We just note that k is the negative of the curvature κ of the
conformal metric eu(z) |dz|.

In the next theorem we give some necessary conditions as well as sufficient con-
ditions for the solvability of the Gauss curvature equation (8) only in terms of the
curvature function k and the domain D.

3These are just some of the many references.
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Theorem 13 (See [39]) Let D be a bounded and regular domain4 and let k be a
nonnegative locally Hölder continuous function on D.

(1) If for some (and therefore for every) z0 ∈ D
∫∫
D

gD(z0, ξ) k(ξ) dσξ < + ∞,

then (8) has a C2-solution u : D → R, which is bounded from above.
(2) If (8) has a C2-solution u : D → R which is bounded from below and if this

solution has a harmonic majorant on D, then
∫∫
D

gD(z, ξ) k(ξ) dσξ < + ∞

for all z ∈ D.
(3) There exists a bounded C2-solution u : D → R to (8) if and only if

sup
z∈D

∫∫
D

gD(z, ξ) k(ξ) dσξ < + ∞.

If we choose D = D and z0 = 0, then gD(0, ξ) = − log |ξ |. Hence as a conse-
quence of the inequality

1 − |ξ |2

2
≤ log

1

|ξ | ≤ 1 − |ξ |2

|ξ | , 0< |ξ | < 1,

we obtain the following equivalent formulation of Theorem 13.

Corollary 2 (See [39]) Let k be a nonnegative locally Hölder continuous function
on D.

(1) If ∫∫
D

(
1 − |ξ |2)k(ξ) dσξ < + ∞, (9)

then (8) has a C2-solution u : D → R, which is bounded from above.
(2) If (8) has a C2-solution u : D → R which is bounded from below and if this

solution has a harmonic majorant on D, then
∫∫

D

(
1 − |ξ |2)k(ξ) dσξ < + ∞.

(3) There exists a bounded C2-solution u : D → R to (8) if and only if

sup
z∈D

∫∫
D

log

∣∣∣∣1 − ξz
z − ξ

∣∣∣∣ k(ξ) dσξ < + ∞.

4I.e. there exists Green’s function gD for D which vanishes continuously on ∂D.
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Both, Theorem 13 and Corollary 2, are not best possible, because (8) may indeed
have solutions, even if

∫∫
D

gD(z, ξ) k(ξ) dσξ = + ∞

for some (and therefore for all) z ∈ D. Here is an explicit example.

Example 5 For α ≥ 3/2 define

h(z) = 1

(z − 1)α

for z ∈ D and set k(z) = 4 |h(z)|2 for z ∈ D. Then an easy computation yields

∫∫
D

(
1 − |z|2)k(z) dσz = + ∞

and a straightforward check shows that the function

uf (z) := log

(
1

|h(z)|
|f ′(z)|

1 − |f (z)|2

)

is a solution to (8) on D for every locally univalent analytic function f : D → D.

Remark 6 The sufficient condition (9) improves earlier results of Kalka & Yang in
[34]. In fact, Kalka & Yang give explicit examples for the function k which tend
to +∞ at the boundary of D such that the existence of a solution to (8) can be
guaranteed. All these examples are radially symmetric and satisfy (9). Kalka & Yang
also supplement their existence results by nonexistence results. They find explicit
lower bounds for the function k in terms of radially symmetric functions which
grow to +∞ at the boundary of D, such that (8) has no solution.

We wish to emphasize that the necessary conditions and the sufficient conditions
for the solvability of the curvature equation (8) of Kalka & Yang do not comple-
ment each other. In particular, the case when the function k oscillates is not covered.
For the proof of their nonexistence results Kalka & Yang needed to use Yau’s cel-
ebrated Maximum Principle [66, 67], which is an extremely powerful tool. In [39],
an almost elementary proof of these nonexistence results is given, which has the
additional advantage that Ahlfors’ type lemmas for conformal metrics with variable
curvature and explicit formulas for the corresponding maximal conformal metrics
are obtained. In [39] the nonexistence theorems of Kalka & Yang are further ex-
tended by allowing the function k to oscillate.

It turns out that although condition (9) is not necessary for the existence of a
solution to (8) it is strong enough to deduce a necessary and sufficient condition for
the solvability of the Gauss curvature equation of the particular form (7):
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Theorem 14 (See [39]) Let h : D → C be a holomorphic function. Then the Gauss
curvature equation (7) has a solution if and only if h has a representation as a
product of an A2

1 function and a nonvanishing analytic function.

Note that Theorem 12 combined with Theorem 14 shows that the class of all
holomorphic functions h : D → C whose zero sets coincide with the critical sets of
the class of bounded analytic function is exactly the Bergman space A2

1. This proves
implication “(c) =⇒ (a)” in Theorem 1.

A further remark is that Theorem 13 (c) characterizes those curvature functions
k for which (8) has at least one bounded solution. For the case of the unit disk D,
this result can be stated as follows.

Theorem 15 Let ϕ : D → C be analytic and k(z) = 4 |ϕ′(z)|2. Then there exists
a bounded solution to the Gauss curvature equation (8) if and only if ϕ ∈ BMOA,
where

BMOA =
{
ϕ : D → C analytic : sup

z∈D

∫∫
D

gD(z, ξ)
∣∣ϕ′(ξ)

∣∣2 dσξ < + ∞
}

is the space of analytic functions of bounded mean oscillation on D, see [44, p. 314].

Finally, we note that in Theorem 13 and Corollary 2, condition (1) does not imply
condition (3). The Gauss curvature equation (8) may indeed have solutions none of
which is bounded. For example, choose ϕ ∈ H 2 \BMOA and set k(z) = 4 |ϕ′(z)|2.
Then, according to Theorem 15, every solution to (8) must be unbounded.

The following result of Heins adds another item to the list of equivalent state-
ments in Theorem 1.

Theorem I (Heins [27]) Let C = (zj ) be a sequence in D. Then the following con-
ditions are equivalent.

(a) There is an analytic function f : D → D with critical set (zj ).
(b) There is a function in the Nevanlinna class N with critical set (zj ).

Here, a function f analytic in D is said to belong to the Nevanlinna class N if
the integrals

∫ 2π

0
log+∣∣f (reit)∣∣dt

remain bounded as r → 1.
Let us indicate how the results of the present survey allow a quick proof of The-

orem I.

Proof (b) ⇒ (a): Let ϕ ∈ N . Then ϕ = ϕ1/ϕ2 is the quotient of two analytic self-
maps of D, see for instance [15, Theorem 2.1]. W.l.o.g. we may assume ϕ2 is ze-
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rofree. Differentiation of ϕ yields

ϕ′(z) = 1

ϕ2(z)2

(
ϕ′

1(z)ϕ2(z)− ϕ1(z)ϕ
′
2(z)
)
.

Since ϕ′
1, ϕ

′
2 ∈ A2

1 and A2
1 is a vector space, it follows that the function ϕ′

1 ϕ2 −ϕ1 ϕ
′
2

belongs to A2
1. Thus Theorem 14 ensures the existence of a solution u : D → R to

Δu = ∣∣ϕ′(z)
∣∣2 e2u.

Hence Theorem 12 gives the desired result. �

The results of this section about the solvability of the Gauss curvature equation
(8) do have further consequences for the critical sets of bounded analytic functions.
For instance, one can give an answer to a question of Heins [27, §31]. In order
to state Heins’ question properly, we recall the well-known Jensen formula which
connects the rate of growth of an analytic function with the density of its zeros. Thus
the restriction on the growth of the derivative of an analytic self-map of D imposed
by the Schwarz–Pick lemma (4) forces an upper bound for the number of critical
points of non-constant analytic self-maps of D. More precisely,

sup
f∈H∞

‖f ‖∞ ≤1, f �≡const.

(
lim sup
r→1

N(r;f ′)
log 1

1−r2

)
≤ 1, (10)

where

N
(
r;f ′) :=

∫ 1

0

n(t;f ′)
t

dt

and n(r;f ′) denotes the number of zeros of f ′ counted with multiplicity in the disk
Dr := {z ∈ C : |z| < r}, 0< r < 1.

Heins showed that equality holds in (10), cf. [26]. More precisely, using his
solution of the Schwarz–Picard problem, he proved that there exists for every
p = 2,3, . . . a non-constant analytic function fp : D → D such that

lim sup
r→1

N(r;f ′
p)

log( 1
1−r2 )

= 2p − 3

2p − 2
.

Letting p → +∞ shows that (10) is best possible. In this way, Heins [27, §31] was
led to ask whether there is a bounded analytic function which realizes the supremum
in (10). This question is answered in our next theorem—even with some additional
information.
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Theorem 16 Let β ∈ [0,1]. Then there exists a non-constant analytic function (and
even a maximal Blaschke product) f : D → D such that

lim sup
r→1

N(r;f ′)
log( 1

1−r2 )
= β.

For the proof of Theorem 16 we refer the reader to [39].
We close with the following remark.

Remark 7 With the help of the Riemann mapping theorem, the results of this paper
about critical sets of bounded analytic functions f : D → D can easily be trans-
ferred to the class H∞(Ω) of bounded analytic functions f : Ω → D, whenΩ �= C

is a simply connected domain. The critical sets of bounded analytic functions on
multiply connected domains are much more difficult to fathom.
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of Analytic Functions of Moderate Growth
in the Unit Disc
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Abstract We give a survey of results on zero distribution and factorization of an-
alytic functions in the unit disc in classes defined by the growth of log |f (reiθ )| in
the uniform and integral metrics. We restrict ourself to the case of finite order of
growth. For a Blaschke product B we obtain a necessary and sufficient condition for
the uniform boundedness of all p-means of log |B(reiθ )|, where p > 1.

Keywords Analytic function · Factorization · Zero distribution · Canonical
product · Order of growth
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1 Introduction

LetD(z, t) = {ζ ∈ C : |ζ − z| < t}, z ∈ C, t > 0, and D = D(0,1). Denote by H(D)
the class of analytic functions in D. For f ∈ H(D) we define the maximum modulus
M(r,f ) = max{|f (z)| : |z| = r}, 0 ≤ r < 1. The zero sequence of a function f ∈
H(D) will be denoted by Zf . In the sequel, the symbol C with indices stands for
positive constants which depend on parameters indicated. We write a(r) ∼ b(r) if
limr↑1 a(r)/b(r) = 1, x+ = max{x,0}. Throughout this paper, by (1 −w)α , w ∈ D,
α ∈ R, we mean the branch of the power function such that (1 − w)α|w=0 = 1.
BV [a, b] stands for the class of functions of bounded variation on [a, b].

We are primarily interested in zero distribution of analytic functions from classes
defined by growth conditions in the unit disc. The topic is closely related to the
problem of factorization of such classes.
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Usually, the orders of growth of an analytic function f in D are defined as

ρM [f ] = lim sup
r↑1

log+ log+M(r,f )
− log(1 − r) , ρT [f ] = lim sup

r↑1

log+ T (r, f )
− log(1 − r) ,

where T (r, f ) = 1
2π

∫ 2π
0 log+ |f (reiθ )|dθ . It is well known that

ρT [f ] ≤ ρM [f ] ≤ ρT [f ] + 1, (1)

and all admissible values of the orders are possible ([1, 2, 15]).
The paper is organized in the following way. In Sects. 1 and 2 we give a survey of

results on zero distribution and factorization in subclasses of H(D) defined by the
growth conditions on T (r, f ) and logM(r,f ), respectively. In Sect. 3 we consider
the concept of ρ∞-order, which goes back to work of C.N. Linden [16, 17]. This
notion allows us to prove several new results for functions f with ρM [f ] < 1. Fi-
nally, in Sect. 4 we prove a criterion of uniform boundedness of the integral means
of log |B(reiθ )|, where B is a Blaschke product.

We do not consider zero distribution and factorization either of functions of in-
finite order or meromorphic functions. We refer the reader who is interested in fac-
torization of meromorphic functions to [13].

2 Classes Defined by the Growth of T (r,f )

2.1 Growth of Nevanlinna Characteristic and Zero Distribution

To be more precise we start with canonical products. Let Z = (zn) be a sequence of
complex numbers in D without accumulation points in D. We define the exponent
of convergence of Z by

μ[Z] = inf

{
μ ≥ 0 :

∑
zn∈Z

(
1 − |an|)μ+1

< ∞
}
,

with the convention that inf ∅ = + ∞. It is well known [6, 7, 19, 21] that the
Djrbashian–Naftalevich–Tsuji canonical product,

P(z,Z,q) =
∞∏
n=1

E

(
1 − |zn|2

1 − z̄nz , q
)
, (2)

where E(w,0) = 1 −w,

E(w,q) = (1 −w) exp
{
w +w2/2 + · · · +wq/q}, q ∈ N,
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is an analytic function with the zero sequence Z provided that
∑
zn∈Z(1 −

|an|)q+1 < ∞. We note that if q = 0 then P(z,Z,0) = CB(z,Z), where C =∏
zn∈Z |zn|,

B(z,Z) =
∏
zn∈Z

z̄n(zn − z)
|zn|(1 − z̄nz)

is the Blaschke product constructed by the sequence Z.
Let n(r,ZP ) be the number of zeros in D(0, r),

ρn[P ] = lim sup
r↑1

log+ n(r,P )
− log(1 − r) , (3)

be the order of the counting function of ZP . Under the technical assumption
that 0 �∈ Zf we also consider the Nevanlinna counting function N(r,Zf ) =∫ r

0
n(t,Zf )

t
dt . Note that N(r,Zf ) ≤ T (r, f ) + O(1) due to the first fundamental

theorem of R. Nevanlinna [12].
In 1953 Naftalevich [19], and in 1956 Tsuji [21] proved that

ρT [P ] = (ρn[P ] − 1
)+
. (4)

Moreover, (ρn[P ] − 1)+ is equal to the convergence exponent μ(ZP ), and the order
of N(r,ZP ).

This result was improved by F. Shamoyan in [22, 23].
Let ω ∈ C1 [0,1) be positive, monotone and such that

∫ 1

0
ω(t) dt < +∞, sup

r∈ [r0,1)

∣∣∣∣ (1 − r)ω′(r)
ω(r)

∣∣∣∣< qω < + ∞, (5)

where r0 ∈ (0,1). If ω is an increasing function we assume in addition that
0< qω < 1. The class A∗

ω consists of analytic functions f in the unit disc satisfying

∫ 1

0
ω(r)T (r, f ) dr < + ∞. (6)

If ω(r) = (1 − r)α−1, α > 0, the A∗
ω coincides with Djrbashian’s class A∗

α which
consists of analytic functions f in the unit disc satisfying

∫ 1

0
(1 − r)α−1T (r, f ) dr < + ∞. (7)

Remark that (7) implies ρT [f ] ≤ α. On the other hand f ∈ A∗
α provided that α >

ρT [f ].

Theorem 1 (F.A. Shamoyan, [23, Theorem 1]) Let ω be a monotone positive func-
tion satisfying (5),Z = (zk) ⊂ D. In order thatZ be a sequence of zeros of a function
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f ∈ A∗
ω, f �≡ 0 it is necessary and sufficient that

∑
zk∈Z

(
1 − |zk|)2ω(|zk|)< + ∞. (8)

Moreover, under condition (8) Djrbashian’s canonical product P(z,Z,α) (see (10)
below) is convergent in D and belongs to A∗

ω for α > qω.

2.2 Factorization of Classes Defined by the Growth of T (r,f )

Canonical and parametric representations of functions analytic in D and of finite
order of the growth were obtained [6–8] in the 1940s by M.M. Djrbashian using the
Riemann–Liouville fractional integral.

Theorem 2 (M.M. Djrbashian) If f ∈ A∗
α , α > 0 then f admits a representation

f (z) = CλzλP (z,Zf ,α) exp

{
α

π

∫
D

log |f (ζ )|(1 − |ζ |2) dm2(ζ )

(1 − ζ̄ z)α+2

}
, (9)

where Cλ is a complex constant, λ ∈ Z+, m2 is the planar Lebesgue measure,
P(z,Zf ,α) is a canonical product with the zeros Zf , and of the form

P(z,Zf ,α) =
∏
k

(
1 − z

zk

)
exp
{−Uα(z, zk)

}
, (10)

where

Uα(z, zk) = 2α

π

∫
D

log |1 − w
ζ

|(1 − |w|2) dm2(w)

(1 − w̄z)α+2
, z ∈ D.

Moreover, P(z,Zf ,α) converges in D if and only if

∑
zk∈Zf

(
1 − |zk|)α+1

< + ∞.

M.M. Djrbashian [7] noted that P(z,Zf ,α) has the form (2) if α ∈ N.
Besides the class A∗

α , which can be defined by the condition

sup
0<r<1

∫ 2π

0

(∫ r
0
(r − t)α−1 log+∣∣f (teiϕ)∣∣dt

)
dϕ < + ∞,

M.M. Djrbashian considered the class Aα defined by

sup
0<r<1

∫ 2π

0

(∫ r
0
(r − t)α−1 log

∣∣f (teiϕ)∣∣dt
)+
dϕ < + ∞.
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Obviously, A∗
γ ⊂ A∗

α ⊂ Aα ⊂ Aβ , γ < α < β . Moreover, the function gα(z) =
exp{ 1

(1−z)α+1 } belongs to Aα \A∗
α .

Theorem 3 (M.M. Djrbashian) The class Aα , α > −1, coincides with the class of
functions represented in the form

f (z) = CλzλBα(z) exp

{∫ 2π

0

dψ(θ)

(1 − e−iθ z)α+1

}
≡ CλzλBα(z) exp

{
gα(z)

}
, (11)

where ψ ∈ BV [0,2π],
∑
zk∈Zf (1 − |zk|)α+1 < + ∞; Bα(z) = ∏k(1 − z

zk
) ×

exp{−Wα(z, zk)} is Djrbashian’s product

Wα(z, ζ ) =
∫ 1

|ζ |
(1 − x)α
x

dx +
∑
k

Γ (α + k + 1)

Γ (α + 1)Γ (1 + k)

×
(
(ζ̄ z)k

∫ 1

|ζ |
(1 − x)α
xk+1

dx −
(
z

ζ

)k ∫ |ζ |

0
(1 − x)αxk−1 dx

)
.

More general results for arbitrary growth are obtained in [9].

3 Classes Defined by the Growth logM(r,f )

3.1 Growth of the Maximum Modulus and Zero Distribution

B. Khabibullin [13] considered the following problem.

Problem 1 Given a sequence Z in D without accumulation points in D, find the
lowest possible growth of logM(r,f ) in the class of analytic functions f �≡ 0 van-
ishing on Z.

An increasing continuous function d : [a,1) → [0,1), where a ∈ [0,1) is
called [13] a shift function if t < d(t) < 1 for t ∈ [a,1).

Theorem 4 (B.N. Khabibullin [13, Theorem 1]) Let Z be a sequence in D, d be
convex or concave shift function. Then there exists a function f ∈ H(D), f �≡ 0 such
that Zf ⊃ Z and logM(r,f ) ≤ C

d(r)−r N(d(r),Z) for some positive constant C.

Another approach was used by C.N. Linden. In 1964 [14] he established a con-
nection between ρM [P ] and the zero distribution of P , where P is of the form (2).
To clarify this connection we need some definitions.

Let

�
(
reiϕ
)=
{
ρeiθ : r ≤ ρ ≤ 1 + r

2
, |θ − ϕ| ≤ π(1 − r)

2

}
,
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and ν(reiϕ) be the number of zeros of P in �(reiϕ). We define

ν1(r,P ) = max
ϕ
ν
(
reiϕ
)
, ν[P ] = lim sup

r↑1

log+ ν1(r,P )

− log(1 − r) . (12)

Theorem 5 (C.N. Linden, [14, Theorem V]) With the notation above we have

ρM [P ]
{

= ν[P ], ρM [P ] ≥ 1,

≤ ν[P ] ≤ 1, ρM [P ] < 1.
(13)

This result was improved and generalized by F. Shamoyan in [22, 23]. We follow
the notation of [22]. Let ϕ be nonnegative increasing function on (0,+ ∞). Set

X∞
ϕ =

{
f ∈ H(D) : log

∣∣f (z)∣∣≤ C(f )ϕ
(

1

1 − |z|
)}
. (14)

Assume that for

βϕ = lim inf
x→+∞

xϕ′(x)
ϕ(x)

, αϕ = lim sup
x→+∞

xϕ′(x)
ϕ(x)

we have βϕ ≤ αϕ < +∞.

Theorem 6 (F.A. Shamoyan, [22, Theorem 1]) Suppose that ϕ satisfies the above
conditions.

(i) Let βϕ > 1. If f ∈ X∞
ϕ , f (0) = 1, then ν1(r,Zf ) ≤ Cϕ( 1

1−r ) for some positive
constant C;

(ii) let βϕ > 0. If Z be an arbitrary sequence in D such that ν1(r,Z) ≤ Cϕ( 1
1−r )

for some positive constant C, then P(z,Z,α) ∈ X∞
ϕ for every α > αϕ + 1.

As we see, this theorem gives a description of zeros for functions f ∈ H(D) of
finite order ρM [f ] > 1. A counterpart of this result for functions of infinite order is
obtained in [23, Theorem 2].

3.2 Factorization of Classes Defined by the Growth of logM(r,f )

In [14] Linden proved the following result.

Theorem 7 (Linden, [14, Theorem I]) Let f be analytic in D and of order
ρM [f ] ≥ 1. Then

f (z) = zpP (z)g(z),
where P is a canonical product displaying the zeros of f , p is nonnegative integer,
g is non-zero and both P and g are analytic and of ρM -order at most ρM [f ].
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Further, in Theorem IV [14], Linden showed that if ρM [f ] < 1 one has

max
{
ρM [P ], ρM [g]}≤ max

{
ρM [f ], ν[f ]}.

For ϕ(x) = xρ , ρ > 0 we denote Xρ = X∞
ϕ .

V.I. Matsaev and Ye.Z. Mogulski [18] established that if we take P(z) =
P(z,Zf , s), s ≥ [ρ] + 1, s ∈ N, in the representation of Theorem 7, then the func-
tion g has the form

g(z) = exp
∫ 2π

0
Sq
(
ze−iθ )γ (θ) dθ, z ∈ D, (15)

where q = [ρ] + 1, Sq(z) = Γ (q+ 1)( 2
(1−z)q − 1) is the generalized Schwarz kernel,

γ is a real valued function such that γ ∈ Lip(q −ρ) for noninteger ρ, and γ satisfies
Zygmund’s condition |γ (θ + h)− 2γ (θ)+ γ (θ − h)| ≤ Ch for integer ρ.

In [24] F. Shamoyan showed that non-zero factor Uα(z) in Djrbashian’ represen-
tation (9) can be written in the form (15) with q not necessarily integer such that
q > α, and (k = [q − α])

∫ 2π

0

∫ 2π

0

γ (k)(t + θ)− 2γ (k)(θ)+ γ (k)(θ − t)
|t |1+q−α dt dθ < + ∞.

In view of relation (1) the following problem arises naturally.

Problem 2 Given 0 ≤ σ ≤ ρ ≤ σ + 1, describe the class Hσ,ρ of analytic functions
in D such that ρT [f ] = σ , ρM [f ] = ρ.

In [15] Linden constructed canonical products form Hσ,ρ when ρ ≥ 1, and ρ −
1 ≤ σ ≤ ρ. In [2] Problem 2 was solved by the first author under the restriction that
ρ ≥ 1. A solution is given in terms of so called complete measure of an analytic
function in the sense of Grishin (see [10, 11]).

Let f ∈ H(D) be of the form

f (z) = CqzλP (z,Zf , q) exp

{∫ 2π

0
Sq
(
ze−iθ )dψ∗(θ)

}
, (16)

where ψ∗ ∈ BV [0,2π],
∑
zk∈Zf (1 − |ak|)q+1 < + ∞, λ ∈ Z+, Cq ∈ C.

LetM be Borel’s subset of D. A complete measure λf of genus q in the sense of
Grishin is defined as

λf (M) =
∑
Zf ∩M

(
1 − |zk|)q+1 +ψ(M ∩ ∂D), (17)

where ψ is the Stieltjes measure associated with ψ∗.
A characterization of λf for f ∈ Hσ,ρ is given in [2, Theorem 4]. Another appli-

cation of λf can be found in [3].
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4 A Concept of ρ∞-Order

Many theorems valid on analytic functions of finite order in D fail to hold when
ρM -order is smaller than 1 (see e.g. [2, 14, 16]).

In particular, for a Blaschke product B we always have 0 ≤ ν[B] ≤ 1, so Theo-
rems 5 and 6 give no new information on zero distribution of B .

The question arises:

Question 1 What kind of growth characteristic can describe zero distribution in the
case when ρM [f ] ≤ 1?

For a meromorphic function f (z), z ∈ D, and p ≥ 1 we define

mp(r, f ) =
(

1

2π

∫ 2π

0

∣∣log
∣∣f (reiθ )∣∣∣∣p dθ

) 1
p

, 0< r < 1.

We write

ρp[f ] = lim sup
r↑1

logmp(r, f )

− log(1 − r) .

A characterization of ρp-orders can be found in [17].
We define ρ∞-order of f as

ρ∞ [f ] = lim
p→∞ρp[f ],

(existence of the limit follows from the fact that Lp-norms are monotone in p).
It follows from the first fundamental theorem of Nevanlinna that ρ1 [f ] = ρT [f ].
Besides, it is known (e.g. [16]) that ρM [f ] ≤ ρp[f ] + 1

p
(p > 0), which gen-

eralizes (1). Consequently, ρM [f ] ≤ ρ∞ [f ]. Moreover, Linden [16] proved that
ρ∞ [f ] = ρM [f ] provided that ρM [f ] ≥ 1. Thus, the values ρ∞ [f ] and ν[f ] have
similar behavior with respect to the maximum modulus order, when f is a canonical
product.

Remark 1 To avoid confusion, we have to note that Linden used the notation λ∞(f )
for ρM [f ]. But he did not consider the limit limp→∞ ρp[f ] when ρM [f ] < 1.

For a sequence Z in D with finite convergence exponent we define ν[Z] =
ν[P(z,Z,q)] for an appropriate choice of q . It is clear that the definition does not
depend on q .

The following theorem answers the question posed above.

Theorem 8 (I. Chyzhykov, [5, Theorem 1.1]) Given a sequence Z in D such that
ν = ν[Z] < ∞ and an integer s such that s ≥ [ν] + 1, we define the canonical
product Ps(z) = P(z,Z, s). Then ρ∞ [Ps] = ν.

Corollary 1 ([5, Theorem 1.2]) Let f ∈ H(D). Then ν[f ] ≤ ρ∞ [f ].
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Example 1 Let zk = 1 − 1/(k log2 k), k ∈ {3, . . . }. We consider the Blaschke product
B(z,Z). Since |B| is bounded in D, we have ρM [B] = ρT [B] = 0, and consequently
ρ∞ [B] ≤ 1.

On the other hand, it is easy to check that

n(r,B) ∼ 1

(1 − r) log2(1 − r) , r ↑ 1,

and
d1

(1 − r) log2(1 − r) ≤ ν(r) ≤ d2

(1 − r) log2(1 − r) , r ↑ 1,

for some positive constants d1, d2. Hence, ν[B] = 1, and by Theorem 1 ρ∞ [B] = 1.

Taking into account Corollary 1 we deduce that max{ρM [P ], ρM [g]} ≤ ρ∞ [f ]
in Theorem 7. A counterpart of Theorem 7 is valid without restrictions on the value
of order.

Theorem 9 (I. Chyzhykov, [5, Theorem 2.1]) Let f be analytic in D, and of finite
order ρ∞ [f ]. Then

f (z) = zpP (z)g(z),
where P is a canonical product displaying the zeros of f , p is nonnegative integer,
g is non-zero and both P and g are analytic and of ρ∞-order at most ρ∞ [f ].

Some other applications of the concept of ρ∞-order such as logarithmic deriva-
tive estimates can be found in [4].

The proof of Theorem 8 relies on the inequality s ≥ [ν] + 1. Since the theorem is
not applicable for Blaschke products one may ask what are relations between zero
distribution of a Blaschke product and its ρ∞-order.

Here we prove the following Carleson-type result. Let

S(ϕ, δ) = {ρeiθ ∈ D : ρ ≥ 1 − δ,−πδ < θ − ϕ ≤ πδ}

be the Carleson square based on the arc [ei(ϕ−πδ), ei(ϕ+πδ)].

Theorem 10 Let Z be a sequence in D such that
∑
zk∈Z(1 − |zk|)s+1 < + ∞ for

some nonnegative integer s, Ps(z) = P(z,Z, s).
(i) Let γ ∈ (0, s + 1]. If

∑
zn∈S(ϕ,δ)

(
1 − |zn|)s+1 ≤ C1δ

γ , δ ∈ (0,1), (18)

for some constant C1 independent of ϕ and δ, then for all p ≥ 1

mp
(
r, log |Ps |)≤

{
C2(1 − r)γ−s−1(log 1

1−r + 1), γ ∈ (0, s + 1);
C2(log2(1 − r)+ 1), γ = s + 1.

(19)
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(ii) If s = 0, and for all p ≥ 1 we have mp(r, log |B|) ≤ K(1 − r)1−γ for some
constant K independent of p and r and γ ∈ (0,1], then (18) holds.

For a Blaschke product we define λ(ϕ, r) =∑
zk∈ZB∩S(ϕ, 1−r

2 )
(1 − |zk|).

Corollary 2 Let B be a Blaschke product. Set

t[B] = sup
{
γ ≥ 0 : max

ϕ
λ(ϕ, r) = O((1 − r)γ )}.

Then ρ∞ [B] = 1 − t[B].

Corollary 3 If B is an interpolating Blaschke product, then mp(r, log |B|) ≤
C(log2 1

1−r + 1) for all p ≥ 1.

5 Proof of Theorem 10

We start with proving (i). We write Em(reiϕ) = S(ϕ, (1 − r)2m−1), m ∈ N,
E0(z) = ∅. So E1(re

iϕ) = S(ϕ,1 − r), and Em(re
iϕ) = D for m ≥ m(r) =

[log2
1

1−r ].

Lemma 1 Let Z be a sequence in D such that
∑
zk∈Z(1 − |zk|)s+1 < ∞. Suppose

that for some K and γ ∈ (0, s + 1] condition (18) holds. Then

∞∑
k=1

∣∣∣∣1 − |zk|2

1 − zz̄k
∣∣∣∣
s+1

≤
{

C3
(1−|z|)s+1−γ , γ ∈ (0, s + 1),

C3 log 1
1−|z| , γ = s + 1,

z ∈ D

for some constant C3 = C3(s, γ ) > 0.

Proof of the lemma It is easy to see that |1 − rρkei(ϕ−θk)| ≥ C4(1 − r)2m for zk =
ρke

iθk ∈ D \Em with some absolute constant C4. Then

∑
k

(1 − |zk|2)s+1

|1 − reiϕz̄k|s+1
=
m(r)∑
m=1

∑
zk∈Em\Em−1

(1 − ρ2
k )
s+1

|1 − rρei(ϕ−θk)|

≤ 2s+1

(C4(1 − r)2m−1)s+1

∑
z∈Em

(1 − ρk)s+1

≤ 4s+1

(C4(1 − r))s+1

m(r)∑
m=1

C1((1 − r)2m)γ
2m(s+1)

≤ C5(s)

(1 − r)s+1−γ
m(r)∑
m=1

2m(γ−s−1).
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The last sum is bounded by a constant depending on γ and s for γ ∈ (0, s + 1), and
equals m(r) in the case γ = s + 1. This implies the assertion of the lemma. �

We shall need some known results.

Theorem 11 (See [20, Theorem V.24, p. 222; Theorem V.25, p. 224]) For the
canonical product Ps(z)

log+∣∣Ps(z)∣∣≤ C6(s)
∑
m

∣∣∣∣1 − |zm|2

1 − zz̄m
∣∣∣∣
s+1

, z ∈ D,
∑
m

(
1 − |zm|)= + ∞; (20)

if Dm denotes the disc D(zm, (1 − |zm|2)s+4) then

log+ 1

|Ps(z)| ≤ K log
1

1 − |z|
∑
m

∣∣∣∣1 − |zm|2

1 − zz̄m
∣∣∣∣
s+1

,
1

2
≤ |z| < 1, z �∈

⋃
m

Dm. (21)

We first suppose that γ < s + 1. Then, let s ∈ N. We have to prove that

∫ 2π

0

∣∣log
∣∣Ps(reiθ )∣∣∣∣p dθ ≤ Cp7

logp 1
1−r

(1 − r)p(s+1−γ ) . (22)

We deal with the integral in (22) by covering the range of integration by [π/(1 −
r)] + 1 intervals of the form [τ + r − 1, τ + 1 − r] for τ = 2k(1 − r) and k ∈
{0, . . . , [π/(1 − r)]}, showing that

∫ τ+1−r

τ+r−1

∣∣log
∣∣Ps(reiθ )∣∣∣∣p dθ ≤ Cp8 (1 − r)−p(s+1−γ )+1 logp

1

1 − r (23)

for each τ , where the constant C8 is independent of τ . For convenience and with-
out loss of generality, we may suppose that τ = 0 and 3

4 ≤ |zm| < 1. For given
r , let γr = {z = reiθ : r − 1 ≤ θ ≤ 1 − r}, and F(r) = {m : Dm ∩ γr �= ∅}, where
Dm are the exceptional discs of Theorem 11. From the definition of the discs
Dm and assumptions on (zm) it follows that 1 − 4−3 ≤ 1−r

1−|zm| ≤ 1 + 4−3. Hence∑
zm∈F(r)(1 − |zm|)s+1 ≥ (1−r)s+1

2s+1 |F(r)|, where |F(r)| denotes the number of ele-
ments in the set F(r). Thus, by (18), we have

∣∣F(r)∣∣≤ C9(1 − r)γ−1−s . (24)
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We consider the factorization Ps = B1B2B3, where

B1(z) =
∏

m �∈F(r)
E

(
1 − |zm|2

1 − z̄mz , s
)
,

B2(z) =
∏

m∈F(r)
exp

s∑
j=1

1

j

(
1 − |zm|2

1 − zz̄m
)j
,

B3(z) =
∏

m∈F(r)

(
1 − 1 − |zm|2

1 − zz̄m
)

=
∏

m∈F(r)

(
z̄m(zm − z)

1 − zz̄m
)
.

First we note that Theorem 11 and Lemma 1 give

∫ 1−r

r−1

∣∣log
∣∣B1
(
reiθ
)∣∣∣∣pdθ ≤

∫ 1−r

r−1
C
p

10 logp
1

1 − r
(∑
m

∣∣∣∣ 1 − |zm|2

1 − reiθ z̄m
∣∣∣∣
s+1)p

dθ

≤ Cp10 logp
1

1 − r
1

(1 − r)p(s+1−γ ) 2(1 − r)

= C
p

11(s, γ ) logp 1
1−r

(1 − r)p(s+1−γ )−1
. (25)

Next, the inequality |1 − zz̄m| > 1
2 (1 − |zm|2) yields

∣∣log
∣∣B2(z)

∣∣∣∣< ∑
m∈F(r)

s∑
j=1

1

j

∣∣∣∣1 − |zm|2

1 − zz̄m
∣∣∣∣
j

≤ C12
∣∣F(r)∣∣.

Hence (24) implies

∫ 1−r

r−1

∣∣log
∣∣B2
(
reiθ
)∣∣∣∣pdθ ≤ Cp13(1 − r)1−p(s+1−γ ). (26)

Finally, in [16, p. 124] it is proved that

∫ 1−r

r−1

∣∣log
∣∣B3
(
reiθ
)∣∣∣∣pdθ ≤ C14

∣∣F(r)∣∣p(1 − r). (27)

Inequality (23) now follows from (25)–(27).
In the case s = 0 the only difference in the proof is that there is no product B2,

and |B1(z)| ≤ (∏m |zm|)−1.
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We now suppose that γ = s + 1. In this case |F(r)| is bounded uniformly in r .
Instead of (25), using Lemma 1, we obtain

∫ 1−r

r−1

∣∣log
∣∣B1
(
reiθ
)∣∣∣∣pdθ ≤

∫ 1−r

r−1
C
p

10 logp
1

1 − r
(∑
m

∣∣∣∣ 1 − |zm|2

1 − reiθ z̄m
∣∣∣∣
s+1)p

dθ

≤ 2Cp10 log2p 1

1 − r (1 − r). (28)

Hence, mp(r, log|Ps |) = O(log2(1 − r)) as r ↑ 1.
We now prove (ii). Consider the function

K(z, ζ ) = 1

1 − |ζ | log

∣∣∣∣1 − zζ̄
z − ζ

∣∣∣∣, z ∈ D, ζ ∈ D.

This function has many nice properties. It is nonnegative. Moreover (ζ = ρeiθ , z =
reiϕ),

K(z, ζ ) = 1

2(1 − ρ) log

(
1 + (1 − r2)(1 − ρ2)

r2 − 2rρ cos(ϕ − θ)+ ρ2

)
, (29)

and therefore

lim
ρ↑1
K
(
z,ρeiθ

)= 1 − |z|2

|eiθ − z|2
.

We need the following property:

∣∣K(z, ζ )∣∣≥ 1

12

1 − |z|2

|z − ζ |2
, 1 − |ζ | ≤ 1

2

(
1 − |z|). (30)

Indeed, since log(1 + x) ≥ x
1+x , x ∈ (0,1), using (29), we deduce that

∣∣K(z, ζ )∣∣≥ 1 + ρ
2

1 − r2

|z − ζ |2

1

1 + (1−r2)(1−ρ2)

|z−ζ |2

. (31)

The condition 1 − |ζ | ≤ 1
2 (1 − |z|) yields |ζ | ≥ 1

2 , and

|z − ζ | ≥ 1 − |z| − (1 − |ζ |)≥ 1 − |z|
2

.

Therefore

1 + ρ
2

1 − r2

|z − ζ |2

1

1 + (1−r2)(1−ρ2)

|z−ζ |2

≥ 3

2

1

1 + 1−ρ2

1−r 4(1 + r)
≥ 3

4

1

1 + 2(1 + ρ)(1 + r) ≥ 1

12
.

Inequality (30) is proved.
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Then we can write log|B(z)| = −∑zk∈Z K(z, zk)(1 − |zk|)+∑k log|zk|.
Using (30), we obtain
∣∣log
∣∣B(reiθ )∣∣∣∣

≥
∑

zk∈S(ϕ, 1−r
2 )

K
(
reiϕ, ζ

)(
1 − |zk|)≥ 1

12

∑
zk∈S(ϕ, 1−r

2 )

(1 − r2)(1 − |zk|)
|reiϕ − zk|2

.

Elementary geometric arguments show that |reiϕ −ρeiθ | ≤ |reiϕ − eiθ | for 1> ρ ≥
r ≥ 0. It then follows that

∣∣log
∣∣B(reiθ )∣∣∣∣ ≥ 1

12

∑
zk∈S(ϕ, 1−r

2 )

(1 − r2)(1 − |zk|)
|reiϕ − eiθ |2

≥ 1

3(π
2

4 + 1)

1 − r2

(1 − r)2
∑

zk∈S(ϕ, 1−r
2 )

(
1 − |zk|)

≥
∑
zk∈S(ϕ, 1−r

2 )
(1 − |zk|)

3(π
2

4 + 1)(1 − r)
.

Recall that λ(ϕ, r) = ∑
zk∈S(ϕ, 1−r

2 )
(1 − |zk|). From the definition of S(ϕ, δ) it fol-

lows that for fixed r the function λ(ϕ, r) is piecewise constant and continuous
from the right. Therefore it attains its maximum on some interval [ϕ1(r), ϕ2(r)),
ϕ2(r) > ϕ1(r). By the assumption of the theorem we deduce that

C1

(1 − r)1−γ ≥
(∫ 2π

0

∣∣log
∣∣B(reiϕ)∣∣∣∣p dϕ

) 1
p ≥ C15

(
∫ 2π

0 (λ(ϕ, r))p dϕ)
1
p

1 − r .

Hence

max
ϕ
λ(ϕ, r)

(
ϕ2(r)− ϕ1(r)

) 1
p ≤
(∫ 2π

0
λp(ϕ, r) dϕ

) 1
p ≤ C1

C15
(1 − r)γ .

Letting p → ∞ we obtain the assertion of (ii).
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Hardy Means of a Finite Blaschke Product
and Its Derivative

Alan Gluchoff and Frederick Hartmann

Abstract In this chapter we consider several topics related to finite Blaschke prod-
ucts Bn(z) = ∏nk=1

zk−z
1−zkz in the unit disc of the complex plane and their Hardy

means Mp
p (r,B) = 1

2π

∫ 2π
0 |B(reiθ )|pdθ . We discuss two explicit formulae for

1 − M2
2 (r,B): when B has distinct zeroes or a single zero repeated n times.

We relate the growth of the means M2
2 (r,B) and M2

2 (r,B
′) to “sampling means”∑n

k=1 |B(rzk)|(1 − |zk|2) and
∑n
k=1 |B ′(rzk)|(1 − |zk|2). It is shown, for products

of degree two and three, that if the zeroes lie on the circle of radius |z| = ρ < 1
with constant angle φ between successive zeroes, then 1 − M2

2 (r,B) is an increas-
ing function of φ. We conjecture that this holds true for products of arbitrary finite
degree.

Keywords Mean modulus · Blaschke products

Mathematics Subject Classification Primary 30C45 · Secondary 30C10 · 30D50

1 Introduction

Let D = {z : |z| < 1} be the unit disc of the complex plane C, and let zk ∈ D, k =
1, . . . , n, n ≥ 1. Then

Bn(z) =
n∏
k=1

zk − z
1 − zkz
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is the finite Blaschke product with zero set {zk}nk=1. For 0< p < ∞ and 0< r < 1
the Hardy p-mean is defined for f analytic in D by

Mp(r,f ) =
(

1

2π

∫ 2π

0

∣∣f (reiθ )∣∣pdθ
)1/p

,

and Hp is the space of all f analytic in D for which sup0<r<1Mp(r,f ) < ∞.
We recall that H∞ is the space of all bounded analytic functions in D with
‖f ‖ ∞ = supz∈D |f (z)|. We further define for any Bn(z) the quantities Δ1(r,Bn) =
1 − M1(r,Bn) and Δ2(r,Bn) = 1 − M2

2 (r,Bn). By the properties of the Hardy
means and Blaschke products it follows that Δ1(r,Bn) and Δ2(r,Bn) are decreas-
ing functions of r and limr→1Δ1(r,Bn) = limr→1Δ2(r,Bn) = 0; also we have
Δ1(r,Bn) ≤ Δ2(r,Bn) ≤ 2Δ1(r,Bn) for all r , 0< r < 1.

In this paper we investigate various problems related to Δk(r,Bn), k = 1,2 and
M1(r,B

′
n). In [5] an explicit formula for Δ2(r,Bn) in terms of r and {zk}nk=1, was

given in the case of distinct {zk}, zk �= 0 for all k. In Sect. 2 of this paper some further
comments on this expression are given and it is related to an identity of Sylvester.
A new formula for Δ2(r,Bn) in the case of repeated zeroes (zk = ρeiφ , for all k, for
fixed 0< ρ < 1 and 0 ≤ φ ≤ 2π ) is derived. In the third section we relate the quanti-
ties Δ1(r,Bn) andM1(r,B

′
n) to the corresponding means

∑n
k=1 |Bn(rzk)|(1 − |zk|)

and
∑n
k=1 |B ′

n(rzk)|(1 − |zk|) respectively, and show how these corresponding quan-
tities compare in growth for 0< r < 1. Thus the rate of growth of |Bn| and |B ′

n| on
circles {z : |z| = r} is related to their growth on {rzk}nk=1, 0 < r < 1; the means
Δ1(r,Bn) and M1(r,B

′
n) are thus compared with what might be called “sampling

means” on {rzk}nk=1. The proofs of these comparisons use the formulae of Sect. 2.
In the fourth section we compare, for fixed r ,Δ2(r,Bn) for Bn with zeroes on {z :

|z| = ρ} both with repeated zeroes, zk = ρeiφ , k = 1, . . . , n and for equally spaced
zeroes, zk = ρei[φ+2πk/n], k = 1, . . . , n. This comparison also uses the formulae
developed in Sect. 2. In spite of the availability of expressions for these quantities,
comparison of the means proves quite difficult, and results are proved for products
of low degree which suggest a conjecture for higher degree products.

We conclude this section by noting that in the 1980’s there was interest in
Δ2(r,B) and M1(r,B

′) for an infinite Blaschke product B; (see [3, 4]) in these
papers the rate at which Δ2(r,B) approaches zero was related to the distributional
properties of the zeroes and their rate of approach to the boundary of D. Results
were obtained for products with zeroes on a radial axis and also for interpolating
Blaschke products. Finite products present challenges of a different nature.

2 Derivations of Formulae for Δ2(r,Bn)

In this section we record a previously proved expression for Δ2(r,Bn) where Bn
has distinct zeroes and derive a new expression forΔ2(r,Bn) where Bn has repeated
zeroes.
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Theorem 1 Let

Bn(z) =
n∏
k=1

zk − z
1 − zkz ,

where 0< |zk| < 1 for k = 1,2, . . . , n, zk �= zj if k �= j , z = reiθ , 0< r < 1. Then

Δ2(r,Bn) =
n∑
k=1

(1 − r2)(1 − |zk|2)

1 − r2 |zk|2

n∏
j �=k
j=1

zj − r2zk

1 − zj r2zk

/
n∏
j �=k
j=1

zj − zk
1 − zj zk .

Proof This result was proved by the first author in [5]. �

Remark 1 An elementary but lengthy proof of this theorem follows from the identity

∣∣∣∣ zk − z
1 − zkz

∣∣∣∣
2

= r2
k − 2rrk cos(θ − θk)+ r2

1 − 2rrk cos(θ − θk)+ r2rk2

(where zk = rke
iθk ) and the standard residue theorem substitutions cos(θ) = 1

2 (z +
z−1), sin(θ) = 1

2i (z − z−1). We omit the details.

Remark 2 Letting r → 0 in Theorem 1 gives

1 −
n∏
k=1

|zk|2 =
n∑
k=1

(
1 − |zk|2) n∏

j �=k
j=1

(
1 − zj zk
zj − zk

)
zj .

By choosing zk = y1/2
k eiθk for arbitrary 0< yk < 1, θk ∈ R we obtain

1 −
n∏
k=1

yk =
n∑
k=1

(1 − yk)
n∏
j �=k
j=1

y
1/2
j eiθj − yjy1/2

k eiθk

y
1/2
j eiθj − y1/2

k eiθk
.

This is a special case of Sylvester’s identity [1, p. 132, (2.1)]

1 −
n∏
k=1

yk =
n∑
k=1

(1 − yk)
n∏
j �=k
j=1

1 − xjyj /xk
1 − xj/xk

with xk = [y1/2
k eiθk ]−1.

Theorem 2 If zk = ρei(2πk/n), n ≥ 2, k = 1,2, . . . , n, 0< ρ < 1, 0< r < 1, then

Δ2(r,Bn) = (1 − r2n)(1 − ρ2n)

1 − r2nρ2n
.
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Proof This follows by substitution in Theorem 1 and some elementary manipula-
tions. Also since in this case Bn(z) = (zn − ρn)/(1 − ρnzn), [M2(r,Bn)]2 can be
evaluated directly. �

Theorem 3 Let

Bn(z) =
[
z − ρeiφ

1 − ρe−iφz

]n
, 0< ρ < 1, n ≥ 2.

Then Δ2(r,Bn) = (1 − r2)(1 − ρ2)/(1 − r2ρ2)2n−1S, where

S =
n−1∑

k1 +k2 +k3 =0
ki≥0

(−1)k3

[(
n

k1

)(
1 − r2)n−k1 −1(

r2)k2

]

·
[(
n

k2

)(
1 − ρ2)n−k2 −1(

ρ2)k2

]

·
[(
n+ k3 − 1

k3

)(
1 − r2ρ2)n−k3 −1(

r2ρ2)k3

]
.

Proof Without loss of generality we may take φ = 0. Then by [5] we have

∫ 2π

0

∣∣Bn(reiθ )∣∣2 dθ
2π

= 1

2πi

∫
|z|=1

Bn(r
2z)

zBn(z)
dz

= Resz=0
Bn(r

2z)

zBn(z)
+ Resz=ρ

Bn(r
2z)

zBn(z)

= 1 + 1

(n− 1)!
d(n−1)

dz(n−1)

[(
r2z − ρ)n(1 − ρz)n(1 − ρr2z

)−n
z−1]∣∣

z=ρ.

Thus,

Δ2(r,Bn) = −1

(n− 1)!
[ ∑
k1 +k2 +k3 +k4 =n−1

(n− 1)!f
(k1)
1

k1 !
f
(k2)
2

k2 !
f
(k3)
3

k3 !
f
(k4)
4

k4 !
]
,

where f1(z) = (r2z − ρ)n, f2(z) = (1 − ρz)n, f3(z) = (1 − ρr2z)−n, f4(z) = z−1.
Calculation of the derivatives of the fk’s show that

Δ2(r,Bn)

= −
∑

k1 +k2 +k3 +k4 =n−1

[
n!(r2ρ − ρ)n−k1r2k1

(n− k1)!k1 ! · n!(1 − ρ2)n−k2(−1)k2ρk2

(n− k2)!k2 !
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· (n+ k3 − 1)!(1 − ρ2r2)−n−k3ρk3r2k3

(n− 1)!k3 ! · (−1)k4k4 !ρ−k4 −1

k4 !
]

= −
∑

k1 +k2 +k3 +k4 =n−1

(−1)k3 +1
[(
n

k1

)(
n

k2

)(
n+ k3 − 1

k3

)

· (1 − r2)n−k1(1 − ρ2)n−k2

(1 − r2ρ2)n+k3
ρ2(k2 +k3)r2(k1 +k3)

]

=
n−1∑

k1 +k2 +k3 =0

(−1)k3

[(
n

k1

)(
n

k2

)(
n+ k3 − 1

k3

)

· (1 − r2)n−k1(1 − ρ2)n−k2

(1 − r2ρ2)n+k3
ρ2(k2 +k3)r2(k1 +k3)

]

= (1 − r2)(1 − ρ2)

(1 − r2ρ2)2n−1
· S,

where

S =
n−1∑

k1 +k2 +k3 =0
ki≥0

(−1)k3

[(
n

k1

)(
1 − r2)n−k1 −1(

r2)k2

]

·
[(
n

k2

)(
1 − ρ2)n−k2 −1(

ρ2)k2

]

·
[(
n+ k3 − 1

k3

)(
1 − r2ρ2)n−k3 −1(

r2ρ2)k3

]
.

�

Remark 3 It follows from this identity that Δ2(r,Bn) is symmetric in r and ρ.

3 Comparison of Hardy and Sampling Means

Carleson’s interpolation Theorem [2, p. 149] has focused attention on the
comparison of the growth of f in Hp with f in Ap(μ) = {f analytic in D :
(
∫

|z|<1 |f (z)|pdμ(z))1/p} = ‖f ‖p(μ) < ∞, where μ is a finite measure on D. In
particular, necessary and sufficient conditions guaranteeing a continuous inclusion
of either Hp ⊂ Ap(dμ) or Ap(dμ) ⊂ Hp have been investigated, see [6] for a
recent survey of results. Particular attention was paid to the measures of the form
μ(zk) = 1 − |zk| where {zk} is a uniformly separated sequence, i.e., there is a con-
stant δ > 0 for which infk

∏∞
j=1,j �=k | zk−zj

1−zj zk | ≥ δ.
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In this section we show how as r → 1 the rate of decay of Δ1(r,Bn) com-
pares with

∑n
k=1 |Bn(rzk)|(1 − |zk|) and how, similarly, the rate of growth of∫ 2π

0 |B ′
n(re

iθ )| dθ2π compares with
∑n
k=1 |B ′

n(rzk)|(1 − |zk|). Thus for these Blaschke
products we see how the Hardy means compare with the means sampled along the
set {rzk,0< r < 1}, where {zk}∞

k=1 is the zero set for the product.
We need the following lemma.

Lemma 1 Let f ∈ Hp , 0 < p < ∞, and ‖f ‖p = 1. Then for any α > 0 there
are constants c0(α), c1(α) > 0 such that, for all r , 0 < r < 1 we have c0(α)(1 −
Mp(r

α, f )) ≤ 1 −Mp(r,f ) ≤ c1(α)(1 −Mp(rα, f )).

Proof If α = 1 then there is nothing to prove, so assume 0 < α < 1. By Hardy’s
convexity theorem [2, p. 9] logMp(r,f ) is a convex function of log r ; it follows
that logMp(et , f ) is also convex on −∞ < t < 0, hence Mp(et , f ) is convex on
−∞ < t < 0. Thus if 0 < r1 < r2 < 1 we have Mp(rα1 r

1−α
2 , f ) ≤ αMp(r1, f ) +

(1 − α)Mp(r2, f ), thus 1 − Mp(r
α
1 r

1−α
2 ) ≥ α + (1 − α) − αMp(r1, f ) − (1 −

α)Mp(r2, f ) = α(1 − Mp(r1, f )) + (1 − α)(1 − Mp(r2, f )). Letting r2 → 1 gives
the inequality in one direction; the other direction follows with c0 = 1 since
Mp(r,f ) is non-decreasing. The case α > 1 follows from the case α < 1 in the
obvious way. �

Theorem 4 Let Bn(z) =∏nk=1
zk−z

1−zkz (zk �= 0 for all k, zk distinct). Then there are
constants c0, c1 > 0 depending only on {zk}nk=1 for which

c0

n∑
k=1

∣∣B ′
n(rzk)

∣∣(1 − |zk|) ≤
∫ 2π

0

∣∣B ′
n

(
reiθ
)∣∣ dθ

2π

≤ c1
1

1 − r
∫ 1

r

n∑
k=1

∣∣B ′(tzk)
∣∣(1 − |zk|)dt (1)

for all r , 0< r < 1.

Proof Since for a fixed r , 0 < r < 1, we have B ′
n(rz) ∈ H 1, then by Carleson’s

Theorem there is a constant c0 > 0 for which c0
∑n
k=1 |B ′

n(rzk)|(1 − |zk|) ≤∫ 2π
0 |B ′

n(re
iθ )| dθ2π for all r , 0 < r < 1. For the other direction, recall that for

f ∈ H∞, ‖f ‖ ∞ = 1 we have |f ′(z)| ≤ 1−|f (z)|2

1−|z|2 , thus, for a fixed r , 0< r < 1, we

have
∫ 2π

0 |B ′
n(re

iθ )| dθ2π ≤ Δ2(r,Bn)

1−r2 ≤ c
Δ2(r

1/2,Bn)

1−r2 by Lemma 1. But by the residue

calculation in [5] we have Δ2(r
1/2,Bn)

1−r2 = 1
1−r2

∑n
k=1

Bn(rzk)(1−|zk |2)

zk
∏n
j=1,j �=k

zj−zk
1−zj zk

. By the Funda-

mental Theorem of Calculus Bn(zk) −Bn(rzk) = ∫ zk
rzk
B ′
n(z)dz, hence −Bn(rzk) =
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∫ 1
r
B ′
n(tzk)zkdt , so |Bn(rzk)| ≤ ∫ 1

r
|B ′
n(tzk)||zk|dt . Putting this together we have

∫ 2π

0

∣∣B ′
n

(
reiθ
)∣∣ dθ

2π
≤ cΔ2(r

1/2,Bn)

1 − r2
≤ c

1 − r2

n∑
k=1

|Bn(rzk)|(1 − |zk|2)

|zk|∏nj=1,j �=k | zj−zk
1−zj zk |

≤ c

1 − r2

n∑
k=1

(
∫ 1
r

|B ′
n(tzk)|dt)(1 − |zk|2)

|zk|∏nj=1,j �=k | zj−zk
1−zj zk |

≤ 2c

δ(1 − r)
∫ 1

r

n∑
k=1

∣∣B ′
n(tzk)

∣∣(1 − |zk|)dt,

where δ = mink[|zk|∏nj=1,j �=k | zj−zk
1−zj zk |]. This is the required result with c1 = 2c

δ
. �

For Bn itself we have the following:

Theorem 5 Let Bn(z) = ∏nk=1
zk−z

1−zj zk , zk �= 0, for all k, zk distinct, then there

are constants c0, c1 > 0 depending only on {zk}nk=1 such that c0 Δ1(r,Bn) ≤∑n
k=1 |Bn(rzk)|(1 − |zk|) ≤ c1

∫ 1
r
Δ1(t,Bn)dt

1−t for all r , 0< r < 1.

Proof As in the previous theorem, Δ1(r,Bn) < Δ2(r,Bn) ≤ c Δ2(r
1/2,Bn) =

c|∑n
k=1

Bn(rzk)(1−|zk |2)

zk
∏n
j=1,j �=k

zk−zj
1−zj zk

| ≤ 2c
δ

∑n
k=1 |Bn(rzk)|(1 − |zk|), giving the first inequal-

ity with c0 = δ/2c.
For the other direction Bn(zk) − Bn(rzk) = ∫ 1

r
B ′
n(tzk)zk dt , thus |Bn(rzk)| ≤∫ 1

r
|B ′
n(tzk)| dt , hence the Carleson theorem again gives c∗

0

∑n
k=1 |B ′

n(rzk)|(1 −
|zk|) ≤ ∫ 2π

0 |B ′
n(re

iθ ) dθ2π ≤ Δ2(r,Bn)

1−r2 , thus

n∑
k=1

∣∣Bn(rzk)∣∣(1 − |zk|) ≤
n∑
k=1

(∫ 1

r

∣∣B ′
n(tzk)

∣∣ dt
)(

1 − |zk|)

=
∫ 1

r

n∑
k=1

∣∣B ′
n(tzk)

∣∣(1 − |zk|)dt

≤ 1

c∗
0

∫ 1

r

Δ2(t,Bn)

1 − t2 dt ≤ 2

c∗
0

∫ 1

r

Δ1(t,Bn)

1 − t dt.

This is the second inequality with c1 = 2/c∗
0 . �

Theorem 5 can be generalized as follows:

Theorem 6 Let Bn(z) be a Blaschke product, α ∈ D be such that Sα = {wk : wk ∈
B−1
n (α)} has distinct values. Then there are constants c0, c1 > 0 depending only on
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Sα and α for which

c0Δ1(r,Bn − α) ≤
n∑
k=1

∣∣Bn(rwk)− α∣∣(1 − |wk|)

≤ c1

∫ 1

r

Δ1(t,Bn − α)
1 − t dt, for all r, 0< r < 1.

Proof Define Bα(z) = α−Bn(z)
1−αBn(z) , then Bα is a finite Blaschke product with distinct

zeroes at {wk}nk=1. By a well-known identity [2, p. 150] we have 1 − |Bα(z)|2 =
[ 1−|α|2

1−αBn(z)2 ](1 − |Bn(z)|2). By applying Theorem 5 to Bα(z) and using the identity
together with standard bounds the result follows. �

Remark 4 In Theorem 4 the term on the extreme right is an average of∑n
k=1 |B ′

n(tzk)|(1 − |zk|) over the interval [r − 1,1], hence there is a “rough propor-
tionality” of the quantity M1(r,B

′
n) and

∑n
k=1 |B ′

n(tzk)|(1 − |zk|). The quantity on
the extreme right in the statement of Theorem 5 exceeds the average of Δ1(t,Bn)

over the same interval, so the bound is in a sense weaker than that of Theorem 4.

4 Location of Zeroes

In this section we study the effect of the location of the zeroes, zk = ρeiφk , zk in the
unit disk, on the mean modulus of the Blaschke product. We are able to obtain results
only in the cases of two or three zeroes, and even these cases involve considerable
complexities. Let for z, zk in the unit disk,

Bn
(
z, {zk}) :=

n∏
k=1

zk − z
1 − zkz , Δ2(r,Bn) := 1 − 1

2π

∫ 2π

0

∣∣Bn(reiθ , {zk})∣∣2 dθ.
(2)

In [5] the following formula for Δ2 was derived:

Δ2(r,Bn) =
n∑
k=1

(1 − r2)(1 − |zk|2)

1 − r2 |zk|2

∏
j �=k

zj−r2zk

1−zj r2zk∏
j �=k

zj−zk
1−zj zk

. (3)

We use the following notations for a Blaschke product in which there is one repeated
zero, ρ, of multiplicity n:

B∗
n(z) = Bn

(
z, {ρ,ρ, . . . , ρ})=

(
ρ − z
1 − ρz

)n
(4)

for the Blaschke product in which there is a repeated zero ρ > 0 of multiplicity n,
and

B∗∗
n (z) = Bn

(
z,
{
ρei(2πk)/n : k = 1, . . . , n

})
, (5)
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for the Blaschke product when there are n zeroes evenly distributed around the circle
of radius ρ.

By Theorems 2 and 3 we have

Δ2
(
r,B∗

n

)=
n−1∑

k1 +k2 +k3 =0, ki≥0

(−1)k3

(
n

k1

)(
n

k2

)(
n+ k3 − 1

k3

)

·
[
(1 − r2)n−k1(1 − ρ2)n−k2

(1 − r2ρ2)n+k3

]
· ρ2(k2 +k3)r2(k1 +k3) and (6)

Δ2
(
r,B∗∗

n

)= (1 − r2n)(1 − ρ2n)

1 − r2nρ2n
.

For the case n = 2 we have: (Note: In the following the computer algebra system
Maple 14 was used to simplify complicated algebraic expressions).

Theorem 7 For B∗∗
2 and B∗

2 as above, Δ2(r,B
∗∗
2 ) > Δ2(r,B

∗
2 ) for 0< r < 1.

Proof From (7) and (6) one has:

Δ2
(
r,B2

∗∗)= (1 − r4)(1 − ρ4)

1 − r4ρ4
(7)

and the case of a repeated zero at ρ, i.e., z1 = z2 = ρ

Δ2
(
r,B2

∗)= (1 − ρ2)(1 − r2)(1 + ρ2 + r2 + r4ρ2 − 6r2ρ2 + r2ρ4 + r4ρ4)

(1 − r2ρ2)3
.

(8)

Thus

Δ2
(
r,B2

∗∗)−Δ2
(
r,B2

∗)= 4r2ρ2(1 − ρ2)2(1 − r2)2

(1 − r2ρ2)3(1 + r2ρ2)
> 0. (9)

�

Remark 5 In this result and in Theorem 9 we have an explicit expression for
Δ2(r,Bn

∗∗)−Δ2(r,Bn
∗). A stronger result is obtained for a Blaschke product when

the two zeroes are located anywhere on the circle of radius ρ (without loss of gen-
erality they may be conjugate roots).

Theorem 8 For 0< r < 1, Δ2(r,B2(z, {ρeiφ, ρe−iφ})) is an increasing function of
φ with

Δ2
(
r,B2

∗)≤ Δ2
(
r,B2

(
z,
{
ρeiφ, ρe−iφ}))≤ Δ2

(
r,B2

∗∗), 0 ≤ φ ≤ π

2
.
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Proof From (1) with z1 = ρeiφ , z2 = ρe−iφ one has

Δ2
(
r,B2

(
z,
{
ρeiφ, ρe−iφ}))

= (1 − 8r2ρ2 cos2(φ)+ r2 + r4ρ2 + 2r2ρ2 + ρ2 + r2ρ4 + r4ρ4)

(1 − 4r2ρ2 cos2(φ)+ 2r2ρ2 + r4ρ4)(1 − r2ρ2)

× (1 − r2 − ρ2 + r2ρ2). (10)

Note that

Δ2
(
r,B2

(
z,
{
ρei0, ρe−i0})) = Δ2

(
r,B2

∗),
Δ2
(
r,B2

(
z,
{
ρei

π
2 , ρe−i π2 })) = Δ2

(
r,B∗∗

2

)
.

The derivative of (10) with respect to φ yields:

d

dφ
Δ2
(
r,B2

(
z,
{
ρeiφ, ρe−iφ}))

= 8r2ρ2 sin(φ) cos(φ)(1 − ρ2)2(1 − r2)2(1 + r2ρ2)

(1 − r2ρ2)(4r2ρ2 cos2(φ)− (1 + r2ρ2)2)
(11)

and henceΔ2(r,B2(z, {ρeiφ, ρe−iφ})) has endpoint minima at φ = 0, π and a max-
imum at φ = π/2. This gives the desired result. �

The analogous result for a Blaschke product with three zeroes are contained in
Theorems 9 and 10. The following are the expressions for a zero of multiplicity
three:

Δ2
(
r,B∗

3

)= (1 − r2)(1 − ρ2)μ(r, ρ)

(1 − r2ρ2)5
, (12)

where

μ(r,ρ) := ρ8r4 + r8ρ8 + ρ8r6 − 4 r6ρ6 − 13ρ6r4

+ 4ρ6r2 + ρ6r8 − 13ρ4r6 + 42ρ4r4

− 13ρ4r2 + ρ4 + r8ρ4 + 4 r6ρ2 − 13ρ2r4

− 4ρ2r2 + ρ2 + r4 + r2 + 1,

and the expression for three equally separated zeroes

Δ2
(
r,B∗∗

3

)= (1 − r6)(1 − ρ6)

(1 − r6ρ6)
. (13)

Theorem 9 For 0< r < 1, Δ2(r,B
∗∗
3 ) > Δ2(r,B

∗
3 ).
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Proof A straightforward, but tedious calculation, gives

Δ2
(
r,B∗∗

3

)−Δ2
(
r,B∗

3

)

= 9
r2ρ2(1 − r2)2(1 − ρ2)2(r6ρ4 + r4ρ6 − 2r4ρ4 − 2r2ρ2 + r2 + ρ2)

((1 + r2ρ2)2 − r2ρ2)(1 − r2ρ2)5
> 0.

Note that r6ρ4 + r4ρ6 − 2r4ρ4 − 2r2ρ2 + r2 + ρ2 can be shown to be positive
by elementary calculus. We omit the details. �

Let z1 = ρ, z2 = ρeiφ , z3 = z2 = ρe−iφ . Then one can show, using (13),

Δ2
(
r,B3

(
z, {z1, z2, z3 }))= (1 − r2)(1 − ρ2)p(r, ρ,φ)

(1 − r2ρ2)q(r, ρ,φ)
, (14)

where p(r,ρ,φ) and q(r, ρ,φ) are polynomials of degree three in cos(φ), namely

p(r,ρ,φ)

= 1 + r2 + ρ2 + 2r2ρ2 + r4 + ρ6r4 + ρ8r4 + ρ8r6 + ρ8r8 + 2ρ6r2 + r8ρ6

+ r8ρ4 + ρ4r2 + 2 r4ρ4 + r4ρ2 + r6ρ4 + 2 r6ρ2 + ρ4 + 2 r6ρ6

+ (−6ρ4r2 − 6r4ρ2 − 6ρ6r4 + 2ρ6r2 − 2r2ρ2 + 2r6ρ2 − 6r6ρ4 − 2r6ρ6)
× cos(φ)

+ (−8r6ρ4 + 16r4ρ4 − 8r4ρ2 − 4r6ρ6 − 8ρ4r2 − 4r2ρ2 − 8ρ6r4)(cos(φ)
)2

+ 24r4ρ4(cos(φ)
)3
,

and

q(r, ρ,φ) = ρ8r8 + 2r6ρ6 + 2r4ρ4 + 2r2ρ2 + 1
(−2r6ρ6 − 2r2ρ2 − 4r4ρ4) cos(φ)

+ (−4r2ρ2 − 4r6ρ6)(cos(φ)
)2 + 8r4ρ4(cos(φ)

)3
.

Again we note in the following theorem Maple 14 was used to perform a detailed
analysis of the complicated expressions involved.

Theorem 10 For 0 < r < 1 and B∗
3 , B∗∗

3 , B3(z, {z1, z2, z3 }) as above we have
Δ2(r,B3(z, {z1, z2, z3 })) is an increasing function of φ with Δ2(r,B

∗
3 ) ≤

Δ2(r,B3(z, {z1, z2, z3 })) ≤ Δ2(r,B
∗∗
3 ).

Proof For 0 < r < 1, 0 < ρ < 1, 0 ≤ φ ≤ 2π/3, Δ2(r,B3(z, {z1, z2, z3 })) has a
global maximum at φ = 2π/3 and endpoint local minimum at φ = 0. We find the
numerator of d

dφ
Δ2(r,B3(z, {z1, z2, z3 })) with respect to φ to be

−4ρ2r2(1 − r2)2(1 − ρ2)2(1 + 2 cos(φ)
)

sin(φ)μ(r, ρ,φ), (15)
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where

μ(r,ρ,φ)

= (8 r4ρ4 + 8ρ6r6)(cos(φ)
)3 + (4ρ6r6 − 4 r6ρ4 + 4 r4ρ4 − 4ρ6r4)(cos(φ)

)2
+ (−4ρ6r4 − 4 r6ρ4 − 10ρ6r6 − 2ρ8r6 − 6 r2ρ2 − 6 r8ρ8 − 2ρ4r2

− 2 r8ρ6 − 2ρ2r4 − 10 r4ρ4) cos(φ)+ r10ρ8 + ρ10r8 + r8ρ8 + 3 r8ρ6

+ 3ρ8r6 + 3ρ6r6 + 4 r6ρ4 + 4ρ6r4 + 3 r4ρ4 + 3ρ2r4 + 3ρ4r2

+ r2ρ2 + r2 + ρ2.

Then we have that μ(r,ρ,φ) is a polynomial of degree three in cos(φ), which
vanishes only when r = 0, ρ = 0. The result follows. �

Conjecture 1 Given the results of this section, it is reasonable to offer the following
conjecture: For all n ≥ 2, Δ2(r,Bn(z, {z1, z2, . . . , zn})) is an increasing function of
φ with Δ2(r,B

∗
n) ≤ Δ2(r,Bn(z, {z1, z2, . . . , zn})) ≤ Δ2(r,B

∗∗
n ) where the z′

ks all
lie on the circle of radius ρ, 0< ρ < 1.
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Hyperbolic Derivatives Determine a Function
Uniquely

Line Baribeau

Abstract The notion of hyperbolic derivative for functions from the unit disc to
itself is well known. Recently, Rivard has proposed a definition for higher-order
derivatives. We prove that the sequence of hyperbolic derivatives of order n (n =
0,1,2, . . . ) of a function f determines this function uniquely.

Keywords Hyperbolic derivative · Divided differences

Mathematics Subject Classification Primary 30E05 · 30F45 · Secondary 30C80 ·
30B70

1 Preliminaries

Let D denote the unit disc, and denote by S the Schur class, i.e. the set of holomor-
phic functions from D to D. For f ∈ S, its hyperbolic derivative is defined as

f h(z) := (1 − |z|2)f ′(z)
1 − |f (z)|2

.

This notion is well known. In a recent paper [7], P. Rivard has proposed a defini-
tion for higher-order hyperbolic derivatives. In this note, we prove that the sequence
of the hyperbolic derivatives of all orders of a function f at a point z uniquely de-
termines that function. Hence the hyperbolic derivatives of a function f ∈ S can be
seen as a sort of hyperbolic version of Taylor coefficients.

To understand the definition of higher-order hyperbolic derivatives, we need to
recall the notion of hyperbolic divided differences. Let f ∈ S, and fix z1 ∈ D. The
hyperbolic divided difference with parameter z1 of f , which we denote Δz1f , is
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defined as the function

Δz1f (z) :=
{ [f (z),f (z1)]

[z,z1 ] if f : D → D

η if f ≡ η for some η ∈ ∂D (1)

where we have used the notation

[z,w] := w − z
1 −wz.

It follows easily from the invariant form of the Schwarz lemma that the function
Δz1f also belongs to the class S. Therefore, we can iterate the process and construct,
for distinct parameters z1, z2, . . . , zn, the n-th order hyperbolic divided difference:

Δnz1,z2,...,zn
f (z) := Δzn

(
Δ(n−1)
z1,z2,...,zn−1

(f )
)
(z).

These ideas first appeared in [2], where the authors made definition (1) and stud-
ied Δf using the hyperbolic metric. Higher-order hyperbolic divided differences
were introduced in [1]. The operator Δz1 is a map of S onto itself. It can be used to
characterize finite Blaschke products: f is a Blaschke product of degree ≤ n if and
only if Δnf is a unimodular constant. Hyperbolic divided differences have nice ap-
plications to the Schwarz-Pick interpolation problem. BecauseΔnf takes its values
in the unit disc (when it is not a constant), the distance between its values at dif-
ferent points can be measured using the hyperbolic metric. In conjunction with the
Schwarz-Pick lemma, this can be used to formulate necessary and sufficient condi-
tions on the data for the Schwarz-Pick problem to have a solution. Whereas the stan-
dard criterion is in terms of a matrix being positive semidefinite [4], here one only
has to construct a table of hyperbolic divided differences and check that all entries
are <1. It is then possible to construct the solutions using that table by a simple al-
gorithm. It turns out that this construction corresponds to Schur’s algorithm. Hence
this point of view, using the language of hyperbolic divided differences, shows that
Schur’s algorithm is a hyperbolic version of classical Newton interpolation for poly-
nomials. Further applications can be found in [3].

Hyperbolic derivatives can now be defined from hyperbolic divided differences,
using a limiting process. More precisely, we have:

Definition 1 For f ∈ S and z, ζ ∈ D, set

Δnzf (ζ ) := lim
zn→z

lim
zn−1 →z

· · · lim
z1 →z

Δnz1,...,zn
f (ζ ).

It is shown in [7] that this definition makes sense, and that the operator Δnz so
defined maps S into itself. If Δnzf = η for a unimodular constant η, it follows from
(1) that all subsequent hyperbolic derivatives are equal to η. This happens when f
is a finite Blaschke product of degree less or equal to n.
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Definition 2 For f ∈ S and z ∈ D, the n-th order hyperbolic derivative of f at z is
the number

Hnf (z) := Δnzf (z).

For instance, for the first-order hyperbolic derivative, we find

H 1f (z) = lim
ζ→z

f (z)−f (ζ )
1−f (z)f (ζ )

z−ζ
1−zζ

= f h(z)

and we recover the standard hyperbolic derivative. Note that the hyperbolic deriva-
tive H 1f (z) is not a holomorphic function, and that Hnf (z) is not the hyperbolic
derivative of Hn−1f (z).

Hyperbolic derivatives have the following nice invariance property:

∣∣Hn(ψ ◦ f ◦ φ)(z)∣∣= ∣∣Hnf (φ(z))∣∣
whenever φ and ψ are automorphisms of D [7]. In this respect, they are similar to
the classical invariants of Peschl [6], which are the numbers Dnf (z) defined as the
Taylor coefficients of the function g defined by the formula

g(ζ ) := −[f ([−ζ, z]), f (z)]= f (
z+ζ

1+zζ )− f (z)
1 − f (z)f ( z+ζ

1+zζ )
= :

∞∑
n=1

Dnf (z)

n! ζ n. (2)

We saw above that H 1f coincides with the usual hyperbolic derivative, which also
coincides with D1f (z). However, for higher order, hyperbolic derivatives are dif-
ferent from Peschl invariants. The next values are

H 2f (z) = D2f (z)

2(1 − |H 1f (z)|2)
,

for f not a Blaschke product of degree ≤1, and

H 3f (z) = 3H 1f (z)H 2f (z)D2f (z)+D3f (z)

6 − 6|H 1f (z)|2 − 3H 2f (z)D2f (z)
,

for f not a Blaschke product of degree ≤2. (We note here that there is an unfortunate
misprint in the formula for H 3 in [8]. The calculations which lead to the above
formula are carried out in [9].)

The above formulas show that it is not easy to calculate hyperbolic derivatives.
There exists a nice formula for calculating the Peschl invariants using Bell poly-
nomials [5], but we do not know of a similar formula for hyperbolic derivatives.
However, Rivard has obtained the following inductive formula [8], which we will
use to prove our theorem.
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Theorem 1 Let f ∈ S, not a finite Blaschke product, and let z ∈ D. We define

Φ1(ζ, z) := −g(−ζ ), Ψ1(ζ, z) := ζ

and, for k ≥ 2, we define recursively

Φk(ζ, z) := Hk−1f (z)Ψk−1(ζ, z)−Φk−1(ζ, z); (3)

Ψk(ζ, z) := ζ
(
Ψk−1(ζ, z)−Hk−1f (z)Φk−1(ζ, z)

)
. (4)

Then, for every n ≥ 2,

Hnf (z) = Hn−1f (z)Ψ
(n)
n−1(0, z)−Φ(n)n−1(0, z)

n
(
Ψ
(n−1)
n−1 (0, z)−Hn−1f (z)Φ

(n−1)
n−1 (0, z)

) , (5)

where Ψ (
)n−1,Φ
(
)
n−1 are derivatives of order 
 with respect to ζ , andH 0f (z) := f (z).

If f is a Blaschke product of degree n, then the above scheme can be carried out
to calculate the hyperbolic derivatives up to order n, from which point they are all
equal to the same unimodular constant.

2 The Main Theorem

We are now ready to state and prove our theorem.

Theorem 2 For any fixed z ∈ D, the numbers z,H 0f (z),H 1f (z),H 2f (z), . . .

uniquely determine the function f .

The proof will be based on two lemmas. In the statement and the proof, we write
p(·) to denote a polynomial expression in its variables and their conjugates, and for
brevity we write Hk and Dk for the hyperbolic derivatives and Peschl invariants of
f at z.

Lemma 1 Suppose f is not a finite Blaschke product. Then for n = 1,2, . . . , we
have

(i) for k = 1,2, . . . , the coefficient of ζ k in Φn(ζ ) is of the form

(−1)k+nDk

k! + p(z,H 0,H 1, . . . ,Hn−1,D1, . . . ,Dk−1).

(ii) for k = 1,2, . . . , the coefficient of ζ k in Ψn is

p
(
z,H 0,H 1, . . . ,Hn−1,D1, . . . ,Dk−1).
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Proof This will be proved by induction on n.

Recall that, by definition, Φ1(ζ ) = −g(−ζ ) = −∑∞
k=1(−1)k D

k

k! ζ
k . From this it

follows that (i) holds for n = 1. Similarly, since Ψ1(ζ ) = ζ , (ii) holds for n = 1.
Now assume (i) and (ii) hold for n. Denote by Aj,k and Bj,k the coefficient of

ζ k in Φj and Ψj respectively. Then, from (3), (4), and the induction hypothesis, we
have

An+1,k = HnBn,k −An,k
= Hnp

(
z,H 0, . . . ,Hn−1,D1, . . . ,Dk−1)

− (−1)k+nDk

k! + p(z,H 0, . . . ,Hn−1,D1, . . . ,Dk−1)

= (−1)k+n+1D
k

k! + p(z,H 0, . . . ,Hn−1,Hn,D1, . . . ,Dk−1)

and

Bn+1,k = Bn,k−1 −HnAn,k−1

= p
(
z,H 0, . . . ,Hn−1,D1, . . . ,Dk−2)

−Hn
[
(−1)k+n−1 D

k−1

(k − 1)! + p(z,H 0, . . . ,Hn−1,D1, . . . ,Dk−2)]

= p
(
z,H 0, . . . ,Hn−1,Hn,D1, . . . ,Dk−1),

and (i) and (ii) follow by induction. �

Lemma 2 Suppose f is not a finite Blaschke product.

(i) For n = 1,2,3, . . . , Hn can be written in the form

Dn + p(z,H 0,H 1, . . . ,Hn−1,D1, . . . ,Dn−1)

p(z,H 0,H 1, . . . ,Hn−1,D1, . . . ,Dn−1)
.

(ii) For n = 1,2,3, . . . , the number Dn can be written as a function of the numbers
z,H 0, . . . ,Hn.

Proof Since H 1 = D1, assertion (i) is true for n = 1. For n ≥ 2, it follows from
formula (5) and Lemma 1.

Again, for n = 1, (ii) follows from D1 = H 1. Assume it is true for n ≤ N . Now,
by (i), we have

DN+1 = HN+1p
(
z,H 0, . . . ,HN,D1, . . . ,DN

)+p(z,H 0, . . . ,HN,D1, . . . ,DN
)
,

and, by the induction hypothesis, this can be rewritten as a function of the numbers
z,H 0, . . . ,HN+1. By induction, (ii) holds for all n. �
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Proof of Theorem 2 If the sequence of hyperbolic derivatives eventually stabilizes
at some unimodular value, then f is a finite Blaschke product, and it is shown in [8]
how we can recover f from its hyperbolic derivatives. So it is only necessary to
consider the case where f is not a finite Blaschke product. For a fixed z, the numbers
z, f (z),D1,D2, . . . entirely determine the function g(ζ ). Hence, by Lemma 2(ii),
the numbers z,H 0,H 1, . . . entirely determine g. Since, by formula (2), we have
g = ψ ◦ f ◦ φ for some automorphisms φ and ψ depending only on z, f is also
uniquely determined by z,H 0,H 1, . . . . �

The interested reader is referred to [3, 7, 8] for applications of hyperbolic deriva-
tives.
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Hyperbolic Wavelets and Multiresolution
in the Hardy Space of the Upper Half Plane

Hans G. Feichtinger and Margit Pap

Abstract A multiresolution analysis in the Hardy space of the unit disc was intro-
duced recently (see Pap in J. Fourier Anal. Appl. 17(5):755–776, 2011). In this pa-
per we will introduce an analogous construction in the Hardy space of the upper half
plane. The levels of the multiresolution are generated by localized Cauchy kernels
on a special hyperbolic lattice in the upper half plane. This multiresolution has the
following new aspects: the lattice which generates the multiresolution is connected
to the Blaschke group, the Cayley transform and the hyperbolic metric. The second:
the nth level of the multiresolution has finite dimension (in classical affine multires-
olution this is not the case) and still we have the density property, i.e. the closure
in norm of the reunion of the multiresolution levels is equal to the Hardy space of
the upper half plane. The projection operator to the nth resolution level is a rational
interpolation operator on a finite subset of the lattice points. If we can measure the
values of the function on the points of the lattice the discrete wavelet coefficients
can be computed exactly. This makes our multiresolution approximation very useful
from the point of view of the computational aspects.
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1 Introduction

Analyzing continuous-time systems is of great significance, especially in association
with high precision control applications, which are widely used today, for example
in robotic surgery. The theory of wavelet constructions on the Hardy space of the
unit disc (see [17]) can be associated with time frequency-domain description of
discrete-time-invariant dynamical systems. In this paper we adapt this description to
those in the half plane that is used in system theory to describe the spectral behavior
of continuous-time-invariant systems.

The approximation and identification of transfer functions of a continuous-time-
invariant system is an important part of system identification. Finding dense subsets
in the Hardy space of the upper half plane is often very useful. However, unlike in
the case of the Hardy space of the unit disc where the polynomials are dense, dense
subsets in the Hardy space of the upper half plane are harder to find. Applying the
Daubechies theory it can be shown that choosing as mother wavelet ψ(y) = (1 +
iy)−p for p ≥ 2 we can generate a frame for the Hardy space of the upper half plane.
For p = 3 Ward and Partington in [29] described a rational wavelet decomposition
of the Hardy–Sobolev class of the half plane. For p = 1 (the Cauchy kernel) does
not fall under Daubechies theory since it does not have vanishing mean value, but
Ward and Partington have shown that the systemψj,k = 2j/2ψ(2j y−b0k), j, k ∈ Z,
does constitute a fundamental set for the upper half plan algebra.

1.1 Affine Multiresolution Analysis

Daubechies theory can be described in terms of the continuous affine wavelet trans-
form, which is a voice transform generated by a representation of the affine group:

Wψf (a, b) = |a|−1/2
∫
R

f (t)ψ
(
a−1t − b)dt = 〈f,U(a,b)ψ〉, f,ψ ∈ L2(R),

where U(a,b)ψ(t) = |a|−1/2ψ(a−1t − b), a > 0, b ∈ R is a representation of the
affine group on the L2(R) (see [10–13]). There is a rich bibliography of the affine
wavelet theory (see for example [7, 9, 13, 15]). One important question is the con-
struction of the discrete version, i.e., to find ψ so that the discrete translations and
dilatations

ψn,k = 2−n/2ψ
(
2−nx − k) n ∈ Z, k ∈ Z

form a (orthonormal) basis or a frame in L2(R) which generates a multiresolution.
The general definition of the affine wavelet multiresolution analysis in L2(R) is

the following.

Definition 1 Let Vj , j ∈ Z be a sequence of subspaces of L2(R). The collections
of spaces {Vj , j ∈ Z} is called a multiresolution analysis with scaling function φ if
the following conditions hold:
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1. (nested) Vj ⊂ Vj+1,
2. (density)

⋃
Vj = L2(R),

3. (separation)
⋂
Vj = {0},

4. (basis) There exists a mother wavelet φ in V0 such that the set {2n/2φ(2nx −
k), k ∈ Z} is a basis (orthonormal) in Vn.

The wavelet coefficients

〈f,ψn,k〉 = 2−n/2Wψf
(
2−n, k

)

can be expressed by the values of the affine wavelet transform on the discrete lattice

Λ = {(2−n,−k) : n ∈ Z, k ∈ Z
}
.

The reconstruction of the function f if we know (measure) the wavelet coeffi-
cients is treated in the mentioned bibliographies.

Our aim is to introduce a multiresolution analysis in the Hardy space of the up-
per half plane using localized Cauchy kernels and to give a H 2 norm identification
which is important in modern system theory. We take as starting point another spe-
cial voice transform connected to the Blaschke group. We consider a discrete subset
of the Blaschke group and then we will take the image of this set trough the Cayley
transform. Using the localized Cauchy kernels for the upper half plane on this set
we will construct the multiresolution in the Hardy space of the upper half plane.

1.2 The Blaschke Group

Let us denote by

Ba(z) := ε z − b
1 − b̄z

(
z ∈ C, a = (b, ε) ∈ B := D × T

)
, (1)

the so called Blaschke functions, where

D := {z ∈ C : |z| < 1
}
, T := {z ∈ C : |z| = 1

}
. (2)

If a ∈ B, then Ba is an 1–1 map on T and D, respectively. The restrictions of
the Blaschke functions on the set D or on T with the operation (Ba1 ◦ Ba2)(z) :=
Ba1(Ba2(z)) form a group. In the set of the parameters B := D × T let us define the
operation induced by the function composition in the following way: Ba1 ◦ Ba2 =
Ba1 ◦a2 . The group (B,◦) will be isomorphic with the group ({Ba,a ∈ B},◦). If we
use the notations aj := (bj , εj ), j ∈ {1,2} and a := (b, ε) = : a1 ◦ a2, then

b = b1ε2 + b2

1 + b1b2ε2
= B(−b2,1)(b1ε2),

ε = ε1
ε2 + b1b2

1 + ε2b1b2
= B(−b1b2,ε1)

(ε2).

(3)
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The neutral element of the group (B,◦) is e := (0,1) ∈ B and the inverse element
of a = (b, ε) ∈ B is a−1 = (−bε, ε).

In [18, 19] we have studied the properties of the voice transform induced by the
following representation of the Blaschke group on H 2(T):

(Ua−1f )(z) :=
√
eiθ (1 − |b|2)

(1 − bz) f

(
eiθ (z − b)

1 − bz
)

(
z = eit ∈ T, a = (b, eiθ ) ∈ B

)
. (4)

The voice transform generated by Ua (a ∈ B) is given by

(Vgf )
(
a−1) := 〈f,Ua−1g〉 (

f,g ∈ H 2(T)
)
. (5)

1.3 The Hardy Space of the Upper Half Plane

Set C+ = {z ∈ C : Im(z) > 0}, H(C+), H(D) the set of holomorphic functions in
C+, respectively, D. We shall work with the Hardy spaces

H 2(C+) =
{
h ∈ H(C+) : sup

{∫
R

∣∣h(x + iy)∣∣2 dx : y > 0

}
< ∞

}
, (6)

H 2(D) =
{
h ∈ H(D) : sup

{∫ ∞

−∞
∣∣h(reit)∣∣2 dt : r ∈ (0,1)

}
< ∞

}
. (7)

The basic properties of this spaces can be found for example in [6] and [16]. For
each f ∈ Hp(C+), p ∈ [2,+∞), there exists a non-tangential limit which belongs
to Lp(R). Likewise, for each f ∈ Hp(D), p ∈ [2,∞) there exists a non-tangential
limit which is in Lp(T). For simplicity we shall use the same notation for a function
in Hardy spaces as that for its non-tangential limits.H 2(C+) andH 2(D) are Hilbert
spaces endowed with the following inner products:

〈f,g〉H 2(C+) :=
∫
R

f (t)g(t)dt, f, g ∈ H 2(C+), (8)

〈f,g〉H 2(D) := 1

2π

∫ π
−π
f
(
eit
)
g
(
eit
)
dt, f, g ∈ H 2(D). (9)

Although the unit disk D and the upper half-plane C+ can be mapped to one-another
by means of Möbius transformations, they are not interchangeable as domains for
Hardy spaces. Contributing to this difference is the fact that the unit circle has finite
(one-dimensional) Lebesgue measure while the real line does not. However, these
two spaces may still be connected through the Cayley transform which maps C+ to
D and is defined by

K(ω) = i −ω
i +ω, ω ∈ C+. (10)
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The correspondence between the boundaries is

eis = K(t) = i − t
i + t , t ∈ R, s ∈ (−π,π),

which implies that s = 2 arctan(t), t ∈ R.
With the Cayley transform, the linear transformation from H 2(D) to H 2(C+) is

defined for f ∈ H 2(D) by

Tf := 1√
π

1

ω + i (f ◦K) (11)

and is an isomorphism between these spaces. Consequently the theory of the real
line is a close analogy with what we have for the circle.

Suppose F is real-valued and F ∈ L2(R). Then the projection onto H
2(C+) is

given by

F+(z) = 1

2πi

∫ ∞

−∞
F(t)

t − zdt.

Denote the non-tangential limit of F+(z) by F+(t), then F(t) = 2 ReF+(t). It will
suffice to decompose F+.

The Cauchy formula for the upper half plane is the following: for any function
F ∈ H

p(C+), 1 ≤ p < +∞ if F(s) is its non-tangential boundary limit, then

F(z) = 1

2πi

∫ ∞

−∞
F(s)

s − zds, z ∈ C+. (12)

The classical Fourier bases has been proved to be an efficient approach to rep-
resent a linear stationary signal. However, it is not efficient to represent a nonlinear
and stationary signals (see [21]). For this purpose it is more efficient to use some
special orthonormal basis of rational functions. In the case of the unit disc is used
the well known Malmquist–Takenaka system. There is an analogue of this system
for the upper half plane.

Let {λi}∞
i=0 an arbitrary sequence of complex numbers which lie in the upper

half-plane C+, and let {Φn}∞
n=0 defined by

Φ1(z) =
√

�λ1
π

z − λ1
, Φn =

√
�λn
π

z − λn
n−1∏
k=1

z − λk
z − λk

(n = 2,3, . . .). (13)

This is a system of rational functions associated with the set of poles {λi}∞
i=0 lying

in the lower half-plane.The linear-fractional transformation z = i
1−y
1+y changes this

system into the Malmquist–Takenaka system over the unit circle.
The system of functions {Φn}∞

n=0 is orthonormal on the entire axis − ∞ < x <

+∞ in the following sense:
∫ +∞

−∞
Φn(x)Φm(x)dx = δmn. (14)
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Moreover, if we have the following non Blaschke condition for the upper half plane:

∞∑
k=0

�λk
1 + |λk| = ∞ (15)

then {Φn}∞
n=0 is a complete orthonormal system for H

2(C+). In [8] Dzrbasjan
proved the analogue of the Darboux–Christoffel formula for the upper half plane.
For n ≥ 0 let us consider the functions

Bn(z) =
n∏
n=0

z − λk
z − λk

τk, τk = |1 + λ2
k|

1 + λ2
k

.

For arbitrary values of the variables z �= ξ and for any n, 0 ≤ n < ∞,

n∑
k=0

Φk(z)Φk(ξ) = 1 −Bn(ξ)Bn(z)
2iπ(ξ − z) . (16)

2 New Results

2.1 A Special Lattice in the Upper Half Plane

Let us denote

B1 =
{
(rk,1) : rk = 2k − 2−k

2k + 2−k , k ∈ Z

}
. (17)

It can be proved that (B1,◦) is a subgroup of (B,◦), and (rk,1)◦ (rn,1) = (rk+n,1).
The hyperbolic distance of the points rk, rn has the following property:

ρ(rk, rn) := |rk − rn|
|1 − rkrn| =

∣∣∣∣
2k−2−k
2k+2−k − 2n−2−n

2n+2−n

1 − 2k−2−k
2k+2−k

2n−2−n
2n+2−n

∣∣∣∣= |rk−n|. (18)

Let us consider the set of points

A = {zk
 = rkei
2π

22k , 
 = 0,1, . . . ,22k − 1, k = 0,1,2, . . . ,∞}

and for a fixed k ∈ N let the level k be

Ak = {zk
 = rkei
2π

22k , 
 ∈ {0,1, . . . ,22k − 1

}}
.

The inverse Cayley transform K−1(z) = i 1−z
1+z takes the unit circle in the real axis

and the unit disc in the upper half plane. Let us define

ak
 = K−1(zk
) = 2rk sin 2π

22k

1 − 2rk cos 2π

22k + r2

k

+ i 1 − r2
k

1 − 2rk cos 2π

22k + r2

k

= αk
 + iβk
, (19)



Hyperbolic Wavelets and Multiresolution in the Hardy Space 199

Fig. 1

Bk = {ak
, 
 ∈ {0,1, . . . ,22k − 1
}}
, (20)

B = {ak
, 
 = 0,1, . . . ,22k − 1, k = 0,1,2, . . . ,∞}. (21)

The points from B are in the upper half plane, and every point from Bk is on the

circle with center (0,
1+r2

k

1−r2
k

) and radius Rk = 2rk
1−r2

k

, see Fig. 1. It is easy to show that

the points from B do not satisfy the Blaschke condition for the upper half plane.
Indeed,

∞∑
k=0

22k−1∑

=0

βk


1 + |ak
|2
=

∞∑
k=0

22k−1∑

=0

1 − r2
k

2(1 + r2
k )

=
∞∑
k=0

22k

22k + 2−2k
= ∞. (22)

2.2 Multiresolution on the Upper Half Plane

In multiresolution analysis, one decomposes a function space in several resolution
levels and the idea is to represent the functions from the function space by a low res-
olution approximation and adding to it the successive details that lift it to resolution
levels of increasing detail.

Wavelet analysis couples the multiresolution idea with a special choice of ba-
sis for the different resolution spaces and for the wavelet spaces that represent the
difference between successive resolution spaces. If Vn are the resolution spaces
V0 ⊂ V1 ⊂ · · · ⊂ Vn · · · , then the wavelet spaces Wn are defined by the equality
Wn ⊕ Vn = Vn+1.

In the construction of affine wavelet multiresolutions the dilatation is used to ob-
tain a higher level resolution (f (x) ∈ Vn ⇔ f (2x) ∈ Vn+1) and applying the trans-
lation we remain on the same level of resolution.
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Using the lattice B we give a similar construction of the affine wavelet multireso-
lution in the space H 2(C+). To show the analogy with the affine wavelet multireso-
lution we first represent the levels Vn by nonorthogonal bases and then we construct
an orthonormal bases in Vn and we give also an orthogonal basis inWn which is or-
thogonal to Vn. We will show that in the case of this discretization the corresponding
Malmquist–Takenaka systems will span the resolution spaces and the density prop-
erty will be fulfilled, i.e.,

⋃∞
k=1 Vk = H 2(C+) in norm. In signal processing and

system identification the rational orthogonal bases like the discrete Laguerre, Kautz
and Malmquist–Takenaka systems are more efficient than the trigonometric system
in the determination of the transfer functions. This field also has a rich bibliography
(see [2–5, 14, 21–28] etc.).

We show that the projection Pnf on the nth resolution level is an interpolation
operator on the upper half plane until the nth level, which converges in H 2(C+)
norm to f . Let us introduce the analogue definition of multiresolution for the Hardy
space of the upper half plane:

Definition 2 Let Vj , j ∈ N, be a sequence of subspaces ofH 2(C+). The collections
of spaces {Vj , j ∈ N} is called a multiresolution if the following conditions hold:

1. (nested) Vj ⊂ Vj+1,
2. (density)

⋃
Vj = H 2(C+),

3. (analogue of dilatation) (T U(r1,1)−1T −1)Vn ⊂ Vn+1,
4. (basis) There exists a ψn,
 (orthonormal) basis in Vn.

Let us consider the function ϕ00 = 1√
π(z+i) , V0 = {cϕ00, c ∈ C} and let us con-

sider the nonorthogonal hyperbolic wavelets at the first level

ϕ1,
(z) =
√
β1


π

1

z − a1


 = 0,1,2,3.

Let us define the first resolution level as follows:

V1 =
{
f : D → C, f (z) = c0,0ϕ0,0 +

3∑

=0

c1,
ϕ1,
, c00, c1,
 ∈ C, 
 = 0,1,2,3

}
.

At the nth level the nonorthogonal wavelets are given by

ϕn,
(z) =
√
βn


π

1

z − an
 , 
 = 0,1, . . . ,22n − 1, (23)

and the nth resolution level is given by

Vn =
{
f : D → C, f (z) =

n∑
k=0

22k−1∑

=0

ck,
ϕk,
, ck,
 ∈ C

}
. (24)
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The closed subset Vn is spanned by

{
ϕk,
, 
 = 0,1, . . . ,22k − 1, k = 0, . . . , n

}
.

In this way we have obtained a sequence of closed, nested subspaces of H 2(C+) for
z ∈ C+,

V0 ⊂ V1 ⊂ V2 ⊂ · · ·Vn ⊂ · · ·H 2(C+).

The elements of B are different complex numbers consequently the correspond-
ing finite subset of localized kernels

{
1

z − ak
 , 
 = 0,1, . . . ,22k − 1, k = 0,1, . . . , n

}
(25)

are linearly independent and they form a nonorthogonal basis in Vn. Applying the
Gram–Schmidt orthogonalization for this set of analytic linearly independent func-
tions we obtain the Malmquist–Takenaka system corresponding to the upper half
plane and the set

⋃n
k=0Bk :

ψm,
(z) =
√
βm


π

1

z − am

m−1∏
k=0

22k−1∏
j=0

z − akj
z − akj


−1∏
j ′ =0

z − amj ′

z − amj ′

(
m = 0,1, . . . , n, 
 = 0,1, . . . ,22m − 1.

)
(26)

From the Gram–Schmidt orthogonalization process it follows that

Vn = span
{
ψk,
, 
 = 0,1, . . . ,22k − 1, k = 0, . . . , n

}
. (27)

From (22) it follows that the Malmquist–Takenaka system corresponding to the
set B is a complete orthonormal system of holomorphic functions in H 2(C+).

From the completeness of the system {ψk,
, 
 = 0,1, . . . ,22k − 1, k = 0,∞}
in the Hilbert space H 2(C+), it follows that this system is also a closed system,
consequently the density property is valid in norm, i.e.:

⋃
n∈N

Vn = H 2(C+). (28)

The analogue of the dilatation and translation can be described in the following
way: let φ = 1 and let

V ′
n = span

{
φk,
, 
 = 0,1, . . . ,22k − 1, k = 0, . . . , n

}
,

where

φn,
(z) = (U(zn
,1)−1φ)(z) =
√
(1 − r2

n)

(1 − zn
z) , 
 = 0,1, . . . ,22n − 1.
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These functions can be obtained from φ using the representation U(rn,1)−1 , and the
translation

φn,

(
eit
)= (U(rn,1)−1φ)

(
e
i(t− 2π


22n )
)
.

We observe that taking the image of φn,
 through the Cayley function, we have

T (φn,
)(ω) = 1√
π(i +ω)

√
1 − r2

n

1 − zn,
 i−ω
i+ω

=
√
βn,


π

i(i + an,
)√
2|i + an,
|

1

ω − an,

= Bk,
ϕn,
(ω),

where Bk,
 = i(i+an,
)√
2|i+an,
| is a constant. From this we get Vn = T (V ′

n). If a function

f ∈ V ′
n, then U(r1,1)−1f ∈ V ′

n+1. For this it is enough to show that

U(r1,1)−1(φk,
)
(
eit
)= U(r1,1)−1

[
(U(rk,1)−1p0)

](
e
i(t− 2π


22k )
)

= [(U(rk+1,1)−1p0)
](
e
i(t− 2π4


22(k+1)
) ∈ V ′

n+1,

k = 1, . . . , n, 
 = 1, . . . ,22k − 1.

Consequently we have

T U(r1,1)−1T
−1Vn ⊂ Vn+1. (29)

The wavelet space Wn is the orthogonal complement of Vn in Vn+1. We will
prove that

Wn = span
{
ψn+1,
, 
 = 0,1, . . . ,22n+2 − 1

}
. (30)

For an arbitrary f (z) = ∑n
k=0
∑22k−1

=0 ck,
ϕk,
 ∈ Vn using the Cauchy formula we

obtain

〈ψn+1j , f 〉 =
n∑
k=1

22k−1∑

=0

ck,
〈ψn+1,j , ϕk,
〉

=
n∑
k=1

22k−1∑

=0

ck,


√
βk


π
2πiψn+1,
(zk
) = 0, j = 0,1, . . . ,22n+2 − 1.

Consequently,

〈f,ψn+1,j 〉 = 0, f ∈ Vn
which implies that

ψn+1,j ⊥ Vn
(
j = 0,1, . . . ,22n+2 − 1

)
. (31)



Hyperbolic Wavelets and Multiresolution in the Hardy Space 203

From

Vn+1 = Vn ⊕ span
{
ϕn+1,j , j = 0,1, . . . ,22n+2 − 1

}
(32)

it follows that Wn is an 22(n+1) dimensional space and

Wn = span
{
ψn+1,
, 
 = 0,1, . . . ,22n+2 − 1

}
. (33)

2.3 The Projection Operator Corresponding to the nth Resolution
Level

Let us consider the orthogonal projection operator of an arbitrary function f ∈
H 2(C+) on the subspace Vn given by

Pnf (z) =
n∑
k=0

22k−1∑

=0

〈f,ψk,
〉ψk,
(z). (34)

This operator is called the projection of f at scale or resolution level n.

Theorem 1 For f ∈ H 2(C+) the projection operator Pnf is an interpolation op-
erator in the points

amj
(
j = 0, . . . ,22m − 1, m = 0, . . . , n

)
.

Proof Let us consider the kernel function of this projection operator

Kn(z, ξ) =
n∑
k=0

22k−1∑

=0

ψk,
(ξ)ψk,
(z). (35)

According to the result of Dzrbasjan (see [8])

Kn(z, ξ) = 1

2iπ(ξ − z)

(
1 −

n∏
k=0

22k−1∏

=0

z − ak

z − ak
 τk


n∏
k=0

22k−1∏

=0

ξ − ak

ξ − zk
 τk


)
. (36)

From this relation it follows that the values of the kernel function in the points amj
(j = 0, . . . ,22m − 1, m = 0, . . . , n) are equal to

K(amj , ξ) = 1

2iπ(ξ − amj )
. (37)

Using the Cauchy integral formula we get

Pnf (amj ) = 1

2πi

∫ +∞

−∞
f (t)

t − amj dt = f (amj )
(
j = 0, . . . ,22m − 1, m = 0, . . . , n

)
. (38)
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Let us denote by f̂n the solution of the minimal-norm interpolation problem

‖f̂n‖H 2(C+) = min
fn∈H 2(C+)

‖fn‖H 2(C+), (39)

satisfying the interpolation conditions

fn(amj ) = f (amj )
(
j = 0, . . . ,22m − 1, m = 0, . . . , n

)
. �

Remark 1 The projection Pnf is the solution of the minimal-norm interpolation
problem (39),

‖f − Pnf ‖H 2(C+) → 0, n → ∞.

Proof This result follows from Theorem 2.2, Theorem 5.3.1 of [20] and (28). Be-
cause {ψk,
, k = 0,∞, 
 = 0,1, . . . ,22k − 1} is a complete set in the Hilbert space
H 2(C+) is also closed set. This implies that ‖f − Pnf ‖H 2(C+) → 0 as n → ∞.
From Theorem 2.2 and Theorem 5.3.1 of [20] it follows that the best approximant
is given by f̂n(z) = Pnf (z). �

It is a natural question to ask what we can say about of Hp(C+) norm conver-
gence of Pnf . In analogy to Theorem 5.1 of [1] (proved for the right half plane) it
can be proved that for all 1<p < ∞ and f ∈ Hp(C+)

‖f − Pnf ‖Hp(C+) → 0, n → ∞.

For the error term we have the following estimation. Let us denote

en(f,p) = inf
fn∈Vn

‖fn − f ‖Hp(C+),

the bestHp(C+)-norm approximation error of f in Vn. Then there exists a constant
Cp depending only on p such that

‖f − Pnf ‖Hp(C+) ≤ Cpen(f,p).

In what follows we propose a computational scheme for the best approximant in
the wavelet base {ψk,
, 
 = 0,1, . . . ,22k − 1, k = 0, . . . , n}.

2.4 Reconstruction Algorithm

The projection of f ∈ H 2(C+) onto Vn+1 can be written in the following way:

Pn+1f = Pnf +Qnf, (40)
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where

Qnf (z) :=
22(n+1)−1∑

=0

〈f,ψn+1,
〉ψn+1,
(z). (41)

This operator has the following properties:

Qnf (zk
) = 0, k = 1, . . . , n, 
 = 0,1, . . . ,22n − 1. (42)

Consequently Pn contains information on low resolution, i.e., until the level Bn, and
Qn is the high resolution part. After n steps,

Pn+1f = P1f +
n∑
k=1

Qnf. (43)

Thus

Vn+1 = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wn.

The set of coefficients of the best approximant Pnf

{
bk
 = 〈f,ψk,
〉, 
 = 0.1, . . . ,22k − 1 k = 0,1, . . . , n

}
(44)

is the (discrete) hyperbolic wavelet transform of the function f . Thus it is important
to have an efficient algorithm for the computation of the coefficients.

The coefficients of the projection operator Pnf can be computed if we know the
values of the functions on

⋃n
k=0Bk . For this reason we express first the function

ψk,
 using the bases (ϕk′,
′ 
′ = 0,1, . . . ,22k′ − 1, k′ = 0, . . . , k), i.e. we write the
partial fraction decomposition of ψk
:

ψk,
 =
k−1∑
k′ =0

22k′ −1∑

′ =0

ck′,
′
−1

2πi(ξ − ak′
′)
+


∑
j=0

ck,j
−1

2πi(ξ − akj ) . (45)

Using the orthogonality of the functions (ψk′,
′ 
′ = 0,1, . . . ,22k′ − 1, k′ =
0, . . . , k) and the Cauchy formula we get

δknδ
m = 〈ψnm,ψk
〉

=
k−1∑
k′ =0

22k′ −1∑

′ =0

ck′,
′ψn,m(ak′
′)+

∑
j=0

ck,jψn,m(akj )

(
m = 0,1, . . . ,22n − 1, n = 0, . . . , k

)
. (46)

If we order these equalities so that we write first the relations (46) for n = k and
m = 
, 
− 1, . . . ,0, respectively, then for n = k− 1 and m = 22(k−1) − 1, 22(k−1) −
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2, . . . ,0, etc., this is equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ψk,
(ak,
) 0 0 . . . 0
ψk,
−1(ak,
) ψk,
−1(ak,
−1) 0 . . . 0
ψk,
−2(ak,
) ψk,
−2(ak,
−1) ψk,
−2(ak,
−2) . . . 0

...
...

ψ00(ak,
) ψ00(ak,
−1) ψ00(ak,
−2) . . . ψ00(a00)

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

ck,

ck,
−1
ck,
−2
...

c00

⎞
⎟⎟⎟⎟⎟⎠
. (47)

This system has a unique solution (ck,
, ck,
−1, ck,
−2, . . . , c00)
T . If we deter-

mine this vector, then we can compute the exact value of 〈f,ψk,
〉 knowing the
values of f on the set

⋃n
k=0Bk .

Indeed, using again the partial fraction decomposition of ψk,
 and the Cauchy
integral formula we get

〈f,ψk,
〉 =
k−1∑
k′ =0

22k′ −1∑

′ =0

ck′,
′f (ak′,
′)+

∑
j=0

ck,j f (ak,j ). (48)

Summary In this chapter, we have generated a multiresolution in H 2(C+) and
we have constructed a rational orthogonal wavelet system which generates this
multiresolution. Measuring the values of the function f in the points of the set
B =⋃nk=0Bk ⊂ C+ we can write (Pnf, n ∈ N), the projection operator on the nth
resolution level, which is convergent in H 2(C+) norm to f , is the best approximant
interpolation operator on the set the

⋃n
k=0Bk and Pnf (z) → f (z) uniformly on

every compact subset of the upper half plane.
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Norms of Composition Operators Induced
by Finite Blaschke Products on Möbius
Invariant Spaces

María J. Martín and Dragan Vukotić

Abstract We obtain an asymptotic formula for the norms of composition operators
induced by finite Blaschke products on analytic (quotient) Besov spaces in terms of
their degree. We also compute the norms of such operators on the true Bloch and
Dirichlet spaces.

Keywords Finite Blaschke product · Analytic Besov space · Bloch space ·
Dirichlet space · Composition operator · Operator norm

Mathematics Subject Classification Primary 47B33 · Secondary 30D45 · 31C25

1 Introduction

Let D = {z ∈ C : |z| < 1} denote the unit disk in the complex plane. By a self-map
of D we mean a function φ analytic in D such that φ(D) ⊂ D. For any such φ, we
can define Cφ , the composition operator with symbol φ, by Cφf = f ◦ φ. It is well
known that such an operator maps boundedly any classical function space such as
Hardy, Bergman, or Bloch into itself. However, this is not the case with the Dirichlet
space or, more generally, with the conformally invariant analytic Besov spaces Bp .
This was first studied in [2] in terms of Carleson measures. It is known (and easy
to show) that composition operators whose symbol is a finite Blaschke product are
bounded operators on these spaces as well.

At the international conference “Recent Advances in Operator Related Function
Theory” held in Dublin in 2004, Professor J. Cima asked the second author whether
one could compute or control the norm of a composition operator induced by a
finite Blaschke product and acting on the Dirichlet space (or another conformally
invariant space) in terms of the degree of the product. It turns out that the answer
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can be deduced from two papers by Arazy, Fisher, and Peetre [2, 3]. In the present
paper we review some details of their findings and combine it with other results to
obtain an asymptotic formula for the norms of such operators, acting either on an
analytic Besov space or on the Bloch space, in terms of the degree of the symbol. To
be more precise, we show that if B is a Blaschke product of degree n, then the norms
of the induced composition operators CB on the quotient space Bp/C, 1 ≤ p ≤ ∞,
are comparable to n1/p , independently of the product chosen. We also compute the
norms of CB on the true Bloch and Dirichlet spaces (taking constant values into
account). The answer in this case, of course, depends not only on n but also on the
value B(0).

2 Background

In this section we review all the necessary basic material and fix the notation.

2.1 Finite Blaschke Products

A finite Blaschke product is a function of the form

B(z) = λ
n∏
k=1

ak − z
1 − akz

whose zeros ak , 1 ≤ k ≤ n all lie in D, and |λ| = 1. The number n of factors (and
also zeros) of B is called the degree of the Blaschke product. It follows readily from
Rouché’s theorem that for every such B and each w ∈ D there are exactly n values
z ∈ D, counting the multiplicities, for which B(z) = w.

Finite Blaschke products are obviously continuous in the closed disk D and have
modulus one on the unit circle. This turns out to be their defining property: every
non-constant self-map of D which is continuous in the closed disk, has modulus one
at every point on the unit circle, and has finitely many zeros in D must be a finite
Blaschke product. This follows easily from the maximum modulus principle; see [5,
§ I.2].

Lemma 1 If Bm and Bn are two Blaschke products of degreesm and n respectively,
then Bm ◦Bn is again a finite Blaschke product of degree mn.

Proof Note that Bm ◦ Bn is again continuous in the closed disk and has modulus
one on the unit circle. Also, since Bm has m zeros and each one of them has n
pre-images in D under Bn (counting the multiplicities), it follows that Bm ◦ Bn has
exactly mn zeros in D and is therefore a finite Blaschke product of degree mn. �
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2.2 Disk Automorphisms. The Hyperbolic Metric

It is a well-known fact that every disk automorphism (i.e., a bijective self-map of
D) is a composition of a rotation (multiplication by a constant of modulus one) and
an automorphism φα , where φα(z) = (α − z)/(1 − αz), α ∈ D. Note that φα is an
involution, meaning that φα(φα(z)) = z for all z ∈ D.

The hyperbolic distance between two points z and w in D is defined as

!(z,w) = 1

2
log

1 + |φw(z)|
1 − |φw(z)| .

The metric defined in this way is complete and conformally invariant, meaning that
!(φ(z),φ(w)) = !(z,w) for all z, w ∈ D and every disk automorphism φ.

2.3 Hyperbolic Derivative

The hyperbolic derivative of a self-map φ of D is the quantity

φ∗(z) = (1 − |z|2)φ′(z)
1 − |φ(z)|2

.

The Schwarz-Pick lemma tells us that |φ∗(z)| ≤ 1 for every self-map φ of D, and
equality holds at some (and therefore at every point) of D if and only if φ is a disk
automorphism.

The following result due to M. Heins [6] will be fundamental. We only state one
part of it which is relevant for our purpose.

Theorem 1 (Heins Theorem) An analytic function φ from D into itself is a finite
Blaschke product if and only if

lim
|z|→1−

∣∣φ∗(z)
∣∣= 1.

2.4 The Bloch Space

The Bloch space B is defined as the set of all analytic functions in the unit disk D

whose invariant derivative (1 − |z|2)f ′(z) is bounded. It is a Banach space when
equipped with the norm

‖f ‖B = ∣∣f (0)∣∣+ s(f ) = ∣∣f (0)∣∣+ sup
z∈D

(
1 − |z|2)∣∣f ′(z)

∣∣.

Obviously, the quantity s(f ) defined above is a seminorm in B which becomes a
true norm in the quotient space B/C, the Bloch space modulo constants.
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Any function in B satisfies the following growth condition:
∣∣f (α)− f (0)∣∣≤ !(0, α)‖f ‖B, α ∈ D. (1)

This is easily deduced by integrating the inequality |f ′(z)| ≤ ‖f ‖B(1 − |z|2)−1

along the line segment from 0 to z.

2.5 Analytic Besov Spaces

Denote by dA the normalized Lebesgue area measure in D:

dA(z) = 1

π
dx dy = 1

π
r dr dθ, z = x + yi = r eiθ ∈ D.

The Dirichlet space D is the Hilbert space of analytic functions in D with a square
integrable derivative, with the natural norm given by

‖f ‖2
D = ∣∣f (0)∣∣2 +

∫
D

∣∣f ′(z)
∣∣2dA(z).

More generally, the analytic Besov space Bp is defined for 1<p < ∞ as the set of
all analytic functions in the disk such that

‖f ‖pBp = ∣∣f (0)∣∣p + (p − 1)
∫
D

∣∣f ′(z)
∣∣p(1 − |z|2)p−2

dA(z) < ∞.

The second summand on the right is only a seminorm in Bp but is, of course, a true
norm in the quotient space Bp/C, the space Bp modulo constants. These quotient
spaces Bp/C are conformally invariant: ‖f ◦ φ‖Bp = ‖f ‖Bp for all disk automor-
phisms φ.

The space B1 cannot be defined as above but there is a naturally related way
of defining it as the space of functions analytic in D whose second derivative is
area-integrable, equipped with the following norm:

‖f ‖B1 = ∣∣f (0)∣∣+ ∣∣f ′(0)
∣∣+
∫
D

∣∣f ′ ′(z)
∣∣dA(z).

This norm is not conformally invariant but the space itself is. It is well-known that
the corresponding quotient space B1/C (often also denoted by M) is minimal in
the sense of inclusion among all “reasonable” conformally invariant spaces; see [2]
or [11]. An alternative definition of this minimal space can be given in terms of an
“atomic decomposition”: it is the space of all analytic functions in D which can be
represented as

f =
∞∑
k=1

ckφαk (2)
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for some absolutely summable sequence (ck) and some sequence (αk) in D, where
φαk are the corresponding disk automorphisms as defined earlier. The norm on M =
B1/C is given by

‖f ‖B1/C = inf
∞∑
k=1

|ck|,

the infimum being taken over all possible representations as in (2).
The Bloch space B can be understood as the limit case of Bp as p → ∞ (and

B/C as the limit case of Bp/C). We refer the reader to [2] or [11].

2.6 Change of Variables

We will need a change of variables formula from measure theory which is standard
in the theory of composition operators (see [2] or [4, Theorem 2.32]): if g and W
are two non-negative functions defined on D, measurable with respect to dA and φ
is a self-map of D, then

∫
D

g
(
φ(z)
)∣∣φ′(z)

∣∣2W(z)dA(z) =
∫
φ(D)

g(w)

(∑
j≥1

W
(
zj (w)

))
dA(w),

where zj (w) are the zeros of φ(z) − w repeated according to multiplicity. We will
actually only need the case when φ = B , a finite Blaschke product of degree n, and

g = ∣∣f ′∣∣p, f ∈ Bp, W(z) = ((1 − |z|2)∣∣B ′(z)
∣∣)p−2

.

We formulate the statement in this special case as a lemma.

Lemma 2 If B is a Blaschke product of degree n and f ∈ Bp then
∫
D

∣∣(f ◦B)′(z)
∣∣p(1 − |z|2)p−2

dA(z)

=
∫
D

∣∣f ′(w)
∣∣p n∑
j=1

((
1 − ∣∣zj (w)∣∣2)∣∣B ′(zj (w))∣∣)p−2

dA(w),

where for any w ∈ D we denote by zj (w), 1 ≤ j ≤ n, the n pre-images of w by B .

2.7 Composition Operators on Conformally Invariant Spaces

It is an easy consequence of the Schwarz-Pick lemma that, for every self-map φ
of D, the induced composition operator Cφ maps B boundedly into itself. How-
ever, it need not map any Bp into itself. There are, of course, symbols φ for which
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this is always true. For example, every finitely valent symbol and, in particular, ev-
ery finite Blaschke product induces a bounded composition operator on every Bp ,
1 ≤ p ≤ ∞.

It should be observed that since the composition operators fix constant functions,
every composition operator Cφ defined on Bp induces a well-defined composition
operator on Bp/C, denoted again by Cφ in order not to burden the notation. The
same holds for the quotient Bloch space B/C.

3 Norms of Composition Operators on Quotient Besov Spaces

The norms of arbitrary composition operators on the quotient Bloch space B/C
have been computed precisely by Montes-Rodríguez [9]. Combining his result with
Heins’ Theorem 1, we get the following.

Theorem 2 (Heins and Montes-Rodríguez Theorem) For any holomorphic self-
map φ of the disk, the norm of the composition operator Cφ on the quotient Bloch
space B/C is given by

‖Cφ‖B/C→B/C = sup
z∈D

∣∣φ∗(z)
∣∣.

In particular, for every finite Blaschke product B we have

‖CB‖B/C→B/C = 1.

Using interpolation, among other techniques, Arazy, Fisher, and Peetre [3]
proved the following result about the norms of finite Blaschke products in quotient
Besov spaces. (Of course, they were formulated in terms of the seminorm in Bp ,
which is completely equivalent.)

Theorem 3 (Arazy, Fisher, and Peetre Theorem) If 1 ≤ p ≤ ∞, then there exist
absolute positive constants mp andMp such that

mpn
1/p ≤ ‖B‖Bp/C ≤ Mpn1/p,

for any finite Blaschke product B of degree n.

In other words, the constants above are independent of the degree and location
of the zeros of B .

The key point which will do the hard work for us is another theorem from the in-
fluential paper of Arazy, Fisher, and Peetre mentioned [2, Theorem 13]. Recall that,
by definition, μ is a (Bp,p)-Carleson measure if there exists a universal constant
M such that ∫

D

∣∣f ′∣∣p dμ ≤ M
∫
D

∣∣f ′(z)
∣∣p(1 − |z|2)p−2

dA(z)
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for all f ∈ Bp . It is customary in the theory of Carleson measures to consider the
so-called Carleson windows:

S(h, θ) = {reit ∈ D : ∣∣reit − eiθ ∣∣< h}, θ ∈ [0,2π), h > 0.

It was shown in [2, Theorem 13] that the following conditions are equivalent when-
ever 1<p < ∞:

(i) μ is a (Bp,p)-Carleson measure;
(ii) there is a constant a such that μ(S(h, θ)) ≤ ahp for all h ∈ (0,1) and θ ∈

[0,2π);
(iii) there is a constant b such that

∫
D

|φ′
α|pdμ ≤ b for all α ∈ D;

(iv) there is a constant c such that (
∫
D

|f ′ |pdμ)1/p ≤ c‖f ‖1 for all f ∈ B1.

In particular, this statement allows us to check that finite Blaschke products induce
bounded composition operators; see [2]. However, we will need this result stated in
a little more precise form. A careful inspection of the proof of the above theorem
reveals the following. If (i) holds, that is, if μ is a (Bp,p)-Carleson measure then
(iii) holds. Writing

b = sup
α∈D

∫
D

∣∣φ′
α

∣∣pdμ,
their proof of (iii) ⇒ (ii) [2, p. 129] shows that μ(S(h, θ)) ≤ 5pb · hp; that is,

μ
(
S(h, θ)

)≤
(

5p sup
α∈D

∫
D

∣∣φ′
α

∣∣pdμ
)

· hp.

Also, the proof of the implication (ii) ⇒ (i) in [2, pp. 129–130] shows that
∫
D

∣∣f ′∣∣p dμ ≤ 9 · 2p · a · ‖f ‖p
Bp/C

,

where a is the constant from the previous bound: a = 5p supα∈D

∫
D

|φ′
α|pdμ. We

summarize this in one single inequality as a theorem.

Theorem 4 (Arazy, Fisher, and Peetre Theorem) Let 1 < p < ∞. Whenever f is
analytic in D and ‖f ‖p

Bp/C
= 1, we have

∫
D

∣∣f ′∣∣p dμ ≤ 9 · 10p sup
α∈D

∫
D

∣∣φ′
α

∣∣pdμ.

Using this key result, we can now easily prove our theorem on the norm of the
composition operator CB on the quotient Besov spaces.

Theorem 5 Given a finite Blaschke product B of degree n, the norm of the com-
position operator CB induced by it on the quotient analytic Besov space Bp/C,
1 ≤ p ≤ ∞, satisfies the inequality

mpn
1/p ≤ ‖CB‖Bp/C→Bp/C ≤ Mpn1/p,



216 M.J. Martín and D. Vukotić

where the constants mp andMp (not necessarily the same as in Theorem 3) depend
only on p but not on B .

Proof Denote by Id the identity map: Id(z) = z. The lower inequality follows di-
rectly from the facts that CB(Id) = B , ‖Id‖Bp/C = 1 and from Theorem 3:

‖CB‖ ≥ ∥∥CB(Id)∥∥Bp/C = ‖B‖Bp/C ≥ mpn1/p.

The upper inequality has to be discussed case by case. Understanding B∞ as B,
the result in this case is the combination of the theorems of Montes-Rodríguez and
Heins mentioned earlier: ‖CB‖B/C→B/C = 1; that is, m∞ = M∞ = 1.

The upper inequality when 2 ≤ p < ∞ can be deduced in various manners. The
simplest proof follows directly from the Schwarz-Pick lemma:

(
1 − |z|2)∣∣B ′(z)

∣∣≤ 1 − ∣∣B(z)∣∣2,
the change of variable B(z) = w and the n-fold covering property of B:

‖CBf ‖p
Bp/C

= (p − 1)
∫
D

∣∣f ′(B(z))∣∣p∣∣B ′(z)
∣∣p(1 − |z|2)p−2

dA(z)

≤ (p − 1)
∫
D

∣∣f ′(B(z))∣∣p∣∣B ′(z)
∣∣2(1 − ∣∣B(z)∣∣2)p−2

dA(z)

= n(p − 1)
∫
D

∣∣f ′(w)
∣∣p(1 − |w|2)p−2

dA(w)

= n‖f ‖p
Bp/C

.

The most delicate case of the upper inequality is 1 < p < 2. This is where an
analysis like in Theorem 4 of Arazy, Fisher, and Peetre is needed (of course, it also
works when p ≥ 2 but we have preferred a simpler proof as above). First of all,
we need to produce an appropriate Carleson measure. Applying the formula from
Lemma 2, we can define

dμ(w) =
n∑
j=1

((
1 − ∣∣zj (w)∣∣2)∣∣B ′(zj (w))∣∣)p−2

dA(w),

so that

‖f ◦B‖p
Bp/C

=
∫
D

∣∣f ′∣∣p dμ
by Lemma 2. We know that μ defined in this way is a Carleson measure because it
was already shown in [2] that finite Blaschke products induce bounded composition
operators on Bp . In view of this, by Theorem 4 we have

∫
D

∣∣f ′∣∣p dμ ≤ 9 · 10p sup
α∈D

∫
D

∣∣φ′
α

∣∣pdμ
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for all f ∈ Bp of unit norm. Since φα ◦ B is again a Blaschke product of degree
n by Lemma 1, it follows from the change of variable (applied twice), the above
inequality, and Theorem 3 that

‖f ◦B‖p
Bp/C

=
∫
D

∣∣f ′∣∣p dμ ≤ 9 · 10p sup
α∈D

∫
D

∣∣φ′
α

∣∣pdμ = 9 · 10p sup
α∈D

‖φα ◦B‖p
Bp/C

≤ 9 · 10pK n = Mp
p n,

for every function f of norm one in Bp/C. This shows that

‖CB‖Bp/C→Bp/C ≤ Mp n1/p.

Finally, in the case p = 1 we use the atomic decomposition. Writing f as in (2), we
get

f ◦B =
∞∑
k=1

ck(φak ◦B) =
∞∑
k=1

ckBk,

where eachBk is again a Blaschke product of degree n by Lemma 1. The generalized
triangle inequality for the norms and Theorem 3 yield

‖f ◦B‖B1/C ≤
∞∑
k=1

|ck| · ‖Bk‖B1/C ≤
∞∑
k=1

|ck| ·Mn.

Taking the infimum over all possible representations of f , we get

‖f ◦B‖B1/C ≤ Mn‖f ‖B1/C.

This completes the proof. �

4 Exact Norm Computations on the True Bloch and Dirichlet
Spaces

The problem of norm computation becomes more delicate when one considers the
true analytic Besov spaces, taking the constants into account. In this section we
compute the norms of CB on two distinguished spaces in the scale of Bp spaces: on
the Bloch space B and on the Dirichlet space D.

4.1 Norms on the True Bloch Space

We first compute the norms of CB as an operator acting on the Bloch space B for
any finite Blaschke product B . For some further norm estimates of more general
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composition operators on B in terms of the hyperbolic derivative of the symbol, the
reader is referred to [10], [7, Chap. 2], and [1].

Note that the result below states that to the expression already known from The-
orem 6 for the quotient space one should also add a value involving B(0) and the
hyperbolic distance as a basic measure of growth of Bloch functions. We use the
notation defined in Sects. 2.2 and 2.4.

Theorem 6 Let B be a finite Blaschke product. Then, as operators acting on the
true Bloch space, ‖CB‖B→B = !(0,B(0)) + 1, for any finite Blaschke product B ,
no matter what its degree is.

Proof Let f be a function of unit norm in B and α = B(0). By the Schwarz-Pick
lemma and the basic growth estimate (1), we have

‖f ◦B‖B = ∣∣f (α)∣∣+ sup
z∈D

(
1 − |z|2)∣∣B ′(z)

∣∣∣∣f ′(B(z))∣∣

≤ ∣∣f (α)∣∣+ sup
z∈D

(
1 − ∣∣B(z)∣∣2)∣∣f ′(B(z))∣∣

≤ ∣∣f (α)− f (0)∣∣+ ∣∣f (0)∣∣+ s(f )
≤ ∣∣f (α)− f (0)∣∣+ 1

≤ !(0, α)+ 1.

The inequality ‖CB‖B→B ≤ !(0, α)+ 1 follows.
For the reverse inequality ‖CB‖B→B ≥ !(0, α)+ 1, it is convenient to distinguish

between two cases. When α = 0, taking into account that composition operators fix
the constant function one, it follows immediately that ‖CB‖B→B ≥ 1. This gives
the desired equality in this special case.

For all other values α ∈ D \ {0}, we can consider the function

f (z) = 1

2
log

1 + λz
1 − λz , λ = α/|α|.

Since B is a finite Blaschke product, we know that B(D) = D. Hence for an arbitrary
increasing sequence (rn)∞

n=1 of positive numbers such that limn→∞ rn = 1 we can
find points zn in D for which B(zn) = λ

√
rn, hence λ2B2(zn) = |B(zn)|2. By the

Chain Rule, the definition of the Bloch norm, and the choice of our function f , we
have

‖f ◦B‖B = !(0, α)+ sup
z∈D

(1 − |z|2)|B ′(z)|
|1 − λ2B2(z)|

≥ !(0, α)+ lim sup
n→∞

(1 − |zn|2)|B ′(zn)|
|1 − λ2B2(zn)|
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= !(0, α)+ lim sup
n→∞

(1 − |zn|2)|B ′(zn)|
1 − |B(zn)|2

= !(0, α)+ 1,

where the last inequality follows from Heins’ Theorem 1. �

4.2 Norms on the True Dirichlet Space

Following an idea from our earlier paper [8], we can also compute the norms of
CB on the Dirichlet space for an arbitrary finite Blaschke product B . As one would
expect, the norm is comparable to the square root of the degree of B and also takes
into account the valueB(0). The quantityL defined below appears because Dirichlet
functions grow at most like the square root of the logarithm.

Theorem 7 Let B be a finite Blaschke product of degree n and write

L = log
1

1 − |B(0)|2
.

Then we have the formula

‖CB‖D→D =
√
n+L+ 1 +√(n+L− 1)2 + 4L

2
.

The norm is attained for the following function F of norm one:

F(z) =
√

1 −K2L+K log
1

1 −B(0)z ,

where the constant K is chosen so that

K2 = 1

2L
+ 1

2L

n+L− 1√
(n+L− 1)2 + 4L

.

Proof Let us write again α = B(0). Given f ∈ D, we can use the change of variable
w = B(z) and Lemma 2 as before to get:

‖f ◦B‖2
D = ∣∣f (α)∣∣2 + n

∫
D

∣∣f ′∣∣2dA = (∣∣f (α)∣∣2 − n∣∣f (0)∣∣2)+ n‖f ‖2
D.

Restricting to the functions of unit norm, we obtain

‖CB‖2
D→D = sup

{
n+ ∣∣f (α)∣∣2 − n∣∣f (0)∣∣2 : ‖f ‖D = 1

}
.
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Let f (z) =∑∞
k=0 ckz

k be the Taylor series expansion of f in D. Clearly, c0 = f (0).
Recalling our assumptions that

B(0) = α, ‖f ‖2
D = |c0 |2 +

∞∑
k=1

k|ck|2 = 1, (3)

and using the triangle and Cauchy-Schwarz inequalities, we get

n+ ∣∣f (α)∣∣2 − n∣∣f (0)∣∣2

= n− n|c0 |2 +
∣∣∣∣∣c0 +

∞∑
k=1

ckα
k

∣∣∣∣∣
2

≤ n− n|c0 |2 +
(

|c0 | +
∞∑
k=1

√
k|ck| · |α|k√

k

)2

(4)

≤ n− n|c0 |2 +
(

|c0 | +
√√√√ ∞∑
k=1

k|ck|2 ·
√

log
1

1 − |α|2

)2

. (5)

Next, we give a precise upper bound on the quantity

n− n|c0 |2 +
(

|c0 | +
√√√√ ∞∑
k=1

k|ck|2 ·
√

log
1

1 − |α|2

)2

subject to the conditions (3). To simplify the notation, let us write

x =
∞∑
k=1

k|ck|2 and L = log
1

1 − |α|2
.

Keeping in mind that |c0 |2 = 1 −x, the problem reduces to maximizing the function
of one variable:

Φ(x) = n− n(1 − x)+ (|c0 | + √
L

√
x
)2 = 1 + (n+L− 1)x + 2

√
L
√
x − x2.

Since

Φ ′(x) = n+L− 1 + √
L

1 − 2x√
x − x2

, Φ ′ ′(x) = − √
L

2(x − x2)3/2
< 0 (0< x < 1),

we know by elementary calculus that the function Φ achieves its maximum value at
its only critical point:

x0 = 1

2
+ 1

2

n+L− 1√
(n+L− 1)2 + 4L

,



Norms of Composition Operators Induced by Finite Blaschke Products 221

hence

Φ(x) ≤ Φ(x0) = n+L+ 1 +√(n+L− 1)2 + 4L

2
, for all x ∈ [0,1]. (6)

This yields the desired upper bound:

‖CB‖2
D→D ≤ n+L+ 1 +√(n+L− 1)2 + 4L

2
.

It is now only left to verify that equality can actually hold throughout the chain
of inequalities (4), (5), and (6) obtained in the process. Equality is obtained in (4)
and (5) by choosing the Taylor coefficients of f to be

ck = Kα
k

k
, k = 1,2,3, . . . ,

with K > 0 and c0 > 0, so that also ckαk > 0 for all k ≥ 0. This yields the function

Fα(z) = c0 +
∞∑
k=1

(αz)k

k
= c0 +K log

1

1 − αz .

The exact value of c0 ought to be chosen as follows:

c0 = Fα(0) =
√

1 −K2L =
√

1 −K2 log
1

1 − |α|2
,

and we still have the freedom of choosing K so as to get

K2 = 1

2L
+ 1

2L

n+L− 1√
(n+L− 1)2 + 4L

.

This guarantees that the maximum of Φ(x), as in (6), will be achieved at the value
x0 indicated above. The proof is now complete. �
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On the Computable Theory of Bounded Analytic
Functions

Timothy H. McNicholl

Abstract The theory of bounded analytic functions is reexamined from the view-
point of computability theory.

Keywords Computability theory · Computable analysis · Complex analysis ·
Blaschke products
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1 Introduction

The first electronic computers were produced in the mid-20th century. At the time
of this writing, it is likely that the reader has in his pocket a computing device
that dwarfs these early machines in computational power. Despite the astonishing
progress and dazzling possibilities for the future, it is worth taking a step back and
noting that the mathematical limitations of such computing devices were established
by A.M. Turing in 1936 [25]. The resulting mathematical theory is known as com-
putability theory and is a key component of the theory of computation. Since Tur-
ing’s seminal work, computability theory has also experienced a pullulating devel-
opment.

One exciting application of computability is to reexamine a mathematical theory
from the viewpoint of computability. For example, Boone’s demonstration that the
word problem is incomputable [2]. Such investigations not only yield novel results
which lead us to reconsider the nature of a theory, but also illuminate fundamental
limitations and possibilities for its practical applications.

Here, we survey a selection of results on the computable theory of bounded ana-
lytic functions; in particular, with regards to Blaschke products and inner functions.
In doing so, we will be led on a tour of many of the fundamental and beautiful results
of computability theory and computable analysis. That is, the theory of computation
with continuous data.
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The paper is organized as follows. In Sect. 2, we give a brief introduction to
classical computability theory. In Sect. 3, we introduce the fundamental notions of
computable analysis specialized to the unit disk. Sections 4 and 5 contain the results
on Blaschke products. Inner functions are treated in Sects. 7 and 8. Proofs will be
presented only for the sake of elucidating some broader point or to improve earlier
work.

Before continuing, let us settle a few matters of notation. Let N denote the set of
natural numbers by which we mean the set of all non-negative integers. We write
f :⊆ A → B when f is a function whose domain is contained inA and whose range
is contained in B . If dom(f ) ⊂ A, then we say f is a partial function from A into B .
We denote a countably infinite sequence a0, a1, a2, . . . by {an}n∈N.

2 Basic Computability Theory

We summarize here just those elements of computability theory necessary for our
exposition on bounded analytic functions. A more expansive development can be
found in [4].

Broadly speaking, computability theory is a mathematical theory that delineates
the limitations and potential of discrete computing devices such as the modern digi-
tal computer. When it is determined that some given problem can be solved by such
a device, the investigation usually turns to limitations on efficiency. That is, what are
the bounds on how quickly a computer can solve the problem or how much memory
must be used. See, e.g. [1]. But, if it is determined that no such device can solve
the problem, research may turn to ranking its unsolvability relative to other such
problems. Such ranking methods lead to development of degree theory [13, 22].

Although physical computers are never far out of sight, the fundamental notion of
computability theory is that of an algorithm (or ‘program’ for computation). Loosely
speaking, an algorithm is a procedure that consists of a sequence of steps that can be
followed without thinking. The viewpoint of computability theory is that computers
are simply devices for implementing algorithms. Thus, the primary objects of study
of computability theory are algorithms not computers.

2.1 Computable Functions and Sets

The fundamental definition of computability theory then is that of a computable
function which we render as follows.

Definition 1 A function f :⊆ N
k → N is computable if there is an algorithm

that, given any (n1, . . . , nk) ∈ N
k as input, produces f (n1, . . . , nk) as output if

(n1, . . . , nk) ∈ dom(f ) and does not halt if (n1, . . . , nk) �∈ dom(f ).
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Fig. 1

Examples of computable functions are addition, multiplication, and division
(where a ÷ b is declared to be undefined if b does not divide a). For example, the
following algorithm computes the division function; (a, b) denotes the pair given as
input.

Step 1: Set j = 1.
Step 2: If b× j = a, then stop and output j ; otherwise set j = j + 1 and repeat this

step.

In fact, it is likely that any function the reader can think of is computable. Never-
theless, most functions from N

k into N are incomputable. A more explicit statement
and demonstration of this point will be given later.

The non-halting condition in Definition 1 might raise some eyebrows as well
since failure to halt is usually seen as programmer error. For example, in the divi-
sion algorithm just presented, the search could be terminated when the counter has
exceeded the first input value. Nevertheless, there are some functions whose com-
putation requires the use of a search procedure for which no such test can be added
so as to avoid searches that do not terminate. This point will be made more explicit
and demonstrated in the next subsection.

Of course, the purview of algorithms ranges far beyond the natural numbers. For
example, we also want to compute with the rational numbers. We transfer com-
putability concepts from N to other domains by means of codings. Formally, a cod-
ing of a set X is a surjection c :⊆ N → X. When c(n) = x, we refer to n as a code
of x (with respect to c). When X1 and X2 are sets for which we have established
codings c1 and c2 respectively, and when f :⊆ X1 → X2, then we say that f is
computable with respect to c1 and c2 if there is a computable F :⊆ N → N such
that the diagram in Fig. 1 commutes. More precisely, f c1(n) = c2F(n) whenever
c1(n) ∈ dom(f ), and n �∈ dom(F ) whenever c1(n) �∈ dom(f ).

Let 〈 , 〉 : N2 → N denote Cantor’s bijection of N2 with N. That is,

〈m,n〉 = 1

2

(
(m+ n)2 + 3m+ n).

Let ()0 : N → N and ()1 : N → N denote the inverse functions of 〈 , 〉. That is,
〈(n)0, (n)1 〉 = n for all n. By elaborating on Cantor’s bijection of N onto N × N,
we can establish natural codings of the integers, the rational numbers, the set of
all isomorphism equivalence classes of finite graphs, etc. We can thereby transfer
computability to all these domains. There are, of course, numerous codings of each
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of these sets. However, all “reasonable” codings yield the same class of computable
functions. Thus, henceforth we shall not mention them. Furthermore, we often iden-
tify objects with their codes.

In addition, by means of codings, we can reduce the consideration of multivari-
able functions to single variable functions. Namely, if we begin by fixing a coding
c of Nk , obtained by iterating Cantor’s coding, and if for each j = 1, . . . , k we have
established a coding cj of a set Xj , then, by composition, we obtain a coding of
X1 × · · · ×Xk .

Before proceeding further, let us work through an example. Define a coding of
Z, cZ, by

cZ(n) = (n)0 − (n)1.
Then, a coding of Z2, cZ2 , is yielded by setting

cZ2(n) = (cZ((n)0), cZ((n)1)).
To show that addition is a computable operation on Z with respect to this coding,
set

F(n) = 〈((n)0)0 + ((n)1)0,
(
(n)0
)

1 + ((n)1)1
〉
.

Clearly, F is computable. Also, cZ(F (n)) = cZ((n)0)+cZ((n)1). Thus, with respect
to this coding, addition is a computable operation on Z.

At this point, the reader may be disconcerted by the fact that no precise definition
of “algorithm” has been proffered. Doubtless, we all have a good intuitive idea of
what an algorithm is, but such is not a sound foundation for a mathematical theory.
There have been numerous attempts to mathematically formalize the notion of ‘al-
gorithm’; or, at least, to mathematically formalize the class of computable functions.
For example, Turing machines, partial recursive functions, flowchart computability,
and unlimited register machines. The first three of these are described in [18], and
the last is described in [5]. The unlimited register machine forms the theoretical
basis for the modern computer.

What is miraculous is that all of these notions yield the same class of computable
functions. For this reason, the notion of “computable function” is regarded as very
stable, and most of the discipline of computability theory can be discussed without
reference to any such formalization.

2.2 Computable vs. Computably Enumerable Sets

A useful distinction, and a theme which runs through many applications of com-
putability theory, is that between the notion of a computable set and that of a com-
putably enumerable (c.e.) set. The definitions are as follows.

Definition 2 A set A ⊆ N is computable if its characteristic function is computable.



On the Computable Theory of Bounded Analytic Functions 227

Definition 3 A set A ⊆ N is computably enumerable if it is empty or if there is a
sequence {an}∞

n=0 such that A = {a0, a1, . . .} and such that n  → an is a computable
function. Such a sequence is called a computable enumeration of A.

A few immediate consequences of Definitions 2 and 3 are worth noting here. The
first is that every finite set A ⊆ N is computable. This is trivial if A is empty (just
output 0 on any input!). Suppose A = {b1, . . . , bk}. Then, on input n, we search
through all j ∈ {1, . . . , k} until either we exhaust the elements of this set or we find
one such that n = bj . In the latter case, we output 1 and in the former case we
output 0.

Another consequence is that every computable set A ⊆ N is computably enumer-
able. For, if A is finite and non-empty, say A = {b0, . . . , bk}, then we may write A
as A = {a0, a1, . . .} where

an =
{
bn if n ≤ k,
bk if n > k

and clearly n  → an is computable. If A is infinite, then we can define an to be the
(n + 1)-st element of A when its elements are listed in increasing order. Again, it
follows that n  → an is computable.

However, we have the following.

Theorem 1 There is a c.e. set that is not computable.

We will discuss the proof of Theorem 1 in Sect. 2.3. Right now, we will use it to
settle one pending issue. Namely, we can now demonstrate the necessity of the non-
halting condition in Definition 1. For, let A be a c.e. and incomputable set. Clearly,
A is not empty. So, let {an}∞

n=0 be a computable enumeration of A. Then, define a
function f :⊆ N → N by defining f (n) to be 1 if n ∈ A and declaring f (n) to be
undefined if n �∈ A. It follows that f is computable: on input n, search for k ∈ N

such that n = ak and output 1 as soon as one is found (and if there is no such k, then
the algorithm will not halt!).

2.3 From Whence All This Comes: The Fundamental Theorem of
Computability Theory

The following theorem underlies many of the claims we have made about com-
putable functions and sets.

Theorem 2 (Fundamental Theorem of Computability Theory) There is a com-
putable function U :⊆ N × N → N with the property that if f :⊆ N → N is any
computable function, then there is a number e ∈ N such that f (n) = U(e,n) for all
n ∈ N.
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A precise proof of Theorem 2 requires the sort of framework alluded to at the end
of Sect. 2.1 and which we wish to avoid. However, for those familiar with program-
ming in a language like BASIC, C, or JAVA, it is possible to give a fairly convincing
and concise proof sketch. To begin, we start with the premise that every algorithm
can be coded in such a language. A program in such a language is a sequence of
symbols. If we fix the language, then it is possible to produce a coding of all such
sequences. The function U can then be viewed as an interpreter for this language.

It is now possible to give a proof of Theorem 1. Namely, let

K = {e ∈ N : (e, e) ∈ dom(U)
}
.

The set K is known as Turing’s Halting Set. It is the domain of the computable
function n  → U(n,n). It is not difficult to show that the domain of a computable
function g :⊆ N → N is a c.e. set. (Namely, assuming dom(g) is infinite, begin
running the computations of g(0), g(1), . . . in parallel and let an be the (n + 1)st
computation to halt.) Hence, K is c.e. If K were computable, then the function g
that is defined to be 1 on all n ∈ N −K and is declared to be undefined on all other
numbers, would be computable. But, if e is such that g(n) = U(e,n) for all n, then
we obtain

e ∈ K ⇔ e ∈ dom(g) ⇔ e �∈ K,
which is a contradiction.

Another important consequence of Theorem 2 is that there are countably many
computable functions and sets. This makes precise the assertion that most partial
functions from N into N and most subsets of N are not computable.

2.4 Uniform vs. Non-uniform Computability

Another theme which pervades much of computability theory and its applications
is the distinction between uniform and non-uniform computability. While these no-
tions have no overarching and precise definitions, they are exemplified by the fol-
lowing.

Definition 4 A family of sets {An}n∈N is uniformly computable if there is an algo-
rithm that given any n, k ∈ N as input determines if k ∈ An.

It is quite easy to construct a family of computable sets that is not uniformly
computable. For, let A ⊆ N be any incomputable set. For each n ∈ N, let

An =
{ {1} n ∈ A,

{0} n �∈ A.
Since every finite set is computable, each An is. But, if the family {An}n∈N were
computable, then A would be as well.
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The distinction between uniform and non-uniform computability generally arises
when considering hypothetical claims of computability. That is, claims of the form

“If A,B,C, . . . are computable then so is X.”

Such a claim is said to hold uniformly if there is an algorithm that, given as input
algorithms for computing A,B,C, . . . , produces an algorithm for computing X. In
order to consider algorithms as input or output of other algorithms, one must assume
they are represented in some formalism such as flowcharts or Turing machines as
discussed in Sect. 2.1.

3 Computable Analysis on the Unit Disk

Roughly speaking, computable analysis is the theory of computation with contin-
uous data, e.g. Euclidean space and its hyperspaces. The classical computability
theory, which is what we have outlined in Sect. 2, only deals with discrete data.
However, much scientific computation involves models in which the underlying data
are assumed to be continuous. We can not use codings to bridge the gap since, for
example, it follows from Cantor’s Non-Denumerability Theorem that there is no
coding of R. However, if we are careful, we can bridge the gap by means of approx-
imation of continuous data by discrete data. Mathematically speaking, this means
we use the discipline of topology to bridge the gap. That is, a topology is viewed as
a notion of approximation.

Despite the simple nature of this idea, there are several approaches to the foun-
dations of computable analysis. See e.g. [3, 8, 10, 11, 19, 27]. However, when re-
stricted to the unit disk, they all yield the same theory; that is, they produce the
same classes of computable points, sequences, functions, etc. We will proceed via
definitions which would be acceptable to all of these schools of thought.

To begin, let Dr(z) denote the open disk with radius r and center z. If r is a
rational number, and if z is a rational point (that is, a point whose coordinates are
rational numbers), thenDr(z) shall be referred to as an open rational disk andDr(z)
shall be referred to as a closed rational disk. Again, by elaborating on Cantor’s
coding of N × N, we can produce a reasonable coding of the set of all open rational
disks. We can now define what it means for a point in the plane to be computable.

Definition 5 We say that a point z ∈ C is computable if there is an algorithm that,
given any k ∈ N as input, produces an open rational disk D that contains z and
whose diameter is at most 2−k .

In other words, this algorithm never tells us z exactly, but rather gives us a set
of possible positions for z. With larger k as input, a narrower set of possibilities is
obtained.

There are many examples of computable points. For instance, every rational point
q is computable: on input k, simply output the open disk with center q and radius
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2−(k+1). The irrational numbers π ,
√

2, e are also computable. This is a conse-
quence of the fact that there are numerous algorithms for computing their decimal
expansions. By imitating the proofs that addition, multiplication, and division are
continuous, it can be shown that the set of computable points is a subfield of C. In
fact, most points the reader is likely to think of are computable. But, again, there are
only countably many computable points in the plane.

By extending this definition a little, we get the notion of a computable sequence
of complex numbers.

Definition 6 A sequence of complex numbers {zn}n∈N is computable if there is an
algorithm that, given any n, k ∈ N as input, produces an open rational disk D that
contains zn and whose radius is at most 2−k .

It follows that if {zn}n∈N is computable, then each zn is computable. The converse
does not hold however. For, let A ⊆ N be any incomputable set. Let

zn =
{

1 n ∈ A,
0 n �∈ A.

Since each rational number is computable, each zn is computable. However, if the
sequence {zn}n∈N were computable, then there would be an algorithm that, given
any n ∈ N as input, computes an open rational disk of radius 1/2 that contains zn.
Such a disk must contain exactly one of 0,1. This yields an algorithm that computes
the characteristic function of A—a contradiction.

Much has been written about the definition of ‘computable function’ on contin-
uous spaces such as C. We give a definition for functions on the unit disk which is
equivalent to what would be obtained from almost any of the more general notions
in the literature and which also agrees with the picture painted by practice.

Definition 7 A function f : D → C is computable if there is an algorithm P that
has the following three properties.

• Approximation: Given as input an open rational disk D1 ⊆ D such that D1 ⊆ D,
either P does not halt, or it produces an open rational disk D2 as output.

• Correctness: If P halts onD1, and ifD2 is produced as output, then f [D1 ] ⊆ D2.
• Convergence: If U is a neighborhood of f (z), then there is an open rational disk
D1 that contains z and such that when it is provided as input to P , P produces a
disk D2 that is contained in U .

Loosely speaking, the approximation property states that P maps approximations
(to points) to approximations. Namely, the center of D1 should be regarded as an
approximation to a point z ∈ D, and its radius should be viewed as an upper bound
on the error of this approximation. Similarly, the center of D2 should be regarded
as an approximation of f (z) and its radius should be viewed as an upper bound on
the error. The correctness property states that if the input is an approximation to
z ∈ D, then the output must approximate f (z). The third says that we must be able
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to obtain arbitrarily good approximations to f (z) by providing sufficiently good
approximations to z as input.

An easy, but possibly disconcerting, consequence of this definition is that every
computable function is continuous. This may seem problematic. For example, the
function

f (z) =
{

0 z = 0,
1 z �= 0

is discontinuous, but the simplicity of its definition may lead one to believe at first
glance that it is computable. In fact, it would seem that in many languages a code
fragment like

if (z = 0) output 0 else output 1

would compute f . But, this code must contend with approximations to z; presum-
ably decimal expansions. Any reasonable theory of computation with continuous
data must have a convergence criterion: the code should obtain arbitrarily good
approximations to f (z) from sufficiently good approximations to z. Furthermore,
there ought to be some sort of error control: we should be able to compute a bound
on the error in the output approximation, and these bounds should tend to zero as
the input approximations become more accurate. Everything now turns on how the
test in this code is evaluated. If z is approximated by 0.0 . . .0 + 0.0 . . .0i, and if the
number of decimal places is sufficiently large,then the code must produce an output
approximation with error no larger than 1/2. Presumably, this output is zero. But,
better approximation to z, e.g. as would be obtained by more accurate observation
of a physical quantity z represents might reveal that a further decimal place of the
real part of z is 9, and 1 would be precluded as an output.

So, in fact, the continuity consequence of Definition 7 is no deficiency at all but
a sharp clarification.

Another elementary consequence of the definitions presented thus far is that if f :
D → C is computable, and if z is a computable point in D, then f (z) is computable.

As for examples, again it is likely that almost any function the reader will think of
is computable. But again, most continuous functions on the disk are incomputable.

We will also need a definition of computability for functions from [0,1] into C.
This is obtained by suitable modification of Definition 7 as follows. First, define an
interval to be rational if its endpoints are rational numbers.

Definition 8 A function f : [0,1] → C is computable if there is an algorithm P

that has the following three properties.

• Approximation: Given as input an open rational interval I1, either P does not halt,
or it produces an open rational disk D2 as output.

• Correctness: If P halts on I1, then f [I1 ∩ [0,1]] ⊆ D2.
• Convergence: If U is a neighborhood of f (x), then there is an open rational

interval I1 that contains x and such that when it is provided as input to P , P
produces a disk D2 that is contained in U .
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4 Some Basic Computability Results on Blaschke Products

Whenever a ∈ D − {0}, we let

ba(z) = |a|
a

a − z
1 − az .

And, when A = {an}∞
n=0 is a sequence of non-zero points in D, we let:

BA =
∞∏
n=0

ban

ΣA =
∞∑
n=0

1 − |an|.

The function BA is called a Blaschke product. The sequence A is said to be a
Blaschke sequence if ΣA < ∞. We say that BA converges at z if BA(z) �= 0. It
is well-known that BA converges at all points of the disk except the terms of A if
and only if A is a Blaschke sequence and that otherwise BA converges nowhere on
the disk. Other properties of Blaschke products can be found in [7] and [21].

The first question to consider is “If A is a computable Blaschke sequence, does
it follow that BA is a computable function?” The following theorem, which first
appeared in [14], shows that it does not.

Theorem 3 There is a computable Blaschke sequence A such that BA is incom-
putable.

The proof of Theorem 3 turns on the following result of E. Specker [23].

Theorem 4 There is a computable and decreasing sequence of positive rational
numbers 1> r0 > r1 > · · · > 0 whose limit is incomputable.

Proof Let A ⊆ N be c.e. and incomputable, and let {an}∞
n=0 be a computable enu-

meration of A. Since A is infinite, it is possible to choose this enumeration so that
it contains no repetitions. Let

rk = 1 −
k∑
j=0

2−(ak+1).

Thus, 1> r0 > r1 > · · · > 0. Let r = limk→∞ rk . If r were computable, then 1 − r
would also be computable. Hence, it would be possible to compute its base 2 expan-
sion. However, the n-th place to the right of the ‘.’ in this expansion is 1 if and only
if (n − 1) ∈ A. Hence, it would also follow that A is computable—a contradiction.
Thus, r is incomputable. �
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Proof of Theorem 3 Let 1> r0 > r1 . . . be as in Theorem 4. Let

a0 = r0

an+1 = rn+1

rn

A = {an}∞
n=0.

Thus, A is computable. But,

BA(0) = lim
k→∞

k∏
n=0

ban(0)

= lim
k→∞ rk+1.

Thus, BA(0) is incomputable. Hence, BA is incomputable. Note also that, since
BA(0) is incomputable, it is non-zero and so ΣA < ∞. �

Our next goal is to show that if B is a computable and not identically zero
Blaschke product, then there is a computable Blaschke sequence A such that
B = BA [14]. The proof of this result will lead us on a tour of several fundamental
results and techniques of computable analysis. We begin with the following defini-
tion.

Definition 9 A closed set X ⊆ C is said to be computably closed if the set of all
open rational disks that contain a point of X is computably enumerable.

Almost any natural closed subset of the planeD is computably closed. However,
if z is an incomputable point in C, then {z} is not computably closed.

Our first preliminary goal is to show the following.

Theorem 5 The zero set of a non-constant, computable, and analytic function f :
D → C is computably closed.

In general, it does not follow that the zero set of a computable function is
computably closed. In fact, E. Specker showed that there is a computable func-
tion f : [0,1] → R whose zero set is not computably closed and even has positive
Lebesgue measure [24].

The essence of the problem is to list just those open rational disks that contain
a zero of f . When f is an analytic, there are many zero-finding methods available
to us. Perhaps the simplest of these is to use the Argument Principle. Namely, the
number of zeros of f is an open disk D is

Arg(f ;D) =df

1

2πi

∫
∂D

f ′

f

provided there is no zero of f on the boundary of D.
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Upon considering the application of the Argument Principle, we are led to two
key principles of computable analysis: integration is a computable operator but dif-
ferentiation is not. Namely, we have the following two theorems. The first is rela-
tively well-known, and the second is due to J. Myhill [16].

Theorem 6 If f : [0,1] → R is computable, then
∫ 1

0 f is a computable real.

Theorem 7 There is a computable and continuously differentiable f : [0,1] → R

whose derivative is not computable.

A highly useful feature of Theorem 6 is that it is uniformly true. That is,
there is an algorithm that, given as input an algorithm that computes a function
f : [0,1] → R, produces an algorithm that computes

∫ 1
0 f .

Cauchy’s Formula allows us to express differentiation of analytic functions in
terms of integration. If we put these observations together, we obtain the following
which was previously observed by P. Hertling [9].

Proposition 1 The derivative of a computable analytic function on the disk is com-
putable.

Furthermore, Proposition 1 holds uniformly in the sense that there is an algo-
rithm, that given as input an algorithm for computing an analytic function on the
disk, produces an algorithm that computes its derivative.

The next difficulty we must contend with regards to the application of the Argu-
ment Principle is that there is no algorithm which will tell us whether the boundary
of a rational disk contains no zero of f . More precisely, we have the following.

Proposition 2 There is a computable Blaschke product B such that

{
D : D is an open rational disk and ∂D ∩B−1[{0}]= ∅}

is incomputable.

The proof of Proposition 2 illustrates the technique of coding a c.e. incomputable
set into a problem. However, we delay the proof until we cover some supporting
material in Sect. 5.

Fortunately, with a little care, the obstacle illustrated by Proposition 2 is easy to
surmount. Namely, we begin by enumerating all closed rational disks D ⊆ D while
simultaneously estimating the value of Arg(f ;D). That is, by simultaneously run-
ning an algorithm for estimating the value of this integral, which may be undefined.
If at some stage in this process, this algorithm tells us that the value of Arg(f ;D)
lies in an interval that contains only one positive integer, then we do not list D as a
disk that contains a zero of f , but we do list every open rational disk D′ such that
D ⊆ D′ ⊆ D as one that contains a zero of f . For, if ∂D is zero-free, then it must be
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the case that D and hence D′ contains a zero of f . But, if ∂D contains a zero of f ,
it is still the case thatD′ contains a zero of f . Hence, every open rational disk listed
by this process contains a zero of f . Furthermore, since the zeros of f are isolated,
it follows that every rational disk that contains a zero of f is eventually listed by
this process. We have thus proven Theorem 5.

The computability properties of the complement of the zero set of f will be
useful. So, we introduce the notion of a computably open set.

Definition 10 An open set U ⊆ C is computably open if the set of all closed rational
disks D ⊆ U is computably enumerable.

Proposition 3 If f is a computable function on D, then D−f−1 [{0}] is computably
open.

Proof Fix an algorithm for computing f . Begin running this algorithm on all open
rational disks in parallel. Whenever it halts on an open rational diskD1 and produces
as output a disk D2 that does not contain 0, we can list D1 as an open rational disk
that contains no zero of f . We then list a closed rational diskD as containing no zero
of f whenever we discover (from the first list) open rational disks D2,1, . . . ,D2,n
that cover D and that contain no zero of f . �

Note that the proof of Proposition 3 is uniform.
We now turn to the following definitions from [15].

Definition 11 Suppose f : D → C is an analytic function with infinitely many ze-
ros.

1. A zero sequence of f is a sequence {an}n∈N whose terms are precisely the zeros
of f and such that the number of times a zero of f appears in this sequence is its
multiplicity as a zero of f .

2. A truncated zero sequence of f is a sequence {an}n∈N whose terms are precisely
the zeros of f and such that each zero of f appears exactly once in this sequence.

The heart of the matter then is to show that a computable and not identically
zero Blaschke product has a computable zero sequence. As an intermediate step, we
show the following. The proof illustrates the technique of constructing a sequence
through approximations.

Theorem 8 If f is a non-constant, computable, and analytic function on D with
infinitely many zeros, then f has a computable truncated zero sequence.

Proof By Theorem 5, there is a computable enumeration {Dn}n∈N of all open ratio-
nal disksD ⊆ D that contain a zero of f . Our goal now is to construct a computable
array {Dm,n}m,n∈N of rational disks such that

⋂
n Dm,n consists of a single point for

each m and such that this point is a zero of f . We additionally ensure that for each
zero of f , z0, there is exactly one m such that z0 ∈⋂n Dm,n.
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We construct {Dm,n}m,n inductively and by stages. At stage 0, we set D0,0 =
D0. At stage t + 1, we do the following. First of all, let m0, n0, . . . , nm0 denote
the numbers such that at the end of stage t we have defined Dm,n precisely when
m ≤ m0 and n ≤ nm. Let r = (t + 1)0. If

Dr ∩
( ⋂
n≤nm

Dm,n

)
= ∅

whenever m ≤ m0, then we let

Dm0 +1,0 = Dr.
If there is an m ≤ m0 such that Dr ⊆ Dm,nm , and if the diameter of Dr is no
larger than one half of the diameter of Dm,nm , then choose the least such m and
set Dm,nm+1 = Dr . If neither of these cases holds, then we do not define any more
terms of {Dm,n}m,n at stage t + 1. This completes the construction of {Dm,n}m,n.

We now show this construction builds a double sequence with the required prop-
erties. First of all, we must show it defines Dm,n for every m,n. To this end, we
first show that it defines Dm,0 for every m. For, suppose otherwise. Let m1 be
the least number such that Dm1,0 is never defined. Hence, m1 > 0. Also, Dm1 +1,0,
Dm1 +2,0, . . . are never defined.D0,0,D1,0, . . . ,Dm1 −1,0 contain finitely many zeros
of f . So, let z0 be a zero of f that does not belong to any of these disks. Then, there
is a rational diskD that contains z0 and such thatD∩Dj,0 = ∅ whenever j ≤ m1. At
the same time,D = Dr for some r . There are infinitely many t such that (t+ 1)0 = r .
So, there is such a value of t for which it is also true that D0,0, . . . ,Dm1 −1,0 have
been defined by the end of stage t + 1. Let m0, n0, . . . , nm0 be as in the description
of stage t + 1. Hence, m0 = m1 − 1. The construction ensures that Dm,n ⊇ Dm,n+1
whenever Dm,n and Dm,n+1 are defined. Thus, Dm,n ∩ Dr = ∅ whenever m ≤ m0
and n ≤ nm. But, this implies that Dm1,0 = Dr , contrary to what we assumed. Thus,
Dm,0 is defined for all m.

We now claim that for each m, Dm,n is defined for all n. For, suppose m,n are
such that Dm,n is never defined. Let n1 be the largest number such that Dm,n1 is
defined. By construction, Dm,n1 contains a zero of f . So, there is a rational disk
D ⊆ Dm,n1 that contains a zero of f and whose diameter is not larger than one half
of the diameter of Dm,n1 . Then, there is a t such that D(t+1)0 = D and such that
Dm,n1 is defined at stage t . Let m0, n0, . . . , nm0 be as in the description of stage
t + 1. By working through the cases in the description of stage t + 1, we see that
Dm′,n′ must be set = D at stage t + 1 for some m′, n′ and that m′ ≤ m. However,
the construction ensures that Dm′,n ∩ D = ∅ whenever m′ <m and n ≤ nm′ . So, it
must be that m′ = m and this is a contradiction.

Thus, Dm,n is defined for all m,n. Furthermore, our construction of the array
{Dm,n}m,n provides an algorithm for computing Dm,n from m,n. It also follows
that
⋂
n Dm,n consists of a single point for each m and that this point is a zero of f .

For each m, we define am to be the unique point in
⋂
n Dm,n. We thusly obtain a

computable sequence {am}m∈N. It follows from the construction of {Dm,n}m,n that
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this sequence contains no repetitions. It only remains to show that every zero of f
appears in this sequence. By way of contradiction, suppose z0 is a zero of f that
does not appear in this sequence. It follows from the construction that z0 is a limit
point of {a0, a1, . . .}. But, this is impossible since f is analytic and non-constant.
The proof is complete. �

We have thus shown that we can algorithmically discover the zeros of f and
arrange them into a sequence with no repetitions. Our final step is to show we can
algorithmically augment this sequence so that each zero is repeated according to its
multiplicity. We will need the following lemma.

Lemma 1 Suppose f : D → C is computable, non-constant, and analytic. Suppose
also that a ∈ D is a zero of f . Let

f1(z) = lim
z′ →z

f (z′)
z′ − a

for all z ∈ D. Then, f1 is computable.

Proof Since the zeros of f are isolated, it follows from Theorem 5 that a is a com-
putable point. Fix an algorithm for computing f .

The following algorithm computes f1. Suppose we are given as input an open
rational disk D1 such that D1 ⊆ D. We begin by computing, for each k ∈ N, an
open rational disk Sk that contains a and whose diameter is smaller than 2−k . We
continue to do so until we find Sk0 that is contained in C − ∂D1. It may be that no
such Sk0 is found (i.e. in the case when a belongs to the boundary of D1). In this
case, the algorithm will never halt.

Suppose Sk0 is contained in the complement of D1. We then know that a �∈ D1.
So, we proceed by following the steps in the algorithm for computing f with D1 as
input. If no output is thereby yielded, then this algorithm does not halt either. So,
suppose D2 is yielded as output. Compute the least k1 ∈ N so that 2−k1 is smaller
than the diameter ofD2. FromD2 and Sk1 we can compute an open rational diskD3

that contains f1 [D1 ]. Furthermore, we can do this in such a way that the diameter
of D3 tends to zero as the diameter of D2 approaches zero.

On the other hand, suppose Sk0 is contained inD1; hence, a ∈ D1. LetD2 denote
the disk that is concentric with D1 and whose radius is twice the radius of D1. By
the Cauchy Integral Formula,

f1(z) = 1

2πi

∫
∂D2

f1(ζ )

ζ − z dζ

for each z ∈ D1. It follows that we can compute a rational disk D3 that contains
f1 [D1 ]. Furthermore, we can do so in such a way that the radius ofD3 tends to zero
as the radius of D1 tends to zero. We output D3. This completes the description of
our algorithm.
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We now verify that this algorithm satisfies the conditions set forth in Defini-
tion 7. It is clear that the approximation and correctness conditions are met. In order
to verify convergence, suppose z ∈ D and that U is a neighborhood of f (z). We
first consider the case z �= a. In this case, it suffices to show that the algorithm for
computing f satisfies a stronger convergence criterion. Namely, if U1 is any neigh-
borhood of f (z), then z belongs to an open rational disk D1 such that a ∈ D − D1
and such that when provided as input, the algorithm yields an open rational disk con-
tained in U1. We prove this by contradiction. Fix ε0 > 0 such that Dε0(f (z)) ⊆ U1.
Then, for each positive ε < ε0, there is an open rational disk D1,ε that contains z
and such that the algorithm for computing f not only halts when provided D1,ε as
input but also produces a diskD2 that is contained inDε(f (z)). EachD1,ε contains
the line segment from z to a. But, this entails that f (ζ ) = f (z) whenever ζ belongs
to the line segment from z to a. Since f is analytic, we are lead to the conclusion
that f is a constant—a contradiction.

We now consider the case z = a. In this case, the key point is to show that the
algorithm for computing f must halt on arbitrarily small rational disks that con-
tain a. Suppose this is not the case. It then follows from the convergence criterion
of Definition 7 that f is constant on a closed disk that contains a. But, since f is
analytic, this again entails that f is constant. This completes the proof. �

We note that the proof of Lemma 1 is uniform in that it provides an algorithm that
transforms algorithms for computing f and a into an algorithm for computing f1.
This point is crucial for the proof of the following.

Theorem 9 If f : D → C is a non-constant, computable, and analytic function with
infinitely many zeros, then f has a computable zero sequence.

Proof By Theorem 8, there is a computable truncated zero sequence for f , {an}n∈N.
We build a zero sequence of f , {a′

n}n∈N, by stages as follows. To begin, set n0 = 0.
It follows, as in the proof of Proposition 3, that there is a computable enumeration
of all closed rational disks D ⊆ D whose boundary contains no zero of f . (Search
for coverings of the boundary instead of coverings of the closed disk.) Thus, we can
compute a rational number 0< r0 < 1 such that ∂Dr0(a0) contains no zero of f but
Arg(f,Dr0(a0)) = 1. Thus, a0 is the only zero of f in Dr0(a0). We define a′

0 = a0
and set

f1(z) = lim
z′ →z

f (z′)
z′ − a0

.

Suppose we have defined nt , a′
t , ft , and rt . By way of induction, ∂Drt (at ) con-

tains no zero of ft and Drt (at ) contains no zero of ft except possibly ant . So, we
test if Arg(ft ,Drt (at )) �= 0. If so, then we set:

nt+1 = nt

ft+1(z) = lim
z′ →z

ft (z
′)

z′ − ant+1
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a′
t+1 = ant

rt+1 = rt .

Otherwise, we compute a rational number 0 < rt+1 < 1 such that ∂Drt+1(ant+1)

contains no zero of f and such that Arg(f,Drt+1(ant+1)) = 1. (So that ant+1 is the
only zero of ft in Drt+1(ant+1).) We then set

nt+1 = nt + 1

ft+1(z) = lim
z′ →z

ft (z
′)

z′ − ant+1

a′
t+1 = ant+1 .

This completes our description of the construction of {a′
n}n∈N. The idea of the

construction is that we “sit on” a zero and repeatedly divide by the corresponding
linear factor, adding to {a′

n}n∈N each time, until it is exhausted as a sero. It fol-
lows that {a′

n}n∈N is a zero sequence of f and that its construction also provides an
algorithm for its computation. �

Corollary 1 If B is a computable and not identically zero Blaschke product, then
there is a computable Blaschke sequence A such that B = BA.

5 The Missing Parameter

One interpretation of Theorem 3 is that a Blaschke sequence does not provide
enough information to compute the corresponding Blaschke product. This leads to
the question as to what additional information is required. It turns out the Blaschke
sum provides the exact amount of necessary information. The following is Theo-
rem 4.6 of [14]. We give a more direct proof here.

Theorem 10 If A is a computable Blaschke sequence whose Blaschke sum is a
computable real, then BA is computable.

Proof Let A = {an}n∈N. Thus, Bk =df

∏k
n=0 ban is computable uniformly in k. We

now give an algorithm that computes BA. Suppose we are given as input an open
rational disk D1 such that D1 ⊆ D. We can then compute the least k ∈ N such that
D1 is contained in the open disk of center 0 and radius 1 − 1

2k+1 ; denote this disk
by Dk . Compute the least positive integerm such that 1/m is smaller then the radius
of D1. (The idea is that as D1 converges to a point, the value of m will be pushed
towards infinity.) Since ΣA is computable, we can now compute N0 so that

∞∑
n=N0

1 − |an| ≤ 1

2m(2k+2 − 1)
.
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Since A is computable, by direct computation we can compute a rational disk D′
2

such that

BN0 [D1 ] ⊆ D′
2.

And, we can perform this computation in such a way that the diameter of D′
2 tends

to zero as the diameter of D1 tends to zero. We output the disk that is concentric
with D′

2 and whose radius is the sum of 1
2m−2 and the radius of D′

2.

We now verify correctness. Suppose D1 is given as input and that D1 ⊆ D. Sup-
pose D2 is output, and let N0, m, k be as in the description of the algorithm. By
means of the identity

1 − ban(z) = (1 − |an|)(an + |an|z)
an(1 − anz)

it follows that

∣∣1 − ban(z)
∣∣ ≤ 1 + |z|

1 − |z|
(
1 − |an|)

≤ (2k+2 − 1
)(

1 − |an|)

for all z ∈ Dk . The other key inequalities are that

ex − 1 ≤ 4x (1)

when 0 ≤ x ≤ 1 and that

∣∣∣∣∣
N∏
n=1

(1 + un)− 1

∣∣∣∣∣ ≤ exp
(|u1 | + · · · + |uN |)− 1 (2)

whenever u1, . . . , uN ∈ C. The first follows from elementary calculus. The sec-
ond follows from Lemma 15.3 of [21]. To apply (2), choose z ∈ Dk and set
un = ban(z)− 1. We obtain that whenM >N0,

∣∣BM(z)−BN0(z)
∣∣ = ∣∣BN0(z)

∣∣
∣∣∣∣ BM(z)BN0(z)

− 1

∣∣∣∣
≤ ∣∣BN0(z)

∣∣(exp
(|uN0 +1 | + · · · + ∣∣uM(z)∣∣)− 1

)

≤ exp

(
1

2m

)
− 1

≤ 1

2m−2
.

Therefore, for all z ∈ Dk , |BA(z) − BN0(z)| ≤ 1
2m−2 . It follows that BA[D1 ] ⊆ D2.

Thus, correctness.
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We now demonstrate convergence. Suppose z ∈ D and that U is a neighborhood
of BA(z). Let k be the smallest positive integer such that z ∈ Dk . Let D1 be an open
rational disk such that z ∈ D1 and D1 ⊆ Dk . It follows that the algorithm halts on
input D1; let D2 be the disk output. Since k is fixed, it follows that the radius of D2

tends to zero as the radius of D1 approaches zero. Thus, convergence. �

Theorem 10 holds uniformly in that its proof provides an algorithm that trans-
forms an algorithm for computing A and an algorithm for computing ΣA into an
algorithm for computing BA.

Theorem 10 thus tells us that ΣA provides, when combined with A, sufficient
information for the computation of BA. The question now arises as to whether
ΣA provides the exact amount of additional information required or whether some
weaker parameter suffices. It turns out that it does as can be demonstrated by show-
ing that ΣA can be computed from A and BA. However, an even stronger result
holds. Namely, the following theorem which proceeds from the results in [15].

Theorem 11 If A is a computable Blaschke sequence, and if BA(0) is computable,
then ΣA is computable.

Proof sketch Let A = {an}n∈N. Note that BA(0) =∏∞
n=0 |an|. To estimate the error

in approximating ΣA by
∑k
n=0 1 − |an|, we use the inequality

1 − x ≤ e−x

from which we obtain

1∏∞
n=k+1 |an| ≥ exp

( ∞∑
n=k+1

1 − |an|
)
.

Thus, the error in this approximation is bounded above by

− ln

( ∞∏
n=k+1

|an|
)

which tends to 0 as k approaches infinity and which can be computed uniformly
from k (in the sense that there is an algorithm that from k,m computes a rational
number whose distance from this quantity is at most 2−m). �

Corollary 2 If A is a computable Blaschke sequence, and if BA(0) is computable,
then BA is computable.

Again, Theorem 11 and Corollary 2 hold uniformly.
It is worth contrasting Corollary 2 with the following result of Caldwell and

Pour-El [20].
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Theorem 12 There is a computable sequence of complex numbers {an}n∈N such
that the power series

∑∞
n=0 anz

n converges everywhere and defines a function that
is computable on every open rational disk but is not computable on C.

The computability of a function on an open rational disk or C is defined by
appropriate elaboration on Definition 7.

Finally, we are now in position to prove Proposition 2.

Proof of Proposition 2 Let C ⊆ N be c.e. and incomputable. Let {cn}n∈N be a com-
putable enumeration of C. For all t , set

Ct = {cn : n < t}.
For all n, t , let an,t = 1 − 2−(n+1) if n �∈ Ct . But, if n ∈ Ct , and if s is the small-
est integer such that n ∈ Cs , then set an,t = 1 − (2−(n+1) + 2−(s+n+1)). And, let
an = limt→∞ an,t . It follows that |an,t − an| ≤ 2−(t+n+1). Thus, A =df {an}n∈N is
computable. Also,

∞∑
n=k

1 − |an| ≤
∞∑
n=k

2−n = 2−k+1.

And, ∣∣∣∣∣
k∑
n=0

an,t −
k∑
n=0

an

∣∣∣∣∣≤
k∑
n=0

2−(n+t+1) ≤ 2−t .

Hence, ∣∣∣∣∣
t∑
n=0

an,t −ΣA
∣∣∣∣∣≤ 2−t+3.

It follows that ΣA and hence BA are computable.
By way of contradiction, suppose there is an algorithm that, given as input a

rational disk D such that D ⊆ D, determines if ∂D contains a zero of BA. For
all n, n �∈ C if and only if the boundary of Dεn(0) contains a zero of BA where
εn = 1 − 2−(n+1). So, it follows that C is computable—a contradiction. �

6 Interpolating Sequences and Naftalévich’s Theorem

We return again to Theorem 3. It is natural to ask whether geometric conditions on
a Blaschke sequence can influence the computability of the corresponding Blaschke
product. Since, when A is computable, the computability of BA depends only on
that of ΣA, the consideration of interpolating sequences leads to an examination of
Naftalévich’s Theorem [17]:
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Theorem 13 If A = {an}n∈N is a Blaschke sequence, then there is an interpolating
sequence A′ = {a′

n}n∈N such that |a′
n| = |an| for all n.

In [26], V. Andreev and T. McNicholl prove the following (although it is buried
in the middle of a computability proof).

Theorem 14 If A = {an}n∈N is a Blaschke sequence, and if for each n we let

θn =
n∑
k=0

1 − |ak|

a′
n = |an|eiθn,

then A′ =df {a′
n}n∈N is an interpolating sequence.

The proof of Theorem 14 is contained in the proofs of Lemmas 5.2 through 5.6
of [26].

From Theorem 14 and the other results we have discussed, we obtain the follow-
ing.

Corollary 3 There is a computable interpolating sequence A such that BA is in-
computable.

Moreover, Theorem 14 shows that there is a very simple procedure for producing
interpolating sequences from Blaschke sequences.

7 Inner Functions—Frostman’s Theorem

Let Ma(z) = z−a
1−az . We begin with the following statement of Frostman’s Theorem

[6, 7].

Theorem 15 If u : D → D is an inner function with infinitely many zeros, then for
all α ∈ D, except in a set of logarithmic capacity zero, the function Mα ◦ u can be
expressed in the form

Mα ◦ u(z) = λzkBA(z) (3)

where |λ| = 1 and A is a Blaschke sequence.

An immediate consequence of Theorem 15 is the following result on estimation.

Corollary 4 If u : D → D is an inner function with infinitely many zeros, and if
ε > 0, then there is a Blaschke sequence A, a natural number k, and a point λ ∈ ∂D
such that |u(z)− λzkBA(z)| < ε for all z ∈ D.
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Computable versions of Theorem 15 and Corollary 4 are proven in [15]. Namely,
we have the following.

Theorem 16 If u : D → D is a computable inner function with infinitely many zeros,
and if N ∈ N, then there is a computable α ∈ D such that Mα ◦ u is expressible in
the form (3) and |α| < 2−n.

Corollary 5 If u : D → D is a computable inner function with infinitely many zeros,
and if n ∈ N, then there is a computable Blaschke product BA, a computable λ ∈ ∂D,
and a k ∈ N, such that |u(z)− λzkBA(z)| < 2−n for all z ∈ D.

Furthermore, Theorem 16 and Corollary 5 hold uniformly. We sketch the proof
of Theorem 16.

When u : D → C, let

mu(r) = 1

2π

∫ 2π

0
log
∣∣u(reiθ )∣∣dθ.

The key complex analysis results in the proof of Theorem 16 are the following.

Theorem 17 If u is an inner function, then the following are equivalent.

1. u can be expressed in the form

u(z) = λzkBA(z)

for some Blaschke sequence A, λ ∈ ∂D, and k ∈ N.
2. limr→1mu(r) = 0.

Lemma 2 If u is an inner function, then mu is increasing.

The key principle from computable analysis that is used in the proof of Theo-
rem 16 is that maximum-finding is a computable operation on compact sets. For
instance, we have the following.

Proposition 4 If f : D → R is computable, and if D ⊆ D is a closed rational disk,
then

max
{
f (z) : z ∈ D

}
is a computable real.

And again, this result is uniform. A generalization of Proposition 4, which han-
dles arbitrary compact sets, appears in Chap. 5 of [27]. As an aside, we mention the
following theorem of E. Specker [24].
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Theorem 18 If f : [0,1] → R is computable, then max{f (x) : x ∈ [0,1]} is a com-
putable real number. However, there is a computable f : [0,1] → R that does not
attain its maximum value at any computable real.

In other words, maximum-finding is a computable operation, but finding where a
maximum occurs is not!

With these elements, we can now sketch a proof of Theorem 16. To begin, abbre-
viate Mα ◦ u by uα and set m(u,α, r) = muα(r). Note that m(u,α, r) is continuous
as a function of α. Moreover, it is computable as a function of α if u, r are com-
putable. We then search for a rational number r ∈ (0,1) and a closed rational disk
D1 ⊆ D2−(n+2) (0) whose diameter is smaller than 1/8 and such that

min
{
m(u,α, r1) : α ∈ D1

}
> −1/2.

It follows from Frostman’s Theorem, Theorem 17, and Lemma 2, that this search
must succeed. We then search for a rational number r2 ∈ (0,1) and a closed rational
disk D2 ⊆ D1 whose diameter is smaller than 1/16 and such that

min
{
m(u,α, r2) : α ∈ D2

}
> −1/4.

Again, this search must succeed; otherwise, by Theorem 17 and Lemma 2, Frost-
man’s Theorem would be contradicted.

Let D3,D4, . . . and r3, r4, . . . by obtained by continuing in this fashion. Let α be
the unique point in

⋂
j Dj . It follows from Theorem 17 and Lemma 2 that Mα ◦ u

has the form (3). Moreover, it follows that α is computable since the sequence of
disks {Dn}n∈N is computable.

8 Inner Functions—Factorization

We begin with the following statement of the Factorization Theorem for inner func-
tions.

Theorem 19 Suppose u is an inner function with infinitely many zeros. Then, u can
be written in the form

u(z) = λzkσ (z)B(z) (4)

where |λ| = 1, k ∈ N, σ is an inner function, and B is a Blaschke product. Further-
more, λ, k, σ , and B are unique.

Accordingly, when u has been written in the form (4), let λu = λ, ku = k, σu = σ ,
and Bu = B .

It is natural to ask whether factorization of inner functions is a computable oper-
ation. For example, we might ask “If u is a computable inner function, is ku com-
putable?” Unfortunately, the answer to this question is a trivial “yes”: ku, being a
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rational number, is automatically computable even when u is incomputable! Clearly,
the question does not capture what we wanted to ask. A better approach is to ask
about uniform computation. That is, is there an algorithm that given as input an al-
gorithm for computing an inner function u, computes ku? The answer is that there
is not, and the demonstration of this fact showcases one of the gems of classical
computability theory: the Recursion Theorem.

Recall from Sect. 2.3, that there is a computable U :⊆ N × N → N such that
whenever f :⊆ N → N is computable, there is a number e ∈ N such that f (x) =
U(e, x) for all x. Accordingly, let φe(x) = U(e, x).

Theorem 20 (The Recursion Theorem) Suppose f : N → N is computable. Then,
there is a number e0 ∈ N such that φe0 = φf (e0).

The Recursion Theorem was proven by Kleene in 1938 [12]. An elegant proof
appears in [18]. It is the chief weapon in defeating claims of uniformity. The Re-
cursion Theorem is sometimes referred to as the Fixed Point Theorem. However, it
is important to note that f (e0) may not equal e0; these numbers merely index the
same computable function.

We now prove the following.

Theorem 21 There is no algorithm that, given as input an algorithm that computes
an inner function u, computes ku.

Proof By way of contradiction, suppose otherwise. Then, there is a computable
function h :⊆ N → N such that if φe computes an inner function u, then h(e) = ku.
Fix an algorithm for computing h.

For each e, t ∈ N, define a rational number ae,t as follows. First, run the computa-
tion of h(e) for t steps. If no number is output, or if a number besides 1 is output, set
ae,t = 2−t . But, if 1 is output, then set ae,t = 2−s where s ≤ t is the exact number of
steps required for the computation of h(e). Let ae = limt→∞ ae,t . Hence, {ae,t }e∈N

is computable.
Let B =∏∞

n=0 ban where an = 1 − 1
n2 .

It is now possible to define a computable function f : N → N with the property
that for each e ∈ N, φf (e) computes Mae · B . So, by the Recursion Theorem, there
is a number e0 ∈ N such that φf (e0) = φe0 . Thus, φe0 computes u =df Mae0

· B .
Thus, h(e0)must be defined and h(e0) = ku. But, by construction, if h(e0) = 1, then
ae �= 0, and soMae0 (0)B(0) �= 0. So, it must be that h(e0) �= 1. But the construction
of f then yields thatMae ·B has a zero of order 1 at 0; again a contradiction! Since
both of the only possible two cases yield a contradiction, we must conclude the
existence of the function h is impossible. �

Since even the most elementary component of the factorization of u can not be
computed from u alone, we now turn to the search for sufficient additional param-
eters. It turns out that the Blaschke sum provides the right amount of information.
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Namely, when u is an inner function with infinitely many zeros, let

Σu =
∞∑
n=0

1 − |an|

where {an}∞
n=0 is a zero sequence of Bu. The following is essentially Lemma 5.4 of

[15].

Lemma 3 There is an algorithm that, given as input an algorithm that computes
an inner function u with infinitely many zeros and an algorithm that computes Σu,
computes ku.

The zero sequence of Bu can be computed from u as in the proof of Theorem 9.
We now easily obtain the following which is essentially Theorem 5.5.1 of [15].

Proposition 5 There is an algorithm that, given as input an algorithm for comput-
ing an inner function u with infinitely many zeros and an algorithm for computing
Σu, produces ku and algorithms for computing λu, σu and Bu.

It then follows from Theorem 11 that Σu provides the right amount of additional
information necessary for computing the factorization of an inner function with in-
finitely many zeros.
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Polynomials Versus Finite Blaschke Products

Tuen Wai Ng and Chiu Yin Tsang

Abstract The aim of this chapter is to compare polynomials of one complex vari-
able and finite Blaschke products and demonstrate that they share many similar
properties. In fact, we collect many known results as well as some very recent re-
sults for finite Blaschke products here to establish a dictionary between polynomials
and finite Blaschke products.

Keywords Polynomials · Finite Blaschke products · Ritt’s theorems · Chebyshev
polynomials · Approximation

Mathematics Subject Classification Primary 30J10 · Secondary 30C10 · 30E10 ·
30D05 · 39B12

1 Introduction

The main goal of this paper is to compare polynomials of one complex variable and
finite Blaschke products and show that they share many similar properties and hence
one can establish a dictionary between polynomials and finite Blaschke products.
The underlying common feature for polynomials and finite Blaschke products is
the fact that both classes of functions are finite self mappings. Therefore, we shall
consider general finite mappings first.

A continuous mapping between two locally compact spaces is called proper if
the preimage of every compact set is compact. A holomorphic mapping f : X → Y

between Riemann surfaces X and Y is said to be finite if f is nonconstant and
proper. The concept of finite holomorphic maps was introduced by T. Radó in [39].
T. Radó proved that if a surjective mapping f : X → Y is finite, then there exists a
natural number n such that f takes every value c ∈ Y , counting with multiplicities,
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n times (see [19, pp. 28–30] for a proof). This number n is called the degree of f
and is denoted by degf .

For the case when X and Y are the complex plane C, we can see easily that such
a surjective finite map must be a polynomial of degree n, that is, a function of the
form

cnz
n + cn−1z

n−1 + · · · + c1z + c0,

where ci ∈ C with cn �= 0.
Now let us consider the case when both X and Y are the open unit disk D. Then

such a surjective finite map must be a finite Blaschke product of degree n, that is, a
rational function B of the form

B(z) = eiθ z − z1

1 − z1z
· z − z2

1 − z2z
· · · · · z − zn

1 − znz ,

where zi ∈ D and θ ∈ R. This was proved by P. Fatou in [18] and we refer the reader
to the proof and the historical note of Fatou and Radó’s results on finite mappings
in [40, pp. 211–217].

It was J. Walsh [48] who first suggested that finite Blaschke products should
be considered as “polynomials” in the unit disk or hyperbolic plane D and he has
proven a version of Gauss-Lucas Theorem for finite Blaschke products. This point
of view was also propagated by A. Beardon and D. Minda [5], as well as D.A.
Singer [44]. In this paper, we will confirm this point of view by establishing a dic-
tionary between polynomials and finite Blaschke products. In fact we divide each
of following sections of the paper into Part One and Part Two. Part One will focus
on results for polynomials and Part Two will consider the corresponding results for
finite Blaschke products. At the end of each section, a table is given to indicate the
correspondence between them.

This paper is organized as follows. Section 2 includes some basic results of poly-
nomials and finite Blaschke products in order to show the analogy between them. In
Sect. 3, some elementary results about Chebyshev polynomials are reviewed. This
section also studies Chebyshev-Blaschke products, which were first introduced in
[49] and then also considered and studied in [32] and [50]. Some analogous results
about Chebyshev-Blaschke products are also given and the details of their proofs
can be found in [30]. Section 4 discusses the problems about two finite Blaschke
products sharing a set. Such problems for polynomials were considered by many
people (for example, C.C. Yang [51], T.C. Dinh [12, 13], F.B. Pakovich [34–36]).
The related results for polynomials are stated first. Some analogous results for finite
Blaschke products are also given and their proof can be found in [31].

2 Elementary Results

In this section, we review some classical results on polynomials and finite Blaschke
products. Reference will be given to these results (except those results which can be
proved easily).
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2.1 Part One: Polynomials

2.1.1 Some Simple Properties

Let nf (w;K) denote the number of solutions in K ⊂ C for the equation f (z) = w,
counting with multiplicity.

Theorem 1 Let f be analytic in C with f (C) = C. Then f is a polynomial of
degree k if and only if nf (w; C) ≡ k for all w ∈ C.

Theorem 2 (Uniqueness Theorem) If P1 and P2 are polynomials of degree not
exceeding n and if the equation

P1(z) = P2(z) (1)

is satisfied at n+ 1 distinct points in C, then P1 ≡ P2.

Remark 1 If P1 and P2 are monic polynomials of degree n and if (1) is satisfied at
n distinct points in C, then P1 ≡ P2.

(A polynomial is said to be monic if its leading coefficient is 1.)

Theorem 3 Let f be analytic in C and suppose that

lim|z|→∞
∣∣f (z)∣∣= + ∞.

Then f is a polynomial.

For any f : C → C, the difference quotient of f is given by

f #(z,w) = f (z)− f (w)
z −w .

Theorem 4 For a given w, P(z) is a polynomial of degree k if and only if P #(z,w)

is a polynomial of degree k − 1 in the variable z.

Theorem 5 Let f be an entire function on C. Then there is a sequence {Pk} of
polynomials that converges to f pointwise on C.

2.1.2 Critical Points and Critical Values

Let P be a polynomial of degree n. The point z ∈ C is called a critical point of P if
P ′(z) = 0. And w is called a critical value of P if w = P(z) for some critical point
z of P . Let {w1,w2, . . . ,wk} be the set of the critical values of P in C. For each wj ,
the inverse image of P−1(wj ) has less than n points, say n − δP (wj ) points. We
call δP (wj ) the deficiency of P at wj . It is well known that

∑k
j=1 δP (wj ) = n − 1

(for example, see [4, p. 352]). Conversely, we have the following result.
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Theorem 6 (For Instance, [4, Theorem 6.2]) Let w1,w2, . . . ,wk be distinct points
of C and let δ(w1), δ(w2), . . . , δ(wk) ∈ N such that

∑k
j=1 δ(wj ) = n − 1. Then

there is a polynomial P of degree n with {w1,w2, . . . ,wk} as its set of the critical
values such that δP (wj ) = δ(wj ) for all j = 1, . . . , k.

The following result shows how the set of critical points can characterize a poly-
nomial.

Theorem 7 Two polynomials f,g have the same critical points, counted with mul-
tiplicity, if and only if f = l ◦ g for some linear polynomial l.

S. Smale [45, p. 33] proved the following inequality which relates the critical
points and critical values of a polynomial.

Theorem 8 ([45]) Let P be a non-linear polynomial with critical points ζj . If z is
not a critical point of P , then

min
j

∣∣∣∣P(z)− P(ζj )
z − ζj

∣∣∣∣≤ 4
∣∣P ′(z)

∣∣. (2)

Smale then asked whether one can replace the factor 4 in the upper bound in (2)
by 1, or even possibly by (d − 1)/d . This problem remains open. It is easy (see [6])
to show that Smale’s conjecture is equivalent to the following conjecture.

Conjecture 1 (Normalized) Let P be a monic polynomial of degree d ≥ 2 such that
P(0) = 0 and P ′(0) �= 0. Let {ζ1, . . . , ζd−1 } be its critical points. Then

min
j

∣∣∣∣P(ζj )ζj

∣∣∣∣≤ N ∣∣P ′(0)
∣∣

holds for N = 1 (or even (d − 1)/d).

The estimate of the constantN has been considered by many people and we refer
the reader to [10, 11, 20, 23, 29] and [6] for more details.

The following theorem concerns the relative geometric locations between the
zeros and the critical points of a polynomial.

Theorem 9 (Gauss-Lucas) Let P be a polynomial of degree n with zeros z1, . . . , zn.
The critical points of P lie in the convex hull of the set {z1, . . . , zn}.

2.1.3 Factorizations of Polynomials

Let P be a non-linear polynomial in one complex variable. We say that P is prime if
and only if there do not exist two complex polynomials P1 and P2 both with degree
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greater than one such that P(z) = P1(P2(z)). Otherwise, P is called composite or
factorized.

Clearly, for a given polynomial P , one can always factorize it as a composition of
prime polynomials only and this factorization will be called a prime factorization.
The number of prime polynomials in a prime factorization is called the length of
this prime factorization.

In 1922, J.F. Ritt [41] proved the following three fundamental results on the fac-
torizations of complex polynomials.

Theorem R1 ([41]) A non-linear polynomial P is composite if and only if the mon-
odromy group of F is imprimitive (definition of the monodromy groups will be given
in Sect. 3).

Theorem R2 ([41]) The length of a non-linear polynomial P is independent of its
prime factorizations.

Theorem R3 ([41]) Given two prime factorizations of a non-linear polynomial P ,
one can pass from one to the other by repeatedly use of the following operations:

1. P̃ ◦ P̂ = (P̃ ◦L)◦ (L−1 ◦ P̂ ), with polynomials P̃ , P̂ and a linear polynomial L;
2. Tm ◦ Tn = Tn ◦ Tm, where Tk is the Chebyshev polynomial of degree k;
3. zr [P0(z)]k ◦ zk = zk ◦ [zrP0(z

k)], with integers r, k and a polynomial P0.

2.2 Part Two: Finite Blaschke Products

2.2.1 Some Simple Properties

Recall that nf (w;K) denote the number of solutions in K ⊂ C for the equation
f (z) = w, counting with multiplicity.

Theorem 10 Let f be a finite Blaschke product of degree k. Then for all w ∈ D,

nf (w; D) ≡ k.
The converse is also true.

Theorem 11 (Fatou [15–17], Radó [39]) Let f be analytic in D with f (D) = D.
Suppose nf (w; D) ≡ k for all w ∈ D. Then f is a finite Blaschke product of de-
gree k.

Theorem 12 (Uniqueness Theorem) If B1 and B2 are finite Blaschke products of
degree not exceeding n and if the equation

B1(z) = B2(z) (3)

is satisfied at n+ 1 distinct points in D, then B1 ≡ B2.
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Remark 2 ([24]) If B1 and B2 are monic Blaschke products of degree n and if (3) is
satisfied at n distinct points in D, then B1 ≡ B2.

(A finite Blaschke product is said to be monic if its normalizing constant eiθ is 1.)

Theorem 13 ([15]) Let f be analytic in D and suppose that

lim|z|→1

∣∣f (z)∣∣= 1.

Then f is a finite Blaschke product.

The complex pseudo-hyperbolic distance [z,w] in D is defined by

[z,w] = z −w
1 − w̄z .

For any f : D → D, the hyperbolic difference quotient of f is given by

f ∗(z,w) = [f (z), f (w)]
[z,w] .

Theorem 14 ([5, Theorem 2.4(d)]) For a given w ∈ D, B(z) is a finite Blaschke
product of degree k if and only if B∗(z,w) is a finite Blaschke product of degree
k − 1 with the variable z.

Now we will state Carathéodory’s theorem.

Theorem 15 ([21, p. 6]) Let f be an analytic function on D. If |f | ≤ 1 on D, then
there is a sequence {Bk} of finite Blaschke products that converges to f pointwise
on C.

2.2.2 Critical Points and Critical Values

Let B be a finite Blaschke product of degree n. The point z ∈ C is called a critical
point of B if B ′(z) = 0. And B is said to have a critical point at ∞ if either B(1/z)
or 1

B(1/z) has a critical point at 0. Moreover, w is called a critical value of B if
w = B(z) for some critical point z of B . Let {w1,w2, . . . ,wk} be the set of the
critical values of B in D. For each wj , the inverse image of B−1(wj ) has less than
n points, say n− δDB(wj ) points. We call δDB(wj ) the deficiency of B at wj . It is well
known that

∑k
j=1 δ

D

B(wj ) = n− 1 (for example, see [4, pp. 352–353]). Conversely,
we have the following result.

Theorem 16 (For Instance, [4, p. 353]) Let w1,w2, . . . ,wk be distinct points of D
and let δ(w1), δ(w2), . . . , δ(wk) ∈ N such that

∑k
j=1 δ(wj ) = n− 1. Then there is a

finite Blaschke product B of degree n with {w1,w2, . . . ,wk} as its set of the critical
values such that δDB(wj ) = δ(wj ) for all j = 1, . . . , k.
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The following result shows how the set of critical points can characterize a finite
Blaschke product.

Theorem 17 ([52, Corollary 2]) Two finite Blaschke products f,g have the same
critical points, counted with multiplicity, if and only if f = τ ◦ g for some Möbius
transformation τ .

The following “mean value” inequality was proven by T. Sheil-Small in 2002.

Theorem 18 ([43, p. 366]) Let B be a finite Blaschke product of degree d ≥ 2 with
critical points ζj ∈ D of B such that B(0) = 0. If 0 is not a critical point of B , then

∣∣∣∣B(ζj )ζj

∣∣∣∣≤ 4

(1 + |ζj |)2 · ∣∣B ′(0)
∣∣ for some j. (4)

It is natural to ask if one can replace 4 by something smaller and therefore con-
sider the following problem.

Problem 1 What is the smallest constant so that (4) still holds?

J.L. Walsh [48] gave an analogous result of the Gauss-Lucas theorem for finite
Blaschke products in terms of non-euclidean lines in D, which are segments of cir-
cles contained in D orthogonal to ∂D, or else diameters of D.

Theorem 19 ([48], [43, p. 377]) Let B be a finite Blaschke product of degree n with
zeros z1, . . . , zn in D. Then B(z) has exactly n− 1 critical points in D and these all
lie in the non-euclidean convex hull of the set {z1, . . . , zn}. In particular the critical
points in D lie in the (euclidean) convex hull of the set {0, z1, . . . , zn}. The critical
points of B outside D are the conjugates (relative to ∂D of those in D.)

2.2.3 Factorizations of Finite Blaschke Products

Let B be a finite Blaschke product with degB > 1. We say that B is prime if and
only if there do not exist two finite Blaschke products B1 and B2 both with degree
greater than one such that B(z) = B1(B2(z)). Otherwise, B is called composite or
factorized.

Clearly, for a given finite Blaschke product B , one can always factorize it as a
composition of prime finite Blaschke products only and this factorization will be
called a prime factorization. The number of prime finite Blaschke products in a
prime factorization is called the length of this factorization.

All the three results of Ritt on the factorizations of polynomials has been consid-
ered for finite Blaschke products and this has been done in [32] or [49].

Theorem R1′ A finite Blaschke product B (degB > 1) is composite if and only if
the monodromy group of B is imprimitive.
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Theorem R2′ The length of a finite Blaschke product B (degB > 1) is independent
of its prime factorizations.

Theorem R3′ Given two prime factorizations of a finite Blaschke product B
(degB > 1), one can pass from one to the other by repeatedly use of the follow-
ing operations:

1. B̃ ◦ B̂ = (B̃ ◦M) ◦ (M−1 ◦ B̂), with finite Blaschke products B̃, B̂ and a Möbius
transformationM ;

2. fm,nτ ◦ fn,τ = fn,mτ ◦ fm,τ , where fn,τ is the Chebyshev-Blaschke product of
degree n (definition of the Chebyshev-Blaschke products fn,τ will be given in
Sect. 3);

3. zr [B0(z)]k ◦ zk = zk ◦ [zrB0(z
k)], with integers r, k and a finite Blaschke prod-

uct B0.

We summarize the results in this section by the following table:

Polynomials Finite Blaschke products

A finite map from C to C

(Theorem 1)
A finite map from D to D

(Theorems 10, 11)
Theorem 2, Remark 1 Theorem 12, Remark 2
Theorem 3 Theorem 13
Theorem 4 Theorem 14
Theorem 5 Theorem 15
Theorem 6 Theorem 16
Theorem 7 Theorem 17
Theorem 8, Conjecture 1 Theorem 18, Problem 1
Theorem 9 Theorem 19
Ritt’s theory:
Theorems R1, R2, R3

Ritt’s theory:
Theorems R1′, R2′, R3′

3 Chebyshev Polynomials and Chebyshev-Blaschke Products

3.1 Part One: Chebyshev Polynomials

In this section, we will look at a special kind of polynomials, that is, the Chebyshev
polynomials and state some elementary properties of them. For more details, see for
instance [27], [7, Chap. 2.1] and [42].

3.1.1 Definitions and Some Basic Properties

The Chebyshev polynomial Tn is a polynomial of degree n, defined by the relation

Tn(z) = cosnθ, z = cos θ.
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In other words,

Tn(z) = cos(n arccos z).

The zeros of Tn are precisely the points

zk = cos
(2k − 1)π

2n
, k = 1,2, . . . , n.

Proposition 1 The Chebyshev polynomial Tn has the following properties

1. T −1
n ([−1,1]) = [−1,1].

2. Nesting property: Tmn = Tm ◦ Tn.
3. The critical points of Tn are contained in [−1,1] and they are precisely the points

ζk = cos
kπ

n
, k = 1, . . . , n− 1.

4. The critical values of Tn are ±1.

3.1.2 Monodromy

In this section, we shall study the monodromy of the Chebyshev polynomial Tn of
degree n (n > 2).

First let us define the monodromy for a surjective finite map f : X → Y of degree
n, where X and Y are Riemann surfaces. Let Δ be the set of all the critical values
of f . Select a point y ∈ Y \ Δ, then f−1(y) = {x1, x2, . . . , xn}. For any loop α ∈
π1(Y \ Δ,y) and any i ∈ {1,2, . . . , n}, α can be uniquely lifted by f−1 as a path
with the initial point xi and end point xα(i), for some α(i) ∈ {1,2, . . . , n}. Therefore,
α can be considered as a permutation of n points, and we can naturally get a group
homomorphism μ : π1(Y \ Δ) → Sn, which we will call the monodromy of f . The
image of μ is said to be the monodromy group of f . So, by considering X = Y = C,
the monodromy of a polynomial can be defined.

Now let us find the monodromy of the Chebyshev polynomial Tn. The set of
critical values of the Chebyshev polynomial is simply Δ = {−1,1}, and π1(C \
Δ) = 〈σ, τ 〉, where σ is the loop around 1, and τ is the loop around −1, both with
counterclockwise orientation. The monodromy representation μ of Tn is a map from
π1(C \Δ) to the symmetric group Sn, defined by

⎧⎪⎪⎨
⎪⎪⎩

μ(σ) = (2,2k)(3,2k − 1) · · · (k, k + 2),
μ(τ) = (2,1)(3,2k) · · · (k + 1, k + 2),

if n = 2k,

μ(σ ) = (2,2k + 1)(3,2k) · · · (k + 1, k + 2),
μ(τ) = (2,1)(3,2k + 1) · · · (k + 1, k + 3),

if n = 2k + 1.
(5)

The above monodromy of the Chebyshev polynomial Tn was first given by J.F. Ritt
in [41] and its detailed explanation can also be found in [32].
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3.1.3 Differential Equations

The Chebyshev polynomial Tn satisfies the following differential equations

n2(w2 − 1
)= (w′)2(z2 − 1

)
(6)

and
(
1 − z2)w′ ′ − zw′ + n2w = 0. (7)

These results can be found in [27].

3.1.4 The Julia Set

Before looking at the Julia set of the Chebyshev polynomial, let us review some of
the standard facts on the iteration theory of rational functions. For more details, we
refer the reader to [3] or [46].

Let f : C → C be a rational function of degree greater than one. We will denote
the n-th iterate of f by f ◦n, that is, f ◦0(z) = z and f ◦n(z) = f (f ◦(n−1)(z)) for
n ≥ 1. To study the Fatou and Julia sets of rational functions, we first introduce
normal families of rational functions.

Definition 1 Let U be an open subset of C and F = {fi : i ∈ I } a family of rational
functions defined on U with values in C (I is any index set). The family F is a
normal family if every sequence {fn} contains a subsequence {fnj } which converges
uniformly on compact subsets of U .

Let f : C → C be a rational function of degree greater than one. The Fatou set,
F(f ) consists of point z in C at which the sequence {f ◦n}n∈N is defined and normal
in some neighborhood of z. The Julia set, J (f ) is defined as the complement of
F(f ) in C.

Here are some properties of Fatou and Julia sets.

1. By definition, F(f ) is open and J (f ) is closed.
2. F(f ) and J (f ) are completely invariant (a set S is said to be completely invari-

ant if f (S) = S = f−1(S)).
3. (The minimality of Julia sets) J (f ) is the smallest closed, completely invariant

set with at least three points.

Note that [−1,1] is completely invariant under Tn. By the minimality of the Julia
set, J (Tn) is contained in [−1,1]. In fact, J (Tn) is exactly [−1,1]. For the proof,
we refer the reader to [3].
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3.1.5 The Approximation Problems

Let Pn denote the set of all polynomials of degree n. Before stating the approxima-
tion problems related to Chebyshev polynomials, we first review some facts about
the n-th polynomial of least deviation. Given any compact set E and any continuous
function ϕ : E → C, there exists a polynomial p∗

n,ϕ ∈ Pn such that

max
z∈E
∣∣ϕ(z)− p∗

n,ϕ(z)
∣∣= min

pn∈Pn
max
z∈E
∣∣ϕ(z)− pn(z)

∣∣.
Such a polynomial is called the n-th polynomial of least deviation from ϕ on E.
The n-th polynomial of least deviation from ϕ is unique if E contains at least n+ 1
points. For more details, we refer the reader to [26].

Now we consider the problem when E = [−1,1] and ϕ(z) = zn:

Problem I Find p∗
n−1 ∈ Pn−1 that attains the minimum

σn = min
pn−1 ∈Pn−1

max
z∈[−1,1]

∣∣zn − pn−1(z)
∣∣.

The solution to Problem I is p∗
n−1(z) = zn − 21−nTn(z) with σn = 21−n (see for

instance [7, Theorem 2.1.1]).

Remark 3 Such a polynomial p∗
n−1 is actually the (n − 1)-th polynomial of least

deviation from zn on [−1,1].

Let Pmonn denote the set of all monic polynomials of degree n. We can rephrase
the above problem as follows:

Problem II Find q∗
n ∈ Pmonn that attains the minimum

σ̂n = min
qn∈Pmonn

max
z∈[−1,1]

∣∣qn(z)∣∣. (8)

It follows from Problem I that the solution to Problem II is q∗
n = 21−nTn with σ̂n =

21−n.

3.2 Part Two: Chebyshev-Blaschke Products

3.2.1 Definition and Some Basic Properties

The construction of Chebyshev-Blaschke products was first considered in [49] by
studying the monodromy of Chebyshev polynomials. Here we shall take a more
direct approach by defining the Chebyshev-Blaschke products in terms of Jacobi
elliptic functions. We therefore first review the properties of Jacobi elliptic functions
(see [9] or [47]).
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Jacobi Elliptic Functions For any τ ∈ H, write q = eπiτ and define the four theta
functions as follows:

ϑ1(v, τ ) =
∞∑

n=−∞
i2n−1q(n+ 1

2 )
2
e(2n+1)vi

= 2q1/4 sinπv − 2q9/4 sin 3πv + 2q25/4 sin 5πv − · · · ,

ϑ2(v, τ ) =
∞∑

n=−∞
q(n+ 1

2 )
2
e(2n+1)vi

= 2q1/4 cosπv + 2q9/4 cos 3πv + 2q25/4 cos 5πv + · · · ,

ϑ3(v, τ ) =
∞∑

n=−∞
qn

2
e2nvi

= 1 + 2q cos 2πv + 2q4 cos 4πv + 2q9 cos 6πv + · · · ,

ϑ0(v, τ ) =
∞∑

n=−∞
(−1)nqn

2
e2nvi

= 1 − 2q cos 2πv + 2q4 cos 4πv − 2q9 cos 6πv + · · · .
We further define:

ω1(τ ) = πϑ2
3 (0, τ ) = π(1 + 2q + 2q4 + · · · )2,

ω2(τ ) = τω1(τ ),

k(τ ) = ϑ2
2 (0, τ )

ϑ2
3 (0, τ )

,

√
k(τ ) = ϑ2(0, τ )

ϑ3(0, τ )
,

k′(τ ) = ϑ2
0 (0, τ )

ϑ2
3 (0, τ )

,

√
k′(τ ) = ϑ0(0, τ )

ϑ3(0, τ )
.

Notice that if τ ∈ R+i, then
√
k(τ ) ∈ R+ and ω1 ∈ R+.

The Jacobi elliptic functions can be expressed as follows:

snu = ϑ3(0, τ )

ϑ2(0, τ )
· ϑ1(u/ω1, τ )

ϑ0(u/ω1, τ )
= 1√

k
· ϑ1(u/ω1, τ )

ϑ0(u/ω1, τ )
,

cnu = ϑ0(0, τ )

ϑ2(0, τ )
· ϑ2(u/ω1, τ )

ϑ0(u/ω1, τ )
=

√
k′

√
k

· ϑ2(u/ω1, τ )

ϑ0(u/ω1, τ )
,
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dnu = ϑ0(0, τ )

ϑ3(0, τ )
· ϑ3(u/ω1, τ )

ϑ0(u/ω1, τ )
= √

k′ · ϑ3(u/ω1, τ )

ϑ0(u/ω1, τ )
.

Notice that sn is an elliptic function of order 2 with primitive periods 2ω1 and
ω2. Moreover,

sn

(
±ω1

2
, τ

)
= ±1, sn(ω1 − u, τ) = sn(u, τ ).

Definition and Properties of Chebyshev-Blaschke Products Let τ ∈ R+i. Now
we will consider the following Jacobi function

cd = cn

dn
.

The Jacobi cd function can be expressed in terms of sn:

cd(u, τ ) = sn

(
u+ ω1

2
, τ

)
.

So cd is an elliptic function of order two with the primitive periods 2ω1 and ω2.
Both cn and dn are even, so is cd. One of the properties of cd is

√
k(τ ) cd

(
u+ ω2(τ )

2
, τ

)
= 1√

k(τ ) cd(u, τ )
,

which tells us that cd has a similar property to the Schwarz reflection principle and
therefore cd has a close relationship with finite Blaschke products.

Define xnτ (u) = √
k(nτ) cd(nuω1(nτ), nτ), n ∈ N. It is easy to show that

fn,τ (z) := xnτ ◦ x−1
τ (z) is a rational function. In other words, we can define fn,τ

by the following parametric equations

fn,τ (z) =√k(nτ) cd
(
nuω1(nτ), nτ

)
, z =√k(τ ) cd

(
uω1(τ ), τ

)
.

We can easily check that the zeros of fn,τ are zp = √
k(τ ) cd( (2p−1)ω1(τ )

2n , τ ), p =
1, . . . , n. In particular, all the zeros are contained in [−√

k(τ ),
√
k(τ )]. Moreover, it

is clear that fn,τ satisfies the symmetry property

1

fn,τ (z)
= fn,τ

(
1

z

)
.

So fn,τ is a finite Blaschke product of degree n. We call fn,τ a Chebyshev-Blaschke
product. The proof of the following proposition is given in [30].

Proposition 2 The Chebyshev-Blaschke product fn,τ has the following properties

1. f−1
n,τ ([− √

k(nτ),
√
k(nτ)]) = [−√

k(τ ),
√
k(τ )].

2. Nesting property: fmn,τ = fm,nτ ◦ fn,τ .
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3. The critical points of fn,τ are contained in

(
−∞,− 1√

k(τ )

]
∪ [−√k(τ ),√k(τ )]∪

[
1√
k(τ )

,∞
)

∪ {∞}.

More precisely,
a. fn,τ has n− 1 critical points in [−√

k(τ ),
√
k(τ )] and they are the points

wp =√k(τ ) cd

(
pω1(τ )

n
, τ

)
, p = 1, . . . , n− 1

with

wn−1 = −w1

wn−2 = −w2

...

wn−i = −wi, where 1 ≤ i ≤
⌊
n

2

⌋

...

and for even n we have

wn
2

= 0;

b. fn,τ has n− 1 critical points in (−∞,− 1√
k(τ)

] ∪ [ 1√
k(τ)
,∞)∪ {∞} and they

are the points

1

wp
, p = 1, . . . , n− 1.

Moreover, all the critical points of fn,τ have multiplicity 1.
4. There are only 4 critical values ±√

k(nτ),± 1√
k(nτ)

and only 4 non-critical

points ±√
k(τ ), ± 1√

k(τ)
, whose images are critical values.

Chebyshev-Blaschke Products of Small Degrees When n = 2, the Chebyshev-
Blaschke product f2,τ has the form

z2 − a
1 − az2

.

To determine the number a, notice that f2,τ has only one critical point 0 and

f (0) = −√k(2τ).
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So

a =√k(2τ) = ϑ2(0,2τ)

ϑ3(0,2τ)
.

When n = 3, the Chebyshev-Blaschke product f3,τ has the form

z
z2 − a

1 − az2
.

To determine the number a, notice that f3,τ has three zeros 0 and ±√
k(τ ) ×

cd(ω1(τ )
6 , τ ). So

a = k(τ )cd2
(
ω1(τ )

6
, τ

)
= ϑ2

2 (1/6, τ )

ϑ2
3 (1/6, τ )

.

When n = 2i3j , we can apply the nesting property to get

f2i3j ,τ = f2,2i−13j τ ◦ · · · ◦ f2,2·3j τ ◦ f2,3j τ ◦ f3,3j−1τ ◦ · · · ◦ f3,3τ ◦ f3,τ .

Chebyshev-Blaschke Products fn,τ for τ → ∞ Let τ ∈ R+i and z = cd(θ, τ ).
It is easily seen that

lim
τ→∞ cd(θ, τ ) = cos θ and lim

τ→∞ω1(τ ) = π. (9)

By the definition of fn,τ , we get

fn,τ
(√
k(τ )z

)= fn,τ
(√
k(τ ) cd(θ, τ )

)=√k(nτ) cd

(
nθω1(nτ)

ω1(τ )
, nτ

)
. (10)

Let Tn,τ (z) = fn,τ (
√
k(τ)z)√

k(nτ)
. Then it follows from (9) and (10) that for z = cos θ ,

lim
τ→∞ Tn,τ (cos θ) = lim

τ→∞ Tn,τ
(
cd(θ, τ )

)= lim
τ→∞ cd

(
nθω1(nτ)

ω1(τ )
, nτ

)
= cosnθ.

By the definition of the Chebyshev polynomial,

Tn(z) = lim
τ→∞ Tn,τ (z) = lim

τ→∞
fn,τ (

√
k(τ )z)√

k(nτ)
. (11)

3.2.2 Monodromy

The monodromy of the Chebyshev-Blaschke product of degree n > 2 is the same
as that of the Chebyshev polynomial: note that the set of critical values of the
Chebyshev-Blaschke product fn,τ on the unit disk D is simply Δ = {±√

k(nτ)},
and π1(D − Δ) = 〈σ, τ 〉, where σ is the loop around

√
k(nτ), and τ is the loop
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around −√
k(nτ), both with counterclockwise orientation. The monodromy repre-

sentation μ of fn,τ is π1(D −Δ) to the symmetric group Sn, defined by
⎧⎪⎪⎨
⎪⎪⎩

μ(σ) = (2,2k)(3,2k − 1) · · · (k, k + 2),
μ(τ) = (2,1)(3,2k) · · · (k + 1, k + 2),

if n = 2k,

μ(σ ) = (2,2k + 1)(3,2k) · · · (k + 1, k + 2),
μ(τ) = (2,1)(3,2k + 1) · · · (k + 1, k + 3),

if n = 2k + 1.

In fact, the Chebyshev-Blaschke product can be recovered from this monodromy.
Such a construction was shown in [32, 49] or [50].

3.2.3 Differential Equations

It follows from Proposition 2(iii), (iv) that the Chebyshev-Blaschke product fn,τ
satisfies the differential equation

cn,τ · (w2 − k(nτ))
(
w2 − 1

k(nτ)

)
= (w′)2(z2 − k(τ ))

(
z2 − 1

k(τ )

)
, (12)

for some constant cn,τ . In fact, the constant cn,τ can be found explicitly by solving
(12):

cn,τ =
[
n

√
k(nτ)ϑ2

3 (0, nτ)√
k(τ )ϑ2

3 (0, τ )

]2

=
[
nϑ2(0, nτ)ϑ3(0, nτ)

ϑ2(0, τ )ϑ3(0, τ )

]2

= n2ϑ4
2 (0,

nτ
2 )

ϑ4
2 (0,

τ
2 )

,

where the last equality holds by using the theta constant identity (for example,
see [14])

ϑ2
2 (0, τ ) = 2ϑ2(0,2τ)ϑ3(0,2τ).

Remark 4 The constant cn,τ has the following property: cmn,τ = cm,nτ cn,τ .

3.2.4 The Julia Set

The Julia set of a finite Blaschke product of degree >1 is either the unit circle or a
Cantor set on the circle [8]. The following theorem is a well known fact about the
Julia set of a finite Blaschke product.

Theorem 20 ([28]) If a finite Blaschke product B of degree >1 has a fixed point z0
in D, then the Julia set J (B) of B is the unit circle.

Since it is proven in [30] that the Chebyshev-Blaschke product fn,τ has a fixed
point in the interval [−√

k(τ ),
√
k(τ )] ⊂ D, by Theorem 20, the Julia set J (fn,τ ) is

the unit circle ∂D.
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3.2.5 The Approximation Problems

In this section, we would like to point out that the Chebyshev-Blaschke product fn,τ
are solutions to some approximation problems which are related to Zolotarev’s third
problem (Problem B) and fourth problem (Problem C). For more details of these
two problems, see for instance [2, 25].

Before looking at Zolotarev’s problems, let us state the following problem in
Gonchar’s paper [22]:

Problem A Find g∗
n,τ ∈ Rnn that attains the minimum

σA,n,τ = min
gn∈Rnn

maxz∈E |gn(z)|
minz∈F |gn(z)| ,

where E = [−√
k(τ ),

√
k(τ )], F = (−∞,− 1√

k(τ)
] ∪ [ 1√

k(τ)
,∞) and Rnn is the set

of irreducible rational functions whose numerator and denominator are real polyno-
mials with degree at most n.

Remark 5 In fact, Problem A was originally stated in Gonchar’s paper [22] for any
disjoint compact sets E and F of C.

It is obvious that Problem A can be rephrased as the following problem.

Problem B (Zolotarev’s 3rd Problem) Find h∗
n,τ ∈ Rnn that attains the minimum

σB,n,τ = min
hn∈Rnn

max
z∈E
∣∣hn(z)∣∣

subject to

min
z∈F
∣∣hn(z)∣∣= 1,

where E = [−√
k(τ ),

√
k(τ )] and F = (−∞,− 1√

k(τ)
] ∪ [ 1√

k(τ)
,∞).

In [2, Chap. 9], Akhiezer showed that Problem B is equivalent to the following
problem.

Problem C (Zolotarev’s 4th Problem) Find r∗
n,t ∈ Rnn that attains the minimum

σC,n,t = min
rn∈Rnn

max
z∈G
∣∣rn(x)− sgnx

∣∣,
where G = [−1/t,−1] ∪ [1,1/t] (0< t < 1) and

sgnx =
{

−1, for x < 0,

1, for x > 0.

Using the technique in [2], we obtained in [30] the solution (in terms of fn,τ ) to
Problem C and hence Problems A and B as well. More precisely, we have
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1. fn,τ is a solution to Problem A with σA,n,τ = k(nτ);
2.

√
k(nτ)fn,τ is a solution to Problem B with σB,n,τ = k(nτ);

3. rn,t (x) = 1−k(nτ)
1+k(nτ) · fn,τ (z)−1

fn,τ (z)+1 is a solution to Problem C with σC,n,t = 2
√
k(nτ)

1+k(nτ) ,
where

x = 1 + √
k(τ )

1 − √
k(τ )

· z − 1

z + 1
and t =

(
1 − √

k(τ )

1 + √
k(τ )

)2

.

New Approximation Problems Let Bn denote the set of all finite Blaschke prod-
ucts of degree n and let BR

n,τ denote the set of all finite Blaschke products of degrees
n such that all the zeros are contained in E = [−√

k(τ ),
√
k(τ )].

Problem D Find B̃n,τ ∈ BR
n,τ that attains the minimum

σD,n,τ = min
Bn∈BR

n,τ

max
z∈E
∣∣Bn(z)∣∣= min

α1,...,αn∈Emax
z∈E

∣∣∣∣ (z − α1) · · · (z − αn)
(1 − α1z) · · · (1 − αnz)

∣∣∣∣,

where E = [−√
k(τ ),

√
k(τ )].

By the symmetry property Bn( 1
z
) = 1

Bn(z)
, we have

(
max
z∈E
∣∣Bn(z)∣∣

)2 = maxz∈E |Bn(z)|
minz∈F |Bn(z)| .

On the other hand, fn,τ ∈ BR
n,τ is a solution to Problem A and hence is also a solution

to the following minimization problem

min
Bn∈BR

n,τ

maxz∈E |Bn(z)|
minz∈F |Bn(z)| ,

with E = [−√
k(τ ),

√
k(τ )] and F = (−∞,− 1√

k(τ)
] ∪ [ 1√

k(τ)
,∞).

Therefore, fn,τ is also a solution to Problem D with σD,n,τ = √
σA,n,τ =√

k(nτ).
Finally, we consider the following problem which is an analogue of Problem II.

Problem II′ Find B∗
n,τ ∈ Bn that attains the minimum

σII′,n,τ = min
Bn∈Bn

max
z∈E
∣∣Bn(z)∣∣= min

α1,...,αn∈D

max
z∈E

∣∣∣∣ (z − α1) · · · (z − αn)
(1 − α1z) · · · (1 − αnz)

∣∣∣∣, (13)

where E = [−√
k(τ ),

√
k(τ )].

It was shown in [30] that fn,τ is a solution to Problem II′ with σII′,n,τ = √
k(nτ).

We summarize the results in this section by the following table:
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Chebyshev polynomials Tn Chebyshev-Blaschke products fn,τ

Tn(z) = cosnθ , where z = cos θ fn,τ (z) = √
k(nτ) cd(nuω1(nτ), nτ), where

z = √
k(τ ) cd(uω1(τ ), τ )

Zeros:
zp = cos (2p−1)π

2n
(p = 1, . . . , n)

Zeros:
zp = √

k(τ ) cd( (2p−1)ω1(τ )
2n , τ )

(p = 1, . . . , n)

Critical points in [−1,1]:
wp = cos pπ

n
(p = 1, . . . , n− 1)

Critical points in [− √
k(τ ),

√
k(τ )]:

wp = √
k(τ ) cd(pω1(τ )

n
, τ )

(p = 1, . . . , n− 1)

Critical values in C: ±1 Critical values in D: ±√
k(nτ)

T −1
n ([−1,1]) = [−1,1] f−1

n,τ ([− √
k(nτ),

√
k(nτ)]) = [−√

k(τ ),
√
k(τ )]

Nesting property: Tmn = Tm ◦ Tn Nesting property: fmn,τ = fm,nτ ◦ fn,τ
Monodromy: (5) Monodromy: same as that of Tn

DE: Equation (6)&(7) DE: Equation (12)

Julia set: J (Tn) = [−1,1] Julia set: J (fn,τ ) = ∂D
Minimax problem: (8)
Solution: 21−nTn

Minimax problem: (13)
Solution: fn,τ

Equation (11): Tn(z) = limτ→∞ [fn,τ (√
k(τ )z)/

√
k(nτ)]

4 Polynomials and Finite Blaschke Products That Share a Set

In this section, we discuss some problems about polynomials and finite Blaschke
products sharing a set. In Sect. 4.1, some results for polynomials are reviewed. Some
analogous results for finite Blaschke products are stated in Sect. 4.2.

4.1 Part One: Polynomials

4.1.1 Polynomials That Share Two Values in the Complex Plane

In 1971, W. Adams and E. Sraus [1] proved that the two nonconstant one variable
polynomials p and q are identical if they share two distinct finite values a and b IM
(ignoring multiplicities), that is, p−1({a}) = q−1({a}) and p−1({b}) = q−1({b}).

4.1.2 Polynomials That Share a Set

In 1978, C.C. Yang [51, p. 169] raised the following problem: what can be said if p
and q are nonconstant polynomials of the same degree and share the set {0,1} IM,
that is, p−1({0,1}) = q−1({0,1})?
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F.B. Pakovich [34] solved this problem by using the uniqueness property of
polynomials of least deviation, and proved that a polynomial of a given degree is
uniquely determined up to the sign ± by the preimage of the set {−1,1}. This prob-
lem was also solved and in fact the result was generalized to the preimage of any
compact set containing at least 2 points in [35] and [33]. When two polynomials p,
q of arbitrary degrees share a compact set K of positive (logarithmic) capacity, that
is, p−1(K) = q−1(K), T.C. Dinh gave a complete description of p and q in [12].
This result was extended to an arbitrary infinite compact set K in [13]. Later F.B.
Pakovich [36] considered the more general case when p−1(K1) = q−1(K2) for two
arbitrary compact sets K1 and K2.

The sharing set problem is related to the functional equation

f ◦ p = g ◦ q, (14)

where f,g,p, q are polynomials. In fact, T.C. Dinh [12] showed that if p−1(K) =
q−1(K) for a compact set K of positive (logarithmic) capacity, then there exist two
polynomials f,g such that (14) holds. The idea of his proof is to make use of the
uniqueness of equilibrium measures to obtain subharmonic functions φ and ψ such
that φ ◦ p = ψ ◦ q . Then by considering the germ of conformal map near ∞, there
actually exist two polynomials f,g such that (14) holds. Finally the complete clas-
sification of p and q can be obtained by applying Ritt’s theorem (Theorem R3)
for polynomials. Later this result was also proved and in fact extended to the case
p−1(K1) = q−1(K2) (for any compact sets K1,K2) by F.B. Pakovich [36] who
made use of the uniqueness of the least deviations from zero instead of the unique-
ness of the equilibrium measures.

4.1.3 Dinh’s Result

Theorem 21 ([12, Theorem 1]) Let f1 and f2 be polynomials of degree d1 ≥ 1 and
d2 ≥ 1, and let K0 ⊂ C be a compact set of positive (logarithmic) capacity such
that K := f−1

1 (K0) = f−1
2 (K0) holds. Then there exist polynomials f̃1, f̃2,Q with

degQ = d , where d = gcd(d1, d2) such that

f1 = f̃1 ◦Q, f2 = f̃2 ◦Q
and one of the following conditions is true:

1. f̃1 = id or f̃2 = id ;
2. d1 > d , d2 > d and f̃1 = σ ◦ zd1/d , f̃2 = σ ◦ azd2/d , for some linear function σ

and a ∈ C \ {0};
3. d1 > d , d2 > d and f̃1 = σ ◦ ±Td1/d , f̃2 = σ ◦ ±Td2/d , for some linear function
σ , where Tk is the Chebyshev polynomial of degree k.

The above theorem was extended to an infinite compact set K0 in [13] (see also
[36, Theorem 2]).
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4.1.4 Pakovich’s Result

Theorem 22 ([36, Theorem 1]) Let f1, f2 be polynomials, degf1 = d1, degf2 =
d2, d1 ≤ d2, and K1,K2 ⊂ C be compact sets such that K := f−1

1 (K1) = f−1
2 (K2)

holds. Suppose that card(K) ≥ lcm(d1, d2). We have

1. if d1 divides d2, then there exists a polynomial g1 such that f2 = g1 ◦ f1 and
K1 = g−1

1 (K2);
2. if d1 does not divide d2, then there exist polynomials g1, g2, with degg1 =
d2/d,degg2 = d1/d , where d = gcd(d1, d2) such that

g1 ◦ f1 = g2 ◦ f2

and a compact set K3 ⊂ C such that

K1 = g−1
1 (K3) and K2 = g−1

2 (K3).

Furthermore, there exist polynomials f̃1, f̃2,W , with degW = d , such that

f1 = f̃1 ◦W, f2 = f̃2 ◦W
and there exist linear functions σ1, σ2 such that either

g1 = zc[R(z)]d1/d ◦ σ−1
1 , f̃1 = σ1 ◦ zd1/d ,

g2 = zd1/d ◦ σ−1
2 , f̃2 = σ2 ◦ zcR(zd1/d

)

for some polynomial R and for c being the remainder after division of d2/d by
d1/d , or

g1 = Td2/d ◦ σ−1
1 , f̃1 = σ1 ◦ Td1/d ,

g2 = Td1/d ◦ σ−1
2 , f̃2 = σ2 ◦ Td2/d

for the Chebyshev polynomials Td1/d , Td2/d .

4.2 Part Two: Finite Blaschke Products

4.2.1 Finite Blaschke Products That Share Two Values in the Unit Disk

In [1], W. Adams and E. Sraus also showed that two nonconstant rational functions
that share four values a, b, c, d IM are identical. Now we consider two nonconstant
finite Blaschke products B1 and B2, sharing two distinct finite values a and b IM
on D. By the symmetry property

Bi(1/z) = 1/Bi(z) (i = 1,2),

B1 and B2 also share 1/ā and 1/b̄. Therefore B1 and B2 are identical.
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4.2.2 Finite Blaschke Products That Share a Set

For finite Blaschke products, we can also study the problem of sharing a compact set
E. Similar to the case of polynomials, it makes sense to relate B−1

1 (E) = B−1
2 (E)

(or more generally B−1
1 (E1) = B−1

2 (E2)) to the functional equation f ◦B1 = g◦B2.
We study such a problem by using the hyperbolic equilibrium measure instead of
the logarithmic equilibrium measure as well as Ritt’s Theorem (Theorem R3′) for
finite Blaschke products. In fact, we obtain the following results and refer the reader
to [31] for the proofs.

Theorem 23 Let B1,B2 be finite Blaschke products, degB1 = d1, degB2 = d2,
d1 ≤ d2, and E1,E2 ⊂ D be compact sets such that

E := B−1
1 (E1) = B−1

2 (E2)

holds. Suppose that E1 and E2 are connected sets of positive (hyperbolic) capaci-
ties. We have

1. if d1 divides d2, then there exists a finite Blaschke product g1 such that B2 =
g1 ◦B1 and E1 = g−1

1 (E2);
2. if d1 does not divide d2, then there exist finite Blaschke products g1, g2, with

degg1 = d2/d,degg2 = d1/d , where d = gcd(d1, d2) such that

g1 ◦B1 = g2 ◦B2,

and a compact connected set E3 ⊂ D such that

E1 = g−1
1 (E3) and E2 = g−1

2 (E3).

Furthermore there exist finite Blaschke products B̃1, B̃2,W , with degW = d ,
such that

B1 = B̃1 ◦W, B2 = B̃2 ◦W
and there exist Möbius transformations τ1, τ2 such that either

g1 = zc[R(z)]d1/d ◦ τ1, B̃1 = τ−1
1 ◦ zd1/d ,

g2 = zd1/d ◦ τ2, B̃2 = τ−1
2 ◦ zcR(zd1/d

)

for some finite Blaschke product R and for c being the remainder after division
of d2/d by d1/d , or

g1 = fd2/d,d1τ/d ◦ τ1, B̃1 = τ−1
1 ◦ fd1/d,τ ,

g2 = fd1/d,d2τ/d ◦ τ2, B̃2 = τ−1
2 ◦ fd2/d,τ

for the Chebyshev-Blaschke products fd2/d,d1τ/d , fd1/d,d2τ/d , fd1/d,τ , fd2/d,τ .

For the case E1 = E2, we have the following
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Theorem 24 Let B1,B2 be finite Blaschke products, degB1 = d1, degB2 = d2,
d1 ≤ d2, and E0 ⊂ D be a compact set such that E := B−1

1 (E0) = B−1
2 (E0)

holds. Suppose that E0 is a connected set of positive (hyperbolic) capacity. Then
d1 = d2 and there exists a Möbius transformation g1 such that B2 = g1 ◦ B1 and
E0 = g−1

1 (E0).

Remark 6 In Theorem 24, if E = E0, then B1 and B2 must be Möbius transforma-
tions. To see this, assume on the contrary that degBi ≥ 2 for i = 1 or 2. Since E0
is completely invariant under Bi , the Julia set J (Bi) is contained in E0 by the mini-
mality of Julia set (see Sect. 3.1.4). On the other hand, J (Bi) is either the unit circle
or a Cantor set on the circle (mentioned in Sect. 3.2.4), which is a contradiction.

Finally, in view of Theorems 22 and 23, we make the following conjecture.

Conjecture 2 Theorem 23 still holds by replacing the condition that E1 and E2 are
connected sets of positive (hyperbolic) capacities by card(E) ≥ lcm(d1, d2).

We summarize the results in this section by the following table:

Polynomials Finite Blaschke products

Theorem 22 Theorem 23, Conjecture 2
Theorem 21 Theorem 24

5 Final Remark

We hope the reader are convinced that there does exist a nice correspondence be-
tween polynomials and finite Blaschke products, and there is still a lot of work to be
done in extending the dictionary given here. For example, after proving a very inter-
esting result on products of polynomials in uniform norms in [37], I.E. Pritsker also
considered and proved a corresponding version for finite Blaschke products in [38]
very recently.
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Recent Progress on Truncated Toeplitz
Operators

Stephan Ramon Garcia and William T. Ross

Abstract This paper is a survey on the emerging theory of truncated Toeplitz op-
erators. We begin with a brief introduction to the subject and then highlight the
many recent developments in the field since Sarason’s seminal paper (Oper. Matri-
ces 1(4):491–526, 2007).

1 Introduction

Although the subject has deep classical roots, the systematic study of truncated
Toeplitz operators for their own sake was only recently spurred by the seminal 2007
paper of Sarason [88]. In part motivated by several of the problems posed in the
aforementioned article, the area has undergone vigorous development during the
past several years [13, 14, 23, 25, 28, 35, 45, 49–52, 56, 59, 65, 88–90, 92, 93, 96].
While several of the initial questions raised by Sarason have now been resolved, the
study of truncated Toeplitz operators has nevertheless proven to be fertile ground,
spawning both new questions and unexpected results. In this survey, we aim to
keep the interested reader up to date and to give the uninitiated reader a histori-
cal overview and a summary of the important results and major developments in
this area.

Our survey commences in Sect. 2 with an extensive treatment of the basic def-
initions, theorems, and techniques of the area. Consequently, we shall be brief in
this introduction and simply declare that a truncated Toeplitz operator is the com-
pression Auϕ : Ku → Ku of a classical Toeplitz operator Tϕ to a shift coinvariant
subspace Ku := H 2 ! uH 2 of the classical Hardy space H 2. Here u denotes a non-
constant inner function and we write Auϕf = Pu(ϕf ) where Pu denotes the orthog-
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onal projection from L2 onto Ku. Interestingly, the study of potentially unbounded
truncated Toeplitz operators, having symbols ϕ in L2 as opposed to L∞, has proven
to be spectacularly fruitful. Indeed, a number of important questions in the area
revolve around this theme (e.g., the results of Sect. 5).

Before proceeding, let us first recall several instances where truncated Toeplitz
operators have appeared in the literature. This will not only provide a historical
perspective on the subject, but it will also illustrate the fact that truncated Toeplitz
operators, in various guises, form the foundations of much of modern function-
related operator theory.

Let us begin with the powerful Sz.-Nagy-Foiaş model theory for Hilbert space
contractions, the simplest manifestation of which is the compressed shift Auz [16,
77–79, 82]. To be more specific, every Hilbert space contraction T having defect
indices (1,1) and such that limn→∞ T ∗n = 0 (SOT) is unitarily equivalent to Auz for
some inner function u. Natural generalizations of this result are available to treat
contractions with arbitrary defect indices by employing the machinery of vector-
valued model spaces and operator-valued inner functions.

In his approach to the Gelfand problem, that is the characterization of the invari-
ant subspace lattice LatV of the Volterra integration operator

[Vf ](x) =
∫ x

0
f (y)dy (1)

on L2 [0,1], Sarason noted that the Volterra operator is unitarily equivalent to the
Cayley transform of the compressed shift Auz corresponding to the atomic inner
function u(z) = exp( z+1

z−1 ) [84]. This equivalence was then used in conjunction with
Beurling’s Theorem to demonstrate the unicellularity of LatV [78, 79, 84, 86]. In-
terestingly, it turns out that the Volterra operator, and truncated Toeplitz operators
in general, are natural examples of complex symmetric operators, a large class of
Hilbert space operators which has also undergone significant development in recent
years [24, 35, 45–50, 54, 55, 61, 63, 71, 72, 74, 103–107]. This link between trun-
cated Toeplitz operators and complex symmetric operators is explored in Sect. 9.

Sarason himself identified the commutant of Auz as the set {Auϕ : ϕ ∈ H∞ } of
all analytic truncated Toeplitz operators. He also obtained an H∞ functional calcu-
lus for the compressed shift, establishing that ϕ(Auz ) = Auϕ holds for all ϕ in H∞
[85]. These seminal observations mark the beginning of the so-called commutant
lifting theory, which has been developed to great effect over the ensuing decades
[42, 80, 91]. Moreover, these techniques have given new perspectives on several
classical problems in complex function theory. For instance, the Carathéodory and
Pick problems lead one naturally to consider lower triangular Toeplitz matrices (i.e.,
analytic truncated Toeplitz operators on Kzn ) and the backward shift on the span of
a finite collection of Cauchy kernels (i.e., Auz on a finite dimensional model space
Ku). We refer the reader to the text [1] which treats these problems in greater detail
and generality.

Toeplitz matrices, which can be viewed as truncated Toeplitz operators on Kzn ,
have long been the subject of intense research. We make no attempt to give even
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a superficial discussion of this immense topic. Instead, we merely refer the reader
to several recent texts which analyze various aspects of this fascinating subject. The
pseudospectral properties of Toeplitz matrices are explored in [100]. The asymptotic
analysis of Toeplitz operators on H 2 via large truncated Toeplitz matrices is the fo-
cus of [19]. The role played by Toeplitz determinants in the study of orthogonal
polynomials is discussed in [94, 95] and its relationship to random matrix theory is
examined in [15, 70]. Finally, we should also remark that a special class of Toeplitz
matrices, namely circulant matrices, are a crucial ingredient in many aspects of nu-
merical computing [37].

We must also say a few words about the appearance of truncated Toeplitz oper-
ators in applications to control theory and electrical engineering. In such contexts,
extremal problems posed over H∞ often appear. It is well-known that the solution
to many such problems can be obtained by computing the norm of an associated
Hankel operator [43, 44]. However, it turns out that many questions about Han-
kel operators can be phrased in terms of analytic truncated Toeplitz operators and,
moreover, this link has long been exploited [81, Eq. (2.9)]. Changing directions
somewhat, we remark that the skew Toeplitz operators arising in H∞ control theory
are closely related to selfadjoint truncated Toeplitz operators [17, 18].

Among other things, Sarason’s recent article [88] is notable for opening the gen-
eral study of truncated Toeplitz operators, beyond the traditional confines of the
analytic (ϕ ∈ H∞) and co-analytic (ϕ ∈ H∞) cases and the limitations of the case
u = zN (i.e., Toeplitz matrices), all of which are evidently well-studied in the litera-
ture. By permitting arbitrary symbols in L∞, and indeed under some circumstances
inL2, an immense array of new theorems, novel observations, and difficult problems
emerges. It is our aim in this article to provide an overview of the ensuing devel-
opments, with an eye toward promoting further research. In particular, we make an
effort to highlight open problems and unresolved issues which we hope will spur
further advances.

2 Preliminaries

In this section we gather together some of the standard results on model spaces
and Aleksandrov-Clark measures which will be necessary for what follows. Since
most of this material is familiar to those who have studied Sarason’s article [88], the
following presentation is somewhat terse. Indeed, it serves primarily as a review of
the standard notations and conventions of the field.

2.1 Basic Notation

Let D be the open unit disk, ∂D the unit circle, m = dθ/2π normalized Lebesgue
measure on ∂D, and Lp := Lp(∂D,m) be the standard Lebesgue spaces on ∂D.
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For 0 < p < ∞ we use Hp to denote the classical Hardy spaces on D and H∞
to denote the bounded analytic functions on D. As is standard, we regard Hp as a
closed subspace of Lp by identifying each f ∈ Hp with its m-almost everywhere
defined Lp boundary function

f (ζ ) := lim
r→1− f (rζ ), m-a.e. ζ ∈ ∂D.

In the Hilbert space setting H 2 (or L2) we denote the norm as ‖ · ‖ and the usual
integral inner product by 〈·, ·〉. On the rare occasions when we need to discuss Lp

norms we will use ‖ · ‖p . We let Ĉ denote the Riemann sphere C ∪ {∞} and, for
a set A ⊆ C, we let A− denote the closure of A. For a subset V ⊂ Lp , we let
V := {f : f ∈ V }. We interpret the Cauchy integral formula

f (λ) =
∫
∂D

f (ζ )

1 − ζλdm(ζ ),

valid for all f in H 2, in the context of reproducing kernel Hilbert spaces by writing
f (λ) = 〈f, cλ〉 where

cλ(z) := 1

1 − λz (2)

denotes the Cauchy kernel (also called the Szegő kernel). A short computation now
reveals that the orthogonal projection P+ from L2 onto H 2 (i.e., the Riesz projec-
tion) satisfies

[P+f ](λ) = 〈f, cλ〉
for all f ∈ L2 and λ ∈ D.

2.2 Model Spaces

Let S : H 2 → H 2 denote the unilateral shift

[Sf ](z) = zf (z), (3)

and recall that Beurling’s Theorem asserts that the nonzero S-invariant subspaces of
H 2 are those of the form uH 2 for some inner function u. Letting

[
S∗f
]
(z) = f (z)− f (0)

z
(4)

denote the backward shift operator, it follows that the proper S∗-invariant subspaces
of H 2 are precisely those of the form

Ku := H 2 ! uH 2. (5)
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The subspace (5) is called the model space corresponding to the inner function u,
the terminology stemming from the important role that Ku plays in the model theory
for Hilbert space contractions [79, Part C].

Although they will play only a small role in what follows, we should also mention
that the backward shift invariant subspaces of the Hardy spaces Hp for 0< p < ∞
are also known. In particular, for 1 � p < ∞ the proper backward shift invariant
subspaces of Hp are all of the form

Kpu := Hp ∩ uHp0 , (6)

where Hp0 denotes the subspace of Hp consisting of those Hp functions which
vanish at the origin and where the right-hand side of (6) is to be understood in
terms of boundary functions on ∂D. For further details and information on the more
difficult case 0< p < 1, we refer the reader to the text [27] and the original article
[4] of Aleksandrov. For p = 2, we often suppress the exponent and simply write Ku
in place of K2

u.

2.3 Pseudocontinuations

Since the initial definition (6) of Kpu is somewhat indirect, one might hope for a
more concrete description of the functions belonging to Kpu . A convenient function-
theoretic characterization of Kpu is provided by the following important result.

Theorem 1 (Douglas-Shapiro-Shields [39]) If 1 � p < ∞, then f belongs to Kpu if
and only if there exists a G ∈ Hp(Ĉ\D−) which vanishes at infinity1 such that

lim
r→1+G(rζ ) = lim

r→1−
f

u
(rζ )

for almost every ζ on ∂D.

The function G in the above theorem is called a pseudocontinuation of f/u to
Ĉ\D−. We refer the reader to the references [5, 27, 39, 83] for further informa-
tion about pseudocontinuations and their properties. An explicit function theoretic
parametrization of the spaces Kpu is discussed in detail in [45].

2.4 Kernel Functions, Conjugation, and Angular Derivatives

Letting Pu denote the orthogonal projection from L2 onto Ku, we see that

[Puf ](λ) = 〈f, kλ〉 (7)

1Equivalently, G(1/z) ∈ Hp0 .
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for each λ in D. Here

kλ(z) := 1 − u(λ)u(z)
1 − λz (8)

denotes the reproducing kernel for Ku. In particular, this family of functions has the
property that f (λ) = 〈f, kλ〉 for every f ∈ Ku and λ ∈ D.

Each model space Ku carries a natural conjugation (an isometric, conjugate-
linear involution) C : Ku → Ku, defined in terms of boundary functions by

[Cf ](ζ ) := f (ζ )ζu(ζ ). (9)

For notational convenience, we sometimes denote the conjugate Cf of f by f̃ .
More information about conjugations in general, along with specific properties of
the map (9) can be found in [45]. For the moment, we simply mention that the
so-called conjugate kernels

[Ckλ](z) = u(z)− u(λ)
z − λ (10)

will be important in what follows. In particular, observe that each conjugate kernel
is a difference quotient for the inner function u. We therefore expect that derivatives
will soon enter the picture.

Definition 1 For an inner function u and a point ζ on ∂D we say that u has an
angular derivative in the sense of Carathéodory (ADC) at ζ if the nontangential
limits of u and u′ exist at ζ and |u(ζ )| = 1.

The following theorem provides several useful characterizations of ADCs.

Theorem 2 (Ahern-Clark [3]) For an inner function u = bΛsμ, where bΛ is a
Blaschke product with zeros Λ = {λn}∞

n=1, repeated according to multiplicity, sμ
is a singular inner function with corresponding singular measure μ, and ζ ∈ ∂D,
the following are equivalent:

(i) Every f ∈ Ku has a nontangential limit at ζ .
(ii) For every f ∈ Ku, f (λ) is bounded as λ → ζ nontangentially.

(iii) u has an ADC at ζ .
(iv) The function

kζ (z) = 1 − u(ζ )u(z)
1 − ζz , (11)

belongs to H 2.
(v) The following condition holds:

∑
n≥1

1 − |λn|2

|ζ − λn|2
+
∫
∂D

dμ(ξ)

|ξ − ζ |2
< ∞. (12)
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In fact, the preceding is only a partial statement of the Ahern-Clark result, for
there are several other additional conditions which can be appended to the preced-
ing list. Moreover, they also characterized the existence of nontangential boundary
limits of the derivatives (up to a given order) of functions in Ku. An extension of
Theorem 2 to the spaces Kpu is due to Cohn [32].

Among other things, Theorem 2 tells us that whenever u has an ADC at a point
ζ on ∂D, then the functions (11), are reproducing kernels for Ku in the sense that
the reproducing property f (ζ ) = 〈f, kζ 〉 holds for all f in Ku. In a similar manner,
the functions

[Ckζ ](z) = u(z)− u(ζ )
z − ζ

are also defined and belong to Ku whenever u has an ADC at ζ .

2.5 Two Results of Aleksandrov

Letting H∞ denote the Banach algebra of all bounded analytic functions on D, we
observe that the set K∞

u := Ku ∩H∞ is dense in Ku since span{S∗nu : n = 1,2, . . .}
is dense in Ku. Another way to see that K∞

u is dense in Ku is to observe that each
reproducing kernel (8) belongs to K∞

u whence span{kλ : λ ∈ Λ} is dense in Ku
whenever Λ is a uniqueness set for Ku.

For many approximation arguments, the density of K∞
u in Ku is sufficient. In

other circumstances, however, one requires continuity up to the boundary. Unfor-
tunately, for many inner functions (e.g., singular inner functions) it is difficult to
exhibit a single nonconstant function in Ku which is continuous on D

− (i.e., which
belongs to the intersection of Ku with the disk algebra A). The following surprising
result asserts that Ku ∩ A, far from being empty, is actually dense in Ku.

Theorem 3 (Aleksandrov [6]) For p ∈ (1,∞), Kpu ∩ A is dense in Kpu .

A detailed exposition of Aleksandrov’s density theorem can be found in [26,
p. 186]. For related results concerning whether or not Ku contains functions of vary-
ing degrees of smoothness, the reader is invited to consult [41]. One consequence
of Theorem 3 is that it allows us to discuss whether or not Kpu can be embedded in
Lp(μ) where μ is a measure on ∂D.

Theorem 4 (Aleksandrov [6]) Let u be an inner function, μ be a positive Borel
measure on ∂D, and p ∈ (1,∞). If there exists a C > 0 such that

‖f ‖Lp(μ) � C‖f ‖p, ∀f ∈ A ∩ Kpu , (13)

then every function in Kpu has a finite nontangential limit μ-almost everywhere and
(13) holds for all f ∈ Kpu .
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It is clear that every measure on ∂D which is also Carleson measure (see [62])
satisfies (13). However, there are generally many other measures which also satisfy
(13). For example, if u has an ADC at ζ , then the point mass δζ satisfies (13) with
p = 2.

2.6 The Compressed Shift

Before introducing truncated Toeplitz operators in general in Sect. 2.9, we should
first introduce and familiarize ourselves with the most important and well-studied
example. The so-called compressed shift operator is simply the compression of the
unilateral shift (3) to a model space Ku:

Auz := PuS|Ku . (14)

The adjoint of Auz is the restriction of the backward shift (4) to Ku. Being the com-
pression of a contraction, it is clear that Auz is itself a contraction and in fact, such
operators and their vector-valued analogues can be used to model certain types of
contractive operators [16, 77–79]. The following basic properties of Auz are well-
known and can be found, for instance, in [78, 88].

Theorem 5 If u is a nonconstant inner function, then

(i) The invariant subspaces ofAuz are vH 2 ∩ (uH 2)⊥, where v is an inner function
which divides u (i.e., u/v ∈ H∞).

(ii) Auz is cyclic with cyclic vector k0. That is to say, the closed linear span of
{(Auz )nk0 : n = 0,1,2, . . .} is equal to Ku. Moreover, f ∈ Ku is cyclic for Auz if
and only if u and the inner factor of f are relatively prime.

(iii) Auz is irreducible (i.e., has no proper, nontrivial reducing subspaces).

To discuss the spectral properties of Auz we require the following definition.

Definition 2 If u is an inner function, then the spectrum σ(u) of u is the set

σ(u) :=
{
λ ∈ D

− : lim inf
z→λ

∣∣u(z)∣∣= 0
}
.

If u = bΛsμ, where b is a Blaschke product with zero sequence Λ = {λn} and sμ
is a singular inner function with corresponding singular measure μ, then

σ(u) = Λ− ∪ suppμ.

The following related lemma is well-known result of Moeller and we refer the reader
to [78, p. 65] or [27, p. 84] for its proof.

Lemma 1 Each function in Ku can be analytically continued across ∂D\σ(u).
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An explicit description of the spectrum of the compressed shift Auz can be found
in Sarason’s article [88, Lemma 2.5], although portions of it date back to the work
of Livšic and Moeller [78, Lec. III.1].

Theorem 6 If u is an inner function, then

(i) The spectrum σ(Auz ) of Auz is equal to σ(u).
(ii) The point spectrum of σp(Auz ) of Auz is equal to σ(u)∩ D.

(iii) The essential spectrum σe(Auz ) of Auz is equal to σ(u)∩ ∂D.

2.7 Clark Unitary Operators and Their Spectral Measures

Maintaining the notation and conventions of the preceding subsection, let us define,
for each α ∈ ∂D, the following operator on Ku:

Uα := Auz + α

1 − u(0)α k0 ⊗Ck0. (15)

In the above, the operator f ⊗ g, for f,g ∈ H 2, is given by the formula

(f ⊗ g)(h) = 〈h,g〉f.

A seminal result of Clark [29] asserts that each Uα is a cyclic unitary operator and,
moreover, that every unitary, rank-one perturbation of Auz is of the form (15). Fur-
thermore, Clark was even able to concretely identify the corresponding spectral
measures σα for these so-called Clark operators. We discuss these results below
(much of this material is presented in greater detail in the recent text [26]).

Theorem 7 (Clark) For each α ∈ ∂D, Uα is a cyclic unitary operator on Ku. More-
over, any unitary rank-one perturbation of Auz is equal to Uα for some α ∈ ∂D.

The spectral theory for the Clark operators Uα is well-developed and explicit.
For instance, if u(0) = 0, then a point ζ on ∂D is an eigenvalue of Uα if and only if
u has an ADC at ζ and u(ζ ) = α. The corresponding eigenvector is

kζ (z) = 1 − αu(z)
1 − ζz ,

which is simply a boundary kernel (11).
Since each Uα is cyclic, there exists a measure σα , supported on ∂D, so that

Uα is unitarily equivalent to the operator Mz : L2(σα) → L2(σα) of multiplication
by the independent variable on the Lebesgue space L2(σα), i.e., Mzf = zf . To
concretely identify the spectral measure σα , we require an old theorem of Herglotz,
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which states that any positive harmonic function on D can be written as the Poisson
integral

(Pσ)(z) =
∫
∂D

1 − |z|2

|ζ − z|2
dσ(ζ )

of some unique finite, positive, Borel measure σ on ∂D [40, Theorem 1.2].

Theorem 8 (Clark) If σα is the unique measure on ∂D satisfying

1 − |u(z)|2

|α − u(z)|2
=
∫
∂D

1 − |z|2

|ζ − z|2
dσα(ζ ), (16)

then Uα is unitarily equivalent to the operator Mz : L2(σα) → L2(σα) defined by
Mzf = zf .

The Clark measures {σα : α ∈ ∂D} corresponding to an inner function u have
many interesting properties. We summarize some of these results in the following
theorem. The reader may consult [26] for further details.

Theorem 9

(i) σα is singular with respect to Lebesgue measure for each α ∈ ∂D.
(ii) σα ⊥ σβ when α �= β .

(iii) (Nevanlinna) σα({ζ }) > 0 if and only if u(ζ ) = α and u has an ADC at ζ .
Moreover,

σα
({ζ })= 1

|u′(ζ )| .

(iv) (Aleksandrov) For any f ∈ C(∂D) we have

∫
∂D

(∫
∂D

g(ζ ) dσα(ζ )

)
dm(α) =

∫
∂D

g(ζ ) dm(ζ ). (17)

Condition (iv) of the preceding theorem is a special case of the Aleksandrov
disintegration theorem: If g belongs to L1, then the map

α →
∫
∂D

g(ζ ) dσα(ζ )

is defined for m-almost every α in ∂D and, as a function of α, it belongs to L1 and
satisfies the natural analogue of (17). In fact, the Clark measures σα are often called
Aleksandrov-Clark measures in light of Aleksandrov’s deep work on the subject,
which actually generalizes to measures μα on ∂D satisfying

1 − |u(z)|2

|α − u(z)|2
=
∫
∂D

1 − |z|2

|ζ − z|2
dμα(ζ )
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for arbitrary functions u belonging to the unit ball of H∞. The details and ramifica-
tions of this remarkable result are discussed in detail in [26].

2.8 Finite Dimensional Model Spaces

It is not hard to show that the model space Ku is finite dimensional if and only if
u is a finite Blaschke product. In fact, if u is a finite Blaschke product with zeros
λ1, λ2, . . . , λN , repeated according to multiplicity, then dimKu = N and

Ku =
{ ∑N−1

j=0 aj z
j

∏N
j=1(1 − λj z)

: aj ∈ C

}
. (18)

With respect to the representation (18), the conjugation (9) on Ku assumes the sim-
ple form

C

( ∑N−1
j=0 aj z

j

∏N
j=1(1 − λj z)

)
=
∑N−1
j=0 aN−1−j zj∏N
j=1(1 − λjz)

.

If the zeros of u are distinct, then the Cauchy kernels cλi from (2) corresponding to
the λi form a basis for Ku whence

Ku = span{cλ1, cλ2, . . . , cλN }.
If some of the λi are repeated, then one must include the appropriate derivatives of
the cλi to obtain a basis for Ku.

Although the natural bases for Ku described above are not orthogonal, a particu-
larly convenient orthonormal basis exists. For λ ∈ D, let

bλ(z) = z − λ
1 − λz

be a disk automorphism with a zero at λ and for each 1 ≤ n ≤ N let

γn(z) =
√

1 − |λn|2

1 − λnz
n−1∏
k=1

bλk (z). (19)

The following important fact was first observed by Takenaka [98] in 1925, although
it has been rediscovered many times since.

Theorem 10 (Takenaka) {γ1, γ2, . . . , γN } is an orthonormal basis for Ku.

If u is an infinite Blaschke product, then an extension, due to Walsh [78], of the
preceding result tells us that {γ1, γ2, . . .} is an orthonormal basis for Ku.
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Let us return now to the finite dimensional setting. Suppose that u is a finite
Blaschke product with N zeros, repeated according to multiplicity. To avoid some
needless technical details, we assume that u(0) = 0. If {ζ1, ζ2, . . . , ζN } are the eigen-
values of the Clark unitary operator

Uα := Auz + αk0 ⊗Ck0

(i.e., the N distinct solutions on ∂D to u(ζ ) = α), then the corresponding eigenvec-
tors {kζ1, kζ2, . . . , kζN } are orthogonal. A routine computation shows that ‖kζj ‖ =√|u′(ζ )| so that {

kζ1√ |u′(ζ1)| ,
kζ2√ |u′(ζ2)| , . . . ,

kζN√|u′(ζN)|
}

(20)

is an orthonormal basis for Ku. This is called a Clark basis for Ku. Letting wj =
exp(− 1

2 (arg ζj − argα)), it turns out that

{
w1kζ1√ |u′(ζ1)| ,

w2kζ2√ |u′(ζ2)| , . . . ,
wNkζN√|u′(ζN)|

}
(21)

is an orthonormal basis for Ku, each vector of which is fixed by the conjugation (9)
on Ku (i.e., in the terminology of [49], (21) is a C-real basis for Ku). We refer to a
basis of the form (21) as a modified Clark basis for Ku (see [45] and [51] for further
details).

2.9 Truncated Toeplitz Operators

The truncated Toeplitz operator Auϕ on Ku having symbol ϕ in L2 is the closed,
densely defined operator

Auϕf := Pu(ϕf )
having domain2

D
(
Auϕ
)= {f ∈ Ku : Pu(ϕf ) ∈ Ku

}
.

When there is no danger of confusion, we sometimes write Aϕ in place of Auϕ .
A detailed discussion of unbounded truncated Toeplitz operators and their properties
can be found in Sect. 10. For the moment, we focus on those truncated Toeplitz
operators which can be extended to bounded operators on Ku.

Definition 3 Let Tu denote the set of all bounded truncated Toeplitz operators
on Ku.

2Written as an integral transform, Pu can be regarded as an operator from L1 into Hol(D).
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For Toeplitz operators, recall that ‖Tϕ‖ = ‖ϕ‖ ∞ holds for each ϕ in L∞. In
contrast, we can say little more than

0 � ‖Auϕ‖ � ‖ϕ‖ ∞ (22)

for general truncated Toeplitz operators. In fact, computing, or at least estimating,
the norm of a truncated Toeplitz operator is a difficult problem. This topic is dis-
cussed in greater detail in Sect. 4. However, a complete characterization of those
symbols which yield the zero operator has been obtained by Sarason [88, Theo-
rem 3.1].

Theorem 11 (Sarason) A truncated Toeplitz operator Auϕ is identically zero if and

only if ϕ ∈ uH 2 + uH 2.

In particular, the preceding result tells us that there are always infinitely many
symbols (many of them unbounded) which represent the same truncated Toeplitz
operator. On the other hand, since Auϕ = Auψ if and only if ψ − ϕ belongs to
uH 2 + uH 2, we actually enjoy some freedom in specifying the symbol of a trun-
cated Toeplitz operator. The following corollary makes this point concrete.

Corollary 1 If A belongs to Tu, then there exist ϕ1 and ϕ2 in Ku such that A =
Aϕ1 +ϕ2 . Furthermore, ϕ1 and ϕ2 are uniquely determined if we fix the value of one
of them at the origin.

To some extent, the preceding corollary can be reversed. As noted in [14], if
we assume that A ∈ Tu has a symbol ϕ1 + ϕ2, where ϕ1 and ϕ2 belong to Ku
and ϕ2(0) = 0, then we can recover ϕ1 and ϕ2 by knowing the action of A on the
reproducing kernels kλ and the conjugate reproducing kernels Ckλ. Indeed, one just
needs to solve the following linear system in the variables ϕ1(λ) and ϕ2(λ):

ϕ1(λ)− u(0)u(λ)ϕ2(λ) = 〈Ak0, kλ〉,
ϕ2(λ)− u(0)u(λ)ϕ1(λ) = 〈ACk0,Ck0 〉 − 〈Ak0, k0 〉.

With more work, one can even obtain an estimate of max{‖ϕ1 ‖,‖ϕ2 ‖ } [14].
Letting C denote the conjugation (9) on Ku, a direct computation confirms the

following result from [49]:

Theorem 12 (Garcia-Putinar) For any A ∈ Tu, we have A = CA∗C.

In particular, Theorem 12 says each truncated Toeplitz operator is a complex sym-
metric operator, a class of Hilbert space operators which has undergone much recent
study [24, 35, 45–50, 54, 55, 61, 63, 71, 72, 74, 103–107]. In fact, it is suspected that
truncated Toeplitz operators might serve as some sort of model operator for various
classes of complex symmetric operators (see Sect. 9). For the moment, let us simply
note that the matrix representation of a truncated Toeplitz operator Auϕ with respect
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to a modified Clark basis (21) is complex symmetric (i.e., self-transpose). This was
first observed in [49] and developed further in [45].

An old theorem of Brown and Halmos [20] says that a bounded operator T onH 2

is a Toeplitz operator if and only if T = ST S∗. Sarason recently obtained a version
of this theorem for truncated Toeplitz operators [88, Theorem 4.1].

Theorem 13 (Sarason) A bounded operator A on Ku belongs to Tu if and only if
there are functions ϕ,ψ ∈ Ku such that

A = AuzA
(
Auz
)∗ + ϕ ⊗ k0 + k0 ⊗ψ.

When Ku is finite dimensional, one can get more specific results using matrix
representations. For example, if u = zN , then {1, z, . . . , zN−1 } is an orthonormal
basis for KzN . Any operator in TzN represented with respect to this basis yields a
Toeplitz matrix and, conversely, any N ×N Toeplitz matrix gives rise to a truncated
Toeplitz operator on KzN . Indeed the matrix representation of Az

N

ϕ with respect

to {1, z, . . . , zN−1 } is the Toeplitz matrix (ϕ̂(j − k))N−1
j,k=0. For more general finite

Blaschke products we have the following result from [28].

Theorem 14 (Cima-Ross-Wogen) Let u be a finite Blaschke product of degree n
with distinct zeros λ1, λ2, . . . , λn and let A be any linear transformation on the n-
dimensional space Ku. If MA = (ri,j )

n
i,j=1 is the matrix representation of A with

respect to the basis {kλ1, kλ2, . . . , kλn}, then A ∈ Tu if and only if

ri,j =
(
u′(λ1)

u′(λi)

)(
r1,i (λ1 − λi)+ r1,j (λj − λ1)

λj − λi

)
,

for 1 � i, j � n and i �= j .

Although the study of general truncated Toeplitz operators appears to be difficult,
there is a distinguished subset of these operators which are remarkably tractable.
We say that Auϕ is an analytic truncated Toeplitz operator if the symbol ϕ belongs
to H∞, or more generally, to H 2. It turns out that the natural polynomial functional
calculus p(Auz ) = Aup can be extended to H∞ in such a way that the symbol map
ϕ  → ϕ(Auz ) := Auϕ is linear, contractive, and multiplicative. As a broad generaliza-
tion of Theorem 6, we have the following spectral mapping theorem [78, p. 66], the
proof of which depends crucially on the famous Corona Theorem of L. Carleson
[21].

Theorem 15 If ϕ ∈ H∞, then

(i) σ(Auϕ) = {λ : infz∈D(|u(z)| + |ϕ(z)− λ|) = 0}.
(ii) If ϕ ∈ H∞ ∩C(∂D), then σ(Auϕ) = ϕ(σ(u)).
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We conclude this section by remarking that vector-valued analogues are available
for most of the preceding theorems. However, these do not concern us here and we
refer the reader to [78] for further details.

3 Tu as a Linear Space

Recent work of Baranov, Bessonov, and Kapustin [13] has shed significant light on
the structure of Tu as a linear space. Before describing these results, let us first
recount a few important observations due to Sarason. The next theorem is [88, The-
orem 4.2].

Theorem 16 (Sarason) Tu is closed in the weak operator topology.

It is important to note that Tu is not an operator algebra, for the product of
truncated Toeplitz operators is rarely itself a truncated Toeplitz operator (the precise
conditions under which this occurs were found by Sedlock [92, 93]). On the other
hand, Tu contains a number of interesting subsets which are algebras. The details
are discussed in Sect. 7, followed in Sect. 8 by a brief discussion about C∗-algebras
generated by truncated Toeplitz operators.

In order to better frame the following results, first recall that there are no nonzero
compact Toeplitz operators on H 2 [20]. In contrast, there are many examples of
finite rank (hence compact) truncated Toeplitz operators. In fact, the rank-one trun-
cated Toeplitz operators were first identified by Sarason [88, Theorem 5.1].

Theorem 17 (Sarason) For an inner function u, the operators

(i) kλ ⊗Ckλ = Auu
z−λ

for λ ∈ D,

(ii) Ckλ ⊗ kλ = Auu
z−λ

for λ ∈ D,

(iii) kζ ⊗ kζ = Au
kζ +kζ −1

where u has an ADC at ζ ∈ ∂D,

are truncated Toeplitz operators having rank one. Moreover, any truncated Toeplitz
operator of rank one is a scalar multiple of one of the above.

We should also mention the somewhat more involved results of Sarason [88,
Theorems 6.1 & 6.2] which identify a variety of natural finite rank truncated Toeplitz
operators. Furthermore, the following linear algebraic description of Tu has been
obtained [88, Theorem 7.1] in the finite dimensional setting.

Theorem 18 (Sarason) If dimKu = n, then

(i) dimTu = 2n− 1,
(ii) If λ1, λ2, . . . , λ2n−1 are distinct points of D, then the operators kuλj ⊗ k̃uλj for

j = 1,2, . . . ,2n− 1 form a basis for Tu.3

3Recall that we are using the notation f̃ := Cf for f ∈ Ku.
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When confronted with a novel linear space, the first questions to arise concern
duality. Baranov, Bessonov, and Kapustin recently identified the predual of Tu and
discussed the weak-∗ topology on Tu [13]. Let us briefly summarize some of their
major results. First consider the space

Xu :=
{
F =

∞∑
n=1

fngn : fn, gn ∈ Ku,
∞∑
n=1

‖fn‖ ‖gn‖ < ∞
}

with norm

‖F‖Xu := inf

{ ∞∑
n=1

‖fn‖ ‖gn‖ : F =
∞∑
n=1

fngn

}
.

It turns out that

Xu ⊆ uzH 1 ∩ uzH 1,

and that each element of Xu can be written as a linear combination of four elements
of the form f g, where f and g belong to Ku. The importance of the space Xu lies
in the following important theorem and its corollaries.

Theorem 19 (Baranov-Bessonov-Kapustin [13]) For any inner function u, X ∗
u , the

dual space of Xu, is isometrically isomorphic to Tu via the dual pairing

(F,A) :=
∞∑
n=1

〈Afn,gn〉, F =
∞∑
n=1

fngn, A ∈ Tu.

Furthermore, if T c
u denotes the compact truncated Toeplitz operators, then (T c

u )
∗,

the dual of T c
u , is isometrically isomorphic to Xu.

Corollary 2 (Baranov-Bessonov-Kapustin)

(i) The weak topology and the weak-∗ topology on Tu are the same.
(ii) The norm closed linear span of the rank-one truncated Toeplitz operators

is T c
u .

(iii) T c
u is weakly dense in Tu.

For a general inner function u, we will see below that not every bounded trun-
cated Toeplitz operator on Ku has a bounded symbol (see Sect. 5). On the other
hand, the following corollary holds in general.

Corollary 3 (Baranov-Bessonov-Kapustin) The truncated Toeplitz operators with
bounded symbols are weakly dense in Tu.

This leaves open the following question.

Question 1 Are the truncated Toeplitz operators with bounded symbols norm dense
in Tu?
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4 Norms of Truncated Toeplitz Operators

Recall that for ϕ in L∞ we have the trivial estimates (22) on the norm of a truncated
Toeplitz operator, but little other general information concerning this quantity. For ϕ
in L2, we may also consider the potentially unbounded truncated Toeplitz operator
Auϕ . Of interest is the quantity

∥∥Auϕ
∥∥ := sup

{∥∥Auϕf
∥∥ : f ∈ Ku ∩H∞,‖f ‖ = 1

}
, (23)

which we regard as being infinite if Auϕ is unbounded. For Auϕ bounded, (23) is
simply the operator norm of Auϕ in light of Theorem 3. Evaluation or estimation of
(23) is further complicated by the fact that the representing symbol ϕ forAuϕ is never
unique (Theorem 11).

If u is a finite Blaschke product (so that the corresponding model space Ku is fi-
nite dimensional) and ϕ belongs to H∞, then straightforward residue computations
allow us to represent Auϕ with respect to any of the orthonormal bases mentioned
earlier (i.e., the Takenaka (19), Clark (20), or modified Clark (21) bases). For Kzn ,
the Takenaka basis is simply the monomial basis {1, z, z2, . . . , zn−1 } and the ma-
trix representation of Auϕ is just a lower triangular Toeplitz matrix. In any case, one
can readily compute the norm of Auϕ by computing the norm of one of its matrix
representations. This approach was undertaken by the authors in [51]. One can also
approach this problem using the theory of Hankel operators (see [81, Eq. (2.9)] and
the method developed in [23]).

Let us illustrate the general approach with a simple example. If ϕ belongs to
H∞ and u is the finite Blaschke product with distinct zeros λ1, λ2, . . . , λn, then the
matrix representation for Auϕ with respect to the modified Clark basis (21) is

(
wk√|u′(ζk)|

wj√|u′(ζj )|
n∑
i=1

ϕ(λi)

u′(λi)(1 − ζkλi)(1 − ζjλi)

)n
j,k=1

. (24)

In particular, observe that this matrix is complex symmetric, as predicted by Theo-
rem 12. As a specific example, consider the Blaschke product

u(z) = z z − 1
2

1 − 1
2z

and the H∞ function

ϕ(z) = 2z − 1
2

1 − 1
2z
.

The parameters in (24) are

α = 1, λ1 = 0, λ2 = 1

2
, ζ1 = 1,

ζ2 = −1, w1 = 1, w2 = −i,
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which yields

∥∥Auϕ
∥∥=
∥∥∥∥∥∥

⎛
⎝

5
4 − 7i

4
√

3

− 7i
4

√
3

− 13
12

⎞
⎠
∥∥∥∥∥∥= 1

6
(7 + √

37) ≈ 2.1805.

On a somewhat different note, it is possible to obtain lower estimates of ‖Auϕ‖ for
general ϕ in L2. This can be helpful, for instance, in determining whether a given
truncated Toeplitz operator is unbounded. Although a variety of lower bounds on
‖Auϕ‖ are provided in [52], we focus here on perhaps the most useful of these. We
first require the Poisson integral

(Pϕ)(z) :=
∫
∂D

1 − |z|2

|ζ − z|2
ϕ(ζ ) dm(ζ )

of a function ϕ in L1. In particular, recall that limr→1−(Pϕ)(rζ ) = ϕ(ζ ) whenever
ϕ is continuous at a point ζ ∈ ∂D [69, p. 32] or more generally, when ζ is a Lebesgue
point of ϕ.

Theorem 20 (Garcia-Ross) If ϕ ∈ L2 and u is inner, then
∥∥Auϕ
∥∥≥ sup

{∣∣(Pϕ)(λ)∣∣ : λ ∈ D : u(λ) = 0
}
,

where the supremum is regarded as 0 if u never vanishes on D.

Corollary 4 If ϕ belongs to C(∂D) and u is an inner function whose zeros accu-
mulate almost everywhere on ∂D, then ‖Auϕ‖ = ‖ϕ‖ ∞.

A related result on norm attaining symbols can be found in [51].

Theorem 21 (Garcia-Ross) If u is inner, ϕ ∈ H∞, and Auϕ is compact, then ‖Auϕ‖ =
‖ϕ‖ ∞ if and only if ϕ is a scalar multiple of the inner factor of a function from Ku.

It turns out that the norm of a truncated Toeplitz operator can be related to certain
classical extremal problems from function theory. For the following discussion we
require a few general facts about complex symmetric operators [45, 49, 50]. Recall
that a conjugation on a complex Hilbert space H is a map C : H → H which is
conjugate-linear, involutive (i.e., C2 = I ), and isometric (i.e., 〈Cx,Cy〉 = 〈y, x〉).
A bounded linear operator T : H → H is called C-symmetric if T = CT ∗C and
complex symmetric if there exists a conjugation C with respect to which T is C-
symmetric. Theorem 12 asserts that each operator in Tu is C-symmetric with re-
spect to the conjugation C on Ku defined by (9). The following general result from
[51] relates the norm of a given C-symmetric operator to a certain extremal problem
(as is customary, |T | denotes the positive operator

√
T ∗T ).

Theorem 22 (Garcia-Ross) If T : H → H is a bounded C-symmetric operator,
then
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(i) ‖T ‖ = sup‖x‖=1 |〈T x,Cx〉|.
(ii) If ‖x‖ = 1, then ‖T ‖ = |〈T x,Cx〉| if and only if T x = ω‖T ‖Cx for some

unimodular constant ω.
(iii) If T is compact, then the equation T x = ‖T ‖Cx has a unit vector solution.

Furthermore, this unit vector solution is unique, up to a sign, if and only if the
kernel of the operator |T | − ‖T ‖I is one-dimensional.

Applying the Theorem 22 to Auϕ we obtain the following result.

Corollary 5 For inner u and ϕ ∈ L∞

∥∥Auϕ
∥∥= sup

{∣∣∣∣ 1

2πi

∮
∂D

ϕf 2

u
dz

∣∣∣∣ : f ∈ Ku,‖f ‖ = 1

}
.

For ϕ in H∞, the preceding supremum can be taken over H 2.

Corollary 6 For inner u and ϕ ∈ H∞

∥∥Auϕ
∥∥= sup

{∣∣∣∣ 1

2πi

∮
∂D

ϕf 2

u
dz

∣∣∣∣ : f ∈ H 2,‖f ‖ = 1

}
.

The preceding corollary relates the norm of a truncated Toeplitz operator to a
certain quadratic extremal problem on H 2. We can relate this to a classical linear
extremal problem in the following way. For a rational function ψ with no poles on
∂D we have the well-studied classical H 1 extremal problem [40, 62]:

Λ(ψ) := sup

{∣∣∣∣ 1

2πi

∮
∂D

ψF dz

∣∣∣∣ : F ∈ H 1,‖F‖1 = 1

}
. (25)

On the other hand, basic functional analysis tells us that

Λ(ψ) = dist
(
ψ,H∞).

Following [51], we recall that the extremal problem Λ(ψ) has an extremal func-
tion Fe (not necessarily unique). It is also known that Fe can be taken to be outer
and hence Fe = f 2 for some f in H 2. Therefore the linear extremal problem Λ(ψ)
and the quadratic extremal problem

Γ (ψ) := sup

{∣∣∣∣ 1

2πi

∮
∂D

ψf 2dz

∣∣∣∣ : f ∈ H 2,‖f ‖ = 1

}
(26)

have the same value. The following result from [51], combined with the numerical
recipes discussed at the beginning of this section, permit one to explicitly evaluate
many specific extremal problems. Before doing so, we remark that many of these
problems can be attacked using the theory of Hankel operators, although in that case
one must compute the norm of a finite-rank Hankel operator acting on an infinite-
dimensional space. In contrast, the truncated Toeplitz approach employs only n× n
matrices.
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Corollary 7 Suppose that ψ is a rational function having no poles on ∂D and
poles λ1, λ2, . . . , λn lying in D, counted according to multiplicity. Let u denote the
associated Blaschke product whose zeros are precisely λ1, λ2, . . . , λn and note that
ϕ = uψ belongs to H∞. We then have the following:

(i) ‖Auϕ‖ = Γ (ψ) = Λ(ψ).
(ii) There is a unit vector f ∈ Ku satisfying Auϕf = ‖Auϕ‖Cf and any such f is an

extremal function for Γ (ψ). In other words,

∣∣∣∣ 1

2πi

∮
∂D

ψf 2 dz

∣∣∣∣= ∥∥Auϕ
∥∥.

(iii) Every extremal function f for Γ (ψ) belongs to Ku and satisfies

Auϕf = ‖Aϕ‖Cf.

(iv) An extremal function for Γ (ψ) is unique, up to a sign, if and only if the kernel
of the operator |Auϕ | − ‖Auϕ‖I is one-dimensional.

We refer the reader to [51] for several worked examples of classical extremal
problems Λ(ψ) along with a computation of several extremal functions Fe. For
rational functions ψ with no poles on ∂D, we have seen that the linear (25) and the
quadratic (26) extremal problems have the same value. Recent work of Chalendar,
Fricain, and Timotin shows that this holds in much greater generality.

Theorem 23 (Chalendar-Fricain-Timotin [23]) For each ψ in L∞, Γ (ψ) = Λ(ψ).

It is important to note that for general ψ in L∞ an extremal function for Λ(ψ)
need not exist (see [51] for a relevant discussion). Nevertheless, for ψ in L∞,
Chalendar, Fricain, and Timotin prove that Λ(ψ) = Γ (ψ) by using the fact that
Λ(ψ) = ‖Hψ‖, where Hψ : H 2 → L2 ! H 2 is the corresponding Hankel oper-
ator Hψf = P−(ψf ). Here P− denotes the orthogonal projection from L2 onto
L2 !H 2. We certainly have the inequality

Γ (ψ) = Λ(ψ) = ‖Hψ‖ = dist
(
ψ,H∞)� ‖ψ‖ ∞.

When equality holds in the preceding, we say that the symbol ψ is norm attaining.
The authors of [23] prove the following.

Theorem 24 (Chalendar-Fricain-Timotin) If ψ ∈ L∞ is norm attaining then ψ has
constant modulus and there exists an extremal outer function for Λ(ψ).

Before proceeding, we should also mention the fact that computing the norm
of certain truncated Toeplitz operators and solving their related extremal problems
have been examined for quite some time in the study of H∞ control theory and
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skew-Toeplitz operators [17, 18, 43, 44]. In the scalar setting, a skew-Toeplitz oper-
ator is a truncated Toeplitz operator Auϕ , where the symbol takes the form

ϕ(ζ ) =
n∑

j,k=0

aj,kζ
j−k, aj,k ∈ R,

making Auϕ self-adjoint. In H∞ control theory, the extremal problem

dist
(
ψ,uH∞),

where ψ is a rational function belonging to H∞, plays an important role. From the
preceding results, we observe that ‖Auψ‖ = dist(ψ,uH∞).

5 The Bounded Symbol and Related Problems

Recall that Tu denotes the set of all truncated Toeplitz operatorsAuϕ , densely defined
on Ku and having symbols ϕ in L2, that can be extended to bounded operators on
all of Ku. As a trivial example, if ϕ belongs to L∞, then clearly Auϕ belongs to Tu.
A major open question involved the converse. In other words, if Auϕ is a bounded
truncated Toeplitz operator, does there exist a symbol ϕ0 inL∞ such thatAuϕ = Auϕ0

?
This question was recently resolved in the negative by Baranov, Chalendar, Fricain,
Mashreghi, and Timotin [14]. We describe this groundbreaking work, along with
important related contributions by Baranov, Bessonov, and Kapustin [13], below.

For symbols ϕ in H 2, a complete and elegant answer to the bounded symbol
problem is available. In the following theorem, the implication (i) ⇔ (ii) below is
due to Sarason [85]. Condition (iii) is often referred to as the reproducing kernel
thesis for Auϕ .

Theorem 25 (Baranov, Chalendar, Fricain, Mashreghi, Timotin [14]) For ϕ ∈ H 2,
the following are equivalent.

(i) Auϕ ∈ Tu.
(ii) Auϕ = Auϕ0

for some ϕ0 ∈ H∞.

(iii) supλ∈D ‖Auϕ kλ‖kλ‖ ‖ < ∞.

Furthermore, there exists a universal constant C > 0 so that any Auϕ ∈ Tu with

ϕ ∈ H 2, has a bounded symbol ϕ0 such that

‖ϕ0 ‖ ∞ � C sup
λ∈D

∥∥∥∥Auϕ kλ‖kλ‖
∥∥∥∥.

The following result demonstrates the existence of bounded truncated Toeplitz
operators with no bounded symbol (a small amount of function theory, discussed
below, is required to exhibit concrete examples). Recall from Theorem 17 that for
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ζ in ∂D, the rank one operator kζ ⊗ kζ belongs to Tu if and only if u has an ADC
at ζ . Using two technical lemmas from [14] (Lemmas 5.1 and 5.2), they prove the
following theorem.

Theorem 26 (Baranov, Chalendar, Fricain, Mashreghi, Timotin) If u has an ADC
at ζ ∈ ∂D and p ∈ (2,∞), then the following are equivalent:

(i) kζ ⊗ kζ has a symbol in Lp .
(ii) kζ ∈ Lp .

Consequently, if kζ /∈ Lp for some p ∈ (2,∞), then kζ ⊗ kζ belongs to Tu and has
no bounded symbol.

From Theorem 2 we know that if u = bΛsμ, where b is a Blaschke product with
zeros Λ = {λn}∞

n=1 (repeated according to multiplicity) and sμ is a singular inner
function with corresponding singular measure μ, then

kζ ∈ H 2 ⇐⇒
∞∑
n=1

1 − |λ|2

|ζ − λn|2
+
∫

dμ(ξ)

|ξ − ζ |2
< ∞. (27)

This was extended [3, 32] to p ∈ (1,∞) as follows:

kζ ∈ Hp ⇐⇒
∞∑
n=1

1 − |λ|2

|ζ − λn|p +
∫

dμ(ξ)

|ξ − ζ |p < ∞. (28)

Based upon this, one can arrange it so that kζ belongs to H 2 but not to Hp for any
p > 2. This yields the desired example of a bounded truncated Toeplitz operator
which cannot be represented using a bounded symbol. We refer the reader to the
article [14] where the details and further examples are considered.

Having seen that there exist bounded truncated Toeplitz operators which lack
bounded symbols, it is natural to ask if there exist inner functions u so that ev-
ery operator in Tu has a bounded symbol? Obviously this holds when u is a finite
Blaschke product. Indeed, in this case the symbol can be taken to be a polynomial
in z and z. A more difficult result is the following (note that the initial symbol ϕ
belongs to L2, as opposed to H 2, as was the case in Theorem 25).

Theorem 27 (Baranov, Chalendar, Fricain, Mashreghi, Timotin) If a > 0, ζ ∈ ∂D,
and

u(z) = exp

(
a
z + ζ
z − ζ

)
,

then the following are equivalent for ϕ ∈ L2:

(i) Auϕ ∈ Tu.
(ii) Auϕ = Auϕ0

for some ϕ0 ∈ L∞.

(iii) supλ∈D ‖Auϕ kλ‖kλ‖ ‖ < ∞.
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Furthermore, there exists a universal constant C > 0 so that any Auϕ ∈ Tu with

ϕ ∈ L2, has a bounded symbol ϕ0 such that

‖ϕ0 ‖ ∞ � C sup
λ∈D

∥∥∥∥Auϕ kλ‖kλ‖
∥∥∥∥.

In light of Theorems 25 and 27, one might wonder whether condition (iii) (the
reproducing kernel thesis) is always equivalent to asserting that Auϕ belongs to Tu.
Unfortunately, the answer is again negative [14, Sect. 5].

On a positive note, Baranov, Bessonov, and Kapustin recently discovered a con-
dition on the inner function u which ensures that every operator in Tu has a bounded
symbol [13]. After a few preliminary details, we discuss their work below.

Definition 4 For p > 0, let Cp(u) denote the finite complex Borel measures μ on
∂D such that Kpu embeds continuously into Lp(|μ|).

Since S∗u belongs to Ku, it follows from Aleksandrov’s embedding theorem
(Theorem 4) that for each μ in C2(u), the boundary values of u are defined |μ|-
almost everywhere. Moreover, it turns out that |u| = 1 holds |μ|-almost everywhere
[6, 13]. For μ ∈ C2(u) the quadratic form

(f, g)  →
∫
∂D

f g dμ, f,g ∈ Ku

is continuous and so, by elementary functional analysis, there is a bounded operator
Aμ : Ku → Ku such that

〈Aμf,g〉 =
∫
∂D

f g dμ.

The following important result of Sarason [88, Theorem 9.1] asserts that each such
Aμ is a truncated Toeplitz operator.

Theorem 28 (Sarason) Aμ ∈ Tu whenever μ ∈ C2(u).

A natural question, posed by Sarason [88, p. 513], is whether the converse holds.
In other words, does every bounded truncated Toeplitz operator arise from a so-
called u-compatible measure [88, Sect. 9]? This question was recently settled in the
affirmative by Baranov, Bessonov, and Kapustin [13].

Theorem 29 (Baranov-Bessonov-Kapustin [13]) A ∈ Tu if and only if A = Aμ for
some μ ∈ C2(u).

The measure μ above is called the quasi-symbol for the truncated Toeplitz oper-
ator. For ϕ ∈ L∞ we adopt the convention that Auϕ dm := Auϕ so that every bounded
symbol is automatically a quasi-symbol.
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It turns out that C1(u
2) ⊆ C2(u) = C2(u

2) always holds. Baranov, Bessonov, and
Kapustin showed that equality is the precise condition which ensures that every
A ∈ Tu can be represented using a bounded symbol.

Theorem 30 (Baranov-Bessonov-Kapustin) An operator A ∈ Tu has a bounded
symbol if and only if A = Aμ for some μ ∈ C1(u

2). Consequently, every operator in
Tu has a bounded symbol if and only if C1(u

2) = C2(u).

Recall that each function F in H 1 can be written as the product F = fg of two
functions in H 2. Conversely, the product of any pair of functions in H 2 lies in H 1.
For each f,g ∈ Ku we note that

H 1 / fg = ˜̃
f ˜̃g = f̃ g̃z2u2 ∈ zu2H 1

0 ,

whence fg ∈ H 1 ∩ zu2H 1
0 . Moreover, one can show that finite linear combinations

of pairs of products of functions from Ku form a dense subset of H 1 ∩ zu2H 1
0 . As a

consequence, this relationship between Ku and H 1 ∩ zu2H 1
0 is sometimes denoted

Ku 0 Ku = H 1 ∩ zu2H 1
0 .

For certain inner functions, one can say much more.

Theorem 31 (Baranov-Bessonov-Kapustin) For an inner function u the following
statements are equivalent.

(i) C1(u
2) = C2(u).

(ii) For each f ∈ H 1 ∩ zu2H 1
0 there exists sequences gj ,hj in Ku such that∑

j ‖gj‖ ‖hj‖ < ∞ and

f =
∑
j

gjhj .

Moreover, there exists a universal C > 0, independent of f , such that the gj ,hj
can be chosen to satisfy

∑
j ‖gj‖ ‖hj‖ � C‖f ‖1.

As we have seen, the condition C1(u
2) = C2(u) is of primary importance. Un-

fortunately, it appears difficult to test whether or not a given inner function has
this property. On the other hand, the following related geometric condition appears
somewhat more tractable.

Definition 5 An inner function u is called a one-component inner function if the set
{z ∈ D : |u(z)| < ε} is connected for some ε > 0.

One can show, for instance, that for the atomic inner functions sδζ (where δζ
denotes the point mass at a point ζ on ∂D), the set {|u| < ε} is a disk internally
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tangent to ∂D at ζ . In other words, these inner functions are one-component inner
functions. The relevance of one-component inner functions lies in the following
result of Aleksandrov.

Theorem 32 (Aleksandrov [7]) If u is inner, then

(i) u is a one-component inner function if and only if

sup
λ∈D

‖kλ‖ ∞
‖kλ‖ < ∞.

(ii) If u is a one-component inner function, then Cp1(u) = Cp2(u) for all p1,p2 > 0.

There is also a related result of Treil and Volberg [102]. We take a moment to
mention that W. Cohn [32] has described the set C2(u) in the case where u is a one
component inner function.

Theorem 33 (Cohn) If u is a one component inner function and μ is a positive
measure on ∂D for which μ(σ(u) ∩ ∂D) = 0, then μ ∈ C2(u) if and only if there is
a constant C > 0 such that

∫
∂D

1 − |z|2

|ζ − z|2
dμ(ζ )� C

1 − |u(z)|2

for all z in D.

Note that if u is a one-component inner function, then so is u2. Combining the
preceding results we obtain the following.

Corollary 8 If u is a one-component inner function, then every operator in Tu has
a bounded symbol.

Of course the natural question now (and conjectured in [14]) is the following:

Question 2 Is the converse of the preceding corollary true?

It turns out that there is an interesting and fruitful interplay between the material
discussed above and the family of Clark measures {σα : α ∈ ∂D}, defined by (16),
associated with an inner function u. To be more specific, Aleksandrov showed in [6]
that if C1(u

2) = C2(u
2) (the equivalent condition for every operator in Tu to have a

bounded symbol), then every Clark measure is discrete. This leads to the following
corollary.

Corollary 9 Let u be an inner function. If for some α ∈ ∂D the Clark measure σα
is not discrete, then there is an operator in Tu without a bounded symbol.
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Since any singular measure μ (discrete or not) is equal to σ1 for some inner
function u [26], it follows that if we let μ be a continuous singular measure, then
the corollary above yields an example of a truncated Toeplitz operator space Tu
which contains operators without a bounded symbol.

6 The Spatial Isomorphism Problem

For two inner functions u1 and u2, when is Tu1 spatially isomorphic to Tu2 ? In
other words, when does there exist a unitary operator U : Ku1 → Ku2 such that
UTu1U

∗ = Tu2 ? This is evidently a stronger condition than isometric isomorphism
since one insists that the isometric isomorphism is implemented in a particularly
restrictive manner.

A concrete solution to the spatial isomorphism problem posed above was given
in [25]. Before discussing the solution, let us briefly introduce three basic families
of spatial isomorphisms between truncated Toeplitz operator spaces. If ψ : D → D

is a disk automorphism, then one can check that the weighted composition operator

Uψ : Ku → Ku◦ψ, Uψf =√ψ ′(f ◦ψ),
is unitary. In particular, this implies that the map

Λψ : Tu → Tu◦ψ, Λψ(A) = UψAU∗
ψ,

which satisfies the useful relationship Λψ(Auϕ) = A
u◦ψ
ϕ◦ψ , implements a spatial iso-

morphism between Tu and Tu◦ψ .
Another family of spatial isomorphisms arises from the so-called Crofoot trans-

forms [34] (see also [88, Sect. 13]). For a ∈ D and ψa = z−a
1−az , one can verify that

the operator

Ua : Ku → Kψa◦u, Uaf =
√

1 − |a|2

1 − au f,

is unitary. In particular, the corresponding map

Λa : Tu → Tψa◦u, Λa(A) = UaAU∗
a ,

implements a spatial isomorphism between Tu and Tψa◦u.
Finally, let us define

[U#f ](ζ ) = ζf (ζ )u#(ζ ), u#(z) := u(z).
The operator U# : Ku → Ku# is unitary and if

Λ# : Tu → Tu# , Λ#(A) = U#AU
∗
# ,
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then Λ#(A
u
ϕ) = Au#

ϕ#
whence Tu is spatially isomorphic to Tu# . Needless to say, the

three classes of unitary operators Uψ , Ua , and U# introduced above should not be
confused with the Clark operators Uα (15), which play no role here.

It turns out that any spatial isomorphism between truncated Toeplitz operator
spaces can be written in terms of the three basic types described above [25].

Theorem 34 (Cima-Garcia-Ross-Wogen) For two inner functions u1 and u2 the
spaces Tu1 and Tu2 are spatially isomorphic if and only if either u1 = ψ ◦ u2 ◦
ϕ or u1 = ψ ◦ u#

2 ◦ ϕ for some disk automorphisms ϕ,ψ . Moreover, any spatial
isomorphism Λ : Tu1 → Tu2 can be written as Λ = ΛaΛψ or ΛaΛ#Λψ , where we
allow a = 0 or ψ(z) = z.

The preceding theorem leads immediately to the following question.

Question 3 Determine practical conditions on inner functions u1 and u2 which
ensure that u1 = ψ ◦ u2 ◦ ϕ or u1 = ψ ◦ u#

2 ◦ ϕ for some disk automorphisms ϕ,ψ .
For instance, do this when u1 and u2 are finite Blaschke products having the same
number of zeros, counted according to multiplicity.

In the case where one of the inner functions is zn, there is a complete answer
[25].

Corollary 10 For a finite Blaschke product u of order n, Tu is spatially isomorphic
to Tzn if and only if either u has one zero of order n or u has n distinct zeros all
lying on a circle Γ in D with the property that if these zeros are ordered according
to increasing argument on Γ , then adjacent zeros are equidistant in the hyperbolic
metric.

7 Algebras of Truncated Toeplitz Operators

Recall that Tu is a weakly closed subspace of B(H) (see Sect. 3). Although Tu
is not an algebra, there are many interesting algebras contained within Tu. In fact,
the recent thesis [92] and subsequent paper of Sedlock [93] described them all. We
discuss the properties of these so-called Sedlock algebras below, along with several
further results from [59].

To begin with, we require the following generalization (see [88, Sect. 10]) of the
Clark unitary operators (15):

Sau = Auz + a

1 − u(0)a k0 ⊗Ck0, (29)

where the parameter a is permitted to vary over the closed unit disk D
− (we prefer

to reserve the symbol α to denote complex numbers of unit modulus). The operators
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Sau turn out to be fundamental to the study of Sedlock algebras. Before proceeding,
let us recall a few basic definitions.

For A ∈ Tu, the commutant {A}′ of A is defined to be the set of all bounded
operators on Ku which commute withA. The weakly closed linear span of {An : n ≥
0} will be denoted by W(A). Elementary operator theory says that W(A) ⊆ {A}′
holds and that {A}′ is a weakly closed subset of B(Ku). The relevance of these
concepts lies in the following two results from [88, p. 515] and [59], respectively.

Theorem 35 (Sarason) For each a ∈ D
−, {Sau}′ ⊆ Tu.

Theorem 36 (Garcia-Ross-Wogen) For each a ∈ D
−, {Sau}′ = W(Sau).

The preceding two theorems tell us that W(Sau) and W((Sbu)∗), where a, b belong
to D

−, are algebras contained in Tu. We adopt the following notation introduced by
Sedlock [93]:

Ba
u :=

{
W(Sau) if a ∈ D

−,

W((S1/a
u )∗) if a ∈ Ĉ \ D

−.

Note that B0
u is the algebra of analytic truncated Toeplitz operators (i.e., B0

u =
W(Auz )) and that B∞

u is the algebra of co-analytic truncated Toeplitz operators (i.e.,
B∞
u = W(Auz )). The following theorem of Sedlock asserts that the algebras Ba

u for
a ∈ Ĉ are the only maximal abelian algebras in Tu.

Theorem 37 (Sedlock [93]) If A,B ∈ Tu \ {CI,0}, then AB ∈ Tu if and only if
A,B ∈ Ba

u for some a ∈ Ĉ. Consequently, every weakly closed algebra in Tu is
abelian and is contained in some Ba

u .

Let us gather together a few facts about the Sedlock algebras Ba
u , all of which

can be found in Sedlock’s paper [93]. First we note that

(
Ba
u

)∗ = B
1/a
u ,

and

Ba
u ∩ Bb

u = CI, a �= b.
Most importantly, we have the following concrete description of Ba

u .

Theorem 38 (Sedlock [93]) If a ∈ D, then

Ba
u = {Au ϕ

1−au
: ϕ ∈ H∞}.

Furthermore, if ϕ,ψ ∈ H∞, then we have the following product formula

Au ϕ
1−au

Au ψ
1−au

= Auϕψ
1−au

.
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In particular, if a ∈ Ĉ \ ∂D, then every operator in Ba
u is a truncated Toeplitz

operator which can be represented using a bounded symbol. On the other hand, if
a belongs to ∂D, then there may be operators in Ba

u which do not have bounded

symbols. In fact, if u has an ADC at some ζ in ∂D, then kζ ⊗ kζ belongs to Bu(ζ )
u .

From here, one can use the example from the remarks after Theorem 26 to produce
an operator in Bu(ζ )

u which has no bounded symbol.
Let us now make a few remarks about normal truncated Toeplitz operators. For

a in ∂D the Sedlock algebra Ba
u is generated by a unitary operator (i.e., a Clark

operator) and is therefore an abelian algebra of normal operators. When a ∈ Ĉ \ ∂D,
the situation drastically changes [59].

Theorem 39 (Garcia-Ross-Wogen) If a ∈ Ĉ \ ∂D, then A ∈ Ba
u is normal if and

only if A ∈ CI .

In Sect. 6, we characterized all possible spatial isomorphisms between truncated
Toeplitz operator spaces. In particular, recall that the basic spatial isomorphisms
Λψ,Λ#,Λa played a key role. Let us examine their effect on Sedlock algebras. The
following result is from [59].

Theorem 40 (Garcia-Ross-Wogen) For u inner, a ∈ Ĉ, and c ∈ D, we have

Λψ
(
Ba
u

)= Ba
u◦ψ, Λ#

(
Ba
u

)= B
1/a
u# , Λc

(
Ba
u

)= B
c(a)
uc

,

where

uc = u− c
1 − cu, 
c(a) =

{
a−c
1−ca if a �= 1

c
,

∞ if a = 1
c
.

For a in Ĉ \ ∂D, the preceding theorem follows from direct computations based
upon Theorem 38. When a belongs to ∂D, however, a different proof is required.
One can go even further and investigate when two Sedlock algebras are spatially
isomorphic. The following results are from [59].

Theorem 41 (Garcia-Ross-Wogen) If u(z) = zn and a, a′ ∈ D, then Ba
u is spatially

isomorphic to Ba′
u if and only if |a| = |a′ |.

Theorem 42 (Garcia-Ross-Wogen) If

u(z) = exp

(
z + 1

z − 1

)

and a, a′ ∈ D, then Ba
u is spatially isomorphic to Ba′

u if and only if a = a′.

Before moving on, let us take a moment to highlight an interesting operator in-
tegral formula from [88, Sect. 12] which is of some relevance here. Recall that for
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α in ∂D, the operator Sαu given by (29) is unitary, whence ϕ(Sαu ) is defined by the
functional calculus for ϕ in L∞. By Theorem 35 we see that ϕ(Sαu ) belongs to Tu.
Using the Aleksandrov disintegration theorem (Theorem 9), one can then prove that

〈Aϕf,g〉 =
∫
∂D

〈
ϕ
(
Sαu
)
f,g
〉
dm(α), f, g ∈ Ku,

which can be written in the more compact and pleasing form

Aϕ =
∫
∂D

ϕ
(
Sαu
)
dm(α).

A similar formula exists for symbols ϕ in L2, but the preceding formulae must be
interpreted carefully since the operators ϕ(Sαu ) may be unbounded.

Recall that for each ϕ in L∞, the Cesàro means of ϕ are trigonometric polyno-
mials ϕn which approximate ϕ in the weak-∗ topology of L∞. From the discussion
above and Corollary 3 we know that

{
q
(
Sαu
) : q is a trigonometric polynomial, α ∈ ∂D}

is weakly dense in Tu. When u is a finite Blaschke product, it turns out that we
can do much better. The following result can be found in [28], although it can be
gleaned from [88, Sect. 12].

Theorem 43 Let u be a Blaschke product of degree N and let α1, α2 ∈ ∂D with
α1 �= α2. Then for any ϕ ∈ L2, there are polynomials p,q of degree at most N so
that Aϕ = p(Sα1

u )+ q(Sα2
u ).

8 Truncated Toeplitz C∗-Algebras

In the following, we let H denote a separable complex Hilbert space. For each X ⊆
B(H), let C∗(X ) denote the unital C∗-algebra generated by X . In other words,
C∗(X ) is the closure, in the norm of B(H), of the unital algebra generated by the
operators in X and their adjoints. Since we are frequently interested in the case
where X = {A} is a singleton, we often write C∗(A) in place of C∗({A}) in order
to simplify our notation.

Recall that the commutator ideal C (C∗(X )) of C∗(X ), is the smallest closed
two-sided ideal which contains the commutators

[A,B] := AB −BA

where A and B range over all elements of C∗(X ). Since the quotient algebra
C∗(X )/C (C∗(X )) is an abelian C∗-algebra, it is isometrically ∗-isomorphic to
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C(Y ), the set of all continuous functions on some compact Hausdorff space Y [33,
Theorem 1.2.1]. We denote this relationship

C∗(X )

C (C∗(X ))
∼= C(Y ). (30)

Putting this all together, we have the short exact sequence

0 −→ C
(
C∗(X )

) ι−→ C∗(X )
π−→ C(Y ) −→ 0, (31)

where ι : C (C∗(X )) → C∗(X ) is the inclusion map and π : C∗(X ) → C(Y )

is the composition of the quotient map with the isometric ∗-isomorphism which
implements (30).

The Toeplitz algebra C∗(Tz), where Tz denotes the unilateral shift on the classi-
cal Hardy space H 2, has been extensively studied since the seminal work of Coburn
in the late 1960s [30, 31]. Indeed, the Toeplitz algebra is now one of the standard
examples discussed in many well-known texts (e.g., [10, Sect. 4.3], [36, Chap. V.1],
[38, Chap. 7]). In this setting, we have C (C∗(Tz)) = K , the ideal of compact oper-
ators on H 2, and Y = ∂D, so that the short exact sequence (31) takes the form

0 −→ K
ι−→ C∗(Tz)

π−→ C(∂D) −→ 0. (32)

In other words, C∗(Tz) is an extension of K by C(∂D). It also follows that

C∗(Tz) = {Tϕ +K : ϕ ∈ C(∂D),K ∈ K
}
,

and, moreover, that each element of C∗(Tz) enjoys a unique decomposition of
the form Tϕ + K [10, Theorem 4.3.2]. As a consequence, we see that the map
π : C∗(Tz) → C(∂D) is given by π(Tϕ +K) = ϕ.

Needless to say, the preceding results have spawned numerous generalizations
and variants over the years. For instance, one can consider C∗-algebras generated
by matrix-valued Toeplitz operators or Toeplitz operators acting on other Hilbert
function spaces (e.g., the Bergman space [11]). As another example, if X denotes
the truncated Toeplitz operators whose symbols are both piecewise and left contin-
uous on ∂D, then Gohberg and Krupnik proved that C (C∗(X )) = K and obtained
the short exact sequence

0 −→ K
ι−→ C∗(X )

π−→ C(Y ) −→ 0,

where Y is the cylinder ∂D × [0,1], endowed with a nonstandard topology [64].
In the direction of truncated Toeplitz operators, we have the following analogue

of Coburn’s work.

Theorem 44 If u is an inner function, then

(i) C (C∗(Auz )) = K u, the algebra of compact operators on Ku,
(ii) C∗(Auz )/K u is isometrically ∗-isomorphic to C(σ(u)∩ ∂D),
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(iii) If ϕ ∈ C(∂D), then Auϕ is compact if and only if ϕ(σ(u)∩ ∂D) = {0},
(iv) C∗(Auz ) = {Auϕ +K : ϕ ∈ C(∂D),K ∈ K u},
(v) If ϕ ∈ C(∂D), then σe(Auϕ) = ϕ(σe(Auz )),

(vi) For ϕ ∈ C(∂D), ‖Auϕ‖e = sup{|ϕ(ζ )| : ζ ∈ σ(u)∩ ∂D}.

In recent work [60], the authors and W. Wogen were able to provide operator
algebraic proofs of the preceding results, utilizing an approach similar in spirit to
the original work of Coburn. However, it should also be noted that many of the
statements in Theorem 44 can be obtained using the explicit triangularization theory
developed by Ahern and Clark in [2] (see the exposition in [78, Lec. V]).

9 Unitary Equivalence to a Truncated Toeplitz Operator

A significant amount of evidence is mounting that truncated Toeplitz operators may
play a significant role in some sort of model theory for complex symmetric operators
[25, 56, 96]. At this point, however, it is still too early to tell what exact form such a
model theory should take. On the other hand, a surprising array of complex symmet-
ric operators can be concretely realized in terms of truncated Toeplitz operators (or
direct sums of such operators), without yet even venturing to discuss vector-valued
truncated Toeplitz operators.

Before discussing unitary equivalence, however, we should perhaps say a few
words about similarity. A number of years ago, D.S. Mackey, N. Mackey, and Petro-
vic asked whether or not the inverse Jordan structure problem can be solved in the
class of Toeplitz matrices [75]. In other words, given any Jordan canonical form,
can one find a Toeplitz matrix which is similar to this form? A negative answer to
this question was subsequently provided by Heinig in [67]. On the other hand, it
turns out that the inverse Jordan structure problem is always solvable in the class of
truncated Toeplitz operators, for we have the following theorem [25, Theorem 6.2].

Theorem 45 (Cima-Garcia-Ross-Wogen) Every operator on a finite dimensional
space is similar to a co-analytic truncated Toeplitz operator.

In light of the preceding theorem, it is clear that simple, purely algebraic, tools
will be insufficient to settle the question of whether every complex symmetric oper-
ator can be represented in some fashion using truncated Toeplitz operators. We turn
our attention now toward unitary equivalence.

Let us begin by recalling an early result of Sarason, who observed that the
Volterra integration operator (1), a standard example of a complex symmetric op-
erator [45, 49, 50], is unitarily equivalent to a truncated Toeplitz operator acting
on the Ku space corresponding to the atomic inner function u(z) = exp( z+1

z−1 ) [84]
(although the term “truncated Toeplitz operator” was not yet coined). Detailed com-
putations using the theory of model operators and characteristic functions can be
found in [79, p. 41].
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What was at first only an isolated result has recently begun to be viewed as a sem-
inal observation. More recently, a number of standard classes of complex symmetric
operators have been identified as being unitarily equivalent to truncated Toeplitz op-
erators. Among the first observed examples are

(i) rank-one operators [25, Theorem 5.1],
(ii) 2 × 2 matrices [25, Theorem 5.2],

(iii) normal operators [25, Theorem 5.6],
(iv) for k ∈ N ∪ {∞}, the k-fold inflation of a finite Toeplitz matrix [25, Theo-

rem 5.7].

This last item was greatly generalized by Strouse, Timotin, and Zarrabi [96], who
proved that a remarkable array of inflations of truncated Toeplitz operators are them-
selves truncated Toeplitz operators. In addition, a variety of related results concern-
ing tensor products, inflations, and direct sums are given in [96]. The key to many
of these results lies in the fact that if B is an inner function, then

h⊗ f  → h(f ◦B)

extends linearly to a unitary operatorΩB : KB ⊗L2 → L2 and, moreover, this oper-
ator maps KB ⊗H 2 ontoH 2. Letting ωB : KB ⊗ Ku → Ku⊗B denote the restriction
of ΩB to KB ⊗ Ku, one can obtain the following general theorem.

Theorem 46 (Strouse-Timotin-Zarrabi [96]) Let B and u be inner functions, and
suppose that ψ,ϕ belong to L2 and satisfy the following conditions:

(i) The operators AB
B
j
ψ

are bounded, and nonzero only for a finite number of

j ∈ Z.
(ii) Auϕ is bounded.

(iii) ψ(ϕ ◦B) ∈ L2.

Then Au◦B
ψ(ϕ◦B) is bounded and

Au◦B
ψ(ϕ◦B)ωB = ωB

(∑
j

(
AB
B
j
ψ

⊗Au
zj ϕ

))
.

We state explicitly only a few more results from [96], hoping to give the reader
the general flavor of this surprising work. In the following, we say that the inner
function B is of order n if B is a finite Blaschke product of degree n, and of order
infinity otherwise.

Theorem 47 (Strouse-Timotin-Zarrabi) Suppose that u is an inner function, that
ϕ ∈ L2, and that B is an inner function of order k for some k ∈ N ∪ {∞}. Assume
also that Auϕ is bounded. Then Au◦B

ϕ◦B is bounded and unitarily equivalent to Ik ⊗Auϕ .
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Theorem 48 (Strouse-Timotin-Zarrabi) If ψ is an analytic function, ABψ is

bounded, and R is a non-selfadjoint operator of rank one, then ABψ ⊗ R is uni-
tarily equivalent to a truncated Toeplitz operator.

Theorem 49 (Strouse-Timotin-Zarrabi) Suppose u is inner, ϕ ∈ H∞, and (Auϕ)
2

= 0. If k = dimKu ! kerAuϕ , then Auϕ ⊕ 0k is unitarily equivalent to a truncated
Toeplitz operator.

Although a few results concerning matrix representations of truncated Toeplitz
operators have been obtained [25, 28, 96], the general question of determining
whether a given matrix represents a truncated Toeplitz operator, with respect to
some orthonormal basis of some Ku space, appears difficult. On the other hand,
it is known that every truncated Toeplitz operator is unitarily equivalent to a com-
plex symmetric matrix [45, 49], a somewhat more general issue which has been
studied for its own independent interest [12, 57, 58, 99, 101].

The main result of [56] is the following simple criterion for determining whether
or not a given matrix is unitarily equivalent to a truncated Toeplitz operator having
an analytic symbol.

Theorem 50 (Garcia-Poore-Ross) Suppose M ∈ Mn(C) has distinct eigenvalues
λ1, λ2, . . . , λn with corresponding unit eigenvectors x1,x2, . . . ,xn. Then M is uni-
tarily equivalent to an analytic truncated Toeplitz operator, on some model space
Ku if and only if there are distinct points z1, z2, . . . , zn−1 in D such that

〈xn,xi〉〈xi ,xj 〉〈xj ,xn〉 = (1 − |zi |2)(1 − |zj |2)

1 − zj zi (33)

holds for 1 � i � j < n.

The method of Theorem 50 is constructive, in the sense that if (33) is satis-
fied, then one can construct an inner function u and a polynomial ϕ such that M
is unitarily equivalent to Auϕ . In fact, u is the Blaschke product having zeros at
z1, z2, . . . , zn−1 and zn = 0. Using Theorem 50 and other tools, one can prove the
following result from [56].

Theorem 51 (Garcia-Poore-Ross) Every complex symmetric operator on a 3-
dimensional Hilbert space is unitarily equivalent to a direct sum of truncated
Toeplitz operators.

Taken together, these results from [25, 56, 96] yield a host of open questions,
many of which are still open, even in the finite dimensional setting.

Question 4 Is every complex symmetric matrixM ∈ Mn(C) unitarily equivalent to
a direct sum of truncated Toeplitz operators?
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Question 5 Let n ≥ 4. Is every irreducible complex symmetric matrixM ∈ Mn(C)

unitarily equivalent to a truncated Toeplitz operator?

Recently, the first author and J. Tener [53] showed that every finite complex sym-
metric matrix is unitarily equivalent to a direct sum of (i) irreducible complex sym-
metric matrices or (ii) matrices of the form A ⊕ AT where A is irreducible and not
unitarily equivalent to a complex symmetric matrix (such matrices are necessarily
6 × 6 or larger). This immediately suggests the following question.

Question 6 For A ∈ Mn(C), is the matrix A ⊕ AT ∈ M2n(C) unitarily equivalent
to a direct sum of truncated Toeplitz operators?

One method for producing complex symmetric matrix representations of a given
truncated Toeplitz operator is to use modified Clark bases (21) for Ku.

Question 7 Suppose that M ∈ Mn(C) is complex symmetric. If M is unitarily
equivalent to a truncated Toeplitz operator, does there exist an inner function u,
a symbol ϕ ∈ L∞, and a modified Clark basis for Ku such that M is the matrix
representation of AΘϕ with respect to this basis? In other words, do all such unitary
equivalences between complex symmetric matrices and truncated Toeplitz operators
arise from Clark representations?

10 Unbounded Truncated Toeplitz Operators

As we mentioned earlier (Sect. 2.9), for a symbol ϕ in L2 and an inner function u,
the truncated Toeplitz operator Auϕ is closed and densely defined on the domain

D
(
Auϕ
)= {f ∈ Ku : Pu(ϕf ) ∈ Ku

}

in Ku. In particular, the analytic function Pu(ϕf ) can be defined on D by writing
the formula (7) as an integral. In general, we actually have CAuϕC = Auϕ , and, when
Auϕ is bounded (i.e., Auϕ ∈ Tu), we have Auϕ = (Auϕ)

∗. Let us also recall an old and
important result of Sarason [85] which inspired the commutant lifting theorem [97].

Theorem 52 (Sarason) The bounded operators on Ku which commute with Auz are
{Auϕ : ϕ ∈ H∞ }.

In the recent papers [89, 90], Sarason studied unbounded Toeplitz operators (re-
call that a Toeplitz operator on H 2 is bounded if and only if the symbol is bounded)
as well as unbounded truncated Toeplitz operators. We give a brief survey of these
results.

In the following, N denotes the Nevanlinna class, the set of all quotients f/g
where f and g belong to H∞ and g is non-vanishing on D. The Smirnov class N+
denotes the subset of N for which the denominator g is not only non-vanishing on
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D but outer. By [90] each ϕ in N+ can be written uniquely as ϕ = b
a

where a and b
belong to H∞, a is outer, a(0) > 0, and |a|2 + |b|2 = 1 almost everywhere on ∂D.
Sarason calls this the canonical representation of ϕ.

For ϕ in N+ define the Toeplitz operator Tϕ as multiplication by ϕ on its domain
D(Tϕ) = {f ∈ H 2 : ϕf ∈ H 2 }. In particular, observe that there is no projection
involved in the preceding definition.

Theorem 53 (Sarason [90]) For ϕ = b/a ∈ N+, written in canonical form, Tϕ is a
closed operator on H 2 with dense domain D(Tϕ) = aH 2.

There is no obvious way to define the co-analytic Toeplitz operator Tϕ on H 2 for
ϕ ∈ N+. Of course we can always define Tϕ to be T ∗

ϕ and this makes sense when ϕ
belongs to H∞. In order to justify the definition Tϕ := T ∗

ϕ for ϕ ∈ N+, however, we
need to take care of some technical details.

As the preceding theorem shows, if ϕ ∈ N+, then Tϕ is a closed operator with
dense domain aH 2. Basic functional analysis tells us that its adjoint T ∗

ϕ is also
closed and densely defined. In fact, one can show that D(T ∗

ϕ ) is the associated
deBranges-Rovnyak space H(b) [90]. In order to understand Tϕ we proceed, at
least formally, as we do when examining Tϕ when ϕ is bounded. Let ϕ and f have
Fourier expansions

ϕ ∼
∞∑
n=0

ϕnζ
n, f ∼

∞∑
n=0

fnζ
n.

Formal series manipulations show that

Tϕf = P+(ϕf )

= P+

(( ∞∑
n=0

ϕnζ
n

)( ∞∑
m=0

fmζ
m

))

= P+

( ∞∑
n,m=0

ζm−nϕnfm

)

= P+

( ∞∑
k=−∞

ζ k
∞∑
m=0

ϕmfk+m

)

=
∞∑
k=0

ζ k
∞∑
m=0

ϕmfk+m.

This suggests that if ϕ =∑∞
n=0 ϕnz

n is the power series representation for ϕ in N+,
then we should define, for each function f (z) =∑∞

n=0 fnz
n analytic in a neighbor-
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hood of D−,

(tϕf )(z) :=
∞∑
k=0

zk

( ∞∑
m=0

ϕmfk+m

)
.

It turns out that tϕf , so defined, is an analytic function on D. The following result
indicates that this is indeed the correct approach to defining T ∗

ϕ .

Theorem 54 (Sarason [90]) If ϕ ∈ N+, then tϕ is closable and T ∗
ϕ is its closure.

In light of the preceding theorem, for ϕ in N+ we may define Tϕ to be T ∗
ϕ .

More generally, we can define, for each ϕ in N+ and u inner, the truncated Toeplitz
operator Auϕ by

Auϕ := Tϕ |D(Tϕ)∩Ku .

We gather up some results about Auϕ from [90].

Theorem 55 (Sarason) If ϕ = b/a ∈ N+ is in canonical form and u is inner, then

(i) Auϕ is closed and densely defined.

(ii) Auϕ is bounded if and only if dist(b,uH∞) < 1.

From Theorem 12 we know that A = CA∗C whenever A ∈ Tu. Therefore it
makes sense for us to define

Auϕ := CAϕC
for ϕ ∈ N+. It turns out that D(Auϕ) = CD(Auϕ) and that the operator Auϕ is closed
and densely defined. Fortunately this definition makes sense in terms of adjoints.

Theorem 56 (Sarason) For inner u and ϕ ∈ N+, the operators Aϕ and Aϕ are
adjoints of each other.

What is the analog of Theorem 52 for of unbounded truncated Toeplitz operators?
In [89] Sarason showed that

AuϕA
u
zf = AuzAuϕf,

holds for f in D(Auϕ) and thus one might be tempted to think that the closed densely
defined operators which commute withAuz are simply {Aϕ : ϕ ∈ N+ }. Unfortunately
the situation is more complicated and one needs to define Auϕ for a slightly larger
class of symbols than N+. Sarason works out the details in [89] and identifies the
closed densely defined operators on Ku which commute with Auz as the operators
Auϕ where the symbols ϕ come from a so-called local Smirnov classN+

u . The details
are somewhat technical and so we therefore leave it to the reader to explore this topic
further in Sarason paper [89].
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11 Smoothing Properties of Truncated Toeplitz Operators

Let us return to Theorem 2, an important result of Ahern and Clark which character-
izes those functions in the model space Ku which have a finite angular derivative in
the sense of Carathéodory (ADC) at some point ζ on ∂D. In particular, recall that ev-
ery function in Ku has a finite nontangential limit at ζ precisely when u has an ADC
at ζ . The proof of this ultimately relies on the fact that this statement is equivalent to
the condition that (I − λAuz )

−1Pu1 is bounded as λ approaches ζ nontangentially.
One can see this by observing that

〈
f,
(
I − λAuz

)−1
Pu1
〉= f (λ)

holds for all f in Ku. If one replaces Pu1 in the formula above with Puh for some
h in H∞, then a routine calculation shows that

〈
f,
(
I − λAuz

)−1
Puh
〉= (Au

h
f
)
(λ)

for all f in Ku. An argument similar to that employed by Ahern and Clark shows
that (Au

h
f )(λ) has a finite nontangential limit at ζ for each f in Ku if and only if

(I − λAuz )−1Puh is bounded as λ approaches ζ nontangentially.
Let us examine the situation when u is an infinite Blaschke product with zeros

{λn}n≥1, repeated according to multiplicity. Recall that the Takenaka basis {γn}n≥1,
defined by (19), is an orthonormal basis for Ku. For each ζ in ∂D, a calculation from
[65] shows that Au

h
γn is a rational function (and so can be defined at any ζ ∈ ∂D).

From this one can obtain the following analogue of the Ahern-Clark result [65].

Theorem 57 (Hartmann-Ross) If u is a Blaschke product with zeros {λn}n≥1 and
h ∈ H∞, then every function in ranAu

h
has a finite nontangential limit at ζ ∈ ∂D if

and only if

∞∑
n=1

∣∣(Au
h
γn
)
(ζ )
∣∣2 < ∞.

From here one can see the smoothing properties of the co-analytic truncated
Toeplitz operator Au

h
. If u happens to be an interpolating Blaschke product, then

the condition in the above theorem reduces to

∞∑
n=1

(
1 − |λn|2)∣∣∣∣ h(λn)ζ − λn

∣∣∣∣
2

< ∞.

The following open problem now suggests itself.

Question 8 Obtain extensions of Theorem 57 to general inner functions u and sym-
bols h ∈ L2.
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12 Nearly Invariant Subspaces

We conclude this survey with a few remarks about truncated Toeplitz operators
which act on a family of spaces that are closely related to the model spaces Ku.
To be more precise, we say that a (norm closed) subspace M of H 2 is nearly in-
variant if the following divisibility condition holds

f ∈ M, f (0) = 0 =⇒ f

z
∈ M. (34)

These spaces were first considered and characterized in [68, 87] and they continue
to be the focus of intense study [8, 9, 22, 66, 73, 76].

The link between nearly invariant subspaces of H 2 and model spaces is supplied
by a crucial result of Hitt [68], which asserts that there is a unique solution g to the
extremal problem

sup
{
Reg(0) : g ∈ M, ‖g‖ = 1

}
, (35)

and moreover, that there is an inner function u so that

M = gKu
and such that the mapWg : Ku → M defined by

Wgf = gf (36)

is unitary. The function g is called the extremal function for the nearly invariant
subspace M. It is important to observe that since g belongs to M = gKu, the inner
function u must satisfy u(0) = 0. We remark that the content of these observations
is nontrivial, for the set gKu, for arbitrary g in H 2 and u inner, is not necessarily
even a subspace of H 2 since it may fail to be closed.

In the other direction, Sarason showed that if u is an inner function which satisfies
u(0) = 0, then every isometric multiplier from Ku into H 2 takes the form

g = a

1 − ub , (37)

where a and b are in the unit ball of H∞ satisfy |a|2 + |b|2 = 1 a.e. on ∂D [87].
Consequently, one sees that M = gKu is a (closed) nearly invariant subspace ofH 2

with extremal function g as in (35).
The next natural step towards defining truncated Toeplitz operators on the nearly

invariant subspace M = gKu is to understand PM, the orthogonal projection of L2

onto M. The following lemma from [65] provides an explicit formula relating PM
and Pu.

Lemma 2 If M = gKu is a nearly invariant subspace with extremal function g and
associated inner function u satisfying u(0) = 0, then

PMf = gPu(gf )
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for all f in M. Consequently, the reproducing kernel for M is given by

kMλ (z) = g(λ)g(z)1 − u(λ)u(z)
1 − λz .

Now armed with the preceding lemma, we are in a position to introduce truncated
Toeplitz operators on nearly invariant subspaces. Certainly whenever ϕ is a bounded
function we can use Lemma 2 to see that the operator AM

ϕ : M → M

AM
ϕ f := PM(ϕf ) = gPu(gϕf )

is well-defined and bounded. More generally, we may consider symbols ϕ such that
|g|2ϕ belongs toL2. In this case, for each h in K∞

u := Ku∩H∞, the function |g|2ϕh

is in L2 whence Pu(|g|2ϕh) belongs to Ku. By the isometric multiplier property of
g on Ku, we see that

PM(ϕh) = gPu
(|g|2ϕh

) ∈ gKu = M.

Note that by the isometric property of g, the set gK∞
u is dense in gKu by Theo-

rem 3. Thus in this setting the operator AM
ϕ is densely defined. We refer to any such

operator as a truncated Toeplitz operator on M. We denote by TM the set of all
such densely defined truncated Toeplitz operators which have bounded extensions
to M. The following theorem from [65], which relies heavily upon the unitarity of
the map (36), furnishes the explicit link between TM and Tu.

Theorem 58 (Hartmann-Ross) If M = gKu is a nearly invariant subspace with
extremal function g and associated inner function u satisfying u(0) = 0, then for
any Lebesgue measurable ϕ on ∂D with |g|2ϕ ∈ L2 we have

W ∗
g A

M
ϕ Wg = Au|g|2ϕ

.

In light of the preceding theorem, we see that the map

AM
ϕ  → Au|g|2ϕ

,

is a spatial isomorphism between T M and Tu. In particular, we have

T M = WgTuW ∗
g .

One can use the preceding results to prove the following facts about T M , all of
which are direct analogues of the corresponding results on Tu.

(i) TM is a weakly closed linear subspace of B(M).
(ii) AM

ϕ ≡ 0 if and only if |g|2ϕ ∈ uH 2 + uH 2.
(iii) Cg := WgCW

∗
g defines a conjugation on M and A = CgA

∗Cg for every A ∈
T M.
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(iv) If Sg := WgAzW
∗
g , then a bounded operator A on M belongs to T M if and

only if there are functions ϕ1, ϕ2 ∈ M so that

A− SgAS∗
g = (ϕ1 ⊗ kM0

)+ (kM0 ⊗ ϕ2
)
.

(v) The rank-one operators in T M are constant multiples of

gkλ ⊗ gCkλ, gCkλ ⊗ gkλ, gkζ ⊗ gkζ .
(vi) T M1 is spatially isomorphic to T M2 if and only if either u1 = ψ ◦ u2 ◦ ϕ

or u1 = ψ ◦ u2(z) ◦ ϕ for some disk automorphisms ϕ,ψ . In particular, this is
completely independent of the corresponding extremal functions g1 and g2 for
M1 and M2.
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