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  Abstract   The recent trend towards Bayesian and adaptive study designs has led to 
a growth in the  fi eld of pharmacokintetics and pharmacodynamics (PK/PD). The 
mathematical models used for PK/PD analysis can be extremely computationally 
intensive and particularly sensitive to messy data and anomalous values. The tech-
niques of paneling and creating polygon summaries help to bring clarity to poten-
tially messy graphics. An understanding of the expected shape of the data, combined 
with the right choice of graphic can help identify unusual patterns of data.      

    6.1   Introduction 

 Pharmacokinetics and pharmacodynamics (PK/PD) describe the manner in which a 
compound enters and exits the body and the effect the compound has on the body 
using mathematical–statistical models. The often complex mathematical models 
used in PK/PD analysis provide quantitative descriptions of compounds, which are 
critical for dose  fi nding and safety assessments during drug development. With 
fewer drugs making it to market and pipelines seemingly drying up, the focus has 
turned towards Bayesian and adaptive study designs and towards PK/PD analysis as 
a means of accelerating the early phases of clinical drug development. 
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 Speci fi cally a typical pharmacokinetic (PK) analysis involves modeling the 
concentration of an administered drug over time using structural models (often 
compartmental models) and exploring covariate relationships using statistical tech-
niques. Pharmacodynamic (PD) analysis attempts to describe the relationship 
between the concentration of a compound and some measurable clinical response 
that represents an improvement in patient well-being. Like PK data, PD data is often 
temporal with the pharmacodynamic effect measured at discrete time points. 

 The primary aim of the PK/PD exploratory data analysis (EDA) process is to 
establish the quality of the data and to con fi rm that the intended structural model for 
the system is appropriate. Here we describe some general principles for graphing 
longitudinal PK/PD data and present some custom graphs applied to PK/PD data. 
The intent is not only to present speci fi c types of plots but also to demonstrate gen-
eral principles of creativity for ef fi cient EDA. The techniques are of particular inter-
est for data involving multiple measurements made for each individual over time.  

    6.2   Datasets and Graphics 

 Graphics have been drawn using a combination of simulated datasets that have been 
created using the MSToolkit package (  http://r-forge.r-project.org/projects/mstoolkit/    ) 
and a popular simulated dataset distributed with the Xpose package (Jonsson and 
Karlsson  1999  ) . The MSToolkit package is a suite of R functions developed 
speci fi cally in order to simulate trial data and manage the storage of the simulated 
output. The MSToolkit package has been selected due to the ease in which PK/PD 
data including covariate interactions can be generated. The Xpose package data has 
been selected due to a commonly occurring challenge with PK/PD data. It consists 
of measurements over time for numerous individuals (subjects), which can make 
trends dif fi cult to spot due to the large amount of information available on the same 
data range. 

 All plots are created with either the lattice package (Deepayan Sarkar  2009  )  or 
with the ggplot2 package (Hadley Wickham  2009  )  in R (R Development Core 
Team  2008  ) .  

    6.3   Repeated Measures Data 

 Clinical trials are typically planned such that for each subject the primary endpoint(s) 
of interest (and perhaps a number of other key endpoints) is collected at baseline 
and then again at key points throughout the study. A pharmacodynamic analysis 
seeks to understand the effect that dose/concentration has on the endpoint over 
time. A PK analysis is similarly concerned with repeated measures over time; how-
ever, the aim of the PK analysis is to understand the change in concentration over 
time. In either case, such repeated measures data are not independent; there is 

http://r-forge.r-project.org/projects/mstoolkit/
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correlation between the measurements of each individual, and the statistical 
techniques used must re fl ect this. 

 We focus  fi rst on PK data and start by plotting individual subject concentra-
tion-time pro fi les together in a single plot. Figure  6.1  shows the change over time 
in observed concentration for a number of simulated subjects. Usually this “spa-
ghetti” plot serves only to con fi rm that our data is in range as any points not in 
range would skew the axes. For a large number of subjects the spaghetti plot can 
be dif fi cult to read due to the number of intersecting lines on the plot and even if 
semi-transparent lines are used it is dif fi cult to see how one subject compares 
with the rest of the population. As a solution to this we partition our plot into 
panels where each panel contains a single subject’s time pro fi le. In Fig.  6.2  time 
pro fi les for the  fi rst four subjects in our dataset have been plotted in a 2 ×2 grid. 
This is suf fi cient to ascertain the shape of the pro fi le but the free scaling of the 
axes provides little indication of scale or location. It is therefore dif fi cult to compare 
subject pro fi les.   

 In Fig.  6.2 , each subject pro fi le is drawn a free scale which is automatically 
generated using data ranges applicable only to that particular subject. As a by-product 
of this, 2 pro fi les appearing to be almost identical at  fi rst glance, for example the 
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  Fig. 6.1    Observed concentration versus time after dose by subject       
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pro fi les for subjects 2 and 3, may actually be very different when closer attention is 
paid to the axes. In fact the maximum concentration for subject 2 is approximately 
8 times higher than the maximum concentration for subject 3. By default, most 
software packages  fi x the scaling such that the data ranges for the full population are 
used when constructing the panels. This example highlights the danger of overriding 
this default. It should be noted, however, that for non-homogeneous data, for 
example for data in which the subjects took different doses,  fi xing the scales can 
hide data characteristics such as the shape of the concentration-time curve for 
subjects taking a low dose. 

 In Fig.  6.2  only the  fi rst 4 subjects from our simulated pharmacokinetic dataset 
have been selected. It is natural to plot these four pro fi les in a 2 ×2 grid in order to 
 fi ll the available space. For an EDA for which the primary intention is to establish 
the quality of the data by comparing an individual subject pro fi le to the rest of the 
data, this approach usually suf fi ces. However, when the primary aim is to make 

Subject: 1 Subject: 2

Subject: 3 Subject: 4

30

60

90

30

60

90

5

10

20

40

60

3 6 9 2.5 5.0 7.5 10.0 12.5

2.5 5.0 7.5 10.0 12.5 3 6 9

Time after Dose (hour)

O
bs

er
ve

d 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

  Fig. 6.2    Observed concentration versus time after dose by subject       

 



1036 Exploring Pharmacokinetic and Pharmacodynamic Data

comparisons between panels the layout is far more important. For example, in 
Fig.  6.2  the primary variable of interest is concentration, which is shown on the 
y-axis. It is much easier to compare concentrations between two subjects when 
the y-axes are aligned. That is to say when the two plots are located side by side 
as opposed to vertically stacked. In order to make comparisons between panels, 
the panels should be stacked in the direction that best facilitates the comparison 
of interest. 

 For an exploratory analysis it is useful to compare individual pro fi les to the 
remaining population so that we can ascertain the relative location of the pro fi le and 
identify outlying pro fi les more quickly. One technique that will enable such a 
comparison is to plot the overall data as a background “shadow.” An illustration of 
this technique is given in Fig.  6.3 . As in Fig.  6.2 , the  fi rst 4 subjects from our 
 simulated data have been plotted in separate panels. In each panel the subject of 
interest has been drawn in a thick, black line, with the remaining subjects from 

Time after Dose (hour)

O
bs

er
ve

d 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

50

100

150

Subject : 1 Subject : 2 Subject : 3

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Subject : 4

  Fig. 6.3    Observed concentration versus time after dose by subject (other subjects shown in  gray )       
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the simulated dataset plotted in gray. For each subject we see instantly how their 
pro fi le compares to the rest of the population. Note also that plotting the four panels 
side by side also now facilitates comparison between these four subjects.  

 These techniques form the foundation for an exploratory repeated measures 
analysis. Later we see how they can be further extended in order to investigate dose 
and other covariates.  

    6.4   Data Quality 

 Many data quality issues are simple to spot, particularly incorrectly formatted values 
and data values that are signi fi cantly out of range. However, incorrect values that are 
still within the overall data range (such as values that have been transpose/swapped) 
are more dif fi cult to identify. In this case, we must rely on the structural information 
we anticipate within the data in order to spot outlying values. 

 If an incorrectly coded value is still within the anticipated data range, a basic 
univariate analysis is not able to identify the issue. In this case, some errors may be 
impossible to spot without quality control (QC) steps against the data source. We 
can, however, use basic graphical methods to spot observations that do not seem to 
follow similar trends. These observations may be erroneous or may be highly 
informative. 

 In this section we concentrate on 2 key variables: the observed concentration 
variable to be modeled and “time after dose,” taken as the primary independent 
variable. 

 In the  fi eld of PK, we typically understand the ways in which the direction of 
trend of the concentration curve should change, based on the dosing mechanism 
employed. For example, after a drug is orally administered the concentration typi-
cally increases sharply to a maximum concentration, then smoothly decreases as the 
drug is metabolized and eliminated. 

 As such, we can often spot erroneous data in a dependent versus independent 
relationship by simply analyzing the sign of the gradient at each step within a graph 
of observed concentration versus time after dose. The gradient is the slope of 
the line connecting two observations, so a switch in sign indicates a switch in the 
direction. 

 Figure  6.4  graphs observed concentration versus time after dose, split by the num-
ber of changes in the sign of the gradient during the time period studied. In this plot, 
an upward facing green triangle is used for a value that is larger than the previous 
value and downward facing red triangle for a value that is less than the previous value. 
A change in the direction occurs at locations where the plotting symbol changes.  

 As you can see here, the majority of the data has at most one change in the sign 
of the gradient. Selecting subjects where there are more shifts in gradient sign often 
exposes data groups which may require further analysis. Figure  6.5  reproduces the 
above graphic for selected subjects with a high number of gradient sign changes. 
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We expect that these short-term increases are due to measurement or reporting 
inaccuracies.  

 Another way to look for potentially erroneous data that could be contained within 
the acceptable range of the data is to scale the data against a model-agnostic 
smoother (such as a loess smoother). In order to perform this scaling, the following 
steps are used: 

   Log the concentration data   –
  Fit a smooth line to the logged data   –
  Calculate differences from this smooth line   –
  Calculate the mean “difference from smooth line” for each subject, and subtract  –
this from the differences (effectively “centering” each subject’s data)  
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  Fig. 6.4    Observed concentration versus time after dose, split by the number of times the sign of 
the gradient changes direction       
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  For each time point, subtract the mean of the data and divide by the standard  –
deviation  
  Plot the calculated values vs. time and look for outlying values     –

 Figure  6.6  presents the scaled data generated versus “time after dose.” In this 
graphic, the subject identi fi ers are shown in dark blue, with subject groups linked by 
light gray lines. The change of color here focuses the reading on the subject values 
themselves (darker color) as opposed to the “trend” of each subject (lighter color). 
Horizontal grid lines have been added to allow ease of reading.  

 From this analysis, we can identify subjects that may warrant further analysis 
based on large absolute differences from 0. For example, the following subjects 
have at least 1 value that is more than 3 standard deviations from the mean time 
point center in the above plot: 10, 25, 36, 39, and 141. Creating a plot of observed 
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concentration versus time after dose for these subjects produces the graph shown 
in Fig.  6.7 .  

 In this instance, we want to illustrate how these subjects compare to the general 
trend of the data. If we were to include all subjects in this graph, the visualization 
might look too “busy,” and the focal message could be confused. As such, in order 
to represent the “general trend” of the data, we have instead included polygon 
“shadows” of color representing the 0, 25, 75, and 100 percentiles of the total data 
set on each plot; these are represented as light and dark blue polygons (0 th  and 100 th  
percentiles drawn in light color, overlapped with dark polygons representing the 25th 
to 75th percentiles). In addition, the “center” of the data is included as a (black) 
median line. To contrast against this background, the individual subject data has 
been graphed as bright red points linked by a line. 

 From this analysis, subjects 10 and 36 certainly warrant further investigation. 
In particular, we should look at the observation at time point 3 for subject 10 
(which appears to be comparatively low) and the reasons that the concentrations 
peak comparatively late for subject 36 when compared with the general trend of the 
data (since most concentrations peak at 2 h).  
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  Fig. 6.6    Scaled standard deviations from time point centers versus time after dose, with subject 
identi fi ed       
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  Fig. 6.7    Observed concentration vs. time after dose including only those subjects  fl agged in 
the above analysis, with  blue shaded areas  representing the range and interquartile range for the 
overall data and the overall median drawn in  black        

    6.5   Baseline Effects 

 The techniques discussed thus far are applicable to both PK and PD repeated 
measures data. 

 Baseline is almost always a highly important covariate when modeling a PD 
endpoint. If the baseline distribution of the dependent variable differs between dose 
groups, it can often be seen to undermine the  fi ndings of a study even when the 
baseline effects have been accounted for in our model. This is particularly true of 
smaller early phase studies for which the more extreme baseline values have a 
greater in fl uence on population summaries. 

 For the EDA, the effect of baseline can blur the effects of other covariates and 
unless we are interested investigating interactions with baseline we should look 

 



1096 Exploring Pharmacokinetic and Pharmacodynamic Data

to try and remove the baseline effect in order to focus on the covariate of interest. 
For longitudinal data, this usually means plotting the change from baseline over 
time such that all pro fi les begin from the same place. In Fig.  6.8  we  fi rst plot our 
dependent variable over time and then the change from baseline in the dependent 
variable over time. In the left-hand plot the change in the response variable appears 
random over time. In the right-hand plot however, it is apparent that there is increased 
variability over time, as would be expected for a controlled trial in which subjects 
must meet certain baseline criteria in order to be randomized to the study.  

 When plotting change from baseline we highlight the challenge of choosing an 
appropriate y-axis range. It is often easy to neglect this choice since almost all soft-
ware packages automatically generate a y-axis based on the observed range of our 
data, occasionally adding a small amount of “white space” to this range in an attempt 
to aesthetically enhance the default plots. It is not uncommon for the observed 
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  Fig. 6.8    Improved clarity after adjusting for baseline, subject pro fi les are plotted using 
semi-transparent lines       
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bounds of our data to closely coincide with this default range and so this default 
range is usually suf fi cient for our needs. When we plot change from baseline data 
however, the possible range is often much larger than the observed range. Therefore 
if we adopt the default range, then a small change in the pro fi le of our data might 
appear to be much larger than it actually is, potentially leading us down the wrong 
path. Often the range we choose lies somewhere between a change of potential 
clinical importance and a plausible range.  

    6.6   Investigating Covariates 

 Once we are satis fi ed with the quality of our data, the next step is to investigate dose 
and any other covariates that we are considering for inclusion in our model. Any 
covariate that we choose to investigate (including dose) falls into one of the two 
categories, continuous and discrete. We look at each in turn, beginning with discrete 
covariates. 

 When plotting by dose or any other discrete covariate we have a choice to make. 
We can either use grouping techniques to distinguish between the levels within a 
single plot or partition the plot into panels. The advantage of grouping within a 
single plot is that all pro fi les are on the same axis, and thus it is theoretically easier 
to compare the pro fi les. For a spaghetti plot of individual subject pro fi les, color or 
line type can be used to differentiate between the groups. However, with a large 
number of subjects or when the data is highly variable it can be dif fi cult to extract 
any differences between groups using this method. For this reason it is common to 
plot average data pro fi les for each group, for example median values. When plotting 
using a graphics device that allows semi-transparent coloring we may also decide to 
plot “ribbons” or error regions to give an idea of the range of the data. However the 
use of error bars or ribbons can crowd the plot, particularly when the covariate has 
many levels. Even with just three levels a plot can look crowded if the differences 
between the groups are small. For that reason we are usually limited to plotting a 
single summary statistic for each subgroup over time. Figure  6.9  shows the change 
over time in a simulated response variable by country. In this particular dataset there 
are 9 levels of the country variable. A simple plot of the median values for each 
country highlights a sudden rise in response between weeks 8 and 10 for China in 
contrast to the majority of countries for whom the response tends to decrease 
between weeks 8 and 10.  

 In the previous example plotting median values helped highlight an interesting 
feature of our data. However without any indication of variability we cannot be 
sure whether this is truly interesting or simply random  fl uctuation. Figure  6.10  plots 
the change from baseline over time in the dependent variable by dose group. The 
blue regions within each panel represent the range and interquartile range for the 
dose group with the median represented by a black line. In addition, the range of 
response values across all doses is shown in gray. The position of the blue area in 
relation to the shadow helps to identify a dose effect with increased response in the 
higher dose group.  
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 The approach is one that is easily extended into higher dimensions. In Fig.  6.11  we 
look at two discrete covariates, the sex of the subjects and whether or not they smoke. 
Again, the 0 th , 25 th , 50 th , 75 th , and 100 th  percentiles are displayed for each covariate 
group and as with the last graphic, the 0–100 range is in light blue, 25–75 in darker 
blue, and a black line shows the median. Figure  6.11  shows higher concentrations for 
female subjects, and a later peak in concentrations for male subjects. The graph also 
suggests a slight increase in concentration values for smokers. The consistency across 
the plots plot would also seem to indicate a lack of any interaction between sex and 
smoking habit. Note that to facilitate comparison of the observed concentration values, 
the plots are aligned from left to right as opposed to a 2 ×2 grid layout.  

 When the covariate of interest is continuous we no longer have the option of 
paneling available to us since to panel by a variable implies that it is discrete. We 
can of course split the continuous variable into discrete categories of interest and 
apply the same techniques already discussed for categorical variables. In a modeling 
scenario we generally wish to avoid partitioning our data in this way as we create 
arti fi cial boundaries between data points. However for an EDA this actually may 
help us to spot an effect, and if we do intend to categorize a continuous variable, 
then we can use paneling as a way of selecting the breakpoints. Of course it is vital 
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  Fig. 6.9    Change in response over time by Country       
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  Fig. 6.10    Change in median response variable over time by dose group with  blue shaded areas  
representing the range and interquartile range for each dose group and the overall data range 
included as a  gray shadow  on the plot       

that the natural order is retained when a discrete variable has been formed from a 
continuous one. 

 If we decide not to cut our continuous covariate up into a discrete variable, then 
we face a dimensionality challenge; we are effectively already treating both the 
response variable and time as continuous variables and the within-subject correla-
tion adds further dimensionality. When faced with this challenge, it can be tempting 
to move to a three-dimensional coordinate system. Given that we only have 2 dimen-
sions available to us, this approach should be adopted with caution. In particular the 
angle of rotation has a strong effect on our interpretation of the graphic and interest-
ing features of the data can easily be hidden. An alternative approach is to treat time 
as a discrete variable. This is possible for clinical trial data since the response infor-
mation is collected at scheduled (discrete) times. We can then investigate the 
response variable against our covariate of interest via a sequence of scatter plots. If 
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  Fig. 6.11    Observed concentration vs. time after dose plots split by sex/smoking Indicator, with 
 blue shaded areas  representing the range and interquartile range for the subgroup and the overall 
data range included as a  grey shadow  on the plot       

a relationship exists between the two variables, we would expect to see a pattern 
develop as we move from left to right across the panels. As with all ordinal categori-
cal variables it is vital that when we panel by time we maintain the order and arrange 
the panels from left to right. 

 In Fig.  6.12  we have paneled by time in order to investigate how the relationship 
between Y and X changes over time. Varying the plotting symbol and color by dose, 
we see how the dose groups begin to separate over time.  

 This method is not without its drawbacks. The length of time between the 
discrete data collection points is usually wider towards the end of a subject’s partici-
pation in a study. Care must therefore be taken when paneling by the discrete time 
points to preserve the distance between time points. In Fig.  6.12  therefore the  fi rst 
time point has been removed so that the difference between each time point is equal. 
Alternatively, spacing could be used to indicate larger time intervals.  
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    6.7   Conclusion 

 For the PK/PD modeler, the EDA is the  fi rst step in the model building process. 
Exploring the data graphically presents many challenges due to the within-subject 
correlation that results from repeated measures data. An understanding of this struc-
ture can help us to break the data down and spot troublesome with-range anomalies. 
The aim of the EDA is to attain a better understanding of the data prior to commencing 
a model building process. It is therefore important to focus the exploratory work on 
identifying patterns within the data that may in fl uence this process. Plot change 
from baseline data when applicable and consider the comparison of subgroups with 
the population as a whole in addition to with each other.      
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  Fig. 6.12    Comparison of response against weight by dose       
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