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     Foreword    

 The graphical display of data in medical research is a key component of communi-
cating one’s  fi ndings, yet sadly over the years little attention is paid to how to make 
such graphics truly effective and non-distortive. 

 For statisticians, clinicians, or other scientists there is virtually no training in the 
art and science of successful and reliable graphics, so the end result is that we all 
tend to muddle by as best we can. We resort to certain stereotypes of graph, and 
displays that distort research  fi ndings, e.g., by exaggerating true effects or not con-
veying statistical uncertainty, are quite common. 

 Hence, this book is an exciting contribution in explaining in a practical setting 
how graphics can be used best in medical research. The breadth of topics is particu-
larly suited to the whole spectrum of pharmaceutical research, and the editors are to 
be congratulated on gathering such a well-informed and insightful set of experts to 
tackle each topic. Also noteworthy is that the book is an attractive read, illustrating 
the value of color for better perception of graphics. Whether it is for in-house and 
personal insights to data, publications in scienti fi c journals, or conveying  fi ndings in 
regulatory submissions, this book’s content carries a wealth of ideas that both stat-
isticians and the broader realm of research scientists need to avidly absorb. Indeed, 
besides aiming at statisticians, modelers, and quantitative people the book’s content 
should be appreciated by MDs, pharmacologists, managers, and decision makers, 
i.e., the key recipients of data analyses and their visualization. The hope is that in 
future we can all do a better job in utilizing graphics to convey the essence of our 
research  fi ndings. 

 London, UK  Stuart Pocock 
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   Preface 

    Graphics are an essential means of communication for humans, from prehistoric 
cave painting to modern computer graphics. A graphic can often summarize and 
visualize information much more ef fi ciently than tables or words. 

 A difference between verbal and graphical communication is that verbal com-
munication is largely direct, the sender and the recipient of the message can exchange 
information. If necessary, in multiple iterations. 

 Graphics on the other hand are frequently an asynchronous means of communi-
cation: the creator of the graphic is not present to elucidate on what is being shown, 
to help understanding and facilitate correct interpretation. The graph has to speak 
for itself, deliver a clear message, and avoid misinterpretation. 

 Nowadays, graphs are often created to extract and reveal the information con-
tained in a data set, reminding of the fact that having collected data is not equal to 
having generated knowledge. The knowledge must be distilled from the data and 
displayed in ways that make interpretation easy, accurate, and correct. 

 The life sciences and the pharmaceutical industry generate a wealth of data. 
A clinical study that aims to quantify the effects of a newly tested drug in humans, 
collects data from many domains: demographics, dosing, pharmacokinetics and 
pharmacodynamics, laboratory measurements, adverse events, ECG and vital signs, 
concomitant medications, medical history, and more; at many different time points 
in many different subjects, healthy volunteers, and treated patients. Data regarding 
the operations of the clinical trial, e.g., sites and investigators, are also voluminous, 
as are data generated in chemistry and biology research, and preclinical studies 
leading to the clinical trials. Other functional areas in pharmaceutical companies are 
also highly data-driven, e.g., post-marketing areas such as epidemiology and sales 
and marketing. 

 Clinical trial data are analyzed in various ways: by examining the raw data list-
ings, aggregating the data in summary statistics, in tables and graphics. Tables, list-
ings, and  fi gures are used to summarize the data in clinical study reports and 
submissions to regulatory agencies at the conclusion of the clinical trials. They are 
also used to review the study data during clinical trials. 
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 Wikipedia de fi nes Graphics as follows:

  Graphics (from Greek  g  r  a    φ    ιk ό V  graphikos) are visual presentations on some surface, such 
as a wall, canvas, computer screen, paper, or stone; to brand, inform, illustrate, or entertain. 
Examples are photographs, drawings, Line Art, graphs, diagrams, typography, numbers, 
symbols, geometric designs, maps, engineering drawings, or other images. Graphics often 
combine text, illustration, and color. Graphic design may consist of the deliberate selection, 
creation, or arrangement of typography alone, as in a brochure,  fl ier, poster, Web site, or 
book without any other element. Clarity or effective communication may be the objective, 
association with other cultural elements may be sought, or merely, the creation of a distinc-
tive style. 

 Graphics can be functional or artistic. […] 
 Wikipedia entry on Graphics (Jan 23, 2012)   

 The Wikipedia entry states that graphics can be functional or artistic. The phi-
losophy of this book is that ef fi cient graphics are both functional and artistic. It 
takes a good amount of creativity on how to display the data, in order for the infor-
mation in the data to be visualized effectively to the reader of the graph. 

 Creativity requires inspiration. This book aims at providing that inspiration. We 
have assembled a group of life science graphics experts who have described graph-
ics principles, techniques, and case studies to provide inspiration and for you, to 
incorporate graphical best practices into your work. 

 Many of the visualization principles that hold for life science data are also 
encountered in daily life. For example   , the map you use to orient yourself on the 
London Underground (“The Tube”) has only limited similarity to the actual geo-
graphical positions of train tracks and stops. The simpli fi cation to largely horizon-
tal, vertical, and diagonal lines improves the interpretation and the usefulness 
enormously. 1  

 The London underground map does not only simplify the layout by reducing the 
geographical layout to straight lines, but it also actually distorts the geography sub-
stantially: if you take the underground—the Piccadilly line—from the city to 
Heathrow airport, you will probably be surprised by how quickly the inner city sta-
tions follow one another and then by how long it takes to arrive at Heathrow airport. 
If the tube map would be scaled according to geography, the inner city part, the part 
most used by travelers, would shrink and become illegible. So leave early for the 
outer stations! 

 Garland ( 1994 ) gives a historical account of the development of the tube “map,” 
highlighting the interactions that improved its usefulness to the user of the London 
tube system. The book highlights prominently that the use of the word map is actu-
ally inappropriate because the geographical reality is not—or not accurately—
mapped onto paper (“Though not strictly speaking a map, this term is almost 
universally used by people when referring to the London Underground  Diagram  
[…],” p. 2, italics added). 

   1 The simpli fi cation was taken too far in 2009 when it was suggested that the River Thames should 
not be shown on the tub map any longer (BBC London, “Thames reunited with tube map”,   http://
news.bbc.co.uk/local/london/hi/people_and_places/newsid_8259000/8259435.stm    ).  

http://news.bbc.co.uk/local/london/hi/people_and_places/newsid_8259000/8259435.stm
http://news.bbc.co.uk/local/london/hi/people_and_places/newsid_8259000/8259435.stm
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 Another  fi ne example of highlighting information in data with graphics comes from 
Edward Tufte. Tufte has made a long and distinguished career by clearly displaying 
information from data. His book, “The Visual Display of Quantitative Information” 
was named one of the top 100 books of the twentieth century by Amazon. 

 In this particular example, Tufte used a table of relative cancer survival rates       
published in a landmark paper (Brenner, The Lancet,  2002 ) and showed how this 
display of data can be improved. 

 Figure  1  shows the original table. Each row gives the survival statistics for a 
particular type of cancer at 5, 10, 15, and 20 years, showing the relative survival 
rates and the associated standard errors. Figure  2  shows a simpli fi ed version: the 
font size of the standard errors is shrunk since they are arguably less important than 
the survival rates, and the rows are sorted by survival rate, the most likely measure 
of interest to the reader. The legibility of the information inside the data is improved 
considerably (Tufte  2007 , p. 174). 

  Fig. 1    Cancer survival rates by cancer site and time from Brenner ( 2002 )       
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 Subsequently, Tufte took these survival rates and created a semi-graphic: Fig.  3  
shows the same data but now the row and column structure has been broken up: 
vertical distances approximately represent numerical differences in survival rates 
instead of just another row. Interconnecting the values that correspond to the same 
type of cancer visually reveals trends in time: a negative slope indicates a decrease 
in survival rate with time. 

 The left-hand side graph shows an artistically adapted version: for better legibil-
ity, the vertical dimension—the invisible  y -axis—corresponds only roughly to the 
numerical values of the 5 year survival statistics. The cancer types are sorted verti-
cally by 5 year survival statistics, and the slopes of the subsequent survival statistics 
of the particular cancer type correspond to the decrease in survival. A negative slope 
corresponds to a decline in survival over time. Note how the ease of interpretation 
is markedly improved over the original table (Tufte 2006, p. 176, originally pub-
lished on the Internet in 2003). 

  Fig. 2    Cancer survival rates by cancer site and time, adaptation by Tufte       
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 Nash (2006) in a Web discussion of the Tufte graphs suggested further modi fi cations, 
suggesting that grouping on cancer types allows for intersecting lines without sub-
stantial loss of legibility due to the lower number of intersecting lines (Fig.  4 ). 

 Nash collaborated with Tufte on the choice of line weights and text alignments 
and—most importantly—the placing of the names of the cancer types that are 
repeated on the right-hand side for better visualization. 

 These examples show that graphs can be art—creative, informative, and beauti-
ful to the eye. They also demonstrate clearly the importance of extracting, distilling, 
and presenting ef fi ciently the information contained in the data. 

 Even though no one disputes the importance of good graphics for ef fi cient data 
analysis, they are still not as widely used as they could be. Part of the reason might 
be that graphs can often be improved once the data are seen and understood. 
However, the life sciences industry works under time pressure, and analysis pro-
grams producing tables, listings, and  fi gures are often on the critical path in the 
development of new treatment therapies. Thus, the graphs are programmed before 
seeing the data; for example, before database lock and release of the treatment code 

  Fig. 4    Cancer survival rates by cancer site and time as semi-graphic, strati fi ed by locus       
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(“unblinding”). Once the data are available, the results must be available quickly. 
The graphs are created and delivered without a close looking at the data in the inter-
est of time. That confl ict between time pressure and thorough analysis can be critical 
in that information is missed. But of course, it will probably not even get noticed. 

 Help is on its way: as data volumes explode in all industries, investment and 
research in analysis, visualization, business intelligence, and data discovery soft-
ware is ever-increasing. In the life sciences, the most popular software systems for 
graphical exploration include R and S-PLUS™, Spot fi re™, and SAS™. Microsoft 
Excel™ seems to still be the most widely used graphical analysis software. 

 While modern software is necessary in enabling graphical analysis it is not 
suf fi cient; and sound graphics principles are required for optimal discovery and 
communication of information in data. Some of the aforementioned software appli-
cations enable sound principles to be followed and others make this dif fi cult! 

 The landmark books by Tufte (1990, 1997, 2001, 2006) and Few (2004, 2009) 
establish general principles for good visualizations. Cleveland (1993, 1994) estab-
lishes the techniques from a statistical point of view, including the groundbreaking 
conditional multivariate Trellis display (Becker et al., 1996), codi fi ed now in R 
through the lattice package (Sarkar, 2008). Tufte can be viewed as somewhat of a 
minimalist and artist, while Cleveland’s methods brought strength to the scienti fi c 
community in the quest to discover and distill information from multivariate data. 

 Color was researched by Brewer et al. (2002), resulting in the groundbreaking 
ColorBrewer and corresponding R package on CRAN. 

 CTSpedia (CTSpedia, 2012) is a knowledge base for clinical and translational 
research. Among the topics covered are statistical graphics. The Web page gives 
general advice and tries to organize the types of graphics by the question and the 
data at hand. It guides through a variety of graphical tools and suggests standards 
for good graphics. 

 Visualization and data discovery has been the topic of several TED lectures 
(TED, 2012), with prime example being Hans Rosling’s presentation of interactive 
graphics analyzing the world’s poverty data (Rosling, 2006). The accompanying 
software, GapMinder (Rosling, 2009), is now available for free download 
(Gapminder, 2012). It is based on Google’s Motion Chart (Google Chart Tools), 
another free software tool. Similarly, IBM offers the creation and discussion of data 
sets and analyses online with its Many Eyes initiative (IBM Many Eyes, 2012). 

 There are several other recent graphics references that are relevant to graphical 
analysis in the life sciences. Robbins (2004) introduces general principles by show-
ing hands-on examples; Unwin et al (2006) focus on visualization of large data 
sets. Leckart (2010) provides an interesting update on medication package inserts 
in the popular magazine Wired. The Jung + Wenig (2010) art design company is the 
creator of one of the redesigned package inserts. One of their designs is shown in 
Fig.  5 , illustrating that “boring” laboratory results that mostly contain only a large 
amount of text can be made so much more visually interesting and informative. 

 The aim of our book is to provide a standard reference for life science graphics, 
leveraging the pioneering concepts described by Tufte, Cleveland, Few, and others; 
in a modern framework and with life science context. 



xiv Preface

  Fig. 5    Blood work results redesigned       
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 We hope that the book serves as a source of inspiration—not only to the creators 
of scienti fi c graphics, e.g., statisticians and programmers, but in particular to con-
sumers of graphics and key decision makers, physicians, and managers in the life 
sciences industry. 

 We will have achieved our mission if business users and decision makers ask 
statisticians and information technology functional areas for more and better graphs 
of all their data. As better graphics are used throughout the industry, everyone in the 
life science ecosystem bene fi ts, including the general population receiving better 
information and medications through better decision making. 

   Book Structure 

 The book is divided into parts. The part “General Principles and Reviews of 
Graphics” motivates the topic, reviews and establishes general principles, and sug-
gests structured and innovative uses of graphics and also tables. 

 The part “Preclinical and Early Clinical Development” contains chapters that 
illustrate a variety of applications for PK/PD, biomarker, and genetic data. 

 The largest part, “Clinical Trial Graphics,” contains chapters on ef fi cacy and 
safety in therapeutic areas such as oncology and respiratory disease, safety reviews 
for cardiac and general safety, meta-analysis, and dose–response visualization. The 
principles are generally applicable to a large variety of applications. 

 The part on “Operations, Marketing, and Post-Approval Graphics” shows illus-
trative case studies in clinical trials data management, exploratory visualization of 
medical safety in observational studies, and post-approval visualizations.  

   Book Web Site 

 Being able to use computer programs right away will help getting up to speed 
quickly. For this purpose, this book has a companion Web site: 

   http://www.elmo.ch/doc/life-science-graphics/     
 The Web site contains computer programs for download and further information 

about the book.  
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  General Principles and Reviews 

of Graphics         



3A. Krause and M. O’Connell (eds.), A Picture is Worth a Thousand Tables: 
Graphics in Life Sciences, DOI 10.1007/978-1-4614-5329-1_1, 
© Springer Science+Business Media New York 2012

  Abstract   Graphics are an essential tool for detecting and analyzing structure in 
data, developing statistical models, presenting results, and communicating about 
data and results. Drug development is still largely based on tables and listings, and 
graphics are an underutilized resource. Processing the data with suitable graphics 
can make the data analysis substantially more ef fi cient. Principles are introduced 
and illustrated with corresponding  fi gures of clinical data. 

 The principles of good graphics in the sense of Cleveland and Tufte’s works are 
introduced. A further step is taken by establishing these and further principles for 
graphics of clinical data as generated from patient data in drug development. 

 Graphical setups such as different graph types and formats and elements such as 
axes, symbols, lines, legends, and colors are discussed. The principles are followed 
by applications to clinical data by examples, covering pharmacological, ef fi cacy, 
and safety data. 

 Following some basic principles enables the provision of graphs to the clinical 
team that makes use of the power of graphics: looking at the data, understanding its 
structure, and learning ef fi ciently about the information contained in the data.     

     1.1   Introduction 

 Statistical graphics are “information graphics in the  fi eld of statistics used to visual-
ize quantitative data” (Wikipedia) on (“Statistical graphics”,  2012 ). Good statistical 
graphics can provide a convincing means of communicating the underlying mes-
sage that is present in the data. 

    A.   Krause   (*)
     Department of Clinical Pharmacology, Modeling and Simulation, Actelion Pharmaceuticals Ltd  
  Gewerbestr. 16 ,  4123   Allschwil ,  Switzerland    
e-mail:  Andreas.Krause@actelion.com   

    Chapter 1   
 Concepts and Principles of Clinical Data 
Graphics       
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 If used well, graphics can condense complex information into a simple and eas-
ily interpretable display. Patterns that might have stayed undetected can—with 
suitable graphics—easily be spotted by the human eye. If used badly, graphics can 
hide relevant information or even mislead to produce wrong interpretations. Not 
using graphics increases the risk of missing a signal in the data, an ef fi cacy or 
safety signal or a signal that the model  fi tted to the data might not be appropriate. 

 According to Cleveland  (  1993  ) , graphical statistical methods can have four 
objectives: exploration of the content of a data set,  fi nding structure in data, check-
ing assumptions in statistical models, and communication of results of an 
analysis. 

 This paper introduces some of the basic principles of good graphics as de fi ned 
and illustrated in the works of    Tufte ( 2002, 2007  )  and Cleveland  (  1993  ) . For general 
purposes, Robbins  (  2005  )  outlines basic concepts to a wide audience, Heiberger and 
Holland   (  2004  )  discuss displays for statistic analysis, and Unwin et al.  (  2006  )  focus 
on large data sets. A further step is taken by establishing these principles for visual-
ization of clinical data: data that are generated in drug development by measuring 
drug effects (ef fi cacy and safety) in healthy subjects and patients. 

 Consider the following example: a study was conducted in which patients were 
treated with either an experimental drug or a placebo in a double-blind manner. 
Safety events were collected to assess if the active drug’s safety differs from the 
placebo group’s safety. 

 Table  1.1  displays the raw data whereas Fig.  1.1  gives the same information in a 
graphical format. The graph’s rows are ordered such that the largest relative differ-
ences between active drug and placebo are shown on top and the smallest differ-
ences at the bottom. Arguably it is substantially easier to detect the most prevalent 
safety signals in the graph.   

 This paper  fi rst establishes some general principles for good visualizations before 
proceeding toward particular applications in clinical drug development. After estab-
lishing and illustrating some principles, I will cover graphical elements such as axes, 
symbols, lines, legends, and colors and then move on to applications including com-
parisons, categorical covariate analysis, change from baseline graphs, and graphs 
with outliers as well as higher-dimensional graphs. Some illustrative graphs are 
going to incorporate the principles, serving as inspiration for further application.  

   Table 1.1    Safety data tabulated: occurrence of events by category and treatment   

 Category  Event  Active  Placebo 
 Absolute 
difference 

 Relative 
difference (%) 

 Nervous system  Headache  45  23  22  96 
 Gastrointestinal  Diarrhea  23  15  8  53 
 Nervous system  Dizziness  11  17  −6  −35 
 Gastrointestinal  Nausea   7  1  6  600 
 Gastrointestinal  Vomiting   5  2  3  150 
 Gastrointestinal  Dyspepsia  11  7  4  57 
 Gastrointestinal  Abdominal pain   8  7  1  14 
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    1.2   Principles 

 General aims in the display of data include the effective communication of the 
information contained in the data in a non-distorting manner. Key elements com-
prise the accuracy, ease, and speed of the interpretation. 

 The purpose of a graph is not to have a graph but to reveal to the reader of such 
graph the information contained in the data. Thus, the interpretation is in the eye of 
the beholder. This is in particular relevant if the creator of a graph (a programmer, a 
statistician, a modeler) has a background different from the reader (a medical doc-
tor, a marketing expert). This can imply that graphs need to be adapted to the back-
ground of the reader, be it a statistician, a modeler, a medical doctor, or a marketing 
expert. 

 Tufte establishes the principle of maximizing the “data to ink ratio”: too much 
ink or a large number of pixels per observation indicates that the visualization might 
be improved whereas little ink or few pixels per data point indicate an effective 
visualization. 

 An example of a low data to ink ratio is a bar chart: a single number is represented 
by a  fi lled area that consumes a large space on the display. In the extreme, one can 
question if just a few numbers are not better displayed by a table. An example for a 
high data to ink ratio is a scatterplot that shows all the data and each observation is 
represented by a single pixel or symbol. Frequently one can choose between various 
displays, and the full data set often allows the best judgment about the data structure. 

 When the data consist of thousands of observations, aggregation can not be pos-
sibly avoided. Unwin et al.  (  2006  )  provide examples of displays particularly suited 
for large data sets. 

  Fig. 1.1    Safety data graphed: occurrence of events by category and treatment. Symbols denote 
treatments active (“A”) and placebo (“P”)       
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    1.2.1   A Graph is a Model 

 A statistical model aims at extracting the pattern from the data. In this respect a graph 
is not different. The statistical model and the graph transform the data into coef fi cients 
and patterns, respectively, to facilitate the recognition of the information in the data. 

 The S Language as implemented in S-PLUS (S-PLUS  2005  )  and R (R 
Development Core Team  2009  )  introduces a language that makes the similarity 
apparent. To calculate a linear model that regresses  y  on  x  in a data set named 
study101, the command is 

  lm(  y   ~   x  , data =   study101)  

 To create a graph of the same data, the command is identical except that a plot-
ting routine is called: 

  xy  plot(  y   ~   x  , data =   study101)  

 Note that the syntax suggests that the  y -variable is a function of the  x -variable, in 
the linear model as well as in the graph. 

 Researchers in visualization but also in related  fi elds such as user interfaces for 
everyday’s appliances (Norman  2002  )  have noted for long that additional elements 
in visualization that do not contribute to the reading and interpretation might actu-
ally be misleading. In particular, as noted by Tufte  (  2002  ) , color shading and three-
dimensional illusions frequently lead to misreading of graphs. 

 Generally, it is well known that some patterns are easier to recognize and inter-
pret accurately than others for the human eye. Judging relative lengths and compar-
ing values lined up along a common axis (such as in a scatterplot) are easier tasks 
than judging angles, slopes, and areas (as, for example, in pie charts). 

 On a  fi ner scale, Cleveland  (  1993  )  notes that all elements that do not belong 
directly to the information should be placed outside the central graph, including tick 
marks and labels. Thus, tick marks and axis labels that stretch into the graph are to 
be avoided. If possible, legends shall also play a minor role (we will address the 
particular topic later). 

 Generally, the message is that a graph requires some thought about the aims of 
the graph as well as the perception of it by the reader.  

    1.2.2   Encouraging Comparison    

 Cleveland  (  1993, 1998  )  introduced the principle of Trellis™ graphics in S-PLUS 
(see also Becker et al.  1996  ) . In R, the concept is labeled lattice graphics for trade-
mark reasons. SAS version 9.2 recently introduced the lattice layout in SAS/GRAPH 
in the SGPANEL procedure (SAS Institute Inc.  2009  ) . 

 The concept makes heavy use of the fact that once a reader is used to a particular 
graphics type, it becomes very easy to interpret a whole series of such graphs for 
matters of comparison. 

 We illustrate the principle with Fig.  1.2 . The data comprise drug exposure of 
patients in four different dose groups, pre and post an intervention. Four dose groups 
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at two time points (pre and post) yield eight box-and-whisker plots. The arrange-
ment of the eight box-and-whisker plots facilitates particular comparisons. The left-
hand side graph enables comparing the exposure in the four dose groups pre 
intervention (left panel) and in the four dose groups post intervention (right panel). 
However, to compare the exposures for a particular dose group pre and post inter-
vention, the graph on the right is much more suitable: it arranges the same eight 
box-and-whisker plots such that the pairs of dose groups are adjacent to one another, 
facilitating visual comparison.  

 As a consequence, axis ranges are identical and each panel contains correspond-
ing elements, facilitating interpretation.   

    1.3   Graphical Elements    

 A graph can and typically does contain a large number of elements: axes with 
ranges, tick marks, labels, points and symbols, lines, legends, colors, and more. 
They are typically prede fi ned with default values and settings, but one needs to be 
aware that it can help to deliberately choose particular settings. 

    1.3.1   Choosing the Axes 

 The choice of axes of a graph is a central decision. Using the analogy of a statistical 
model, most readers of graphs intuitively interpret the  y -axis variable as the depen-
dent variable and the  x -axis as independent variable. In other words,  y  is a function 
of  x . For clinical applications, blood pressure might be a function of age. Thus, 
blood pressure should be shown on the  y -axis and age on the  x -axis. Similarly, body 
weight is in fl uenced by sex and not vice versa.  

  Fig. 1.2    Exposure to a drug for different doses, pre and post an intervention.  Left : one panel for 
pre and post event.  Right : one panel per dose group       

AUC

100 mg

200 mg

400 mg

800 mg

post pre

AUC

post

pre

100 mg

0 2 4 6 8 10 0 2 4 6 8 10

200 mg

post

pre

0 2 4 6 8 10 0 2 4 6 8 10

400 mg 800 mg

 



8 A. Krause

    1.3.2   Axis Ranges 

 The range of the axis, mostly the  y -axis, can heavily in fl uence a graph. Figure  1.3  
shows three graphs, each representing the same two values (21 and 22). Thus, the 
choice of the  y -axis range is fairly arbitrary. The  fi gures show the different visual 
impressions of the same data and the choice of colors is suggestive (green=“good”, 
red=“bad”).  

 Using relative values poses a further challenge: the choice of where to place the 
reference. Relative values will be discussed with an example of visualizing change 
from baseline.  

    1.3.3   Point Symbols    

 In a scatterplot, an observation can be marked by a single pixel, an open circle, a 
closed circle, or, for data in groups, symbols (squares, triangles, circles) or letters 
indicating the groups. 

 A single pixel is mostly too small to be visible and  fi lled circles or symbols intro-
duce visual distortions if the data set is so large that the symbols overlay. Possibly 
the best choice for plotting symbols is open circles since if they overlay, the circles 
intersect and it is still visible that there are multiple observations. 

 Symbols such as squares, triangles, and circles to indicate groups (for example 
treatment groups) require an additional step: the symbols need to be mapped to the 
groups such that the graph needs a legend and the reader needs to memorize the 
legend or look it up frequently if there are many groups. Furthermore, a legend will 
probably use up space that can otherwise be used for the graph. Symbols that are 
easy to map, for example, “P” for placebo, “A” for active or “H” for high dose, and 
“L” for low dose, are easy to remember and require only a single look at the legend. 
The introductory Fig.  1.1  used “P” and “A” for active and placebo and can do with-
out a legend since the mapping is obvious.  

  Fig. 1.3    Comparison of two values using different  y -axis limits       
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    1.3.4   Lines    

 Lines are used to interconnect observations. Since they connect the  fi rst point to the 
second and the second to the third, lines inherently de fi ne an  order . There are cases 
where the order can be visualized by means of lines, for example if drug effect is 
graphed against drug concentration: interconnecting the observations can show 
delays in (change of) drug effect when drug concentration changes (the graph type 
is known as hysteresis plot). In many other cases, for example when races or sexes 
are interconnected, it does not make sense and actually misleads the interpretation 
by suggesting an order that is not present.  

    1.3.5   Legends    

 Legends are required if a representation such as a plot symbol or a color is used for 
different groups in the data. However, the additional burden is that it is not intui-
tively clear which group a triangle or an orange line represents. The reader of the 
graph is forced to move the eyes from the graph to the legend and back many times, 
disabling to focus on the graph. In addition, the legend requires valuable space that 
can otherwise be used for the graph. 

 Thus, intuitive grouping symbols or colors should be used if possible. In particu-
lar if the groups have an inherent order, one might be able to map that order to 
another order in colors, symbols, line types, or line widths. 

 For example, some colors carry intuitive connotation: red is a warning color (or 
“bad”) and green is “good”, yellow or orange is in between. Response to treatment 
might thus be color-coded with response to treatment colored in green, progressive 
disease in red, and stable disease in orange or yellow. In a black and white graph, 
line widths can range from small (for progressive disease) to thick (for clinical 
response). 

 Alternatively, characters might be used that have an intuitive connection to the 
groups. Examples would be letters such as H, M, L for high, medium, and low dose. 

 If a legend is included in a graph, it is worth a second thought if the reading can 
be made easier or if the graph could even be created without a legend. Consider, for 
example, adding the legend to the fi gure caption to gain space for graphing the data 
(See Fig.  1.1 ).  

    1.3.6   Colors    

 Colors are a much disputed topic in reporting of clinical trial results. It is still wide-
spread standard to use only black and white or grayscale  fi gures in clinical study 
reports. The reasons given are frequently that the graph must be interpretable if 
printed on a black and white printer. 
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 At times, such arguments severely reduce the usefulness of a graph because 
instead of intuitive colors one is forced to use much less intuitive coding of groups, 
typically triangles, squares, and circles. If color is used it can help to provide an 
intuitive understanding of graphs and a sensible choice of colors can help avoid-
ing legends. If color does not facilitate interpretation it might be counterproduc-
tive, in particular if redundant elements such as shading, gradients, or textures are 
used. 

 Several researchers have discussed the topic of color schemes and choice of col-
ors, including Zeileis et al.  (  2007,   2009  ) , Lumley  (  2006  ) , and Ihaka  (  2003  ) . It seems 
that the researcher in drug development must separate presentations and internal 
reports—that may use color in graphs—from submission documents and publica-
tions that still require grayscale graphs for the time being. Some journals are mov-
ing toward online supplements that provide color  fi gures while the print publication 
is still in black and white.   

    1.4   Particular Applications 

 This section deals with particular applications in graphing clinical data. It moves 
from individual elements to entire graphs of clinical data, illustrating the principles 
established before. 

    1.4.1   Comparisons: Compare Like with Like    

 Frequently, two variables containing observations that correspond to one another 
are compared: baseline value versus after treatment, observed versus model-pre-
dicted, and so on. There are several pitfalls in such comparisons, and knowing about 
the effects of perception can improve these graphs substantially. 

 Figure  1.4  shows three graphs of the same data set. The difference between the two 
graphs on the left is simply that the axes are swapped. Note the difference in percep-
tion, for example with respect to the two predicted values just below and above 70.  

 Where do these differences in perception come from? Inspecting the graphs 
closer shows that there are several differences: the axis ranges differ numerically 
and the  x -axis is stretched compared to the  y -axis: 10 pixels on the  y -axis represent 
a larger range than 10 pixels on the  x -axis. As a consequence, the line of identity, 
 y  =  x , has a slope larger or smaller than 1 (in terms of pixel slope). 

 The principle should thus be that axis ranges shall be identical and the same 
number of units of measurement must correspond to the same number of pixels in  x  
and  y . This leads to the conclusion that a comparison graph must be square, naturally 



111 Concepts and Principles of Clinical Data Graphics

forcing the line of identity to have a 45° slope from corner to corner. The third graph 
in Fig.  1.4  implements these principles.  

    1.4.2   Categorical Variables 

 Showing categorical data in a graph poses a particular challenge: if there is no natu-
ral order in the groups, one must de fi ne the order such that the data can be shown 
along axes that possess an order. Thinking carefully about such ordering can sub-
stantially facilitate the reading of the graph. 

 Figure  1.5  shows different ordering of the event frequency. Note that the relative 
difference between the two groups is another variable that is used for sorting the cat-
egories but not plotted. Risk difference might be more suitable for small numbers of 
observations, avoiding division by 0 and misleading values due to low event rates.   

    1.4.3   Crossover Studies 

 Sometimes, the same patient undergoes different treatments (such as two treatments 
to be compared or the same treatment in fed and fasted status). Naturally, one can 
either compare the data observed in the same patients to one another or the data in 
the same group. In the resulting graph, Fig.  1.6 , the left-hand side graph serves well 
for comparing the two states of the patients, whereas the right-hand side graph 

  Fig. 1.4    Comparing pairs of data.  Left : observed value versus predicted value ( top ) and vice versa 
( bottom ) with aspect ratios not equal to 1.  Right : same graph with an aspect ratio of 1. The  line  
represents the line of identity,  y  =  x        
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serves better to compare pro fi les within each group. Bock  (  2001  )  discusses a variety 
of graphs for single patient results in crossover studies.   

    1.4.4   Change from Baseline 

 Changes such as the change from baseline in blood pressure or some other clinical 
measure are often shown as simple pro fi le: one polygon per individual. However, 
even simple displays like these can be created in different ways, making the intended 
perception more or less easy. Following the idea of Trellis™/lattice displays, there 
should be a common axis for all groups in the data. Furthermore, changes of con-
tinuous variables can be either positive (the value is above the baseline value) or 
negative (the value is below the baseline value). The choice of the  y -axis range 
in fl uences the perception of the change pattern as shown in Fig.  1.7 .  

 On the left, the data are simply shown with default plot options, in particular a 
 y -axis range that is determined by the data range. On the right, the common  y -axis 

  Fig. 1.6    Crossover data.  Left : categorized by subject ID.  Right : categorized by food status       
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  Fig. 1.5    Frequency of adverse events for placebo and active treatment in different sorting orders       
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is maintained but two elements were modi fi ed to facilitate judgment about the 
change from baseline: the  y -axis range is symmetric around 0 such that the point of 
no change, 0, comes to lie in the middle of the graph. All data in the upper half cor-
respond to positive change from baseline, all data in the lower half correspond to 
negative change from baseline. The direction of the change can thus be read off 
without even looking at the  y -axis. The human eye is even able to roughly judge 
whether there is more data with positive or negative change from baseline. 

 Further enhancements include a horizontal line at the point of no change from 
baseline and vertical light gray lines to facilitate reading the numerical values off 
the  x -axis.  

    1.4.5   Extreme Values 

 Extreme values or outliers pose challenges to many techniques. Simple summary sta-
tistics are heavily in fl uenced, i.e., the mean and the standard deviation change sub-
stantially by inclusion or omission of the extreme values. Model-based analyses can 
yield very different results and graphs can be distorted because of visual effects. 

 Figure  1.8  illustrates several problems: 99 of the 100 observations occupy about 
1/10 of the area of the graph. 9/10 of the area of the graph is “occupied” by a single 
observation in the lower right corner. That single observation prevents seeing any 
structure in the bulk of the data simply because the space allocated is too small. 
Furthermore, a linear regression line is added (thick red line) and the “ fi t” is heavily 
in fl uenced by that single extreme value. If that value is excluded from the data set, 
the  fi t corresponds to the thin red line.  

 Possible solutions for such situations include use of logarithmic scales, trunca-
tion, and placement of the extreme value at the truncation limits, or even omission 
of the single value.  

  Fig. 1.7    Change from baseline. The  right graph  improves the default graph by use of a symmetric 
 y -axis and auxiliary lines to facilitate reading       
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    1.4.6   Higher Dimensions 

 Using more than two dimensions on a screen or a paper implies the creation of an 
illusion. An imaginary position of the observer is de fi ned, the projection of the 
three-dimensional graph into two dimensions is derived, and the graph is shown in 
two dimensions. Such manipulations can create highly irritating or even misleading 
results. The misleading enhancement of more than two dimensions in graphs has 
been noted as early as 1951 by Haemer  (  1951  ) . 

 Consider the simple example of a three-dimensional bar chart in Fig.  1.9  (Krause 
 2009  , Robbins  2009 ) . The four bars on the left correspond to four numbers, 10, 20, 
30, and 40. However, looking at the horizontal lines at the rear wall of the bars and 
the  y -axis on the left, the bars are all clearly below the lines that correspond to their 
values. The graph is correct perspective-wise. Just the reader is misled because one 
tends to forget about the third dimension when looking at “simple” bars.  

 The most important part of this  fi gure is the distance between a bar and the rear 
wall. Since the surface that the bars are placed on is tilted toward the reader, the bar 
must be projected onto the rear wall to read off the values correctly. The graph on 
the right-hand side shows how to read off the value: by “shoving” the bar against the 
rear wall—toward the back and up the slope! 

 Figure  1.10  shows an even more extreme graph: the bars have become cylinders 
placed on a tilted surface. Can one judge the values or compare the heights of two 
bars? Not to mention that the order of the data plays a role: smaller bars can easily 
disappear behind larger ones. The graph on the right shows exactly the same data, 
possibly less “fancy” but much easier to interpret.  

 The settings of both  fi gures are the default settings in a popular spreadsheet pack-
age. Previous versions allowed adding the raw data as a table to the 3D display, 
suggesting that the graph is not of much use. 

  Fig. 1.8    A single extreme value distorts the visualization.  Left : all data.  Right : extreme value 
truncated with values indicated (70, 67)       
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 The criticism does not necessarily apply to all three-dimensional displays. For 
example, if there is a correlation between two variables that in fl uence a third, a 
surface can be of help to illustrate the structure. Figure  1.11  shows how the amount 
of air a healthy male person can exhale in 1 s (FEV 

1 
) is a function of age and height 

(following the formula by Morris et al.  1971  ) . The particular values of age and 
height are not relevant such that the  x - and  y -axes are omitted. Just the range is indi-
cated in the label. The dependent variable, FEV

1
, is mapped into the  z -dimension 

and the reader looks at the graph from above. The values of FEV 
1 
 are coded as 

heights above the age-height plane and as colors.  
 Starting at the two extremes, one can see that the largest FEV 

1 
 values are observed 

in the young and tall. The smallest values are observed in the old and short. 

  Fig. 1.10    A three-dimensional matrix arrangement of three-dimensional columns ( left ) and an 
alternative two-dimensional display of the same data ( right )       

  Fig. 1.9    A three-dimensional bar chart.  Right : reading of a value       
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 For a  fi xed age, one can see the increase of FEV 
1 
 with height. For a  fi xed body 

height, one can see the decrease in FEV 
1 
 with age. The values can be read with 

suf fi cient accuracy: a male person, 20 years of age and 2 m tall, exhales about 5.5 L 
in 1 s. That value will decrease to about 3.5–4 L at the age of 70. 

 If the particular values are of interest, one can slice the surface into two dimen-
sions, plotting the parallel lines of the wireframe. The decrease of FEV 

1 
 with age for 

different body heights, slicing the surface in the height dimension, is shown in 
Fig.  1.11b .   

    1.5   Examples of Applications 

 This section shows inspirational graphs for particular types of data and data analysis 
for dose/concentration-response, biomarker, and safety data. 

    1.5.1   Integration of Dose–Response and PK/PD 

 Consider a clinical study where patients were administered different doses of a 
drug, the drug concentration was measured in the blood stream, and the clinical 
response of interest was measured. Each patient contributes one record (the data are 
simulated). An Emax-type model was  fi t to the data to characterize the concentra-
tion-response (pharmacokinetic/pharmacodynamic or PK/PD) relationship. 

 Of interest is the PK/PD relationship but also the range of drug concentrations 
obtained with the different doses: what is the range or variability of concentrations 
and how much do the concentrations overlay for the different doses? 

 Figure  1.12  shows the information. The PK/PD relationship is shown in the top 
graph, the  E  

max
  model  fi t with the associated 90% con fi dence interval is overlaid and 

the concentrations that achieve 20, 50, and 80% of the maximally achievable effect, 

  Fig. 1.11    Forced exhaled volume of air in 1 s (FEV 
1 
) as a function of age and body weight, shown 

as surface ( left ) and as two-dimensional slices through the surface ( right )       
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 E  
max

 , are indicated by lines that enable reading off the numerical values for the con-
centrations and the associated effects. Underneath, the relations between doses and 
concentrations are shown as box-and-whisker plots.  

 Note that the  x -axes of the two graphs are aligned to allow cross-referencing 
between the two graphs. Note also that the median concentrations per dose group 
in the lower graph are indicated as colored symbols. The same colored symbols 
are used in the top graph to indicate the dose group for each patient. That asso-
ciation eliminates the need for a legend in this  fi gure: it is obvious from the 
graph.  

    1.5.2   A Six-Dimensional Scatterplot of Biomarker Data 

 Figure  1.13  shows how quite complex information can be condensed into a graph 
that is easily understood. In this particular example, the data are displayed in a form 

  Fig. 1.12    Clinical response versus drug concentration, model  fi t, and con fi dence intervals ( top ). 
Dose versus drug concentration range at trough at steady state ( bottom ). Dose groups are indicated 
by  symbols  and  colors        
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that made the construction of a statistical model obsolete since the clients were able 
to derive the results from the display of the raw data.  

 The data originate from a single patient. The patient is identi fi ed by the number 
in the panel strip above the graph. The observation period lasted for about 180 days. 
The drug doses are indicated by the blue vertical lines at the bottom. Several dose 
adjustments become apparent. 

 Blood samples were taken and the concentration of a marker in the blood was 
measured at various time points. The normal range is indicated by black horizontal 
lines. 

 The patient’s well-being was measured at each visit: it was assessed whether the 
disease was progressing, stable, or improving. The disease status is associated with an 
intuitive color scheme: red (warning color) indicates progressive disease, yellow indi-
cates stable disease, and green (positive association) indicates an improving patient 
status. The graph can do without a legend because the color scheme is intuitive. 

 For gray scale prints, the clinical response is also mapped into the line widths: 
the thicker the line, the more positive the response. 

 One could argue that in total this scatterplot has six dimensions: the patient num-
ber, the time axis, the blood concentration of the marker, the normal range, the 
patient’s disease status, and the drug dosing history. 

 Similar graphs can be developed for model  fi ts, for example originating from 
population PK/PD modeling: the data can be shown in addition to the  fi ts (popula-
tion and individual  fi t), and if further information is available that changes over 
time, it might as well be incorporated by means of color or line widths. Further 
characteristics might also be marked in the graph: outliers can be circled and trough 
measurements can be shown as the letter “T”.  

  Fig. 1.13    A biomarker over time. Clinical response is coded by  color  and  line width . Normal 
ranges are indicated as  horizontal lines . Dosing history is indicated  below the pro fi le        
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    1.5.3   Safety Data: Kaplan–Meier Plots 

 Even if the frequency of the adverse event is similar between treatments, it might 
well be that they occur at different points in time. If it is of interest when safety 
problems occur, survival plots such as Kaplan–Meier curves can be used to show, 
for a given time point after start of treatment, how many of the subjects on treatment 
are still without adverse event. Figure  1.14  shows such a graph.    

    1.6   Discussion and Conclusion 

 Graphical tools are basically available since the computer became widespread. Even 
before computers were available for the creation of graphics, misleading graphics were 
discussed in the 1940s and 1950s (Haemer  1947,   1951  ) . Graphical and exploratory data 
analysis concepts go back at least to the 1970s when Tukey  (  1977  )  published his land-
mark book. Cleveland and Tufte since the 1990s (Cleveland  1993 , Tufte  2002, 2007  )  
established general principles for visualization of quantitative information. 

 Tufte in fact made the distinction between graphics and text less rigid: he intro-
duced tables in the form of semi-graphics layout with the famous “estimates of % 
survival rates” (Tufte  2007 , pp. 174–176). A further step toward integrating con-
cise graphics into  fl oating text to replace stand-alone  fi gures is taken by Tufte’s 
“sparklines” or “intense, simple, word-sized graphics” (Tufte  2007 , pp. 47–63) 
that he illustrates with medical record data. The R package YaleToolkit allows the 
creation of sparklines in R (Emerson and Green  2012 ). 

  Fig. 1.14    Kaplan–Meier (survival) plots for the occurrence of the  fi rst adverse event in each 
patient       
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 Software to graph data has become widely available with popular of fi ce soft-
ware, and statistical software provides graphics for several decades. Software like R 
is even available freely. 

 Many industries have discovered graphics as powerful tools to detect patterns 
easily. The pharmaceutical industry is still a fairly conservative industry despite 
mounting pressure to analyze data more thoroughly. In particular in clinical phases 
II and III, analysis plans are written and computer programs are  fi nalized before the 
data become available. Once the database is locked, results are generated by run-
ning the programs and controlling the quality of the output. The primary goal is 
frequently to meet the strict timelines. 

 Creating useful graphs is sometimes only possible after having seen the data, 
such that more time is required to gain the necessary insights. This creates a dilemma 
for the analysts who are required to report the results in time. Recently, various 
initiatives were started to standardize graphs and de fi ne them up-front. In particular, 
automated or semi-automated reporting tools have become popular where a report 
template is de fi ned and once the data become available, tables and graphs are cre-
ated automatically. 

 Such rigorous planning procedures can pose a hurdle for data-driven analyses. 
The same holds for tables and listings, but it seems that a graph easily reveals its 
usefulness—or uselessness—whereas a table can frequently hide that it could have 
been done better. Tufte  (  2007  )  shows an impressive example of how to improve a 
table of cancer survival rates (Tufte,  2007 , pp. 47–63). As a consequence, tables are 
produced in all sorts of varieties and combinations and thrown at medical reviewers, 
statisticians, safety boards, and other parties. The timelines are kept, even if a signal 
is missed. 

 This paper is aimed at demonstrating the usefulness of graphics to detect signals 
early in clinical drug development. Some steps were taken by the authorities to 
analyze safety data more rigorously, and graphics have proven to be invaluable tools 
for such analyses. 

 Thus, recent steps lead in the right direction but there is still much to be improved 
to learn more ef fi ciently from the large data sets generated in clinical studies.      
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  Abstract   Life Sciences data are complex. In the pharmaceutical industry, vast 
quantities of patient-level safety and ef fi cacy data are collected, managed, analyzed, 
and reported in bringing new medicines to market. Clinical trial operations data, 
involving sites, investigators, milestones, and budgets are similarly complex, espe-
cially in larger companies and contract research organizations where many trials are 
managed simultaneously. Upstream of this, much biology and chemistry data are 
generated, screened, and modeled to characterize targets and identify new molecu-
lar entities. Downstream of research and development there are many large patient-
level and provider-level databases analyzed by pharmaceutical companies, industry 
consortia and regulators to understand real world safety and ef fi cacy of therapies, 
and by commercial organizations to optimize sales and marketing efforts. Similar 
large and complex insurance claims and medical records databases are analyzed by 
healthcare organizations to manage their business and provide ef fi cient and effec-
tive healthcare.      

 This chapter provides a review of exploratory and reporting graphics in the life 
sciences industry. Graphics principles are outlined in context; and pointers to other 
chapters in the book are provided along the way. 
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    2.1   Introduction 

 Graphics promote scienti fi c insights, better business, and more effective cross- 
functional communications. In pharmaceutical clinical development, report-style 
graphics are used in scienti fi c presentations and publications, clinical study reports 
and regulatory submissions; while graphical exploratory analysis is widely used for 
instream data review, medical monitoring, and safety assessment.

  Exploratory and reporting graphics are quite different. Report graphics typically 
need to be self-contained and documented with source data and output  fi le refer-
ences. They stand as static summaries of an analysis and need to be readily repro-
ducible in the future.  

 Exploratory graphics are typically interactive and not self-contained in a docu-
ment. They draw upon context and environment, where the user explores points/
regions of graphs with brushing and drill-down through a sequence of visualiza-
tions; to derive insights and understand root causes of scienti fi c and business phe-
nomena. In pharmaceutical clinical development, this enables viewing of population 
trends, subpopulation effects, and detailed exploration of exceptional individual 
subjects, sites, and investigators. In pharmaceutical sales and marketing, explor-
atory graphics enable analysis of products across markets, providers, and healthcare 
systems. Exploratory graphics enable management by exception, highlighting 
insights in to the unknown that drive rapid progression of science and business. 

 This chapter provides a review of exploratory and reporting graphics in the life 
sciences industry. Several use cases are included as case studies including (a) graph-
ical analysis of a phase 2 clinical trial that was used by the CDISC ADaM (  http://
www.cdisc.org    ) subcommittee in a mock submission to the FDA (Food and Drug 
Administration), (b) analysis of a collection of clinical trials from an operational 
perspective, (c) analysis of pharmaceutical sales and marketing data, and (d) exam-
ples from life science companies specializing in data management, analysis, and 
reporting services. Graphics principles are outlined in context; and pointers to other 
chapters in the book are provided along the way. Given the emphasis on reporting 
graphics in other chapters, we focus on exploratory graphics in this chapter.  

    2.2   Pharmaceutical Research and Development: 
Context of Chapters in This Book 

 Pharmaceutical research and development is a l   engthy and complex process, as 
outlined in Fig.  2.1 . During drug discovery, tens of thousands of compounds are 
typically explored in context of a disease pathway and a set of potential targets. 
Complex chemistry and biology experiments and knowledge are brought to bear, 
and innovative analysis and visualization is used to uncover safety and ef fi cacy 
biomarkers and effects Zucknick et al. (Chap.   8    ) present a variety of effective report 
graphics from the discovery process including the heatmap (Fig.   8.4    ) and principal 
component biplots (Fig.   8.7    ) that display biomarker-de fi ned subpopulations 
identi fi ed via unsupervised learning methods. They also show the utility of explor-

http://www.cdisc.org
http://www.cdisc.org
http://dx.doi.org/10.1007/978-1-4614-5329-1_8
http://dx.doi.org/10.1007/978-1-4614-5329-1_8#Fig0084
http://dx.doi.org/10.1007/978-1-4614-5329-1_8#Fig0087
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atory graphics (their Figs.   8.17     and   8.18    ) in discovery research, with drill-down 
from the biomarker-de fi ned subpopulations to survival charts of individual subjects 
from associated clinical data.  

 As 10,000 compounds in discovery funnel into approximately 200 compounds 
entering preclinical research, a large set of in vitro and in vivo experiments, models, 
and simulations are performed to understand drug metabolism and pharmacokinet-
ics (DMPK). This work culminates in  fi ling of an IND (investigational new drug) 
submission to regulatory agencies such as the FDA. The approval of an IND  fi ling 
enables the drug to be studied in humans, and this DMPK work continues as the 
drug enters early-phase clinical trials. Roosen et al. (Chap.   6    ) present a set of inno-
vative report graphics on early-phase clinical data highlighting interesting subject 
responses in context of experimental subpopulations, indicated through differently 
styled lines and shaded regions (Figs.   6.7     and   6.11    ). Krause (Chap.   1    ) illustrates the 
creative use of Trellis displays in report graphics (Cleveland  1993  )  with a time 
course presentation of early-phase subject-level biomarker data (Fig.   1.13    ) incorpo-
rating clinical response via color and dosing as a sub-panel along the bottom of the 
subject panels. Girgis and Mohanty (Chap.   13    ) give a modeling perspective on QT 
prolongation based on a three-way crossover study in 40 healthy subjects. 

 From the thousands of compounds explored in discovery only a handful make it 
into late-phase clinical trials. These compounds have shown ef fi cacy and dose–
response in early-phase trials and have passed numerous safety tests in small human 
populations and through biomarker assessments. Late-phase trials involve much 
larger populations and compounds are studied extensively through many years of 
research, comprising data from many dimensions, e.g., ef fi cacy endpoint measure-
ments; safety data including adverse events, labs, ECG and vital sign measures; and 
medical history and concomitant medications. Exploratory graphics play a crucial 
role in the analysis and communication of safety data during the late-phase trials. 

  Fig. 2.1    Pharmaceutical Research and Development Funnel, showing four stages: Drug Discovery, 
Preclinical Research, Clinical Trials (Phases 1, 2, 3), and FDA Review (Source PhRMA)       

 

http://dx.doi.org/10.1007/978-1-4614-5329-1_8#Fig00817
http://dx.doi.org/10.1007/978-1-4614-5329-1_8#Fig00818
http://dx.doi.org/10.1007/978-1-4614-5329-1_6
http://dx.doi.org/10.1007/978-1-4614-5329-1_6#Fig0067
http://dx.doi.org/10.1007/978-1-4614-5329-1_6#Fig00611
http://dx.doi.org/10.1007/978-1-4614-5329-1_1
http://dx.doi.org/10.1007/978-1-4614-5329-1_1#Fig00113
http://dx.doi.org/10.1007/978-1-4614-5329-1_13
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Report graphics similarly play a key role in scienti fi c presentations, publications, 
clinical study reports, and regulatory submissions. 

 Safety effects are typically studied in at least two buckets, sometimes referred to 
as targeted and designated safety effects. Targeted effects involve safety issues that 
are thought to be related to the drug class and/or the disease pathway and are often 
pre-speci fi ed for detailed analysis. The risk of these targeted events is typically 
tracked over the course of the studies (e.g., Xia et al.  2011 ). Designated effects are 
mandated for study by regulatory agencies. These events are often discussed as 
adverse events of special interest (Crowe et al.  2009 , CIOMS, 2005). In particular, 
cardiac and liver effects are front of mind and covered by at least two FDA 
guidances: the E14 guidance for cardiac effects and QT prolongation; and the DILI 
guidance for drug induced liver injury (Food and Drug Administration,  2005 ,  2009 ). 
The SPERT working group suggests a 3-tier system for analyzing adverse events: 

Tier 1: Prespeci fi ed detailed analysis and hypothesis testing; these overlap with • 
the AESI’s and designated medical events
Tier 2: Signal detection among common events• 
Tier 3: Descriptive analysis of infrequent adverse events • 

 Anziano (Chap.   18    ) presents a number of exploratory graphics for late-phase 
assessment of cardiac side effects; and Tornoe (Chap.   16    ) provides a focused analysis 
of QT prolongation according to the E14 guidance. Tornoe’s report graphics commu-
nicate salient information very effectively; see, for example Fig.   16.4    , showing QT v. 
RR with con fi dence intervals and bands. Merz (Chap.   7    ) provides a detailed review of 
liver lab analysis, including an innovative set of interactive exploratory graphics; e.g., 
Fig.   7.9     that uses symbol size and color to show time sequence detail of liver enzyme 
elevations in a modi fi ed eDISH plot (evaluation of drug-induced serious hepatotoxic-
ity); and Figs.   7.17     and   7.18     showing relationships between elevated liver enzymes 
with concomitant medications and adverse events. Austin (Chap.   14    ) extends the 
cross-data-domain analysis with detailed patient-level report graphics including the 
excellent patient-pro fi le (Fig.   14.9    ) covering multiple data domains (drug dose, AEs, 
Labs, Conmeds). Several other chapters cover graphical analysis of safety effects in 
late-phase trials: Amit and Lane (Chap.   17    ) provide a comprehensive review of report 
graphics across safety data domains; and Southworth (Chap.   10    ) provides an explor-
atory analysis combining graphs and tables with drill-down to the subject level. 

 Miskell et al. (Chap.   5    ), Looby (Chap.   11    ), Wang and Mohanty (Chap.   12    ) and 
Gilder (Chap.   9    ) provide reviews of report graphics for metabolic, pulmonology, 
neurology, and oncology therapy areas respectively. Gilder’s chapter provides 
graphical analysis for the entire development lifecycle including adaptive designs 
(Figs.   9.3     and   9.4    ), interim analysis (Fig.   9.5    ), delta plots for  fi nal analysis (Figs.   9.6     
and   9.7    ), forest plots from meta-analyses (Figs.   9.8     and   9.9    ), and innovative survival 
and event graphics (Figs.   9.11    ,   9.12    ,   9.13    ,   9.14    ,   9.15    ,   9.16    ,   9.17    ). 

 Snyder (Chap.   19    ) provides an overview of exploratory analysis for both clinical and 
trial operations data, especially important for late-stage clinical trials. From an opera-
tional perspective, enrolment, milestones, and budget are critical components for track-
ing progress of clinical trials. Snyder’s Figs.   19.7    ,   19.8    ,   19.9    ,   19.10     provide informative 
views on enrolment, and Figs.   19.11     and   19.12     show data management milestones. 
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 There are several chapters on post-marketing graphical analyses. Lane et al. 
(Chap.   15    ) describe report graphics for meta-analysis including various Forest 
plots (Figs.   15.1    ,   15.2    ,   15.3    ) and funnel plots (Figs.   15.4    ,   15.5    ,   15.6    ). Ryan (Chap. 
  21    ) provides an exploratory graphical analysis of insurance claims data that high-
lights safety effects through patient-pro fi les (e.g., Fig.   21.4    ), and treemaps of drug 
prevalence (e.g., Fig.   21.6    ). Weerahandi et al. (Chap.   20    ) provide an innovative 
exploratory analysis of sales and marketing data including optimization of  fi eld 
force effectiveness (Fig.   20.10    ) and interactive maps showing lift in prescriptions 
and pro fi t (Fig.   20.12    ). 

 Our chapter attempts to complement the excellent set of graphical analyses and 
case studies outlined above, focusing on exploratory graphics for real-time insights 
that drive scienti fi c understanding and business value across a range of use cases.  

    2.3   Graphical Analysis of Clinical Data 

 Large clinical trials involve collection, management, analysis, and reporting on vast 
quantities of patient-level safety and ef fi cacy data from case report forms, interac-
tive voice/web response systems, central and local laboratories, and imaging sys-
tems. Systems for coding/decoding adverse events (e.g., MedDRA) and concomitant 
medications (e.g., WHODD) are utilized; and adoption of CDISC standards, from 
CDASH to SDTM to ADaM (  http://www.cdisc.org    ), enables consistent data ele-
ments for analysis. These days, most of the data  fl ow electronically and fairly 
ef fi ciently from study and protocol design, electronic data capture, data cleaning, 
and source data veri fi cation, into analysis and reporting systems. 

 There are several stages in the evolution of clinical data; and multiple personas 
and functional areas that are intimately engaged with the data. Graphical analysis 
plays a vital role throughout. Study managers play a somewhat pivotal role, interact-
ing with data managers re. data cleaning, with clinicians re. scienti fi c and medical 
monitoring, and with clinical research associates (CRAs) re. site monitoring. 

 Study managers examine the raw data, from eCRFs (electronic case report 
forms), central and local labs, to ensure they make clinical sense. For example they 
may review sequential lab measures for consistency, review protocol adherence, and 
treatment discontinuations. They may make operational adjustments and dispatch 
CRAs to sites for source data veri fi cation or site training; or instruct clinical data 
managers to initiate a query on source systems. They closely monitor protocol 
adherence and deviations by site and region; looking for missing data, protecting 
endpoints, and enabling subsequent studies to bene fi t from patterns observed. 

 Clinicians typically have a deeper level of medical insight and review raw data 
and downstream data, e.g., CDISC SDTM and ADaM-like constructs, as prepared 
by data managers and programmers. They also monitor and review nuances of pro-
tocols and statistical analysis plans (SAPs) with statisticians. For example, clini-
cians may review concomitant medication data for a drug that should have been 
prescribed to treat an observed adverse event (AE). 

 Data managers do their own data review and clean/manage the data from raw 
through SDTM and ADaM-like constructs in a fundamental manner, handling data 
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queries, safety reconciliation, edit checks, and discrepancies analysis, e.g., ensuring 
there are matching AEs when a subject shows discontinuation for an AE. 
Statisticians work primarily with downstream data (SDTM and ADaM-like) and 
work closely with clinicians to explore, review, analyze, and report on the blinded 
and unblinded data. Programmers play an important role in data provisioning, ETL 
and analysis; transforming raw data into the derived SDTM and ADaM-like  fi elds 
required for analysis, review, and reporting. 

 We illustrate some of the data review and graphical exploratory analyses described 
above using data from the CDISC SDTM/ADaM Pilot Project (  http://www.cdisc.
org/content1037    ), originally from a prospective, randomized, multi-center, double 
blind, placebo-controlled, parallel-group study of the Lilly drug Xanomeline. The 
trial was on a population of patients with probable mild to moderate Alzheimer’s 
disease and used a three-arm, placebo-controlled design of 26 weeks duration. The 
objectives of the study were to evaluate the ef fi cacy and safety of two doses of 
active drug as compared to placebo delivered transdermally. 

 Figure  2.2  shows the breakdown of subjects in the study by sex, age, race, and 
treatment (unblinded). Caucasian subjects that failed screening are marked in green 
(by mouse), enabling drill-down to other visualizations for this subpopulation. Similar 
views may be achieved on raw data, before unblinding. The  Filters  on the right enable 
rapid subsetting to subpopulations, and changes to graphic style through drag and 
drop operations. For example, one may uncheck sex, race or treatment components or 
modify colors by dragging a component of the  fi lter panel onto a graph. 

 Figure  2.3  shows disposition by treatment and attrition of subjects over time. 
Note the large group of subjects in low and high dose who discontinued due to 
adverse events (red band in the stacked barchart).   

  Fig. 2.2    Exploratory Analysis of Xanomeline study: Number of subjects in trial by Sex, Race, 
Age, and Treatment (unblinded). Caucasian subjects who failed screening are marked ( green ); 
enabling drill-down to other visualizations for this marked subpopulation. The  fi lter panel on the 
right hand side enables rapid  fi ltering to subpopulations and changes to graphic style and elements 
through drag and drop operations       
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 Figures  2.4  and  2.5  show a drill-down sequence highlighting subjects whose liver 
labs were elevated during the trial. Figure  2.4  is a Trellised (Cleveland  1993  )  shift 
plot (Amit et al.  2008  )  for the four liver labs, ALP, ALT, AST, and BILIRUBIN 
from left to right. X-axis is the baseline value and Y-axis is maximum on-treatment 
value; all data have been normalized to upper limit of normal (/ULN). Subjects in 
the top left corner of each Trellis panel have been marked (via mouse) in green; 
these subjects had baseline values below 2× ULN (upper limit of normal) and 
maximum on-therapy values above 2× ULN. Once these subjects are marked, they 
form a subpopulation and the underlying subject list may then be passed across 
different graphics.   

  Fig. 2.4    Exploratory analysis of Xanomeline study: shift plot of liver lab values       

  Fig. 2.3    Exploratory analysis of Xanomeline study: subject disposition and attrition       
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 Figure  2.5  shows a line plot of all four liver labs normalized to their upper limits 
of normal (/ULN) for the subject selected in the  Select Subject  list on the left, that 
has been populated from the marking on the shift plots. The normalized liver lab 
values for the week 2 visit are highlighted on the line plot and these values are listed 
in the  Details-on-Demand  table below. The  Filters  on the right show the active labs 
on the plot—these can be modi fi ed by checkbox operations. Note that this subject 
has elevated transaminase and bilirubin values above 3× ULN and probably should 
have been withdrawn from the study. The  Select Subject  list on the left shows that 
this is a placebo subject; however, this drill-down graphics sequence may be done 
on blinded data equally easily. 

 The drill-down in Figs.  2.4  and  2.5  produces time sequences of all (liver) lab 
elevations. This is clinically important as discussed by Merz (Chap.   7    ). The FDA 
guidance (Drug Administration  2005  )  speci fi es that bilirubin elevations above 2× 
upper limit of normal with 30 days of an elevation of AST/ALT above 3× upper 
limit of normal are of critical concern, based on Zimmerman’s landmark work 
(Zimmerman  1978  ) . 

 Figures  2.6 ,  2.7 , and  2.8  show a drill-down sequence highlighting subjects with 
a treatment-related adverse event, pruritus. Figure  2.6  shows results of an adverse 
event treatment-emergence analysis using a bagging model, (Southworth & 
O’Connell  2009  ) . The left-hand panel shows subject counts of adverse events sorted 
in order of count and colored by treatment. Three adverse events appear to be 
treatment-emergent, each related to skin irritation (right-hand panel). This is not 
surprising given that the treatment was applied transdermally. Subjects in the high 
dose with pruritus are marked on the left hand panel for drill-down to Fig.  2.7 ; and 
the Tooltip (black box above the marked group) describes this subgroup. Note that 
as in all displays, the  Filters  on the right can be used to  fi lter events (e.g., to leave 

  Fig. 2.5    Exploratory analysis of Xanomeline study: drill-down from shift plot of liver lab values 
(subjects marked green in Fig.  2.4 ) to normalized line plot of all four liver labs       
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out mild events, or events with causality = none), or to color or Trellis the graphs 
with drag-drop operations.    

 Figure  2.7  shows a patient-pro fi le for an individual subject highlighted at the top 
of the  Select Subject  list on the left. The patient-pro fi le includes dosing, concomi-
tant medications, adverse events, and labs on a common x-axis timeline, days in 

  Fig. 2.6    Exploratory analysis of Xanomeline study: adverse event treatment-emergence analysis 
using bagging model (Southworth and O’Connell  2009  )        

  Fig. 2.7    Exploratory analysis of Xanomeline study: patient-pro fi le is shown for subject high-
lighted at the top of the Select Subject list on  left . The patient-pro fi le includes dosing, concomitant 
medications, adverse events, and labs on a common  x -axis timeline, days in study. Elevated labs 
are shown in  red symbols  and adverse events as  blue, yellow and red for mild, moderate, and severe  
AEs       
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study. Elevated labs are shown in red symbols and adverse events as blue, yellow, 
and red for mild, moderate, and severe AEs. Note the moderate erythema (yellow 
symbol) at the same time as the initial dose of Xanomeline. 

 The patient-pro fi le in Fig.  2.7  can be readily modi fi ed using the  Filters  on the 
right, e.g., to add or subtract event types (adverse event, conmed, lab, dosing); or to 
add/subtract individual lab tests. Liver and kidney labs are included in Fig.  2.7 , and 
these checks in the  Filter Panel  are readily modi fi ed. 

 The subject highlighted in Fig.  2.7  shows elevation of some of the (liver) labs in the 
patient-pro fi le. A time-sequenced line plot of these labs by visit is shown in Fig.  2.8 . 
The Bilirubin points on the graph are highlighted and values are shown in the table at 
the bottom of the display. 

 The drill-down through Figs.  2.6 ,  2.7 ,  2.8  is an interactive extension of the report 
version of the patient-pro fi le described by Austin (Chap.   14    ). Austin does an amaz-
ing job to  fi t maximal information on multiple data domains on a single graph/page; 
but the page does have  fi nite real-estate! In the exploratory analysis setting we are 
not constrained by the need to produce graphics for inclusion in a (paper) report. 
This allows the  fl exible drill-down and interactivity in the multidomain patient 
pro fi ling. 

 The exploratory analysis above is done on unblinded CDISC ADaM data from 
the CDISC SDTM/ADaM Pilot Project (  http://www.cdisc.org/content1037    ). Similar 
interactive graphical analyses may be done on blinded data—raw and SDTM-
like—to address the needs of study managers, clinical research associates, data 
managers, clinicians, statisticians, and programmers as described above.  

  Fig. 2.8    Exploratory analysis of Xanomeline study: time-sequenced line plot for elevated labs 
identi fi ed in Fig.  2.7        
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    2.4   Graphical Analysis of Operations Data 

 The management of a large clinical development program typically includes graphical 
dashboarding of enrolment, milestones, and budget. Key Performance Indicator 
metrics (KPIs) for milestones can relate to speci fi c stages of the trial, e.g., Screening to 
First Visit, First Patient In (FPI) to Last Patient In (LPI), Last Patient Last Visit (LPLV) 
to Study Close (SC); or to data cleaning cycle status, e.g., query opened to answered or 
source data veri fi cation coverage (SDV). Consumers of the dashboards include study 
managers, medical directors, data managers, and clinical research associates. 

 Figure  2.9  shows planned versus actual number of subjects successfully complet-
ing the screening visit for a collection of clinical trials in progress. The graph sym-
bols are colored according to % of plan and sized by the number of sites initiated. 
The axes can be readily changed to any enrolment or milestone metric by dragging 
an appropriate  fi lter device from the  Filter Panel  on to the axis labels. For example, 
the graph is readily con fi gured to planned versus actual subjects who have entered 
treatment by dragging  fi lter devices for these metrics on to the graph.  

 Figure  2.10  shows various key milestone metrics including Screening to First 
Visit, First Patient In (FPI) to Last Patient In (LPI), Last Patient Last Visit (LPLV) 
to Study Close (SC). The trial in focus may be selected from the panel of trials on 
the left of the visual or from another graph, e.g., from Fig.  2.9 .  

  Fig. 2.9    Exploratory analysis of operations data: planned versus actual number of subjects enter-
ing screening. The graph symbols are colored according to % of plan and sized by the number of 
sites initiated. Trials below the line are below plan on screening. Site details for the trial marked 
are shown on the right, sorted to show sites that are most behind plan. Metadata on the marked trial 
are shown on the tooltip. Axes on the graph can be recon fi gured to show other planned versus 
actual metrics by dragging appropriate  fi lter devices from the right hand panel on to the axis 
labels       
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 In large trials, it is helpful to be able to predict enrolment, especially the time of 
total enrolment as determined by sample size required to achieve designated power 
in the primary endpoint analysis. Since functional area resources/capacity typically 
depend on enrolment (e.g., more statistics resources are required early and late in the 
life cycle), such enrolment prediction enables planning of resources required to man-
age a collection of trials. For pharmaceutical companies, this translates in to head 
count required in functional areas and contract research organization (CRO) con-
tracts/contractors needed to manage the portfolio of trials in clincial development. 

 Figure  2.11  shows a 95% prediction interval for the end of a study with 1,000 
subjects. The prediction was done at 287 days into the trial when enrolment was at 
approx. 200 subjects. The predictions are based on a model that assumes a Poisson 
process for site initiation and another Poisson process for recruitment within each 
site. The rate of the Poisson process for site initiation is allowed to vary by country, 
with a cap on planned maximum sites per country. The rate of the Poisson process 
for recruitment within sites is also allowed to vary by country, based on observed 
country recruitment. This is an extension of work done by Anisimov and Federov 
( 2007  )  who assumed Poisson recruitment at individual sites with rate parameters 
drawn from a Gamma distribution. We have found that recruitment rates typically 
do not follow a Gamma distribution very well, hence our more empirical-based 
approach. In cases where there is little enrolment, there is likely some utility in the 
Gamma prior distribution. The enrolment and end-of-study predictions in Fig.  2.11  
are based on 10,000 simulations from the appropriate nested Poisson processes.  

  Fig. 2.10    Exploratory analysis of operations data: Planned ( blue ) versus actual ( red ) milestones 
(see text for milestone abbreviations) for selected trial (CT10033). The top graph shows milestone 
comparison across the trial; the Trellis graph below shows milestones for individual sites. The 
table at the bottom provides dates for planned and actual milestones. The trial may be selected 
from the panel on the left or from markings on other graphs, e.g., Fig.  2.9        
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 Snyder (Chap. 19) provides additional graphical analysis of operations data that 
show progress in data management and status of the clinical data lifecycle. This 
includes graphical presentations of query aging by query type (edit check, raised 
through review) and data veri fi cation/monitoring status.  

    2.5   Graphical Analysis of Sales and Marketing Data 

 Weerahandi et al. (Chap. 20) describe exploratory analysis of sales and marketing 
data including optimization of  fi eld force effectiveness. Brand managers, business 
analysts, and marketers need to monitor the performance of their products in various 
markets and geographic regions and predict their near term business. They like to 
track share of their products in different markets and assess the effects of marketing 
campaigns executed at local, regional, and national levels. Sales managers like to 
track performance of their sales reps in order to effectively manage their targets. 

 Figure  2.12  shows sales curves of pharmaceutical products by product and region 
with forecasts based on ARIMA (autoregressive integrated moving average) models 
and Holt-Winters exponential smoothing. The implementation allows automated 
selection of parameters based on AIC (Akaike’s Information Criteria) and MLE 
(maximum likelihood estimation) respectively, as well as user-speci fi ed autoregres-
sive and moving average parameter selection for ARIMA and smoothing parameter 
selection for Holt-Winters. The user experience allows for choice of product and 
region combinations, with resulting graphical displays in Trellis format by region.  

  Fig. 2.11    Enrolment and end-of-study prediction. The prediction interval on end-of study was 
obtained from percentiles of 10,000 simulated enrolment curves from a relevant set of nested 
Poisson processes for site initiation and recruitment within sites       
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 The predictions in Fig.  2.11  incorporate seasonality, which is very important in 
life sciences due to increases in healthcare services in the winter months. The drill-
down to sales reps and individual product sales by region enables managers to assess 
both product and sales rep performance at  fi ne level of detail, e.g., sales rep by-
product by account (e.g., hospital, clinic, etc.) within region. This helps to identify 
areas for improvement and cross-sell of products in accounts.  

    2.6   Graphical Analysis Services 

 This section provides examples from life science companies specializing in data 
management, analysis, and reporting services to the industry. In particular, we high-
light a commercial clinical data graphical analysis application - Medidata’s Insights TM . 

 Medidata Insights is a cloud-based business analytics offering that enables life 
science organizations to measure performance on a range of key performance indi-
cators alongside industry benchmarks. Insights leverages operational data from 
other Medidata products, such as Medidata Rave® and Medidata Grants Manager®, 
to capture and display performance metrics. Insights’ data visualization and  fi ltering 
capabilities allow users to drill down to data that are relevant to the decision at hand, 
across studies, phases, and therapeutic areas. By aggregating and anonymizing data 
collected from the thousands of clinical trials conducted using Medidata technolo-
gies, industry benchmarks are developed and displayed in context with the company 
performance. These benchmarks follow the same  fi ltering rules as the company 
data, allowing users to conduct apples-to-apples comparisons across metrics. 

  Fig. 2.12    Forecasting of pharmaceutical sales by-product and region; with drill-down to 
sales rep       
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 Figure  2.13  shows some visual analyses of source data veri fi cation coverage 
for a subscriber pharmaceutical company to the Insights service. The company’s 
performance for select therapy areas is shown as red line on the bottom graph with 
industry benchmark as the blue line.  

 Medidata, contract research organizations (CROs), and other pharmaceutical 
data providers are actively expanding their electronic/online offerings to create 
ef fi ciencies in clinical research, and to shorten time to market for new medicines 
while providing transparency in operations and clinical information.  

    2.7   Software 

 All graphics in this chapter were created using Spot fi re®, TIBCO Software, version 
4. Spot fi re workbooks, once saved in the library on the Spot fi re server, may be 
opened and interactively utilized in a web browser; this is shown in Fig.  2.13 . All 
other graphs are shown as screen captures from the Spot fi re Professional client. 

 Spotfi re incorporates TERRTM (Tibco Enterprise Runtime for R), R and S-PLUSTM 
as statistical engines and enables registration and management of R, S-PLUS TM , 
SAS TM , and Matlab TM  scripts in the Spot fi re library on the Spot fi re server. The safety 
signal detection analysis shown in Fig.  2.6  uses a bagging algorithm based on the 
Forests S-PLUS library. The enrolment prediction analysis shown in Fig.  2.10  is 
based on Monte Carlo simulations using TERR. For large trials, algorithms are 
readily parallelizable and run on multiple CPUs. The time series forecasts shown in 
Fig.  2.11  use the S-PLUS Finmetrics TM  library. 

  Fig. 2.13    Medidata Insights application, showing source data veri fi cation coverage by therapy 
area and phase, with cross-sectional snapshot in the upper panel and longitudinal trending in the 
lower panel. The  red lines  indicate company metrics, with industry benchmarks shown in lines of 
other colors       
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     2.8   Conclusion 

 Exploratory graphics are an invaluable tool for ef fi cient and accurate analysis and 
interpretation of life sciences data. Exploratory graphics have a rich history from 
Tukey’s landmark book, Exploratory Data Analysis (Tukey  1977  ) , through Tufte 
(Tufte  1983  )  and Cleveland (Cleveland  1993  ) ; and now in to modern exploratory 
data analysis environments such as Spot fi re. 

 Intelligent use of exploratory graphics leads to better science and more effective 
communication of information. In this chapter, we have highlighted exploratory 
analysis of pharmaceutical clinical safety, operations and sales, and marketing data. 
A typical pharmaceutical company spends approximately one-third of their expense 
budget on research and development, one-third on sales and marketing, and one-
third on manufacturing. In recent times, with public focus on drug safety, much 
attention is being given to safety planning, evaluation, and reporting. Exploratory 
and report graphics are playing an important role in setting standards for safety 
analysis (Crowe et al.  2009  ) . In general, effective use of concise and compelling 
graphical analysis in life sciences ultimately results in more ef fi cient use of patient 
data, cost savings, faster approval of drugs, and improved patient care.      
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  Abstract   A grable combines the emergent features of a graph with the precise 
quantities of a table into a single display. Its purpose is to accommodate a wider 
variety of visual tasks and a possibly wider audience, than either a graph or a table 
can address alone. The best principles of visual perception from both graph and 
table design and construction should be considered when designing and construct-
ing grables. We present some proposed visual and cognitive strengths and weak-
nesses of graphs and tables, the visual tasks that each is best suited for, and some 
speci fi c guidelines for their design and construction. We use these guidelines and 
principles of perception to design and construct a variety of grables. We also pro-
vide some general guidelines for software selection.      

    3.1   Introduction 

 A grable combines the emergent features of a graph with the precise quantities of a 
table into a single display. Its purpose is to accommodate a wider variety of visual 
tasks and a possibly wider audience, than either a graph or a table can address alone 
(Hink et al.  1996,   1998  ) . We present two introductory examples. 

    3.1.1   Example 1: Oral Contraceptive Interaction Study: 
Pharmacokinetic Data 

 A well-known grable often used for exploratory data analysis is the stem-and-leaf 
display (   Tukey  1977  ) . This display not only provides a histogram of the sample 
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distribution, but it also documents the data values. In Fig.  3.1 , the back-to-back 
stem-and-leaf plot displays the ratios of areas under the plasma-concentration-ver-
sus-time-curves (AUCs) for 22 female subjects who completed a 2-treatment, 
2-period, complete crossover oral contraceptive interaction trial. The objective of 
the trial was to determine if the concomitant administration of Drug D with an oral 
contraceptive (OC + D) perturbs the usual pharmacokinetic pro fi le of the oral con-
traceptive alone (OC). The oral contraceptive is comprised of two components, ethi-
nyl estradiol (EE) and norethindrone (NET).  

 In Fig.  3.1 , the ratios correspond to each component of the oral contraceptive, (EE + D)/
EE and (NET + D)/NET. The stem (vertical rectangular box) con   tains the  bolded black 
stem  values  0.8  to  1.5 , which are the observed ratios accurate to one decimal place. The 
leaves are shown for EE and NET hanging to the left and to the right of the  stem values , 
respectively, and they provide additional accuracy to two decimal places. For example, the 
smallest ratio is  0.8 0, (NET + D)/NET, and the largest ratio is  1.5 0, (EE + D)/EE. At each 
 stem value , the leaves are sorted from smallest to largest, starting from the stem. 

 Figure  3.1  immediately provides information about the sample distributions of 
the ratios for EE and NET. Both distributions appear to be truncated on the left as 
does NET on the right, but EE is somewhat skewed right. All of the ratios for NET 
are contained in the narrower and lower range,  0.8 0 to  1.2 6, versus  0.9 1 to  1.5 0, for 
EE. The sample median for NET is ( 1.0 1 +  1.0 2)/2 =  1.0 15, smaller than the corre-
sponding value, ( 1.1 3 +  1.1 4)/2 =  1.1 35 for EE. Both distributions have their modal 
value on the stem,  1.0  for NET, which is lower than  1.1  for EE. However, the modal 
values for NET are  1.0 9 and  1.2 2, for EE they are  1.1 2,  1.3 8, and  1.4 3. Neither 
distribution contains an outlier. A detailed analysis of the original data can be found 
in Bradstreet and Panebianco  (  2004  ) . A further generalization of the stem-and-leaf 
display to multi-way tables can be found in Schenker et al.  (  2007  ) .  

    3.1.2   Example 2: Iontophoresis Induced Pain: 
Pharmacodynamic Data 

 Sixteen subjects completed an 8-treatment, 8-period, complete crossover trial 
investigating whether or not a proposed iontophoresis induced pain model is valid. 
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Each iontophoresis treatment comprised a combination of either ATP solution or 
saline solution (SAL), paired with one of 3 electrical currents (0.4, 0.8, 1.2 mA), 
using either a 9 or 18 mm iontophoresis chamber. Eight of 12 possible factorial 
combinations were evaluated. Given the same current and chamber size, ATP should 
cause more pain than saline. 

 Subjects scored pain on a 100 mm visual analogue scale (VAS). The VAS is a 
horizontal line 10 cm in length labeled with a 0 at the left end and the number 100 
at the right end. Every 20 s for 4 min in each treatment period, the subjects scored 
their pain level by marking a vertical line on the VAS. Among the objectives of the 
study were to identify electrical current level and iontophoresis chamber size com-
binations that induce suf fi cient pain; to identify a range in time over the 240 s ion-
tophoresis period where the results look most promising; and to identify 
within-subject summary measures computed over the individual time points that are 
the most sensitive and clinically meaningful. 

 Figure  3.2  presents the results for Subject 16. The graph portion of the grable 
displays the subject’s VAS response for each of the eight factorial treatments. The 
pain responses over time for ATP treatments are shown with solid lines (⎯), and 
saline treatments are shown with dashed lines (−−---). Matching pairs of ATP and 
saline treatments are shown with the same color. For example, the 1.2 mA current 
and 18 mm chamber size combination is shown in red. Tabled along side each VAS 
line is the treatment label and the corresponding summary statistics: AUC (area 
under the curve), Max (maximum VAS), and Tmax (time in seconds that Max was 
observed). The treatment labels are ordered from top to bottom according to the last 
VAS score reported at 240 s for each treatment.  

 For Subject 16 we see that in general, each ATP treatment induces more pain 
than its corresponding saline treatment. The difference between ATP and saline is 
notable in three treatments: ATP, 0.8 mA, 9 mm (solid blue); ATP, 1.2 mA, 18 mm 
(solid red); and ATP, 0.4 mA, 9 mm (solid black). A similarly designed grable can 
be used to display information summarized across the 16 subjects. 
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 In Sect.  3.2  we present some proposed visual and cognitive strengths and weak-
nesses of graphs and tables, including comparisons between the two groups of dis-
plays regarding the visual tasks that each is best suited for when presenting 
information. Speci fi c guidelines for their design and construction follow. We pro-
vide additional references containing additional principles of visual perception and 
construction of graphs and tables.   In Sect.  3.3  we present some ideas on designing 
and constructing grables.   In Sect.  3.4  we present four more examples of grables. Some 
of the examples are more graph than table, some are as much table as graph, and one 
shows a grable that is more like a text table than a graph.   In Sect.  3.5  we provide some 
guidance on selecting software for constructing and displaying grables. In Sect.  3.6  
we close with a discussion.   

    3.2   Graphs Versus Tables 

 Before focusing on grables, it is important to become familiar with proposed visual 
and cognitive strengths and weaknesses of graphs and tables as these should be 
considered when designing and constructing grables. The literature comparing 
graphs to tables spans a wide range of disciplines including statistics, computer sci-
ence, management information systems, industrial engineering, business, manage-
ment science, information science, psychology, education, and political science. 
Many competing theories exist as to which display formats are better than others. 
These theories include, but are not limited to, analytic models (e.g., Tufte  1983, 
  2001 ; Kosslyn  1989,   1994  ) , compatibility models (e.g., Vessey  1991,   1994  ) , and 
cognitive process models (e.g., Cleveland and McGill  1984,   1986,   1987 ; Cleveland 
 1985,   1994 ; Meyer et al.  1997 ; Meyer  2000  ) . 

 Several visual task experiments were conducted under a wide range of experimental 
designs, conditions, limitations, and restrictions. Many evaluated the simplest graphs 
and tables under relatively simple conditions. A large portion of the results are either 
inconsistent or inconclusive which is not surprising given the wide range of experimen-
tal designs, endpoints, and statistical analyses performed. There are also several sur-
veys and meta-analyses comparing graphs to tables. For example, see Carter  (  1947  ) , 
Powers et al.  (  1984  ) , Lalomia and Coovert  (  1987  ) , Coll  (  1992  ) , Hwang  (  1995  ) , Harvey 
and Bolger  (  1996  ) , Meyer et al.  (  1997,   1999  ) , Meyer  (  2000  ) , and Porat et al.  (  2009  ) . 

 Professional opinions vary as to exactly when and why a graph is better to use 
than a table (Ehrenberg  1978 ; Gelman et al.  2002 ; Scott  2003 ; Kastellec and Leoni 
 2007  )  or a table better than a graph (Ehrenberg  1978  ) . Sometimes neither display is 
deemed as appropriate and a description using only text is best as for small data sets 
(Carswell and Ramzy  1997  ) , or in larger data sets when only limited results are of 
interest (Ehrenberg  1978  ) . This debate is far from over (e.g., Gelman  2011  ) . 
Researchers continue to conduct experiments (e.g., Porat et al.  2009  ) . Useful obser-
vations and guidelines are emerging. We highlight some of these. 

 Visual tasks are divided into two categories. They are:
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    1.     Spatial tasks:  require making associations between values or perceiving relations 
in the data  

    2.     Symbolic tasks:  involve the extraction of individual data values     

 Cognitive  fi t exists when both the visual representation of the data and the visual 
task are both spatial or both symbolic. For lower level visual tasks, cognitive  fi t 
produces increased speed and accuracy in problem solving, decision making, and 
information retrieval (Vessey  1991 ; Meyer  2000  ) . 

 Graphs ef fi ciently present spatially related information identifying associations, 
trends, relationships, deviations, minima, maxima, and orders of magnitude in the 
data, facilitating a mostly qualitative view at a glance without addressing the indi-
vidual elements separately or analytically. Tables ef fi ciently present symbolic infor-
mation quantitatively representing individual data values and facilitating tasks such 
as locating, reading, extracting individual data values, and performing exact compu-
tations such as differences and ratios on the selected values (Ehrenberg  1977c,   1978 ; 
Lalomia and Coovert  1987 ; Vessey  1991 ; Coll  1992 ; Harvey and Bolger  1996 ; 
Meyer  2000 ; Kastellec and Leoni  2007 ; Porat et al.  2009  ) . Tables can also simulta-
neously display multiple variants of the data such as the original data, transformed 
data, means, proportions, differences, ratios, and percentages, in a compact area, but 
this must be done with care (Bradstreet et al.  2008  ) . 

 The visual effectiveness of both tables and graphs can be improved by sorting the 
data according to purpose. For look-up and documentation capabilities in tables, 
sorting by patient number, alphabetically, or by one or more demographics can be 
productive. For understanding what the data have to say, sorting the data by the 
magnitude of a desired effect or trend can be insightful (Friendly and Kwan  2003 ; 
Bradstreet and Palcza  2012 ). 

 When time pressure on the viewer is low, the effectiveness of graphs and tables 
depends upon the type and complexity of the visual task. But with increasing time 
pressure, graphs generally are favored (Hwang  1995  ) , and graphs can improve 
visual task performance with increased complexity. 

 The observers’ prior and accumulating knowledge and experience with a particu-
lar graph or table format can favor that format over others (Powers et al.  1984 ; 
Meyer  2000  ) . Rightly or wrongly, the most familiar form of data presentation is 
often perceived as the easiest to comprehend, even among pairs of competing table 
designs, or similarly among pairs of competing graph designs. Indeed we observed 
such familiarity bias when introducing box-and-whisker plots, schematic plots, dot 
charts, and several other visual displays to collaborators as alternatives to those 
which were their standard at the time such as pie charts and segmented bar charts. 
The new displays were initially met with resistance. But once the users understood 
the advantages of the new graphs, with use, the new graphs became familiar friends. 
Then the new graphs were requested routinely, even in some cases where not appro-
priate. People will also choose one display format over another if it requires the 
least effort to perform the visual task (Porat et al.  2009  )  regardless of its ability to 
correctly communicate information. 
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 The relative ef fi ciency of competing displays depends on one or more variables. 
Meyer et al.  (  1997  )  identi fi ed and summarized seven categories of variables for 
considering the relative ef fi ciency of competing displays. They are:

    1.    Type of display (graph vs. table)  
    2.    Variations within display type (e.g., line graph versus bar graph)  
    3.    Conditions of presentation (e.g., visual angle, room illumination, display-back-

ground contrast, time pressure)  
    4.    Complexity of displayed data (number of points in the display, con fi guration of 

the points in the display, regularity or order in the data displayed)  
    5.    Information sought by the user (e.g., evaluation of trend versus extraction of 

speci fi c numerical values)  
    6.    Characteristics of the user population (e.g., users’ experience with competing 

displays)  
    7.    Criterion for choosing a display (e.g., speed of extraction, accuracy of informa-

tion obtained, quality of decisions, understanding of complex relations between 
variables, aesthetic appeal, users’ subjective preferences)     

    3.2.1   Guidelines for Graphs 

 Effective graphs exhibit combinations of the following qualities (Chambers et al. 
 1983 ; Cleveland  1985,   1994 ; Tukey  1990,   1993 ; Wainer  1997 ; Bradstreet et al. 
 2008  ) . Effective graphs:

    1.    Serve a de fi ned purpose: exploration, understanding, or communication  
    2.    Show the data  
    3.    Tell the truth  
    4.    Encourage comparison of different pieces of data  
    5.    Reveal a large amount of quantitative information in a small area  
    6.    Reveal the data at several levels of detail; effectiveness increases with the com-

plexity of the data  
    7.    Are only as complex as required by the task that they are designed to perform; 

they avoid pomposity  
    8.    Provide impact: communication with clarity, precision, and ef fi ciency  
    9.    Are a visual metaphor for the data  
    10.    Are closely integrated with statistical and verbal descriptions of the data     

 When designing and constructing graphs, quantitative and categorical informa-
tion is encoded by symbols, geometry, and color. Graphical perception is the visual 
decoding of this encoded information. Ten graphical-perception tasks can be ranked 
from best to worst on how accurately we perform those tasks in decoding quantita-
tive information from graphs (Cleveland  1985,   1994  ) . They are:

    1.    Position along a common scale  
    2.    Position along identical, nonaligned scales  
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    3.    Length  
    4.    Angle  
    5.    Slope  
    6.    Area  
    7.    Volume  
    8.    Color hue  
    9.    Color saturation  
    10.    Density of information     

 In addition, we must be able to detect all intended graphical elements (as is not 
the case with either coincident points or superimposed curves), and we must be able 
to judge distance accurately. These 10 elementary graphical-perception tasks along 
with detection of graphical elements and judging distance accurately, should be 
considered when designing and constructing a graph. Data should be encoded in the 
graph so that visual decoding involves tasks as high as possible in the ordering of 
the graphical-perception tasks (Cleveland  1985,   1994  ) . 

 A large share of the ink in a graph should present data-information, with the ink 
changing as the data change. Data ink is the non-erasable core of the graph, the non-
redundant ink arranged in response to variation in the numbers represented. The data 
ink ratio is the ratio of the data ink to the total ink used to print the graph. For a clear 
and ef fi cient graph, the data ink ratio should be maximized by erasing both non-data 
ink and redundant data ink, within reason. This includes eliminating chartjunk. 
Chartjunk is the unnecessary, often default, but as often intended, graphical decora-
tions found in conventional graphical design and software which clouds and stag-
nates the  fl ow of important quantitative messages from the graph, and does not tell 
the viewer anything new. A particularly proli fi c form is moiré vibration, the undisci-
plined and distracting appearance of vibration and movement due to cross hatchings 
and visually distracting patterns injected into graphical elements. Graphs should be 
information rich in that the amount of data is large relative to the area that the graph 
covers with high data density. Many graphs are comparative, often constructed from 
a series of small multiples, i.e., many shrunken plots per page that show shifts in vari-
able relationships as the index variable changes (Tufte  1983,   1990,   2001  ) . 

 Other guidelines for graph construction and principles of visual perception will 
be pointed out as required for each of the examples later in the chapter.  

    3.2.2   Guidelines for Tables 

 Each table should have a speci fi c purpose (Ehrenberg  1975  ) . We posit that generally 
there are 3 reasons to construct a table of data. They are:

    1.    To communicate key  fi ndings  
    2.    To organize summaries of statistical analyses to facilitate interpretation  
    3.    To document and store detailed information such as the original data     
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 The amount, type, arrangement, and degree of accuracy of data displayed in 
tables vary according to purpose. For example, a table that presents key results 
generally should be constructed from only three of four columns and rows, con-
tain a dozen or fewer highly rounded data values, and the information in the rows 
and columns should be arranged comparatively, ordered either by addressing a 
hierarchy of questions of interest or by effects observed in the data. These types 
of tables should follow Ehrenberg’s  (  1977a,   c  )  strong criteria for a good table in 
that patterns and exceptions in the data should be obvious at a glance or, at least 
meet his weak criterion that the patterns and exceptions should be obvious at a 
glance once the viewer has been informed as to what they are, perhaps with a cap-
tion. Conversely, a documentation table would contain most or all of the raw data, 
perhaps accompanied by some descriptive summary statistics, with only selected 
rounding, if any, presenting exact data values. A documentation table would be 
organized by combinations of clerical aspects of the data such as patient numbers 
and time, making for an easy look-up and extraction of one or more individual 
datum. 

 Some of the many guidelines for constructing tables are listed below (Ehrenberg 
 1975,   1977a,   b,   c,   1982  ) . The guidelines should be considered as is appropriate for 
the table attributes of the grable.

    1.    Place or order the data to compliment the graph part of the grable (Bradstreet 
et al.  2008  )   

    2.    Make it easy to compare relevant numbers. Put numbers that have to be com-
pared close to together. Arrange row order so that if mental arithmetic needs to 
be performed vertically, it is easy to do so. Consider ordering columns and rows 
based upon prior knowledge about the table content. Or, rows and columns can 
be ordered qualitatively by the magnitude of some aspect of the data such as 
means  

    3.    Numbers are easier to read down a column than across a row, especially for a 
large quantity of numbers  

    4.    Align the data values vertically according to decimal points or other features 
common to the data that are meaningful  

    5.    Unless exact values are needed for documentation, generally round numbers to 
two effective digits. Round to a variable number of digits when necessary  

    6.    The parallel concept to chartjunk (Tufte  1983,   2001  )  is tablejunk (Bradstreet 
et al.  2008  ) . Labels should be clear, brief, and have meaning independent of the 
text. There is no need to rule off every column (or row) with a separate line. Too 
many or incorrectly placed vertical grid lines can interrupt eye movements. 
Irregular spacing of rows and columns can be particularly distracting. Too much 
space between rows or columns can force the eye to move too much making pat-
terns more dif fi cult to see and remember  

    7.    Horizontal and vertical lines, and also gaps of white space, should be used spar-
ingly, to parse major divisions in a table. Occasional regular gaps can help guide 
the eye and emphasize patterns. Single spacing with occasional gaps is an easy 
rule to adopt  
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    8.     Bold  and  light  typeface can help distinguish between data falling into two cate-
gories. They can also be used to visually separate column and row headings from 
the data (Wright  1973  )   

    9.    A brief written summary should be given for every table to bring out the main 
qualitative features     

 Other guidelines for table construction and principles of visual perception will 
be pointed out as required for the examples later in the chapter.  

    3.2.3   More Guidelines and Examples: Recommended Reading 

 The guidelines for construction of graphs and tables and principles of visual percep-
tion highlighted above and illustrated in the examples, are not meant to be exhaus-
tive. But instead we hope to provide readers with some initial display tools, and 
stimulate readers to learn more. Additional information on the proper and improper 
design and construction of graphs and tables, and principles of visual perception, 
can be found in Ehrenberg  (  1975,   1982  ) , Tufte  (  1983,   1990,   1997,   2001,   2006  ) , 
Schmid  (  1983  ) , Cleveland  (  1985,   1993,   1994  ) , Kosslyn  (  1994  ) , Henry  (  1995  ) , 
Wainer  (  1997,   2005,   2009  ) , Harris  (  1999  ) , Gelman et al.  (  2002  ) , Few  (  2004,   2006, 
  2009  ) , Wilkinson  (  2005  ) , Robbins  (  2005  ) , Chen et al.  (  2008  ) , Freeman et al.  (  2008  ) , 
and Wong  (  2010  ) . These references are rich with principles, guidelines, and exam-
ples, and they present a diversity of authors’ opinions and areas of interest.   

    3.3   Grables 

 The challenge at hand is to design and construct data displays that in meaningful 
ways best deliver the messages that the data contain, while simultaneously address-
ing the viewers’ needs for a clear understanding. In some cases the viewers’ needs 
may suggest constructing either a graph or a table, both, or a combination of both. 
For example, in the assessment of average bioequivalence, the viewer needs to know 
how the values of the geometric mean ratio and con fi dence interval from the statisti-
cal analysis relate relative to the values of the regulatory limits for establishing aver-
age bioequivalence. Further, there is an interest in individual subjects’ responses, 
especially those subjects with extreme data who demonstrate a large subject-by-for-
mulation interaction. Another example is graphing individual subject safety data, and 
simultaneously tabling and graphing the corresponding group summary statistics. 
Again, even if the average results look favorable, there is an interest in identifying 
those individual patients whose data are extreme suggesting a potential safety issue. 

 Tullis  (  1981  )  found that combinations of graphs and tables produce faster but 
an equally accurate level of understanding as tables constructed in either a narra-
tive or a structured format. Lucas  (  1981  )  found that subjects receiving both graph-
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ical and tabular output had a higher level of understanding than subjects receiving 
only graphs, and the subjects found the combined information more useful to 
them. Powers et al.  (  1984  )  found slower but more accurate performance by sub-
jects when given both a graph and a table as compared to either graphs or tables 
alone. Also, presenting both a graph and a table provides the viewer and the pre-
senter with the option of focusing on the format that they are most familiar with 
(Powers et al.  1984  ) . 

 A strategy that takes the simultaneous presentation of the information in a graph 
and table a step further is to construct a grable. A grable combines the emergent 
features of a graph with the precise quantities of a table into a single display (Hink 
et al.  1996,   1998  ) . A grable accommodates a wider variety of visual tasks and a pos-
sibly wider audience, than either a graph or a table can address alone. Hink et al. 
 (  1998  )  showed when considering both accuracy and time simultaneously, that gra-
bles and tables were favored over conventional graphs alone. Subsequently, 
Calcaterra and Bennett  (  2003  )  showed improved performance in subjects when 
speci fi c data values were added to con fi gural displays (displays that map multiple 
individual variables into a single graphical format). Tufte’s  (  2006  )  sparklines are a 
successful implementation of the grable strategy. 

 Given the combination of ink from both a graph and a table, a grable must be 
designed and constructed with even greater care so as not to clutter up the display 
and hinder the clarity and accessibility of important information contained in the 
data. The best principles of visual perception from both graph and table design and 
construction should be considered.  

    3.4   More Grables 

 The following examples continue to present a variety of grables. Some are more 
graph than table, some are as much table as graph, and one is more like a text table 
than a graph. For each example, the grable characteristics are discussed followed by 
principles of good (and bad) graph and table design and construction. The examples 
work cumulatively in that characteristics and principles pointed out in an earlier 
example may not be highlighted again in a subsequent example, but they may be 
implicit in their use in the subsequent example. Electronic versions of the data used 
in Examples 1 (Bradstreet and Liss  1995  ) , 4 (Bradstreet  1994  ) , and 6 (Bradstreet and 
Short  2001  )  can be found at a website continuously maintained by Short  (  2006  ) . 

    3.4.1   Example 3: Evaluating Dosing Regimens: 
Re fl ux in GERD Patients 

 This example provides some foundations for the others which follow. It demon-
strates a transition from a table to several grables in a step-by-step fashion, pointing 
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out some favorable, and some not so favorable, principles of graph construction and 
visual perception. It also emphasizes that constructing effective grables (or graphs 
or tables) can be an iterative process with the  fi nal grable constructed dependent 
upon a combination of visual tasks, visual perception, the structure of the data, 
human preferences, and software capabilities. But once the serious work of com-
municating effectively is completed, the  fi nal grable can become a standard display 
for similar studies to follow. 

 Twelve gastroesophageal re fl ux disease (GERD) patients completed a 4-treat-
ment, 4-period, complete crossover trial to evaluate 20 mg b.i.d. (twice daily), 40 mg 
b.i.d., and 40 mg h.s. (at bed time) doses of a drug targeted at the reduction of GERD 
symptoms as compared to placebo, and as compared to each other. The percent 
re fl ux time was measured for each of the three doses and placebo when each patient 
was in the upright position. For more information on the design and statistical anal-
ysis of data from higher order crossover studies see Ratkowsky et al.  (  1993  ) , Jones 
and Kenward  (  2003  ) , Brown and Prescott  (  2006  ) , and Bradstreet et al.  (  2010  ) .  
 Table  3.1  documents the results of the study.  

 A  fi rst attempt at constructing a grable might look like the data labeled bar chart 
in Fig.  3.3 .  

 Some major design, construction, and visual perception maladies are worth not-
ing. In general, use of bar charts is tricky when differences are of interest since 
viewers tend to visually place shorter bars on top of taller bars and estimate propor-
tional differences rather then additive differences. As scaled, the visual slope does 
not equal the algebraic slope among the placebo and the b.i.d. dosing regimens and 
this is not communicated. If the b.i.d. dose response evaluation is of key importance, 
then it can be argued that the 40 mg h.s. results should be visually detached from the 
b.i.d. results. There is a plethora of non-data ink, redundant data ink, and chartjunk 

   Table 3.1    Anti-Rankit mean percent re fl ux time   

 Placebo  40 mg h.s.  20 mg b.i.d.  40 mg b.i.d. 
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  Fig. 3.3    Mean percent re fl ux time. First attempt at constructing a grable       
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wrapped around just four bivariate data points—only eight data values. Examples of 
wasted ink include the shadow boxed dosing regimen labels, the moiré vibration in 
the cross hatching patterns inset into each bar, and there are too many tick marks 
and tick mark labels, with misguided emphasis on the tick marks. The data density 
in Fig.  3.3  is unacceptably low. Colors could be selected to visually group and com-
pare the dosing regimens in a more meaningful fashion, and for many scienti fi c 
publications there are other colors which might be viewed as more appropriate. 

 Figure  3.4  improves upon Fig.  3.3 . The shadow boxes were removed, the dosing 
regimen labels were moved to the  x -axis, and the corresponding  x -axis label was 
added. The cross hatchings were removed and replaced, for now, with a uniform 
color. The  y -axis is marked by regularly spaced major and minor tick marks, only 
the major tick marks have labels, and the tick marks are no longer visually distract-
ing. The  y -axis label has been shortened to just the key information. The data labels 
were moved from the middle of the bars, to the top of the bars, nearer to their value 
on the  y -axis.  

 Figure  3.5  incorporates further improvements. The data values were removed 
from just above the bars and used as tick mark labels for tick marks at irregular 
intervals corresponding only to the most important data values. Bar colors were 
changed to visually link the two b.i.d. dosing regimens for comparison to each other, 
while setting apart both the 40 mg h.s. dosing regimen and the placebo for compari-
sons among themselves and to the b.i.d. dosing regimens. The tick mark labels were 
color coded to match the corresponding bar.  

 From here, there are several directions in which we might proceed including a 
dot chart, but we illustrate a dot chart in Example 5. The two strategies we chose 
both concentrate on removing most of the redundant data ink and non-data ink in 
the bars. The  fi rst strategy in Fig.  3.6  emphasizes the vertical distances between the 
dosing regimens as ordered in this case, by the response, mean percent re fl ux time. 
Colors again emphasize the four dosing regimens, and the corresponding vertical 
differences as visualized by the bolded, two sided, tick marks. This grable might be 
considered as more a text table than a graphic—a tablic.  
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  Fig. 3.4    Mean percent re fl ux time. Second (improved) attempt at constructing a grable       
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 The second strategy shown in Fig.  3.7  emphasizes the b.i.d. dose response aspect 
of the study while providing a pairwise comparison between the 40 mg h.s. and 
40 mg b.i.d. dosing regimens. To demonstrate the second strategy, we choose an 
arithmetic scaling on the  x -axis for the placebo and two b.i.d. doses so that the dis-
tance between adjacent doses is 20 mg. We also insert a full axis break between the 
40 mg h.s. dose and the other doses to indicate that the 40 mg h.s. dose is not part of 
the dose response analysis, but is still part of pairwise comparisons.  

 The slope portrayed in Fig.  3.7  is still too steep. Most software packages auto-
matically default to, or give the user an easy choice among either landscape, por-
trait, or square orientations, which do not except by coincidence, ensure that the 
graph portion of the grable is proportionally correct. To make our point, we arbi-
trarily chose the square orientation taken over the entire  y -axis and over the entire 
 x -axis including the 40 mg h.s. dose, since it is a common default and it is intermedi-
ate between landscape and portrait. 

 When possible given the physical dimensions of the hardcopy page or computer 
screen, and when reasonable given the story that the data are telling, the physical 
slope on the graph portion of the grable should match the algebraic slope given by 
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  Fig. 3.5    Mean percent re fl ux time. Third (improved) attempt at constructing a grable       
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the data (Bradstreet et al.  2006,   2008  ) . Consider on each axis the ratio of the dis-
tance traveled in units (e.g., %) to the physical distance traveled (e.g., inches). The 
general idea is that the ratio must be the same on both the  x - and  y -axes. The imple-
mentation of this seemingly simple idea is highly dependent upon the speci fi c details 
of a given grable. 

 In our example, suppose the placebo, 20 mg b.i.d., and 40 mg b.i.d. doses were 
spaced along 10 in. of the  x -axis, from the placebo tick mark to the 40 mg b.i.d. tick 
mark. Then for the correct physical slope, the physical length of the  y -axis from the 
0 tick mark to the 12 percentage point tick mark, is the solution for  d  in the equality, 
(40–0)/10 = (12–0)/ d . Solving for  d  gives  d  = 3 in. Similarly, if the 40 mg difference 
between the placebo and 40 mg b.i.d dose spanned 5 in. on the  x -axis, then solving 
for  d  in (40–0)/5 = (12–0)/ d , the 12 percentage points from zero to 12 should span 
1.5 in. on the  y -axis. 

 In some cases, the proportionally correct grable will not be as scienti fi cally 
revealing as other combinations of dimensions with different aspect ratios (Cleveland 
 1985,   1994  )  or when banking to 45° (Cleveland  1994  ) . It may not be physically 
possible to construct a proportionally correct grable given available space. Or the 
software being used either is not be able to do this or it may be extremely dif fi cult 
to get the software to perform accordingly. In these cases, additional information 
should be provided as to what a grable with proportionally correct visual slope 
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  Fig. 3.7    Mean percent re fl ux time. A grable emphasizing the dose response between the placebo, 
20 mg b.i.d., and 40 mg b.i.d. doses, and visualizing pairwise comparisons with the 40 mg h.s. 
dose. The slope of the dose response is too steep       
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would look like relative to the one shown (Bradstreet et al.  2006,   2008  ) . This infor-
mation can take several forms. One is to provide an additional miniature grable 
which shows the correct slope, either nearby or possibly inset into the original gra-
ble. Another visual indicator sources from geometry and non-digital clock faces. 
Proximal to, or inset into the original grable, provide a visual representation of a 
pair of rays originating from a common point like the hands on a clock. One ray 
represents the physical slope, the other represents the algebraic slope, with each ray 
labeled accordingly. Or, instead, but preferably in addition to visual cues, provide a 
written noti fi cation as how to adjust the slope in your visual mind. A grable with 
proportionally correct slope is shown in Fig.  3.8 . Figure  3.8  leaves a much different 
impression and interpretation of dose response than Fig.  3.7 .  

 If in Fig.  3.7  we had originally chosen the portrait orientation instead of the 
square orientation, then the change in the physical slope from Fig.  3.7  to Fig.  3.8  
would have been even more dramatic. 

 Whatever scaling is chosen for statistical analysis (e.g., arithmetic, ordinal, loga-
rithmic), the observed mean results for the placebo, 20 mg b.i.d., and 40 mg b.i.d. 
doses should be connected with line segments only if the statistical analysis estimates 
or describes dose response directly incorporating the observed sample means. An 
example is partitioning the sums of squares due to treatments in the corresponding 
ANOVA into single degree-of-freedom contrasts for linear and quadratic curvature 
using orthogonal polynomial coef fi cients. However, for linear and polynomial regres-
sion, the best  fi tting function is obtained by least squares minimization of the vertical 
distances from the individual data points. The estimated function may or may not pass 
through one or more sample means. In this case, plot the estimated function, possibly 
with a con fi dence band, and the individual data points (Bradstreet et al.  2006,   2008  ) . 

 Quite often the most important information to display is the relative difference 
between some or all of the treatments. In this situation, it is important to construct a 
grable where mental calculations are either minimized or eliminated (Bradstreet 
et al.  2006,   2008  ) . In the current example, the primary interest is in the responses of 
the 3 active treatment regimens relative to the placebo, and secondarily relative to 
each other in either a pairwise or dose response fashion. A common strategy is to 
create 2 grables, one showing the observed data and one showing the differences 
from placebo. These would be arranged either spatially side-by-side (preferred), or 
shown temporally in time one after the other (less desirable). However, a single 
grable which effectively displays both the observed data, and the differences from 
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  Fig. 3.8    Mean percent re fl ux time. A proportionally correct grable visualizing the correct dose 
response between the placebo, 20 mg b.i.d., and 40 mg b.i.d. doses       
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placebo, can be the best approach. Figures  3.9  and  3.10 , illustrate strategies for 
showing both the observed levels of response and the differences from placebo.   

 Depending on the target audience and the amount of previous use, various hybrids 
of Fig.  3.9  can be reasonable. For example, it may be effective to plot the observed 
values in the plotting area and the corresponding differences from placebo on the 
 y -axis, labeling the tick marks with the differences. A bit more advanced hybrid of 
Fig.  3.7 , but possibly confusing to a naïve audience, would be to remove the tick 
mark and the tick mark label at 11.3, and replace the zero difference, 0, with 11.3, the 
observed value for placebo. Although not technically correct given the title and the 
scale, this gives the impression of starting at the 11.3 value and sliding downward to 
the right by the stated differences. The selection of the best suited version requires 
the careful consideration of technical accuracy versus the combination of an infor-
mative  fi gure caption and the familiarity of the audience with the different versions.  

    3.4.2   Example 4: Evaluating Bioequivalence: 
Pharmacokinetic Data 

 Twenty-six healthy male subjects completed a 2-treatment, 2-period crossover 
bioequivalence trial to determine if the pharmacokinetic characteristics of one 40 mg 
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and the difference from placebo       
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capsule of a drug made by Company A are the same as the concurrent administration 
of two 20 mg capsules of the same drug made by Company B. The pharmacokinetic 
variable, area under the plasma-concentration-versus-time-curve (AUC), was calcu-
lated (ng × h/mL) for each subject for each formulation from drug levels (ng/mL) 
assayed from plasma samples taken over time. For more information on the design, 
conduct, statistical analysis, and the display of results from a 2-treatment, 2-period 
crossover bioequivalence studies, see Bradstreet and Dobbins  (  1996  ) , Pikounis et al. 
 (  2001  ) , Food and Drug Administration  (  2001,   2003  ) , Jones and Kenward  (  2003  ) , 
Bradstreet and Panebianco  (  2004  ) , and European Medicines Agency  (  2009  ) . 

 In Fig.  3.11  the open circles ( O ) represent the ratio (Company A, 1 × 40 mg/
Company B, 2 × 20 mg) of AUCs for each subject. The solid dot ( • ) indicates the 
estimated geometric mean ratio and the vertical bar with horizontal endpoints (I) 
represents the corresponding 90% con fi dence interval. On the  y -axis the Food and 
Drug Administration’s regulatory limits for average bioequivalence of ( 0.80 ,  1.25 ) 
are labeled as is the ratio of  1.00 .  

 Visually, it is immediately clear that average bioequivalence was not concluded 
since the upper con fi dence limit of the 90% con fi dence interval (I) lies above the 
upper bioequivalence limit (−−−). 

 The exact numerical results are also of interest, particularly so in cases like this 
indicating a notable degree of subject-by-formulation interaction, which is further 
magni fi ed by two extreme AUC ratios, and with the upper con fi dence limit close to 
the upper bioequivalence limit. Therefore, the geometric mean symbol ( • ) is labeled 
with its value, 1.12, as are the limits of the 90% con fi dence interval (0.98, 1.27). The 
2 up arrows (↑↑) signal that there are 2 subjects with AUC ratios lying above the 
upper end of the  y -axis with values of 2.32 and 2.70. These arrow indicators for 
outliers were  fi rst suggested to us by John W. Tukey (personal communication). 
Importantly, the arrow indicators allow a detailed view of the behavior of the major-
ity of the data. Graphing the data to scale including the two outliers would condense 
much of the data into a series of blue ink blobs that would not provide much useful 
information. 

 Other principles for graph and table design, and visual perception, were used in 
constructing Fig.  3.11 . They include:
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    1.    Spending data ink wisely; minimal non-data ink and redundant data ink  
    2.    Plotting data on the log scale to align correctly with the statistical analyses  
    3.    Labeling tick marks, summary statistics, and individual ratios with antilog val-

ues which are more easily accessible to a wider audience  
    4.    Using an open plotting symbol ( O ) to lessen confusion due to overplotting  
    5.    Jittering plotting symbols horizontally to lessen confusion due to overplotting  
    6.    Clearly indicating in the caption that error bars represent a 90% con fi dence inter-

val and not another interval measure such as standard deviation or standard error  
    7.    Assigning thicker lines to more important graphing elements (e.g., 90% CI) and 

thinner lines to less important ones (e.g.,  y -axis)  
    8.    Using reference lines to indicate important values across the entire graph  
    9.    Constructing the reference lines with texture and width so as not to distract 

from the data, and placing the lines behind the data  
    10.    Placing and labeling only those tick marks, critical to understanding the data 

and making a decision on bioequivalence  
    11.    Choosing distinct color combinations either for emphasis (red, blue) or without 

emphasis (black), that are not problematic for some viewers (e.g., red, green), 
and not relying solely on color to transmit information  

    12.    Heavily, but intelligently, rounding exact data values. Note that in this example, 
there is no need to display the 90% con fi dence limits to 3 decimal places as 
neither is close enough to the regulatory limits for average bioequivalence for 
rounding to matter in the decision  

    13.    Using relatively simple sans serif fonts      
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  Fig. 3.11    Average 
bioequivalence analysis. 
The  open circles  ( O ) 
represent the ratio 
(1 × 40 mg/2 × 20 mg) of 
AUCs for each subject. 
The  solid dot  ( • ) indicates 
the estimated geometric 
mean ratio and the vertical 
bar with horizontal 
endpoints (I) represents the 
corresponding 90% 
con fi dence interval. On the 
 y -axis, the Food and Drug 
Administration’s 
regulatory limits for 
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( 0.80 ,  1.25 ) are labeled as 
is the ratio of  1.00        
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    3.4.3   Example 5: First in Man Evaluation: 
Clinical Lab Safety Data 

 Two panels of 6 male subjects enrolled in an alternating panel,  fi xed-rising-dose, 
safety study. Each subject received placebo and three of six possible doses of a drug. 
Panel A ( O ) received 0.2 mg, 1 mg, and 5 mg, and Panel B (  D  ) received 0.5 mg, 
2 mg, and 10 mg. For more information on the design and analysis of alternating 
panel  fi xed-rising-dose studies, see Rodda et al.  (  1988  ) , Bolognese  (  1991  ) , and Jin 
and Sun  (  2008  ) . 

 Figure  3.12  combines a dot chart (Cleveland  1985,   1993,   1994  )  of individual 
subject values with a table of the corresponding summary statistics. Each line in the 
dot chart portion of the grable displays each subject’s percent change from baseline 
in basophils at 24 h ( O  D  ) with the mean value ( X ) for that group of subjects. Open 
circles ( O ) represent subjects in Panel A, and in Panel B subjects are represented by 
open triangles (  D  ). Tabled to-the-right on the same line are the corresponding num-
ber of subjects, mean, standard deviation, minimum value, and maximum value.  

 Other principles of graph and table design, and visual perception, were used in 
constructing Fig.  3.12 . They include:

    1.    The dot chart takes advantage of the higher level, more accurate, visual decod-
ing of information positioned along a common scale  

    2.    Spending data ink wisely; minimal non-data ink and minimal redundant data ink  
    3.    Using open and clearly distinct plotting symbols ( O  D  X ) to lessen confusion 

due to overplotting  
    4.    Jittering plotting symbols vertically to lessen confusion due to overplotting  
    5.    Using prominent graphing elements to represent the data values ( O  D  ) and sum-

mary statistics ( X ) while downplaying less important non-data structure such as 
the  x - and  y -axes  

    6.    Positioning a reference line ( y -axis) to indicate an important value (zero) that 
applies across the entire graph, but placing it in the background with texture, 
width, and color chosen so as not to interfere with the data  

    7.    Encoding categorical information (Panel A and Panel B) with combinations 
of symbols and colors ( O  D  ), not relying solely on color to transmit 
information  

    8.    Choosing distinct color combinations either to emphasize (blue, cyan, red) or 
deemphasize (black, gray) components of a grable, that are not problematic for 
color challenged viewers (e.g., red, green)  

    9.    Placing and labeling only the necessary tick marks  
    10.    Ordering rows monotonically, from bottom to top, by dose  
    11.    Placing the data values according to the graph part of the grable  
    12.    Heavily, but intelligently, rounding exact data values  
    13.    Decimal aligning data values in columns  
    14.    Using white space, not vertical grid lines, to separate columns of data values  
    15.    Removing unnecessary leading digits in data values  
    16.    Providing a brief, insightful, verbal summary of the grable in the caption  
    17.    Using relatively simple sans serif fonts     
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 In a similar fashion, Fig.  3.13  shows lengths of PQ intervals (ms) at 3 time points 
post dose (baseline, 2 h, 24 h) incorporating the comparative small multiples 
strategy.   

    3.4.4   Example 6: Evaluating Dose Proportionality: 
Pharmacokinetic Data 

 A total of 12 healthy male and 12 healthy female subjects completed a 4-treatment, 
4-period crossover dose proportionality trial to determine if the pharmacokinetic 
characteristics of four oral doses (2.5, 5, 10 and 15 mg) of a drug are dose propor-
tional. The pharmacokinetic variable, area under the plasma-concentration-versus-
time-curve (AUC), was calculated (ng × h/mL) for each subject for each dose of 
drug calculated from drug levels (ng/mL) assayed from plasma samples taken over 
time. For more information on the design, conduct, and statistical analysis of dose 
proportionality studies, see Haynes and Weiss  (  1989  ) , Yuh et al.  (  1990  ) , Gough 
et al.  (  1995  ) , Smith  (  1997  ) , Smith et al.  (  2000  ) , and Sethuraman et al.  (  2007  ) . 

 There are at least 3 general strategies for visualizing and assessing dose propor-
tionality at the individual subject level (Bradstreet et al.  1999,   2008  ) . In the  fi rst, 
arithmetic AUC ( y -axis) is plotted versus arithmetic dose ( x -axis), with the AUC 
values connected by line segments. Dose proportionality is indicated for a subject if 
the line segments form a straight line with a positive slope which also passes through 
the origin (0, 0). In the second strategy, log-transformed AUC ( y -axis) is plotted 
versus log transformed dose ( x -axis), again connecting the log AUC values with line 
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  Fig. 3.12    Clinical laboratory data: Basophils. Each line of the  dot chart  displays each subject’s 
change from baseline (%) in basophils at 24 h ( O  D  ) with the mean value ( X ) for that group of 
subjects. Panel A is represented by  open circles  ( O ), Panel B by  open triangles  (  D  ). Tabled on the 
same line are the corresponding summary statistics: the number of subjects ( N ), the mean, the 
standard deviation, the minimum value, and the maximum value       
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segments. Dose proportionality is indicated for a subject if the line segments form a 
straight line with slope equal to 1. The intercept is not of immediate interest but it 
provides useful subject speci fi c information. In the third strategy, each arithmetic 
AUC value is divided by the corresponding arithmetic dose which standardizes 
the AUC values to 1 mg, or the AUCs can be standardized to a particular dose such 
as 10 mg. Then the AUC/dose values ( y -axis) are plotted versus the arithmetic dose 
values ( x -axis), connecting the AUC/dose values with line segments. Dose  proportionality 
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  Fig. 3.13    Clinical laboratory data: PQ intervals. Data are arranged in small multiples sorted by 
time and then by dose within time. Each line of the dot chart displays each subject’s individual 
value ( O  D  ) with the mean value ( X ) for that group of subjects. Panel A is represented by  open 
circles  ( O ), Panel B by  open triangles  (  D  ). Tabled on the same line are the corresponding summary 
statistics: the number of subjects ( N ), the mean, the standard deviation, the minimum value, and the 
maximum value       

 



62 T.E. Bradstreet

is indicated for a subject if the line segments form a straight line with slope equal to 0. 
Again, the intercept is not of immediate interest but it provides useful subject 
speci fi c information. 

 We use the third strategy, AUC/dose versus dose, to demonstrate the construction 
of a grable from the corresponding table of individual subject data. The dose adjusted 
to 1 mg AUC data for the males are documented in Table  3.2 . The original AUC/
dose values were rounded to one decimal place to be more easily read.  

 Table  3.2  is sorted by subject number and dose, facilitating the documentation 
and look-up of individual values. The grable in Fig.  3.14  not only documents the 
individual values, but importantly provides an initial assessment of dose proportion-
ality for each subject, and compares responses among the subjects. For clarity, the 
data were sorted vertically, from bottom to top, by the AUC/dose values for the 
2.5 mg dose (Friendly and Kwan  2003 ; Tufte  2006 ; Bradstreet and Palcza  2012 ). 
Since there are only 10 subjects, this arrangement should not increase look-up 
speed, especially when considering the additional information provided on dose 
proportionality.  

 The data values in Fig.  3.14  were rounded to the  fi rst decimal place to retain 
enough accuracy for documentation and look-up. But the trailing decimals to some 
degree, inhibit readability and they slow down even simple mental arithmetic. To 
address this, exact values could be plotted but labeled instead with AUC/dose values 
which are rounded excluding the decimal. However, this would generate line seg-
ments with non-zero slope visually connecting the same rounded data label, an awk-
ward position to be in. Alternatively, the rounded data labels could be plotted, but 
this is too much rounding for the accuracy desired given the range of the data is 
from 2.0 to 13.3. A possible solution is to standardize the data values to another 
dose, say to the 10 mg dose. Figure  3.15  displays this arrangement. The desired 
accuracy is achieved, readability is increased, and mental arithmetic is simpli fi ed. 
We remind ourselves that if either differences or ratios among the doses were of 
primary interest, these could be plotted avoiding the mental arithmetic.    

   Table 3.2    AUC standardized to 1 mg of drug—males ( n  = 12)   

 Subject  2.5 mg  5 mg  10 mg  15 mg 

  1  9.8  6.5  8.6  10.5 
  2  10.7  6.4  7.7  10.5 
  3  8.3  8.5  7.2  7.5 
  4  3.3  4.4  5.2  4.9 
  5  4.4  6.6  6.2  8.4 
  6  2.0  3.5  4.1  4.1 
  7  8.7  9.2  9.3  11.9 
  8  3.4  4.4  3.4  4.2 
  9  7.2  7.2  8.1  7.9 
 10  6.2  8.6  9.3  10.9 
 11  7.8  7.5  10.8  13.3 
 12  4.9  6.0  6.6  7.8 
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    3.5   Software 

 To construct a well-designed grable, or as equally important a well-designed graph 
or table, requires software with the prerequisite capabilities, which some software 
packages may not possess. In addition, the default settings of many software pack-
ages are not conducive to producing effective visual displays immediately. However, 
an initial investment of time will pay off for the visual task at hand as well as for 
subsequent runs of the same or similar displays. 

 It is not our intention to condemn or promote particular software packages, but 
instead to provide a list of qualities to consider when selecting software. These con-
siderations should be framed within your particular needs and local computing envi-
ronment. Some desired software characteristics include (Bradstreet et al.  2008  ) :

Subject 2.5 mg 5 mg 10 mg 15 mg

2

1

7

3

11

9

10

12

5
8

4

6

10.7

6.4

7.7

10.5

9.8

6.5

8.6

10.5

8.7
9.2 9.3

11.9

8.3 8.5

7.2 7.5

7.8 7.5

10.8

13.3

7.2 7.2

8.1 7.9

6.2

8.6
9.3

10.9

4.9

6.0
6.6

7.8

4.4

6.6
6.2

8.4

3.4

4.4

3.4
4.2

3.3

4.4
5.2 4.9

2.0

3.5
4.1 4.1

  Fig. 3.14    AUC standardized 
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    1.    Capable and  fl exible enough to construct grables correctly  
    2.    Relatively easy to learn and program  
    3.    Modest complexity to run  
    4.    A GUI ( G raphics  U ser  I nterface) may be helpful for users with lesser program-

ming skills, provided it allows for virtually the same capabilities and  fl exibility 
as constructing code from  fi rst programming principles  

    5.    Highly portable, both electronically and physically  
    6.    Amenable to automation to support production as well as one-off environments  
    7.    Must integrate well with other graphics, statistical, and word processing software  
    8.    Satis fi es data analysis as well as presentation and publication requirements     

 Traditionally, no one software package will meet all of your needs. Consider choos-
ing one that meets most of your needs while sacri fi cing on lower priorities, or shop for 
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a complimentary set that meets all of your needs. It is also useful to organize a local 
group of software users who are similarly dedicated to implementing the principles of 
visual perception in the design and construction of effective grables.  

    3.6   Discussion 

 When presenting patient data, many situations require showing spatial relationships 
and also displaying, highlighting, or extracting individual data values. Spatial rela-
tionships like trends, associations, and other visual patterns typically are best dis-
played with a graph. Displaying, highlighting, or extracting one or more data values 
typically is best accomplished with a table. Because of personal familiarity, or a 
path of least effort, presenters and viewers may arbitrarily favor one display format 
over the other. 

 This dual display dilemma can often be solved with a grable. A grable combines 
the emergent features of a graph with the precise quantities of a table into a single 
display. Its purpose is to simultaneously accommodate a wider variety of visual tasks 
and a possibly wider audience, than either a graph or a table can address alone. 

 Proposed visual and cognitive strengths and weaknesses of graphs and tables 
should be considered when designing grables, as should proposed guidelines for 
their construction. Designing and constructing a grable can be more challenging than 
for either a graph or a table alone. The best practices selected from each visual format 
must be complimentary when used in combination, which is not guaranteed. 

 We provided examples of grables highlighting principles of design, construction, 
and perception. Although rather simple, these grables and the guidelines for graph 
and table construction provide initial guidance on how to get started. Additional 
guidance and examples can be found in the recommended readings. 

 Careful consideration should be given to software selection. It can be productive 
and rewarding to collaborate with users who have a similar desire to ef fi ciently 
produce high-quality grables. 

 Grables are not automatic visual panaceas for perception. Like well-constructed 
graphs and tables, they require careful thought in design and construction. Several 
iterations may be required before the  fi nal design is achieved. Once completed, the 
 fi nal display or variations of it, can be used for future clinical studies.      

  Acknowledgments   The author thanks Christine Stocklin for her indispensible help in creating 
the grables using an S-PLUS GUI.  
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  Abstract   The aims of this survey are to document the current use of  fi gures in epide-
miological publications and to make proposals for future practice. To do this, the authors 
identi fi ed all 181 analytical epidemiology articles from 10 major medical journals in the 
period June to August 2008. For each article the number and type of  fi gures were ascer-
tained and each  fi gure was studied for style and contents. The mean number of  fi gures 
per article was 0.98. Eighty-four articles (46%) had no  fi gures and most others had just 
one  fi gure. The most common types of  fi gures were plots of estimates, Kaplan–Meier 
plots,  fl ow diagrams, smooth or model based curves and distributional plots. These  5  
groups of plots accounted for 89% of the  fi gures in the survey. For each of these  5  types 
of  fi gures, examples of good practice were chosen and commented on. From this over-
view of current practice some general suggestions regarding the use of  fi gures were 
given. Well-constructed  fi gures greatly add value to the presentation of the study results. 
However, many authors choose not to include  fi gures and there is room for improvement 
in the content and presentation of  fi gures that are included.      

    4.1   Introduction 

 Graphical data display is a valuable tool for presenting the results of an epidemiologic 
study. In general,  fi gures have a major visual impact, and if employed properly they 
can catch the attention of the reader in illustrating and supporting the main results. 
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 In principle, modern computing power makes the construction of  fi gures straight-
forward, though not necessarily in a form suitable for journal publication. There is 
much guidance in the general use of graphics both as part of the dynamic process of 
data analysis and in formally presenting results (Cleveland  1994 ; Robbins  2004 ; 
Tufte  2001 ; Wilkinson  2005  ) . Much of the focus in medical and epidemiology 
 journals, however, is on speci fi c types of  fi gures, e.g., Kaplan–Meier plots (Pocock 
et al.  2002  )  or  fi gures in meta-analyses (Bax et al.  2009  ) . The STROBE initiative 
published guidelines with advice as to how to report observational studies in epide-
miology (Vandenbroucke et al.  2007 ; von Elm et al.  2007  )  but these do not mention 
the use of  fi gures in any detail. 

 A previous survey has explored the use of  fi gures in clinical trials in major medi-
cal journals (Pocock et al.  2007,   2008  ) . The current manuscript extends this work in 
considering the use of  fi gures in observational studies in epidemiology. We reviewed 
epidemiologic studies published in 10 general medical and epidemiology journals 
from June to August 2008, with the goal of highlighting the types of  fi gures in use, 
and making recommendations for improvements in practice.  

    4.2   Materials and Methods 

 The focus of this survey was analytical epidemiology, that is epidemiology relating 
health outcomes to exposures in individuals. The authors identi fi ed all 181 articles 
that could be termed analytical epidemiology, published in June to August 2008 in 
10 journals. Five specialised epidemiological journals were chosen: American 
Journal of Epidemiology, Annals of Epidemiology, Epidemiology, International 
Journal of Epidemiology and Journal of Clinical Epidemiology as well as  fi ve major 
medical journals: Annals of Internal Medicine, British Medical Journal (BMJ), 
Journal of the American Medical Association (JAMA), Lancet and New England 
Journal of Medicine. 

 For each article we noted the number and types of  fi gures used, concentrating on 
 fi gures presenting data. Photographs and diagrams lacking data were not included 
in the survey nor were  fi gures from meta-analyses or randomised trials. The  fi rst 
author went through the chosen volumes and identi fi ed all the articles that could be 
classi fi ed as analytical epidemiology and if any doubts arose over the classi fi cation 
of an article the remaining author was consulted. Key points for each study were 
noted such as type of study design (mainly cohort, case–control or cross-sectional) 
and number and types of  fi gures. 

 Each  fi gure was then considered carefully by the current authors to assess its 
content and appropriateness of appearance. To aide these considerations a list of 
desirable features was drawn up, partly based on the recommendations for the use 
of  fi gures in clinical trials (Pocock et al.  2007,   2008  ) . This list was concerned with 
general aspects of  fi gures (e.g., including measures of uncertainty) but also with 
speci fi c types of  fi gures often included in epidemiological articles (e.g., Kaplan–
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Meier plots). Having gone through the sample of articles the classi fi cation of 
 fi gures was simpli fi ed and common issues regarding each type of  fi gure were 
identi fi ed using the list of desirable features leading to the recommendations at the 
end of this paper. Some  fi gures were chosen as examples of good practice to illus-
trate the points the authors wish to make about the use of  fi gures. 

 In this survey we have not dealt with genetic epidemiology. This  fi eld has its own 
set of  fi gures, which would also merit investigation.  

    4.3   Results 

    4.3.1      Overall Survey Findings    

 Table  4.1  shows the main  fi ndings from our survey. In this 3-month period there 
were 181 analytical epidemiology papers identi fi ed, of which 62% appeared in 
the epidemiology journals and 38% in the general medical journals. The American 
Journal of Epidemiology had the largest number of such articles (53). Overall 
there were 97 articles (54%) with at least one  fi gure. The mean number of  fi gures 
per article was 0.98. Most articles had zero or one  fi gure. As regards study design, 
cohort studies were most common (54%) and 97% of articles described cohort, 
cross-sectional, case–control or nested case–control studies. Whether or not 
 fi gures were used did not appear to vary by study type. Twenty- fi ve of the articles 
describe studies conducted in a clinical setting, such as hospitalised patients fol-
lowed for recurrence of the disease of interest. The use of  fi gures was more com-
mon in studies of this type:  fi gures were used in 72% of these studies compared to 
51% of the articles describing research done in a non-clinical setting ( P  = 0.047). 

 The most common types of  fi gures were plots of estimates (39 articles) of out-
come/risk factor association, which includes forest plots; Kaplan–Meier plots (23 
articles) showing failure time outcomes;  fl ow diagrams (20 articles) describing the 
 fl ow of study subjects through the study; smooth or model based curves (20 arti-
cles) displaying the results of a statistical model  fi tted to the data; and distribu-
tional plots (14 articles) describing the study population. These  fi ve groups of plots 
accounted for 89% of the  fi gures in the survey and they will be the ones we will 
focus on. 

 In addition, 6 articles had  fi gures showing population incidence or mortality 
data, mainly as age-standardised rates. Four articles had individual data. This is not 
so common in analytical epidemiology as the studies often include a large number 
of subjects and plots showing individual data become very dense. Plots of repeated 
measures over time were only found in three articles, whereas this type of  fi gure 
was one of the most common for clinical trials (10) where it is common to measure 
the treatment effect at certain  fi xed time points. This seldom occurs in analytical 
epidemiology. 
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 Table  4.1  indicates that most  fi gures published in epidemiological articles show 
associations between outcomes and risk factors. Apart from  fl ow diagrams, purely 
descriptive  fi gures are not that common. The style and content of the  5  most com-
monly used types of  fi gures (from our survey) are now discussed with examples.  

   Table 4.1    Characteristics of the Survey in 181 Articles   

  Journal    Number of articles (%)  

 Epidemiological 
 American Journal of Epidemiology  53 (29) 
 Annals of Epidemiology  22 (12) 
 Epidemiology  18 (10) 
 International Journal of Epidemiology  17 (9) 
 Journal of Clinical Epidemiology  3 (2) 
 General medical 

 British Medical Journal  23 (13) 
 Journal of the American Medical Association  22 (12) 
 Lancet  10 (6) 
 Annals of Internal Medicine  9 (5) 
 New England Journal of Medicine  4 (2) 
  Number of  fi gures in each article    Number of articles (%)  
 None  84 (46) 
 One  50 (28) 
 Two  24 (13) 
 Three  14 (8) 
 Four  8 (4) 
 Five  1 (1) 
  Type of study design    Number of articles (%)    At least one  fi gure  
 Cohort  105 (58)  61 (58) 
 Cross-sectional  43 (24)  19 (44) 
 Case–control  27 (15)  12 (44) 
 Case-crossover  3 (12)  3 (100) 
 Case–cohort  2 (1)  1 (50) 
 Twin study  1 (1)  1 (100) 

  Type of  fi gure  a    Number of articles (%)  
 Plot of estimates  39 (30) 
 Kaplan–Meier plot  23 (18) 
 Flow diagram  20 (15) 
 Smooth or model based curve  20 (15) 
 Distributional plot  14 (11) 
 Incidence/mortality  6 (5) 
 Individual data  4 (3) 
 Repeated measures  3 (2) 
 3D plot  1 (1) 

   a Each type of  fi gure is only counted once per article  
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    4.3.2   Plot of Estimates 

 The most common type of  fi gure was a plot of point estimates of outcome/risk fac-
tor associations. These are typically from analyses of binary or time-to-event type 
outcomes showing odds ratios, relative risk or hazard-ratio estimates. Though they 
do not always do so, it is desirable that such  fi gures include con fi dence intervals to 
display the statistical uncertainty in each point estimate (Frikke-Schmidt et al.  2008 ; 
Snape et al.  2008  )  and hence to avoid overinterpretation of the data. In some articles 
columns have been used to show the estimates, but since it is really each point esti-
mate that needs to be shown a single symbol is preferred. 

 A good example of a plot of estimates with con fi dence intervals is seen Fig.  4.1  
in (Frikke-Schmidt et al.  2008  )  which is a plot of hazard-ratios for ischemic heart 
disease as a function of high-density lipoprotein. The  fi gure is clear, the axes are well 
chosen with good labeling and a caption that explains exactly what has been plotted. 
Another useful feature is that the number of events and total number in each group 
have been included in the  fi gure making it easier for the reader to draw conclusions 
from the results: this was generally lacking in other articles. In general the combina-
tion of tabular and graphical presentation can add much-needed context to  fi gures 
and is recommended. In this  fi gure the hazard ratios are plotted on a log-scale allow-
ing details to be seen more clearly and giving symmetric con fi dence intervals.  

 Forest plots are included in this type of  fi gure (8 of the 39 plots of estimates). What 
makes a forest plot slightly different from other  fi gures containing point estimates 
with con fi dence intervals is that the forest plot usually shows estimates across differ-
ent sub-groups or different studies, and sometimes also an overall estimated effect of 
the exposure of interest. An example of a forest plot is seen here in Fig.  4.1  (Zhang 
et al.  2008 ). This  fi gure contains results from a pooled analysis of hair-dye use and 
non-Hodgkin lymphoma. It is helpful that the size of the square plotted for each esti-
mate is proportional to the number of cases. Also it helps that the odds-ratios are plot-
ted on a log-scale, so that the distance from 0.5 to 1 is the same as from 1 to 2 and each 
con fi dence interval is symmetric about the point estimate. It would, however, have 
been desirable if the numbers of cases and controls that led to each estimate had also 
been included in the  fi gure. In general, the combination of graphical and tabular data 
can make a  fi gure much more informative. The overall estimate has been plotted using 
a different symbol making it easy to distinguish from the individual estimates. It is not 
clear from the  fi gure or the caption, however, how the overall estimate was calculated. 
In general it is recommended that the  fi gure and caption stand on their own, providing 
context and support for the estimates displayed.  

    4.3.3   Kaplan–Meier Plot 

 Kaplan–Meier plots are used to show time-to-event data by groups of interest (e.g., 
with or without the exposure being studied). The event of interest can be death, but 
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often it is disease incidence and sometimes a positive event such as recovery. 
Kaplan–Meier type plots can show either the probability of being event-free over 
time (the curves will go down) or the cumulative incidence (and the curves will go 
up). The plots of cumulative incidence are sometimes referred to as Nelson–Aalen 
plots. 

 A good example of a Kaplan–Meier type plot is found in the  fi gure in (Wood 
et al.  2008  )  where the cumulative incidence of mortality has been plotted for injec-
tion drug users and non-injection drug users. The two groups are well identi fi ed and 
the axes are clearly labeled with the same axes used for the plots of all-cause mortal-
ity and non-accidental mortality allowing visual comparisons to be made (here only 
the all-cause mortality is shown). Under the horizontal axis the numbers at risk in 

  Fig. 4.1    Odds ratios (ORs) for non-Hodgkin lymphoma (NHL) among women, by study center, 
in a pooled analysis of hair-dye use and NHL, 1988–2003.  Boxes  show results from individual 
studies;  diamonds  indicate pooled data. Bars, 95% con fi dence interval (CI) (Zhang et al.  2008  )        
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the two groups are shown at appropriate intervals, another useful combination of 
graphical and tabular display. The uncertainty of the plots is shown by including 
con fi dence intervals at regular intervals (this is rarely done, but as above, acknowl-
edging uncertainty is highly recommended), though it would have been clearer had 
the two groups’ con fi dence intervals been slightly staggered to avoid confusing 
overlap. Also an overall signi fi cance test comparing the two groups is included on 
the  fi gure. If neither the con fi dence intervals nor a signi fi cance test was included in 
the Kaplan–Meier plot, it would be easy to over interpret any apparent differences 
in outcome between the exposure groups. 

 Sometimes the Kaplan–Meier plot is arguably extended for too long when there 
are very few subjects still at risk and the estimates become very uncertain (e.g., in 
Limaye et al.  2008  ) . The Kaplan–Meier plot in (Williams et al.    2008  )  shows sur-
vival and the vertical axis is cut off at 0.5, which could make the differences between 
the groups seem deceptively larger than they really are. It may be better to plot the 
cumulative incidence (i.e., plot going up) in this type of situation when only a small 
part of the scale from 1 to 0 is used.  

    4.3.4   Flow Diagram 

 Flow diagrams are used to display the  fl ow of the study subjects through a study. 
It is an essential part of study reporting for clinical trials (Begg et al.  1996  )  and 
can also be of value in many epidemiological studies (Vandenbroucke et al.  2007  ) . 
In the article (Ix et al.  2008  )  a  fl ow diagram is used to describe a case–cohort 
study of incident diabetes mellitus in older persons. The study uses a case–cohort 
design and the  fl ow chart is effective in making the design clearer for the reader. 
The sub-cohort is clearly identi fi ed and the numbers of exclusions and numbers of 
incident cases of diabetes during follow-up are documented. In general a  fl ow 
diagram can be very helpful in understanding the structure of an epidemiological 
study in both, describing the study subjects (e.g., responders and non-responders 
to questionnaires in a cross-sectional study), and in explaining more clearly any 
nuances of study design.  

    4.3.5   Smooth or Model Based Curve 

 A potentially useful way of summarising the results of a study is to show a  fi tted 
curve from the statistical model. This can be an eye-catching illustration, but there 
can be problems for the reader. There is often no information about the model’s 
goodness of  fi t and such  fi gures seldom include any numbers, so it can be dif fi cult 
to know how much to trust the results. Again, inclusion of parsimonious numerical 
information perhaps arranged in a table, can help matters here. It can also happen 
that the plotted curve covers a spread of the exposure variable’s distribution where 
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there are few (or even no) data points, thus encouraging unjusti fi ed extrapolation. 
As noted previously, acknowledging the uncertainty in the data, either through the 
use of con fi dence regions or by displaying the raw data itself in addition to a smooth 
curve is critical. Despite these caveats, plotting smooth curves can be a creative way 
to explore variation in the conclusions of an analysis under different conditions. For 
instance, a  fi gure showing a combination of a  fi tted curve from a statistical model 
with simple point estimates and con fi dence intervals (e.g., treating an exposure as 
continuous but also showing results from a categorical analysis) could add much 
value to both types of analyses. 

 Figure  4.2  (Lopez-Garcia et al.  2008 ) shows relative mortality risk by amount of 
coffee consumption compared to persons drinking no coffee. In this  fi gure 95% 
con fi dence interval curves have been included to convey the extent of uncertainty in 
the estimates. From other results in the article it is seen there are very few individuals 
drinking more than four cups of coffee per day, so the  fi gure’s extension out to six 
cups per day seems unwarranted. It is hard to know what to believe from such  fi gures 
(e.g., how strong is the evidence of non-linearity in this case?), but as a supplement to 
the tables where the data are described and analysed in more detail (as in the tables in 
Lopez-Garcia et al.  2008  )  they can be useful illustrations.   

    4.3.6   Distributional Plot 

 In this survey the authors found few purely descriptive  fi gures (e.g., histograms, bar 
charts or box plots). This is probably due to the fact that in an article for a journal 

  Fig. 4.2    Non-linear relationship between coffee consumption and cardiovascular mortality 
(Lopez-Garcia et al.  2008  )        
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the number of tables and  fi gures allowed can be limited, so often a  fi gure showing 
the main results will be preferred. Nevertheless, some articles included descriptive 
plots to good effect. 

 Figure  4.3  (Mikolajczyk et al.  2008 ) shows the distribution of interpregnancy 
intervals in the study population. This  fi gure conveys the point clearly that the inter-
pregnancy intervals were usually relatively short and the distribution is skewed to 
the right. The number of women in the study is usefully included in the caption.    

    4.4   Discussion 

 A good  fi gure can be very effective in the presentation of results and is more likely 
to be noticed and remembered by the reader than a dense table full of results. As 
such it is therefore critical that the impressions conveyed in the graphical format are 
accurate and properly acknowledge the limits of the data in question. Analytical 
epidemiology articles can study several exposure/outcome associations, so it is up 
to the authors of an article to choose wisely which results should be presented as 
 fi gures. In a study with many results choosing some key  fi ndings to present in a 
 fi gure can help focus the reader’s attention on the main points the authors wish to 
make. 

 In this survey we were surprised to  fi nd that 46% articles did not include a  fi gure 
even though it would often have been useful to do so. Given the speed of modern 
computing and availability of software, choosing not to present a graphical display 
may undersell a result, where for relatively little cost, a greater emphasis on the 
main  fi nding could be obtained. For instance, a well-written article (Villamor et al. 
 2008  )  about the risk of oral clefts contains no  fi gures. The results presented in the 
article (their tables 2–4) are odds ratios of cleft palate or cleft lip during second 
pregnancy by change in mother’s BMI since  fi rst pregnancy or by months since  fi rst 

  Fig. 4.3    Distribution of 
interpregnancy intervals in 
the study population 
( n  = 533), Collaborative 
Perinatal Project, United 
States, 1959–1965 
(Mikolajczyk et al.  2008  )        
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pregnancy. We think the results would have been more readily appreciated by the 
reader if the odds ratios (with 95% con fi dence intervals) from the primary analyses 
were presented in a  fi gure similar in style to the plot of estimates in (Frikke-Schmidt 
et al.    2008  ) . 

 As in a prior survey of  fi gures in the reporting of clinical trials (Pocock et al. 
 2007  ) , the images examined here were of many different types and styles, but the 
vast majority could be classi fi ed into a small number of groups: These included 
plots of estimates, Kaplan–Meier plots,  fl ow diagrams, smooth or model based 
curves and distributional plots. How best to present a  fi gure is of course partly a 
matter of personal taste, but having done this survey we would like to make some 
general and some more speci fi c points for the construction of  fi gures in the future. 
Some of these recommendations seem like plain common sense, but it can still be 
useful to state them clearly.  

    4.5   Recommendations 

 Much has been written about presenting  fi gures in general (Cleveland  1994 ; Robbins 
 2004 ; Tufte  2001 ; Wilkinson  2005  )  and such advice is also valid for analytical epi-
demiology. There are, however, a few points that could be emphasised in this par-
ticular setting:

   It is important that each  fi gure can largely stand alone. That is, key information • 
needed to understand a  fi gure should be included either on the  fi gure itself, in the 
caption or as a footnote  
  Each exposure group should be clearly labeled within the  fi gure itself, so groups • 
are easily distinguishable. It is also important to choose any colours and symbols 
carefully as many readers will be seeing the article in black and white  
  Figures should include appropriate measures of uncertainty such as con fi dence • 
intervals or standard errors. It may also be useful to include appropriate  P -values 
on the  fi gure to help the reader understand the extent to which any association 
could plausibly be due to chance    

    4.5.1   Plots of Estimates 

    Plots of estimates are best presented as points with 95% con fi dence intervals • 
rather than as bar charts/columns  
  The scale used for the plot should be chosen to give enough detail. Consider • 
using a log-scale especially for hazard-ratios, odds-ratios and risk-ratios, so that 
con fi dence intervals are symmetric around the point estimate  
  Any plot of estimates should also include some tabulations to give a better under-• 
standing of the data, e.g., number of events and number of subjects in each group. 
Far too many plots fail to provide such simple information     
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    4.5.2   Kaplan–Meier Plots 

    Kaplan–Meier plots should include the numbers at risk at regular time points • 
under the horizontal axis  
  When possible plots should include con fi dence limits at regular time points to • 
give an impression of the uncertainty of the curves  
  The plots should not extend too far over time where there are few subjects left at • 
risk and estimates become unreliable  
  If incidence rates are not high, a plot going up of the cumulative incidence is • 
preferable as this allows differences between exposure groups to be seen more 
clearly     

    4.5.3   Flow Diagram 

    A  fl ow diagram should include the number of subjects and their  fl ow through the • 
study  
  A  fl ow diagram should help communicate the nature of the study design, e.g., • 
number of cases and controls in a case–control study  
  It is important to include the numbers excluded from the analysis in each group • 
and the reason for exclusion (e.g., ineligible prevalent cases in a study of inci-
dence). If a questionnaire is used also include the number of non-responders in 
each group     

    4.5.4   Smooth or Model Based Curves 

    The caption or footnote should include key information about which model has • 
been used to create the  fi gure, and also about the goodness of  fi t of this model  
  Include con fi dence intervals to show the variability of the estimated curves  • 
  It is useful for the reader to know how the exposure data behind the curve are • 
distributed, this could be indicated under the horizontal axis  
  If possible combine a  fi gure of a  fi tted curve from a statistical model with simple • 
point estimates and con fi dence intervals (e.g., treating an exposure as continuous 
but also showing results from a categorical analysis) as this would add much 
value to both types of analyses     

    4.5.5   Distributional Plots 

 Much is well known about how to present such descriptive plots (Robbins  2004 ; 
Tufte  2001  ) . However, there are a couple of speci fi c points arising from our survey.



82 E.W. Andersen and S.J. Pocock

   Bar charts are sometimes used to show summary statistics, e.g., means or per-• 
centages, but it may be better to have such background data in a table  
  When using box plots it should be stated in the caption or footnote what the end • 
of the whiskers represent. Having too many individual points outside the whis-
kers can be distracting      

    4.6   Conclusion 

 We would like to encourage a wider use of insightfully informative  fi gures in arti-
cles on analytical epidemiology. We hope that our survey of current practice and 
consequent recommendations prove useful for the construction of such  fi gures in 
future articles.      
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  Abstract   Graphics play an important role in understanding clinical data and the 
metabolic area of drug research is no exception. Challenges of early-phase clinical 
research include unpowered studies with small sample sizes (approximately 8–12 
subjects per group), relatively short study durations, and the use of surrogate clinical 
endpoints or biomarkers to investigate pharmacological effects. Careful examination 
of individual patient data along with summary data is vital to interpreting the data. 
Graphical displays are the most effective means of accomplishing this goal enabling 
one to quickly assess effects between and within both subjects and treatments.      

    5.1   Introduction 

 Discovery of more effective treatments for Type 2 Diabetes Mellitus (T2DM) is a major 
focus of research in the metabolic disease area. Although currently there are a number 
of treatment options, there is still a need for drugs with better risk/bene fi t pro fi les. T2DM 
is a progressive metabolic disorder that is a growing healthcare issue worldwide and it is 
estimated that globally there are approximately 246 million people (about 6% of the 
adult population) with diabetes. By the year 2025, this number is expected to expand to 
about 380 million (Diabetes Atlas  2006  ) . People with diabetes have an increased risk of 
suffering serious complications, including heart attack, stroke, kidney failure, blindness, 
and lower limb disorders which can lead to foot amputations. 

 The American Diabetes Association (ADA) de fi nes diabetes as:

   HbA1c greater than or equal to 6.5% or  • 
  Fasting plasma glucose greater than or equal to 126 mg/dL (7.0 mmol/L) or  • 
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  Random (non-fasting) blood glucose level—diabetes is suspected if higher than • 
200 mg/dL and accompanied by the classic symptoms of hyperglycemia or  
  Oral glucose test—diabetes is diagnosed if glucose level is higher than 200 mg/• 
dL after 2 h    

 The goal of treatment is to improve long-term glycemic control. The current 
recommendations by the American Diabetes Association (ADA) of the target glycemic 
goals for diabetes control are HbA1c < 7% or fasting/pre-prandial glucose of 80–120 
mg/dL (American Diabetes Association,  2011 ). For regulatory  fi lings, glycemic  control 
is based on changes in hemoglobin A1c (HbA1c). This is a surrogate endpoint to 
reducing long-term microvascular complications. 

 A challenge faced in early phase clinical development is identifying assets that 
do not warrant continued investment based on the lack of potential to provide a 
better safety and ef fi cacy pro fi le than currently marketed products. Glucose is a 
key endpoint used in early-phase clinical development to assess potential ef fi cacy. 
Not only do changes in glucose predict changes in HbA1c, the registerable end-
point, but these effects tend to occur in glucose before HbA1c (   Nathan et al.  2008  ) . 
In early phase studies, different aspects of glucose response are investigated: fasting, 
post-prandial, and the weighted mean over a 24 h period. A reduction in mean 
glucose of approximately 20 mg/dL predicts a reduction of 0.7% HbA1c at 12 weeks 
(Nathan et al.  2008  ) . 

 Clinical pharmacology studies are relatively short-duration studies where the 
primary goal is to assess the safety and tolerability of the investigational drug, char-
acterize the pharmacokinetic pro fi le, and estimate pharmacodynamic effects. In 
addition to glucose, the assessment of metabolic hormones, such as insulin, gastric 
inhibitory polypeptide (GIP), glucagon-like peptide (GLP-1), glucagon, and pep-
tide YY (PYY) plays an important role in evaluating the mechanism of action 
identi fi ed in preclinical models. 

 The examples included in this chapter are based on simulated data to represent a 
14-day repeat-dose parallel group study with three active treatment arms (15 mg, 
30 mg, and 45 mg) and a placebo arm, where 24 h pro fi les of metabolic hormones were 
collected on Days -1 and 14. The graphs are generated from SASÔ, S-PLUSÔ, and 
Spot fi reÔ. In our department, statistical analysis software such as SASÔ and S-PLUSÔ 
are typically used for production of displays included in regulatory submissions because 
the software can be executed in an internal reporting system which meets the regulatory 
requirements of a closed-validated system. Other software, such as Spot fi re, is some-
times used for exploratory purposes due to its interactive capabilities.  

    5.2   Individual Glucose and Insulin Concentration Pro fi les 
Versus Time 

 The relationship between glucose and insulin is important to understand. The pur-
pose of glucose is to provide cells with energy. The uptake of glucose by the cells is 
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regulated by insulin, a hormone produced by the pancreas. Diabetic patients have 
elevated glucose levels compared to non-diabetics for one of two reasons (1) insulin 
resistance (insulin is being released but the cells are not responding to it) or, (2) not 
enough insulin is being produced (Gerich  1988  ) . 

 Relative changes in glucose and insulin can help elucidate the mechanism of 
action of a drug. Figure  5.1  shows individual concentration pro fi les of plasma glu-
cose and insulin. These individual pro fi les allow one to examine the following: 

   Relationship at the subject-level between glucose and insulin at baseline and • 
whether this relationship is altered after 14 days of treatment  
  Overall response within a treatment group after 14 days of treatment  • 
  Effect of 14 days of treatment on glucose and insulin separately  • 
  Variability between individuals  • 
  Implausible values to be queried    • 

 Comparing the plots of the individual glucose pro fi les before and after 14 days of 
treatment, the 45 mg dose of the active treatment appears to have some clinical activ-
ity as the glucose is lower for most subjects. One can also see less variability between 

  Fig. 5.1     Individual glucose (mg/dL) and insulin (mmol/L) concentrations vs. time (h) for active 
45 mg dose . The  top-left  plot is the individual glucose pro fi les on Day -1 before 45 mg dose of 
active treatment was administered. The three peaks in glucose correspond to the meals provided at 
hours: 0, 4, and 10.  Top - right  is the corresponding individual glucose pro fi les after 14 days of treat-
ment.  Bottom left  is the individual insulin pro fi les on Day -1 ( baseline ) and  bottom right  is the 
individual insulin pro fi les after 14 days of treatment       
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subjects on Day 14 compared to Day -1. The post-prandial peak glucose is blunted 
on Day 14 relative to Day -1. The insulin pro fi les are consistent with the glucose 
pro fi les with peaks relative to the meals and large between subject variability. 

 Interactive software is useful in exploring the data in more detail. Figure  5.2  
displays the same information as Fig.  5.1  but sub-setting it for subjects 9 and 24. 
It was created using Spot fi re instead of S-PLUSÔ. The  fi lter panel on the right side 
of the display enables the user to  fi lter on a subject number, change the treatment 
group or the speci fi c pharmacodynamic parameter displayed, thus being more inter-
active. The  fi lter panel can be customized to include any other variables within the 
dataset to subset the data.   

    5.3   Mean (+SE) Glucose and Insulin Concentration Versus Time 

 Figure  5.3 , Showing the mean glucose and insulin pro fi les over a 24 h time period, 
enables one to examine: 

   Whether treatment groups are balanced at baseline (Day -1)  • 
  Whether there is a treatment effect on glucose or insulin at any dose level relative • 
to baseline and/or placebo  

  Fig. 5.2    Similar graph to Fig.  5.1  produced using Spot fi re       
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  Within each treatment group, whether the relationship between glucose and insu-• 
lin changes with 14 days of treatment  
  The dose–response relationship    • 

 The mean glucose and insulin pro fi les at Day-1 are relatively similar between 
treatment groups. After 14 days of treatment there is a dose-response relationship 
seen in the mean glucose pro fi les that is less apparent in the insulin pro fi les.  

    5.4   Individual Glucose Concentration Pro fi les Versus Time 

 Figure  5.4 , showing the individual glucose concentration pro fi les at Day -1 and Day 
14, enables one to examine within a treatment group the: 

   Magnitude of response for each individual after 14 days of treatment (within a • 
panel)  
  Consistency of response across individuals (e.g., is there a response during each • 
post-prandial period)  

  Fig. 5.3    Mean (+SE) glucose (mg/dL) and insulin (mmol/L) concentrations vs. time (h). The  top - left  
plot is the mean glucose pro fi le for each treatment group at Day -1. The three peaks correspond to the 
post-prandial response after meals. The  top - right  plot is the corresponding mean glucose pro fi le after 
14 days of treatment.  Bottom left  is the mean insulin pro fi le on Day -1 (baseline) and  bottom right  is 
the mean insulin pro fi le after 14 days of treatment       
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  Responders and non-responders  • 
  Implausible values to be queried    • 

 This graph demonstrates the magnitude of individual responses to treatment and 
the consistency of response across subjects. The 4 subjects all received the 45 mg 
dose of active treatment. Subjects 4, 8, and 12 had a more consistent post-prandial 
response than Subject 20. In addition, a reduction in fasting glucose (0 h) is appar-
ent in Subjects 4 and 12.  

    5.5   Mean (+SE) Glucose Concentrations Versus Time 

 Figure  5.5 , showing the mean glucose concentrations over a 24 h time period, 
enables one to examine the: 

   Magnitude of mean response for each treatment group after 14 days of treatment • 
(within a panel)  
  Differences in mean response across treatments  • 
  Variability    • 

  Fig. 5.4    Individual glucose concentrations (mg/dL) vs. time (h). Each quadrant represents a 
different subject with the  black line  representing Day -1 glucose concentrations and the  blue line  
representing Day 14 glucose concentrations       
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 This graph is useful in comparing the drug effect within and between treatment 
groups. Figure  5.5  shows a greater magnitude of response in the highest dose group 
(45 mg). The 30 mg dose group is also demonstrating reductions in mean glucose 
relative to Day -1.  

    5.6   Comparative Plot of Individual Weighted Mean Glucose 

 Since changes in mean glucose predict changes in HbA1c (the registerable endpoint 
for T2DM), it is a key endpoint analyzed in short-duration studies (Nathan et al. 
 2008  ) . Figure  5.6 , a plot of individual values, allows one to examine the:

   Magnitude of individual subject response within and across treatment groups • 
after 14 days of treatment  
  The relationship between magnitude of response and baseline  • 
  Whether there are responders and non-responders  • 
  Variability    • 

  Fig. 5.5     Mean (+SE) glucose concentrations (mg/dL) vs. time (h) . Each quadrant is a separate treat-
ment group with the  black line  representing the Day -1 mean glucose pro fi le and the  blue line  repre-
senting the Day 14 mean glucose pro fi le       
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 This graph demonstrates both a greater magnitude of response and a greater 
number of subjects with a reduction in glucose at the 2 highest doses of the active 
treatment compared to placebo and the low dose. All subjects in the highest dose 
group experienced a reduction in mean glucose, whereas, in all other treatment 
groups at least 20% of subjects had an increase.   

    5.7   Box-Plot of Weighted Mean Glucose with Individual Values 
Overlaid 

 Box-plots graphically provide descriptive statistics of numerical data (minimum, 
lower quartile, median, upper quartile, and maximum). These graphs are non-para-
metric in nature, as they show differences in the population without making any 
assumptions of the underlying distribution. 

 Figure  5.7  shows the summary information depicted in a box-plot with the indi-
vidual values overlaid, which enables one to examine the: 

   Distribution of weighted mean glucose at baseline and after 14 days of treatment  • 
  Magnitude of median response for each treatment group after 14 days of treat-• 
ment (within a panel)    

  Fig. 5.6     Comparative plot of individual weighted mean glucose (mg/dL).  Within each treatment 
group, individual mean glucose values for Day -1 and Day 14 are plotted for each subject with a 
line connecting the values       
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 Although this plot does not enable one to see individual changes, it does provide 
information on the distribution of individual values at baseline and 14 days after 
treatment and demonstrates the shift in central tendency from baseline to Day 14 
within each of the treatment groups. As with the comparative plot above, the reduc-
tion in glucose in the two highest active dose groups is apparent.  

    5.8   Multi-Panel Plot of Change from Baseline Weighted Means 
for Selected PD Parameters Versus Glucose 

 Figure  5.8  ,  a multi-panel plot of change from baseline weighted means for selected 
pharmacodynamic parameters versus glucose, enables one to examine: 

   Whether there is a relationship between change in glucose and the change in the • 
selected incretin hormones  
  Whether the relationship differs across treatments    • 

 Vertical and horizontal reference lines at zero and −20 mg/dL (glucose only) 
allow one to focus on meaningful changes indicative of response. 

 Signi fi cant glucose reductions of at least 20 mg/dL, all in the two highest dose 
groups, tend to be associated with decreases in insulin indicating that the drug is not 
acting as an insulin secretagogue and may be taking pressure off of  b -cells. There 
also appears to be a relationship between glucose reductions and increases in PYY 
which warrants further investigation. 

 There is no apparent relationship between changes in glucose and changes in 
GIP, Total GLP-1 or glucagon.  

  Fig. 5.7     Box-plot of weighted mean glucose (mg/dL) with individual values overlaid.  Within each 
treatment group, individual weighted mean glucose values are plotted adjacent to the box-plot of 
those same values       

 



96 D. Shortino et al.

    5.9   Forest Plot of Least Squares Means of Change from 
Baseline for Weighted Mean Glucose 

 Figure  5.9  provides a visual of the statistical analysis results (ANCOVA) by display-
ing the point estimate and 95% CI of the least squares means within each treatment 
group. It allows comparison of mean change from baseline across treatments. 
Reference lines are provided at 0 and at a target effect size of −20 mg/dL. Con fi dence 
intervals that include zero indicate that the change from baseline was not statisti-
cally signi fi cant. Signi fi cant reductions were observed in both the 30 and 45 mg 
Active dose groups with mean reductions from baseline greater than or equal to the 
target of 20 mg/dL. These dose levels warrant further study.   

    5.10   Conclusion 

 The graphs from this chapter display the variety of graphical techniques employed 
in the assessment of early–phase clinical assets. These small studies provide an 
initial indication of the developability of a new compound and the data can be used 

  Fig. 5.8     Multi-panel plot of change from baseline weighted means for selected PD parameters vs. 
glucose (mg/dL) . Scatter plot of individual change from baseline of selected incretins vs. glucose. 
Glucose responders are located to the left of the vertical reference line at −20 mg/dL       

 



975    Use of Graphics for Studies with Small Sample Sizes…

in the design of subsequent studies. Graphs are essential in evaluating the mean 
response, consistency of response, the in fl uence of individual subjects, and the rela-
tionship between endpoints. The application of graphics is invaluable in the evalua-
tion of the mechanism of action of a new drug, highlighting relationships that would 
otherwise be dif fi cult to discern.      
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  Abstract   The recent trend towards Bayesian and adaptive study designs has led to 
a growth in the  fi eld of pharmacokintetics and pharmacodynamics (PK/PD). The 
mathematical models used for PK/PD analysis can be extremely computationally 
intensive and particularly sensitive to messy data and anomalous values. The tech-
niques of paneling and creating polygon summaries help to bring clarity to poten-
tially messy graphics. An understanding of the expected shape of the data, combined 
with the right choice of graphic can help identify unusual patterns of data.      

    6.1   Introduction 

 Pharmacokinetics and pharmacodynamics (PK/PD) describe the manner in which a 
compound enters and exits the body and the effect the compound has on the body 
using mathematical–statistical models. The often complex mathematical models 
used in PK/PD analysis provide quantitative descriptions of compounds, which are 
critical for dose  fi nding and safety assessments during drug development. With 
fewer drugs making it to market and pipelines seemingly drying up, the focus has 
turned towards Bayesian and adaptive study designs and towards PK/PD analysis as 
a means of accelerating the early phases of clinical drug development. 
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 Speci fi cally a typical pharmacokinetic (PK) analysis involves modeling the 
concentration of an administered drug over time using structural models (often 
compartmental models) and exploring covariate relationships using statistical tech-
niques. Pharmacodynamic (PD) analysis attempts to describe the relationship 
between the concentration of a compound and some measurable clinical response 
that represents an improvement in patient well-being. Like PK data, PD data is often 
temporal with the pharmacodynamic effect measured at discrete time points. 

 The primary aim of the PK/PD exploratory data analysis (EDA) process is to 
establish the quality of the data and to con fi rm that the intended structural model for 
the system is appropriate. Here we describe some general principles for graphing 
longitudinal PK/PD data and present some custom graphs applied to PK/PD data. 
The intent is not only to present speci fi c types of plots but also to demonstrate gen-
eral principles of creativity for ef fi cient EDA. The techniques are of particular inter-
est for data involving multiple measurements made for each individual over time.  

    6.2   Datasets and Graphics 

 Graphics have been drawn using a combination of simulated datasets that have been 
created using the MSToolkit package (  http://r-forge.r-project.org/projects/mstoolkit/    ) 
and a popular simulated dataset distributed with the Xpose package (Jonsson and 
Karlsson  1999  ) . The MSToolkit package is a suite of R functions developed 
speci fi cally in order to simulate trial data and manage the storage of the simulated 
output. The MSToolkit package has been selected due to the ease in which PK/PD 
data including covariate interactions can be generated. The Xpose package data has 
been selected due to a commonly occurring challenge with PK/PD data. It consists 
of measurements over time for numerous individuals (subjects), which can make 
trends dif fi cult to spot due to the large amount of information available on the same 
data range. 

 All plots are created with either the lattice package (Deepayan Sarkar  2009  )  or 
with the ggplot2 package (Hadley Wickham  2009  )  in R (R Development Core 
Team  2008  ) .  

    6.3   Repeated Measures Data 

 Clinical trials are typically planned such that for each subject the primary endpoint(s) 
of interest (and perhaps a number of other key endpoints) is collected at baseline 
and then again at key points throughout the study. A pharmacodynamic analysis 
seeks to understand the effect that dose/concentration has on the endpoint over 
time. A PK analysis is similarly concerned with repeated measures over time; how-
ever, the aim of the PK analysis is to understand the change in concentration over 
time. In either case, such repeated measures data are not independent; there is 

http://r-forge.r-project.org/projects/mstoolkit/
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correlation between the measurements of each individual, and the statistical 
techniques used must re fl ect this. 

 We focus  fi rst on PK data and start by plotting individual subject concentra-
tion-time pro fi les together in a single plot. Figure  6.1  shows the change over time 
in observed concentration for a number of simulated subjects. Usually this “spa-
ghetti” plot serves only to con fi rm that our data is in range as any points not in 
range would skew the axes. For a large number of subjects the spaghetti plot can 
be dif fi cult to read due to the number of intersecting lines on the plot and even if 
semi-transparent lines are used it is dif fi cult to see how one subject compares 
with the rest of the population. As a solution to this we partition our plot into 
panels where each panel contains a single subject’s time pro fi le. In Fig.  6.2  time 
pro fi les for the  fi rst four subjects in our dataset have been plotted in a 2 ×2 grid. 
This is suf fi cient to ascertain the shape of the pro fi le but the free scaling of the 
axes provides little indication of scale or location. It is therefore dif fi cult to compare 
subject pro fi les.   

 In Fig.  6.2 , each subject pro fi le is drawn a free scale which is automatically 
generated using data ranges applicable only to that particular subject. As a by-product 
of this, 2 pro fi les appearing to be almost identical at  fi rst glance, for example the 
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  Fig. 6.1    Observed concentration versus time after dose by subject       
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pro fi les for subjects 2 and 3, may actually be very different when closer attention is 
paid to the axes. In fact the maximum concentration for subject 2 is approximately 
8 times higher than the maximum concentration for subject 3. By default, most 
software packages  fi x the scaling such that the data ranges for the full population are 
used when constructing the panels. This example highlights the danger of overriding 
this default. It should be noted, however, that for non-homogeneous data, for 
example for data in which the subjects took different doses,  fi xing the scales can 
hide data characteristics such as the shape of the concentration-time curve for 
subjects taking a low dose. 

 In Fig.  6.2  only the  fi rst 4 subjects from our simulated pharmacokinetic dataset 
have been selected. It is natural to plot these four pro fi les in a 2 ×2 grid in order to 
 fi ll the available space. For an EDA for which the primary intention is to establish 
the quality of the data by comparing an individual subject pro fi le to the rest of the 
data, this approach usually suf fi ces. However, when the primary aim is to make 
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  Fig. 6.2    Observed concentration versus time after dose by subject       
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comparisons between panels the layout is far more important. For example, in 
Fig.  6.2  the primary variable of interest is concentration, which is shown on the 
y-axis. It is much easier to compare concentrations between two subjects when 
the y-axes are aligned. That is to say when the two plots are located side by side 
as opposed to vertically stacked. In order to make comparisons between panels, 
the panels should be stacked in the direction that best facilitates the comparison 
of interest. 

 For an exploratory analysis it is useful to compare individual pro fi les to the 
remaining population so that we can ascertain the relative location of the pro fi le and 
identify outlying pro fi les more quickly. One technique that will enable such a 
comparison is to plot the overall data as a background “shadow.” An illustration of 
this technique is given in Fig.  6.3 . As in Fig.  6.2 , the  fi rst 4 subjects from our 
 simulated data have been plotted in separate panels. In each panel the subject of 
interest has been drawn in a thick, black line, with the remaining subjects from 
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the simulated dataset plotted in gray. For each subject we see instantly how their 
pro fi le compares to the rest of the population. Note also that plotting the four panels 
side by side also now facilitates comparison between these four subjects.  

 These techniques form the foundation for an exploratory repeated measures 
analysis. Later we see how they can be further extended in order to investigate dose 
and other covariates.  

    6.4   Data Quality 

 Many data quality issues are simple to spot, particularly incorrectly formatted values 
and data values that are signi fi cantly out of range. However, incorrect values that are 
still within the overall data range (such as values that have been transpose/swapped) 
are more dif fi cult to identify. In this case, we must rely on the structural information 
we anticipate within the data in order to spot outlying values. 

 If an incorrectly coded value is still within the anticipated data range, a basic 
univariate analysis is not able to identify the issue. In this case, some errors may be 
impossible to spot without quality control (QC) steps against the data source. We 
can, however, use basic graphical methods to spot observations that do not seem to 
follow similar trends. These observations may be erroneous or may be highly 
informative. 

 In this section we concentrate on 2 key variables: the observed concentration 
variable to be modeled and “time after dose,” taken as the primary independent 
variable. 

 In the  fi eld of PK, we typically understand the ways in which the direction of 
trend of the concentration curve should change, based on the dosing mechanism 
employed. For example, after a drug is orally administered the concentration typi-
cally increases sharply to a maximum concentration, then smoothly decreases as the 
drug is metabolized and eliminated. 

 As such, we can often spot erroneous data in a dependent versus independent 
relationship by simply analyzing the sign of the gradient at each step within a graph 
of observed concentration versus time after dose. The gradient is the slope of 
the line connecting two observations, so a switch in sign indicates a switch in the 
direction. 

 Figure  6.4  graphs observed concentration versus time after dose, split by the num-
ber of changes in the sign of the gradient during the time period studied. In this plot, 
an upward facing green triangle is used for a value that is larger than the previous 
value and downward facing red triangle for a value that is less than the previous value. 
A change in the direction occurs at locations where the plotting symbol changes.  

 As you can see here, the majority of the data has at most one change in the sign 
of the gradient. Selecting subjects where there are more shifts in gradient sign often 
exposes data groups which may require further analysis. Figure  6.5  reproduces the 
above graphic for selected subjects with a high number of gradient sign changes. 
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We expect that these short-term increases are due to measurement or reporting 
inaccuracies.  

 Another way to look for potentially erroneous data that could be contained within 
the acceptable range of the data is to scale the data against a model-agnostic 
smoother (such as a loess smoother). In order to perform this scaling, the following 
steps are used: 

   Log the concentration data   –
  Fit a smooth line to the logged data   –
  Calculate differences from this smooth line   –
  Calculate the mean “difference from smooth line” for each subject, and subtract  –
this from the differences (effectively “centering” each subject’s data)  
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  Fig. 6.4    Observed concentration versus time after dose, split by the number of times the sign of 
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  For each time point, subtract the mean of the data and divide by the standard  –
deviation  
  Plot the calculated values vs. time and look for outlying values     –

 Figure  6.6  presents the scaled data generated versus “time after dose.” In this 
graphic, the subject identi fi ers are shown in dark blue, with subject groups linked by 
light gray lines. The change of color here focuses the reading on the subject values 
themselves (darker color) as opposed to the “trend” of each subject (lighter color). 
Horizontal grid lines have been added to allow ease of reading.  

 From this analysis, we can identify subjects that may warrant further analysis 
based on large absolute differences from 0. For example, the following subjects 
have at least 1 value that is more than 3 standard deviations from the mean time 
point center in the above plot: 10, 25, 36, 39, and 141. Creating a plot of observed 
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concentration versus time after dose for these subjects produces the graph shown 
in Fig.  6.7 .  

 In this instance, we want to illustrate how these subjects compare to the general 
trend of the data. If we were to include all subjects in this graph, the visualization 
might look too “busy,” and the focal message could be confused. As such, in order 
to represent the “general trend” of the data, we have instead included polygon 
“shadows” of color representing the 0, 25, 75, and 100 percentiles of the total data 
set on each plot; these are represented as light and dark blue polygons (0 th  and 100 th  
percentiles drawn in light color, overlapped with dark polygons representing the 25th 
to 75th percentiles). In addition, the “center” of the data is included as a (black) 
median line. To contrast against this background, the individual subject data has 
been graphed as bright red points linked by a line. 

 From this analysis, subjects 10 and 36 certainly warrant further investigation. 
In particular, we should look at the observation at time point 3 for subject 10 
(which appears to be comparatively low) and the reasons that the concentrations 
peak comparatively late for subject 36 when compared with the general trend of the 
data (since most concentrations peak at 2 h).  
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  Fig. 6.6    Scaled standard deviations from time point centers versus time after dose, with subject 
identi fi ed       
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  Fig. 6.7    Observed concentration vs. time after dose including only those subjects  fl agged in 
the above analysis, with  blue shaded areas  representing the range and interquartile range for the 
overall data and the overall median drawn in  black        

    6.5   Baseline Effects 

 The techniques discussed thus far are applicable to both PK and PD repeated 
measures data. 

 Baseline is almost always a highly important covariate when modeling a PD 
endpoint. If the baseline distribution of the dependent variable differs between dose 
groups, it can often be seen to undermine the  fi ndings of a study even when the 
baseline effects have been accounted for in our model. This is particularly true of 
smaller early phase studies for which the more extreme baseline values have a 
greater in fl uence on population summaries. 

 For the EDA, the effect of baseline can blur the effects of other covariates and 
unless we are interested investigating interactions with baseline we should look 
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to try and remove the baseline effect in order to focus on the covariate of interest. 
For longitudinal data, this usually means plotting the change from baseline over 
time such that all pro fi les begin from the same place. In Fig.  6.8  we  fi rst plot our 
dependent variable over time and then the change from baseline in the dependent 
variable over time. In the left-hand plot the change in the response variable appears 
random over time. In the right-hand plot however, it is apparent that there is increased 
variability over time, as would be expected for a controlled trial in which subjects 
must meet certain baseline criteria in order to be randomized to the study.  

 When plotting change from baseline we highlight the challenge of choosing an 
appropriate y-axis range. It is often easy to neglect this choice since almost all soft-
ware packages automatically generate a y-axis based on the observed range of our 
data, occasionally adding a small amount of “white space” to this range in an attempt 
to aesthetically enhance the default plots. It is not uncommon for the observed 
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  Fig. 6.8    Improved clarity after adjusting for baseline, subject pro fi les are plotted using 
semi-transparent lines       
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bounds of our data to closely coincide with this default range and so this default 
range is usually suf fi cient for our needs. When we plot change from baseline data 
however, the possible range is often much larger than the observed range. Therefore 
if we adopt the default range, then a small change in the pro fi le of our data might 
appear to be much larger than it actually is, potentially leading us down the wrong 
path. Often the range we choose lies somewhere between a change of potential 
clinical importance and a plausible range.  

    6.6   Investigating Covariates 

 Once we are satis fi ed with the quality of our data, the next step is to investigate dose 
and any other covariates that we are considering for inclusion in our model. Any 
covariate that we choose to investigate (including dose) falls into one of the two 
categories, continuous and discrete. We look at each in turn, beginning with discrete 
covariates. 

 When plotting by dose or any other discrete covariate we have a choice to make. 
We can either use grouping techniques to distinguish between the levels within a 
single plot or partition the plot into panels. The advantage of grouping within a 
single plot is that all pro fi les are on the same axis, and thus it is theoretically easier 
to compare the pro fi les. For a spaghetti plot of individual subject pro fi les, color or 
line type can be used to differentiate between the groups. However, with a large 
number of subjects or when the data is highly variable it can be dif fi cult to extract 
any differences between groups using this method. For this reason it is common to 
plot average data pro fi les for each group, for example median values. When plotting 
using a graphics device that allows semi-transparent coloring we may also decide to 
plot “ribbons” or error regions to give an idea of the range of the data. However the 
use of error bars or ribbons can crowd the plot, particularly when the covariate has 
many levels. Even with just three levels a plot can look crowded if the differences 
between the groups are small. For that reason we are usually limited to plotting a 
single summary statistic for each subgroup over time. Figure  6.9  shows the change 
over time in a simulated response variable by country. In this particular dataset there 
are 9 levels of the country variable. A simple plot of the median values for each 
country highlights a sudden rise in response between weeks 8 and 10 for China in 
contrast to the majority of countries for whom the response tends to decrease 
between weeks 8 and 10.  

 In the previous example plotting median values helped highlight an interesting 
feature of our data. However without any indication of variability we cannot be 
sure whether this is truly interesting or simply random  fl uctuation. Figure  6.10  plots 
the change from baseline over time in the dependent variable by dose group. The 
blue regions within each panel represent the range and interquartile range for the 
dose group with the median represented by a black line. In addition, the range of 
response values across all doses is shown in gray. The position of the blue area in 
relation to the shadow helps to identify a dose effect with increased response in the 
higher dose group.  
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 The approach is one that is easily extended into higher dimensions. In Fig.  6.11  we 
look at two discrete covariates, the sex of the subjects and whether or not they smoke. 
Again, the 0 th , 25 th , 50 th , 75 th , and 100 th  percentiles are displayed for each covariate 
group and as with the last graphic, the 0–100 range is in light blue, 25–75 in darker 
blue, and a black line shows the median. Figure  6.11  shows higher concentrations for 
female subjects, and a later peak in concentrations for male subjects. The graph also 
suggests a slight increase in concentration values for smokers. The consistency across 
the plots plot would also seem to indicate a lack of any interaction between sex and 
smoking habit. Note that to facilitate comparison of the observed concentration values, 
the plots are aligned from left to right as opposed to a 2 ×2 grid layout.  

 When the covariate of interest is continuous we no longer have the option of 
paneling available to us since to panel by a variable implies that it is discrete. We 
can of course split the continuous variable into discrete categories of interest and 
apply the same techniques already discussed for categorical variables. In a modeling 
scenario we generally wish to avoid partitioning our data in this way as we create 
arti fi cial boundaries between data points. However for an EDA this actually may 
help us to spot an effect, and if we do intend to categorize a continuous variable, 
then we can use paneling as a way of selecting the breakpoints. Of course it is vital 
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  Fig. 6.9    Change in response over time by Country       
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  Fig. 6.10    Change in median response variable over time by dose group with  blue shaded areas  
representing the range and interquartile range for each dose group and the overall data range 
included as a  gray shadow  on the plot       

that the natural order is retained when a discrete variable has been formed from a 
continuous one. 

 If we decide not to cut our continuous covariate up into a discrete variable, then 
we face a dimensionality challenge; we are effectively already treating both the 
response variable and time as continuous variables and the within-subject correla-
tion adds further dimensionality. When faced with this challenge, it can be tempting 
to move to a three-dimensional coordinate system. Given that we only have 2 dimen-
sions available to us, this approach should be adopted with caution. In particular the 
angle of rotation has a strong effect on our interpretation of the graphic and interest-
ing features of the data can easily be hidden. An alternative approach is to treat time 
as a discrete variable. This is possible for clinical trial data since the response infor-
mation is collected at scheduled (discrete) times. We can then investigate the 
response variable against our covariate of interest via a sequence of scatter plots. If 
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  Fig. 6.11    Observed concentration vs. time after dose plots split by sex/smoking Indicator, with 
 blue shaded areas  representing the range and interquartile range for the subgroup and the overall 
data range included as a  grey shadow  on the plot       

a relationship exists between the two variables, we would expect to see a pattern 
develop as we move from left to right across the panels. As with all ordinal categori-
cal variables it is vital that when we panel by time we maintain the order and arrange 
the panels from left to right. 

 In Fig.  6.12  we have paneled by time in order to investigate how the relationship 
between Y and X changes over time. Varying the plotting symbol and color by dose, 
we see how the dose groups begin to separate over time.  

 This method is not without its drawbacks. The length of time between the 
discrete data collection points is usually wider towards the end of a subject’s partici-
pation in a study. Care must therefore be taken when paneling by the discrete time 
points to preserve the distance between time points. In Fig.  6.12  therefore the  fi rst 
time point has been removed so that the difference between each time point is equal. 
Alternatively, spacing could be used to indicate larger time intervals.  
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    6.7   Conclusion 

 For the PK/PD modeler, the EDA is the  fi rst step in the model building process. 
Exploring the data graphically presents many challenges due to the within-subject 
correlation that results from repeated measures data. An understanding of this struc-
ture can help us to break the data down and spot troublesome with-range anomalies. 
The aim of the EDA is to attain a better understanding of the data prior to commencing 
a model building process. It is therefore important to focus the exploratory work on 
identifying patterns within the data that may in fl uence this process. Plot change 
from baseline data when applicable and consider the comparison of subgroups with 
the population as a whole in addition to with each other.      
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  Fig. 6.12    Comparison of response against weight by dose       
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  Abstract   Biomarkers have become cornerstones of modern drug development, 
improving assessment of both ef fi cacy and safety of new molecules. Use of graphi-
cal data exploration can help to maximize information output from biomarker data 
and improve ef fi ciency of the data analysis process. The chapter describes a system-
atic work fl ow for interactive graphical data exploration focusing on liver safety bio-
markers as an example. Using interactive software, the work fl ow allows research 
and development teams to jointly explore their data, generate and test hypotheses, 
and identify the most suitable graphs for study reports or regulatory reporting.      

    7.1   Introduction 

    7.1.1   Biomarker De fi nitions 

 Decisions in drug development and clinical medicine alike are increasingly based 
on results of biomarker measurements, providing the opportunity to obtain relevant 
safety or ef fi cacy readouts long before rock-solid clinical endpoints have been 
reached. 

 The term “biomarker” comprises a variety of different measurements such as 
genetic markers, used to either predict therapeutic response or risk for speci fi c side 
effects, clinical chemistry variables such as blood cholesterol or blood sugar, or 
cardiovascular parameters such as blood pressure, heart rate, or speci fi c elements of 
ECG readings. 

    M.   Merz   (*)
     Novartis Institutes for BioMedical Research, Translational Sciences ,
  Basel ,  Switzerland    
e-mail:  michael.merz@novartis.com   

    Chapter 7   
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 Examples of drugs that gained market access based on biomarker data include 
the breast cancer drug Herceptin™, which was approved in 1998 along with a 
genetic biomarker predicting if a patient would be likely to bene fi t from treatment 
(Bouchie  2004  ) , or anti-diabetic drugs which usually are approved depending on 
their effect on blood glucose measurements. 

 Biomarker categories as de fi ned by the FDA in 2005 (US Food and Drug 
Administration  2005  )  are as follows.   

  •     Class I known valid biomarker 
 A biomarker that is measured in an analytical test system with well-established 
performance characteristics and for which there is widespread agreement in the 
medical or scienti fi c community about the physiologic, toxicologic, pharmaco-
logic, or clinical signi fi cance of the results. 

 Known valid biomarkers are for example certain pharmacogenetic markers 
predicting response to treatment or risk of side effects. A comprehensive list of 
such markers in the context of approved drug labels is available on the FDA’s 
website: 

   http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/
ucm083378.htm    .  

  •     Class II probable valid biomarker 
 A biomarker that is measured in an analytical test system with well-established 
performance characteristics and for which there is a scienti fi c framework or body 
of evidence that appears to elucidate the physiologic, toxicologic, pharmaco-
logic, or clinical signi fi cance of the test results. 

 A probable valid biomarker may not have reached the status of a known valid 
marker because, for example, of any one of the following reasons:

   The data elucidating its signi fi cance may have been generated within a single • 
company and may not be available for public scienti fi c scrutiny  
  The data …, although highly suggestive, may not be conclusive  • 
  Independent veri fi cation of the results may not have occurred     • 

  •     Class III exploratory biomarker 
 A biomarker that does not match criteria I or II. 

 Most of the biomarkers used for clinical diagnosis or safety testing in drug 
development are somewhere in between Class I and II, mostly not having been 
formally quali fi ed, but based on extensive knowledge and evidence to justify their 
routine use. 

 This chapter illustrates the graphical analysis of biomarker data within a sys-
tematic work fl ow, which should be applicable to a wide range of different bio-
marker types. In order to demonstrate the added value of a de fi ned work fl ow, 
systematic liver safety biomarker assessment is used as an example. 

 Regulatory decisions to reject approval of new drugs due to concerns about liver 
side effects are increasingly based on careful analysis of liver safety biomarker data 
rather than clinically manifest serious liver damage. Examples include drugs such as 

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.html
http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.html


1197 (Interactive) Graphics for Biomarker Assessment

the beta blocker dilevalol or the anti-diabetic vildagliptin, which were both not 
approved in the United States based on liver test abnormalities, or the anti-diabetic 
troglitazone, which was withdrawn from the market due to several cases of serious 
liver injury, which might have been predicted based on liver safety biomarker data 
from clinical trials. 

 Liver safety biomarkers fall into two different categories,  enzyme  and  function  
tests. Liver enzymes are catalytic proteins located in liver cells, which, upon 
injury to the organ, are released into the blood stream. Increased plasma activi-
ties of liver enzymes thus mostly indicate injury to the liver. 

 Liver function tests, primarily bilirubin, are dependent, as the name implies, 
on proper organ function. One of the functions of the liver is elimination of bili-
rubin, a degradation product of hemoglobin, into the bile system. Decrease of 
hepatic function, e.g., due to drug-induced liver injury, if suf fi ciently severe, ulti-
mately leads to increased bilirubin levels in blood.  

    7.2   Why Use Graphics for Biomarker Data? 

 A wealth of evidence suggests that the human brain’s capability to process visual 
information signi fi cantly exceeds processing of text information (Goolkasian  1996  ) . 
This holds true as well when comparing visual to tabular presentation of numerical 
data, such as biomarker data. To illustrate this, Table  7.1  provides a tabular overview 
on simulated blood pressure measurements in clinical studies across two drug devel-
opment programs. The data show average proportional change from baseline for 
systolic blood pressure, compared between active treatment and control groups.  

 Figure  7.1  shows the same data as treemap, with size of the rectangles corre-
sponding to the number of patients per treatment group; color coding is by average 
proportional change from baseline for systolic blood pressure. Hierarchy headers 
are by compound (letters) and study (number code).  

 The fact that active treatment across studies in program II seems to be associated 
with an increase in systolic blood pressure can be captured much easier and literally 
in the twinkling of an eye, as compared to the tabular representation: rectangles 
representing program 2 studies are clearly shifted more toward red for active treat-
ment groups as compared to controls. It is also immediately obvious from the graph-
ical display of the data which of the studies in program II show most pronounced 
differences between treatment groups, i.e., nos. 4, 103, 107, and 2105. 

 Some characteristics of biomarker data make them particularly amenable to 
graphical exploration:

   In most cases in clinical practice and pharmaceutical research, maximum infor-• 
mation can be obtained by analyzing and assessing biomarkers not individually, 
as single markers, but rather as  marker panels , since individual markers may 
describe differential aspects of a given clinical event. Thus, for example, during 
drug development, the standard panel of markers used for liver safety assessment 
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   Table 7.1    Proportional change from baseline for systolic blood pressure by 
pooled treatment groups across two different drug development programs   

 Program  Study  Active treatment  Control 

 I  3  1.01  1.00 
 4  1.00  1.00 
 7  1.01  0.99 

 102  1.00  0.97 
 107  1.03  0.99 
 108  1.01  1.01 

 1204  1.01  1.02 
 2102  1.01  1.00 
 2103  1.01  0.97 
 2106  0.99  1.00 
 2302  1.00  1.00 

 II  2  1.04  0.99 
 3  1.03  0.98 
 4  1.15  1.03 
 7  1.05  0.99 

 102  1.06  0.99 
 103  1.17  1.04 
 107  1.17  1.01 

 2102  1.02  1.04 
 2103  1.02  1.03 
 2105  1.17  0.98 

  Fig. 7.1    Treemap displaying proportional change from baseline for systolic blood pressure, size 
of rectangles proportional to sample size, color corresponding to average increase in blood pres-
sure per pooled treatment group       
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comprises alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
gamma glutamyl transferase (GGT), alkaline phosphatase (ALKPHS), and total 
bilirubin (TBIL) (in Europe, the terms SGPT and SGOT are more generally used 
for ALT and AST, respectively)    

 Elevation of ALT alone is a very sensitive, yet not highly speci fi c signal for liver 
injury. The additional elevation of bilirubin increases speci fi city of the ALT signal. 
The combined elevation of ALT exceeding 3 times the upper limit of normal, and 
bilirubin exceeding two times the upper limit of normal is widely known as “Hy’s 
law,” a term coined by FDA expert Dr Robert Temple in the 1990s, and named after 
Dr Temple’s late colleague Dr Hyman Zimmermann, who had described this predic-
tive liver safety signal originally.

   In addition to being closely correlated with other biomarkers, many safety bio-• 
markers are  dependent on demographic covariates  such as age, gender, body 
mass index (BMI), etc.  
  Important as well for proper assessment of biomarker results is thorough  • assess-
ment of time courses of individual and combined markers . A signi fi cant elevation 
of ALT followed by an elevation of bilirubin may indicate severe liver injury. 
The reverse sequence however, sometimes observed for example in young male 
patients with a harmless genetic disorder of bilirubin excretion (“Gilbert’s syn-
drome”), may not indicate any relevant injury at all    

 Thus, proper analysis of biomarker data is  multivariate by nature  and has to  take 
into account time dependency of observations . Although biomarker assessment via 
summary tables and individual data listings may be feasible as well, use of graphics, 
ideally in the setting of a de fi ned, systematic work fl ow, is by far more ef fi cient and 
reliable. 

 The examples presented in this chapter have been elaborated using TIBCO 
Spot fi re™, a software tool facilitating interactive, graphical data exploration, allow-
ing project teams to  jointly  assess their data as a group, instead of individual analy-
sis of static standard plots.  

    7.3   Prerequisites 

    7.3.1   Normalization 

 Adequately assessing biomarker data often needs comparison between different 
continuous variables, across different studies, different laboratories, etc. To facili-
tate that, normalization of continuous data is helpful. For variables being reported 
along with normal ranges, an ef fi cient algorithm allowing to easily derive where in 
relation to the normal range the un-corrected value had been, is given in Table  7.2 :  

 Figure  7.2  displays normalized vs. raw values for a marker with LLN = 10 and 
ULN = 50:  

 Using the above algorithm, a normalized value of e.g.,
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   100 corresponds to a raw value at ULN  • 
  200 corresponds to a raw value at 2 × ULN  • 
  50 corresponds to a raw value in the middle between LLN and ULN  • 
  −50 corresponds to a raw value in the middle between 0 and LLN     • 

    7.3.2   Units 

 Biomarker data across different laboratories or studies may be reported in different 
units. Before pooling data, units need to be converted to standard or preferred units, 
if available, to facilitate comparison across studies or different study centers and 
laboratories. However, normalization relative to the given normal ranges, as shown 
above, eliminates the need for conversion across different measurement units.  

   Table 7.2    Algorithm to normalize continuous biomarker data in 
relation to the normal range;  LLN  lower limit of normal;  ULN  
upper limit of normal   

 Raw value (RV)  Normalized value (NV) 

 RV < LLN  NV = 100 (RV/LLN−1) 
 LLN < RV < ULN  NV = (RV-LLN)/(ULN-LLN) * 100 
 RV > ULN  NV = RV/ULN * 100 
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  Fig. 7.2    Normalization of continuous biomarker data, relative to lower and upper limit of 
normal       
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    7.3.3   Data Types 

 Although the vast majority of biomarker data are continuous variables such as 
enzyme activities, analyte concentrations in serum, etc., adequate interpretation of 
biomarker results often requires simultaneous assessment of other data such as con-
comitant medication, adverse events, medical history, etc. Thus, graphical explora-
tion of biomarker data should also include plots providing a synoptic view on 
biomarker, concomitant medication, and adverse event data per patient. 

 Analyzing raw biomarker values only may be insuf fi cient to see the complete 
picture. Frequently, including derived variables such as absolute and relative changes 
from baseline, maximum values on treatment,  fl ags for exceeding prede fi ned thresh-
old values, etc. are required to adequately interpret biomarker results. Thus, before 
starting biomarker data exploration, a set of derived variables required needs to be 
de fi ned and calculated.  

    7.3.4   Data Structure 

 Typically, datasets for biomarker analysis have study identi fi er, subject identi fi er, 
visit numbers and visit names, parameter names, parameter results, lower and upper 
limits of normal ranges, units, and relevant covariates such as age, gender, BMI, 
ethnicity displayed by column. For most of the graphics used for biomarker explora-
tion, this structure is suf fi cient. However, in order to address speci fi c questions such 
as shape of bivariate distributions, shifts from baseline by visit, etc., transposing the 
dataset by parameter names or by visits may be necessary. In order to allow an 
ef fi cient work fl ow, it is helpful to de fi ne individual steps of the work fl ow and 
required data structures upfront and make sure analysis datasets are available in all 
formats required.   

    7.4   Questions to be Addressed 

 Key questions to address when analyzing biomarker data comprise:

   Are distributions of biomarker values different across treatment groups?  • 
  Is incidence of out-of-range values different across treatment groups?  • 
  What is the number of patients exceeding certain threshold values across • 
 treatment groups?  
  Are shifts from baseline different between treatment groups?  • 
  Is there any evidence for a dose–response-relationship for biomarker effects?  • 
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  How are changes across different biomarkers correlated, and how do those cor-• 
relations differ between treatment groups?  
  What do time pro fi les of individual biomarkers or biomarker panels, such as liver • 
enzymes, look like?  
  Are biomarker changes observed during treatment transient or progressing while • 
a patient is on treatment?  
  What do time pro fi les look like after stop of treatment?  • 
  How does intake of certain concomitant medication or occurrence and/or • 
resolution of certain adverse events relate to time pro fi les of biomarkers of 
interest?  
  How do biomarker results compare across studies within a clinical program, or • 
across different development programs focusing on different drugs that have the 
same molecular target?    

 To systematically address these questions, a set of standard graph templates can 
be used and customized as required. The following examples focus, as mentioned, 
on assessment of liver safety biomarkers, in particular the enzymes ALT, AST, GGT, 
and ALKPHS, and, as a marker of hepatic excretory function, TBIL.  

    7.5   Graph Templates and Systematic Work fl ow 

    7.5.1   Distributions Across Treatments 

 Frequency distribution of liver tests across different treatment groups can be dis-
played as Trellis histograms, with biomarker names across columns and treatment 
groups across rows. Tools for interactive graphical data exploration ideally allow 
for easy setup of any kind of conditional (“Trellis”) plot, providing opportunities 
for display of additional dimensions such as gender (color coded in the example 
below), as well as distribution characteristics (average and standard deviations in 
the example). 

 Figure  7.3  shows histograms of liver enzymes ALKPHS, ALT, and AST. To 
account for the underlying log-normal distributions of liver enzyme data,  x -values 
are presented on a logarithmic scale. This excludes representation of negative val-
ues, which, based on the normalization algorithm used may occur, but without hav-
ing any clinical relevance: of primary interest are values beyond the upper limit, 
rather than below the lower limit of normal. The plot indicates rightward shifts par-
ticularly for ALT and AST, plus presence of more extreme values at the right tail of 
the distribution for both active treatment groups. Mean ALT values, represented by 
broken green lines, are higher during active treatment as compared to placebo. Color 
coding by gender does not suggest a relevant difference of effects between male and 
female patients.  

 Thus, this initial step in a systematic work fl ow, using simple histograms, provides 
already meaningful information about a potential treatment induced liver effect.  
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    7.5.2   Incidence of Out-of-Range Values 

 A key piece of information when analyzing safety biomarker data usually is how 
many patients showed results outside the normal range. For liver safety analysis, of 
particular importance are values exceeding the upper limit of normal (ULN). As 
severity of liver injury may correspond to levels of enzyme activities and bilirubin 
concentrations, a standard process in safety assessment is to count values exceeding 
ULN, 3 × ULN, 5 × ULN, etc. 

 Graphically, this is displayed easily using bar charts, conditioned by liver test 
name and treatment group, as shown in Fig.  7.4 .  

 On the  x -axis, value classes are displayed (“0”: inside normal range, “1,” exceed-
ing 1 × ULN, etc.), the  y -axis holds percent of subjects per value class. 

 The plot shows higher incidences of values > ULN for ALT, AST, and ALKPHS 
in both active treatment groups as compared to placebo. For ALT, incidence of val-
ues exceeding 3 × ULN is higher in both active treatment groups as well. 

 Another way to show the same information, but making treatment differences 
more obvious is demonstrated in Fig.  7.5 , using color coding for treatment groups 
and placing treatment groups next to each other.   

    7.5.3   Shifts from Baseline 

 Biomarker results always have to be viewed in the context of their respective base-
lines to allow adequate assessment of treatment or disease effects. This can be done 

  Fig. 7.3    Distributions of normalized biomarker results, parameters by column, treatment groups 
by row, color coding by gender       
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either by analyzing absolute and relative changes from baseline, or by using scatter 
plots with baselines on the  x -axis and e.g., maximum post-baseline values on the 
 y -axis. When plotting only  maximum  post-baseline values on the  y -axis, however, 
careful consideration needs to be given to the number of post-baseline measure-
ments per patient, particularly when no control groups are available for comparison 
across treatments: the larger the number of post-baseline observations per patient, 
the more biased the plot will be toward values increasing from baseline. 

 Figure  7.6  shows a respective example with four post-baseline observations per 
patient. Again, this is a Trellis plot with treatment groups across rows and  biomarker 

  Fig. 7.4    Number of patients within and above the normal range, parameters by column, treatment 
groups by row       

  Fig. 7.5    Frequency of patients within and above the normal range, parameters by column, color 
coding by treatment       
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names across columns. Color coding is by gender. The blue diagonal line in each 
panel represents the line of identity, i.e., each value on the line corresponds to maxi-
mum post-baseline equaling baseline, each point above the line is an increase, points 
below the line a decrease from baseline, respectively.  

 In addition, the plot allows to assess the number of patients exceeding certain 
threshold values, represented by the green (=ULN) and red (3 × ULN) horizontal 
and vertical broken lines in each panel. 

 In this example, there is a clear trend for higher shifts from baseline, i.e., eleva-
tions, for ALT and AST in both active treatment groups. However, even the placebo 
group displays some elevations from baseline at least for ALT. Although this is a 
phenomenon not uncommon in clinical studies and may be explained by effects of 
diet, physical exercise, concomitant disease or comedication, the effect may at least 
partially also be due to a bias introduced by the number of post-baseline measure-
ments. To avoid that, an alternative would be to plot  all  post-baseline values per 
patient, instead of selecting the maximum values only. This, however, may substan-
tially hamper legibility of the data. 

 The overall effect in the active treatment groups is not dramatic; however, some indi-
vidual values exceed 5 × ULN at post-baseline which would warrant close monitoring. 

 At initial inspection, there is no obvious effect of gender on shifts from baseline, nor 
is there a strong baseline dependence of high post baseline values for ALT and AST.  

    7.5.4   Dose–Response-Relationship 

 In order to assess dose effects more quantitatively than feasible via scatter plots, box 
plots may be used for absolute or relative changes from baseline and compared 
across treatment groups. Figure  7.7  shows maximum absolute changes from baseline 

  Fig. 7.6    Shifts from baseline, parameters by column, treatment groups by row, color coding by 
gender       
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per patient for liver enzymes across treatment groups. Plots per treatment group are 
de fi ned by median (white line), lower and upper quartiles (box), lower and upper 
adjacent values (whiskers), and outliers (individual data points). Outliers are jittered 
on the  x -axis to improve visibility.  

 The plot suggests differences for maximum elevations from baseline of ALT and 
AST as compared between both active treatment groups and placebo treatment. 

 For ALKPHS, only a potential trend toward higher elevations with active treat-
ment as compared to placebo can be observed.  

    7.5.5   Correlations 

 Often it is helpful to explore correlations either between biomarkers that are or 
could be linked from a physiological perspective, or between biomarkers and poten-
tial covariates of interest such as age, BMI, gender, ethnicity, etc. 

 For liver safety assessment, a key graph used by the FDA to detect safety signals 
of concern is the so-called “eDISH” (evaluation of Drug-Induced Serious 
Hepatotoxicity (Gelperin et al.  2008  ) ) plot, a log-log display of peak TBIL vs. ALT, 
both in multiples of ULN, with horizontal and vertical lines indicating Hy’s law 
thresholds, i.e., ALT = 3 × ULN and TBIL = 2 × ULN. Combination of elevated 
ALT > 3 × ULN and TBIL > 2 × ULN, as mentioned in the introduction, is a pretty 
speci fi c prognostic indicator for the risk to develop severe drug-induced liver injury. 
The “eDISH” plot allows to easily spot cases potentially matching Hy’s law criteria, 
all located in the upper right quadrant of the graph. Data points in the lower right 
quadrant, i.e., exceeding 3 × ULN for ALT, but being below 2 × ULN for TBIL, 
 suggest an increased risk for liver injury as well, if incidence is differing between 

  Fig. 7.7    Maximum absolute changes from baseline across treatment groups, parameters by panel, 
treatment groups by column per panel       
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active treatment and control groups, however, not to the same extent and with less 
speci fi city as compared to Hy’s law. These cases in the lower right quadrant are 
sometimes referred to as “Temple’s corollary” cases, named after Dr. Robert Temple, 
a fellow expert of the late Dr. Hyman Zimmerman at the FDA. 

 Figure  7.8  shows an example of an eDISH plot, comparing pooled active study 
drug against placebo data. Color coding is by gender, horizontal, and vertical lines 
indicate Hy’s law thresholds.  

 Patients with active treatment show a higher incidence of values in the lower 
right quadrant and two potential Hy’s law cases in the upper right quadrant, thus 
suggesting a potential risk for severe drug-induced liver injury associated with this 
drug, without apparent association to gender. As stated in the FDA’s guidance on 
Drug-Induced Liver Injury, “… Finding one Hy’s Law case in the clinical trial data-
base is worrisome;  fi nding two is considered highly predictive that the drug has the 
potential to cause severe DILI when given to a larger population” (US Food and 
Drug Administration  2009  ) . 

 A limitation with the standard eDISH plot is its lack of displaying the sequence 
of maximum observed values for ALT and bilirubin, i.e., which of both was  fi rst, as 
well as length of time intervals between maximum observed values. However, from 
a clinical perspective, these data are highly relevant, since only bilirubin elevations 
 parallel to or following  ALT elevations may indicate loss of hepatic function due to 
liver injury. Moreover, a long time interval, exceeding 2–4 weeks, between both 
peaks may also speak against a causal correlation. Thus, it would be valuable to 
have this information included in the graphical display, as well. Figure  7.9  shows a 
proposed modi fi cation to the eDISH plot, using color coding for sequences of ALT 
and bilirubin peaks, and size coding for the time interval between both peaks. In 
order to make the most relevant data points easily visible, the more concerning 
sequence of bilirubin parallel to or following ALT peak is coded in red, the time 
interval is coded as 1/interval to make shorter time intervals being displayed as 

  Fig. 7.8    eDISH plot, TBIL [×ULN] vs. ALT [×ULN] on a log/log scale, treatment by panel, 
pooled active vs. placebo control, color coding by gender       
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larger data points. Filled circles refer to data located in the Hy’s law quadrant, with 
ALT peak simultaneous to or followed by bilirubin peak, and time interval between 
both being less than 4 weeks. Thus, the points to watch out for primarily are large, 
 fi lled, red circles.  

 In the above example, 9 of 12 data points in the Hy’s law quadrant for patients in 
active treatment groups show the sequence of interest, i.e., bilirubin following or 
simultaneously elevated with ALT peak, but only two of those have a time interval 
of less than 4 weeks between both peaks. Thus, using this modi fi ed version of the 
eDISH plot, 10 out of 12 potential Hy’s law cases can be immediately identi fi ed as 
being likely less relevant. 

 Other correlations of interest when exploring liver safety pro fi les of new drugs are 
those between different liver enzymes, i.e., ALT/AST, ALT/GGT, and ALT/ALKPHS. 
Whereas in the healthy liver, ALT and AST are closely correlated, ALT and the 2 
other enzymes usually are not. However, in some cases of drug-induced liver injury, 
elevations of ALPKPHS and/or GGT may correlate with increased ALT activities, 
providing some hints about the underlying pathology, i.e., cholestasis or mixed type 
cholestatic/hepatocellular injury. Isolated elevations of GGT activities without asso-
ciated ALT or ALKPHS changes may sometimes indicate enzyme induction rather 
than cell injury, as observed, e.g., in cases of chronic alcohol abuse. 

 Figures  7.10 ,  7.11 ,  7.12 , and  7.13  display examples of bivariate distributions 
for maximum post-baseline values of AST vs. ALT, ALKPHS vs. ALT, GGT vs. 
ALT, and GGT vs. ALKPHS. Color coding is by treatment group, horizontal 
and vertical lines indicate ULN (green line) and 3 × ULN (red line), respectively. 
The blue diagonal line indicates identity, e.g., in Fig.  7.10  maximum ALT equaling 
maximum AST.     

 Figure  7.10  shows the typical correlation between ALT and AST, ALT generally 
displaying higher activities than AST. In cases of e.g., alcohol-induced liver injury 

  Fig. 7.9    Modi fi ed eDISH plot, color by sequence of peak values, size by one/time interval between 
peaks, shape by clinical relevance       

 



1317 (Interactive) Graphics for Biomarker Assessment

or muscular injury, this correlation may be reversed, i.e., AST > ALT, supporting 
differential diagnosis of the underlying pathology. 

 Of note, elevations of both ALT and AST are visible not only in both active treat-
ment groups (red and blue data points), but also for some placebo patients (green 
points). Maximum ALT values are exceeding 10 × ULN, thus being clinically 
signi fi cant. 

 Figure  7.11  displays some ALKPHS elevations without clear association with 
ALT activities, Fig.  7.12  demonstrates signi fi cant GGT elevations not correlated 
with ALT elevations, and Fig.  7.13  points to a potential, albeit rather weak  correlation 
between ALKPHS and GGT. 

 This data overall may point toward mild to moderate cholestatic or mixed type 
cholestatic/hepatocellular liver injury, suggested by ALKPHS and GGT elevations. 

  Fig. 7.10    Post-baseline AST vs. ALT, color coding by treatment group, ULN and 3 × ULN indi-
cated as  green  and  red lines , respectively, line of identity indicated as  blue  diagonal       

  Fig. 7.11    Post-baseline ALKPHS vs. ALT, color coding by treatment group, ULN and 3 × ULN 
indicated as  green  and  red lines , respectively, line of identity indicated as  blue  diagonal       
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However, some involvement of enzyme induction, indicated by GGT elevations 
being substantially higher than ALKPHS elevations, cannot be ruled out.  

    7.5.6   Time Pro fi les 

 Changes of biomarkers over time can provide crucial information on both underlying 
pathology and causal relationship to drug treatment. Line plots of either individual 
markers or marker panels are most useful to assess biomarker time pro fi les, particu-
larly if combined with elements indicating start and/or end of drug treatment. 

 Figure  7.14  provides an overview on ALT pro fi les over time of 49 patients in a 
clinical study who showed ALT elevations while on treatment, one panel per patient. 

  Fig. 7.12    Post-baseline GGT vs. ALT, color coding by treatment group, ULN and 3 × ULN indi-
cated as  green  and  red lines , respectively, line of identity indicated as  blue  diagonal       

  Fig. 7.13    Post-baseline GGT vs. ALKPHS, color coding by treatment group, ULN and 3 × ULN 
indicated as  green  and  red lines , respectively, line of identity indicated as  blue  diagonal       
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Treatment end is indicated by a vertical red line, the horizontal green line represents 
ULN. As displayed in the plot, most of the patients showed short-lived, transient 
peaks of ALT, with serum activities decreasing despite continued treatment. Only 
few patients had to be taken off treatment due to continuous or worsening elevations 
of ALT.  

 Overall, for the drug under investigation, this could be rather reassuring infor-
mation, suggesting that most patients may adapt to a drug-related effect on the 
liver, if any. 

 Panels of standard liver tests ALT, AST, ALKPHS, and TBIL are displayed 
jointly by patient in Fig.  7.15 , presenting a subset of the patients shown in Fig.  7.14 . 
Color coding is by liver test, horizontal lines represent ULN (green line) and 3 × ULN 
(red line), respectively. This plot allows assessing time-wise association of different 
biomarker effects by patient. Of interest for evaluation of liver safety for example is 
to see if bilirubin or ALKPHS elevations follow or precede ALT peaks. Elevated 
bilirubin levels following or paralleling ALT elevations may indicate hepatic dys-
function, increased ALKPHS activities post-ALT elevations may point to cholesta-
sis secondary to hepatocellular injury.  

 Only patient 0004_00016 shows discrete elevation of ALKPHS in parallel with 
peak ALT and AST, pointing toward a cholestatic component of liver injury. There 
are no apparent elevations of bilirubin parallel or subsequent to ALT elevations in 
any of the patients, con fi rming the rather benign nature of liver enzyme changes 
observed in the study. 

 A crucial question in liver safety assessment of clinical trials is how many 
patients show elevated ALT > 3 × ULN and TBIL > 2 × ULN either at the same time 
or with TBIL elevation following ALT peaks within a few days up to 1 month, as 
mentioned above. Whereas the standard “eDISH” plot displays peak elevations, or 

  Fig. 7.14    Time pro fi les of ALT, panel by patients, treatment end indicated by  vertical red line , 
ULN indicated by  horizontal green line        
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rather maximum observed values of both parameters irrespective of the time interval 
between those peaks, and thus may come up with false positive Hy’s law cases, 
individual line plots by parameter, using an interactive software, allow to mark, e.g., 
all patients exceeding 3 × ULN for ALT and see the same patients’ pro fi le for biliru-
bin highlighted at the same time. 

 Figure  7.16  shows line plots for AST, ALT, TBIL, and ALKPHS, panels by liver 
test and lines by patient, across three patients. Color coding is by treatment, hori-
zontal lines represent ULN (green line) and 3 × ULN (red line), respectively. The 

  Fig. 7.15    Time pro fi les of ALT, AST, ALKPHS, and TBIL, panel by patients,, treatment end indicated 
by  vertical red line , ULN and 3 × ULN indicated by  horizontal green  and  red line , respectively. 
Color coding by liver test       

  Fig. 7.16    Time pro fi les of AST, ALT, ALKPHS, and TBIL, panels by lab test, ULN and 3 × ULN 
(2 × ULN for TBIL and ALKPHS, according to clinical practice) indicated by  horizontal green  and 
 red line , respectively. Color coding by treatment group. Selected patient marked in  orange        
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orange line with markers at both ends is a patient having been marked in one line 
plot and being highlighted automatically in the other plots. Prerequisite for this kind 
of display is to have parameters stored by column in the dataset, so selecting one 
record picks up all four parameter values.  

 The patient marked in this example has signi fi cantly elevated ALT and AST 
values, but no associated bilirubin elevations, thus is not a Hy’s law case.  

    7.5.7   Association with Concomitant Medication and Adverse 
Events 

 A particularly helpful graph to analyze association of biomarker changes with 
adverse events and concomitant medication is a synoptic presentation of line plots 
for all three items along a shared time axis. With an interactive analysis tool, this 
can be done using synchronized  x -axes. 

 Figures  7.17  and  7.18  display ALT time pro fi les of two individual patients from 
different clinical trials on top of the plot, concomitant medication, and adverse 
events beneath. The horizontal red line in the top plot represents 3 × ULN for ALT. 
In the two lower plots, start and end times of concomitant medication intake and 
adverse events are displayed as blue triangles, the black line between associated 
triangles indicates ongoing concomitant medication or adverse event, respectively.   

 As can be seen from Fig.  7.17 , this patient had taken Tylenol, i.e., acetamino-
phen, an analgesic drug well known to cause liver injury (Lee  2008  ) , for several 
days prior to the peak in ALT values. Thus, it is very likely that the ALT elevation 
was due rather to acetaminophen than to the study drug in this clinical trial. 

Figures   7.18  shows a different patient, who had taken an acetaminophen contain-
ing medication, Nyquil, before the  fi rst ALT peak, but no suspicious comedication 
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  Fig. 7.17    Synoptic line plot of ALT, concomitant medication, and adverse events; start and end 
date of adverse events and concomitant medications indicated by  blue triangles , patient no.1       
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around the time of the second ALT peak. However, the patient reported several 
adverse events of headache during the trial, one particularly preceding the second 
ALT peak. Upon questioning the patient speci fi cally if she might have taken acet-
aminophen to treat her headache but forgotten to report this as concomitant medica-
tion, the patient con fi rmed that this indeed had been the case. 

 Thus, a synoptic display of ALT pro fi les, concomitant medication and adverse 
events may sometimes help substantially to identify causes for clinically relevant 
changes in liver safety biomarkers.  

    7.5.8   Biomarker Pro fi les Across Programs and Compounds 

 Going beyond analysis of individual trials, graphics can also help a lot to understand 
potential safety signals originating from biomarker responses across an entire 
 development program, consisting of a range of clinical studies, or a portfolio of 
projects, e.g., related to a speci fi c compound class. 

 As in the introductory example, Fig.  7.19  uses a treemap to display differences 
in average ALT values across pooled active vs. control treated patients in a range of 
clinical studies across different compounds. Size of the rectangles corresponds to 
number of patients per treatment group; color coding is by average post-baseline 
ALT values per treatment group, green indicating smaller values, and red indicating 
larger values. Hierarchy headers are by compound (letters) and study (number 
code), respectively.  

  Fig. 7.18    Synoptic line plot of ALT, concomitant medication, and adverse events; start and end 
date of adverse events and concomitant medications indicated by  blue triangles , patient no.2       
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 The graph clearly indicates substantially higher post-baseline ALT values for 
compound H in the active treatment group vs. control. Similarly, though less 
 pronounced, compounds D, K, and Q show a potential liver safety signal, based on 
average ALT values under active treatment.   

    7.6   Summary 

 Biomarker data usually are complex, multivariate by nature, and typically 
include multiple measurements over time. Particularly in the context of clinical 
drug safety assessment, association of biomarker effects with clinical adverse 
events, concomitant diseases, and concomitant medication needs to be accounted 
for. Graphics can help signi fi cantly to understand cause-effect relationships, 
mechanisms of toxicity, and may support both risk assessment and management 
of drug side effects. 

 A systematic work fl ow, including prede fi ned graphical templates as outlined for 
liver safety assessment in this section, helps to ensure completeness of evaluations, 
supports hypothesis generation and testing, and facilitates identi fi cation of the most 
suitable graphics for publishing and regulatory reporting. 

  Fig. 7.19    Treemap of average maximum post-baseline ALT values across different compounds 
and studies, size of rectangles proportional to sample size, color corresponding to average maxi-
mum ALT per pooled treatment group       
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 The use of interactive graphics software instead of focusing on static graphs will 
enable a project team to jointly assess biomarker data, help to thoroughly query the 
data from different perspectives, and foster team ownership of both analysis and 
conclusions.      
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  Abstract   Analysis of high-dimensional biomarker data is in general of exploratory 
nature and aims to discover or dissect subgroups of patients sharing a speci fi c pattern 
of biomarker measurements. One major challenge is to extract the relevant markers 
from the extremely large pool of measured markers. Speci fi c techniques such as 
grouping and ordering and dimension reduction allow to aggregate huge amounts 
of data into single meaningful graphics. These graphics can guide the direction of 
exploration during the analysis. We present graphical tools for unsupervised and 
supervised objectives based on gene expression data of multiple myeloma patients 
which are part of the MAQC-II project.  

  Keywords   High-dimensional  •  Biomarker  •  Genomic      

    8.1   Introduction 

 The National Institutes of Health (NIH) Biomarkers De fi nitions Working Group has 
de fi ned a biological marker or biomarker as “a characteristic that is objectively 
measured and evaluated as an indicator of normal biological processes, pathogenic 
processes, or pharmacological responses to therapeutic intervention” (Biomarkers 
De fi nitions Working Group  2001  ) . Thus, as a measure of biological function, a 
biomarker can help to unravel biological mechanisms and pathways or it may help 
to predict the future course of a disease. High-throughput biomarker data sets 
consist of an extremely large number of potential markers measured in relatively 
few samples or patients. 
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 The general approach to identify true biomarkers from a large list of candidates 
is to select a list or combination of the most promising candidates with respect to 
some speci fi c objective such as tumor subtype classi fi cation, risk strati fi cation, or 
treatment response, assuming that the majority of measurements is uninformative 
noise. In a second step, these candidates are further evaluated or validated with a 
low-throughput technique on a larger set of patients, and potentially used in a 
prospective setting of a clinical trial. In that, the analysis of high-throughput bio-
marker data currently starts in an exploratory manner in most cases but can provide 
useful tools of clinical relevance. 

 One example is the so-called MammaPrint ®  test that was developed based on 
high-dimensional gene expression data measurements. It allows the identi fi cation of 
breast cancer patients that will likely bene fi t—or not bene fi t—from certain types of 
chemotherapy and thus assists in therapy guidance. Alternative molecular data 
sources for potential biomarkers are chromosomal aberrations or genetic signatures 
that help in combination with established clinicopathological risk factors to describe 
risk groups of patients more precisely. Based on this risk classi fi cation, patients are 
then treated with therapies that are more or less aggressive. 

 The visualization techniques we present here are mostly generic in the sense that 
they can be used irrespectively of the underlying statistical method. In a few cases 
graphics are speci fi c to a certain method or class of methods. This will be pointed 
out. We will brie fl y describe the method used without discuss its bene fi ts and disad-
vantages at length. 

 There are various types of high-throughput biomarker data, which in summary 
are called omics data, derived in various  fi elds of molecular biology such as genetics 
and genomics, transcriptomics, epigenomics, and metabolomics. Among the most 
common ones are gene expression data measured on microarrays. A microarray 
allows to measure the expression levels of large numbers of genes simultaneously. 
Genes can be represented by multiple transcripts on the microarray. On the 
Affymetrix platform, these transcripts are called probe sets. Here we will use the 
generic term “feature” to refer to probe sets, transcripts, genes and biomarkers, if 
not otherwise stated. 

 Throughout the chapter we use 2 data sets of gene expression measurements 
from a total of 554 multiple myeloma patients (Barlogie et al.  2006  ) . These data sets 
are part of the MicroArray Quality Control Project (MAQC-II) (Shi et al.  2010  )  and 
publicly available on the Gene Expression Omnibus (GEO) database (  http://www.
ncbi.nlm.nih.gov/geo    ) as series record GSE24080 from where we obtained the pre-
processed and normalized data. Expression of transcripts (probe sets) has been mea-
sured with Affymetrix Human Genome U133 Plus 2.0 arrays for both sets of 
patients. Note that after pre-processing and normalization the expression data are on 
the log 

2
  scale. The  fi rst set comprises 340 patients who have been enrolled on the 

Total Therapy II (TT2) trial between 2000 and 2004. This set will be used as train-
ing set. The second set consists of patients ( n  = 214) enrolled on the subsequent 
study, Total Therapy III (TT3), between 2004 and 2006 and is used as validation set. 
For all patients clinicopathological and cytogenetic data as well as follow-up data 
have been collected. For example, we will look at the number of focal lesions 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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measured with magnetic resonance imaging (MRI). (Walker et al.    2007   ) showed 
that patients with more than 7 focal lesions found in MRI constitute a high risk 
group. 

 In most situations it is reasonable to reduce the number of genomic features 
before performing any analysis as the majority of features is expected to show such 
a small amount of variation so that relevant effects cannot be reliably detected. 
We apply unspeci fi c  fi ltering selecting the 10,000 most variable features.  

    8.2   Unsupervised Methods 

 Unsupervised methods are used to  fi nd hidden structure in the data. Since unsuper-
vised learning is independent of any associated external features or classes like 
clinicopathological parameters or disease prognosis, visualization is an important 
tool for the detection of structure. 

 Seriation methods (Arabie and Hubert  1996  )  are used to order features and/or 
samples based on their similarities. Similarly, clustering methods  fi nd subgroups 
based on the similarity between features and/or between samples. These methods 
take the data as they are and regroup them to make subgroups visible. Many clustering 
methods have been proposed in the literature. Here we consider two types of 
clustering methods that are most commonly used in practice, hierarchical clustering 
and partitioning methods. Hierarchical clustering results can be represented by den-
drograms (Fig.  8.1 ), and partitioning methods can be visualized by plotting the dis-
tances of individual cluster members to the cluster centroids.  

 In addition to this approach of visualization by ordering and grouping similar 
features together, another possibility for making structures visible is to reduce 
dimensionality by removing noise. Dimension reduction methods like principal 
components analysis and multidimensional scaling map the data to a lower dimen-
sional space, maximizing the represented variance with the aim of removing noise 
and making structures visible. It can also be helpful to visualize clustering results in 
a low-dimensional scatterplot which represents the data in terms of the  fi rst axes of 
the space, onto which the data were mapped by dimension reduction methods, and 
to color the features according to cluster membership (Fig.  8.7 C). 

    8.2.1   Heatmaps and Clustering 

 The heatmap has been the most effective way of displaying high-dimensional array 
data ever since it was  fi rst proposed as being particularly suitable for gene expres-
sion array data in the seminal article by Eisen et al.  (  1998  ) . A heatmap shows a data 
matrix organized in samples (columns) by features (rows), where individual data 
values are color-coded according to a color key as shown in Fig.  8.1 . Typically, the 
data need to be sorted to make patterns visible, which is mostly done separately for 
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the rows and columns of the data matrix. The sorting is often achieved by hierarchi-
cal clustering methods, in which case the clustering results can be displayed along-
side the heatmap as row and column dendrograms as in Fig.  8.1 . 

 We demonstrate the use of unsupervised methods with the multiple myeloma test 
data set with 214 samples, where we reduced the number of features by unspeci fi c 
 fi ltering to the top 500 features with the largest variance. The data are centered and 
scaled so that all features have 0 mean and unit variance in order to avoid giving 
larger weight to features with a large variance across samples. 

  Fig. 8.1    A heatmap with hierarchical complete linkage clustering of samples and features using 
the Euclidean distance. Dendrograms indicate the hierarchical clustering results, while feature 
subgroups identi fi ed with k-means clustering ( K  = 4) are highlighted by the colored stripe on the 
left of the heatmap       
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    8.2.1.1   Hierarchical Clustering 

 For displaying the data in the form of a heatmap in Fig.  8.1 , hierarchical clustering has 
been applied,  fi rst for ordering the samples to ensure that similar samples are arranged 
close together, but also for similar genes to be located close to each other. In particular, 
we chose complete linkage hierarchical clustering with a Euclidean distance metric. 
Complete linkage clustering is an agglomerative hierarchical clustering method, 
where the distance between two clusters is determined by the maximum distance 
between any two data points in the clusters. This method typically results in compact 
clusters with roughly equal diameters. Figure  8.1  is an example for a heatmap pro-
duced with the function  heatmap.2  from the  R  package  gplots  and Fig.  8.4  illus-
trates the use of function  heatmap_plus  from the  R  package  Heatplus . 

 Both, sample-wise clustering and gene-wise clustering, are done independently, 
hence such heatmaps are not necessarily the best method for  fi nding combined 
subsets of genes and samples, i.e., subsets of genes that show a speci fi c expression 
pattern in only a subset of samples. For  fi nding such combined subsets, biclustering 
methods are appropriate. They are introduced below.  

    8.2.1.2   Partitioning Methods 

 Partitioning methods map a distance matrix into a pre-speci fi ed number of clusters. 
As an example of partitioning methods we use k-means clustering ( R  function 
 kmeans ), which works by repeatedly assigning all samples to one of  K  clusters 
based on which cluster centroid it is closest to. The algorithm is started by choosing 
 K  data points randomly as the initial cluster centroids. After the  fi rst round of cluster 
assignments, the new cluster centroids are computed as the means of the newly 
found clusters. Then the algorithm is run iteratively until convergence, i.e., until the 
cluster assignments do not change anymore. 

 In Fig.  8.1  we have summarized the results of k-means clustering of the features 
with  K  = 4 by the colors of a stripe next to the heatmap with hierarchical complete 
linkage clustering. Note that the k-means clustering results do not agree perfectly 
with hierarchical clustering results, even though in both clusterings a Euclidean 
distance metric was used. Figure  8.2  shows a silhouette plot of the k-means clusters 
(function  silhouette  from the  R  package  cluster ). The silhouette value of a 
data point is de fi ned as the scaled difference between the average dissimilarity of a 
point to all points in its own cluster to the smallest average dissimilarity to the points 
of a different cluster; hence, large silhouette values indicate good separation 
(Rousseeuw  1987  ) . Since the silhouette values are generally small and even nega-
tive for some data points assigned to clusters 1, 3, and 4, the clusters are not very 
compact and not well separated. The most compact cluster is cluster 2 that is equiva-
lent to a distinct gene cluster in the hierarchical clustering dendrogram in Fig.  8.1 . 
The color coding of the k-means clusters is the same throughout this section, i.e., 
cluster 1 = black, cluster 2 = red, cluster 3 = green, cluster 4 = blue.  
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 While the silhouette plot can help to evaluate the compactness of individual clus-
ters, it is not helpful for assessing how many clusters would be most useful. In our 
k-means example we have assigned all features into  K  = 4 clusters, when a separa-
tion into 3 or  5  clusters might actually be more appropriate. Consensus clustering 
can be a useful tool in this context. Consensus clustering methods assess the stabil-
ity of a particular cluster assignment by resampling methods (Monti et al.  2003  ) . 
Summary statistics such as the areas under the curve (AUC) for cumulative density 
functions of consensus matrices and the corresponding AUC differences by cluster 
number (  D K ) can be displayed in “ellbow-type” plots to identify the optimal cluster 
number. However, in addition to the summary statistics, visualization of the consen-
sus matrices themselves, for example by heatmaps, is always recommended 
(Fig.  8.3 ). The empirical density functions and corresponding   D K -plot (Fig.  8.3 A 
and B) indicate that at least 4 clusters are identi fi ed. The heatmap of the consensus 
matrix for  K  = 4 shows that 4 clusters result indeed in a good separation between 
features, but there is some indication that a further separation into  5  or even 6 clus-
ters might also be useful. Consensus clustering was performed using the  R  package 
 clusterCons .  

 Graphics constructed with unsupervised learning methods can be overlaid with 
clinical data (Fig.  8.4 ). This enables to identify potential correlations between clini-
cal factors and expression patterns identi fi ed in an unsupervised manner (explor-
atory analysis) or to visualize correlations that have already been established by 
supervised methods. Clinical data are shown for focal lesions ( > 7 lesions ver-
sus  £  7 lesions), cytogenetic aberrations (yes versus no), and log 

10
  beta-2-microglob-

ulin levels. The plot does not highlight any obvious correlations between sample 
cluster membership and clinical features, but a  c  2 -test on the independence between 
the number of focal lesions (  £  7 versus > 7) and the 8 sample clusters rejects the null 
hypothesis at the 0.05 level ( p  = 0.04), which is mostly due to the cluster located at 
the right (colored in dark orange) having more samples with > 7 focal lesions than 
with  £  7 lesions. Note that this sample cluster seems to have consistently high gene 

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

cluster 1

cluster 2
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cluster 4

  Fig. 8.2    A silhouette chart illustrating scaled average dissimilarities of genes within a k-means 
cluster relative to the nearest neighbouring cluster       
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  Fig. 8.3    Consensus clustering results for k-means clustering. The empirical cumulative density 
functions (eCDF) are displayed for k-means clustering with  k  = 2,  … , 6 clusters (A,  top left ) with 
corresponding   D K -values (B,  bottom left ). The consensus matrix for  K  = 4 clusters is displayed as 
a heatmap (C,  right )       

expression values in those features identi fi ed earlier as the compact  K -means feature 
cluster 2 that is color-coded in red in the associated stripe plot in Fig.  8.1 .   

    8.2.1.3   Biclustering 

 In case of traditional one-way clustering methods such as hierarchical clustering 
and k-means clustering, the similarity between samples is measured by means of 
distance metrics, e.g., the Euclidean distance. Usually, these distance metrics 
between 2 samples are a weighted sum of the pairwise differences between all fea-
tures corresponding to these samples. 

 A typical problem arising in clustering high-dimensional data is that many 
features are probably irrelevant or redundant. These irrelevant features can confuse 
traditional one-way clustering approaches and therefore hide clusters that may be 
present in a more relevant lower dimensional space. In other words, a cluster of 
samples present in a microarray data set may share a common gene expression 
pattern only for a subset of relevant features. This cluster might not be detected by 
one-way clustering methods that de fi ne similarity between samples according to all 
features in the data set. Similarly, if the aim is to cluster the genes, a group of genes 
may only be coregulated within a subset of the samples. To  fi nd such clusters, other 
concepts that  fi nd similar samples in the relevant lower dimensional spaces are 
required, for example the concept of biclustering. 
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 Biclustering is the simultaneous clustering of the rows and the columns of a data 
matrix, where the aim is to  fi nd submatrices whose entries show similar data pat-
terns. Many biclustering algorithms allow the resulting biclusters to overlap, i.e., 
the same rows and columns can be assigned to different biclusters. Since genes 
are known to be involved in different biological pathways, the concept of overlap-
ping biclusters is an additional reason why biclustering has gained popularity in the 
analysis of gene expression data. Comprehensive reviews about the concept of 

  Fig. 8.4    A heatmap with hierarchical complete linkage clustering of samples and genes using the 
Euclidean distance metric (ordering identical to Fig.  8.1 ). Clinical data are shown for focal lesions 
( > 7 lesions versus  £  7 lesions), cytogenetic aberrations (yes versus no) and log 

10
  beta-2-microglobulin 

levels. The largest sample clusters are indicated by background colors in the plot representing the 
clinical data as well as in colored dendrogram arms       
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biclustering and the different biclustering approaches were published by Madeira 
and Oliveira  (  2004  )  and Mechelen et al.  (  2004  ) . The heatmap in Fig.  8.5  shows 3 
biclusters that were identi fi ed by applying the recently proposed S4VD-algorithm 
(Sill et al.  2011  )  ( R  package  s4vd ).  

 Furthermore, Fig.  8.6  displays a parallel coordinates plot of one of the detected 
biclusters, more speci fi cally the bicluster highlighted by a blue rectangle in Fig.  8.5 . 
Parallel coordinates are a common visualization method to show multidimensional 
data points in 2 dimensions. Typically, each dimension in the data is visualized by an 
axis. The axes are organized as uniformly spaced vertical lines. Each data point is then 
visualized as a polyline connecting the axes. Figure  8.6  shows that if a bicluster is 
visualized by parallel coordinates the axes can either represent samples or features.    

    8.2.2   Dimension Reduction Methods 

 Dimension reduction methods attempt to map the data to a lower-dimensional space. 
One common method is principal components analysis (PCA, e.g., Jolliffe  2002 ). 

  Fig. 8.5    A heatmap plot that shows three biclusters that have been identi fi ed in the example data 
set. The heatmap shows only those genes and samples that have been selected in at least one bicluster. 
The  colored rectangles  indicate the genes and samples that correspond to the three biclusters       
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PCA is based on singular value decomposition of the data matrix  X  with columns 
and rows representing samples and features, or equivalently the eigenvalue decom-
position of the covariance matrix  X  T  X . Since each resulting orthogonal dimension  v  

 i 
  

(= principal component) corresponds to an eigenvalue  e  
 i 
  and the sum of the eigen-

values give the total variance of the data set, each principal component (PC)  v  
 i 
  

explains  e  
 i 
  ×100 %  of the total variance. 

 In addition to PCA that uses a linear transformation of the data to the lower-
dimensional space based on the Euclidean metric, there are many other dimension 
reduction methods. They can be linear or nonlinear and use many different metrics 
as well as non-metric approaches. Examples include kernel PCA, metric and non-
metric multidimensional scaling, independent component analysis, self-organizing 
maps, and many more. In general, the results of all these methods can be visualized 
in the same manner by plotting samples and features in the reduced dimensional 
space using biplots, feature loadings plots, and sample score plots. 

 Figure  8.7  summarizes the results of dimension reduction by principal compo-
nents analysis ( R  function  prcomp ). A very useful plot in this respect is the biplot, 
in which principal component contributions with regards to both observations and 
features are shown together. The biplot can be 2- or 3-dimensional, where any 2 (or 
3) principal components (PCs) of interest can be used as the axes. Since most of the 
variation in the data is explained by the  fi rst few PCs, it usually makes sense to 
restrict plotting to these. Figure  8.7 A shows the biplot for the  fi rst 2 components. 
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  Fig. 8.6    A parallel coordinates plot of a single bicluster. In the upper parallel coordinates plot 
each  black line  corresponds to a sample that has been assigned to the bicluster while the  gray lines  
correspond to the remaining samples in the data set. The lines display the gene expression values 
of the samples along the  x -axis. Each tickmark of the  x -axis represents a gene that has been 
assigned to the bicluster. In the lower parallel coordinates plot the lines correspond to genes and 
the tickmarks of the  x -axis to the samples that have been assigned to the bicluster       
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While the scores computed for samples are depicted as data points, the loading val-
ues associated with features are shown as arrows. Sample data points that are distant 
from the coordinates’ origin have larger variations across feature values with respect 
to the principal components used as axes. When computing the distances of sample 
points from the axes origin, features with large loadings in the principal components 
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  Fig. 8.7    A biplot showing the sample scores ( dots ) and feature loadings ( arrows ) in the  fi rst and 
second principal components (A,  top left ) and associated proportions of the total variation explained 
by the  fi rst ten principal components (B,  top right ). The gene loadings are again shown in gene 
plots ( bottom row ), where they are either colored re fl ecting the gene classes identi fi ed with k-means 
clustering ( K  = 4) in Sect.  8.2.1.2  (C,  left ), or showing PC1 vs PC5 with additional patient data 
(D,  right ). In plot D, each gene is depicted by a line connecting the actual position of the gene in 
the PCA plot with the relative mean gene expression in males as compared to females, i.e., genes 
with higher mean expression in females vs. males are represented by a  line with a positive slope  
( in orange ), while genes with lower mean expression in females are shown as  falling lines  
( in purple )       
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of interest have larger weight than features that contribute little to these PCs. Since 
the coordinates of a tip of a feature arrow from the origin are proportional to the 
loading values of this feature in the corresponding principal components, the biplot 
identi fi es samples that are “different” from the majority of samples and at the same 
time illustrates nicely where these differences occur, i.e., for which features the 
samples show different values.  

 The biplot in Fig.  8.7 A shows a subgroup of samples with large negative scores 
in the PC1 direction. At the same time, there is a subgroup of features pointing in 
the same direction, i.e., having large negative PC1 loadings values. The so-called 
gene plot in Fig.  8.7 C shows the feature loadings again but plotted as colored dots, 
where the colors are chosen according to the k-means clusters identi fi ed in 
Sect.  8.2.1.2 . This shows that the gene subgroup that we have identi fi ed visually by 
looking at the PCA biplot overlaps largely with one of the clusters identi fi ed by 
k-means clustering (cluster 2 colored in red). 

 The barplot of the proportions of variation explained by the  fi rst 10 individual 
principal components (Fig.  8.7 B) shows that in this data set there seem to be many 
different sources of variation that cannot easily be explained by a few main princi-
pal components. In fact, the  fi rst 2 PCs together only explain 15 %  of the total varia-
tion in the data, while the  fi rst 10 PCs explain 39 % . Therefore, it makes sense to 
look at plots visualizing more principal components than just the  fi rst 2. Figure  8.8 , 
showing the pairwise gene loadings plots for the  fi rst  5  PCs (function  pca  from the 
 R  package  pcaMethods ), highlights an interesting pattern in the  5  th  component, 
created by 2 very small gene subsets far apart from the bulk of the genes. The gene 
plot of PC1 versus PC5 is also shown in Fig.  8.7 D. As an additional feature, we 
demonstrate how to relate the gene expression data as summarized by the principal 
components with patient data, in particular with gender.  

 The 3 subgroups of genes, which we have identi fi ed as being “different” from the 
bulk of genes by principal components analysis (separating lines in Fig.  8.7 D) are 
listed in Tables A.1 (subgroups in PC5) and A.2 (subgroup in PC1) in the appendix. 
If a subset of identi fi ed features is small, as is the case with the PC5 subsets ( n  = 6 
and  n  = 11), it is easy to get an overview of all features by simply looking at the 
results in tabular form. However, if the number of interesting features gets larger, 
looking for information in a large table becomes cumbersome and confusing (e.g., 
Table A.2 for the PC1 subset), and graphical methods are necessary to visualize and 
summarize the results. 

 One example is the word cloud in Fig.  8.9  ( R  package  wordcloud ) that sum-
marizes the words occurring in the gene titles in Table A.2. The word cloud visual-
izes the fact that the PC1 gene subgroup contains many immunoglobulin-related 
genes since the word immunoglobulin stands out most because it occurs most fre-
quently in the text. This re fl ects biological knowledge that immunoglobulin levels 
are known to vary between multiple myeloma subtypes. Word clouds have been 
developed in the  fi eld of information visualization rather than statistical graphics 
(for an interesting debate on the difference between information visualization and 
statistical graphics and the use - and potential misuse - of infographics in statistical 
data analysis see Gelman and Unwin  2012 )  . A word cloud is occasionally used as 
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a graphical tool in text mining, visualizing the contents of a frequency table through 
the use of font sizes and font colors to re fl ect word frequencies. A more biologically 
directed analysis of gene sets can be performed with gene set enrichment analysis 
(GSEA) and global tests. Such analyses are brie fl y introduced in Sect.  8.3.3 .  

 Of course, since we have identi fi ed these subsets in a purely unsupervised manner, 
we do not know whether they are associated in any way with the disease under 
investigation, i.e., whether they correlate with disease subtypes or clinical progress 
of the disease. 

 We can use gene loadings plots to visualize any existing correlation of gene 
expression with patient data such as gender (or alternatively with more useful clinical 
information, e.g., patient survival times) by replacing the dots in Fig.  8.8  by colored 
icons (Fig.  8.7 D). This approach of combining expression data in gene plots with 
corresponding phenotypical data via icons has been suggested by Pittelkow and 

  Fig. 8.8    Pairwise feature loadings plots of the  fi rst 5 principal components with 95 %  con fi dence 
ellipses based on the Hotelling  T  2  statistic       
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Wilson  [  2003  ] . Figure  8.7 D shows that one of the small gene subsets identi fi ed with 
respect to the  5  th  PC consistently shows higher gene expression in male patients 
(subset 2, PC5 <  − 7. 0), while in the other subset higher gene expression is observed 
in female patients (subset 3, PC5 > 7. 5). This is not surprising, as Table A.1 reveals, 
because all features in subset 2 lie on the Y chromosome and all features in subset 
3 on the X chromosome.  

    8.2.3   Summary 

 By unsupervised analysis and associated graphical methods of the multiple 
myeloma test set with 214 samples and the 500 genes with largest variances we 
have identi fi ed several potentially interesting subgroups of genes and samples that 
behave differently from the bulk of features and samples. We have aimed at char-
acterizing the identi fi ed sample subsets by linking them with clinical features of 
these patients (in a purely descriptive manner). We can gain more insight into 
communalities among the identi fi ed genes by feature set testing as illustrated in 
Sect.  8.3.3 . 

  Fig. 8.9    Word cloud depicting the words contained in gene titles of gene subset 1 as identi fi ed by 
the  fi rst principal component. Font size and color choice re fl ect the word frequencies       
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 While it is an advantage of unsupervised analysis that one is free of prespeci fi ed 
questions and assumptions about the data, one disadvantage is the inherent danger 
of “over-mining” the data and over-interpretating the results. One has to keep in 
mind that the entire unsupervised analysis is exploratory and hypothesis-generating 
only. Validation of the results must always follow, for example, in terms of hypothesis 
testing in a controlled experiment.   

    8.3   Supervised Methods 

 The purpose of supervised methods is to identify features with differences between a 
priori known conditions (feature selection) or to model and develop rules to dis-
tinguish conditions (class prediction). Such conditions are typically externally de fi ned 
phenotypes such as clinicopathological parameters, disease entities, or prognoses. 

 We illustrate 3 aspects of supervised methods in the following section. First, we 
are in interested in any single feature that is differentially expressed between 2 con-
ditions or classes of samples. This is realized in an univariable feature selection. 
Instead of looking at single features, one can also compare the expression of a set of 
features between conditions (Sect.  8.3.3 ). This might be more adequate in situations 
where one expects many small rather than few large effects or if one is interested in 
the regulation of functionally de fi ned feature sets such as genetic pathways. 

 Classi fi cation or class prediction aims at identifying a multivariable decision rule 
that allows a reliable discrimination of classes and predict new patients. For the sake 
of biological interpretation, we are interested in classi fi cation rules that consist only 
of a limited number of features and thus combine class prediction with feature selec-
tion. In our example we group patients according to the number of focal lesions 
measured by MRI. 

    8.3.1   Univariable Feature Screening 

 From the large variety of methods to identify differentially expressed features 
between 2 classes, we utilize the empirical Bayes approach by Smyth  (  2004  )  to  fi t a 
separate linear model for each feature. Testing for differential expression between 2 
classes without accounting for additional factors yields a simple t-test problem. The 
empirical Bayes approach borrows information across genes to improve the stability 
of estimates of the gene-wise variability that is used to calculate the so-called mod-
erated t-statistic test. Analyses are carried out with the  Bioconductor  package 
 limma  (Smyth  2005  ) . We perform two-sided tests in order to select all features that 
are differentially expressed in patients with more than 7 focal lesions versus 7 or 
fewer focal lesions irrespective of the direction of regulation. 
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 One hundred and seventy features are identi fi ed after adjusting for multiple 
testing in order to control the false discovery rate using the Benjamini–Hochberg 
 (  1995  )  correction at the signi fi cance level of 0.05. Figure  8.10  shows a volcano plot 
of all single tests. This volcano plot displays the log 

2
 -fold change versus the log 

odds of the model, the latter being the log-posterior odds of differential expression. 
Instead of the log odds, any measure of statistical signi fi cance such as a test statis-
tics or  p -value can be used to create a volcano plot. Potentially interesting features 
are located at the upper left and right. We see that almost all (absolute) log fold 
changes are less than, and that more up- than down-regulation occurs in patients 
with many focal lesions. The 5 most regulated features have been highlighted and 
labeled with their gene symbol, all of them showing up-regulation. Two features 
belong to the same gene.  

 Simple boxplots (Fig.  8.11 ) are helpful to illustrate the effects of selected 
features in more detail. As already seen in the volcano plot, no extreme differences 
in terms of log 

2
  ratio are observed between classes. Instead, signi fi cance seems to be 

driven by the large number of samples with fairly balanced groups.   

    8.3.2   Classi fi cation and Class Prediction 

 Classi fi cation or class prediction aims at fi nding a decision rule, in our case based 
on gene expression measurements, that allows to discrimate groups and to assign 

  Fig. 8.10    Volcano plot of all tested features displaying log-fold change between groups versus 
log-odds of differential expression. The top 5 features are labeled with their gene symbol       
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new samples into the correct group. As for the univariable feature screening there 
are several methods available using very different approaches. We use the regular-
ized logistic regression model with  L  

1
 -penalty, also known as lasso estimator 

(Tibshirani  1996  ) , from the class of regularized regression models. Its solution is a 
multivariable logistic model with fewer features than samples, since the  L  

1
 -type 

penalty causes the majority of the model coef fi cients to be estimated as zero. We use 
the  R  package  glmnet  (Friedman et al.  2010  )  for calculations. 

 Most of the classi fi cation techniques that perform feature selection involve some 
sort of hyperparameter tuning. This hyperparameter controls the amount of shrinkage 
or dimension reduction. Typically, parameter tuning is based on optimizing a loss 
function and resampling methods such as cross-validation, permutation, or boot-
strapping. For classi fi cation, possible loss functions include the misclassi fi cation 
rate, Brier score and—as in our case—the model deviance. 

 The lower panel of Fig.  8.12  displays the tenfold-cross-validated model deviance 
depending on the penalty parameter  l  on a log scale. The larger  l  the stronger the 
imposed regularization that results in fewer features being selected into the model 
as indicated on the upper  x -axis. The solid vertical line marks the minimal model 
deviance that corresponds to a model including 27 features.  

 Plotting the regression coef fi cient path as in the upper panel of Fig.  8.12  illus-
trates the model building process depending on the amount of regularization. This 
type of visualization is speci fi c for regularized regression models. Each horizontal 
line represents the coef fi cient pro fi le path of a single feature. From left to right we 
see how the coef fi cients of all initially considered features are shrunk towards 0 as 
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regularization increases. Since most of the coef fi cients are eventually estimated 
as 0, feature selection is implicitly performed. The vertical line indicates the selected 
model based on the cross-validated model deviance. 

 The accuracy of the classi fi cation is evaluated on the independent validation data 
set. Classi fi cation of new samples is not very convincing, which is not surprising 
since no clear separation was observed on the training data. A detailed picture of the 
classi fi cation is provided in the dot plots of predicted class probabilities (Fig.  8.13 ). 
The dot color indicates the classifi cation as a patient with more than 7 (green) and 
up to 7 (red) focal lesions. A reasonable classi fi er would clearly separate both 
classes and consequently each pair of dots for each sample. The fact that most of the 
class probabilities are around 0.5 emphasizes the poor performance of the devel-
oped classi fi er. Plotting the ROC curve would be an alternative way of illustrating 
the classi fi er performance on the validation set.  

 In the case where no external validation data set is available, resampling methods 
need to be utilized to get a proper error estimation from the training data set. We use 
the  R  package  peperr  (Porzelius et al.  2009  )  to carry out these typically demand-
ing computations. The . 632 + bootstrap estimator is calculated based on subsam-
pling (Binder and Schumacher  2008  )  using only 50 bootstrap samples for illustration. 
The right panel of Fig.  8.14  displays the out-of-bag errors (dots) as well as the—too 
optimistic—apparent and the . 632 + bootstrap estimator of the misclassi fi cation rate 
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on the training data. The histogram of selected  l  values is shown in the left panel. It 
allows the inspection of bootstrap  fi ts and detection of possible issues due to the 
high-dimensional data structure. Depending on the choice of method and type of 
response, different complexity parameters and measures of prediction accuracy can 
be displayed.   

    8.3.3   Feature Set Testing 

 Once the regulated individual features have been identi fi ed by screening, one can 
analyze the biological function of the corresponding genes in order to deduce the 
main biological pathways. Alternatively, the opposite approach can be taken and 
biologically de fi ned feature sets are tested as a whole for differences between condi-
tions. This might be particularly helpful if regulation occurs due to many small 
effects. Another advantage is that it does not depend on an arbitrary threshold. On 
the other hand, it assumes well-curated feature sets that are possibly not available 
for less commonly used microarray platforms. 

 Again, this objective can be assessed by several methods. All these methods can 
be essentially divided into 2 branches investigating slightly different hypotheses as 
described by Goeman and Bühlmann  [  2007  ] . Methods testing the so-called self-
contained null hypothesis try to determine if there is any association between the 
expression pro fi le of the gene set and the condition of interest. Goeman’s globaltest 
(Goeman et al.  2004  )  is one example for this class of tests. Alternatively, methods 
testing the so-called competitive null hypothesis assess the signi fi cance of the gene 
set in comparison with a randomly chosen subset of genes. GSEA is an example for 
this approach. One of the most popular methods for GSEA was introduced by 
Subramanian et al.  [  2005  ] . We present globaltest and GSEA as representatives of 
each approach. Figure  8.15  shows a covariates plot that summarizes the globaltest 
results for the cell cycle pathway (pathway 04110 in the KEGG data base,   http://
www.genome.jp/kegg/pathway.html    ) by the gene-wise z-scores that represent the 
contribution of each gene to the global test statistic. Strongly regulated genes have 
a larger impact that is re fl ected in a larger z-score.  

 The output of a GSEA typically consists of a table of gene sets and their enrich-
ment statistics. For better interpretation of GSEA test results an enrichment map can 
be used (Merico et al.  2010  ) , a weighted similarity network where the nodes repre-
sent gene sets and the edges denote the Jaccard similarity coef fi cient between 2 
gene sets. Nodes are automatically arranged so that highly similar gene sets are 
placed close together. The node size represents the number of genes in the gene set. 
The enrichment score or enrichment  p -value is mapped to the node color as a color 
gradient. In a two-class experiment design, node color ranges from red (high 
enrichment in one class) to white (no enrichment) to blue (high enrichment in the 
second class). 

 Figure  8.16  shows an enrichment map for the GSEA analysis for KEGG path-
ways with respect to the number of focal lesions using the  R  package  HTSanalyzeR  

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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  Fig. 8.15    Global test applied to gene sets from the KEGG database. The plot shows the contributions 
of genes to the result of the global test for the cell cycle pathway by the z-scores of the gene-wise test 
statistics. The coloring of the dendrogram is based on the multiple testing procedure of 
Meinshausen  [  2008  ]  testing all subsets of genes induced by the clustering. Signi fi cant subsets are 
colored  black , non-signi fi cant ones remain  gray        

(Wang et al.  2011  ) . The enrichment map highlights biological relations between the 
pathways, e.g., the displayed pathways that are involved in the immune system 
are located together and a little separate from the other pathways (graft-versus-host 
disease, systemic lupus erythematosus, antigen processing and presentation).    

    8.4   Dynamic Graphics 

 The previous sections presented different graphics for the visualization of the results 
of supervised and unsupervised analyses of high-dimensional gene expression data 
and clinical data. Interactive graphics are another way to perform an explorative 
 analysis of clinical data together with associated high-dimensional molecular data. 
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An example for an interactive software that allows for an integrated explorative analy-
sis of such data sets is SEURAT (Gribov et al.  2010  ) . 

 SEURAT is a software tool that provides interactive visualization capability for 
the integrated analysis of high-dimensional molecular data. Gene expression data 
can be analyzed together with associated clinical data, array CGH (comparative 
genomic hybridization), SNP (single nucleotide polymorphism) array data and 
available gene annotations. To organize the different data types the software offers 
a comprehensive data manager. 

 The key idea of SEURAT is to overcome the typical limitations of graphics in the 
visualization of integrated high-dimensional data sets by linking different types of 
graphics. This means that all graphics generated are linked to one another, so that 
any transient selection of samples in one graphic will result in highlighting of the 
corresponding samples in all other associated graphics. Moreover, samples can be 
grouped and labeled using colors that will also be shown in associated graphics. 
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Tight junction

p53 signaling pathway

Pyrimidine metabolism

Graft−versus−host disease

Calcium signaling pathway

Insulin signaling pathway

Systemic lupus erythematosus
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"KEGG pathways"
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  Fig. 8.16    Enrichment map of GSEA performed on KEGG pathways with respect to the number 
of focal lesions. Node colors are scaled according to the test  p -values (the darker the more 
signi fi cant). Nodes are colored by the sign of the enrichment scores where positive scores are 
shown in red indicating that higher expression correlates with larger numbers of focal lesions, and 
negative scores are shown in  blue . The size of nodes is proportional to the size of gene sets, while 
the width of edges is proportional to the overlap between gene sets, calculated using the Jaccard 
coef fi cient       
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  Fig. 8.17    Screenshot of an interactive analysis using SEURAT. The  upper left window  is the main 
window that organizes the different data sets and clustering results. The  upper right window  shows 
a biclustering result of a cluster analysis of a gene expression data set using the Plaid Model algo-
rithm (Turner et al.  2005  ) . One of the biclusters has been selected, indicated by  gray shading . The 
 lower left window  shows an event chart that displays the overall survival times of the patients from 
which the gene expression data has been collected. The charts of the patients that have been 
assigned to the bicluster are highlighted in  red . The  lower right windows  show a histogram and a 
bar chart plot that display additional clinical data, e.g., the age in years and the classi fi cation into 
disease classes. The  red highlighted parts  correspond, to the patients assigned to the selected 
bicluster in the  upper right plot        
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  Fig. 8.18    Screenshot of an interactive analysis using SEURAT. The  upper left window  is the main 
window that organizes the different data sets and clustering results. The  upper right window  shows 
a result of a hierarchical clustering. The patients corresponding to the left part of the dendrogram 
were selected, indicated by  gray shading . The  lower left window  shows a chromosome map that 
displays the relative frequencies of genetic gains and losses measured by array CGH. The  lower 
right windows  show a histogram and a  bar chart plot  that display additional clinical data, e.g., the 
age in years and a classi fi cation into disease classes. The  red highlighted parts  correspond to 
the patients that belong to the left part of the dendrogram in the  upper right plot        
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 For the different types of data SEURAT provides conventional graphics, 
e.g., gene expression data can be visualized by heatmaps encompassed by dendro-
grams while continuous clinical variables are displayed using histograms. Moreover, 
CGH data and SNP array data holding information about cytogenetic gains and 
losses can be explored with a chromosome browser graphic. This chromosome 
browser provides a global view of all chromosomes of the human genome. The rela-
tive frequencies of gains and losses are visualized by bar charts along the chromo-
somes. In addition, each chromosome can be explored in a larger individual plot in 
which cytoband information is also displayed interactively. Furthermore, time-
to-event data can be visualized by so-called event charts (Goldman  1992  ) . Unlike 
commonly used survival plots such as the Kaplan–Meier curve that shows aggregate 
information in the form of estimated survival probabilities over time, the event chart 
displays each individual observation by horizontal lines. This representation is more 
suited for the framework of interconnected graphics. When dealing with time-to-
event data, possible censoring has to be considered. To display observed events 
within the event charts, a small vertical bar is drawn at the end of the horizontal line. 
A missing bar indicates that the event of interest has not been observed and thus the 
observation time is censored. 

 For exploratory data analysis the software provides different clustering algo-
rithms such as hierarchical clustering, k-means clustering, and biclustering algo-
rithms. To perform clustering and seriation algorithms SEURAT establishes a 
connection to the statistical software R. 

 Figures  8.17  and  8.18  are based on data from AML patients as described in 
Gribov et al.  (  2010  ) .         
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    8.5   A.1 Appendix       

   Table A.1    Subsets of genes identi fi ed in  5  th  principal component. Gene titles are truncated to 
show at most 40 characters   

 Subset  Affymetrix ID  Gene symbol  Gene title  Entrez ID  Cytoband 

 2  214218_s_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 2  221728_x_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 2  224588_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 2  224589_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 2  224590_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 2  227671_at  XIST  X (inactive)-speci fi c transcript 
(non-pr… 

 7503  Xq13.2 

 3  201909_at  RPS4Y1  Ribosomal protein S4, Y-linked 1  6192  Yp11.3 
 3  204409_s_at  EIF1AY  Eukaryotic translation initiation 

factor… 
 9086  Yq11.223 

 3  204410_at  EIF1AY  Eukaryotic translation initiation 
factor… 

 9086  Yq11.223 

 3  205000_at  DDX3Y  DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 3… 

 8653  Yq11 

 3  206624_at  USP9Y  Ubiquitin speci fi c peptidase 9, 
Y-linked… 

 8287  Yq11.2 

 3  206700_s_at  JARID1D  Jumonji, AT rich interactive 
domain 1D 

 8284  Yq11 

 3  214131_at  CYorf15B  Chromosome Y open reading 
frame 15B 

 84663  Yq11.222 

 3  223646_s_at  CYorf15B  Chromosome Y open reading 
frame 15B 

 84663  Yq11.222 

 3  230760_at  ZFY  Zinc  fi nger protein, Y-linked  7544  Yp11.3 
 3  232618_at  CYorf15A  Chromosome Y open reading 

frame 15A 
 246126  Yq11.222 

 3  236694_at  CYorf15A  Chromosome Y open reading 
frame 15A 

 246126  Yq11.222 
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   Table A.2    Subset of genes identi fi ed in  fi rst principal component. Gene titles are truncated to 
show at most 40 characters   

 Subset  Affymetrix ID  Gene symbol  Gene title  Entrez ID  Cytoband 

 1  1561937_x_at  IGHM  Immunoglobulin heavy 
constant mu 

 3507 

 1  200762_at  DPYSL2  Dihydropyrimidinase-like 2  1808  8p22-p21 
 1  201110_s_at  THBS1  Thrombospondin 1  7057  15q15 
 1  202018_s_at  LTF  Lactotransferrin  4057  3p21.31 
 1  203382_s_at  APOE  Apolipoprotein E  348  19q13.2 
 1  203535_at  S100A9  S100 calcium binding 

protein A9 
 6280  1q21 

 1  205863_at  S100A12  S100 calcium binding 
protein A12 

 6283  1q21 

 1  206390_x_at  PF4  Platelet factor 4  5196  4q12-q21 
 1  209374_s_at  IGHM  Immunoglobulin heavy 

constant mu 
 3507  14q32.33 

 1  209687_at  CXCL12  Chemokine (C-X-C motif) 
ligand 12 (strom… 

 6387  10q11.1 

 1  210933_s_at  FSCN1  Fascin homolog 1, actin-
bundling protein… 

 6624  7p22 

 1  211633_x_at  IGHG1  Immunoglobulin lambda 
heavy chain 

 3500  14q32.33 

 1  211634_x_at  LOC100133862  Similar to hCG1773549  3507 
 1  211635_x_at  LOC642131  Similar to hCG1812074  642131 
 1  211637_x_at  VSIG6  V-set and immunoglobulin 

domain containi… 
 652128 

 1  211639_x_at  VSIG6  V-set and immunoglobulin 
domain containi… 

 652128 

 1  211640_x_at  LOC100133862  Similar to hCG1773549  3500 
 1  211642_at  IGHG1  Immunoglobulin lambda 

heavy chain 
 83695 

 1  211643_x_at  LOC440871  Similar to hCG2043206  50802 
 1  211644_x_at  LOC440871  Similar to hCG2043206  50802 
 1  211645_x_at 
 1  211648_at  LOC100133862  Similar to hCG1773549  3500 
 1  211649_x_at  LOC642131  Similar to hCG1812074  642131 
 1  211650_x_at  LOC100126583  Hypothetical LOC100126583  3509 
 1  212998_x_at  HLA-DQB1  Major histocompatibility 

complex, class … 
 3119  6p21.3 

 1  212999_x_at  HLA-DQB1  Major histocompatibility 
complex, class … 

 3119  6p21.3 

 1  213674_x_at  IGHD  Immunoglobulin heavy 
constant delta 

 3495 

 1  214146_s_at  PPBP  Pro-platelet basic protein 
(chemokine (C… 

 5473  4q12-q13 

 1  214370_at  S100A8  Calcium-binding protein in 
macrophages (… 

 6279  1q21 

 1  214768_x_at  FAM20B  (Clone TR1.6VL) Anti-
thyroid peroxidase … 

 9917  2p12 

(continued)
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 Subset  Affymetrix ID  Gene symbol  Gene title  Entrez ID  Cytoband 

 1  214777_at  IGKV4-1  Immunoglobulin kappa 
variable 4-1 

 28908  2p12 

 1  215049_x_at  CD163  CD163 molecule  9332  12p13.3 
 1  215621_s_at  IGHD  Immunoglobulin heavy 

constant delta 
 3495 

 1  216401_x_at  LOC652493  Similar to Ig kappa chain V-I 
region HK1… 

 652493 

 1  216412_x_at  IGL@  Immunoglobulin lambda 
locus 

 3535  22q11.2 

 1  216430_x_at  IGL@  Immunoglobulin lambda 
locus 

 3535 

 1  216491_x_at  IGHM  Immunoglobulin heavy 
constant mu 

 3507  14q32.33 

 1  216510_x_at  IGHV@  Immunoglobulin heavy 
variable group 

 3509 

 1  216541_x_at  LOC100133862  Similar to hCG1773549  3500 
 1  216557_x_at  LOC100133739  Similar to hCG2038920  3509 
 1  216560_x_at  IGL@  Immunoglobulin lambda 

locus 
 3535  22q11.2 

 1  216576_x_at  LOC652694  Similar to Ig kappa chain V-I 
region HK1… 

 652694 

 1  216829_at  LOC652694  Similar to Ig kappa chain V-I 
region HK1… 

 652694 

 1  216984_x_at  IGLV2-23  Immunoglobulin lambda 
variable 2-23 

 28816 

 1  217084_at  IGHV@  Immunoglobulin heavy 
variable group 

 3509 

 1  217227_x_at  IGL@  Immunoglobulin lambda 
locus 

 3535 

 1  217235_x_at  IGLV2-23  Immunoglobulin lambda 
variable 2-23 

 3537 

 1  217258_x_at  IGL@  Immunoglobulin lambda 
locus 

 3535 

 1  217281_x_at  LOC652494  Similar to Ig heavy chain 
V-III region V… 

 652494 

 1  217360_x_at  LOC652494  Similar to Ig heavy chain 
V-III region V… 

 652494 

 1  217378_x_at  LOC100130100  Similar to hCG26659  100130100 
 1  217384_x_at  LOC647224  Hypothetical LOC647224  647224 
 1  217757_at  A2M  Alpha-2-macroglobulin  2  12p13.31 
 1  218232_at  C1QA  Complement component 1, q 

subcomponent, … 
 712  1p36.12 

 1  218559_s_at  MAFB  V-maf musculoaponeurotic 
 fi brosarcoma on… 

 9935  20q11.2-
q13.1 

 1  219607_s_at  MS4A4A  Membrane-spanning 
4-domains, subfamily A… 

 51338  11q12 

Table A.2 (continued)

(continued)
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 Subset  Affymetrix ID  Gene symbol  Gene title  Entrez ID  Cytoband 

 1  222717_at  SDPR  Serum deprivation response 
(phosphatidyl… 

 8436  2q32-q33 

 1  225353_s_at  C1QC  Complement component 1, q 
subcomponent, … 

 714  1p36.11 

 1  233969_at  IGL@  Immunoglobulin lambda light 
chain 

 3535  22q11.2 

 1  234419_x_at  LOC100133739  Similar to hCG2038920  3509 
 1  234792_x_at  LOC100131845  Similar to hCG1742309  3493 
 1  240336_at  HBM  Hemoglobin, mu  3042  16p13.3 

Table A.2 (continued)
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  This chapter is dedicated to my parents, Gerald and Carole Gilder, for their 
courageous battles against cancer.  

  Abstract   Oncology clinical trials are often complex leading to years of research 
and generation of vast amounts of data. Statistical graphics play an invaluable role 
in transforming these multifaceted data into crisp and simpli fi ed visuals that assist 
researchers to quickly and accurately study the results, detect data trends and pat-
terns, and suggest hypotheses. In other words, “Excellence in statistical graphics 
consists of complex ideas communicated with clarity, precision, and ef fi ciency.” 
The focus of this chapter is to provide a sampling of useful statistical graphics rou-
tinely used in clinical oncology research and their utility in communicating infor-
mation clearly and more ef fi ciently than solely reviewing tables of numerical output. 
The graphics presented are commonly used during trial design planning, interim 
analyses, and  fi nal analyses of clinical ef fi cacy data.       

    9.1   Introduction 

 Cancer is a group of diseases characterized by unregulated cell growth and spread 
of abnormal cells. If the spread is not controlled, it can ultimately result in death 
(National Cancer Institute  2012  ) . According to the American Cancer Society, in the 
United States an estimated 1,638,910 new cases are expected to be diagnosed in 
2012, with approximately 577,190 expected deaths (American Cancer Society 
 2012  ) . Cancer is the second most common cause of death in the United States, 
exceeded only by heart disease. An estimated 200 types of cancer exist that affect at 
least 60 different body organs (CancerHelp UK  2012  ) . 
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 Cancer can be caused by external factors (e.g., tobacco, infectious organisms, 
chemicals, lack of physical activity, poor diet, obesity, environmental pollutants, 
radiation) and internal factors (e.g., inherited genetic mutations, hormones, immune 
conditions) (Anand et al.  2008  ) . These causal factors may act together or in sequence 
to initiate or promote cancer development. Cancers are typically treated with a com-
bination of one or more therapeutic approaches including surgery, radiation, chemo-
therapy, hormone therapy, and biological therapy.  

    9.2   The Oncology Drug Development Process 

 Oncology drug development has historically been relatively consistent in approach. 
Current estimates suggest drug development takes on average 10–15 years from 
discovery to regulatory approval at a cost exceeding $1 billion (Tufts Center for the 
Study of Drug Development  2006  ) . According to CenterWatch, 4 new oncology 
drugs have been approved so far in 2012 and 77 were approved during the period 
2000–2011, with an average of 6.4 new oncology drugs per year (minimum of 2 in 
2005 and maximum of 12 in 2011) (CenterWatch  2012  ) . According to IMS Health, 
annual United States prescription sales in 2008 were $291 billion (Seeking Alpha 
 2012  )  with the sales of oncology products exceeding $48 billion, contributing nearly 
17% of the pharmaceutical sales that year (Reuters  2012  ) . 

 Although a common development approach is generally followed, clinical trials can 
be as diverse and complex as cancer itself. Regulatory approval is based on the demon-
stration of substantial evidence of safety, ef fi cacy, and risk-bene fi t obtained from well-
controlled clinical trials. While clinical development paths may vary for every candidate 
compound or drug, the general process is similar and comprises the following stages: 

  •     Nonclinical Research 

    Identify promising (“lead”) compound, with favorable properties of  –
administration  
  Identify promising molecular or genetic targets   –
  Evaluate in vitro activity   –

  Evaluate in vivo activity (animal models)      –       

    Phase 1 Clinical Trials (includes  fi rst in human trials)  • 

  Evaluate the side-effects of increased dosing (adverse events and toxicity pro fi le)   –
  Estimate the maximum tolerated dose (MTD) and identify any dose-limiting  –
 toxicities (DLT)  

  Evaluate dose(s) (dose-ranging)   –
  Evaluate dose schedule(s)   –
  Evaluate routes of administration   –
  Evaluate clinical pharmacology (food effects, drug-drug interactions)   –
  Evaluate QT/QTc interval prolongations (thorough QT studies)   –
  Characterize the pharmacokinetic (PK) and pharmacodynamic (PD) pro fi les   –
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  Phase 2 Clinical Trials (therapeutic exploratory trials, often nonrandomized)• 

   Evaluate antitumor activity (signal of clinically meaningful effect or clinical  –
response)  
  Evaluate limited number of doses/schedules to further characterize dose  –
schedule  
  Evaluate combination treatments and/or various disease indications   –
  Evaluate clinical pharmacology (food effects, drug-drug interactions)   –
  Characterize short-term safety pro fi les   –
  Characterize short-term pharmacokinetic (PK) pro fi les   –
  Phase 2a (pilot, proof of concept, dose-ranging in one or more combination  –
regimens)  
  Phase 2b (well-controlled to evaluate safety and ef fi cacy)      –

  Phase 3 Clinical Trials (registration or con fi rmatory trials, generally rando-• 
mized)

   Compare ef fi cacy to “standard of care” treatment/regimen   –
  Characterize safety pro fi le   –
  Con fi rm antitumor activity translates into prolonged clinical bene fi t   –
  Con fi rm safety and ef fi cacy (risk-bene fi t) with reasonable con fi dence for  –
product labeling     

  Phase 4 Clinical Trials (post-approval and post-marketing trials)• 

   Evaluate optimal use, including expanded indications and different patient  –
populations  
  Evaluate long-term safety pro fi le          –

    9.3   Oncology Clinical Endpoints 

 Traditional ef fi cacy oncology endpoints include time-to-event endpoints such as 
overall survival (OS), progression-free survival (PFS), time-to-progression 
(TTP), event-free survival (EFS), relapse-free survival (RFS), time-to-response, 
response classi fi cation, and duration of response (DR) (Food and Drug 
Administration  2007  ) . In addition, response classi fi cation, such as complete 
response (CR), partial response (PR), stable disease (SD), and progressive dis-
ease (PD) is often evaluated  according to pre-speci fi ed criteria for the particular 
cancer being studied. Also, quality of life (QoL) measures, patient reported out-
come (PRO) measures, and change from baseline for various endpoints are com-
monly used in clinical trials.  
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    9.4   Oncology Statistical Graphics 

 With the massive amount of data collected in oncology clinical development, there 
is an acute need for useful, informative, and visually appealing statistical graphics. 
While it is impossible to present every type of statistical graph used in oncology 
clinical development, the focus of this chapter is to illustrate graphics routinely 
used. Speci fi cally, this chapter shows selected graphics used during trial design, 
interim analyses, and  fi nal analyses of clinical data in an oncology clinical trial, 
with an emphasis on displaying ef fi cacy endpoints clearly, precisely, and ef fi ciently. 
“Excellence in statistical graphics consists of complex ideas communicated with 
clarity, precision, and ef fi ciency” (Tufte  1983  ) . With this idea in mind, a variety of 
statistical graphics are presented that follow the principles of Tufte and Cleveland, 
while limiting the theoretical or technical discussion of the statistical methods (Tufte 
 1983 ; Cleveland  1993  ) . 

 Graphics related to safety, pharmacokinetic, pharmacodynamic, and biomarker 
analyses are not included in this chapter. However, they are discussed in select chap-
ters in the book. 

 The R software package (version 2.14.1) was used exclusively for the generation 
of all graphics in this chapter. However, many of these statistical graphics can also 
be generated using other comprehensive statistical graphics packages (e.g., SASÔ, 
JMPÔ, S-PLUSÔ). The data used and presented throughout the chapter are either 
R datasets (e.g., ovarian, lung) or simulated data. In addition, the following R pack-
ages were used:  Hmisc ,  rms ,  survival ,  graphics ,  lattice ,  grid , 
and  RColorBrewer . The R code can be obtained from the book’s companion 
website or directly from the author. 

    9.4.1   Trial Design 

 Statistical graphics are useful during trial design planning and interim data monitor-
ing, particularly when clinical development teams, medical research scientists, 
clinical pharmacologists, and investigators are collaborating on clinical research 
projects and programs. 

    9.4.1.1   Phase 1 Trial Design 

 The goal of a phase 1 cancer clinical trial is frequently to estimate the highest dose 
of an experimental agent associated with a tolerable level of toxicity. Although 
there are numerous trial designs for phase 1 oncology clinical trials, such as the 
continual reassessment method (CRM) (O’Quigley et al.  1990 ; O’Quigley and 
Reiner  1998  ) , accelerated titration designs (ATD) (Simon et al.  1997  ) , and dose 
escalation with overdose control (EWOC) (Tighiouart et al.  2005 ; Babb et al. 
 1998  ) , the traditional algorithm-based designs are still widely used because of their 
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practical and operational simplicity for the sponsor and familiarity and comfort by 
regulatory authorities (Reiner et al.  1999 ; Storer  1989  ) . The “A + B” design (e.g., 
“3 + 3”), with or without de-escalation, is a commonly used rule-based design 
(Babb et al.  1998  ) . As with any trial design, operational design characteristics 
(e.g., maximum sample size, average sample size, average number of DLT), are 
important for sponsors, clinical development teams, statisticians, clinical pharma-
cologists, and investigators to gain an understanding of the trial design. 

 Dose-response and dose-toxicity pro fi le graphics are routinely generated based 
on either empirical data or theoretical models (e.g., logistic, sigmoid, quadratic, 
hyperbolic tangent, Lyman, Emax). Figure  9.1  illustrates potential dose-toxicity 
pro fi les for a new agent based on a generalized logistic function with varying model 
parameters.  

 Figure  9.2  displays various operating characteristics of a “3 + 3” design 
within one single  fi gure. These include the assumed dose-toxicity pro fi le, the 
probability of a dose being selected as the MTD, the expected number of patients 
treated at each dose level, the expected number of total patients treated, the 
expected DLT incidence at each dose level, and the total number of expected DLTs 
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  Fig. 9.1    Line plot illustrating simple dose-toxicity pro fi les for a new agent based on the logistic 
function p(dose) = 1/(1 + exp(− a  −  b  × dose)) with varying model parameters  a  and  b        
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(Lin and Shih  2001  ) . A multi-panel graphic can be prepared under various 
assumed “true” dose-toxicity pro fi les to evaluate the performance characteris-
tics of the trial design over a range of plausible scenarios. Undoubtedly, a 
graphic of this complexity will require additional review time to clearly under-
stand the data being presented. However, this additional time and approach may 
highlight potential scenarios where the trial design may be inadequate. Based on 
speci fi c design assumptions, a dash-board graphic such as this can be helpful to 
project teams as it summarizes several important components of the operating 
characteristics of the design such as the expected number of patients at each 

  Fig. 9.2    Multi-panel plot illustrating key operating characteristics of a “3 + 3” phase 1 trial design 
with de-escalation. Assumed dose-toxicity pro fi le ( upper left ), the probability that a dose is 
declared the MTD ( upper right ), the expected number of patients treated at each dose ( lower left ), 
and the expected number of dose-limiting toxicities (DLTs) at each dose ( lower right ). In addition, 
the expected number of total patients treated and the expected total number of DLTs are annotated 
on the  lower left  and  lower right panels , respectively       
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dose, the expected total number of patients, and the expected MTD. In addition, 
trial cost and duration can be inferred from preliminary trial design graphics.   

    9.4.1.2   Phase 2 Trial Design 

 Multi-stage designs are widely used in Phase 2 oncology clinical trials to mini-
mize the number of patients treated with ineffective experimental agents and the 
amount of clinical expenses. Multi-stage designs allow for early clinical trial ter-
mination when experimental agents are ineffective. In addition, if carefully 
planned and properly executed, multi-stage designs are practically and operation-
ally simplistic (Schlesselman and Reis  2006  ) . As an example, Fig.  9.3  displays 
the stopping criteria for two multi-stage designs from a lung cancer clinical trial 
(Lee and Liu  2008  ) : Simon’s two-stage design (Simon  1989  )  and the Bayesian 
Predicted Probability design (Lee and Liu  2008  ) . 

With the commonly used Simon’s two-stage design, project teams can clearly 
visualize the number of responders that must be observed for the trial to proceed to 
the second stage (more than 3 responders out of the  fi rst 17 patients). Once in the 
second stage, at least 11 total patients out of 37 must respond to ultimately reject the 
trial’s null hypothesis, which is  H  

0
 :  p  

0
   £  0.20 (objective response rate). As an alterna-

tive, the Predicted Probability design (for maximizing power) is a Bayesian multi-
stage design that allows the trial to be monitored continuously or by cohorts. The 
trial will be stopped and the treatment is considered ineffective when the number of 
responses  fi rst falls into the rejection region. 

In this example, the Predicted Probability design requires at least 1 responder out 
of the  fi rst 10 patients to proceed into the second stage. The subsequent stage’s 
rejection regions (numbers of responses/n) are 1/17, 2/21, 3/24, 4/27, 5/29, 6/31, 
7/33, 8/34, 9/35, and 10/36. Compared to Simon’s optimal two-stage design, the 
trial is monitored more frequently in the Predicted Probability design, which also 
has a larger probability of early termination and a slightly larger expected sample 
size in the null case. Both trial designs have a Type I error of 0.10, statistical power 
of 90%, and a maximum of 37 treated patients. Project teams can easily compare 
and contrast the use of these two multi-stage designs in terms of operational bud-
gets, expected sample size, time to complete the trial, probability of early termina-
tion, etc. In addition, they can compare multi-stage designs with a  fi xed (traditional) 
design that requires approximately 38 patients. Simple graphics can provide a visual 
approach for the clinical trial management team, statisticians, and investigators to 
understanding the trial design and evaluate trial assumptions.   

    9.4.1.3   Phase 3 Trial Design 

 Phase 3 oncology clinical trials are primarily comparative trials aimed to support 
regulatory approval with regard to the safety, ef fi cacy, and the overall risk-bene fi t 
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relationship of the investigational agent. Phase 3 trials are both costly and time-con-
suming. Hence, simulations are often used to assess the trial design assumptions and 
gain insight into the trial’s operating characteristics before commencement of the 
actual clinical trial. Figure  9.4  is a graphical representation of a simulated clinical 
trial under assumed treatment effect using the triangular test group sequential trial 
design that allows early stopping at interim analysis (Whitehead  1997 ; Jennison and 
Turnbull  2000  ) . For each individual trial simulation, the trial was terminated when 
either a boundary was crossed or the maximum sample size of 200 enrolled patients 
was achieved. In the upper panel of the plot, the solid blue line is the superiority 
boundary (values above this boundary indicate experimental treatment signi fi cantly 
better), the dashed red line is the inferiority boundary (values below this boundary 
indicate experimental treatment is signi fi cantly worse), and the solid red line is the 
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  Fig. 9.3    Operating characteristics comparing two multi-stage Phase 2 trial designs evaluating 
objective response rate. Both trial designs have Type I error of 0.10, statistical power of 90%, and 
a maximum of 37 treated patients. Simon’s two-stage design has analysis milestones that occur 
after the 17th and 37th patients ( vertical red bars ), while the Predicted Probability design is 
assessed at 11 different stages. For comparison, a  fi xed (traditional) sample size trial is included 
using the same design assumptions       

 



1819 Statistical Graphics in Clinical Oncology

futility boundary (values below this boundary indicate no signi fi cant difference and 
continuation of trial unlikely to establish experimental treatment superiority). The 
black dots represent the Z (ef fi cient score) test statistic at the termination of each 
simulation run.  

 Continuous monitoring is an abstract mathematical concept (Brownian motion 
with drift) in which the plot of Z against sample size develops as an unbroken path 
(Whitehead  1997  ) . Continuous monitoring is nearly impossible to apply in practice 
because data inspection even after every patient response causes sample size to 

  Fig. 9.4    Multi-panel plot displaying simulated data and operating characteristics for a phase 3 
trial using the triangular test design. In the  top panel , the  solid blue line  is the superiority boundary, 
the  dashed red line  is the inferiority boundary, and the  solid red line  is the futility boundary. The 
 black dots  represent the Z (ef fi cient score) test statistic at the termination of each of simulation run. 
The  bottom panel  displays the empirical density plot of the  fi nal sample sizes from the simulation. 
The graphic is annotated with simulation summary statistics, along with a  dashed vertical line  
across both panels that represents the  fi xed sample size from a traditional one-look trial design 
with 85 patients       
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increase in small increments. Thus, adjustments to the triangular test boundaries 
are implemented to account for discrete monitoring that are termed “Christmas that 
tree boundaries” because of their shape (Whitehead  1997  ) . When assessing the indi-
vidual simulated trial termination, the Christmas tree boundary corrections were 
used. As a result, some simulations terminated with a Z test statistic that was inside 
the continuous triangular boundaries (displayed) but outside the Christmas tree 
boundaries (not displayed). The bottom panel displays the empirical density plot of 
the  fi nal sample sizes from the simulation. Across both panels is a vertical line that 
represents the  fi xed sample size from a traditional one-look trial requiring 85 
patients. Figure  9.4  is also annotated with simulated results, such as Type I error, 
statistical power, and average sample size. Based on the assumptions in this simu-
lated clinical trial, the bene fi ts of the group sequential design in terms of a smaller 
expected sample size compared to a  fi xed sample size design are visually and 
numerically presented. Using various design assumptions and enrollment rates, a 
trial design graphic can clearly and ef fi ciently communicate a simulated trial’s oper-
ating characteristics as well as illustrate the impact of trial design assumptions such 
as treatment effects and enrollment rates.   

    9.4.2   Interim Analyses 

 An interim analysis is an assessment of data performed during the patient enroll-
ment or follow-up stages of a trial, but before completion of the trial, for the pur-
pose of assessing such aspects as center performance, the quality of the data 
collected, sample size assumptions, or treatment effects. With adaptive designs, 
mid-trial data analyses are used for a variety of reasons, including stopping early 
for ef fi cacy or futility, increasing sample size, dropping treatment groups, or modi-
fying randomization schemes. Figure  9.5  illustrates an example of a dash-board 
style graphic used in a Phase 2 Bayesian adaptively randomized clinical trial com-
paring 3 treatment groups with regard to PFS in ovarian cancer. In this clinical trial, 
after a period of equal randomization (e.g., 15:15:15), patients were subsequently 
randomized to the 3 treatment groups in blocks of 9, with the randomization prob-
ability based on their respective posterior probabilities. For instance, if the 3 treat-
ment groups had comparable performance, 3 patients each would be randomized to 
treatment groups A, B, and C, respectively. If a treatment group is demonstrating 
better performance (i.e., better mean PFS), the treatment group will receive a larger 
allocation of the 9 patients. The trial was continued to a maximum number of 
treated patients or when pre-speci fi ed termination criteria were met. During 
planned interim analyses, the Kaplan-Meier plot for the 3 treatment groups is pre-
sented, along with the current estimate of each group’s posterior distribution for 
mean PFS, the current total number of patients randomized per group, and the 
randomization allocation of the next 9 patients.   
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    9.4.3   Final Analyses 

 Graphics for oncology ef fi cacy data are primarily used to show treatment effects on 
 fi nal ef fi cacy endpoints. Traditionally, ef fi cacy graphics, such as bar charts, may use 
more ink than other graphics because the endpoints are simple measures of  treatment 
effect such as mean change from baseline or a patient’s maximum reduction in 
tumor size. Several commonly used statistical graphics for the presentation of clini-
cal results of ef fi cacy data are presented. 

  Fig. 9.5    Multi-panel plot illustrating an interim analysis of a Bayesian adaptive randomization 
trial. The  top panel  illustrates the Kaplan-Meier plot comparing progression-free survival by treat-
ment group. The  bottom panel  is comprised of 2 plots which include a line plot of the posterior 
distributions of the mean progression-free survival ( bottom left ) for each treatment group, the total 
number of patients treated in each group ( bottom right ,  solid bars ), and the allocation of next 9 
patients ( bottom right ,  shaded bars )       
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    9.4.3.1   Waterfall Plots 

 Waterfall plots are a useful method of illustrating the antitumor activity of investi-
gational agents. The plots are also sometimes referred to as Delta plots (Chuang-
Stein et al.  2001  ) . The waterfall plot is not a minimalist use of ink as suggested in 
Tufte’s principles (National Cancer Institute  2012  ) ; however, the ink is well used in 
clearly showing one aspect of the treatment effect. The plots are termed waterfall 
because if the patient data are ordered least to largest (or vice versa), it gives the 
appearance of a waterfall. Waterfall plots can display patterns or distributional loca-
tion shifts in comparative settings, but caution should be used if the randomization 
is not approximately 1:1. Antitumor activity, such as the change in tumor growth or 
shrinkage from baseline, is often reported longitudinally at study time points for 
each patient. Alternatively, each patient’s maximum (i.e., best) change in tumor 
growth or shrinkage is often reported. The waterfall plot can be used to assess treat-
ment effects at the population level as well as to highlight individual patients. Unlike 
an average of patient response, or a response rate without information about the 
magnitude of response, the waterfall plot demonstrates the variability of an experi-
mental agent. The waterfall plot, however, does not provide information on the 
duration of the response. 

 Figure  9.6  presents the maximum percentage change in the sum of the longest 
diameter (SLD) from baseline for 60 patients (ordered from largest increase to larg-
est decrease). The individual patients are colored to differentiate their best overall 
response determinations.  

 Figure  9.7  illustrates the same results by treatment group. If the majority of 
tumor shrinkage (negative change from baseline) were to occur in one treatment 
group, this pattern would be readily apparent from the plot. As seen in Fig.  9.7  there 
is no apparent grouping of Treatment A or Treatment B in either the tumor growth 
(increasing tumor burden) or tumor shrinkage (decrease in tumor burden).   

    9.4.3.2   Forest Plots 

 Forest plots are routinely used when combining results from multiple studies or con-
ducting subgroup analyses. When combining results from multiple studies (i.e., a 
meta-analysis), the individual trial results (e.g., means, proportions, odds ratios, haz-
ard ratios) are represented by a vertical tick mark surrounded by a square, typically 
with 95% con fi dence intervals (CI) represented by a horizontal line. The size of the 
square is proportional to the weight of the trial in the meta-analysis (i.e., the weight 
applied to the individual trial result to estimate the pooled overall result). The estimate 
of the overall result and its associated 95% con fi dence interval are often represented 
by a  fi lled circle with con fi dence bars or an elongated diamond where the center of the 
diamond is the overall pooled estimate and the ends of the diamond are the 95% 
con fi dence interval (Cappelleri et al.  2000  ) . Figure  9.8  illustrates a comprehensive 
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forest plot for a random-effects meta-analysis of 4 pivotal randomized clinical trials. 
In addition to the forest plot, the graphic includes summary statistics, measures of 
heterogeneity, a vertical line for the odds ratio (OR) of 1.0 (no treatment effect), and 
a vertical line at the overall treatment effect level, making it easy to evaluate if a 
con fi dence individual from an individual trial differed signi fi cantly from the overall 
effect and to assess the consistency and robustness of the data.  

 Forest plots have become a useful tool to conveniently and graphically  summarize 
the relative treatment effect of numerous separate analyses in one  fi gure. Figure  9.9  
illustrates a basic subgroup analysis forest plot, with the hazard ratio (HR) and 95% 
con fi dence intervals based on a Cox proportional hazards regression model. A use-
ful aspect of the forest plot is to assess whether the effect size for different sub-
groups differs signi fi cantly from the main effect.   
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  Fig. 9.6    Waterfall plot displaying the maximum change in the sum of the longest diameter (SLD) 
from baseline. The  vertical lines  represent the maximum change in each patient’s SLD from base-
line. Additionally, the  vertical lines  are colored by the patient’s  fi nal response status, where pro-
gressive disease (PD) is  orange , stable disease (SD) is  green , partial response (PR) is  purple , and 
complete response (CR) is  pink . There are no patients with a complete response (CR)       
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    9.4.3.3   Change from Baseline Plots 

 “Change from baseline” is a useful and routinely used estimate of interest for both 
continuous safety and ef fi cacy measures in oncology clinical trials. Raw change, 
absolute change, and percentage change are variations often reported. Depending 
on the sample size and normality of the data, the appropriate graphic should be 
selected. The dot plot with 95% con fi dence interval, box plot, empirical cumulative 
distribution plot, and density plot are attractive plots for presenting continuous data. 
Figure  9.10  shows examples of 4 different plots of change from baseline date from 
a visual analog scale (VAS) for pain for 2 treatment groups. Simple statistical 
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  Fig. 9.7    Waterfall plot displaying the maximum change in the SLD from baseline by treatment 
group. The  vertical lines  ( top ) represent the maximum change in each patient’s SLD from baseline 
and are colored by treatment group. Additionally, with the results separated by treatment group 
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where progressive disease (PD) is  orange , stable disease (SD) is  green , partial response (PR) is 
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 graphics such as these, particularly when used together, provide useful visual sum-
maries and aid in identifying distributional properties of the data. In addition, they 
provide insight into choosing the appropriate statistical methodology for comparing 
treatment groups.   

    9.4.3.4   Event Charts 

 For both randomized and nonrandomized trials, in particular those with a small 
number of patients, events charts are a convenient graphical approach to illustrating 
time-to-event outcomes and other key events (e.g., randomization, treatment, 
response). Using the overall survival data from a randomized trial comparing two 
treatments for ovarian cancer (R dataset  ovarian ) (Therneau  2012  ) , treatment dates 
over a 2-year period were randomly generated and assigned to 26 patients. Based on 
the randomly generated treatment date and the duration of the patients overall sur-
vival, their event date was derived. The event was either death or censored, where 
the patient was either lost-to-follow-up or still alive at the time of the analysis. 
Figure  9.11  plots the patients by calendar time (i.e., chronologically as they were 
treated), while Fig.  9.12  plots the patients by survival time (shortest survival time to 
longest survival time). Figure  9.11  provides a nice overview of the enrollment rate 
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  Fig. 9.8    Forest plot that displays both numerical and graphics results from a meta-analysis. Each 
trial’s estimated odds ratio (OR) is represented by a  vertical tick mark  surrounded by a  square . The 
individual trial’s 95% con fi dence interval for the OR is represented by a  horizontal line . The size 
of the square is proportional to the weight of the trial in the meta-analysis (i.e., the weight applied 
to the individual trial OR to estimate the pooled OR). The estimate of the pooled OR and its associ-
ated 95% con fi dence interval is represented by a   fi lled circle  and  horizontal line , respectively. In 
addition, a  dashed line  is vertically extended from the estimate of the pooled OR. The OR = 1.0 (no 
treatment effect) is illustrated with a  solid vertical line . The plot is further annotated with the het-
erogeneity statistics Q, t 2 , and I 2        
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and overall trial duration. In this example, patient 25 was still on-going at the time 
of data cut (March 26, 2012), while the other censored patients could be considered 
lost-to-follow-up. Figure  9.12  provides some insight into the overall survival, while 
quickly illustrating which patients have died or are censored. Both styles of the 
event chart can provide sponsors and project teams with useful trial information, 
particularly in exploratory studies with a small number of patients where all the 
patients can be displayed clearly on a single graphic. Conversely, for studies with a 
large number of patients, the display may be dif fi cult to interpret when attempting 
to display in a single graphic.    

  Fig. 9.9    Forest plot summarizing the treatment effect for the primary analysis and numerous sub-
groups. The  blue dot  represents the hazard ratio (HR) based on a Cox proportional hazards regres-
sion model, while the  horizontal lines  represent the 95% con fi dence interval for the hazard ratio. 
The HR = 1.0 (no treatment effect) is illustrated with a  dashed vertical line        
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    9.4.3.5   Time-to-Event Plots 

 Graphical summaries of time-to-event data are cornerstone in the analysis and 
reporting of results from oncology clinical trials. Time-to-event analyses examine 
and model the time it takes for an event to occur. Time-to-event endpoints include 
overall survival (OS), PFS, TTP, EFS, RFS, time-to-response, and duration of 
response (DR). 

 The most frequently used graphical technique for time-to-event data is the 
Kaplan-Meier plot. The nonparametric Kaplan-Meier estimator, also known as the 
product limit estimator, is an unbiased estimator for estimating the survival function 
for time-to-event data (Kaplan and Meier  1958 ; Parmar and Machin  1995  ) . 

  Fig. 9.10    Selected plots illustrating the change from baseline in visual analog scale (VAS) for 
pain by treatment group. The point estimate for the change from baseline in VAS is represented by 
a  dot , with the associated 95% con fi dence interval ( upper left ),  box plots  ( upper right ), empirical 
cumulative distribution functions ( bottom left ), and probability density plots( bottom right )       
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An important advantage of the Kaplan-Meier method is that it takes into account 
censored data, particularly right-censoring, which occurs if a patient withdraws or 
is lost from the trial before the  fi nal outcome is observed or has not experienced the 
event at the time of the analysis. 

 A plot of the Kaplan-Meier estimate of the survival function is a series of hori-
zontal steps of declining magnitude which approaches the true survival function 
when the sample size is large. To illustrate the variability in the Kaplan-Meier 
estimator, plots often include con fi dence intervals, con fi dence bands, or con fi dence 
bars. Con fi dence intervals and bands can provide an attractive display when a sin-
gle survival function or multiple well-separated survival functions are presented. 
However, if the multiple survival functions are not well separated, the con fi dence 
intervals and con fi dence bands are generally confusing and dif fi cult to interpret. 
As an alternative, con fi dence bars at selected time points offer a clean assessment 
of variability. Other useful features often employed in Kaplan-Meier plots include 
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  Fig. 9.11    Calendar event chart. Each of the 26 treated patients is represented chronologically (i.e., 
patient 1 was treated  fi rst and patient 26 was treated last patient). The  y -axis measures actual cal-
endar dates. Each patient’s treatment date is denoted with a  black dot . With regard to the event, 
either the date of death is denoted with a  red triangle  or the censored event is denoted with a  blue 
square . The length of the  black horizontal line  indicates the patient’s overall survival in days       
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annotations regarding the number of patients “at risk” over time and censored 
observations. Censored observations are typically represented by small tick marks. 
Both of these features are important for proper interpretation of survival functions, 
particularly as the pool of patients “at risk” decreased as time progresses. 

 Figure  9.13  shows a simple Kaplan-Meier plot of overall survival in patients with 
advanced lung cancer (R dataset  lung ) (Loprinzi et al.  1994  ) . The solid line in the 
Kaplan-Meier survival function is surrounded by the 95% error band. The median 
survival, along with the 95% con fi dence interval, is annotated on the graphic.  

 Cumulative incidence plots are also often used to present time-to-event data. A 
cumulative incidence plot illustrates the cumulative proportion of patients that expe-
rience the event, while the Kaplan-Meier plot illustrates the proportion of patients 
free of the event. Figure  9.14  illustrates the cumulative incidence plot in the patients 
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  Fig. 9.12    Event chart. Each of the 26 treated patients is represented in increasing order of overall 
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with advanced lung cancer. The solid line is the Kaplan-Meier cumulative incidence 
function estimate, surrounded by the 95% con fi dence interval. Note that censored 
observations are denoted on the cumulative incidence plot by small tick marks. The 
Kaplan-Meier and cumulative incidence plots display comparative results, provided 
they are banked to 45° (i.e., the aspect ratio such that the average absolute angle in 
curves is 45°). A detailed discussion of Kaplan-Meier and cumulative incidence 
plots is provided by O’Connell and Treder (O’Connell and Treder  2009  ) .  

 Figure  9.15  shows a more advanced Kaplan-Meier plot of overall survival by 
sex. The solid purple line is the Kaplan-Meier survival function for males, while the 
solid green line is the survival function for females. At approximately 6-month 
intervals (180 days), 95% con fi dence bars are presented around the survival esti-
mate and the number of “at risk” patients are presented for both groups. Finally, the 
graphic is annotated with faint dotted references lines on the  y -axis and the  p -value 
from the nonparametric logrank test, a commonly used test for comparing survival 
functions of two groups (Parmar and Machin  1995  ) .  
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 An alternative to Figs.  9.15  and  9.16  is a plot of the difference between the survival 
functions for the male and female groups with an associated 95% con fi dence band. 
The con fi dence bands could be replaced by con fi dence intervals or selected con fi dence 
bars to minimize the amount of ink used. The  p -value from the nonparametric logrank 
test is also included. The fact that the solid line lies below difference = 0 indicates that 
the estimate of the survival probability for females is always larger than that of the 
males. In many cases, if follow-up is long enough, the two survival curves will approach 
0%. As a result, two survival curves that come together at the end of the follow-up do 
not necessarily indicate a lack of difference between the two curves.  

 In addition to the Kaplan-Meier methodology, the semi-parametric Cox propor-
tional hazards model is extensively used in the analysis of time-to-event data (Cox 
 1972  ) . It is important that the proportional hazards assumption holds for valid 
interpretation of regression coef fi cients in a Cox proportional hazards model. 
Figure  9.17  contains an example of 4 diagnostic plots used with the Cox model 
(Fox  2002  ) . Both, Fig.  9.17a  and  b  are graphical diagnostic tests for the  proportional 
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hazards  assumption. Figure  9.17a  shows the plot of log(survival time) vs. 
log(−log(survival  probability)). In this example, the curves appear to be approxi-
mately parallel and the proportional hazards property appears to hold. Figure  9.17b  
shows the scaled Schoenfeld residuals vs. survival time, where the solid line is the 
smoothing-spline  fi t, the dotted line is a ±2-standard-error band around the smooth-
ing-spline  fi t, and the blue dashed line is the least squares regression line. Systematic 
departures from a horizontal line are indicative of nonproportional hazards. 
Although the solid line has a slight upward trend, a formal test of the proportional 
hazards assumption holds ( p  = 0.117). Figure  9.17c  is an index plot for assessing 
in fl uential observations by comparing the magnitudes of the largest dfbeta values to 
the regression coef fi cients. Finally, Fig.  9.17d  is a plot where the martingale residuals 
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are plotted against covariates (e.g., age) to detect nonlinearity, an incorrectly 
speci fi ed functional form in the parametric part of the Cox model. The solid lines 
are  fi t by local linear regression (lowess). There appears to be slight nonlinearity.     

    9.5   Conclusion 

 Statistical graphics are an invaluable tool for the ef fi cient and accurate analysis and 
interpretation of clinical data. A graphic can stand alone when provided with 
suf fi cient data and information. In fact, a few graphics can provide information 
equivalent to numerous tables. Ef fi cacy graphics may be relatively basic and easy to 
comprehend or they may be quite complex and require careful review. Better graph-
ics simply lead to better clinical research and more effective communication of 
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information. The use of concise, compelling, and common graphical analysis in 
oncology clinical research contributes to sound and scienti fi c analysis and interpre-
tation of clinical data, which ultimately results in more ef fi cient use of patient data, 
cost savings, and faster approval of oncology drugs and improved patient care.      
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  Abstract   Clinical trials collect a great deal of data relating to the safety of the trial 
participants. The data are complex in nature and traditional approaches to data 
review involve using summary tables and listed data. An alternative approach to the 
review of clinical trial safety data is presented, allowing reviewers to access indi-
vidual subject data via hyperlinked plots and tables. Examples of presentations of 
data for very large studies, and of the inclusion outputs from modern statistical 
methods are demonstrated.      

    10.1   Introduction 

 A typical clinical trial collects a great deal of data from the trial subjects (healthy 
volunteers or patients), and it is usually the case that most of the data are related to 
the safety, not ef fi cacy, of the study drug. These data relate to adverse events, labo-
ratory investigations, vital signs, possibly electrocardiograms, medical history, 
demography, concomitant medications, urinalysis and often more. 

 The data are of various types: adverse event data are usually time to event data 
(though often presented as though they are binomial) and have associated data 
relating to severity, assessed causality and other associated things; the laboratory 
data are usually continuous and the variables are often highly skewed and subject to 
outliers; urinalysis data are often ordered categorical data. 

 The large amount of data and their complicated structure makes interpretation 
dif fi cult. Historically, the approach to the presentation of such data has been to 
produce some summary tables (usually frequencies of adverse events and means, 
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standard deviations and other statistics for continuous data) and to list the data by 
domain. The result is often thousands of pages of output that clinical reviewers have 
to then work their way though, attempting to  fi nd patterns and signals of adverse 
effects. The process is slow, dif fi cult and probably error prone. 

 This chapter describes an alternative approach that makes use of modern technology, 
and which has been found to be valuable and popular with clinical reviewers.  

    10.2   Principles 

 Experience illustrates that humans are able to gain greater and more rapid under-
standing of data when the data are presented graphically than when they are 
presented in tabular or listed format, so it follows that any modern data review 
system ought to rely heavily on graphical presentations. However, some kinds of 
data do not lend themselves well to graphical presentation, and sometimes it is 
useful to be able to quickly see exact numbers and not have to read an approximate 
value off an axis. Therefore, when appropriate, we opt to provide tabular presenta-
tions of data and seek to give reviewers the ability to rapidly pick out the important 
pieces of information from tables by use of conditional formatting—i.e., colour-
coding table cells according to the value they contain—rather than coerce data into 
ill-suited graphical presentations. 

 A further observation is that reviewers very often require the ability to view 
multiple pieces of data relating to a single clinical trial subject. For example, if it is 
noticed that a particular subject had an unusually large value of alanine aminotrans-
ferase (a laboratory variable that might indicate liver damage), the reviewer will 
immediately want to know how other liver-related laboratory variables behaved 
(typically aspartate aminotransferase, bilirubin and alkaline phosphatase, but 
possibly others as well). But the reviewer’s needs do not stop at the laboratory 
variables. It is also necessary to establish if there were any adverse events that were 
liver-related, if there were concomitant medications that could be implicated, if the 
subject had a medical history of liver problems, and so on. Therefore, it is necessary 
for the reviewer to always be able to view all the data collected on a subject, as soon 
as the subject becomes of interest. 

 Thus, 3 principles have emerged: present most of the data graphically; provide 
tabular data when it makes most sense; always enable reviewers to quickly access a 
report containing all of any individual subject’s data.  

    10.3   Graphical Presentations 

 Other chapters in this book contain a great deal of advice on the construction of 
good graphs for clinical trial safety data. At the risk of repetition, good boxplots and 
shiftplots of study level data are indispensible, speci fi c plots of certain variables 
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such as alanine aminotransferase versus bilirubin should be produced as these can 
quickly highlight potential liver injury, and plots of patient pro fi les are also valu-
able. Typically, it is the outliers that are the most important values, so these should 
never be excluded from plots. 

 In order to make the individual patient data available to a reviewer upon seeing, 
say, an outlier on a shiftplot, hyperlinking can be used. (Sect.  10.6.1)  contains fur-
ther discussion of software. The basic functionality used in our implementation 
involves the reviewer using an ordinary Web browser to view a collection of graphs 
and tables that are easily navigated. The reviewer can click on a point on a plot 
(a shiftplot or boxplot, say). That point is then highlighted, as are other observations 
(if any) that come from the same clinical study subject, and the subject identi fi er is 
displayed on the screen. The reviewer can then click the subject identi fi er to bring 
up a report containing all the data available on that subject. Alternatively, the 
reviewer can select several points at once and then browse a list of patient identi fi ers. 

 Figure  10.1  shows a screenshot of a typical data review tool. The various graphs, 
tables and patient reports that are contained in the tool can all be accessed by 
expanding and collapsing elements of the tree menu on the left of the screen. In the 
particular screenshot, the item  Lab data plots → LFTs → Boxplots → All  has been 
selected (“LFT” is short for “liver function test” although not all the variables 

  Fig. 10.1    A typical data review tool. Boxplots are superimposed over a plot of the individual 
observations, jittered to separate points. The reviewer selects points by clicking them and can then 
navigate to reports on the individual study subjects by clicking their identi fi ers. Upon clicking, 
points are highlighted across boxplots, and also across the tabbed pages of the plot       
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actually relate to function). Breadcrumbs at the top left of the screenshot allow the 
user to navigate backwards and forwards within the data review tool.  

 The boxplots in Fig.  10.1  are of a particular laboratory variable,  S-ASAT  (serum 
aspartate aminotransferase). The clinical visit number is on the horizontal axis and 
the plot has been conditioned (trellised) on the treatment group (labelled A, B and 
C here). Along the top of each panel, the numbers of observations in the boxplots 
are shown. 

 When the user moves the mouse pointer over an observation in a plot, the related 
subject identi fi er appears on the plot (not shown). To select one or more points, the 
user clicks on the point. In panel A of Fig.  10.1  several observations are highlighted 
with red squares as a result of the user having selected these points. Immediately a 
point is selected, observations relating to the same subject are highlighted in the 
plots at other visits. The user can then click on  List selected patients…  above 
the plot to have the identi fi ers of the selected subjects listed as shown. These 
identi fi ers are hyperlinked to reports on the individual subjects (see Sect.  10.5 ). 

    10.3.1   Graphical Presentations for Large Studies 

 Some clinical studies are notably larger than others: the HPS study (Heart Protection 
Study Collaborative Group  2002  )  followed 20,500 patients for 5 years; the JUPITER 
study (Ridker et al.  2008  )  followed approximately 17,800 patients for 1.9 years; the 
PLATO study (Wallentin et al.  2009  )  followed approximately 18,600 patients for 1 
year. For such studies, plotting all of the data can result in plots that are cluttered 
and packed with too many points. 

    10.3.1.1   Scatter Plots for Large Amounts of Data 

 One way to successfully produce a scatter plot for a large amount of data is to use 
hexagonal binning—essentially to display a two-dimensional histogram of the data. 
Since the data being reviewed are usually related to safety, it is the outliers that are 
of interest. As such, the subjects whose data fall into hexagons in the central region 
of the plot are unlikely to be of interest. This suggests that hyperlinks to patient 
reports only need to be included in the hexagons around the periphery of the plot, 
and these are only a small minority of all patients, thus overcoming issues due to 
shortage of memory (if all patient identi fi ers are hyperlinked, the need of the browser 
to hold all the URLs in memory can cause it to fail). 

 Figure  10.2  shows an example of a hexagonal bin shiftplot. The data are for a 
particular variable,  Creat  (creatinine), with baseline values on the horizontal axis and 
post-baseline values on the vertical axis. The axes cover the same range as each 
other, the aspect ratio has been set to 1, and a diagonal (0, 1) reference line appears 
on the plot. The vertical reference lines are at the lower and upper limits of normal.  

 The plot is conditioned on the treatment group, and on the clinical visit number. 
In Fig.  10.2  the data from visit 4 are displayed, as indicated by the strip label above 
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the plots, and the data from the other visits appear in pages accessed via the tabs 
beneath the plot. The key at the top of each panel gives an indication of how many 
patients are in each hexagonal bin. In this example, the user has selected a hexagon 
in the rightmost panel and listed all patient identi fi ers associated with data in that 
hexagonal bin. The listed patient identi fi ers are hyperlinked to patient reports 
(Sect.  10.5 ).  

    10.3.1.2   Boxplots for Large Amounts of Data 

 Boxplots display a summary of the majority of the data (the central region in the 
box, and the region to the ends of the whiskers) and the outliers. Again, it is chie fl y 
the outliers that are of interest, so if only the outliers are hyperlinked to patient 
reports, memory usage is minimal. 

 However, it is important to be able to see what happened across time, and across 
different laboratory variables, for any subject who generates an outlying laboratory 
observation. Therefore, the information that links the observations in time and 
across variables needs to be contained in the graph so that once a reviewer selects 
an outlier by clicking it, the subject’s data across time and other variables are also 
highlighted.    

  Fig. 10.2    A hexagonal bin shiftplot with patient identi fi ers included only in peripheral cells. 
Selecting a cell gives access to the hyperlinked list of patient identi fi ers       
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    10.4   Tabular Presentations 

 Whilst graphical displays are generally preferred, tabular presentations of data can 
be useful, so long as reviewers can easily and quickly  fi nd what they are looking for. 
For frequencies or rates of adverse events, we typically produce both, the graphical 
representation described by Amit et al.  (  2007  )  and the simple tables of the same. 

 A typical adverse event summary table has a column for each treatment group. 
In cases where there are only 2 treatment groups, a column for relative risk can 

  Fig. 10.3    A frequency table of adverse event preferred terms from a study with 3 treatment groups, 
labelled A, B and C. If the user clicks a column heading, the table is sorted according to the fre-
quencies in that column (in this case, the table has been sorted on column C). If the user clicks a 
cell in the table, a list of all the patient identi fi ers associated with that cell appears at the top of the 
page, and the identi fi ers are hyperlinked to their patient reports       
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 easily be added, or perhaps a measure of the strength of evidence for a treatment 
difference such as a  c  2  statistic or deviance. In computing relative risks, it is desir-
able to avoid zero and in fi nite values. In the case of (almost) equal sample sizes, this  
can be achieved by considering the data as being a 2 ×2 table and adding 1/2 to each 
cell (equivalently, treating the data as coming from 2 Beta distributions and using 
the Jeffreys prior). In any case, when there are small numbers of events, interpreta-
tion of such statistics needs account for the fact. 

 To make the table easy for reviewers to use, the table can be sorted according to 
the values in any particular column by clicking on the header for that column, and 
reverse sorted by clicking again. If the reviewer is interested in the patients in a 
particular treatment group who reported a particular adverse event, they can click 
the appropriate table cell to bring up a hyperlinked list of the patient identi fi ers, and 
then access the patient reports by clicking in that list. 

 Figure  10.3  shows an example of a sortable frequency table from a study with 3 
treatment groups. The user has moved the mouse pointer over the row labelled 
 Nasopharyngitis  and clicked on one of the cells in that row to bring up the hyper-
linked list of patient identi fi ers associated with that event in one of the treatment 
groups (A, B or C). The same information is presented graphically in Fig.  10.4 .    

  Fig. 10.4    A dotplot of the same adverse event data that appears in Fig.  10.3 . The sort-order of the 
events can be changed by moving the mouse pointer over the vertical axis and clicking. In this case, 
the events have been sorted according to the percentage of patients reporting the event in group C, 
and the hyperlinked list of patients reporting nasopharyngitis in group C has been generated       
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    10.5   Patient Reports 

 When it comes to reports containing all the relevant and available information for an 
individual trial subject, we have found that tabular presentation, with conditional 
formatting, is often preferable to graphical presentation. Whilst it is possible to 
render all of the data graphically, doing so often makes some information more 
dif fi cult to see. For example, showing each lab value over time as a symbol that 
changes depending on whether the value is above, beneath, or within the normal 
range, hides the actual values of the data and forces the reviewer to do more work to 
see them. 

 In order to enable a clinical reviewer to skip up and down the report quickly, a 
list of tables that appear in the report is displayed in a small font above each table. 
Each item in the list is anchored to the relevant table so that clicking the item causes 
the report to jump to that table. 

 It is common for an adverse event to be coded as “serious” if it led to hospitaliza-
tion, death, congenital deformity, disability or was some other important medical 
event. Naturally, such events require more attention from reviewers than non-seri-
ous events. As such, if an adverse event is recorded as “serious,” the table cell that 
contains the information is formatted bright red so that it will stand out to the 
reviewer. Similarly, it is common for the severity of each adverse event to be 
recorded (often on a scale of mild, medium, severe) and formatting is used to 
make the cell background yellow for the mildest level, deep red for the most severe 
level, and shades of orange and red in between. 

 Laboratory values that are outside of the normal range are of more interest to 
clinical reviewers than those within the normal range, so it makes sense to draw the 
reviewer’s attention to these. Using a pale blue cell background to indicate that a 
value is beneath the lower limit of normal, and an orange cell background to indi-
cate that it is above the upper limit or normal achieves this, but immediately raises 
the question of what the normal range actually was. Rather than having a separate 
table containing the normal ranges, and rather than increasing the amount of infor-
mation in each table 3-fold by including the normal ranges, our implementation is 
such that when the reviewer moves the mouse over the table cell, a tool-tip dis-
playing the normal range appears. Figure  10.5  displays a fragment of a typical 
patient report in which the conditional highlighting and a tooltip can be seen.  

    10.5.1   Pro fi le Graphs 

 In some studies, it is known that certain laboratory values are of special interest. For 
example, if earlier work with the experimental compound indicated a possible 
adverse effect on the liver, plots of alanine aminotransferase, aspartate aminotrans-
ferase, total bilirubin and alkaline phosphatase over time will be of interest. It is 
possible to create such patient pro fi le graphs, including indicators of adverse events 
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of interest and the dosing interval, and to embed them directly in the patient reports. 
Alternatively, the patient pro fi le graphs can be trellised by patient and hyperlinked 
to the patient reports. 

 Figure  10.6  shows plots of 3 liver-related variables, scaled by their upper limits 
of normal so that they display well together on the same vertical scale. The horizon-
tal axis is the number of days since the start of the study. The shaded background 
region in each panel indicates the interval during which the patient was receiving 
treatment. Clicking into one of the panels enables access to the individual’s patient 
report.   

    10.5.2   Static Renditions 

 The interactivity described above (the use of anchors to navigate the report, and the 
use of mouse-over to see the normal range) is natural when the report is displayed 
in a Web browser, but sometimes it is useful for reviewers to take static versions of 
the reports, perhaps to review off-line, or to discuss in meetings with colleagues. 
Such static renditions lose the interactivity and alternative ways of communicating 

  Fig. 10.5    A patient report containing tabular information. Laboratory values that are above the 
upper limit of normal are highlighted orange, those that are beneath the lower limit of normal are 
highlighted  blue , and a tooltip displays the normal range on mouseover       
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the information are required. For displaying the normal ranges, we have found that 
including the values as subscripts (lower limit of normal) and superscripts (upper 
limit of normal) in a small font in each cell is acceptable.   

    10.6   Experience with the System 

    10.6.1   Implementation 

 The implementation at AstraZeneca is a bespoke system based on the  S-PLUS™  
statistical software system. Much of the output is HTML, together with XML, XSL, 
Javascript and related technologies that any modern Web browser can interpret. 
Proprietary off-the-shelf systems also exist, including one based on the Spot fi re 
graphical software system, and we are currently considering moving to a hybrid 
system involving  S-PLUSTM  and Spot fi re. An open source approach to implementa-
tion could use Scalable Vector Graphics, so the implementation of an interactive 
data review system need not be expensive. 

 In our implementation, the patient reports are XML  fi les, and rendering into 
HTML in the browser is done with XSL. A separate XSL stylesheet is used to create 
PDF renditions that can be easily taken off-line and which print more nicely onto 
paper than the HTML versions.  

  Fig. 10.6    Plots of three liver related laboratory variables over time. The  shaded regions  indicate 
the periods during which the patients were receiving treatment       

 



20910 Effi cient and Effective Review of Clinical Trial Safety Data Using…

    10.6.2   Review Processes 

 In a typical clinical trial, there will often be more than one timepoint at which it is 
necessary or desirable to review the data. Whilst our system was primarily designed 
for the review of completed trials, it is natural that users would want to be able to 
access the same functionality at other times during the execution of the study. 

 When the clinical trial has completed and the blind has been broken, the primary 
reviewers are medics and drug safety personnel looking for any indications that the 
experimental compound has any unexpected adverse effects. However, medical 
writers and auditors also use the system to quickly access information and to check 
that other outputs from the study are consistent with the data. 

 It is common for a blinded review of the data to be performed prior to the  fi nal 
data being made available. At such a blinded review it is common for there to be 
errors in the data, such as lab or ECG data that have been recorded in the wrong units, 
and such errors are readily identi fi able using an interactive data review system. Any 
errors discovered can then be reported and corrected prior to the  fi nal database lock. 
The blind review also makes it possible to cross check the data with other planned 
outputs from the trial to ensure that the programming has been carried out cor-
rectly, reducing the scope for errors and delays later in the reporting process. 

 Some clinical trials employ a safety monitoring committee that performs regular 
blinded or unblinded reviews of the safety data in order to identify and advise on 
any emerging safety concerns. It is always necessary to interpret any possible safety 
signal in context, and being able to easily browse the data interactively enables rapid 
access to all relevant information collected during the study to date. 

 In Phase I studies, it is often necessary to closely monitor the emerging data in 
order to identify any unexpected adverse events, or any adverse events that are 
occurring with a higher than expected frequency. In this setting, the treatment 
will often be blinded and the data prone to errors, and it is necessary to frequently 
update the data review tool. We are currently piloting a system based on a slimmed 
down version of our  S-PLUSTM  tool together with Spot fi re. The system is updated 
with new data every 24 h so that reviewers are always in possession of the most up-
to-date information.  

    10.6.3 Establishing if the System adds Value  

 In order to establish whether the system was proving useful with clinical reviewers 
in practice, feedback was sought. When formal questionnaires were sent out, the 
response rate was approximately 50% (46 people) and 93% of the feedback from 
clinical data reviewers was positive. It was concluded that the system saved time 
and money, and led to a much deeper understanding of clinical trial data than was 
obtained using static tables and listings. Anecdotal evidence in the form of 
comments made verbally and in writing supports this strong positive conclusion. 
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 It is dif fi cult to quantify value when the main bene fi t comes from ease of use and 
ability to understand data and  fi nd information. Perhaps the best evidence of such 
value is observed in cases in which the clinical study data had been reviewed in the 
old-fashioned way, and then in a data review system at a later date. In 2 separate 
instances, a data review system was created for a study that had already closed and 
had its  fi nal report written. When reviewers went back over the data using the review 
system, they found signi fi cant potential safety issues that had not previously been 
noticed. Conversely, we have had situations in which reviewers raised concerns over 
safety having seen a small number of outliers in listings of laboratory data. When 
the same data were reviewed in one of our data review systems, the context allowed 
a deeper understanding of the data and dispelled much of the concern. 

 Another aspect of the value added that is dif fi cult to quantify is the reduction in 
the number of requests for additional presentations of data. When following the old 
manual approach to data review, it is common for reviewers to see something that 
looks interesting, and to then request additional summary tables, listings and plots; 
62% of clinical reviewer questionnaire respondents said that they found they 
requested fewer additional outputs as a result of having the data review system, and 
only 5% responded that they needed more. 

 In summary, although bene fi ts are dif fi cult to quantify, there is evidence that an 
interactive data review system can enable expert reviewers to identify potential 
safety issues earlier in clinical development, put potential safety issues into context 
so that they can be managed accordingly, and reduce the amount of time and resource 
needed to properly review the data.   

    10.7   Additional Outputs 

 Since the system can display tables and graphs, there are very few limitations on 
what kinds of outputs can be included. Whilst good graphs of the data and useful 
summary tables are a good starting point, it is possible to include the results of more 
sophisticated analyses. 

    10.7.1   Data Mining Adverse Events 

 Southworth and O’Connell  (  2009  )  describe several methods for ordering adverse 
events according to the strength of evidence for a treatment effect. The authors 
make a distinction between formal hypothesis testing and data mining and then 
describe a general approach of using the adverse event frequencies to classify 
patients to treatment group, and to then  fi nd out which features (adverse events) are 
the most important for performing the classi fi cation. The classi fi cation methods 
considered include penalized logistic regression (Firth  1993  ) , random forests 
(Breiman  2001  )  and gradient boosted models (Friedman  2001  ) . When these 
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classi fi cation methods are compared with a modi fi ed version of the approach for 
the analysis of frequency tables developed by Berry and Berry  (  2004  ) , the authors 
 fi nd the various approaches work similarly or better on the example datasets that 
they use. 

 Simple graphical displays of the outputs of the various methods, such as variable 
importance or relative in fl uence plots, can be used to help clinical reviewers identify 
the adverse events most likely to be of interest in terms of strength of evidence for 
a treatment difference. If variable importance or relative in fl uence is used to order 
the events, it is useful to also present estimates of relative risk or risk difference, 
together with interval estimates. 

 A “drill-down” approach is also possible, in which selecting an adverse event on 
a variable importance plot produces the list of patients who reported the event, and 
these patient identi fi ers are linked to individual patient reports. To take the idea a 
step further, it is possible to create a report for each adverse event which, in turn, 
links to the individual patient reports. Such a report can contain frequency tables of 
the event split by treatment group, sex and race (for example), cumulative frequency 
plots of the time to  fi rst onset, or plots of predicted probabilities (or relative hazard) 
of the event across the observed range of ages or BMIs, as obtained from a general-
ized additive model. 

 Figure  10.7  displays a hyperlinked plot of adverse event terms sorted according 
to their relative in fl uence as estimated by a random forest. The 25 events with the 
largest values of relative in fl uence are displayed (it is possible to make the plot 
longer when displayed in the browser, but for purposes of displaying it on a  fi xed 
page, only a subset of events is included). Since relative in fl uence or variable impor-
tance from a random forest will always put  some  order on the predictors, it is impor-
tant to investigate further. The tabbed pages at the bottom of Fig.  10.7  contain plots 
of relative risks and risk differences for the events, in the same order. Figure  10.8  
shows the risk difference plot (i.e., the difference between the observed probabili-
ties of having the event in the two treatment groups). The interval estimates are 90% 
posterior intervals simulated from beta distributions resulting from updating Jeffreys 
priors. It is clear from Fig.  10.8  that most of the events identi fi ed by the random 
forest have only weak evidence of a difference between treatment groups.    

    10.7.2   Outlier Detection 

 Penny and Jolliffe  (  2001  )  and Southworth  (  2008  )  describe methods for outlier 
detection in clinical laboratory data, and Lin et al.  (  2011  )  re fi ne the approach by 
excluding clinically irrelevant outliers. In general, these methods proceed by 
robustly estimating the Mahalanobis distance for each multivariate observation and 
then labelling values above a (somewhat arbitrary) threshold as being outliers. 

 Having reduced the data to their robust Mahalanobis distances, it is not dif fi cult 
to produce two-dimensional plots that will  fi t naturally into the data review system. 
These include plots of robust distances against robust leverage values, or perhaps 
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  Fig. 10.7    A relative in fl uence plot embedded in a data review system. The adverse events are 
sorted such that those with the most evidence for a treatment difference appear at the top. 
The points on the plot are hyperlinked to reports displaying more information about the event, 
including summaries by sex, age and race       

boxplots of the robust distances by treatment group. In order to establish why a 
multivariate outlier has been identi fi ed as such, it is useful to then consider univariate 
outlier detection plots. 

 Figures  10.9  and  10.10  show examples of outlier detection plots. Four liver-
related laboratory variables were included in the analysis (alanine aminotrasferase, 
aspartate aminotransferase, alkaline phosphatase and total bilirubin, abbreviated in 
Fig.  10.10  as ALT, AST, ALP and TBL, respectively). The multivariate robust 
distances in Fig.  10.9  are computed by using robust regression to eliminate base-
line effects, and then  fi nding a robust estimate of Mahalanobis distance for each 
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  Fig. 10.8    A risk difference plot. This is the plot on the tabbed page at the bottom of Fig.  10.7 . 
It can be seen that differences between the treatment groups are mostly small at the interval esti-
mates are quite wide       

four-dimensional observations. These are then plotted against robust Mahalanobis 
distances of the baseline values. There appears to be some evidence of a dose 
response effect. More insight can be gained by looking at univariate outlier detec-
tion plots, available on the tabbed page, displayed in Fig.  10.10 . These are plots of 
robustly scaled residuals for each variable. The user has selected the largest resid-
ual for ALT and the associated residuals for AST, TBL and ALP have been high-
lighted as a result, making clear that the patient was an outlier in 3 of the 4 variables 
simultaneously. As ever, the patient reports can be accessed via hyperlinks.     
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  Fig. 10.9    Multivariate outlier detection plot. Any observation with a large value on the vertical 
axis can be considered to be a multivariate outlier. To gain more insight, the tabbed page for 
univariate outliers can be selected       

  Fig. 10.10    Boxplots of robustly scaled residuals for each of the variables considered in the multi-
variate outlier detection. Selecting the largest scaled residual for ALT highlights the related values 
in the other panels       
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    10.8   Closing Comments 

 Clinical review of clinical trial data using listings and summary tables is outmoded 
and better approaches are available. There is plentiful technology, both proprietary 
and open source, for creating graphs and tables that are hyperlinked to related docu-
ments. The available evidence suggests that clinical reviewers  fi nd value in having 
such an interactive data review system, in that they gain deeper understanding of the 
data and are able to more effectively  fi nd and interpret potential safety issues in 
clinical trials.      
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  Abstract   Spirometry    is a safe, cheap, and easy-to-use methodology for the assess-
ment of lung function. Spirometry biomarkers such as the forced expiratory volume 
in 1 second (FEV 

1
    ) and the forced vital capacity (FVC   ) are commonly used in the 

diagnosis of conditions such as asthma and chronic obstructive pulmonary disease   . 
In recent years, FEV 

1
  in particular has also been used to support dose selection in 

bronchodilator drug development programs. Despite its convenience and objectivity 
as a measure of pulmonary function, FEV 

1
  has a very low signal to noise ratio    

(SNR) as a marker of bronchodilator response. This problem is exacerbated when 
the biomarker is analyzed using traditional dose ranging study designs that do not 
provide an explicit and precise estimate of the dose response    relationship. The com-
bination of low SNR and imprecise methodology means that traditional dose  fi nding 
activities for bronchodilators    are inef fi cient and may lead to the selection of sub-
optimal doses. Using graphics produced during the development of the novel long-
acting  b  

2
 -agonist, indacaterol   , the issues outlined above are described and an 

alternative approach, built on a model   -based characterization of the bronchodilatory 
dose response relationship is presented.      

    11.1   Introduction 

 Bronchodilators are drugs that dilate the bronchi and bronchioles, decreasing resis-
tance in the respiratory airway and increasing air fl ow to the lungs. Typically, bron-
chodilators    are used to treat obstructive lung diseases of which asthma and chronic 
obstructive pulmonary disease (COPD   ) are the most common. Bronchodilators are 
either short-acting or long-acting. Short-acting medications provide quick or  “rescue” 
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relief from acute bronchoconstriction. Long-acting bronchodilators help control 
and prevent symptoms. The main types of prescription bronchodilating drugs are 
 b  

2
 -agonists (short- and long-acting) and anticholinergics (short- and long-acting). 

These drugs are administered directly into the lungs by inhalation. The  b  
2
 -agonists 

are used to treat both asthma (in combination with anti-in fl ammatory medication) 
and COPD; the anticholinergics are used in COPD. While the short-acting drugs are 
used when needed, to provide fast temporary relief from symptoms and  fl are-ups for 
periods of 4–6 h, the long-acting drugs are taken at  fi xed intervals to control and 
prevent bronchoconstriction. Typically, the long-acting medication takes longer to begin 
working and provides relief for up to 12 h. Indacaterol    is a new long-acting  b  

2
 -agonist 

which provides both a rapid onset of action and 24 h control (EMA  2009a,   b  )  in the 
maintenance treatment of air fl ow obstruction in patients with COPD. 

 Spirometry is a pulmonary function test used to diagnose respiratory disorders 
and assess the ef fi cacy of bronchodilators   . It measures the volume and velocity of 
air that can be inhaled or exhaled. These quantities are captured in the metrics forced 
vital capacity (FVC   ) and forced expiratory volume at 1 second (FEV 

1
    ). Figure  11.1  

shows the spirometric time course used to derive these key metrics. Results are usu-
ally given in both raw data (liters, liters per second) and percent predicted—the test 
result as a percent of the “predicted values” for the patients of similar characteristics 
(height, age, sex, and sometimes race and weight). The ratio of FEV 

1
 /FVC is a mea-

sure of air fl ow limitation. A post-bronchodilator FEV 
1
  <80% of the predicted value 

in combination with an FEV 
1
 /FVC <70% con fi rms the presence of air fl ow obstruc-

tion—either COPD    or asthma. An improvement of FEV 
1
  of  ³ 12% (either spontane-

ously or after inhalation of a bronchodilator and/or following a 2-week course of 
oral corticosteroids) indicates reversibility, and therefore suggests a diagnosis of 
asthma.  

 The FEV 
1
     and FVC    thresholds used for diagnostic purposes are suf fi ciently far 

apart to allow a reasonable chance of correct diagnosis given the inherent variability 
in these measures. In recent years, FEV 

1
  has also become the metric of choice to 

support dose selection of new bronchodilators   . In contrast to their use as diagnos-
tics, less attention has been paid to the performance of FEV 

1
  as a differential marker 

of the bronchodilatory response. 
 This chapter uses graphics to explore the properties of the FEV 

1
     signal as a basis 

for the assessment of the dose response    of a bronchodilator. The following issues 
are explored:

   The inherent variability of FEV • 
1
     and its consequences as a biomarker of the 

bronchodilatory response  
  The traditional approach to dose ranging based on pairwise comparisons of active • 
dose and placebo  
  Model-based characterization of the bronchodilatory dose response       • 

 Many of the thoughts captured in this chapter evolved from experience gathered dur-
ing the development of the novel bronchodilator, indacaterol      . The graphics presented 
hereafter were originally used at various stages of the development program and for this 
reason are not always uniform with respect to appearance or display.  
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    11.2   FEV 1     As a Marker for Dose Response    Assessment 

 FEV 
1
     is a non-invasive, objective, quick and cheap measure of bronchodilator 

activity. Despite these appealing characteristics, it suffers from an important draw-
back; it has a low signal to noise ratio    (SNR), i.e., the drug-related change in FEV 

1
  

is small relative to the background within- and between-patient variability in the 
measure. 

 To compare the degree of variability to the magnitude of the dose response    rela-
tionship of a bronchodilator, Fig.  11.2  presents pooled raw trough FEV 

1
     data (black 

dots, left plot) from two dose ranging trials in indacaterol   . The red line is a smooth 
curve to capture the average change in response with dose. A reader unfamiliar with 
these measures might be forgiven for missing any evidence of a dose response. The 
right plot zooms in on the dose response curve to present it on the scale it is typically 
presented on to give an impression of the SNR   . While the raw trough FEV 

1
  data 

ranges between about 0.5 and 3 L, the drug-induced changes range between about 
1.25 and 1.45 L. In other words, the approximately 0.2 L drug-related signal is 
located in 3 L of noise.  

 An initial conclusion from these  fi gures is that it is very dif fi cult to depict the 
dose response    based on FEV 

1
     for a bronchodilator using even large quantities of  raw  

data alone due to the low SNR. In order to tease out a more useful signal for the 
purposes of graphical representation of the data, it is necessary to improve the signal 
by removing sources of variability. 

 Figure  11.3  presents the estimated SNR    in FEV 
1
     based on an analysis of covari-

ance    (ANCOVA) of individual steady-state trough FEV 
1
  measurements taken from 

5,558 patients and 34,615 observations collected in 9 studies across the indacaterol    
development program. Patient characteristics, de fi ned by baseline FEV 

1
  and revers-

ibility, account for much of the total variability. Having taken all covariates into 
account, about 210 mL of variability remains unexplained. This provides the denom-
inator estimate for the SNR estimates in Fig.  11.3 . Placing this noise in the context 
of the indacaterol dose response    indicates that the SNR for differentiation of most 
doses is less than 15%. For example, the signal in the differentiation of the 75 and 150  m g 

  Fig. 11.1    Spirometry    measures used to assess lung function       
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is only about 1/10th of the noise. Even the largest dose of indacaterol, 600  m g, when 
compared to placebo has a SNR of less than 1. As we shall see below    this has conse-
quences for the precision with which active doses can be differentiated in reasonably 
sized trials.  

 Baseline FEV 
1
    , i.e., FEV 

1
  measured prior to treatment, accounts for a major part 

of total variability, and for this reason, it must be accounted for when assessing the 
response to a bronchodilator. Figures  11.4  and  11.5  show the impact of baseline 
normalization. Figure  11.4  shows the individual 24 h pro fi les (black lines) for a 
placebo and indacaterol    dose, respectively, in a COPD    population. The response in 
the indacaterol cohort is hardly discernable from the placebo cohort at the population 
mean level (red line) due to the large variability. Figure  11.5  shows the impact on 
these pro fi les of subtracting the baseline FEV 

1
  value for each patient. Having now 

accounted for the biggest source of between-patient variability, the drug-induced 
average increase in FEV 

1
  becomes more apparent.   

 The next step to increasing the SNR is the correction for systematic deviations 
due to circadian variability or other extraneous systematic study-related variability. 
In a review of 4,756 pulmonary function tests from individuals who required one for 
any reason, Medarov et al.  (  2008  )  reported a diurnal variation of 17.6% between the 
lowest (1.80 L) and highest (2.12 L) mean FEV 

1
     values. The circadian variability 

represents the natural daily change in the time course of broncho-responsiveness 
over the course of the day. Typically, the FEV

1
 nadir is reached shortly before awak-

ing and subsequently approaches a peak by mid morning, from where it descends 
slowly again to its nadir again over the course of the remaining day. To account for 
these systematic changes, the baseline corrected curves are adjusted by subtracting 
the placebo pro fi le. Figure  11.6  presents the impact of placebo correction on the 
FEV 

1
  pro fi les on a range of indacaterol    doses. The biggest placebo-induced changes 

occur in the morning where the curve rises rapidly from the nadir to the peak. This 
is also the time where trough FEV 

1
  is assessed. Any discrepancies in the time of 

dose relative to the sampling time or in sampling times across patients will in fl ate 
variability in the corrected FEV

1
 measures.  

  Fig. 11.2    Raw trough FEV 
1
     data vs. dose on original scale ( left ). Zoom of dose response    ( right )       
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 For the purpose of dose selection in the development of new bronchodilators   , the 
FEV 

1
     response is assessed for a range of doses at steady state, over the course of a 

dosage interval. Typically, several metrics are considered: peak FEV 
1
  to represent 

the maximum response expected in a dosage interval; area under the curve of serial 
FEV 

1
  measurements within a dosage interval to give the average bronchodilation 

over the course of the day; and trough FEV 
1
  measured just prior to the next admin-

istration, to give the minimum degree of bronchodilation. 
 Figure  11.7  presents the corrected mean trough FEV 

1
     response to 150  m g inda-

caterol    from 6 trials (one in each panel) with between 92 and 420 COPD    patients at 
each study visit (blue dots). This analysis has taken into account the important cova-
riates, such as baseline and reversibility, measured in each trial and accounts for the 
known major differences in patient characteristics. Despite this, considerable unac-
counted within- and between- study variability remains. The median responses (red 

  Fig. 11.3    Signal to noise ratio for differences in trough FEV 
1
     between various doses in the inda-

caterol    dose response          
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lines) across the 6 trials span 60 mL. Within trials, the mean trough FEV 
1
  spans a 

maximum of about 50 mL (gray areas).  
 Given that baseline accounts for a major portion of difference between patients 

and is necessary to tease out treatment signals, it is important to understand its 
behavior over time when interpreting baseline corrected data. Figure  11.8  presents 
the change in trough FEV

1
    relative to baseline in 385 COPD    patients treated with 

placebo on study days 1, 8, 15, and 29. Note: all FEV 
1
  values are the mean of two 

adjacent measures 15 min. apart within each subject. The black lines join the obser-
vations in each patient to give an impression of the within-patient variability. The 
box and whisker plots show the distribution of values on the various study days. 
Several trends are evident: 

   The FEV• 
1
    values within any one patient can vary considerably from day to day 

in the absence of any drug. This is apparent from the varied trajectories of the 
black lines connecting the observations on the respective study days  

  Fig. 11.4    FEV1    pro fi le after a single dose of placebo ( left ) and indacaterol    ( right )       

 



22311 Visualizing Dose–Response When the Signal...

  Baseline correction is most effective for the trough value one day after com-• 
mencement of treatment. However, with increasing time, the impact of baseline 
correction becomes diluted. This is apparent from the increasing width of the 
boxes over time  
  The dilution of baseline correction is noticeable beyond the  fi rst dose and • 
increases continually over the course of the study    

 This simple exercise demonstrates that the imprecision of baseline corrected 
values can increase 2- to 3-fold relative to the response observed immediately after 
the  fi rst dose. This effect is mainly driven by unexplained within-patient variability 
in baseline. In the relatively large sample presented in Fig.  11.8 , the con fi dence 
interval for the fractional difference from baseline will be over 5% by day 30 which 
adds about 60 mL uncertainty to the drug-related response. This effect explains the 
common observation that a dose response    relationship, presented as its baseline 

  Fig. 11.5    Baseline corrected FEV
1
    pro fi le after a single dose of placebo ( left ) and indacaterol    

( right )       
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 corrected value, is almost always more pronounced following the  fi rst dose com-
pared to subsequent doses. Figures  11.10 ,  11.11 , and  11.12  bear out this point: 
while a clear dose response is observed on Day 2, the greater imprecision on sub-
sequent days confounds dose differentiation on subsequent days. 

 In summary, this section shows that bronchodilator-induced changes in FEV 
1
     are 

small relative to the natural between- and within-patient variability. In order to tease 
out the bronchodilator signal from the raw data, it is necessary to remove the major 
sources of variability such as baseline and circadian effects. However, even when 
the known sources of variability have been accounted for, large uncertainty in the 
underlying true bronchodilatory response remains. In particular baseline correction 
is most effective for accounting for variability following the  fi rst dose. Within-
patient variability will dilute its corrective power as the duration of the study 
increases. 

  Fig. 11.6    Baseline corrected mean FEV 
1
     pro fi les before ( left ) and after ( right ) placebo 

correction       
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 In order to provide a robust assessment of the underlying dose response    of a 
bronchodilator, the analysis methods used will have to have adequate precision to 
tease out the low drug-related signal while appropriately accounting for the various 
sources of high variability.  

    11.3   Traditional Dose Ranging    

 As shown above, characterizing the bronchodilatory response requires signi fi cant 
manipulation of raw FEV 

1
     data in order to tease out the drug-related signal. The 

traditional approach uses ANCOVA to account for the major sources of variability. 
For example, a typical ANCOVA analysis will use a statistical model    to account for 
covariates such as treatment (dose), baseline FEV 

1
 , FEV 

1
  reversibility to one or 

more bronchodilators   , smoking status, country, and center in which the trial was 
carried out. By accounting for the known differences between patients and measure-
ments, the SNR    is improved. 

 The traditional ANCOVA approach to dose ranging compares active doses and pla-
cebo (contrast statistics) to determine the existence of a dose response    and, if so, to 
select a target dose. If the difference between placebo and at least one of the doses is 
statistically signi fi cant, the presence of a dose–response relationship has been con fi rmed: 
i.e., there is a positive treatment effect. The target dose is then estimated as the smallest 
statistically signi fi cant dose which has an average effect that is clinically relevant 
according to a pre-speci fi ed value of clinical relevance (Bornkamp et al.  2007  ) . 
Although the simplicity of this approach is appealing, it has the following issues:

  Fig. 11.7    Steady-state FEV 
1
     response to 150  m g indacaterol    across visits in six different studies       
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    1.    It requires the de fi nition of a pre-speci fi ed value of clinical relevance. However, 
the FDA has not determined a minimal clinically important dose (MCID   ) for 
FEV 

1
     use in regulatory submissions (Michele  2011  )   

  Fig. 11.8    Fractional change in trough FEV
1
    relative to baseline in placebo-treated COPD    patients 

over 28 days       

  Fig. 11.9    Distance (in mL) from point estimate to limit of 95% CI vs. sample size (per group)       
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    2.    The traditional trial is primarily designed to detect the presence of a dose response   , 
i.e., to detect a signi fi cant treatment effect, but not to characterize it. The traditional 
trial is not designed to differentiate active doses from each other. Hence sample 
sizes are chosen to allow statistical differentiation from placebo only  

    3.    The low SNR associated with FEV 
1
     in the bronchodilatory response means that 

the estimated responses at each dose level will lack the precision to differentiate 
active doses from each other and cannot easily be benchmarked against any tar-
get level of response     

 The third issue is a question of sample size. Therefore, it is instructive to consider 
the relationship between precision and group size for typical bronchodilator studies 
as presented in Fig.  11.9 . Precision here is de fi ned as the distance from the point 
estimate to the limit of the 95% CI (i.e., half the length of the interval). The sample 

  Fig. 11.10    FEV 
1
     pro fi le after  fi rst (1) and last (14) dose from a traditional dose ranging trial for 

indacaterol    in COPD          
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size is determined such that the precision is obtained with 95% coverage probability, 
i.e., in 95% of the studies one would expect to see a precision less than what is 
reported on the graph.  

 For example, a sample size of 100 patients per group would result in a 95% CI 
that extends no further than 68 mL (half the interval) from the observed point esti-
mate with 95% chance. While this precision is acceptable for discriminating a par-
ticular dose level from placebo, it lacks the precision to reliably construct a graded 
dose response    relationship. To discriminate doses with the precision necessary to 
reconstruct a graded dose response, much larger sample sizes would be required. 
For example, Fig.  11.9  shows that 500 patients per group would provide a precision 
of no more than 30 mL (half the interval) with 95% chance. 

 The precision with which the response to adjacent doses can be estimated is the 
measure by which we can reliably reconstruct the graded response over the dose range. 

  Fig. 11.11    Trough FEV 
1
     least square mean estimate (placebo contrasts) after  fi rst and last dose 

from a traditional dose ranging trial for indacaterol    in approximately 86 COPD    patients per treat-
ment group       

  Fig. 11.12    Trough FEV 
1
     least square mean estimate (placebo contrasts) after  fi rst and last dose 

from a traditional dose ranging trial for indacaterol    in 86 asthma patients per treatment group       
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The higher the precision, the easier it will be to robustly identify the threshold to the 
plateau of the dose response    relationship. By the same token, the lower the precision, 
the higher the likelihood that too low a dose will be identi fi ed as being signi fi cantly 
different from the plateau of the dose response. 

 Figure  11.10  is a typical representation of the results of a traditional dose ranging 
trial in COPD   , with about 86 patients per treatment arm. It depicts the baseline cor-
rected longitudinal response after the  fi rst dose and last dose for a range of inda-
caterol    doses, a positive control salmeterol and placebo. A  fi gure very similar to this 
was recently published (Chowdhury et al.  2011  )  to discuss the dose response    rela-
tionship of indacaterol. Unfortunately, this graphical presentation that focuses on 
the point estimates ignores the uncertainty in their estimation. Without this informa-
tion, it is impossible to draw any statistically meaningful conclusions about possible 
treatment differences, never mind any discussion of the evolution of treatment 
effects across study days.  

 A clearer presentation of the summary data is achieved by focusing on a cross-
sectional assessment of a particular metric, such as trough FEV 

1
    , providing the point 

estimates together with con fi dence intervals. Figure  11.11  presents the ANCOVA 
derived placebo contrasts for trough values from the same study shown in the previ-
ous  fi gure, whereby the Day 2 values are the trough observations 24 h after the  fi rst 
dose and the Day 15 values are the corresponding troughs after the 14th (last) dose. 
The bars with numbers correspond to the tested indacaterol    doses, SME is the 
response to the positive control salmeterol.  

 Treatment-related changes in response by dose can now be interpreted in the 
context of the uncertainty in the estimates. The con fi dence intervals for all responses 
on Day 15 are larger than the con fi dence intervals on Day 2, and they all overlap. 
The  fl uctuations in all indacaterol    treatments are of similar magnitude to the 
 fl uctuations in the positive control. In other words, the least squares mean estimates 
at steady state lack the necessary precision to allow any statistically meaningful dif-
ferentiation between the active doses. On comparing the responses on both study 
days, it is apparent that the responses of some doses increase and others decrease, 
and all are within the range of the con fi dence intervals of approximately ±50 mL. 

 In the belief that the greater responsiveness of asthma patients to  b  
2
 -agonists 

would allow better differentiation of doses, the FDA requested dose exploration in 
this population (Chowdhury et al.  2011  ) . Figure  11.12  presents the results of a tradi-
tional dose ranging trial carried out in asthma patients. Note that this trial is identical 
in design to the one shown in the previous  fi gure except for the patient population.  

 While the absolute response in asthma patients is greater, as expected, the associ-
ated con fi dence intervals are disproportionately wider. Hence, whatever might be 
gained in terms of signal is lost in terms of noise. Performing dose ranging in asthma 
patients confers little or no advantage whatsoever in terms of dose  fi nding. The 
performance of the positive control (salmeterol) across study days highlights the 
dif fi culty in interpreting the data; between Day 2 and Day 15, there is an 80 mL 
reduction in response which is more than half the maximum response noted for 
indacaterol    in this trial; this is not a statistically signi fi cant difference. It is worth 
noting that given the width of the con fi dence intervals, it is perfectly possible that 
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the dose of 18.75  m g could have produced a response larger than all the other doses 
simply by random chance. This underlines the fact that the traditional approach to 
the assessment of dose response    lacks the precision to adequately differentiate doses 
of a bronchodilator. 

 As predicted from Fig.  11.8 , the con fi dence intervals are consistently wider on 
Day 15 compared to Day 2. This is most likely due to the impact of within-patient 
variability which dilutes the corrective power of the baseline. The poorer precision 
on Day 15 further confounds the assessment of the response estimates. 

 The sobering conclusion of this brief graphical presentation    is that dose differentia-
tion based on this endpoint using traditional methodologies is not robust. The traditional 
trials are designed to differentiate active doses from placebo and not active doses from 
one another. Furthermore, it is not feasible to adequately expand the trial size for the dif-
ferentiation of a suf fi cient number of doses necessary to estimate a graded dose response   . 
The inherent variability in FEV 

1
  relative to the treatment difference is of a magnitude that 

makes precise treatment differentiation nearly impossible using traditional methodology. 
Replacing COPD patients with asthma patients does not provide a solution. 

 In summary, these examples demonstrate that the traditional approaches to dose 
ranging and dose selection of bronchodilators    preferred by some regulatory authori-
ties do not provide a rational basis for the differentiation and selection of doses. In 
the examples presented, any of the doses tested could have produced the numeri-
cally largest response given the imprecision of the chosen approach. In the search 
for differentiation, it is likely that the traditional approach will be biased toward 
selecting too low a dose for the simple reason that the bigger the difference in the 
doses, the more likely that differentiation will be apparent.  

    11.4   Indacaterol    Dose Selection 

 The indacaterol    program, following regulatory precedent and guidance, relied heav-
ily on traditional empirical approaches to selecting doses. The emphasis of the ini-
tial approach was to identify the lowest doses that were superior to the comparators 
formoterol and tiotropium in terms of trough and peak FEV 

1
    . Note that the inclusion 

of peak was encouraged by the FDA. The selection rule aimed to identify the mini-
mum dose from the range of 75, 150, 300, and 600  m g that had a response numeri-
cally superior to the comparators. Both the minimum and next highest doses were 
tested together in a longer extension of the trial. 

 Note that the highest doses of 300 and 600  m g were independently tested in a 
year-long trial in order to establish the safety of the highest available doses, irre-
spective of the ultimate clinical doses. 

 Figure  11.13  depicts the outcome of the primary dose selection trial. Based on 
the criterion of numerically exceeding the trough values of the comparators, the 
doses of 75 and 150  m g would have quali fi ed, however, on the basis of the peak 
metric, the doses of 150 and 300  m g were selected. These were the doses subse-
quently approved in most countries around the world.  



23111 Visualizing Dose–Response When the Signal...

 On submission of these data to the FDA, a request was made to better explore 
ef fi cacy at lower doses. For this purpose, the dose ranging trials depicted in 
Figs.  11.11  and  11.12  were carried out and were central to the FDA decision for 
approval of the 75  m g dose (Chowdhury et al.  2011  ) . 

 In the course of the development program, the shortcomings of the traditional 
approach to dose selection of bronchodilators    started to become more apparent. For 
this reason, alternative approaches were explored to provide a more rational and robust 
means of dose selection (Renard et al.  2011  ) , prior to the submission to the FDA. The 
remainder of this article provides a graphical exploration of this approach.  

    11.5   Estimation of the Dose Response    Relationship 

 The traditional approach to dose ranging assesses the response to each dose inde-
pendently and tests whether each dose is different from placebo. In other words, the 
traditional approach simply detects whether a dose response    is present, but does not 
explicitly characterize it (Bornkamp et al.  2007  ) . However, if suffi ciently many 
doses have been tested it is not uncommon that a dose response relationship is 
inferred from such an analysis, even though no such relationship has been or was 
ever intended to be estimated. Chowdhury et al.  (2011  ) , for instance inferred a 
dose response relationship from a study that was not designed to have adequate 
precision to support such inference (see Figs.  11.11  and  11.12 ). 

  Fig. 11.13    Dose selection trial for indacaterol in COPD          
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 A more rational approach is to use our knowledge of the underlying pharmacol-
ogy of bronchodilators    to determine the most likely shape of the dose response    
relationship and use a mathematical model    to approximate this functional form 
based on the available data across all dose levels. It is known that direct acting bron-
chodilators cause increased bronchodilation with increasing dose until a maximum 
threshold is achieved. 

 Figure  11.14  depicts the primary analysis results for the 12 major COPD    ef fi cacy 
trials carried out in the indacaterol    development program. Each point represents the 
ANCOVA derived least squares mean contrast trough FEV 

1
     at each dose level assessed 

across the trials; this  fi gure summarizes data from 8,111 patients studied for up to 6 
months. The horizontal line represents the minimum clinically important difference 
(MCID   ) as de fi ned by some authors (Cazzola et al.  2008  ) . The vertical lines represent 
the 95% con fi dence intervals of each estimate and indicate the large uncertainty in even 
the largest trials. In contrast to the raw data in Fig.  11.3 , a dose response    signal is appar-
ent; whereby; with increasing dose, trough FEV 

1
  appears to increase to a plateau.  

 On  fi tting a mathematical model    to such data, it is possible to provide an explicit 
estimation of the graded dose response    relationship which allows the relative 
potency of each dose to be calculated. Once an explicit estimate of the dose response 
is available, it is straightforward to identify the dose that is on the threshold of the 
plateau of the dose response. Typically, this is the dose that attains up to 80–90% of 
the maximum response (or some other clinically relevant target). In other words, a 
model-based approach turns the dose selection process in to a calibration problem—
it allows ef fi cient and robust identi fi cation of the minimum dose that attains optimal 
ef fi cacy, given an adequate safety threshold.  

  Fig. 11.14    Trough FEV 
1
     placebo contrasts for the primary statistical analysis at each doses level 

in 12 studies in COPD    patients       
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    11.6   Application of Model   -Based Approaches to Indacaterol    
Dose Selection 

 Two retrospective approaches were taken for the model   -based analysis of the inda-
caterol    dose response    (Renard et al.  2011  ) :

   A Bayesian study-level meta-analysis using summary level study data  • 
  A nonlinear mixed effects analysis of patient level data    • 

 Readers are referred to the original article (Renard et al.  2011  )  for precise details. 
For the purpose of this graphical exploration, only the study-level analysis will be 
considered here. 

 Typically, model   -based approaches use the raw patient level data to derive an 
estimate of the dose response    relationship. However, in the case of the indacaterol    
program, the large number of long trials provided a rich data base of study level data 
which allowed estimation of the dose response from the summary level data while 
accounting for both within- and between-trial variability. 

 Speci fi cally, the least square mean placebo contrast estimates for each dose level 
(between 18.75 and 600  m g), visit and trial were included in an E 

max 
 dose response    

model   . The complete analysis included data from 12 trials which had data from 
8,111 patients. Positive control data was also included to allow benchmarking 
against important comparators. 

 Since all trials had similar inclusion/exclusion criteria and the ANCOVA analy-
sis used to derive the least squares mean estimates accounted for major known 
sources of variability, a level playing  fi eld was created for the purpose of the model   -
based meta-analysis. Figure  11.15  provides an overview of the study-level analysis 
data set. This  fi gure is essentially an expansion of Fig.  11.14 , that now captures all 
visits in each trial. Box plot summaries of the data have been superimposed on the 
points to give an impression of the shape of the underlying dose response    relation-
ship. It would be safe to conclude that with increasing dose, the response approaches 
a plateau; this is expected for the dose response relationship for a beta-agonist. The 
dotted line marked MCID    indicates the minimally clinically important difference, a 
threshold of 120 mL believed by some experts to be the degree of bronchodilation 
that should be exceeded to achieve optimal clinical bene fi t (Cazzola et al.  2008  ) .  

 The  fi nal analysis of these data, including the comparators formoterol (12  m g), 
salmeterol (50  m g), and tiotropium (18  m g), is presented in Fig.  11.16 . This analysis 
allows the dose response    relationship to be explicitly estimated while accounting for 
the considerable within- and between-study variability. It is apparent that 150  m g is 
located on the threshold of the plateau and that it is the minimum dose that provides 
a consistent advantage over the comparators.  

 Given the explicit characterization of the dose response   , it is possible to rank the 
doses on the effective dose scale that calculates the percentage of the maximum 
response achieved by a given dose. Table  11.1  presents the results of the analysis. 
Key to dose selection is the identi fi cation of the threshold to the plateau of the dose 
response; below this point, the response will drop off very rapidly, and above this 
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  Fig. 11.15    Overview of data used in study level dose response    analysis       

  Fig. 11.16    Dose response relationship based on the totality of the study level data       
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point little additional bene fi t is achieved. From the table, we see that 75  m g repre-
sents the ED 

74
 , 150  m g the ED 

85
 , and 300  m g the ED 

92
 . In other words, these doses 

span the transition to the plateau of the dose response relationship.  
 Placing the response predictions in the context of a graded dose response   , the 

MCID    and the comparator data, provides a clear means of assessing the relative 
bene fi t of the various doses. Figure  11.17  presents a ranking of the doses according 
to their predicted response. In contrast to the traditional approach presented in 
Figs.  11.11 ,  11.12 , and  11.13 , the model    based estimates are much more precise and 
allow differentiation of doses. This increase in precision has been attained by pool-
ing information across doses to estimate an overall dose response relationship. 
Based on the study level analysis presented in this  fi gure, it is possible to state the 
following: 

   There is a 92% probability that 37.5  • m g is below the MCID    of 120 mL  
  There is a 95% probability that 75  • m g exceeds the MCID     
  150  • m g has an incremental bene fi t over 75  m g and is the lowest indacaterol    dose 
that exceeds the average bronchodilation observed for the comparators  
  150  • m g is located mid-way between the MCID    and the maximum response and 
exceeds all comparators  
  300  • m g intersects the maximum response    

 The ability to characterize the indacaterol    dose response    in this precise manner 
bears testimony to the power of the study level dose response analysis. It would not 
be possible to derive information of this quality and precision in any single trial of 
practical size. 

 It is important to stress, the purpose of this presentation is not to question the 
choice of the 75  m g dose of indacaterol    by the FDA which is based on the Agency’s 
risk bene fi t assessment (Chowdhury et al.  2011  ) . The model    based analysis shows 
that 75  m g is the lowest tested dose that both exceeds the MCID    and is as good as 
the best comparator tested. For this reason, Novartis proposed 75  m g as the lowest 
dose in its submission to the FDA, while claiming that incremental bene fi t can be 
achieved at higher doses. However, it is the aim of this publication to highlight the 

   Table 11.1    Results of the study level dose response    analysis   

 Parameter  Mean  SD  Q2.5  Q50 (median)  Q97.5 

 Model parameters 
  E  

max
  (L)  0.179  0.012  0.156  0.178  0.204 

 ED 
50

  ( m g)  27  9  12  26  46 
 Derived parameters 
 % Max effect at 18.75  m g  43  8  29  42  60 
 % Max effect at 37.5  m g  59  8  45  59  75 
 % Max effect at 75  m g  74  6  62  74  86 
 % Max effect at 150  m g  85  4  77  85  92 
 % Max effect at 300  m g  92  2  87  92  96 
 % Max effect at 600  m g  96  1  93  96  98 
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shortcomings of the traditional approach to dose ranging favored by the Agency. It 
is apparent that the dose response    data as presented in Figs.  11.11 ,  11.12 , and  11.13  
do not allow any statistical meaningful differentiation of doses. Given the con fi dence 
intervals, it is perfectly possible that doses of 18.75 or 37.5  m g could  randomly  pro-
duce responses greater than any of the higher doses in the traditional dose ranging 
trials. It is not clear how the agency would have reacted had this possibility actually 
arisen. Indeed, the large differences observed between the Day 2 and Day 15 
responses for the positive control, salmeterol, in both the asthma and COPD    trials 
(Figs.  11.11  and  11.12 ) suggest that such spurious results are likely to occur in the 
traditional design and analysis. To avoid confounding the dose selection process with 
spurious results, it is necessary to design studies and analysis methods that are capa-
ble of appropriately handling the low SNR in FEV 

1
    . Placing the process of dose 

selection in the context of explicit dose response assessment greatly increases the 
probability of ef fi ciently selecting the optimal dose.  

    11.7   Sensitivity Analyses    

 Despite the advantages of the study-level analysis presented above, it is nevertheless 
a retrospective meta-analysis and hence requires quali fi cation. Such quali fi cation or 
sensitivity analyses assess the robustness of the results to various assumptions or 
natural constraints of the analysis. For example, in a meta-analysis, it is typical to 
test the sensitivity of the results to the sample of included studies. 

 The history of the program provided a natural means for such a sensitivity analysis. 
Prior to the  fi rst submission to the FDA, the available ef fi cacy trials were included 
in a study level meta-analysis of the dose response   . After the  fi rst submission, the 
agency requested studies with lower doses. By the time of resubmission, a further 6 

  Fig. 11.17    Ranking of trough FEV 
1
     responses based on dose response    analysis       
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studies had become available with more data at lower doses and were analyzed 
independently using the same methodology. Given the excellent correspondence 
between both independent analyses, all studies were pooled in the  fi nal analysis as 
presented in Fig.  11.16 . 

 Figure  11.18  shows the graphical comparison of all 3 analyses. Although no 
doses lower than 75  m g were available for the  fi rst analysis, it nevertheless allows 
an estimate of the dose response    that is consistent with the second analysis that 
mainly included studies with lower doses. As expected, the analysis of all 12 trials 
lies between the previous 2 and its con fi dence interval includes the mean predic-
tions of both.  

 Given that only one study included doses lower than 75  m g, it was considered 
important to assess the impact of this trial on the overall analysis if the results of the 
low dose study had been different. For this purpose, a sensitivity analysis was car-
ried out whereby the responses of all doses in low dose study were adjusted relative 
to the response of the 150  m g dose. So for example, the responses of the low dose 
study were all adjusted corresponding to the fractional deviation for the 150  m g 
response from the 25th, 50th, and 75th percentile of the population estimate for the 
response to this dose. Figure  11.19  presents the results of the analysis where the 
responses of the low dose study were adjusted upward by the fractional deviation of 
the 150  m g dose from the third quartile of the population response for this dose. As 
expected, signi fi cantly increasing all the responses of the low dose trial caused the 

  Fig. 11.18    Sequential analysis of  fi rst six studies ( black points ), last six studies ( blue points ), and 
all 12 studies together       
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estimated dose response    to increase, but not by a margin that would alter the conclu-
sions of the original analysis. This analysis provided con fi dence that the rest of the 
data set (without the lowest doses) has adequate information to provide a robust 
estimate of the dose response.   

    11.8   Summary and Conclusions 

 FEV 
1
     is commonly used as a diagnostic tool for respiratory disorders. It is simple to 

interpret and has adequate SNR    to assist the diagnosis of conditions such as asthma 
or COPD   . Using graphical analysis, it has been shown that the low SNR of FEV 

1
  as 

a marker of the bronchodilatory response becomes problematic when assessing 
dose response    relationships 

 In the assessment of bronchodilator ef fi cacy, the problem of the low SNR is 
compounded by the poor precision of the traditional approaches to dose ranging 
trials advocated by some regulatory authorities. While these trials are adequate for 
detecting a dose response   , they lack the precision to adequately differentiate active 
doses. Simply increasing the trial size to compensate for the poor precision is not a 
viable option given the number of patients that would be required to cover all doses 
necessary to characterize a dose response relationship. 

  Fig. 11.19    Sensitivity analysis: the response of the low dose study is adjusted to correspond to 3 
quartiles of the population estimate       
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 In the case of indacaterol   , it was shown that there was considerable variability 
among the indacaterol doses and positive controls on the respective trial days and 
the con fi dence intervals of all doses tested by the traditional approaches overlapped. 
It is concluded that the traditional approach cannot distinguish active doses from 
one another in any statistically meaningful manner. Given the large between- and 
within-trial variability, it is dif fi cult to conclude the dose selection decisions based 
on such methodology alone can be robust. 

 A model   -based approach that provides an explicit estimation of the dose response    
was presented to support dose selection. This approach used the totality of the data 
from all major trials to estimate the dose response relationship while accounting for 
the within- and between-trial variability. Pooling information across the program in 
this manner allowed precise estimation of the population dose response and pro-
vided a robust basis to support dose selection. 

 The study design and analysis methods used to support dose selection must be 
tailored to account for the properties of the underlying data. Placing the dose selec-
tion process of bronchodilators    in the context of an explicit estimation of dose 
response    greatly increases the chances of robustly and ef fi ciently identifying the 
optimal dose.      
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  Abstract   Well-structured statistical graphics help us understand subject character-
istics and behavior, and their relationships to ef fi cacy and safety of study treatment. 
They are increasingly being used to extract and communicate information from the 
clinical trial data in a lucid and succinct manner. Rapid advancements have been 
made in recent years in statistical visualization techniques. Statistical software such 
as S-PLUS™ and R provide an extensive set of tools to construct graphics to aid in 
the interpretation and presentation of clinical data. In this chapter, several examples 
are presented to demonstrate the uniquely illuminating and enlightening roles of 
graphics in clinical trial data analysis. Some of these graphics have played signi fi cant 
roles in regulatory submissions and FDA advisory committee meetings.      

    12.1   Introduction 

 Human eyes are ill-equipped to discern patterns from statistical output presented in 
numeric or tabular forms. The spatial qualities of these numbers vanish once they 
are listed or tabulated on paper.  

 Graphical techniques allow numbers to be displayed pictorially and easily con-
vey a sizable amount of information at a glance. Exploratory data analysis relies 
heavily on statistical graphics to provide insight into one or more aspects of the 
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underlying structure of the data and guidance into the appropriate statistical 
analysis. 

 In addition, thoughtfully designed statistical graphics provide a convincing 
means of communicating the essential messages hidden in the data in a clear, pre-
cise, and ef fi cient manner. 

 The saying that “A picture is worth a thousand words” illustrates the fact that 
complex ideas can easily be conveyed with graphics. Furthermore, these thousand-
word pictures rarely require a thousand words to explain. 

 Every picture tells a story. It time and again tells the story better than pages of 
tabulated numbers and descriptive text. The more than one-dimensional spatial 
quality of pictures effortlessly transcends the inherent limitation of sequential num-
bers and words stringed linearly together. 

 A series of real-world examples of statistical graphics in action produced at 
Janssen Pharmaceutical Companies of Johnson & Johnson are presented below.  

    12.2   Does the New Analgesic Work? 

 A new analgesic was studied in a phase II, acute pain, multiple-dose, bunionectomy 
study for up to 4 days. The study drug was allowed to be taken once every 4–6 h. 
Since placebo would not provide much pain relief, it was expected that subjects 
randomized to placebo would repeat dosing closer to 4 h on average. On the other 
hand, if the new analgesic was effective, the actively treated subjects would repeat 
dosing closer to 6 h on average. 

 In Fig.  12.1 , subjects’ dosing history were plotted over time, one line per sub-
ject, with the actual dosing time presented as pink open dots, for both the placebo 
group and the treated group separately. To our surprise, the dosing patterns painted 
by the dots looked very similar between the two groups without any apparent 
visual difference. The placebo subjects were not repeating treatment more fre-
quently than the treated group. Most subjects completed the study without early 
termination.  

 What had happened was that in this study, in order to minimize early termina-
tion, subjects were allowed therapeutic doses of rescue pain medication Tylenol 
when the pain was not suf fi ciently controlled by the blinded study treatment. This is 
a commonly adopted approach to minimize missing pain relief and pain intensity 
measurement scores inevitably will be caused by early study drug termination. 
However, such non-missing scores collected with the aid of rescue pain medication 
no longer re fl ect the pure therapeutic effect of the study drug, but a combined effect 
with the rescue medication. In this study, the ef fi cacy effect represented by the pain 
relief and pain intensity measurement scores also became indistinguishable between 
the two groups, because with adequate amount of Tylenol at hand, all subjects self-
titrated to an adequate level of pain control, which is the same between the two 
groups distributionally. 

 Does the new analgesic work? Yes it does. 
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 In Fig.  12.2 , subjects’ rescue pain medication dosing history was superposed, as 
blue solid dots, on top of the pink open dots. Clearly the placebo subjects were tak-
ing more rescue pain medication than the actively treated group, in order to reach 
the same level of pain relief. What’s more, for each group, the rescue intake was the 
highest on the  fi rst day after surgery and decreased over time, as the acute bunion-
ectomy pain was self-limiting. These 2 graphs provided straight-forward views into 
what had happened in dosing patterns that was very hard to convey using summary 
statistics. They also provided us a very comfortable and convincing feeling that the 
active drug worked, without looking at the usual “hard” statistics.  

 This study was analyzed exactly as speci fi ed by the FDA guidelines on the analy-
sis of analgesic studies at that time and it failed, because there were no differences 
in pain relief and pain intensity scores due to the rescue medication use. However, 
this graph provided reassuring evidence supporting analgesic ef fi cacy as well as 
insight on supplemental rescue medication use. It was very appealing to the 
clinicians.  

    12.3   How Did Subjects Take Rescue Pain Medication? 

 The same analgesic as in the previous section was studied in a phase II, osteoarthri-
tis study for up to 30 days. Subjects were also allowed rescue pain medication on an 
as-needed basis to reduce early termination of study drug. 
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  Fig. 12.1    Subject-level study drug dosing information       
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 During the analysis of this study, it became necessary to investigate whether 
indeed subjects took rescue pain medication as intended for additional needed pain 
relief. To this end each individual subject’s study drug and rescue medication dosing 
pro fi les were examined over time in relation to average daily pain relief. Well, most 
of them did take rescue when the pain was insuf fi ciently controlled by study drug. 
However, a few surprises showed up and they are illustrated in Fig.  12.3 .  

 In this study, subjects were instructed to take the study drug two times a day, 
once in the morning between 7 and 8 am, and once in the evening between 7 and 8 
pm. If pain was not suf fi ciently controlled by this regimen, subjects were allowed to 
take a designated rescue medication up to 4 times a day. 

 In Fig.  12.3 , each individual subject’s dosing pro fi le was plotted over time. The 
times of study drug administration were plotted as black dots. They were around 7 
to 8 am and 7 to 8 pm for all subjects. The times of rescue pain medication were 
plotted as red dots. In addition, the average daily pain intensity scores were plotted 
as blue line segments. The height of the blue line indicates the pain intensity. 

 The last subject featured in Fig.  12.3 , Subject 517, consistently took the rescue 
pain medication only on days when the pain intensity was highest, indicating a seri-
ous pain  fl are. This was the pattern observed with most of the subjects in the study. 

 But, some unexpected dosing patterns were also observed. 
 Subject 501 took rescue pain medication 3 times a day regardless of daily pain 

scores. Subject 505 initially only took rescue pain medication when needed. 
However after about a 2-week period of high pain scores with the help of rescue 
pain medication, he decided to keep taking frequent daily rescue medication as a 
form of insurance even after his pain was well controlled. Lastly, subject 510 took a 
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  Fig. 12.2    Subject-level study drug ( pink open dots ) and rescue pain medication ( blue solid dots ) 
dosing information       
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combined dose of study drug with rescue medication 2 times a day even though the 
pain was well controlled. 

 The insight gained from these graphs, which would normally escape our atten-
tion, helped the clinical trial team to give better instructions on the rescue  medication 
intake during a similar phase III osteoarthritis study. Study sites were requested to 
clearly explain to the subjects the purpose of rescue pain medication.  
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  Fig. 12.3    Subject-level study drug ( black dots ) and rescue pain medication ( red dots ) dosing 
information for selected subjects       
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    12.4   Why Did Subjects Drop Out? 

 In an 8 h single-dose study, many subjects dropped out of the study during the 8 h 
observation period, which was a bit of a surprise. 

 There were various speculations as to why this was the case, some more plausi-
ble than others but no de fi nitive conclusions can be made. This mystery was solved 
when individual subjects’ ef fi cacy scores as measured by variable Z were plotted 
over time strati fi ed by the time of dropout as presented in Fig.  12.4 , the famous 
spaghetti plot.  

 Because lower Z scores indicated better ef fi cacy, the  fi gure shows that for sub-
jects who dropped out by hour 1, no treatment effect was observed. In fact, for the 
2 subjects on the graph, their condition continued to worsen. For subjects who 
dropped out between hours 2 and 7, some ef fi cacy effect was observed and then lost, 
just before dropout. For subjects that completed the 8 h study, sustained ef fi cacy 
was obtained except for a few subjects who showed signs of losing it at the end. 

 In Fig.  12.5 , the mean Z scores were plotted over time strati fi ed by the time of 
dropout and same observations as above can be reached. It clearly illustrated the 
cause of subject dropout as ef fi cacy-related.   

    12.5   What is the Appropriate Dose Range? 

 Many years ago an effective oral analgesic in tablet form was studied in a phase II 
double-blind study in children 7–16 years of age before the liquid formulation was 
available. The intended liquid dosage regimen had it been available at that time 
would have been in a milligram by kilogram (mg/kg) form. Based on safety and 
ef fi cacy data already collected on adults, it was expected that the effective dose 
range for children would be 1–2 mg/kg. 

 In the study, the children were randomly assigned to the “A=approximately 1 mg/
kg” group and the “B=approximately 2 mg/kg” using the dosing table based on 
body weight (Table  12.1   ). 

 This was a morphine sparing study. Children were allowed to use a morphine 
pump as needed to supplement the pain relief. The primary ef fi cacy variable was 
the amount of morphine used to achieve a comparable pain relief pro fi le between 
the 2 randomized groups. 

 There was a statistically signi fi cant difference between the amount of mor-
phine used between the “Approximately 1 mg/kg” group and the “Approximately 
2 mg/kg” group. 

 Due to variation in weight in each group and because the mg/kg was approxi-
mated using different amounts of 25 mg tablets, when the actual weight adjusted 
dose was calculated for each child in each randomized group, we obtained a range 
instead of a single point of actual mg/kg doses taken for each group, as shown in 
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Fig.  12.6 . When the two groups were combined together, a larger mg/kg dose range 
spanning from 0.4 to 2.5 mg/kg was obtained.  

 In Fig.  12.6 , the primary ef fi cacy variable was plotted against the actual mg/kg dose 
taken. A lowess smother was added to illustrate the trend. Even though children were 
not randomized to these mg/kg doses, this graph strongly suggested that the 1–2 mg/kg 
dose range to be ef fi cacious in children, which was later con fi rmed by other studies.  
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  Fig. 12.4    Individual pro fi le of variable Z over time strati fi ed by time of dropout       
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    12.6   Does Ef fi cacy Depend on INR Control? 

 In a phase III study for the prevention of stroke and systemic embolism in patients 
with non-valvular atrial  fi brillation, the primary hypothesis that the study drug is non-
inferior to warfarin in the prevention of the composite endpoint of stroke and non-
CNS systemic embolism was statistically demonstrated. However, the adequacy of 
the warfarin management in terms of INR (International Normalized Ratio)  control 
was questioned. Compared to similar contemporary studies that had study-wise TTRs 
(%) (Percentage of time in therapeutic range) in the mid 60s, this study has a study-
wise warfarin TTR (%) of 55%, which was considered much lower numerically. 

 Adjusted-dose anticoagulation with warfarin has been the most effective interven-
tion to mitigate the risk of thromboembolic events in subjects with atrial  fi brillation, 
as this clinical condition signi fi cantly increases the risk of stroke. The intensity of 
anticoagulation by warfarin has been measured by the international normalized ratio 
(INR). Maintaining subjects in the narrow therapeutic range of INR between 2 and 3 
has been considered a critical aspect in warfarin dose management. The bene fi ts of 
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  Fig. 12.5    Mean pro fi le of variable Z over time strati fi ed by time of dropout       

   Table 12.1    Dosing chart:  Tablet dosage by body weight    

 Weight (kg/mg)  25 mg (1 tablet)  50 mg (2 tablets)  75 mg (3 tablets)  100 mg (4 tablets) 

 20–29.9  A  B 
 30–34.9  A  B 
 35–44.9  A  B 
 >45  A  B 

A denotes a dosing of approximately 1 mg/kg, B of approximately 2 mg/kg
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  Fig. 12.6    Amount of morphine used vs. actual mg/kg dose       

warfarin in thromboembolic events prevention and potential harm of bleeding are 
inversely related to INR. There is an increased risk of thromboembolic events if INR 
is less than 2.0 and an increased risk of bleeding if INR is larger than 3. 

 In a clinical study using warfarin as a comparator, the percentage of time a warfa-
rin subject is maintained within the therapeutic range of INR between 2 and 3 can be 
calculated as the subject-level TTR (%). The study-wise TTR (%) is calculated as the 
average of the warfarin subject-level TTRs. This study-wise TTR (%) is used as a 
measure of how well warfarin treatment is managed in the study. The higher the 
TTR, the better is the warfarin dose management considered to be, which logically 
should lead to better ef fi cacy and safety of the warfarin treatment in the study. 

 Because the study-wise TTR at 55% was lower than what was achieved in other simi-
lar contemporary studies, and the majority of the time the subject was out of the 2–3 INR 
range was in the INR <2 region, where the thromboembolic events in the warfarin arm 
would be higher, the question naturally arose: would the study drug still be non-inferior 
to warfarin ef fi cacy-wise had the study-wise warfarin INR control been better? 

 This study enrolled subjects from many study centers across 4 continents. Just as 
study-wise TTR is considered as a measure of quality-of-care in the study, the 
center TTR, calculated as the average of warfarin subject-level TTRs in that center, 
is considered as a measure of quality-of-care in the center. 
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  Fig. 12.8    Box plot of subject TTR vs. categorized average center TTR       

 

 



25112 Statistical Graphics in Late Stage Drug Development

 There was a large variation in warfarin subject-level TTRs, ranging from 0 to 
100%. In Fig.  12.7 , individual subject-level TTRs were plotted against the center 
TTRs of the centers they are in as a scatter plot. In Fig.  12.8 , box plots of subject-
level TTRs were plotted for categorized center TTR groups in increments of 5%. 
Both graphs showed that warfarin subjects in centers with higher center TTRs also 
have higher individual subject-level TTRs.   

 If we discard the centers with lower center TTRs from the study population, 
 subjects with lower subject-level TTRs will also be deleted. The remaining 
 population can be treated as a smaller double-blind, randomized study, and its 
“study-wise” TTR will be higher. 

 Therefore, to answer the question of what the ef fi cacy of this study would have 
looked like had we had better study-wise warfarin TTR than the observed TTR of 
55%, centers with smaller average warfarin TTRs were progressively dropped 
(using cutpoints ranging from 0 to 100% in 1% increments) out of the study popula-
tion. This resulted in remaining subpopulations that can be considered as random-
ized studies on their own, having increasingly higher and higher average TTRs. As 
shown in Fig.  12.9 , the ef fi cacy results for these smaller “studies” remain stable and 
consistent with the whole-study results until their TTRs reach the mid 60s to 70%, 
at which point the estimation breaks down and becomes unreliable due to the much 
smaller sample sizes left.  

 In Fig.  12.9 , the analysis results of these 100 substudies were plotted. The visual 
impact of the stability of the treatment effect as the substudy-wise TTR steadily 
increases is beyond expression. 

 This simple analysis is more appropriate than the usual regression analysis that 
explores the association between ef fi cacy and TTR because association is not equal to 
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causation supportable by a randomization argument. In general, those subjects not being 
able to be managed to the higher TTRs are not comparable to those who can be managed 
to the same high TTRs, even at the same center with the same quality-of-care. The two 
groups of subjects are not comparable, with one being generally much sicker and with 
more complications than the other. Any differences we see in either ef fi cacy or safety at 
the same TTR on a regression curve can very likely be due to the difference in subject 
populations rather than to the treatment group difference. The two contributing factors, 
population difference and treatment difference, are confounded and non-separable.  

    12.7   Would the Study Still Be Positive? 

 In a phase III study of a new antiplatelet therapy in acute coronary syndrome (ACS), 
the primary ef fi cacy variable was the time to cardiovascular death, myocardial 
infarction, or stroke. The study was successful in statistically demonstrating the 
superiority of the study drug vs. placebo. The primary ef fi cacy variable was ana-
lyzed using the Cox proportional hazards model under the non-informative censor-
ing assumption. However, more than 10% of the subjects discontinued the study 
before the trial end date without experiencing any event, and the impact of this 
amount of missingness on the ef fi cacy conclusion was questioned. 

 To evaluate the robustness of the primary ef fi cacy results with respect to missing 
data caused by early withdrawals, a sensitivity analysis was carried out using model-
based simulation from an exponential model built from the observed data. The indi-
vidually  fi tted hazard rate in actively treated subjects was in fl ated from 0 to 100% 
while such  fi tted hazard rate in placebo subjects remained as observed. 

 For all censored early withdrawal subjects, virtual events and durations were 
imputed through random sampling from the  fi tted exponential distribution and the 
study was re-analyzed. This process was repeated 1,000 times for each sensitivity 
scenario. 

 The distributions of simulated hazard ratios, as brown dots, and 95% upper 
con fi dence limits, as blue dots, were plotted in Fig.  12.10 .  

 Each vertical bar comprised 1,000 tiny dots representing 1,000 hazard ratios or 
95% upper con fi dence limits. These dots were so numerous that they were stacked 
up on top of each other leaving almost no space among them except at the two 
extreme ends where points get sparse, hence the appearance of solid bars. 

 The dots in the bars were binned and the percentage of points in each bin was 
plotted proportionally to the right of the bars to indicate the shapes of distribution of 
the dots that closely resemble normal distributions. 

 The key message from this graph comes from the percentage of simulated trials 
with 95% upper con fi dence limits equal to or larger than 1. When this happens, the 
simulated trial would have failed to achieve superiority claim. 

 This percentage remains at zero up to 30% in fl ation. It reaches 1% at 50% 
in fl ation, and becomes noticeable at 70% in fl ation. When the assumed hazard rates 
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in actively treated group are twice as bad as those observed, it becomes 35%. 
However, the majority of the simulated trials, 65%, would still have had superior 
ef fi cacy results in favor of the study drug. 

 This analysis supports the robustness of our primary ef fi cacy analysis with 
respect to missing data caused by early withdrawal.  

    12.8   Concluding Remarks 

 Simple graphs such as histograms and scatter plots have been routinely generated 
and proven useful. Custom-designed graphs for a special problem at hand require 
more effort. Some graphs (such as Fig.  12.9 ) packed so much information into one 
plot that it had been considered mind-boggling in the beginning. However, once 
properly understood, they can be much more effective than tables of numbers to get 
across the messages that would have gone unnoticed or distorted otherwise. 

 As human consciousness evolves upwards and the logical linear left brain is 
increasingly integrated with the intuitive spatial right brain, the future tools of com-
munication will be more pictorial than linguistical. Until the days come when 
instantaneous thought transfer between human minds is possible, creative graphical 
statistical representation of data will be an enormously useful aid to our information 
sharing and decision making process.       
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  Abstract   Graphical data exploration of clinical trial results is an imperative step 
prior to any model-based analyses. Thorough understanding of the raw data and the 
biological and statistical signi fi cances will certainly increase the likelihood of con-
structing a useful model and evade excessive complex data representation and 
over fi tting. In this work, we use graphical data exploration to assess the cardiovas-
cular safety of Drug X by estimating the propensity for the drug to alter the duration 
of the QT interval. We also identify model building strategies and the potential 
models that may be tested incrementally. Insights gained from this exercise will 
improve the ef fi ciency of the model building process, communicate a clear and 
simple representation for complex data, and provide a useful decision making 
instrument for the drug development program.      

    13.1   Introduction 

 Advancements in mathematical modeling and simulation in drug development can be 
attributed to much of what has been accomplished in engineering and applied physics. 
The concept of modeling a real life scenario through a computer prior to building a work-
ing prototype has been the cornerstone for much of the advancement in engineering. For 
example, in aerospace industry, a major part of the development of airplanes, missiles, 
and spacecrafts relies on aerodynamics 3D modeling (computational  fl uid dynamics, 
CFD) through solutions to Navier–Stokes equations, the basic governing equations, writ-
ten down in the nineteenth century, for  fl uid mechanics (Girgis et al.  2006  ) . 

 Unlike some of the physics-based models, biological modeling does not possess a 
unique set of differential equations to describe or link different drugs to the ef fi cacy 
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and safety endpoints. Consequently, pharmacometrics (drug and disease modeling) 
requires a high level of art and pro fi ciency in combining experimental evidences, 
biological fundamentals, and scienti fi c reasoning in order to analyze various observa-
tions. This is particularly true in modeling of biological phenomena since it usually 
has a high level of complexity, large variability, and numerous degrees of freedom. 
Therefore, graphical visualization and exploration is a crucial element of biological 
model building. It provides a powerful tool for scienti fi c data exploration as well as 
for communicating quantitative information. In addition, it uncovers many quantita-
tive and qualitative relationships and confounding information inherent in the data.  

    13.2   Graphical Data Exploration 

 Graphical data presentation is the backbone of pharmacometrics in all its different 
phases (data exploration, modeling building, model validation, and simulation sce-
narios) (Dykstra et al.  2010  ) . These modeling phases (Fig.  13.1 ) mirror, in a local 
level, the Learn and Con fi rm Paradigm in drug development (Sheiner  1997  ) . While 
graphical data presentation plays a different role in each of these phases, graphical 
data exploration is the  fi rst essential step, and perhaps the most important step, to 
better understand the data and identify potential models. It provides a meaningful 
visual view of multidimensional data, clues for the clinical signi fi cance of various 
variables and its trends, key relationships, and sanity check on the quality of the data 
and trial conduct. We provide one such case study where graphical data exploration 
was utilized to build a useful model.   

  Fig. 13.1    Graphical data presentation cycle in modeling       
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    13.3   Objective 

 Detecting drug-induced effects on cardiac repolarization, measured by the length of 
the QT interval on an ECG, is a closely monitored safety element in drug develop-
ment. Drug-induced prolongation of the QT interval has been linked to cardiotoxic 
risk and the occurrence of torsades de pointes (TdP), a polymorphous ventricular 
life-threatening arrhythmia. An ECG of a patient with TdP is shown in Fig.  13.2 . 
Every compound is required to demonstrate absence of QT prolongation beyond a 
prede fi ned safety margin. A regulatory guidance document (U.S. Department of 
Health and Human Services  2005  )  provides justi fi cation for a thorough QT (TQT) 
study and suggests a level of rigor required for conducting such a trial to support a 
regulatory submission in the US. A TQT study is designed to determine the drug 
cardiovascular safety by detecting the magnitude of the QT changes caused by the 
drug. A mean time-matched QT prolongation of 5 ms, with the upper bound of the 
95% one-sided con fi dence interval excluding 10 ms, is considered a threshold level 
by regulatory bodies (   U.S. Department of Health and Human Services  2005  ) .  

 QT intervals can be in fl uenced by a number of factors, such as heart rate, admin-
istration of placebo, gender, and natural circadian rhythm (Piotrovsky  2005 ; Girgis 
et al.  2007  ) . The objective of this work is to provide an example in utilizing graphi-
cal visualization to understand and help the model building in pharmacokinetics and 
pharmacodynamics (PK and PD); namely, the change of the individual QT interval 
following administration of Drug X, a noncardiac drug, or Moxi fl oxacin (PK/PD 
relationship) in connection with different covariate effects, such as gender, placebo 
effect, RR interval (RR = 60/HR, HR is the heart rate), and circadian rhythm. This 
approach is valuable for future nonlinear mixed-effects population modeling devel-
opment, if needed. A schematic presentation of the durations and intervals of a typi-
cal ECG is shown in Fig.  13.3 .   

    13.4   Data Used 

 To ensure a thorough assessment of the potential electrocardiographic effects of 
Drug X (half-life of 10–15 h), precise measurements of ECGs in healthy adults, 
with particular attention to the QT interval duration, were collected when Drug X is 
administered twice a day at therapeutic and supratherapeutic doses (4 times the 
therapeutic dose). 

PADS AUTOGAIN DELAYED
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  Fig. 13.2    Lead II ECG of TdP and cardioverter-de fi brillator shock at end of the strip       
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 This TQT study is a double-blind, randomized, placebo- and positive-controlled, 
3-way crossover study in 40 healthy subjects (22 M, 18 F, age 30 ± 8 years, BMI 
24 ± 2) between 18 and 50 years of age. The study consisted of 3 phases: a screening 
phase of up to 21 days, a double-blind treatment phase with three 11-day (days −2 
to 9) treatment periods, and end of study/early withdrawal assessments. During the 
double-blind phase, each treatment period was separated by a washout period of at 
least 10 days, but not more than 14 days, between the last dose in a treatment period 
and the  fi rst dose in the next treatment period. A placebo control was used to estab-
lish the frequency and magnitude of changes in clinical endpoints that may occur in 
the absence of active treatment. Subjects received all 3 treatments, one during each 
of the 3 treatment periods. Moxi fl oxacin (400 mg single oral dose) was used as a 
positive control for evaluation of the sensitivity to detect changes in the QT 
interval. 

 The study is also designed to evaluate the steady-state of the Drug X effect (Day 
7), and the assay sensitivity (Day 8, moxi fl oxacin). On Days −1, 7, and 8 in each 
treatment period, 13 h continuous 12-lead ECG recordings are obtained for each 
subject. Each of these continuous collection periods initiated 30 min before the time 
of the morning dose (including days when no drug is given). On Days 7 and 8 in 
each treatment period, blood samples are collected predose and within 5 min after 
each time point to measure the plasma concentrations of Drug X and moxi fl oxacin 
(Table  13.1 )   .  

 Subject time point measurements, for each treatment period, are obtained at the 
same time point on the baseline day (Day −1). The dataset used in this analysis 
contains 2,350 time points for baseline, 738 time points for placebo (Day 8 placebo 
observations are not included due to residual drug effect), 557 time points for 
Moxi fl oxacin, and 1,318 time points for Drug X. The clock time data, 7  a.m . to 9 
 p.m ., was imputed from the time relative to dosing and dosing window, where the 

  Fig. 13.3    Schematic for the ECG trace and the QT interval       
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   Table 13.1    Overview of study design   

 Arm  Period 1  Period 2  Period 3 

 1  D(−1): Baseline 

 W
as

ho
ut

 1
0–

14
 d

ay
s 

 D(−1): Baseline 

 W
as

ho
ut

 1
0–

14
 d

ay
s 

 D(−1): Baseline 
 D1–7: Placebo  D1–7: Low dose Drug X  D1–7: High dose Drug X 
 D8: Moxi fl oxacin  D8: Placebo  D8: Placebo 

 2  D(−1): Baseline  D(−1): Baseline  D(−1): Baseline 
 D1–7: Placebo  D1–7: High dose Drug X  D1–7: Low dose Drug X 
 D8: Moxi fl oxacin  D8: Placebo  D8: Placebo 

 3  D(−1): Baseline  D(−1): Baseline  D(−1): Baseline 
 D1–7: Low dose 

Drug X 
 D1–7: High dose Drug X  D1–7: Placebo 

 D8: Placebo  D8: Placebo  D8: Moxi fl oxacin 
 4  D(−1): Baseline  D(−1): Baseline  D(−1): Baseline 

 D1–7: Low dose 
Drug X 

 D1–7: Placebo  D1–7: High dose Drug X 

 D8: Placebo  D8: Moxi fl oxacin  D8: Placebo 
 5  D(−1): Baseline  D(−1): Baseline  D(−1): Baseline 

 D1–7: High dose 
Drug X 

 D1–7: Placebo  D1–7: Low dose Drug X 

 D8: Placebo  D8: Moxi fl oxacin  D8: Placebo 
 6  D(−1): Baseline  D(−1): Baseline  D(−1): Baseline 

 D1–7: High dose 
Drug X 

 D1–7: Low dose Drug X  D1–7: Placebo 

 D8: Placebo  D8: Placebo  D8: Moxi fl oxacin 

morning dose was taken between 8:00  a.m.  and 10:00  a.m ., and the corresponding 
evening doses, which were taken 12 h later.  

    13.5   Data Overview 

 Data set preparation is performed using S-PLUS™ 8.0 for Windows (Tibco Software 
Inc, Palo Alto, CA). Data exploration and data visualization are carried out by 
PrismTM 5.01 (GraphPad Software, Inc, La Jolla, CA). There are many factors that 
make the data highly variable across population. Analysis of such data is complex. 
A boxplot of the data strati fi ed by the treatment group (Fig.  13.4 ) is presented to 
give  fi rst insights about the data quality, variability, and trend. The horizontal line in 
the interior of the box is located at the median of the data. The height of the box is 
equal to the interquartile distance, or IQD, which is the difference between the 3 rd 

 and  1  st  quartiles of the data. Approximately 95 percent of the data fall inside the 
whiskers (the lines extending from the top to the bottom of the box). The outliers are 
presented in a staggered format. Compared to the median of the placebo arm 
(407 ms), Drug X low dose shows a QT shortening of 4 ms, while the high dose 
shows a shortening of 10 ms. Additionally, the positive control (Moxi fl oxacin) has 



260 I.G. Girgis and S. Mohanty

a QT prolongation effect of 6 ms. This naive estimate agrees with previous results 
from literature and shows a preliminary evidence to establish the ability of the study 
to detect the effect of the study drug.  

 The lowess smoother curve is one of many useful exploratory graphical tools. It 
follows the trend of the data, using an algorithm developed by Chambers et al. 
 (  1983  )  and implemented by Prism™. It is a robust, local smooth regression of scat-
terplot data using weighted linear least squares without computationally expensive 
methods. In this work, coarse lowess curves, with 5 points smoothing window, are 
used. Figure  13.5  shows a temporal overview of all the data strati fi ed by the treat-
ment group. Signi fi cant circadian rhythm variation can be seen with a similar pat-
tern along all treatment groups. Such an effect is important to be taken into 
consideration in the modeling since it may interfere with the drug effect.   

    13.6   Baseline Data 

 Accurate modeling and understanding of baseline QT is the initial step in evaluating 
effects of drugs. Changes to this baseline model after the administration of the 
investigational drug will re fl ect the effect on the QT interval. Data variability has 
mixed-effects (random and  fi xed) components. Random (unexplained) variability is 
dif fi cult to relate to controllable variables. However, it may be identi fi ed on differ-
ent levels; namely, intra-individual variability (IIV, i.e., measurement error), 

  Fig. 13.4    Overview of QT data strati fi ed by treatment group       
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between-individual variability (BIV, i.e., individual difference), and between-occa-
sion variability (BOV, i.e., different day). On the other hand,  fi xed effects (variabil-
ity) are associated with changes in known covariates (variables). Among the most 
important  fi xed effects on QT, besides the drug effect, are placebo effect, heart rate 
(presented with RR interval), gender effect, and time effect (circadian rhythm) 
(Dykstra et al.  2010  ) . 

    13.6.1   Placebo Effect 

 Since, in some cases, placebo effect (response) is substantial and can vary substan-
tially, understanding and correcting this effect is important to qualify the drug effect. 
Figure  13.6  shows a column scatter plot of the baseline and placebo data where all 
the individual data points are shown and stacked into different columns according 
to their values. The scatter plot shows a thorough view of the data density, its distri-
bution, median, and the IQD range. Figure  13.7  shows the placebo effect across 
time of day, and a slight shortening of the QT interval by approximately 3 ms, dur-
ing placebo treatment compared to baseline. Both baseline and placebo curves dem-
onstrate similar daily temporal variation, consequence of a circadian rhythm, 
suggesting an additive placebo correlation model.    

    13.6.2   RR Effect 

 As shown in Figs.  13.8  and  13.9 , the QT interval is highly correlated with heart rate 
(or RR interval). The most conventionally used correction method for the heart rate 

  Fig. 13.5    Temporal overview of QT data strati fi ed by treatment group       
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effect on the QT interval has a general power formula of QTc = QT/RR n , where the 
RR interval is in seconds. The value of the exponent ( n ) may be estimated based on 
the pool or subject-speci fi c data. For the  fi xed correction method,  n  = 0.5 (Bazett’s 
correction, QTcB) or  n  = 0.333 (Fridericia’s correction, QTcF). Figure  13.10  shows 
that the power formula provides an adequate correction for changes in RR with a 
baseline RR-corrected QT (QTc) of 417 ms and  n  of 0.375 (using naive  fi tting with 
no covariate effect).     

  Fig. 13.6    Column scatter plot of baseline and placebo QT interval data       

  Fig. 13.7    Lowess smoother curves of the daily temporal variation of the baseline and placebo QT 
interval data       
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    13.6.3   Gender Effect 

 One of the important demographic factors that impacts the QT interval is the sub-
ject’s gender. Females usually exhibit a longer QT interval than males. Figure  13.11  
illustrates the gender effect on the baseline QT. As shown, females consistently 
exhibit a signi fi cantly longer QT interval than males by about 15 ms, which implies 

  Fig. 13.8    Linear  fi t and lowess smoother curves of QT interval vs. RR interval for baseline and 
placebo data       

  Fig. 13.9    Linear  fi t of placebo-corrected QT (QTp) compared to the baseline QT       
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that either an additive or a multiplicative simple gender effect model will be ade-
quate to capture this difference.  

 It is intriguing to gain signi fi cant insights using a simple graphical presentation 
of the pooled data. Based on the above discussion, the effects of heart rate, placebo, 
and gender could be adequately captured by simple expressions, as follows: 

  Fig. 13.10    RR-corrected baseline QT (QTc) compared to the uncorrected QT       

  Fig. 13.11    Temporal distribution of baseline QT and QTc intervals for males and females       
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 Corrected QT for heart rate (QTc):

     =cQT QT / RRn

    

 Corrected QT for heart rate and gender effect (QTcg):

     = + DQT / RQTc ng R Gen

    

 Corrected QT for heart rate, placebo effect, and gender (QTcgp):

     = + D + DQTcpg QT / RR Gen Plan

   

where, as discussed earlier,  n  = 0.375, ΔGen = −15 ms, and ΔPla = +3 ms. Figure  13.12  
shows the calculated QTcg of baseline data for males and females. Compared to 
Fig.  13.11 , the used  fi xed-effects model for QTcg signi fi cantly reduces and explains 
the baseline data variability by deducing the relationships with heart rate and gender 
covariates. Similarly, Fig.  13.13  shows the calculated QTcg and QTcgp of baseline 
and placebo data. Figure  13.14 , a box and whisker plot, contrasts the raw and cor-
rected baseline and placebo data.     

    13.6.4   Circadian Rhythm 

 Circadian Rhythm is an internally driven, 24 h cycle biological clock. It is 
in fl uenced by a number of effects, such as light–dark cycles, timing of food 

  Fig. 13.12    Temporal view of QTcg interval for the baseline data by gender       
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intake, and temperature. Therefore, one key  fi xed effect on QT is day time. The 
impact of the day time on QT is critical to be quanti fi ed in order to be able to draw 
a conclusion about drug effects. The corrected QT (QTcg and QTcgp) interval for 
pooled baseline and placebo data show a circadian variation of about 5 ms, 
peaking during morning hours (Fig.  13.15 ). The same pattern is observed at the 

  Fig. 13.13    Temporal view of QTcg(p) interval of the baseline and placebo treatment groups       

  Fig. 13.14    Uncorrected and corrected QT interval of the baseline and placebo treatment groups       
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individual level (Girgis et al.  2007  ) . For our purpose, a simple, 24 h harmonic 
cosine function 

  (    π -cos(2 / 24(Time ))A j   )    

 is used to describe the circadian rhythm (diurnal  fl uctuations) effect, where  A  is the 
amplitude parameter and   j   is the phase shift parameter. The parameter values are 
estimated by trial and error. The corrected QT for heart rate, placebo effect, gender, 
and circadian rhythm (QTcgpt) can then be expressed as follows:

     π= + D + D + -QTcgpt QT / RR Gen Pla cos(2 / 24(Time ))n A j    

where ΔGen = −15 ms, ΔPla = +3 ms,  n  = 0.375,  A  = 2.5 ms, and   j   = 6.6 h.    

    13.7   Drug Effect 

    13.7.1   Moxi fl oxacin Drug Effect 

 Since the effect of moxi fl oxacin is well known, it was administrated and included in 
this study as a positive (active) control. Active control is necessary in order to show 
the validity of the trial conduct and to help assess any false QT liability. Using 
pooled data from 20 studies, Florian et al.  (  2011  )  described the moxi fl oxacin con-
centration–QTc relationship by a linear model with a mean slope of 3.1 (2.8–3.3) 

  Fig. 13.15    Circadian rhythm trend line and cosine model for baseline and placebo pooled data       
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milliseconds per  m g/mL of moxi fl oxacin. For the current data, corrected baseline 
and placebo data were combined with corrected moxi fl oxacin (QTcgpt) data to 
present the zero moxi fl oxacin concentration effect (model intercept). As shown in 
Fig.  13.16 , the predicted mean slope is 3.12 ms per  m g/mL. Thus, the result vali-
dates and gives credibility for the graphical data exploration process and technique 
used.   

    13.7.2   Drug X Effect 

 Figure  13.17  shows that as the Drug X concentration increases, the QT interval 
decreases. The linear  fi t predicts a QT shortening with a negative slope of −0.45 ms 
per  m g/mL. While a prolonged QT interval is linked to the risk for life-threatening 
events, little is known about shortened QT intervals. Nevertheless, QT interval 
shortening has previously been associated with sudden death (Gaita et al.  2003  ) .    

    13.8   Modeling Results 

 Based on the above rationale, Girgis et al.  (  2007  )  used a hierarchical Bayesian 
approach to establish a population model for baseline and placebo data. The  fi nal 
structure model was similar to the current proposed corrections for the QT interval 
(QTcgpt). Figure  13.18  illustrates an example of the model  fi t for different subjects. 

  Fig. 13.16    Lowess smoother and linear  fi t (with 95% con fi dence interval) of QTcgpt interval vs. 
moxi fl oxacin concentration       
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  Fig. 13.17    Lowess smoother and linear  fi t (with 95% con fi dence interval) of QTcgpt interval vs. 
Drug X concentration       
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  Fig. 13.18    Example of model  fi t for individual QT baseline data       
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It shows the time course of the measured QT (open green circles), individually cor-
rected QT, (QTic = QT/RRni,  fi lled blue circles), QTic individual predictions (red 
solid line), and QTic population predictions for a typical male (dashed gray line) for 
12 subjects. As shown, QT measurements are well described by the  fi nal model. 
Figure  13.19  shows the 3-dimensional plot of the QT Interval and its relationship to 
heart rate, gender, and circadian rhythm based on the Girgis et al. baseline model 
(Girgis et al.  2007  ) .    

    13.9   Summary 

 Data from a thorough QT study were used as an example to illustrate the bene fi ts of 
graphical data exploration to assess the cardiovascular safety of a Drug X. As shown, 
graphical data exploration of clinical trial results greatly helps to better understand 
the data and increase the likelihood of constructing a useful model. It also could 
improve the ef fi ciency of the model building process and provide a useful decision 
making instrument for the drug development program.      
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  Abstract   Although displays of clinical trial data in clinical research primarily 
focus on group level data, researchers often  fi nd themselves focusing on individual 
patients in a clinical trial. Data displays of individual patient data in clinical research 
are needed for many reasons, such as individual case review to understand potential 
outliers or important adverse events. When reviewing individual patient data, under-
standing how the individual is different from or similar to reference populations is 
very important. Without the correct context, individual data can be very dif fi cult to 
interpret. Following good principles of graphics, we can build helpful displays that 
allow for faster and more accurate decision making.  

  Keywords   Patient pro fi les  •  Axis scales  •  Layering  •  Sorting      

    14.1   Introduction 

 A single patient in a clinical trial provides an amazing volume of information. Each 
individual patient may provide information on safety, ef fi cacy, quality of life, demo-
graphic characteristics, study conduct and a variety of other endpoints. Laboratory 
assessments alone may result in hundreds of observations on an individual patient 
in a relatively short clinical trial. In many situations, we need to review data at the 
individual level. We may want to study individual patients who report speci fi c 
adverse events, review individual responses to a drug, or review individual cases for 
data cleaning. Depending on the purpose of the review, we may want to review all 
available data or selected data from an individual patient. Graphical representations 
of patient pro fi les have become more popular with the creation of software that 
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makes displaying an individual’s data easier; however, many data reviews are still 
based on tabular data that are spread across multiple documents. This is inef fi cient 
in the best case and may lead to an incorrect interpretation in the worst case. 

 The advantage of graphical displays over tabular displays is the ability to make 
compact, data-dense displays that provide a more complete context for interpretation. 
A properly designed display of individual patient data will provide all the informa-
tion needed to make decisions and eliminate  page thrashing  during the data review 
process. Page thrashing is the process of  fl ipping through multiple documents to 
retrieve all the data that are needed to make a decision. When the data are not orga-
nized and are not presented in a comprehensive manner, it may take many iterations 
across multiple functions (clinical, statistics, data management, etc.) to get the neces-
sary information to make a decision. This is an inef fi cient use of resources and it can 
also disrupt the  fl ow of thought and lead to misinterpretations of the data. When all 
of the necessary information is collected and organized in a single, well-designed 
display, decisions can be made quickly, ef fi ciently and accurately. 

 The data from an individual need to be put into context to be most effective. It is 
relatively simple to create a plot of laboratory measurements over time in a clinical 
trial (Fig.  14.1 ); however, to create an informative and insightful data display all 
relevant data need to be presented (Fig.  14.2 ). For example, to monitor renal func-
tion we may be interested to see if a patient’s creatinine values are within the normal 
range throughout the entire trial. A display of creatinine values should therefore 
include some indicator of the normal range. If the study is in patients with low renal 
function, it might be more helpful to put an individual’s creatinine levels in the con-
text of the speci fi c trial population because we would expect creatinine levels out-
side the normal range. Throughout this chapter, we will revisit concepts for 
contextualizing the information from an individual patient.   

 Review of individual ef fi cacy data is usually limited to a small number of param-
eters of interest. In contrast, when an unusual adverse event or an adverse event of 
special interest is observed in an individual, the scope of the information needed for 
this individual patient can be very broad. To help understand more about the patient 
who had the adverse event, we may be interested in all the other adverse events the 
patient experienced as well as all concomitant medications, complete medical his-
tory, laboratory assessments, and demographics. To highlight the different types of 
displays that could be used depending on the speci fi c situation, 3 examples are used 
to demonstrate principles of design presented in the next section: 

   Example 1 (Sect.   – 14.3.1 ) presents a review of a single endpoint of interest  
  Example 2 (Sect.   – 14.3.2 ) presents a targeted review of a small number of endpoints  
  Example 3 (Sect.   – 14.3.3 ) presents a general review of a large number of  parameters 
for an individual patient    

 The graphs from these examples are referred to throughout this chapter, so it 
may be helpful to review the example overviews in Sect.  14.3  to have a better 
understanding of what is presented in the graphs. Section  14.3.4  presents an inter-
active display that allows the user to move from aggregate level adverse event data 
to individual data. 
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  Fig. 14.1    Individual patient pro fi les of a laboratory analyte. Note that the scale of the vertical axis 
is the same for each patient. The sorting order is by patient identi fi cation number which does not 
encode any information. The primary hypothesis is that this investigational medication will 
increase the level of the analyte within the target range of 6–8 units. Without any reference lines, 
it is dif fi cult to assess how many patients are actually reaching the target range. Also, we do not 
know if patients have received their doses of the investigational product, what doses they received 
(high or low) or if they received the concomitant medication that could impact the analyte       
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  Fig. 14.2    Individual patient pro fi les of a laboratory analyte with layered data representing types 
of measurements ( blue circles  = local laboratory and  black triangles  = central laboratory), adminis-
tration of concomitant medication known to impact the laboratory analyte ( yellow highlighted 
regions  represent the 28 day impact of this medication), and dosing information ( up arrows  = high 
dose and  down arrows  = low dose). The scale of the axes is the same for all patients and the display 
is sorted so that the patients with the worst response (lowest maximum on-study value) are at the 
 top-left , while the best responders are at the  bottom-right . Additionally, the target range of 6–8 
units is displayed as a gray shaded region       

 



27714 Data Visualization at the Individual Patient Level

 Graphs in this chapter were created using S-PLUS™ (TIBCO Software Inc.  2012  )  
and R (R Development Core Team  2011  ) , including the Hmisc (Alzola and 
Harrell  2006  )  and Design (Alzola and Harrell  2006  )  libraries in S-PLUS™ and the 
lattice (Sarkar  2008  )  and latticeExtra (Sarkar and Andrews  2011  )  packages in R.  

    14.2   Principles of Design 

    14.2.1   Overview 

 Data visualizations need to be tailored to their speci fi c purpose and audience. For 
example, visualizations used in presentations during meetings are generally shown for 
seconds and need to immediately convey a very speci fi c point. These visualizations are 
usually very simple and straightforward. Graphical review of individual patient data 
falls on the other end of the spectrum. Displays of individual patient information are 
usually created for detailed study. These types of displays are generally very data dense 
and require more orientation for the reviewer. Caution should be taken to only present 
data that are relevant to the question. Presenting unnecessary data can add noise to the 
overall presentation that distracts from the important information. Few  (  2006  )  states 

   By removing any information that is not really necessary, you automatically increase focus 
on the information that remains.   

 Few  (  2004  )  presents the following objectives for communicating quantitative 
information that are helpful when designing individual patient displays: 

   Organize the data  –

   Group the data   –
  Prioritize the data   –
  Sequence the data      –

  Highlight the data  –

   Reduce the non-data ink   –
  Enhance the data ink        –

 These objectives are an extension of Tufte’s principles (Tufte  1983  )  as summa-
rized in Chap. 3. 

 Organizing the data is an important concept when producing data dense displays. 
A disorganized display is confusing and potentially misleading. When presenting 
individual patient data, it is common to group all the data from an individual in the 
same panel in a trellis format where each individual panel contains a single patient’s 
information (Figs.  14.1  and  14.2 ). When examining an individual patient’s response 
across a small number of endpoints, we can group the data by endpoint where the 
individual patient of interest is highlighted in a similar manner across the different 
panels (Figs.  14.5  and  14.6 ). When the question of interest requires looking at all 
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the information from a single patient, we can group the information by types of data 
such as dosing information, adverse events, and laboratory assessments (Fig.  14.9 ). 
Highlighting the important data is key to an effective display. In the effort to include 
all necessary data to understand the endpoint of interest, it is crucial not to over-
whelm the data that are most important. Using bold saturated colors of primary hues 
for the key data and using less emphasis on data presented for contextualization 
highlights the most important features of graph.  

    14.2.2   Sorting 

 Organizing the display of data through sorting is one of the easiest ways to increase 
the amount of information a reader gains from the display. Once the reviewer under-
stands the sorting order, the interpretation should be easy and intuitive. Figures  14.1  
and  14.2  display the same data. Figure  14.2  sorts the panels by a function of the 
response. The sorting order in this example is from lowest maximum on-study value 
to highest maximum on-study value. The patient with the lowest maximum on-study 
value is at the upper left and the highest is at the bottom right. If the reviewer is inter-
ested in patients with the lowest values on-study, they can simply focus on the top 
row. Alternatively, if the maximum response is of primary interest, the bottom row is 
most useful (although, in this case, sorting in the reverse order might be more helpful 
so that the most important information is at the top). Sorting by patient number is 
rarely useful, because the patient numbers in most clinical trials are arbitrary. 

 Besides sorting by a function of the response variable, other study parameters 
can be useful. Figures that organize information by country and/or investigative site 
can help spot trends and sources of variability in the data. However, remember that 
presenting the countries by alphabetical order or the study sites by numeric order is 
probably not helpful. Consider sorting the outer grouping parameter by some useful 
function of the response. For example, if you are interested in identifying sources of 
variability, sort the countries by the variance or interquartile range.  

    14.2.3   Layering Data 

 Layering is combining different types of related data in a single display to give a 
more complete picture of the endpoint of interest. Layering information should 
increase the ef fi ciency and accuracy of the interpretation as compared to reviewing 
the data in different sources. Figure  14.2  uses layering to combine different factors 
to display a complete picture of the components that may in fl uence the endpoint of 
interest. In this example, the primary interest is the impact of treatment on a 
 laboratory analyte. However, several other factors also in fl uence the measurement 
and need to be taken into account for proper interpretation (Sect.  14.3.1  for more 
detail on this example). 
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 Layering data is also key to contextualizing the individual patient data to some 
larger set of data. Presenting normal ranges of laboratory data or summaries of the 
distribution of the individual patient’s treatment group within the trial is a form of 
layering information.  

    14.2.4   Axes 

    14.2.4.1   Scaling 

 The scale of the axes greatly in fl uences the interpretation of data. When the axes are 
determined only by values of a single patient, small, unimportant changes can 
appear very large. The information needs to be put into context. When the data are 
measured as a continuous variable, we have several choices to help contextualize 
the information from an individual patient: 

   Normal ranges (when available)   –
  Within study data   –
  Clinical opinion     –

 If normal ranges are available for the measurement, the axes should usually 
contain at least the upper and lower normal limits. Reference lines for the nor-
mal range should be added to the individual patient data so it is easy to see any 
departures from the normal range. An exception to this advice is when display-
ing information where the disease state is related to the parameter of interest. In 
patients with renal failure, having both upper and lower limits for parameters 
measuring renal function may not be necessary because all patients in this spe-
cial population may be above or below the normal range depending on the labo-
ratory parameter being measured. 

 Superimposing group level summary statistics with the individual patient data can 
also be helpful for contextualization. For example, present the mean ± standard devi-
ation or medians with interquartile range from the patient’s treatment group or con-
trol group along with the individual patient information (Fig.  14.4 ). Note that the 
summary statistics selected should summarize the distribution of the data (e.g., stan-
dard deviation) and not the precision of measuring central tendency (e.g., standard 
error). Displaying standard errors or con fi dence intervals are not helpful in this con-
text because we are generally interested in where the individual patient falls in the 
overall distribution and not speci fi cally if they are near the parameter estimate. Using 
standard errors or con fi dence intervals potentially leads to misinterpretation of the 
individual data. For example, in large studies most of the individual data do not fall 
within a single standard error of the mean or the 95% con fi dence interval. Non-
statisticians may interpret individual data not falling within this interval as outliers if 
the mean ± standard error or con fi dence interval is used as a reference range. 

 When presenting data as change from baseline, consider adding reference lines 
for the least signi fi cant change if available. With some laboratory parameters there 
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are speci fi c thresholds of change that trigger clinical review and are useful  references 
for contextualizing the size of the change in an individual patient. 

 Superimposing the actual data (as opposed to summary statistics) from other 
patients in the same treatment group or control group is another way to put the indi-
vidual patient data into context. When displaying all the individual patient data in 
the same graph, there are some special considerations. One or more of the patients 
used as reference data may have very high or very low values compared to other 
patients. Although these values may be of particular importance, they may to ham-
per the interpretation of the patient of interest in the plot. One potential solution is 
to only show the individual data from the reference group that falls between the 5 th , 
95 th  percentile. If you select this method, this should be clearly stated in the title, 
footnote or axis label. 

 When adding reference lines for the normal range, summary statistics or actual 
data from a reference group, the data for the patient of interest must be more promi-
nent. Use of more diluted colors (gray) for reference information and alpha trans-
parency is very helpful. Alpha transparency gives the appearance of overlap which 
helps when over-plotting is an issue. The line thickness, symbol size, and color of 
the individual patient of interest should be thicker, larger and more saturated than 
the reference information. 

 When both the sample size and the number of parameters of interest are small, 
all of the individual patient pro fi les can be placed on a single trellis display leverag-
ing the value of small multiples (Cleveland  1994  ) . The scale of the vertical axis is 
usually determined by the range of the data from all the individuals; however, hav-
ing at least the upper and lower limits of normal if available is still very helpful for 
the overall context.  

    14.2.4.2   Aspect Ratio 

 The aspect ratio of a graph is the height of the plotting region divided by the width 
of the plotting region. The plotting region does not include titles, axis labels, or 
footnotes. Generally, the plotting region is de fi ned by the 4 axes of a graph–
although not all graphs actually display axes. 

 One commonly misused method for determining the aspect ratio is matching the 
size of the plot to the available space on a page or presentation slide.  Determination 
of the aspect ratio should not be based on the size of the paper or display device.  

 There are good algorithms for determining aspect ratio, such as the banking 
algorithm suggested by Cleveland  (  1993  ) . However, these algorithms do not account 
for axis scaling based on adding external data such as laboratory normal ranges or 
group level summary statistics to individual patient data. A good rule of thumb, 
when banking does not apply, is to use an aspect ratio of 1. An aspect ratio of 1 is 
not ideal for every circumstance; hence, it is a rule of thumb and not a law. For 
example, using an aspect ratio of 1 does not work for a single boxplot. The key is to 
actively think about the aspect ratio, because it is of second importance to the actual 
data and can easily mask trends in the data if used incorrectly.  
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    14.2.4.3   Axis Lines 

 The lines representing the axes of a plot denote the plotting region and contain 
the tick marks and labels needed for interpreting the information. The lines 
themselves contain very little information—perhaps none when you consider 
the tick marks as separate entities from the axis lines. The axes can actually 
distract from the actual data being plotted. This is particularly apparent in trellis 
plots which have many axes on a single graph (Fig.  14.1 ). The more these lines 
can be put into the visual background of the graph and the actual data can be 
moved to the foreground, the better the impact of the graph. This can most eas-
ily be achieved by using less saturated color such as gray for the axis lines 
(Fig.  14.2 ). In some graphs, the axis lines can be removed completely leaving 
only the tick marks and labels (Fig.  14.5 ).  

    14.2.4.4   Tick Marks and Labeling 

 Placements of tick marks on the axes is an important aspect in making a graph easier 
to interpret. Too many tick marks can be distracting, while too few can leave the 
reader without appropriate reference points. This is particularly important when 
using trellis displays because the size of each panel is relatively small. The number 
of tick marks should be proportional to the size of the individual panel. 

 The tick marks and labels should be placed at relevant values. For example, if 
a study collects data at baseline and weeks 3, 6, 9, and 12, do not label the axis 
with “Study day” and place tick marks at days 20, 40, 60, and 80 (Figs.  14.1  
and  14.2 ). The axis should be consistent with the study design. This is particu-
larly important with longer duration studies. If a study is 3 years long, it is more 
appropriate to place the tick marks and label as months than to annotate with 
weeks or days.  

    14.2.4.5   Axis Breaks 

 When time data are presented on the horizontal axis, it is generally appropriate to 
use a straightforward linear scale. However, it may be helpful to utilize axis breaks 
to account for differing frequency of data collection. Study designs commonly 
specify more frequent measures at the beginning of a trial and may have time 
periods of intense sampling for pharmacokinetic parameters. Displaying informa-
tion on a constant scale can cause some areas to have overlapping information 
while others have nothing at all. Breaks in time (horizontal) axis can separate 
areas where time is measured in different units (e.g., hours, days, weeks, months) 
as in Fig.  14.9 . Axis breaks are generally discouraged for the response variable 
(vertical axis); however, the study design may provide good reasoning for breaks 
on a the horizontal time axis.  
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    14.2.4.6   Multiple Vertical Axes 

 Multiple continuous variables can be presented in separate graphs on the same page 
or all combined in a single graph. When combining many parameters into a single 
graph, it is tempting to present multiple vertical axes. Selection of the scales of the 
different axes can greatly impact the interpretation of the data. One potential solu-
tion when working with laboratory data is to scale the different axes by the lower 
and upper normal ranges for each parameter. Under this scaling, the limits would all 
be aligned vertically. This has a direct bene fi t of having a clinically meaningful scal-
ing and also reduces the number of horizontal reference lines representing the nor-
mal ranges of the parameters. If changes from baseline are being displayed, another 
option is to scale the data by the standard deviation or some other measurement of 
variability. Displaying changes on the standardized scale is familiar to clinicians.   

    14.2.5   Shapes, Colors, and Line Types 

 Bold, familiar colors and shapes can encode information (red, orange, yellow, and 
green or circles, triangles, octagons). Few states that  full saturated, bright ver-
sions of just about any primary hue tend to demand attention  (Few  2004  ) . 
Combining bold colors with familiar shapes can also trigger natural associations. 
Red octagons immediately make a reader think of stop signs and yellow triangles 
signal a warning. Care should be taken when using combinations that will be 
reviewed by people in different regions where they can have different meanings; 
however, if most of the intended reviewers are from a speci fi c region these com-
binations can be very useful. 

 Reference information should not overwhelm the primary data of interest. The 
primary data should be visually perceived as being in the foreground while the 
reference data appears to be in the background. Reference lines and symbols 
should be smaller in size and less saturated in color. Solid, black, thick lines might 
represent for the primary data while dashed, gray, thin lines are used for reference 
(Fig.  14.6 ). Similarly, large, black symbols  fi lled with a saturated primary hue 
might represent the primary data while smaller, gray, non- fi lled symbols are used 
for reference (Fig.  14.5 ). Alpha transparency can be a very useful tool to create 
this effect. Too many symbols or colors can saturate the senses and potentially 
reduce the interpretability. The focus should always be on the primary data. Any 
other information should only enhance the interpretability of the primary data.   

    14.3   Examples 

    14.3.1   Single Outcome of Interest 

 In this hypothetical example of a 20-patient single-arm phase I study, a single labo-
ratory analyte is the primary endpoint. The endpoint is assessed at a local laboratory 
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at all time points and additionally at a central laboratory at 3 time points during the 
study. The treatment under investigation is expected to increase and, through dose 
titration, maintain the level of the primary endpoint within a target range of 6–8 
units. There is a concomitant medication some patients receive that also impacts the 
primary endpoint. The impact of a single dose of this concomitant medication lasts 
28 days. 

 Figure  14.1  displays the endpoint data for each individual in the study. Figure  14.2  
presents the same data as Fig.  14.1 , but the sort order is by increasing maximum 
on-study value of the laboratory analyte. Additionally, Fig.  14.2  adds information 
about dosing, the concomitant medication, the target range, or whether the analyte 
was assessed at a local laboratory or the central laboratory. Whether or not a patient 
received a high or low dose can be derived from the up or down arrows (up = high, 
down = low). Because the impact of the concomitant medication lasts 28 days, a 
shaded region is shown that highlights the 28 day window starting at the time the 
patient begins the medication. If a patient, such as patient 1,013, receives the con-
comitant medication more than once, there will be multiple shaded regions. 

 Figure  14.3  displays a single patient from the study and separates out the  5  layers 
of data presented in Fig.  14.2 . Figure  14.4  separates out the 4 patients who received 
the concomitant medication that is known to impact the endpoint in this example. 
To put the changes of these 4 individuals into the context of the overall study, the 
mean and standard deviation of the endpoint for the entire study cohort are added as 
reference.    

    14.3.2   Multiple Outcomes of Interest 

 In this hypothetical example, we have 5 variables (Var1–Var5) measured on 100 
patients (Fig.  14.5 ). These 5 variables measure different attributes of the same con-
dition as we may encounter in clinical research such as analytes measuring liver 
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  Fig. 14.3    Separation of layered data for patient 1,013 from Fig.  14.2 . The data includes  fi ve lay-
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function or renal function. When reviewing the values of Var1, we notice that an 
individual patient has a value above 2.0 which is a prespeci fi ed threshold and will 
need further investigation. We now want to investigate the response of this patient 
on the other 4 related variables to see if this patient is also different from the rest of 
the patients in this study. If Var1 is the only variable where this patient differs from 
the rest of the patients, we may think that the individual laboratory measurement 
could have been erroneous. However, if we see a trend across multiple measure-
ments we would be more sure of the potential uniqueness of this individual. 

 Figure  14.5  simply highlights data from the patient with the highest value of 
 Var1  in the distributions of the other variables. Note that the symbol size is larger 
than other symbols used in the plot and has a colored (green)  fi ll while the other data 
are un fi lled. This graph shows that the patient with the highest value of  Var1  also 
has high values for  Var2  and  Var3  while the patient is in the middle of the  distribution 
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  Fig. 14.4    Displaying only the 4 patients from Fig.  14.2  who received the concomitant medication 
that impacts the outcome of interest. Means and standard deviations are presented for all 20 patients 
to add context to the response pro fi les of these 4 patients       
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for  Var4  and in the lower 25% of  Var5 . Figure  14.6  presents the same data in a paral-
lel coordinate plot. The parallel coordinate plot standardizes the variables so that 
they have the same scale. The data points from each individual are connected which 
allows the visual inspection of the trend among the variables. As with the boxplots, 
we can clearly see that this patient has high values for the  fi rst three variables and a 
low value for the 5 th  variable. Figure  14.7  presents the same data by using density 
plots. While boxplots are extremely useful in many circumstances, if any of the 
variables have more than one mode they do not accurately depict the distribution of 
the data. Using density plots allows a visualization of more complex distributions. 
The graphs are aligned vertically so that it is easier to compare where the individual 
of interest is located in distributions of the  fi ve variables. If the graphs were in a 
single row or in a grid, the comparison would be less ef fi cient. Figure  14.8  presents 
the same data by using pairwise scatter plots. The previous displays of these data 
concentrated on univariate descriptions of the  5  variables. The scatter plots allow us 
to examine the bivariate relationships between the variables and visualize where the 
individual patient of interest falls in these distributions.     

 The graphs shown in this example are static; however, several software packages, 
such as Spot fi re™, JMP™, and Mondrian, allow dynamic exploration of individual 
patients through  brushing  (Unwin et al.  2006  )  and the ability to drill down through 
multiple levels of data. Turning a static display into an interactive display by adding 
the capability to drill down is an amazingly useful tool (Sect.  14.3.4 ). The ability to 
link information among different endpoints, including both continuous and categor-
ical data, using multiple types of displays can speed review and lead to insights that 
might be missed otherwise.  

    14.3.3   Patient Pro fi le 

 Many situations provide reasons for looking at all the data available for an individ-
ual patient. When a patient experiences an adverse event of interest during a clinical 
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trial, there is often a need to examine most—if not all—of the data from this patient. 
A full patient pro fi le is needed to give context to the event and help determine what 
important factors may have contributed to likelihood of this event occurring. We 
may want to examine the temporal relationship of the event to the last dose of inves-
tigational drug or determine the number of doses given prior to the event. Also of 
interest is the medical history including previous on-study adverse events and con-
comitant medications. Laboratory data may also be helpful to understand the event. 

 In these circumstances it is dif fi cult to prespecify exactly what data are needed, 
so providing as much relevant data as possible on the individual patient can prevent 
too many back-and-forth iterations. The most common solution is to provide patient 
listings that contains as many parameters as possible; however, tabular formats are 
not as effective as graphical displays because they cannot achieve the information 
density and interpretability of a graph. Providing a single, well-designed graphical 
patient pro fi le is a good alternative to multiple listings. 
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 Powsner and Tufte  (  1994  )  proposed a very compact graphical representation of 
laboratory data by presenting each laboratory analyte in separate panels on a consis-
tent time axis. They also provide narratives of patient information on the display to 
complete the picture for the reviewing clinician. 

 An alternative, as presented in Fig.  14.9 , is a display that mixes tabular and 
graphical elements. This display provides information on demographics, dosing, 
adverse events, concomitant medications, laboratory measurements, and medical 
history on a consistent time axis.  

 Dosing information is presented at the top which gives the reviewer access to the 
timing and amount (numbers in plotting symbol indicate the dose of drug) of the 
dose received. This data are presented at the top of the display and in red to empha-
size the importance of this information. 

 Laboratory information is presented by placing the results from a single labora-
tory analyte in a row. Values outside the normal ranges are given in bold font super-
imposed on colored rectangles that indicate the CTC (Common Toxicity Criteria) 
grade. A clinician can quickly scan all the laboratory analytes to see what values are 
aberrant as well as look at any analytes of interest to see if any are decreased or 
elevated. The laboratory analytes are sorted by type (chemistry, hematology, etc.) to 
create logical groupings of information. 

 Next are adverse events and concomitant medications. Within adverse events, the 
preferred (dictionary coded) terms are sorted by system organ class so that similar 
events are grouped together. Adverse events are presented by using plotting symbols 
with the severity of the adverse event indicated by numerical code within the plotting 
symbol and color (1 = mild/green, 2 = moderate/yellow, 3 = severe/orange, 4 = life-
threatening/red, 5 = fatal/red). Whether or not an adverse event is serious (events that 
require hospitalization, are life-threatening or fatal) is indicated by the type of plot-
ting symbol (circle = non-serious, triangle = serious). A line extends from the plot-
ting symbol indicating the duration of the adverse event. An arrow on the right 
indicates that the adverse event is continuing at the time of analysis. Concomitant 
medications are presented in a similar style as the adverse events. An arrow on the 
left indicates that the patient was on medication at the beginning of the study. 

 Medical history is presented by text at the bottom of the display aligned along the 
left margin with the start date of the condition and an indicator of whether or not the 
event was present at the start of the study.  

    14.3.4   Aggregate to Individual 

 In small trials, examining each individual patient in detail may be feasible. However, 
in large trials, speci fi c events usually trigger individual patient review. For example, 
an imbalance in the occurrence of an adverse event between treatment and control 
groups may trigger an investigation of the patients who have the event. 

 Figure  14.10  presents comparisons of adverse event incidences between two 
treatment groups. For each  fi gure, the vertical axis represents the nominal  p -value 



  Fig. 14.9    Individual patient pro fi le utilizing a compact tabular design. The horizontal axis represents study 
week or month (randomization at the beginning of week 1). A break in the horizontal axis is due to higher 
sampling frequency in the  fi rst 4 weeks. Categories of data are listed in the right margin. Dosing times are 
represented by  red circles  with the actual dose level given as a number inside the circle. For laboratory data, 
 bold ,  italicized  numbers superimposed on colored  rectangles  represent measurements outside the normal 
range ( green  = CTC grade 1,  yellow  = CTC grade 2,  orange  = CTC grade 3,  red  = CTC grade 4). For 
adverse event data, serious and non-serious adverse events are represented by  triangles and circles , respec-
tively. The severity of the adverse event is given as a number inside the plotting symbol (1 = mild, 2 = 
moderate, 3 = severe, 4 = life-threatening, 5 = fatal).  Arrows  for adverse events and concomitant medica-
tions represent events or medications that started before the study or were continuing at the end of study       
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and the horizontal axis represents the effect size. Each circle represents an adverse 
event term and the size of the plotting symbol is proportional to the overall inci-
dence. The top row of  fi gures shows the odds ratio between the treatment groups 
(values larger than 1 indicate higher risk on treatment compared to control) and the 
bottom row represents the risk differences (values larger than 1 indicate higher risk 
on treatment). The columns represent different levels of grouping of the adverse 
events. From left to right, the 4 columns represent the system organ classes (SOC), 
high level group terms (HLGT), high level terms (HLT), and preferred terms (PT) 
as classi fi ed in the MedDRA ®;  coding dictionary. 1  The system organ class is the 
broadest grouping of medical concepts in the coding dictionary which is why it has 
the fewest terms which are represented by the circles. Mousing over 2  the plotting 
symbol will display the name of the term in the top-right of the screen. Figure  14.10  

  Fig. 14.10    Example of an interactive graphical display designed to help identify imbalances in 
adverse events. The vertical axis displays the nominal  p -value based on a log-rank test and the hori-
zontal axis represents the effect size (odds ratio in top row and risk difference in  bottom row ). 
Columns represent the hierarchy of the MedDRA ®;  coding dictionary.  Circles  represent an adverse 
event term and the size is proportional to the overall incidence       

   1   MedDRA ®;  the Medical Dictionary for Regulatory Activities terminology is the international 
medical terminology developed under the auspices of the International Conference on 
Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use 
(ICH). MedDRA ®;  is a registered trademark of the International Federation of Pharmaceutical 
Manufacturers and Associations (IFPMA).  
   2   Interactive  fi gures created with S+Graphlets ®;   
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has the “Cardiac disorders” term from the SOC level selected which is the largest 
positive risk difference and signi fi cant at the nominal 5% level.  

 The option “Go to HGLTs, HLTs and PTs within SOC” takes the reviewer to 
Fig.  14.11  that displays a similar set of  fi gures for odds ratio and risk difference for 
the HLGTs, HLTs and PTs within the Cardiac disorders SOC.  

 Mousing over the plotting symbol with the largest positive risk difference in the 
HLGT, HLT and PT panels indicates that the largest imbalances are for “Cardiac 
arrhythmias,” “Supraventricular arrhythmias,” and “Atrial Fibrillation” (shown in 
 fi gure), respectively. Selecting the “View K-M Figure” option takes the reviewer to 
Fig.  14.12  that displays the Kaplan–Meier  fi gures for all atrial  fi brillation adverse 
events, serious adverse events, related adverse events and adverse events leading to 
withdrawal from the study. Additionally, the proportion of patients with events and 
hazard ratios with 95% con fi dence intervals are supplied for the different types of 
adverse events. Patient numbers with hyperlinks to patient pro fi les similar to 
Fig.  14.9  are provided for quick access to individual level data.  

 Although this example was presented by starting at the broadest grouping (SOC) 
of the coding dictionary, working from the opposite direction can be very helpful. If 
there is an imbalance in a preferred term, examining the HLT, HLGT, and SOC for 
that speci fi c preferred term is very helpful to see if similar types of events also show 

  Fig. 14.11    Similar to Fig.  14.10 , restricted to Cardiac disorder SOC. The vertical axis displays the 
nominal  p -value based on a log-rank test and the horizontal axis represents the effect size (odds 
ratio in  top row  and risk difference in  bottom row ). Columns represent the hierarchy of the 
MedDRA ®;  coding dictionary.  Circles  represent an adverse event term and the size is proportional 
to the overall incidence       
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imbalances. Borrowing information from similar medical concepts is what makes 
hierarchical modeling appealing in this setting. 

 Figure  14.10  is a good reminder of the multiplicity issues when examining 
adverse event data. There are thousands of simultaneous comparisons taking place. 
Imbalances can arise at many levels of the coding dictionary (SOC, HLGT, HLT, 
and PT) and at any term within a level. It is interesting to note that this example is 
created by randomly splitting the placebo group from a large clinical trial into 2 
groups; therefore, any difference between the groups is, by de fi nition, spurious.   

  Fig. 14.12    Summary of atrial  fi brillation preferred term. Kaplan–Meier  fi gures for different adverse 
event de fi nitions with corresponding statistical tests for differences in survival curves. Estimates of 
incidence and hazard ratio with 95% con fi dence intervals. Links to patient pro fi les (Fig.  14.9  for 
example) for individual patients experiencing serious adverse events coded as atrial  fi brillation       

 



29314 Data Visualization at the Individual Patient Level

    14.4   Summary 

 While most graphical presentations of clinical trial data focus on group level sum-
mary statistics, focusing on individual patient data is necessary to understand many 
facets of the results from a clinical trial. Potential outliers in important endpoints, 
unusual outcomes, and/or important adverse events require detailed review of indi-
vidual patient data that will encompass many important variables measured during 
the trial. Arranging these data in compact graphical displays can reduce the review 
time, increase ef fi ciency and lead to more accurate conclusions that may impact the 
interpretation of safety and ef fi cacy outcomes. 

 Graphical displays of individual patient data are key to many members of the 
clinical research team, such as statisticians, clinicians, data managers, and medical 
writers. Displays of individual patient data while the study is ongoing help in the 
cleaning of the data and assist in early identi fi cation of patients so additional data 
can be collected prior to the patient ending study. During the analysis, understand-
ing the response of individual patients is key to understanding the full impact of the 
investigational product for both ef fi cacy and safety. When reporting the data outside 
the research team, the understanding of data the individual level helps the team 
answer questions more ef fi ciently and effectively. 

 When clinical research teams work together to identify important data points for 
further investigation, they can help each other by identifying what information is 
needed for the interpretation of individual patient data. With the correct context, 
individual patient data can be revealing and lead to insightful discoveries.      
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  Abstract   We present 4 types of graphic used in meta-analysis. The commonest is 
the forest plot, and we discuss important aspects of the basic form of this plot. We 
present 2 enhanced versions, one displaying the results of subgroup analysis, and 
the second displaying absolute risks alongside relative risks from a meta-analysis 
of a binary outcome. The funnel plot is a well-established graph for assessing pub-
lication bias. We show some alternative forms, including a recently suggested 
enhancement using contours. The third type is a bubble plot used to summarize the 
results of meta-regression. Finally, we show a graphic designed for network meta-
analysis, presenting rankings of the treatments that are compared. We prepared 
programs and graphs using GenStat™, R, RevMan™, SAS™ and Stata™, and 
these are available from the website.      

    15.1   Introduction 

 Meta-analysis is the statistical combination of results from 2 or more studies. It is 
often part of a wide-ranging “systematic review” of a speci fi c medical intervention, 
which considers all the scienti fi c evidence and how it may reasonably be summa-
rized to inform patients, physicians, and policy makers. If used appropriately, meta-
analysis (abbreviated as MA in this chapter) is a powerful tool to summarize 
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quantitative results from multiple studies, and assist in deriving meaningful conclu-
sions. When studies are heterogeneous, the associated technique of meta-regression 
can provide insight into potential explanations of the heterogeneity. 

 A major source of meta-analyses, and guidance related to their production, is the 
Cochrane Collaboration, which is an international, nonpro fi t, independent organiza-
tion. We refer in this chapter to some of the resources provided by this organization, 
which aims to help people make well-informed decisions about healthcare by pre-
paring, maintaining, and promoting the accessibility of systematic reviews of the 
effects of healthcare interventions (Cochrane reviews). These are updated regularly 
and published online. The Cochrane Collaboration is committed to involving and 
supporting people of different skills and backgrounds, reducing barriers to contrib-
uting, encouraging diversity, open decision making, and teamwork. 

 Graphical methods are frequently the most effective way of presenting a MA and 
communicating the results. Tables and text are needed to provide the background to 
and detail of an analysis, and to discuss the interpretation, but a good set of graphi-
cal displays will provide the key messages. It is essential that the graphs should be 
constructed to avoid distorting or obscuring the information in a report, because 
readers will often focus on them more than on the text. 

 For each graph in this chapter we present a version drawn by one package (stated 
in the text). The data and code can be found on the website associated with this 
book, together with code and graphs produced by the other packages we tried.  

    15.2   Forest Plots and Variations 

    15.2.1   Traditional Forest Plots 

 Forest plots are the most common graphical displays for presenting results from 
meta-analyses. In a forest plot the effect estimates from individual studies are dis-
played together with their con fi dence intervals (Anzures-Cabrera and Higgins 
 2010  ) . The individual effect estimates are represented by a symbol whose area is 
proportional to the weight of the estimate in the meta-analysis. A horizontal line 
extending either side of the symbol represents the con fi dence interval. The use of 
different symbol sizes draws attention to studies with larger weight in the 
 meta-analysis, i.e., with smaller con fi dence intervals. The summary effect of the 
meta-analysis is symbolized by a diamond at the bottom of the plot where the width 
of the diamond represents the 95% con fi dence interval. It has become conventional 
to present 95% con fi dence intervals around the estimates in a forest plot, rather than 
any other indications of variability such as standard errors. However, for clarity, it 
should always be stated what the intervals represent. 

 Any type of effect estimate can be used in a forest plot: odds ratios, risk ratios, 
hazard ratios, mean differences, standardized mean differences, proportions, etc. 
Effect estimates measured on a ratio scale are usually displayed on a transformed 
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scale, the log scale, with the x-axis labels presented on the original scale (Anzures-
Cabrera and Higgins  2010  ) . 

 We illustrate the forest plot in Fig.  15.1 , showing a meta-analysis of the risk ratio 
(RR) of cardiovascular events (all-cause mortality, fatal and nonfatal CHD or stroke, 
stent thrombosis, target vessel revascularization, and hospitalization for ACS) in 
trials of clopidogrel (an anti-platelet drug), published by Holmes et al.  (  2011  ) . The 
analysis used the standard inverse-variance method (Birge  1932  ) , combining the 
reported log risk ratios across the 26 selected studies (though 2 of these had no 
estimate available). The comparison was made on treated subjects only, categorized 
by genotype associated with reduced enzyme function.  

  Fig. 15.1    Forest plot of the clopidogrel data, showing risk ratio of cardiovascular events compar-
ing individuals having one or more copies of any CYP2C19 genetic variant associated with reduced 
enzyme function (i.e., *2, *3, *4, *5, *6, *7, *8) with individuals having none of these alleles (i.e., 
*1/*1) or having one or more *17 gain-of-function alleles; (higher risk ratio corresponds to higher 
chance of cardiovascular events with *2–*8). Some counts were not reported (NR). Treatment 
effect (TE) is listed on the log scale with its standard error (seTE)       
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 In this example, the individual studies are ordered according to the weight that 
they have in the meta-analysis, but any other sensible ordering (such as date of 
study) can be used. At the top of the plot are located the 2 trials for which no esti-
mates were available because there were no events in one of the groups. Other 
methods of MA, such as logistic regression, include contributions from such studies 
(though not from studies with no events at all). Con fi dence intervals were truncated 
for studies extending beyond the range of 0.2–5 on the risk-ratio scale: these are 
studies with an effect estimated with low precision. Although the x-axis has a log 
scale, its labels indicate values on the untransformed scale as this is more readily 
understood, as mentioned earlier. The forest plot also allows the comparison of dif-
ferent methods in the meta-analysis; here, the results of both  fi xed-effects and ran-
dom-effects meta-analysis (using the DerSimonian and Laird  1986  method) are 
included at the bottom of the graph. The difference between these methods indicates 
how much heterogeneity there is between the studies. 

 We drew this graph using the Meta package in R, and also produced versions 
using GenStat™ and SAS™.  

    15.2.2   Subgroup Analyses 

 The results of subgroup analyses are often presented in a forest plot. This is relevant 
when studies are divided into subsets according to different characteristics, for 
example types of participants, follow-up duration or treatment. Subgroup analyses 
are undertaken to investigate heterogeneity or to explore speci fi c questions 
(Higgins & Green    2008  ) . For each subgroup a meta-analysis is undertaken and the 
results are presented at the bottom of the group. However, it is the comparison of 
effects between subgroups that is most important, and the graph allows this to be 
done visually. 

 Kirsch et al.  (  2008  )  performed a meta-analysis of selective serotonin reuptake 
inhibitors (SSRI) to establish a relationship between baseline severity of depression 
and ef fi cacy of antidepressants. The SSRI data was obtained from the FDA; it con-
tained information from clinical trials for ef fi cacy conducted for marketing approval 
of antidepressants approved between 1987 and 1999. 

 The aim of the published meta-analysis was to establish a relationship between 
baseline severity of depression and ef fi cacy of antidepressants. The primary out-
come measured in all the trials was a score calculated using the Hamilton Rating 
Scale for Depression (HRSD). Mean change from baseline was calculated by sub-
tracting the mean baseline HRSD scores from the mean score after treatment. We 
performed a subgroup analysis by splitting the studies according to the type of SSRI 
used:  fl uoxetine, nefazodone, paroxetine, or venlafaxine (Fig.  15.2 ). The effect 
measure of the meta-analysis is mean difference (MD). The effect of each drug 
group is represented by individual diamonds. These diamonds have the same inter-
pretation as the diamond used to represent the result of the overall meta-analysis, 
i.e., each diamond is centered in the subgroup effect and the width of the diamond 
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represents the 95% con fi dence interval. The plot suggests that there may be differ-
ences in effect between drug types: the effect of  fl uoxetine and nefazodone on 
change from baseline is lower than the effect observed in paroxetine and ventafax-
ine. These treatment differences by drug type may explain the heterogeneity 
observed in the overall meta-analysis (I 2  = 52.9%). However, the formal 
 between-subgroup test is not statistically signi fi cant (P = 0.10), so the evidence for 

  Fig. 15.2    Subgroup analysis of the SSRI data, showing change from baseline in Hamilton Rating 
Scale for Depression (change expressed as amount of improvement, i.e., reduction in HRSD 
score)       
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 between-subgroup differences is not very strong and the observed differences should 
be interpreted with great caution.  

 We drew this graph using RevMan, and also produced a version using SAS™.  

    15.2.3   Joint Dotplot 

 One major problem with the traditional forest plot for binary outcomes is that 
there is no interpretation of the results on the natural scale of risk. Figure  15.3  
shows the forest plot for the clopidogrel data including an additional panel dis-
playing the raw risks in each study graphically, using the idea in Fig. 9 of Amit 
et al.  (  2008  ) . The combined  fi xed-effects estimate of the risk ratio is accompa-
nied by adjusted average risks (across the population of patients in these trials, as 
explained in Lane  2011  ) , though these exclude the trials with unrecorded counts. 
This puts into context the headline risk ratio of 1.18, typically reported as an 
“18% increase in risk.” This is, of course, an 18% relative increase, and the 

  Fig. 15.3    Joint dotplot of the clopidogrel data, showing risks of cardiovascular events in each 
study alongside risk ratios, and adjusted average risks alongside the combined risk ratio       
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 absolute increase is actually from 0.088 to 0.102, i.e., an extra 14 CV events per 
1,000 patients.  

 We drew this graph using GenStat™, and did not attempt it with other systems.   

    15.3   Funnel Plots 

 A second type of display commonly used in meta-analysis is the funnel plot. This is a 
straightforward scatterplot of some measure of the precision of each study in the analy-
sis against the estimated effect from the study. The main use of the plot is in the assess-
ment of publication bias. Typically, in a collection of studies affected by publication 
bias, the pattern of scatter indicates a de fi ciency of studies with low precision and 
nonsigni fi cant results, a situation which arises with many collections of published 
(rather than in-house) trials because of the tendency not to publish the results of trials 
showing no signi fi cance. Several alternative measures of precision have been sug-
gested, such as the sample size, the SE of the estimated effect, 1/SE or 1/variance. 
Whitehead  (  2002  )  used the sample size, whereas Sutton et al.  (  2000  )  used 1/SE and 
Borenstein et al.  (  2009  )  used SE. Sterne and Egger  (  2001  )  investigated the alternatives 
and recommend the use of SE; they mention in particular that use of sample size pre-
cludes the possibility of adding a funnel constructed from expected con fi dence limits. 

    15.3.1   Standard Funnel Plot 

 Figure  15.4  shows the version with SE plotted against estimate for the SSRI dataset. 
Note that it is conventional to reverse the y-axis so that the “spout” of the funnel is 
at the top. The funnel is simply formed from the pointwise 95% con fi dence limits 
that would be associated with estimates from hypothetical trials with a range of 
standard errors, calculated under the null hypothesis of a  fi xed-effect meta-analysis, 
i.e., with a common treatment effect across all the trials.   

 The vertical reference line here is drawn at the position of the combined estimate 
from a  fi xed-effect meta-analysis. An alternative choice is to position it corresponding 
to the null hypothesis of no treatment effect: if there really is any publication bias, then 
the combined estimate from the collected trials is not reliable. This example of the plot 
shows no evidence of publication bias. There is one study with a particularly high stan-
dard error of the treatment effect, which happens also to have an estimate almost equal 
to the combined estimate. The other studies show a spread of estimates that appears 
almost symmetrical about the combined estimate, with 4 estimates outside the funnel 
and 2 more lying on it. Out of 35 estimates, we would expect to see about 2 outside the 
funnel, so there is more heterogeneity than expected under the  fi xed-effect model. For 
further details of the interpretation of funnel plots, see Sterne et al.  (  2011  ) . 

 We drew this graph using SAS™, and also produced versions using GenStat™ 
and R.  
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    15.3.2   Funnel Plot with Contours, Plotting Reciprocal 
of Standard Error 

 An enhancement to the funnel plot was suggested by Peters et al.  (  2008  )  to help to dif-
ferentiate asymmetry due to publication bias from that due to other factors. The enhance-
ment consists of adding contours, at chosen signi fi cance levels. The idea of the plot is 
that asymmetry involving areas of nonsigni fi cance is likely to be associated with publi-
cation bias, whereas asymmetry involving areas of signi fi cance are more likely to be 
associated with other causes, such as heterogeneity. A detailed report on the interpreta-
tion of funnel plot asymmetry has recently been published by Sterne et al.  (  2011  ) . 

 Figure  15.5  shows an enhanced plot of the SSRI data, using signi fi cance levels 
< 0.01, < 0.05 and < 0.1. For variety, we use 1/SE on the y-axis (as in Peters et al.). 
Note that we have chosen to use lighter shading for less signi fi cant and darker for 
more signi fi cant regions, which seems more natural than the opposite scheme used 
by Peters et al. We also distinguish the different drugs used in the component trials 
of the meta-analysis: this can be a useful visual check of subgroups in an analysis. 

 We drew this graph using GenStat™, and also produced versions using R and 
SAS™. These enhanced funnel plots are provided by the Stata™ system, using the 
“confunnel” command.  

    15.3.3   Funnel Plot with Contours, Plotting Standard Error 

 Figure  15.6  shows a funnel plot of the clopidogrel data, showing a reference line 
this time corresponding to the null hypothesis of no effect rather than at the reported 
combined estimate ( fi xed-effects risk ratio = 1.18).  

  Fig. 15.4    Standard funnel plot of the SSRI data, showing an even distribution of estimates of 
 difference around the combined estimate, regardless of the precision of the estimates       
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 There is pronounced asymmetry in this plot, with 10 trials with intermediate 
precision of estimates well above the null line and only one such trial below the line. 
Most of the 10 trials are in the region of statistical signi fi cance of the estimate com-
pared to 1, which is an indication of publication bias according to Peters et al. This 
plot was shown as e-Figure 2 by Holmes et al., including the result of using a “trim-
and- fi ll” method to attempt to rectify the bias. 

 We drew this graph using R, and also produced versions using GenStat™ and 
SAS™.   

  Fig. 15.6    Enhanced funnel plot of the clopidogrel data, showing the spread of the individual esti-
mates about the null value of 1       

  Fig. 15.5    Enhanced funnel plot of the SSRI data, grouping the points according to the drug tested; 
contours correspond to signi fi cance levels 0.01, 0.05, and 0.1       
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    15.4   Meta-Regression 

 Meta-regression is a technique that can be used to investigate the relationship 
between the treatment effect and one or more study-level covariates, although it is 
only really useful if there are at least 10 studies in the meta-analysis (Borenstein 
et al.  2009 , p. 188). It has been recommended that sources of heterogeneity should 
be investigated wherever possible (Thompson  1994  ) , and meta-regression can be 
used to do this. So, for instance, a continuous measure, such as baseline blood pres-
sure, might have been reported in each trial as a mean across all participants. It 
might be hypothesized that a treatment was most bene fi cial in patients with higher 
blood pressures. The treatment effect sizes can be regressed against such study-level 
mean covariate values, and the analysis weighted so that larger, more precise studies 
receive more weight that smaller, less precise ones. 

 Meta-regression involving a single covariate can be represented straightforwardly 
by a scatter plot of the treatment effect against the covariate, using circles with an 
area proportional to the weight that the study was given in the analysis (Fig.  15.7 ). 
Meta-regression can be based on a  fi xed-effects or random-effects model, as for 
meta-analysis: we used the random-effects model described by van Houwelingen 
et al.  (  2002  ) . The regression line from the meta-regression analysis can be overlaid, 
and a con fi dence interval for the regression line can be added if available. It can also 
be useful to overlay a line showing the location of zero treatment effect; we have 
done this, and also included a line showing the NICE clinical signi fi cance criterion 
(see Figure 4 of Kirsch et al.  2008  ) . The data from one Study, 62, were split into 
those from Mild and Moderate patients by Kirsch et al, and the point from the Mild 
patients is an outlier in the Baseline dimension, which we have therefore labeled.  

 This plot was drawn using GenStat™, and we also produced versions using R, 
SAS™ and the “Metareg” macro in Stata™. 

 Caution should be used in interpreting these meta-regression plots: using the 
mean value of a covariate simpli fi es the information within individual studies. It is 
possible that a relationship between the covariate of interest and the treatment effect 
exists within every individual study, but that this is hidden in the between-study 
means because of some other between-study confounding variable (Thompson and 
Higgins  2002  )    , or simply because the between-study means do not vary much. 

 Meta-regression involving the concurrent analysis of 2 covariates can be illus-
trated using response surfaces (Lau et al.  1998  )    . However, there are rarely enough 
trials in a meta-analysis to consider this (Thompson and Higgins  2002  ) : you really 
need at least 10 trials per covariate. To reduce the risk of  fi nding spurious associa-
tions, the covariates to be investigated should be kept to a minimum, carefully 
prespeci fi ed and their choice scienti fi cally justi fi ed (Higgins and Thompson  2004  )    . 
According to Thompson et al.  (  1997  ) , plotting the treatment effect against the aver-
age baseline risk is not always recommended as it does not take into consideration 
the inherited correlation between the baseline and the treatment effect. There are 
methods available that take this correlation into account, but these are beyond the 
scope of this article.  
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    15.5   Network Meta-Analysis 

 Standard methods of meta-analysis deal with just 2 treatments, providing a direct, 
or head-to-head, comparison between them. When studies provide information on 
more than 2, meta-analysis can be extended to make comparisons between all the 
treatments. One special case of this is “indirect meta-analysis,” where there are typi-
cally 2 sets of studies, one comparing one treatment against a control and another 
comparing a second treatment against the same control. The term “mixed treatment 
comparisons” is used when both direct and indirect comparisons can be made, and 
the 2 types are combined. More generally, however, the term “network meta-analy-
sis” includes both of these special cases, as well as the analysis of any collection of 
studies involving a set of treatments, with potentially different subsets of the treat-
ments compared in each study (see, for example, Jones et al.  2011  ) . 

 The sets of studies in a network meta-analysis can be displayed in simple interval 
plots, showing the estimates and CIs for each study that contribute directly to the 
estimate of an individual treatment comparison. In a Bayesian framework predictive 
intervals can be included in the plot    (Salanti et al.  2011 ). However, this does not 
include the indirect information, and the plots cannot be turned into meaningful for-
est plots with all contributions shown with an indication of their relative weight. 

 Network meta-analysis is commonly carried out using a Bayesian hierarchical 
approach. One of the main drivers for this is the ability to estimate probabilities 
associated with ordering the treatments that are being compared: for example, the 
probability of each treatment being the best among those considered. The probabili-
ties are called rank probabilities; they add up to one for each treatment and each 
ranking. The rank probabilities can then be fed into health economic models to 

  Fig. 15.7    Meta-regression of the SSRI data, showing the relationship between mean treatment 
differences and mean baseline       
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quantify the consequences of selecting treatments in practice. For our purposes, the 
probabilities provide useful information characterizing the network meta-analysis, 
which can be readily displayed in graphical form. 

 Figure  15.8  shows one potential display of this kind. It shows the results of a 
network meta-analysis of common anti-platelet regimens after transient ischaemic 
attack or stroke (Thijs et al.  2008  ) , which was re-analyzed using Bayesian methods 
by Salanti et al.  (  2011  )  to illustrate graphical methods for network meta-analysis. 
Our  fi gure is a composite of 2 of the  fi gures in the latter paper, showing rankograms 
of the  5  paired regimens in one row of a trellis, and the corresponding cumulative 
ranking probabilities in the second row. The two plots order treatments from best to 
worst.  

 The  fi rst point in each panel in the top row shows the probability of one of the 
treatments being best in terms of the chosen outcome, derived from the posterior 
distributions of the model parameters in the Bayesian analysis Salanti et al.  (  2011  ) . 
The second point shows the probability that this treatment is second best, and so 
on. By joining the points with a line, we can see a pro fi le of each treatment, 
which gives a visual representation of how one treatment compares to the others 
in probabilistic terms. We have ordered the treatments by the position of the 
peak of the pro fi le. The second row of panels display the cumulative probabili-
ties, which provide the same information but in a different form so that we can 
also see the probabilities of each drug being in the top two treatments, for exam-
ple, again with a pro fi le allowing easy visual comparison across treatments. 
Based on these plots, the best available treatment is the combination of aspirin 
and dypiridamole. 

 This plot was drawn using SAS™, and we also produced a version using 
GenStat™ and R.  

  Fig. 15.8    Treatment rankings from a network meta-analysis of  5  anti-platelet regimens. The 
x-axis shows the  5  possible ranks and the y-axis the probability of achieving that rank       
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    15.6   Conclusion 

 We have shown some of the main types of graph used in meta-analysis, and empha-
sized some of the important features of them. There are, of course, many more types, 
and we mention 2 of them here even though we have not included them, because they 
are frequently used. The L’Abbé plot was introduced by L’Abbé et al.  (  1987  ) . It is a 
scatter plot of the contributing summaries from each trial, one arm against the other, 
usually representing points as bubbles to indicate the amount of information from 
each trial. It is most often used with binary outcomes, and can be a useful visual sum-
mary of the weight of evidence in favor of one treatment compared to another. 

 The radial plot is another standard way to present the information in a funnel 
plot, and the Galbraith plot is an enhanced version of it (Galbraith  1988  ) . Starting 
from a funnel plot using 1/SE as the measure of “study size,” the estimates are stan-
dardized (divided by their SEs) and the axes are interchanged. The enhanced form 
includes a circular (or sometimes vertical) axis to calibrate the slope (i.e., the com-
bined estimate) with its con fi dence interval. This also adds to the visual apprecia-
tion of how the individual study estimates contribute.      
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  Abstract   The focus of this chapter is on visualization of QT data for thorough QT 
(TQT) study analysis and review. The use of graphics is particularly important for 
QT data due to the high variability and to explore the adequacy of heart rate QT 
correction, baseline adjustments, choice of positive control to establish assay sensi-
tivity, and the relationship between exposure and QT prolongation. A QT knowl-
edge management system implemented in the R package “QT” standardizes and 
automates the QT data analyses, graphical representation, and reporting. This allows 
for easier communication of the results because the analyses are consistent and 
enables pooled data analysis across TQT studies to address drug development 
related questions.      

    16.1   Introduction 

 The objective of a thorough QT (TQT) study is to determine whether a drug has a 
pharmacological effect on cardiac repolarization as detected by a QT prolongation 
on the surface electrocardiogram (ECG) as described in the guideline  (  ICH E14  ) . 
Refer to Chap.   18     for more information about ECGs and the QT interval. 

 The  D QTc (time-matched baseline adjusted QTc) and  D  D QTc (time-matched 
change from placebo- and baseline-adjusted QTc) used for the central tendency and 
concentration–QTc analyses are calculated by

     drug drug drugQTc ( ) QTc ( ) QTc (baseline)t tD = -
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     placebo placebo placeboQTc ( ) QTc ( ) QTc (baseline)t tD = -
   

     
DD = D - Ddrug placeboQTc( ) QTc ( ) QTc ( ),t t t

   

where the baseline QTc is calculated as the mean of the pre-dose ECG measurements 
for each treatment. 

 A key component for assessing the QT prolongation potential of a drug is to cre-
ate informative graphs that are tailored to address the key questions to be answered. 
For that purpose, the R package “QT” (requires SAS™) was developed based on the 
accumulated review experience from the FDA’s interdisciplinary review team for 
QT (IRT-QT) (Tornoe et al.  2011  ) . The purpose was to develop standardized graph-
ics to increase the productivity, consistency, and quality-thereby ensuring faster and 
easier communication between the team of inter-disciplinary scientists. 

 While other papers focus on issues related to TQT study design, conduct, and 
analysis methods, the objective of this chapter is the visualization of QT data for 
TQT study analysis and review to make informed decisions through the following 
10 steps:

    1.    Data integrity  
    2.    QT correction method  
    3.    Adequacy of sampling times  
    4.    Baseline corrections  
    5.    Assay sensitivity  
    6.    Measure of central tendency  
    7.    Assessing delay between drug and QT effects  
    8.    Relationship between drug exposure and QT prolongation  
    9.    Prediction of QT prolongation at different exposure levels  
    10.    Bene fi t-risk assessment      

    16.2   Developing Standardized Graphics for QT Data 

 The high variability and low signal-to-noise ratio (trying to exclude a 10 ms QT 
prolongation) in QT measurements makes it dif fi cult to spot trends and relation-
ships based on individual data points. For this purpose, tailored quantile plots were 
developed. 

 The quantile plot is generated by binning the independent variable (e.g., RR or 
concentrations) into quantiles (bins with equal numbers of observations) and plot-
ting the local median or midpoint of the observations in each of the independent 
variable bins against the corresponding local mean dependent variable (e.g., QT or 
 D  D QT and associated 90% con fi dence interval). This is the binning method imple-
mented in the R package. 
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 A potential issue arises when using the local means across the dependent vari-
able quantiles. The different bins can potentially be imbalanced in the number of 
individuals. Taking the mean of all observations in each bin and calculating the 
standard deviation for that mean ignores that some of the observations are corre-
lated since they arise from the same subject. This is most likely to be an issue when 
pooling data from different studies with different variability in PK. One way to 
account for this imbalance is to use precision weighted averages in each bin by
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where   s   2  is the variance of the measurements in the bin,  N  is the number of subjects 
in the bin, and  n  

 i 
  is the number of measurements for the  i th subject in the bin.  M  

 i 
  is 

the mean of the  i th subject’s measurements that fall into the bin. 
 Another way to avoid the complex calculations of the mean of the dependent 

variable is to calculate it for each sampling time thereby ensuring that only one 
measurement per subject is present in each of the bins. The disadvantage, however, 
is that the bins are not distributed evenly over the range of measurements.  

    16.3   QT Knowledge Management System 

 The QT knowledge management system developed for automatic QT data analyses 
and reporting is implemented in the R package “QT” (  http://www.cran.r-project.
org    ) that performs the data manipulation and graphical presentation of results, exe-
cutes the linear mixed-effects analyses in SAS, and generates an analysis report 
with key results and  fi gures. 

 The data template for the R package is shown in Table  16.1 .  
 The “QT” R package consists of  5  main functions (the R and SAS code can be 

found at   http://qttool.googlecode.com    ):

   QTcorrections: This function performs the QT-RR analysis on off-drug treat-• 
ment data and evaluates the ability of the different QT corrections to remove the 
heart rate effect on on-drug treatment data using PROC MIXED in SAS  
  DataCheck: The DataCheck function visualizes key data to check the integrity of • 
the analysis dataset  
  MeanData: The MeanData function calculates and plots the mean pro fi les, and • 
creates the dataset for the QTc-time and concentration–QTc analyses  

http://www.cran.r-project.org
http://www.cran.r-project.org
http://qttool.googlecode.com
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  QTtime: The central tendency analysis of QTc versus time is performed in SAS • 
using PROC MIXED  
  QTconc: The concentration–QTc analysis is performed in SAS using PROC • 
MIXED. Three models are estimated, i.e., (1) “with intercept,” (2) “no intercept,” 
and (3) “intercept  fi xed to zero with variability.” The results are summarized in 
tables and graphs     

    16.4   Visualization of QT Data in Ten Steps for TQT Study 
Analysis and Review 

 In the following, the 10 visual steps for TQT study analysis and review are illustrated 
using simulated data included in the R package “QT.” The simulated TQT study is 
a 4-way crossover design with placebo, moxi fl oxacin (active control), and therapeu-
tic and supra-therapeutic doses of the drug candidate. The colors used for the differ-
ent treatment arms are consistent in the following  fi gures with black, orange, blue, 
and red representing placebo, moxi fl oxacin, therapeutic dose, and supra-therapeutic 
dose, respectively. Mean and 90% con fi dence interval are used throughout. 

    16.4.1   Data Integrity 

 Initially, the derived dataset containing QT-, RR-, and concentration–time pro fi les 
are inspected by visualizing the data to ensure the merging of data is performed cor-
rectly. In Fig.  16.1 , the QT, RR, moxi fl oxacin, and drug X concentrations are plotted 
for the 4 treatments to assess whether there are outliers, unrealistic values, or unit 
differences in the measurements.   

   Table 16.1       Data template for QT package   

 Column identi fi er  Description  Units  Type 

 subjid  Subject identi fi er  Character 
 treat  Treatment group  Character 
 period  Period  Numeric 
 day  Day relative to  fi rst dose of period  Days  Integer 
 time  Time relative to dose  h  Numeric 
 rr  RR interval  ms  Numeric 
 hr  Heart rate  bpm  Numeric 
 qt/qtc  QT/QTc interval  ms  Numeric 
 qt.bs/qtc.bs  QT/QTc baseline  ms  Numeric 
 qt.cfb/qtc.cfb  QTc/QTc change from baseline  ms  Numeric 
 conc  Parent drug concentration  Numeric 
 meta  Metabolite concentration  Numeric 
 moxi  Moxi fl oxacin concentration  Numeric 
 wt  Body weight  kg  Numeric 
 age  Age  years  Numeric 
 sex  Gender  M = male, 

F = female 
 Controlled 

term 
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    16.4.2   QT Correction Method 

 Before assessing the QT prolongation potential of a drug, the heart rate effect should 
be removed  fi rst since it is known to affect the QT interval. The relationship between 
QT interval length and heart rate (using the RR interval) is investigated using the 
available off-drug data only (Fig.  16.2  top). Given the high variability in QT mea-
surements, it is dif fi cult to assess the adequacy of the QT correction method when 
visualizing the individual data points and comparing it to the estimated regression 
line (Fig.  16.2  top). However, by using the previously described quantile plot a dif-
ferent intercept (at RR = 1,000 ms) and slope between males and females are clearly 
seen in Fig.  16.2  (bottom).  

 In Fig.  16.3 , the individual relationship between QT, QTcB (Bazzett’s), QTcF 
(Fridericia), and QTcI (Individual correction) and RR indicates that QTcB overcor-
rects for heart rate whereas QTcF and QTcI both seem to be appropriate correction 
methods.  

 The choice of the heart rate correction method to use for further analyses is fur-
ther investigated by estimating a linear model using on-drug data to see whether the 
slope is signi fi cantly different from zero indicating whether there still is a relation-
ship between QT and heart rate. The quantile plots in Fig.  16.4  show that the slopes 
for QTcF and QTcI are both signi fi cantly different from zero on a 0.05  a -level but 
QTcI appears to be the most appropriate QT correction methods.  

 Furthermore, to ensure that it is not only a global trend shown between the dif-
ferent QT correction methods (QTc) and RR, the average sum of squared individual 
slopes are calculated and compared to the QTcI having the lowest average (see 
Table  16.2 ).   
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curves. The  dots  represent 
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quantiles and associated 
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ranges for males ( blue ) and 
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  Fig. 16.3    Individual QT, QTcB, QTcF, and QTcI versus RR interval       

 

 



31516 Visualization of QT Data for Thorough QT Study Analysis and Review

    16.4.3   Adequacy of Sampling Times 

 The timing of ECG samples should be guided by the available information about the 
PK properties of the drug candidate and the QT effect should be characterized 
throughout the anticipated dosing interval (FDA  2005  ) . 

 ECG and PK should be sampled frequently enough to ensure the peak drug con-
centration is captured and ECG recordings at time points around  the maximum con-
centration time, t

max
    in case the peak effect on QT does not correspond to peak 

concentration. The sampling should be for at least 24 h post dose in case the cardiac 

   Table 16.2    Average sum of individual squared slopes for different QT-RR correction methods   

 α-QTcF (where QTcF is subset to a)  0.001816 
 α-QTcI (where QTcI is subset to a)  0.000448 

       a  
 x 
  = 1,000/ n ∑ b  

 x 
 ( i ) 2 , where  b  

 x 
 ( i ) is the estimated slope for correction  x   
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  Fig. 16.4    Mean (90% 
con fi dence interval) predicted 
QTcF and QTcI versus RR 
relationship ( solid line  and 
 shaded area ) for male ( blue ) 
and female ( red ). The  dots  
represent the observed 
median RR quantiles and 
associated mean (90% 
con fi dence interval) QT. RR 
quantile ranges for males 
( blue ) and females ( red ) are 
shown along the  x -axis       
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repolarisation effect is delayed. The PK concentration–time pro fi les for therapeutic, 
supra-therapeutic doses and the positive control moxi fl oxacin are shown in Fig.  16.5  
with a  t  

max
  around 4 h for the test drug and around 2 h for moxi fl oxacin. The sampling 

is more frequent up until 5 h post dose to ensure the individual  C  
max

  (maximum con-
centration) is captured. The time-matched ECGs are sampled just prior to the PK 
sample to ensure that the venipuncture does not affect the ECG sample.   

    16.4.4   Baseline Correction 

 Baseline corrections are necessary in TQT studies due to the large inter-individual 
variability. For a crossover study design, baseline measurements before each 
period are used with the diurnal variability in QTc accounted for by each subject 
receiving all 4 treatments at exactly the same time points. In Fig.  16.6 , the mean 
QTcI and  D QTcI (change from baseline) are illustrated showing a clear separation 
of moxi fl oxacin and supra-therapeutic dose from placebo and the therapeutic 
dose. The diurnal variation in all treatment arms is clearly visible with peaks 
around 4 and 18 h post dose and nadirs around 12 and 24 h post dose. This vari-
ability can be a result of many factors including activity level, postural changes, 
circadian patterns, and food intake. Finally, it is noticed that all treatment arms 
return to baseline 24 h post dosing where the exposure of the drug is negligible 
(see Fig.  16.6 ).   

    16.4.5   Assay Sensitivity 

 The purpose of including a positive control is to ensure con fi dence in the ability of 
the TQT study to detect changes in the mean QT prolongation of around 5 ms 

Time (hours)

M
ea

n 
(9

0%
 C

I)
 c

on
ce

nt
ra

tio
n 

(n
g/

m
L)

0

2000

4000

6000

0 4 8 12 16 20 24

  Fig. 16.5    Mean (90% 
con fi dence interval) 
concentration–time pro fi les 
following a therapeutic dose 
( blue line ), supra-therapeutic 
dose ( red line ), and 400 mg 
moxi fl oxacin    ( orange line )       

 



31716 Visualization of QT Data for Thorough QT Study Analysis and Review

(FDA  2005  ) . Moxi fl oxacin (a  fl uoroquinolone used for respiratory infections) is 
the most commonly used positive control in TQT studies because it reliably pro-
longs the QT interval with no signi fi cant effect on heart rate and is considered rela-
tively benign. 

 Assay sensitivity is established if at least one time point excludes a 5 ms differ-
ence in the mean  D  D QTc (baseline and placebo adjusted) with a one-sided 95% 
con fi dence interval thereby preserving at least 50% of the previously reported 
 D  D QTc effect of 10–14 ms following 400 mg moxi fl oxacin (Bloom fi eld et al. 
 2008  ) . The shape of the  D  D QTcI-time pro fi le is shown in Fig.  16.7  with peak effect 
excluding 5 ms around 2–4 h post dose and return to baseline at 24 h post dose as 
expected (Florian et al.  2011  ) . Similarly, the slope of the moxi fl oxacin concentra-
tion–QTc relationship shown in Fig.  16.7  can be used to con fi rm assay sensitivity 
in cases with reduced moxi fl oxacin exposure, e.g., due to over-encapsulation 
(Florian et al.  2011  ) .   
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    16.4.6   Measure of Central Tendency 

 The FDA E14 guidance (FDA  2005  )  sets the threshold of regulatory concern for the 
drug candidate around 5 ms evidenced by an upper bound of the one-sided 95% 
con fi dence interval around the mean  D  D QTc (time-matched difference in baseline 
and placebo adjusted QTc) excluding 10 ms. The TQT study is considered to be 
negative if the mean excludes 10 ms at all time points. In Fig.  16.8 , the therapeutic 
treatment arm clearly excludes 10 ms at all time points whereas the upper 95% 
con fi dence interval includes 10 ms between 1.5 and 18 h post dose for the supra-
therapeutic treatment arm.   
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    16.4.7   Assessing Delay Between Drug and QT Effects 

 Before investigating the potential relationship between drug exposure and QT effect, 
it is important to assess whether there is a temporal delay between drug concentra-
tions and  D  D QTc. This could potentially indicate that an active metabolite is caus-
ing the QT prolongation, and it often requires more advanced modeling to account 
for the delay if the metabolite is not measured directly. Due to the inter-individual 
variability in PK and QT, the individual QTc versus drug concentration is expected 
to show very different slopes (positive and negative) and potentially also hysteresis 
(the effect on QT lags the change in concentration). Instead, the mean concentra-
tions at each sampling time are plotted against the corresponding mean (90% 
con fi dence interval)  D  D QTcI and connected in chronological order in Fig.  16.9 . The 
slope for the therapeutic and supra-therapeutic treatment arms appear similar and 
there does not appear to be any clear sign of hysteresis except for the last 2 sampling 
times at 18 and 24 h post dose. A linear exposure-response model therefore seems 
adequate to assess the relationship between drug concentration and  D  D QTcI.   

    16.4.8   Relationship Between Drug Exposure 
and QT Prolongation 

 An adequate TQT study should ensure that the dose- and exposure-response rela-
tionship for QT prolongation has been characterized at concentrations covering the 
worst case clinical exposure scenario in order to support regulatory review (Garnett 
et al.  2008  ) . 
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 It is important to understand the relationship between drug exposure and QT 
prolongation when (1) the primary E14 analysis is positive, (2) it is not possible to 
test doses high enough to cover the worst case clinical exposure scenario, or (3) 
when the TQT study is positive based on the E14 analysis but there is lack of dose- 
and exposure-response (Garnett et al.  2008,   2011  ) . 

 The relationship between drug concentration and  D  D QTcI is shown in Fig.  16.10  
with a clear linear dependency, and the relationship appears similar for therapeutic 
and supra-therapeutic exposures.  

 The individually estimated linear mixed-effects regression lines are furthermore 
shown in Fig.  16.11  (top) to assess whether the relationship between concentration 
and  D  D QTcI is more or less pronounced compared to the population mean predic-
tions. All subjects have a positive slope very similar to the estimated population 
slope while there is some variability in the intercept. The residuals are shown in 
Fig.  16.11  (bottom) to see whether there are outliers or subjects that are poorly  fi tted 
by the linear mixed-effects model.   

    16.4.9   Prediction of QT Prolongation at Different Exposure 
Levels 

 The  D  D QTc predictions at the geometric mean peak concentration following thera-
peutic and supra-therapeutic doses are assessed and compared to the primary E14 
analysis. Figure  16.11  (top) shows the mean (90% con fi dence interval)  D  D QTcI of 
0.00 (−2.50; 2.51) and 12.5 (9.49; 15.5) ms at geometric mean peak concentrations 
of 691 and 6,230 ng/mL, respectively. These predictions based on the concentra-
tion– D  D QTcI relationship are consistent with the primary E14 analysis mean 
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(90% con fi dence interval) estimates of 4.39 (−0.86; 9.65) and 13.4 (9.62; 17.3) ms 
at 18 h and 3 h post therapeutic and supra-therapeutic doses, respectively.  

    16.4.10   Bene fi t-Risk Assessment 

 The concentration–QTc relationship is used to perform the bene fi t-risk assessment 
for drugs that prolong the QT interval. The  fi rst question to ask is whether the supra-
therapeutic dose covers the highest expected clinical exposure scenario. This is 
done by adding the fold-change in  C  

max
  and AUC for identi fi ed intrinsic and  extrinsic 
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  Fig. 16.10     D  D QTcI versus drug concentration. ( Top ) Observed data with population mean predic-
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factors (e.g., gender, race, organ impairment, drug–drug interactions, or food 
effects). This way the QT risk in subpopulations can be assessed and appropriate 
dose adjustments and ECG monitoring can be derived in order to write informative 
drug labels. 

 For the example shown in Fig.  16.12  (bottom), the geometric mean peak supra-
therapeutic exposure shown in red is 9-fold higher than the therapeutic exposure 
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shown in blue and clearly prolongs the mean QT interval by more than 10 ms. 
However, if the worst case clinical exposure scenario is between 2- and 4-fold, there 
does not appear a high risk of QT prolongation.    

    16.5   Concluding Remarks 

 The purpose of creating a QT knowledge management system was to automate QT 
data analyses and reporting for consistent and timely review of TQT studies. 
Furthermore, the developed graphics and reporting standards allow for easier com-
munication (internally and externally) of results. 
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 An important aspect of QT data analyses is to explore the adequacy of the model 
assumptions (e.g., heart rate QT correction, baseline adjustments, choice of positive 
control to establish assay sensitivity, linear or nonlinear concentration–QTc rela-
tionship, and direct or delayed effects) through model diagnostics and graphical 
analyses. 

 The system furthermore enables leveraging prior information to answer drug 
development related questions through pooled data analysis since the data and 
results are in a consistent format that easily can be combined. Contributions to 
improve the science include (1) the use of concentration–QT modeling for regula-
tory review of new drugs (Garnett et al.  2008  )  and (2) evaluating TQT study design 
features on moxi fl oxacin response (Florian et al.  2011  ) .      
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  Abstract   We present a range of graphics designed for reporting the analysis of 
safety data. For adverse events (AEs), we show a comparative dot-and-interval plot 
of all the main AEs in a trial and also comparative plots of cumulative incidence and 
hazard rate for individual AEs. For laboratory data, we show a scatterplot designed 
to help identify potential liver toxicity and 2 trellis plots that can show several labo-
ratory measurements in a single graph, showing changes from baseline or the rela-
tionship between the measurements. We also give an example of a pro fi le plot for 
individual patients. Finally, for ECG data we show a comparative cumulative distri-
bution plot and a comparative boxplot pro fi le showing how distributions change 
over time. We also show a simple comparative pro fi le plot of means of an ECG 
measurement over time. We produced each graph using one of GenStat™, SAS™ 
and S-PLUS™ (using code very similar to R), as indicated in the text, and the pro-
grams and data are available from the Web site associated with the book.      

    17.1   Introduction 

 The analysis of safety data mostly takes the form of simple descriptive statistics, 
displayed in a tabular or graphical form. For example, the number and percentage of 
patients experiencing adverse events may be presented, or the means or medians of 
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clinical laboratory measurements. Graphs are ideal for communicating this type of 
information concisely. A particular advantage over tabulation is that the descriptive 
statistics can often be presented in conjunction with the patient data that have been 
summarized, to put the statistics in context. Another advantage is that the human 
eye is able to detect anomalies and patterns in pictures better than in tables of num-
bers, and a graphical display allows more effective communication. 

 We consider here 3 types of safety information: adverse events, liver toxicity 
and cardiac safety. We illustrate graphical methods of displaying this information, 
based on work by a GlaxoSmithKline team of which we were members, and which 
was reported in a paper by Amit et al.  (  2008  ) . We have updated these in the light of 
recent developments and added some new examples. There are clearly many other 
types of safety information, but we suggest that many may be displayed graphi-
cally using the same approach as we use here for the types on which we 
concentrate. 

 For each graph in this chapter we present a version drawn by one package (named 
in the text). The data and code can be found on the website associated with this 
book. Most of the data are from a single anonymized clinical trial, which we will 
refer to as the Safety trial.  

    17.2   Adverse Events 

 There are numerous adverse events (AEs) reported in each clinical trial, so displays 
need to be tailored to highlight important information, such as the most common 
events and events of special interest. The SPERT (Safety Planning, Evaluation and 
Reporting Team) have recommended a three-tier approach for signal-detection and 
analysis of AEs (Crowe et al.  2009  ) . The  fi rst tier is made up of AEs of special inter-
est, identi fi ed in advance of running trials, and the second and third tiers of other 
AEs that are considered common and uncommon, respectively: “common” is sug-
gested by Crowe et al. to be more than about 1% incidence in any treatment arm, 
though this will depend on the size of the trial. The methods in this section are suit-
able for AEs in Tiers 1 and 2; AEs in Tier 3 are best reported with simple summary 
statistics. 

    17.2.1   Dot-and-Interval Plot of AE Incidence 

 A dotplot is an ideal display to show and compare AE incidence in a randomized 
clinical trial. This type of display was introduced by Cleveland in the context of 
showing counts and proportions, and is generally considered superior to barcharts 
and piecharts (Cleveland  1993  ) .    Figure  17.1  shows a two-panel display which 
enhances the simpler dotplot by adding statistical information comparing the 
incidence rates of AEs in the Safety trial. In this example, we display all AEs that 
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had overall incidence greater than 2%, along with relative risks and the asymptotic 
con fi dence intervals.  

 It is clinically valuable to see the actual risk differences as well as relative risks 
in a single snapshot, to put the statistical ratios into context. Note that the adverse 
events are ordered by relative risk. Other statistics can also be considered for the 
right-hand panel, such as risk differences, odds ratios or hazard ratios, depending on 
the objectives of the display for its audience. It is useful to give further context by 
adding information about the number of patients in the safety population of the trial: 
here, we have added that to the key. Colour is used in a modest way to help distin-
guish the 2 treatments, but note that different symbols are used as well in case the 
graph is viewed in black and white. 

 This graph was drawn using S-PLUS™.  

    17.2.2   Cumulative Incidence of an AE 

 Cumulative incidence over time is often of interest with AEs, as the time at which 
such events manifest themselves can be critical in guiding regulators and prescrib-
ers regarding monitoring and clinical use of a drug. Figure  17.2  shows a cumulative 
incidence plot of the gastrointestinal AEs from the same trial as above. It is con-
structed in much the same way as a Kaplan–Meier (KM) plot, taking account of 
censored information because many patients withdrew from this trial. It is better to 
display the information as (1–“survival”) against time here, rather than as  survival 

  Fig. 17.1    Dot-and-interval plot of AE incidence       
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against time as in the KM plot because incidence is the focus for AEs. There is also 
the point that most people are used to seeing survival plots with the  y -axis ranging 
fully from 0 to 1, which would cramp the information at the top of the frame (Pocock 
et al.  2002  ) .  

 The plot has several enhancements compared to a simple KM plot. First, the 
numbers of subjects at risk are displayed as strategic points along the  x -axis in a 
lower margin, to quantify the steadily decreasing population as subjects withdraw 
over time. Second, the actual censoring times of subjects on each arm are marked 
as a “rug-plot” on top of each step function representing the cumulative propor-
tion. Third, the SEs of the estimated proportions are indicated at the same strate-
gic points to show how much precision has been achieved. In this case, we have 
shown these as positive error bars only, but they could alternatively be negative 
bars, the usual two-sided bars, or indeed show 95% con fi dence intervals instead. 
Note that colour is used as in Fig.  17.1 , and that different line styles are used in 
case the graph is viewed in black and white. In some settings, such as clinical tri-
als without a  fi xed follow-up, use of competing risks methodology (Pintilie  2007  )  
should be considered in order to estimate the cumulative incidence curves. This 
methodology would be particularly useful in trials where subjects are treated until 
the occurrence of a speci fi c event (e.g., disease progression), separate from the 
safety event of interest. 

 This graph was drawn using S-PLUS™, which provides an option to add the 
tricky part, i.e., the rug-plots.  

  Fig. 17.2    Cumulative incidence of an adverse event, with SEs at selected time-points       
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    17.2.3   Hazard Rate for an AE 

 The information about incidence of an AE can also be displayed as a hazard rate 
function. Figure  17.3  shows this for the same data, with the hazard rates estimated 
in successive 20-day intervals (again taking account of censoring) and drawn as a 
pair of step functions.  

 As for Fig.  17.2 , this has been enhanced with a lower margin giving the average 
number of subjects at risk during each time period, and SE bars for each hazard 
estimate. The choice of time periods can be important to illustrate the differences 
between the two drugs effectively. Note that there is no SE for periods where the 
hazard was 0, as the estimate of SE is formally 0 for such periods. The lines are 
again differentiated both by colour and line-style. 

 This graph was drawn with S-PLUS™.   

    17.3   Liver Toxicity 

 Drug-Induced    Liver Injury (DILI) is “the single most common adverse effect that 
can result in failure to obtain regulatory approval to market a new drug, and post-
marketing regulatory actions include labelling restrictions and withdrawal from the 

  Fig. 17.3    Comparative hazard function for gastrointestinal AEs of concern: nausea, abdominal 
pain, diarrhoea and vomiting       
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marketplace” (Watkins  2005  ) . In general, hepatic safety is the second most common 
reason for termination due to safety during drug development. DILI is the most 
frequent cause of acute liver failure in patients evaluated for liver transplantation. 
There are 3 main types of liver toxicity that may be observed: directly destructive, 
indirect (or metabolic) and cholestatic. 

 Intrinsic or direct liver injury (e.g., that seen with acetaminophen) is:

   Predictable  • 
  Dose-related  • 
  Similar in animals  • 
  Relatively common  • 
  Observed after a short interval    • 

 On the other hand, idiosyncratic liver injury (e.g., that seen with Troglitazone) is:

   Unpredictable  • 
  Often dose-independent (Lammert et al.  • 2008  )   
  Not seen in animals  • 
  Relatively rare: 1 in 10,000 to 1 in 100,000  • 
  Usually observed after a longer interval    • 

 There are 2 main types: hypersensitivity and metabolic. 
 Typically in clinical trials, 4 cardinal variables are monitored for liver toxicity 

using what are described as liver function tests (LFT):

   ALT: alanine aminotransferase  • 
  TBL: total bilirubin  • 
  AST: aspartate aminotransferase  • 
  ALKP: alkaline phosphatase    • 

 ALT, AST and TBL are of particular interest because of a criterion that is gener-
ally accepted as a surrogate for potential DILI, known as Hy’s Law. While there are 
several clinical aspects to the determination of a Hy’s Law case, the laboratory cri-
teria are de fi ned as an elevation of ALT or AST together with simultaneous or sub-
sequent elevation of bilirubin. An occurrence of such a simultaneous elevation 
indicates the potential for severe liver injury and which in turn could predict for 
acute liver failure. Andrade et al  (  2005  )  have reported a 10% fatality from drug-
induced liver injury with jaundice. 

    17.3.1   Scatterplot to Assess Drug-Induced Liver Injury 

 The FDA has adopted a criterion for Hy’s Law (Wilke et al.  2007  ) , generating a 
signal when the following conditions are all met:

   ALT or AST  • ³  3xULN (upper limit of normal measurements)  
  TBL  • ³  2xULN  
  ALKP  • £  2xULN    
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 A graphical approach suggested as part of the FDA DILI guidance to evaluate 
potential Hy’s law cases is shown in Fig.  17.4  (using simulated data). This is a 
simple scatterplot of maximum TBL for subjects during the course of a trial against 
maximum ALT, with reference lines and annotation associated with the Hy’s Law 
criterion. This concentrates just on ALT and TBL, and a similar graph can be drawn 
for TBL versus AST.  

 The  fi gure is split into 4 quadrants with the upper right quadrant indicating the 
potential for a Hy’s Law case. The bottom right quadrant showing subjects with 
elevated ALT but without elevated TBL is associated with another conjecture called 
Temple’s Corollary. It has been hypothesized that a signi fi cant number of patients 
within this quadrant will predict for the presence of a Hy’s Law case at some point 
in time. The top left quadrant is referred to as the Cholestasis Range, associated 
with Gilbert’s Syndrome (high TBL but normal ALT). 

 The aspect ratio of this graph is worth noting: it emphasizes the ALT measure-
ments by having a longer axis, and this corresponds to the fact that one can observe 
far more extreme ALT measurements as multiples of ULN than with TBL. In addi-
tion, ALT is typically more predictive of clinical harm in DILI because TBL outliers 
may be due to Gilbert’s Syndrome and therefore not so important. 

 This graph was drawn using GenStat™.  

    17.3.2   Scatterplot Trellis of Shifts from Baseline Measurements 

 A standard tabular summary of LFTs that evaluates shifts in individual LFT mea-
surements is shown in Table  17.1 . The number of subjects who “shifted” to a higher 
LFT value relative to their baseline value is shown in the table.  

  Fig. 17.4    Scatterplot of Total Bilirubin versus ALT used as a signal for DILI       
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 A concise graphical summary of the same sort information from the Safety trial 
is provided in Fig.  17.5 .  

 There are several important elements to this graph. First, when comparing an 
active drug against a control, as here, it can be more informative to arrange that the 
control points (blue circles) are drawn last: the distribution of extreme points from 
the active drug then appears as a “frill” around the central mass of blue points, 
allowing quick visual appreciation of the potential effect of the drug. However, 
some software makes this dif fi cult, and we could not  fi nd a way to achieve it in 
Fig.  17.5  using S-PLUS™. 

 Interpretation of the absolute distribution of the observations for each treatment 
can be misleading, as the points tend to lie above and to the left of the centre diago-
nal of each graph. This is an inevitable consequence of using a maximum of several 
values on the  y -axis: in this case there were 8 visits during the trial. Because of natu-
ral variation, the distribution of a maximum of 8 observations is inevitably shifted 
upwards compared to the distribution of a single (baseline) measurement, regardless 
of any effect of the drugs. Note that the reference lines have been updated since 
publication of this  fi gure in    Amit et al. ( 2008 ) to take account of the criteria described 
in the FDA DILI guidance. 

 Two other features of this graph can be of importance for interpretation. The 
distribution of LFT measurements is usually very skewed, particularly when the 

  Fig. 17.5    Trellis of scatterplots of maximum LFT measurements versus baseline       

   Table 17.1    A standard tabular summary of LFTs, evaluating shifts in individual LFT measurements      

 Test  Time 

 Treatment A  Treatment B 

  n  
 Any 
increase 

 Increase 
> 3xULN 

 Increase 
> 5xULN   n  

 Any 
increase 

 Increase 
> 3xULN 

 Increase 
> 5xULN 

 ALT  Week 4  18  2 (11%)  1 (6%)  0  18  2 (11%)  1 (6%)  0 
 Week 6  18  2 (11%)  1 (6%)  0  18  2 (11%)  1 (6%)  0 
 Week 8  18  2 (11%)  1 (6%)  0  18  2 (11%)  1 (6%)  0 
 Post Rx  18  3 (17%)  1 (6%)  0  18  3 (17%)  1 (6%)  0 
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patient population has signi fi cant elevations, as seen in Fig.  17.4 . The graphical 
display of the relationships can then often be improved by using a log scale as in 
that  fi gure, which allows display of all the extreme values without overemphasizing 
those values within the  fi gure.  

    17.3.3   Scatterplot Matrix of Maximum LFT Measurements 

 The association between the various LFT measurements can be displayed in the 
matrix plot as shown in Fig.  17.6 . This shows a triangular array of each of 4 LFTs 
against each other, allowing quick visual assessment of the interrelated information 

  Fig. 17.6    Triangular scatterplot matrix of maximum LFT measurements       
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associated with signals such as Hy’s Law. Like Fig.  17.4 , Fig.  17.6  can also provide 
a quick visual assessment of potential Hy’s law cases and can also show another 
important relationship between ALT and AST. The latter can help in further de fi ning 
the nature of the liver signal of a particular compound.  

 The individual scatterplots are designed much the same as those in Fig.  17.5 . 
Here, however, we succeeded in arranging for S-PLUS™ to plot the control treat-
ment, Drug A, on top, so that any differences in distribution for Drug B appears as 
a fringe around that for Drug A.  

    17.3.4   Parallel Boxplot of LFT Measurements 

 If the shift information is not of particular interest, and the association between dif-
ferent measures is not to be concentrated on, a simpler graph can give a visual report 
of the distributions. Figure  17.7  uses boxplots to display the distributions, with an 
emphasis on the outlying points—a key feature of boxplots.  

 These boxplots are those de fi ned as “schematic diagrams” by Tukey  (  1977  ) , with 
the whiskers extending outside the box no further than 1.5 times the box width. The 
extreme points are all individually marked, which is ideal for safety measurements 
of this kind where the interest focuses on them. 

 This graph was drawn using S-PLUS™, requiring the de fi nition of a transposi-
tion function in order to be able to orient the boxes vertically.  

  Fig. 17.7    Parallel boxplots of LFT measurements       
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    17.3.5   Patient Pro fi le of LFT Measurements 

 As previously noted, much of safety analysis is concerned with individual subjects 
rather than summary data. Figure  17.8  provides a powerful and concise summary of 
liver function information on selected individual subjects (in this case, on the basis 
of any LFT exceeding 2xULN during the trial).  

 All 4 liver function parameters are plotted as a function of time for each indi-
vidual subject, allowing ready assimilation of several pieces of information. These 
include the time course of the elevations relative to treatment, the presence or 
absence of simultaneous elevations, outcomes of dose interruptions, dose reduc-
tions as they relate to the elevations and outcomes of a patient subsequent to an 
interruption or reduction. When data from many individual patients are needed, a 
series of displays of this kind can be produced. Once the  fi rst screen has been viewed 
and understood, the remainder can be quickly assessed as long as the display style 
is kept consistent. 

 This graph was drawn using SAS™.  

    17.3.6   Other Possibilities 

 Another aspect of laboratory data that can be of great interest is the way in which 
AESIs accumulate over time under different treatment regimes. This can be effec-
tively displayed with a cumulative incidence plot, as in Fig.  17.2 . 

  Fig. 17.8    Customized patient pro fi le display of LFT measurements       
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 There are many other lab measurements that could readily be displayed in graph-
ical form. Table  17.2  shows a list of lab measurements to consider. All of the graphi-
cal methods described above may be applied to these other lab variables.    

    17.4   Cardiac Safety 

 One of the major issues that have led to drug withdrawals has been cardiovascular 
incidents, so there was an early focus on cardiac safety in safety data analysis. QT 
prolongation and Torsades de Pointes is of primary concern, but any conduction-
interval prolongation (e.g., PR prolongation) could be a potential safety concern and 
possible showstopper for a new drug. Figure  17.9  shows a stylized ECG trace anno-
tated with the letters from which some of the heart rhythm measurements are associ-
ated. Other crucial issues are heart failure (predicted by ejection fraction) and 
myocardial infarction (predicted by troponin levels).  

 The main derived endpoints from heart traces are the RR, PR, QRS and QT inter-
vals. The last of these, usually in a corrected form and called the QTc interval, is the 
key one for general studies. It is a marker for cardiac toxicity: prolonged QTc can 
lead to increased risk of Torsades de Pointes (TdP)—a rare but life-threatening 
arrhythmia. This is a Sentinel Event that the FDA require reporting as soon as there 
is awareness of a case. FDA guidance on evaluation of QTc is as follows:

   Increases to >500 ms are of clinical concern  • 
  Increases to >480 and 450 ms are also of interest  • 

   Table 17.2    Other clinically meaningful lab measurements to consider   

 Category  Clinical interpretation  Measurements 

 Haematotoxicity  Grades 3 and 4  Red cell count, mean cell volume, 
platelets, haematocrit, haemoglobin, 
reticulocyte count, white cell total 
count and differentials 

 Nephrotoxicity  Creatinine increase from baseline 
>0.3 mg/dl (as de fi ned by 
Acute Kidney Injury Network) 

 Serum creatinine, blood urea nitrogen 
and creatinine kinase 

 Lipids  Cholesterol, thyroxin, LDL, HDL and 
triglycerides 

 Rhabdomyolysis/
muscle injury 

 By pro fi ling  Creatinine phosphokinase (CPK), AST, 
lactate dehydrogenase (LDH), red 
cells or myoglobin on urine test 

 Paediatrics  Growth; CNS functioning; 
reproductive or endocrine 
status 

 Height, weight, BMI, often transformed 
into  z -scores; serial assessments of 
IQ, as an example, for long-term 
studies; androgens, estrogens and 
relevant hypothalamic hormones 

 Suicidality  Incidence rate (e.g., in a forest plot)  Ideation, attempts, deaths 
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  Changes from baseline of >60 ms (regardless of absolute value) are of serious • 
clinical concern  
  Change from baseline of >30 ms are of clinical concern    • 

 Relevant questions to ask based on the guidance are:

   Is there a signi fi cant change over time in the distribution of QTc results?  • 
  How many people report a signi fi cant shift in QTc values, i.e., an increase of >30 • 
or >60 ms?  
  How many subjects report a QTc interval of >450, >480 or >500 ms?    • 

 Many of the graphical displays in the previous section are clearly appropriate to 
cardiac measurements like QTc, such as the scatterplot of shifts in Fig.  17.4 . 

    17.4.1   Cumulative Distribution Plot of QTc 

 For a comparative trial, a plot showing the detailed distributions of critical measure-
ments like QTc can be invaluable for giving reassurance or highlighting areas of 
concern. Figure  17.10  shows a cumulative distribution function (CDF) plot from the 
Safety trial.  

 This display allows close scrutiny of the distributions, with reference to clinical 
criteria. Note that the percentage of subjects with a change greater than 0 is just over 
10%. This is as expected, as explained before: QTc was measured at baseline and at 
8 visits, so the chance that the baseline measure is the smallest of these would be 
11% (i.e., 1/9) if the drugs have no effect and successive measurements on a patient 

  Fig. 17.9    A stylized ECG trace       
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can be taken as independent. Note that it is particularly useful to show a faint grid 
with this graph, as this helps detailed interpretation of any differences noted between 
the two step functions. 

 This graph was drawn using SAS.  

    17.4.2   Boxplot Pro fi le of QTc 

 The boxplot, illustrated in Fig.  17.7 , can also be used to display the change in the 
distribution of a variable over time pro fi le. Figure  17.11  compares the distribution 
of QTc changes from baseline on the 2 treatments arms of the Safety trial, for each 
of the 8 visits. In addition, a right-hand margin has been added to show the distribu-
tion of the maximum change from baseline. The numbers of patients measured at 
each visit is also displayed in a bottom margin, as before, but here the margin has 
been brought inside the frame, which can help to emphasize the relationship between 
the values and the plotted information.  

 Each individual point representing a change greater than 60 ms has been labelled 
here with the patient number: this draws attention here to Patient 194, who had an 
increased level of QTc from Week 12 onwards. Some labels are overwritten, but it 
would be dif fi cult to arrange to separate them; clearly, the amount of labelling needs 
to judged carefully if it is to be of use. An alternative to labelling would be to list the 
values of concern in a separate table. 

 This graph was drawn using GenStat™.  

  Fig. 17.10    CDF plot of maximum QTc changes       
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    17.4.3   Mean Pro fi le of QTc 

 As well as showing the individual    subject data in the above distribution plots, it may 
be useful to focus on the evidence for systematic difference between the drugs. 
Figure  17.12  shows the mean QTc changes over time, with con fi dence limits to put 
the small differences into context.  

  Fig. 17.11    Boxplot pro fi le of QTc changes from baseline       

  Fig. 17.12    Mean change from baseline (and 95% CI) in QTc over time       
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 This kind of display is commonly seen for reporting ef fi cacy, showing how the 
effect of treatments compared in a trial change over the course of the trial. Usually, 
it is the difference at the end of the trial that is of primary interest, and that differ-
ence may be adjusted to try to take account of interfering factors, such as drop-out 
of patients from the trial. One such method is “last observation carried forward,” as 
shown here, but more advanced methods using multiple imputation or mixed mod-
elling are now preferred (Mallinckrodt et al.  2008  ) . 

 This graph was drawn using SAS™.   

    17.5   Conclusion 

 We have described 11 different graphical designs that we recommend for displaying 
safety information. We used each design to display particular safety outcomes, but 
many of the designs can of course be used for a wide range of different outcomes, 
and indeed for ef fi cacy outcomes as well. We have omitted a large class of graphical 
designs, which are being used increasingly in pharmaceutical companies to monitor 
safety of drug development programmes. These are interactive designs which allow 
the viewer to modify the display using a graphical interface or drill down to  fi nd 
further information about aspects of interest in the initial display. Other chapters in 
this book describe these, in particular    Chap.   10    .      

  Acknowledgments   Most of these displays were developed in GlaxoSmithKline by a team work-
ing on graphics for safety, and several programmers contributed ideas and code. We are indebted 
in particular to Richard Heiberger (Temple University) and Mike Durante (GSK) for S-PLUS™ 
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  Abstract   Cardiac Safety is an important consideration in drug development. This 
chapter focuses on interval data derived from the 12-lead surface electrocardiogram 
(ECG) and graphical approaches that enable a better understanding of the data. 
A motivating example for the link between ECG interval data and cardiac safety is 
followed by an orientation to the intervals and their relationship to cardiac function. 
QT interval corrections for heart rate are discussed as are types of data collection. 
Sample data that are publically available are used in many of the examples from the 
thorough QT trial presented. Graphics are used to demonstrate some of the attri-
butes of these trial designs such as time matching and use of active controls.      

    18.1   Introduction 

 Electrocardiograms (ECGs) are routinely included in clinical trials to assess the 
cardiac safety of experimental therapies. Prolongation of the QT interval, for exam-
ple, is associated with some potentially fatal cardiac arrhythmias. Graphical meth-
ods presented in this chapter are intended to help interpret ECG interval data and 
provide a better understanding of the sources of variability in the interval 
measurements. 

 A good motivating example related to cardiac safety and ECG data is terfenadine. 
Terfenadine was the  fi rst non-sedating antihistamine and came to the market in 1985. 
By 1990, after more than 100 million people were exposed, mounting  evidence of 
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serious and sometimes fatal arrhythmias caused the FDA to issue a warning letter. 
In 1992, the FDA required a black box warning on using terfenadine with CYP3A4 
inhibitors, and later in 1997 terfenadine was removed from the market. In 1993, 
Honig et al. (Honig et al.  1993  )  published their  fi ndings from a rigorous evaluation 
of terfenadine alone and terfenadine + ketoconazole. In only 6 subjects receiving both 
regimens they were able to show profound increases in the QT interval. 

 This example is meant to highlight an important question. If Honig et al. were 
able to quantify such profound prolongation in so few subjects after coadministra-
tion of terfenadine with ketoconazole, could changes have been observed much 
earlier in the development of this compound? Analysis of QT and concentration are 
routine now but at that time were not. Perhaps a simple scatter plot of QTc by con-
centration with an overlay of any smoothed or  fi tted line would have highlighted 
prolongations at higher concentration. 

 Graphical displays are a very ef fi cient and effective way of distilling large quan-
tities of data, examining relationships between variables, and aide in the interpreta-
tion of the results of the trials. These displays also allow effective dialog with other 
scientists.  

    18.2   Interval Data 

 Electrocardiogram interval data, used to assess cardiac safety in clinical trials are 
usually obtained through a standard 12-lead surface electrocardiogram (ECG). 

 More intensive ambulatory assessments can be obtained through Holter monitor-
ing, whereby interval data are generated continuously. The advantage of Holter 
monitoring is that more data are generated throughout the day and across a wider 
range of heart rates. The increase in heart rate range prior to the administration of 
study drug makes calculation of individual subject QT corrections for heart rate 
possible. The major disadvantage of Holter monitoring is the lack of control over 
the sources of variability such as the subject position, environmental conditions, and 
inter-machine variability. These factors as well as meal timing and time of day are 
controlled in order to minimize sources of variability in measurement of the differ-
ent intervals. 

 It is useful to review a stylized ECG segment in order to understand the intervals, 
and their relationship to the electrical activity in the heart. In doing so, one can 
appreciate that the different intervals are really lengths, or durations, and that some 
lengths are dependent on others. 

 Figure  18.1  depicts a stylized single beat of the heart in normal sinus rhythm. On 
the  y -axis is the amplitude of the electrical signal and the  x -axis represents time. 
This single set of amplitudes, P through U, is called a complex. The pattern of depo-
larization and repolarization controls the contraction (depolarization) and relaxation 
(repolarization) of each of the atria and ventricles. The sequence of contractions and 
relaxation is what produces the pumping motion of the heart resulting in ef fi cient 
ejection of blood from the heart into the circulatory system.  
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 Typically, there are 4 interval measures that are returned from a 12-lead ECG. 
These are the PR, QRS, QT, and RR. These intervals are durations of elapsed time 
between the different points of the wave-form measured in milliseconds. These 
durations are often called lengths. The length of the PR is the elapsed time between 
the beginning of the P-wave to the R-wave; The QT is the length from the beginning 
of the Q to the end of the T; and QRS is the length from the beginning of the Q to 
the end of the S. The RR is the distance between the R of one complex and the R of 
the next complex. The interval data obtained from the ECG machine is usually the 
average across 3 consecutive beats for each interval. 

 The more pronounced the change in slope in the amplitude of the electrical signal 
the more accurate the assessment of the interval. For example, measuring the distance 
from the R to the R of the next beat is more accurately derived than the distance from 
the Q to the end of the T-wave. This is because the R, where the amplitude changes 
rapidly, is very sharply de fi ned and easily identi fi able whereas the end of the T-wave 
is not. As a result, there is more measurement variability in the QT interval than in the 
RR interval. 

 Drugs that reduce the amplitude of the T-wave can make it more dif fi cult to 
determine the end of the T-wave and thus increase the variability of the QT over that 
seen at baseline. Checking the variability observed in early trials of any new experi-
mental drug against variability of historical data from similar designs may be an 
indication that the drug under study is  fl attening the T-wave. 

 It is useful to note that the RR interval (in ms) is inversely related to the heart rate 
(beats per minute, bpm): RR 

ms
  = (1,000 

ms/s
  × 60 

s/min
 )/hr 

bpm
 . As such, an increase in 

heart rate results in less distance between the R of one complex and the R of the 
next. Compression of the RR results in shorter distances between other parts of the 
complex such as QT. As such, a shorter RR (high heart rate) relates to shorter QT 
intervals. 

Atrial
depolarization

Ventricular
depolarization

Atrial
repolarization

Terminal phase
of ventricular
repolarization

(not always visible)

SQ

P

R

U

T

  Fig. 18.1    Stylized heartbeat and corresponding ECG segments       
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 Figure  18.2  shows the baseline ECG interval data from a large phase III program. 
Each symbol represents an individual subject’s QT and corresponding RR interval. A 
linear regression line is overlaid onto the  fi gure ( f (RR) = 259.2 + 0.134(RR);  R  2  = 0.49) 
to show the relationship between these 2 intervals.   

    18.3   QT Correction for RR 

 One of the derived interval parameters, QTc, is an attempt to “correct” the QT for RR 
or make the QT independent of the RR interval. Figure  18.2  shows a linear regres-
sion for illustration, but most often the corrections are derived from log transforma-
tions of both the QT and RR. The form of the log-linear correction is  QTc = QT  ×  RR   − b    ,  
where the exponent   b   is the magnitude of the rotation of the cloud of points around a 
pivot point of RR = 1,000 ms; the larger the value of   b   the more the rotation. With this 
concept of rotation of QT values around RR = 1,000, common corrections can be 
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  Fig. 18.2    Relationship of QT to RR at baseline       
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 better understood. For example, Bazett correction (denoted QTcB) where   b   = 0.5 has 
more rotation than Fridericia (denoted QTcF) where   b   = 0.33. Often Bazett correc-
tion is considered to “overcorrect” with respect to the rotation of points described 
above. This “over-rotation” of the points results in a slightly negative correlation 
between the resulting QTcB and the RR interval. 

 Figure  18.3  shows the same set of subjects as in Fig.  18.2 , where the QT is 
replaced with the Bazett and Fridericia corrected QT versus RR. Each subject con-
tributes 2 QTc values for each RR. The over-rotation for the Bazett correction is 
re fl ected by the regression line with a negative slope shown in pink. It should also 
be noted that the differences are more extreme the more the RR departs from 
1,000 ms or a heart rate of 60 bpm. At an RR interval of 1,000 ms, QT = QTcB = QTcF 
or any other   b .  Contrast that to the subject with the RR of 600, the difference 
between Bazett and Fridericia is over 30 ms. Similar differences between corrected 
QT values are also observed for large RR values (low heart rates) such as those often 
observed in healthy volunteer studies. It is for this reason that careful consideration 

  Fig. 18.3    Comparison of QT corrections       
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be given to the QT correction when comparing data to historical data. Having 
 different corrections or a consistent but inappropriate correction among different 
datasets can create dif fi culty in interpretation.  

 Application of a linear model to baseline data is often used to derive a study 
population correction. Figure  18.4  uses the same data as in Figs.  18.2  and  18.3  and 
illustrates a case where there is one baseline observation per subject. The applica-
tion of the least-squares regression line [f(RR) = 0.124 (RR) + 259] produces a pre-
dicted QT [QT pred] for each observed QT. The difference between these 2 values 
[QT obs − QT pred] is equal to the difference between the derived QTc [QTc] and 
the reference QTc [QTc Ref = QT pred at reference RR interval, here illustrated at 
1,000 ms]. Therefore, QTc = QTc Ref + (QT obs − QT pred). For instance, a QT of 
304 ms is observed at an RR of 548 ms (HR of 109 bpm). The linear regression 
model predicts a QT of 326 ms [0.124(548) + 259]. The difference of −22 ms 
[304 − 326] is added to the reference QTc, 383 ms [0.124(1,000) + 259], yielding a 
QTc of 361 ms.  

 A similar linear regression model could be used on log-transformed QT and RR 
data to arrive at a population value for   b .  The value of   b   from this type of model 
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would necessarily have a horizontal or 0 slope in Fig.  18.3 . Similar linear regression 
on the log scale produces a value for   b   that de fi nes the amount of rotation required 
to achieve a 0 slope in the regression of the resultant QTc on RR at baseline. 

 If there is enough pre-dose data within an individual, such as that obtained via 
Holter monitoring described in Sect.  18.2 , it is possible to have individualized cor-
rections that could be different values of   b   for each subject. Though this type of 
correction has desirable attributes, these attributes are often outweighed by the limi-
tation of range of the observed RR intervals. This limited range in RR and variabil-
ity in the measure of QT can lead to nonsensical corrections that are incompatible 
with physiology of the heart. An example of this is a negative slope value which 
implies QT shortening with increasing RR.  

    18.4   QT Prolongation 

 Disruption of the normal sinus rhythm results in the heart becoming less ef fi cient 
at ejecting the blood into the circulatory system. These arrhythmias can some-
times be fatal. The example shown in Fig.  18.5  is a stylized depiction of Torsade 
de Pointes (TdP). Literally translated this means twisting of the points. 
Depolarization and repolarization of the atria and ventricle are not happening in 
sequence, and hence the blood is not being effectively ejected from the heart. In 
effect the heart is in spasm and is no longer a pump, which explains why TdP is 
often fatal.  

 It has been shown that QT intervals in excess of 500 ms are associated with 
TdP and other potentially fatal arrhythmias. In 1993, Bednar et al. (Bednar et al. 
 2001  )  reported the results of a comprehensive literature search for all approved 
non-cardiac medications listed as prolonging the QT interval. QT were reported 
in 86 cases, and QTc in 116 cases of TdP. The QT and QTc values associated with 
these cases of TdP are noted in Table  18.1 . More than 80% of TdP cases were 
associated with QT values of at least 500 ms. After correcting the QT interval for 
heart rate, more than 90% of the TdP cases were associated with QTc values of at 
least 500 ms.   

  Fig. 18.5    ECG rhythm strip showing TdP       
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    18.5   Study Types 

 For practical purposes, studies are classi fi ed into 2 categories depending on whether 
ECG data are captured as part of routine safety data monitoring or whether estima-
tion of the drug effect on QT is the primary objective as in “Thorough QT Studies” 
(tQT). 

 If captured for routine safety, ECG data collection is likely sparse and the patient 
populations can range from healthy volunteers to special populations such as elderly 
or renally impaired to the target patient population for the intended therapy under 
development. 

 ECG data are often collected    once pre-dose and once post dose. In large phase III 
trials, data collection is likely to be coincidental with routine study visits and steady 
state dosing. Data of this type, infrequent but on a wide variety of subjects, is useful 
for exploration of safety signals because of the volume of data and the diversity of 
subjects under study. 

 Population pharmacokinetic approaches that relate QTc changes to concentra-
tion of parent and/or active metabolite are often used to explore effects in various 
populations such as elderly subjects, those with impaired renal or liver functions, or 
different genotypes.  

    18.6   Thorough QT Studies 

 Additional information on graphical methods used for tQT studies can be found in 
the chapter by Tornøe (Chap.16) as well as in the FDA draft guidance (Food and 
Drug Administration  2005  ) . This section utilizes graphics to demonstrate the impor-
tance of different features of the thorough QT such as time matching and use of 
active control. 

 The objective of the thorough QT study is to estimate the effects on the QT inter-
val of an experimental therapy compared to placebo. This trial is intended to be a 
rigorous and intensive evaluation of a therapy’s potential to prolong the QT interval. 

 The study design of the tQT trial attempts to control sources of variability due to 
time of day, meals, concomitant medications, patient demographics, and medical 

   Table 18.1    Relationship between QT and QTc Interval and TdP   

 QT interval ( N  = 86)  QTc interval ( N  = 116) 

 Range (ms)  TdP cases  n  (%)  Range (ms)  TdP cases  n  (%) 
 <500  17 (19.8)  <500  9 (7.8) 
 500–549  9 (10.5)  500–549  13 (11.2) 
 550–599  16 (18.6)  550–599  24 (20.7) 
 600–649  33 (38.4)  600-649  36 (31.0) 
 650–699  6 (7.0)  650–699  21 (18.1) 
  ³ 700  5 (5.8)   ³ 700  13 (11.2) 
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history. The thorough QT study is conducted in healthy volunteers and where 
possible with crossover designs. Subjects are randomized to sequences where 
experimental therapy, positive control, and placebo are assigned in a random order 
according to Latin Square, often balanced for  fi rst order carryover. Crossover 
designs aide the precision of the estimation because all comparisons are within 
subject, and matched for time of day. 

 There are situations where crossover trials are not feasible. For example, if an 
experimental therapy such as a monoclonal antibody, has an extremely long half-
life, the washout required between periods of the crossover makes the trial extremely 
long. This long duration makes it dif fi cult to retain subjects into the trial, and hence 
the advantage of the within subject comparisons wanes as a result. 

 Positive control groups are used to establish assay sensitivity. The positive con-
trol is selected based on its ability to reliably produce a mean increase in QTc of at 
least 5 ms without an appreciable impact on the heart rate. Five milliseconds is typi-
cally used in accordance with the regulators’ threshold of concern as noted in ICH 
E14 guidelines. 

 For crossover studies, each study period is separated by an adequate washout. 
This washout allows pk and pd to return to baseline to minimize the potential for 
carry-over. The ECG interval data are collected at the beginning of each study 
period prior to dose at set times throughout the day. This is usually referred to as 
the baseline day. The baseline day is replicated each period in order to examine 
the potential for pharmacodynamic carry over in the interval data. Within each 
period the interval data are again collected at the same times of the day on a post 
dosing day. Time-matching of the baseline and post baseline values allows adjust-
ment for diurnal  fl uctuation of the QT interval. In addition to diurnal  fl uctuations, 
there are also large postprandial effects that are addressed in the design of the 
thorough QT study. Fixing the times of the meals across the baseline and post 
baseline days and across the study periods allows the analysis to effectively 
remove the meal effects. 

    18.6.1   Sample Data from tQT Trial 

 Some sample ECG interval data from a thorough QT study are publically available 
on CTSPedia. These data were developed by the author in support of the Industry 
FDA Academia Safety Working Group  (  Industry FDA Academia Safety Graphics 
Working Group 2012  ) . The intent here is to share the  fi ctionalized data to allow the 
readers to follow along and reproduce the  fi gures presented and extend those  fi gures 
to their own clinical trial analyses. The dataset is provided as a comma-delimited 
ASCII  fi le at the following link:   http://www.ctspedia.org/wiki/pub/CTSpedia/
StatGraphTopic017/tqt.dat    . 

 The design of this sample tQT trial is a placebo and active controlled, 4 treat-
ment, 4 sequence, crossover trial design. This design is presented in Table  18.2 . The 
sequences are selected utilizing a Latin Square balanced for  fi rst order carry over. 

http://www.ctspedia.org/wiki/pub/CTSpedia/StatGraphTopic017/tqt.dat
http://www.ctspedia.org/wiki/pub/CTSpedia/StatGraphTopic017/tqt.dat
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The objective of this trial is to examine the effect on the placebo controlled QT 
interval of 2 doses in a  fi ctional experimental therapy.  

 The doses of the experimental therapy are noted in the dataset as low and high. 
In this speci fi c case, we suppose there are no issues with dose limiting toxicity or 
toleration issues, so the dose is escalated beyond that which was anticipated to have 
clinical effect. If the dose cannot be escalated beyond the clinically ef fi cacious dose, 
an alternative might be to give the dose with another drug intended to inhibit the 
metabolizing enzymes or transporters to produce higher concentrations of experi-
mental drug. 

 The active control in this study is moxi fl oxacin. Moxi fl oxacin is chosen because 
of its ability to reliably produce mean placebo adjusted changes of at least 5 ms. The 
half-life of moxi fl oxacin is approximately 12 h making it suitable for use in the 
crossover design. By utilizing an active control, we gain information on the trails’ 
assay sensitivity. If no changes are observed in moxi fl oxacin, there may be a cause 
to believe that the trial has failed. 

 ECG interval data are collected at day 0 (pre-dose baseline day) and at day 4 
within each of the 4 study periods. The collections are matched based on the time of 
day. Meal times and content are controlled on the baseline day and day 4 to 8 am 
(hour 0) and noon (hour 4). For this experiment, interval data were collected at hour 
0, 0.5, 1, 2, 3, 4, 6, 9, and 12 for each of day 0 and 4 for each period. Hour 0 corre-
sponds to 8:00 am. 

 There are 48 subjects in the dataset. If there were no missing data there would be 
48 subjects × 9 time points per day × 2 days per period × 4 periods per subject = 3,456 
observations. 

 Variable names are constructed whereby the  fi rst part of the variable name 
denotes the interval, and a second part denotes the day (0 or 4) or change (c = day 
4 − day 0; or cc = pbo adjusted change from baseline or sometimes called 
delta–delta). 

 For example qt_0 is the variable name associated with the QT interval from day 
0; qt_c is the time-matched change from baseline (day 4 − day 0 within the same 
period); and qt_cc is the placebo adjusted change from baseline. The placebo 
adjusted change from baseline is computed as the within subject difference between 
treated and placebo of the changes from baseline. Because this value is a difference 
(trt − pbo) of differences (day 4 − day 0), it is often referred to as “delta–delta” or 
“double–delta”. 

   Table 18.2    Thorough QT crossover design   

 Example tQT crossover design 

 Period 1  Washout  Period 2  Washout  Period 3  Washout  Period 4 
 Sequence 1  A  B  C  D 
 Sequence 2  B  D  A  C 
 Sequence 3  C  A  D  B 
 Sequence 4  D  C  B  A 

  A = placebo; B = active control; C = exp. low dose; D = exp. high dose  
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 Figure  18.6  illustrates the diurnal variation or circadian patterns and effects of 
meals. Each subject contributes 4 baseline days of observations, 1 baseline day per 
period, so we can get a rather precise estimate of the effects of meals or time of the 
day. The baseline data are free from treatment effect. This assumes, of course, that 
there was no pharmacodynamic carry-over from period to period. The meal in this 
case was at noon, note the postprandial change in QTc of nearly 10 ms, illustrating 
the need to control meal times on the days when ECG data are collected.  

 By subtracting the day 0 from the day 4 values, we should remove the diurnal 
and meal effects and be left with effects due to treatment (effects of period or 
sequence aside). Figure  18.7  plots the difference between day 4 and day 0 by time 
of day for the placebo period. Ideally, placebo should show no effect and the means 
by time should be distributed around the horizontal 0 reference line.  

 As stated above, one of the bene fi ts of the crossover design is that each subject 
acts as its own control. The interpretation of the thorough QT study is dependent on 
the placebo controlled changes from baseline pro fi les. Thus placebo controlled 
change from baseline is derived from subtracting the placebo changes from baseline 
from each of the treated changes from baseline within each subject. The resulting 
difference of differences (delta-delta) or placebo adjusted change from baseline is 
plotted against time to produce 3 placebo adjusted pro fi les for each of the experi-
mental drug doses as well as active control (Fig.  18.8 ).  

 The active control produced a rather pronounced pro fi le over time indicating our 
experiment was able to discern the moxi fl oxacin drug effect on the QTc from 
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  Fig. 18.6    QTc (95% CI) by time of day at baseline       
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  Fig. 18.7    QTc Change from baseline (95% CI) by time of day for placebo       

  Fig. 18.8    Placebo adjusted changes from baseline (95% CI) in QTc       
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 background noise. The 2 doses of the experimental drug appear to have changes that 
are dose related. 

 In addition to estimating a pro fi le based on a measure of central tendency, the 
upper tail of the distribution is examined by means of comparing extreme values 
against prede fi ned thresholds for the raw QTc as well as the changes from baseline 
in QTc. These analyses are often referred to as categorical analyses. A typical tabu-
lar display shows the number and percent of subjects with maximum values exceed-
ing 450, 480, and 500 ms for the raw QTc and 30 and 60 ms for the change from 
baseline. Unfortunately the tabular display cannot link the changes to the raw val-
ues. By plotting the change from baseline values against the baseline values, as in 
Fig.  18.9 , we can examine both the changes from baseline and the raw QTc values 
at one time. Figure  18.9  was generated at the  t  

max
  of the experimental drug. The 

changes from baseline are displayed on the ordinate and the corresponding time 
matched baseline along the abscissa. Each symbol represents an individual subject 
and there are 4 values corresponding to the 4 study periods. There are horizontal 
reference lines that correspond to 0, 30, and 60 ms change. From left to right the 3 
diagonal reference lines represent 450, 480, and 500 ms. A quick visual check 
reveals that from the left, the  fi rst diagonal intersects the horizontal 60 ms change 
reference line at a baseline of 390 ms. This intersection is at 390 ms baseline and 
60 ms change, or 450 ms for the raw post baseline value. Plotting the data in this 
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way allows us to examine whether the changes are likely a function of a low  baseline 
value or whether for a given treatment the change from baseline is high in addition 
to the raw QTc being long. Large QTc changes associated with a high raw value are 
worse than a large change that is associated with a low baseline resulting in a 
 “typical” raw value.    

    18.7   Concluding Remarks 

 This chapter links the cardiac function to the interval data derived from the 12-lead 
surface electrocardiogram. Increases in QT and QTc are associated with potentially 
fatal ventricular arrhythmias. Graphical methods show the dependence of QT on 
RR and the importance of evaluating the QT correction. For the thorough QT study, 
graphics were used to demonstrate the importance of time matching to address diur-
nal and postprandial effects as well as the use of active control. Graphical methods 
used in describing categorical data link changes to the baseline values, which offers 
a view that not all changes are created equal. This linkage is impossible to see in 
tabular form. 

 Graphics are an important tool for the statistician, analyst, or physician both to 
gain a better understanding of the data at hand, as well as an effective and ef fi cient 
communication vehicle for discussing and interpreting data with other scientists.      
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  Abstract   Clinical development today requires orchestrating an ever-increasing 
number of data sources, from trial data in electronic data capture (EDC) systems 
and third party data transfers to operational data in clinical trial management sys-
tems (CTMS). As the number of data sources increases, so too do the headaches 
caused by data quality issues and the need for timely integration, as well as the 
operational challenges of orchestrating a cross-functional team and third party 
clinical research organizations (CRO). 

 Data visualization is becoming an important tool that allows organizations to 
better understand and work through many of these issues. It can help identify data 
and process issues early, reduce the time to lock the database, improve resource 
planning, and facilitate better communication amongst project teams. The following 
pages provide some example visualizations that illustrate practical uses of data 
visualization throughout the lifecycle of a clinical trial.     

     19.1   Introduction 

 Clinical development today requires orchestrating an ever-increasing number of 
data sources, from trial data in electronic data capture 1  (EDC) systems and third 
party data transfers to operational data in clinical trial management systems 2  

    T.   Snyder   (*)
     Clinical Informatics ,  In fi nity Pharmaceuticals , 
  780 Memorial Drive ,  Cambridge ,  MA   02139 ,  USA    
e-mail:  ted.snyder@in fi .com   

    Chapter 19   
 Data Visualization for Clinical Trials Data 
Management and Operations       

      Ted   Snyder         

   1   Electronic Data Capture (EDC) systems allow data recorded at clinical sites to be entered 
electronically into a study database. This provides many advantages over traditional paper-based 
collection, most notably faster entry and data processing.  
   2   A Clinical Trial Management System (CTMS) is an electronic system for capturing operational 
data about a clinical trial such as enrollment, site monitoring visits, and relevant documents. This 
type of operational data is separate from the actual trial data such as safety and ef fi cacy.  
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(CTMS). As the number of data sources increases, so too do the headaches caused 
by data quality issues and the need for timely integration, as well as the operational 
challenges of orchestrating a cross-functional team and third party Clinical Research 
Organizations (CRO). 

 Data visualization is becoming an important tool that allows organizations to 
better understand and work through many of these issues. It can help identify data 
and process issues early, reduce the time to lock the database, improve resource 
planning, and facilitate better communication amongst project teams. The following 
pages provide some example visualizations that illustrate practical uses of data 
visualization throughout the lifecycle of a clinical trial.  

    19.2   Data Review and Cleaning 

 Even with electronic data entry at clinical sites and automated edit checks in EDC, 
many basic data quality problems still plague trial sponsors, such as incorrect lab 
units from local labs and transposed  fi elds and numbers. At the same time, the 
review tool of choice for many users is a stack of printed listings that, while 
comfortable for many people, are slow to review and provide little insight. 

 Automated statistical or database programs can be used as a  fi rst line of defense 
to identify potential issues such as outliers and out-of-range values but this can only 
help so much. Data visualization makes a natural second line of defense by allowing 
data managers and medical monitors to apply their own knowledge to tease out 
underlying issues or quickly identify new issues and trends that can be missed by 
automated programs and textual listings. 

 The following fi gures show examples of visualizations for verifying lab values.      
 Figure  19.1  shows a simple chart of Absolute Neutrophil Count (ANC) lab 

ranges where each subject is placed along the  x -axis and the numerical values are 
displayed in standardized units on the  y -axis. The color indicates whether values are 
in or out of range, and the horizontal lines indicate a textbook reference range for 
the lab test. The controls to the left allow the user to con fi gure various parameters 
of the chart and quickly examine the same data from many angles in order to diag-
nose potential problems.

   The   – x -axis may be a categorical grouping such as subject identi fi er or local labo-
ratory name, or a continuous grouping such as date of collection or time on 
study  
  The   – y -axis may be numerical values in standardized units or original source units 
or a derived value such as multiple of upper limit of normal (ULN)  
  The coloring of markers may indicate out-of-range status, toxicity grade, or even  –
local laboratory name or source units  
  Horizontal or vertical reference lines can add more information by showing  –
normal ranges or reference time points such as date of  fi rst dose    



  Fig. 19.1    Example visualization for lab value range check. The  y -axis shows lab results in stan-
dardized units, the  x -axis patient numbers       

  Fig. 19.2    Lab value range check visualization similar to Fig.  19.1 , but with markers colored by 
original lab unit       
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  Fig. 19.3    Lab value range visualization with markers colored by lab facility name       

  Fig. 19.4    Lab panel visualization displaying 4 lab tests for one subject over time. The  y -axis 
shows the lab result in standardized units, scaled for each lab test, the  x -axis lab date and time by 
lab test, color indicates toxicity grade       
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 In addition to displaying values graphically, interactivity is a key capability that 
allows end users to select any data point of interest and drill down for more informa-
tion. For example, a data manager can identify the subject number or visit name and 
check the record for additional information such as whether the data have been 
veri fi ed at the site by a monitor yet. As a result, he can quickly identify potential 
issues and take necessary actions such as creating a query for the site to verify values. 
The following example illustrates this with a sample scenario. 

 An obvious place to start with lab values is to examine whether or not values are in 
range. Figure  19.1  shows a vertical series of lab values for each subject in the study. 
Horizontal reference lines indicate standard reference high and low thresholds. 

 While out-of-range  fl ags are often set automatically based on reference ranges 
for the lab test, conversion to standardized units often reveals additional issues that 
become apparent in visualizations such as these. For example, the  fi gure shows a 
cluster of patients all with very low values, towards the right side. There could be 
several explanations for this, ranging from clinical reasons to data quality issues. 
One item of interest is that even though the values are well below the expected 
range, some are  fl agged as high and some as in range. It is also interesting that they 
all appear to come from the same clinical site (i.e., the  fi rst 3 digits indicate the site 
ID). Simple changes to the visualization using the controls on the left side of the 
screen can help users look closer and determine the problem. 

 Figure  19.2  depicts the same visualization but the marker coloring has been 
changed to show the original unit speci fi ed with each lab value. Since the 
values are all converted to the standardized unit, one would not expect to see 

  Fig. 19.5    Lab panel visualization showing multiple subjects, each represented by a separate line. 
 The x -axis denotes days after  fi rst dose for each subject       
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any difference in range based on the source unit. In this new view one can see 
that not all values with the source unit of “Number/ m L” are affected by the 
issue, so it does not appear to be a problem with unit conversion factors, how-
ever all the affected patients from site 212 do have this unit speci fi ed. Further 
investigation is required. 

 In Fig.  19.3 , the visualization has been changed one more time to color the values 
by the laboratory name, and it can be seen that all the affected lab values seem to be 
from the same lab facility. This indicates that the issue is most likely an incorrect 
unit being provided by this local lab facility and that data management should 
attempt to sort that out as opposed to querying all the data values in EDC. 

 A similar but different view using a slightly different con fi guration is to look at 
each subject’s lab values over time. In Fig.  19.4 , a lab panel visualization shows 4 
liver function tests for a single subject over time. 

 This visualization shows the trend of multiple labs at once for a given subject, 
which again allows a data manager or medical monitor to determine if there are any 
data quality issues or clinical safety issues. 

 In Fig.  19.5 , the same visualization is again slightly modi fi ed to show the same 
lab tests for multiple subjects, each represented as line within the trellis panel. Here, 
the  x -axis is switched to days from  fi rst dose (denoted by a vertical line at  x  = 0) to 
 provide a common timeline for subjects. 

 Visualizing multiple data sets using a common timeline is a powerful technique 
that can provide a clear picture of a subject’s clinical experience and enable rapid 
identi fi cation of more complex cross-CRF data issues. 

 Figure  19.6  shows a subject timeline with both tabular and scatter plot visualiza-
tions of multiple important events from dosing (exposure), ef fi cacy, adverse events, 
and disposition data sets. Events are arranged with a common timeline of days from 
 fi rst dose, and  fl ow from top left to bottom right. This allows one to do several 
important things: 

   Compare end of dosing with discontinuation to make sure that discontinuation • 
jibes with last dose date  
  Compare reason for discontinuation with relevant adverse event and ef fi cacy • 
assessments (here using Response Evaluation Criteria In Solid Tumors or 
RECIST criteria). In this case the subject had an AE with outcome of “drug with-
drawn” that is contemporaneous with the discontinuation reason of “Adverse 
Event,” which makes sense  
  Compare follow-up assessments to discontinuation. If subjects are being fol-• 
lowed for survival, all assessments after discontinuation should be at regular 
intervals. If the subject discontinued due to death on study, then follow-up 
information should not be collected    

 The scatter plot timeline in this visualization is very powerful because once a 
user learns how to interpret it, he or she can very quickly identify issues based on 
the shape of the plot. Additionally, providing a tabular representation side-by-side 
with a graphic helps the user interpret the plot and allows for display of any records 
with missing dates.  
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    19.3   Clinical Trial Metrics and Operations 

 Beyond the clinical database, the operational aspects of clinical trials also bene fi t 
from visual analysis. These reports can be used by the broader study team, including 
clinical trial managers, clinical research coordinators, CROs, and data managers. 

 A simple but effective visualization, to start with, is to look at enrollment over time 
as well as cumulative trend, as seen in Fig.  19.7 . The  x -axis has enrollment date at the 
year and month level and dual  y -axes show enrollment in each month (bars) and 
cumulative enrollment as of the end of each month (line). Months with tall bars (many 
patients enrolled) correspond to a steeper slope in the cumulative enrollment line.  

 Data for charts like this may be pulled from a tracking system, such as a CTMS 
(Clinical Trial Management System), from a third party IVR (Interactive Voice 
Response) system that handles subject randomization or, in the simplest case, even 
the trial manager’s spreadsheet. 

 This type of visualization is useful not only to understand and communicate the 
current status of enrollment but also to compare it to a projected or target enrollment 
curve (Fig.  19.8 ).  

 A logical extension of this is to distinguish and compare subsets of subjects, 
such as cohorts in dose escalation, domestic versus international sites, or distinct 

  Fig. 19.6    Subject timeline visualization integrating relevant data from multiple data sets for a 
single subject       
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  Fig. 19.7    Combination chart showing enrollment by month as bars and cumulative enrollment by 
month as a line       

  Fig. 19.8    Combination chart showing enrollment and cumulative enrollment compared to a 
forecast or predicted enrollment curve       
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diagnoses. Additionally, at a product development or portfolio management level, 
enrollment can be compared for multiple studies within a program or even across 
programs. In Fig.  19.9 , cumulative enrollment curves are broken out for several 
studies within a program.  

 A further step, as seen in Fig.  19.10 , that allows easier comparison of trajectories 
between studies or subject groups, is to change the  x -axis from actual date to a 
normalized timeline of days from “ fi rst patient in” (i.e., date that the  fi rst patient was 
dosed). This ability to toggle between an actual and a normalized measure is an 
invaluable technique in clinical data visualization.  

 Beyond enrollment, there are a number of other aspects of clinical trial opera-
tions that can bene fi t from the transparency of data visualization, such as metrics 
around data monitoring and data review. While most EDC systems allow for 
basic reporting of standard metrics like open query reports and veri fi cation status, 
much more can be done to precisely monitor the progress of the clinical study 
database. 

 Figure  19.11  shows a bar chart with the number of data points from the EDC 
system for several ongoing studies. This type of data can often be extracted at a 
granular level from the EDC system. The color segments of the bars re fl ect the 
veri fi cation or monitoring status from the EDC system and the options on the left 
allow the end user to drill down or slice the data in different ways. For example, 
within one study, one can visualize the amount of data by subject or CRF, and toggle 
the “Color by” option between veri fi ed and frozen status. When users click on a part 
of the bar chart they can see the actual data points that need veri fi cation or review. 
Using this type of report can lead to improved monitoring and data review by focusing 
the team on the most important issues at hand.  

  Fig. 19.9    Line chart comparing cumulative enrollment curves for multiple studies within a pro-
gram over time       
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  Fig. 19.10    Line chart comparing cumulative enrollment curves for multiple studies over time with 
 x -axis as days from “First Patient In” or date of  fi rst patient treated       

  Fig. 19.11    Bar chart showing the current status of data in EDC needing to be source document 
veri fi ed or frozen before database lock       
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 The companion to data status is query status, which may similarly be broken out 
by study, site, subject, CRF, or query age. These visualizations can help not only to 
track the current status of outstanding queries, but help triage them and identify 
areas of trouble. For example, in Fig.  19.12  we see queries by relative age 
segmented by whether they are system queries  fi red by automated edit checks or by 
a human user.  

 The data manager will likely want to address queries outstanding for more than 30 
and 90 days  fi rst, while queries submitted in the last week can be considered lower 
priority. Additionally, queries submitted by data managers are usually given higher 
priority over automated edit check queries  fi red by the EDC system. Interactivity is 
again a key feature, because it enables the user simply to click on the segment they 
want and view the list of high priority queries to be addressed in the table below. 
The listing of queries can be exported directly from this table into a PDF or spread-
sheet and sent to the monitor, CRO, or site coordinator for follow-up. 

 Additionally, by looking for CRF  fi elds contributing to high numbers of queries, 
study teams can identify problem areas that may need to be addressed with training 
for sites or monitors. 

 Another area with operational impacts that may have clinical consequences is 
the reporting of adverse events (AE) by sites participating in the study. One of the 
frequent sponsor challenges with EDC, beyond cleaning the data that are entered, 
is  fi guring out which data have not yet been entered. Protocol-scheduled evalua-
tions such as lab values or ef fi cacy assessments can be tracked based on each 

  Fig. 19.12    Bar chart showing the number of open queries grouped by relative age and colored by 
whether or not they are system-generated queries. Details for queries of interest selected in the bar 
chart are displayed in the table below       
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subject’s predicted schedule. However, safety data such as adverse events (AE) and 
concomitant medications (CM) are entered ad hoc by sites based on sponsor guide-
lines. One way of addressing this problem is to compare typical rates across sites 
and to other studies. 

 Figure  19.13  shows a scatter plot with one marker for each site number, where 
the  x -axis indicates the median days on treatment for all patients at the site, and the 
 y -axis the median count of AEs reported at the site. As the linear  fi t indicates (solid 
black line), the number of reported AEs should typically increase as time on treat-
ment increases. The second hashed line shows a similar or expected pattern based 
on historical data from other studies within the program.  

 While both parameters will vary widely among subjects, we should not expect to 
see much variation between sites. This visualization is helpful in spotting two poten-
tial problems, illustrated with the two selected markers in Fig.  19.13 :

   Site #205 (top left) has many more AEs reported for subjects that have been on • 
study a relatively short time. The clinical team may want to review the AEs 
reported for this site to address potential training issues regarding what severity 
of adverse events requires reporting  

  Fig. 19.13    Scatter plot of the median number of adverse events reported versus median number of 
days on treatment with one marker for each study site       

 



37119 Data Visualization for Clinical Trials Data Management and Operations

  Site #104 (bottom center) has no reported AEs for subjects that have been on • 
study for a median of over 2 months. The team may want to work with the sites 
to address whether data are being reported in a timely manner so as not to get 
behind with data monitoring and review    

 One  fi nal technique for analyzing data entry behavior at sites is to examine the 
lag time for sites to enter data after a subject visit. Not all data have an inherent 
event date, but many data, such as labs and exposure, do have an assessment date 
that can be compared to the “created” timestamp in EDC. Although this is just a 
sampling of the data in a study, it can be a good indicator of site performance. 

 In Fig.  19.14 , a bar chart by study site shows the number of sampled data points 
from EDC ( y -axis) binned by the number of days elapsed between the actual date 
and the created timestamp date in EDC. Although the general trend is that sites enter 
most data within 14–30 days, some amount of entry lags out over 60 or even 90 days. 
Also, some sites, such as Site 013, are much better at entering data quickly, but oth-
ers such as Site 001 are entering a large proportion of data after more than 90 days. 
Since a backlog in data entry has negative operational implications for a study time-
line (if data are not entered they cannot be veri fi ed, reviewed, or frozen), this type 
of visualization can help identify which sites clinical operations or the external CRO 
need to focus attention on. Since many site contracts are now written with require-
ments for payment based on timely data entry, this information can be particularly 
helpful in motivating sites to keep up with data entry.   

  Fig. 19.14    Bar chart showing the amount of data entered by each study site grouped by the 
relative time until data entry       
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    19.4   Conclusion 

 The examples illustrated above are a small sampling of the potential for the use of 
data visualization techniques within clinical data management and operations. Data 
visualization will not solve all data quality and operational issues facing clinical 
study teams, but it should be considered an important tool to identify issues faster 
and to gain a better understanding of clinical data. Finally, beyond the visualization 
of data, the addition of interactivity and con fi gurability can create tools that allow 
the broader clinical study team to realize signi fi cant operational bene fi ts.      
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  Abstract   This chapter discusses some useful graphics in Phase IV and Sales and 
Marketing applications. In the  fi rst half of the chapter we show some useful presen-
tations of existing clinical trial data and post-approval Phase IV studies’ data.  Then, 
we undertake some applications in Sales and Marketing ranging from various trend 
analyses to in-depth analysis of  fi eld force optimization; in each section, a brief 
introduction to the application followed by some simple graphics highlighting 
 fi ndings in an easy to interpret manner are presented. 

 Most illustrations in this chapter are based on simulated data rather than actual 
data, and yet they are representative of real world situations.     

     20.1   Introduction 

 The purpose of this chapter is to provide an introduction to some of the graphics 
used in a variety of sales and marketing applications and in Phase IV clinical study 
data. In each of the following sections, we will provide a brief discussion of the 
objectives, the underlying issues pertaining to the application, and the nature of the 
data that one typically encounters. Then we present examples of useful graphics that 
provide insight into the questions and issues one tries to answer, or that provide 
input to business decision making. 

 Due to proprietary nature of the data, we use approximations of actual data in 
most examples. This is accomplished by simulating data from typical ranges of 
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such metrics as the mean, variance, skewness, trend, and so on. Therefore, in our 
illustration of data analytical methods or examples of typical graphics, such 
simulated representative data will work as good as real data in each of the 
applications. 

 In Sales and Marketing applications, it is important to have simple charts that any 
senior manger can easily grasp without needing a background in statistics. Basically 
we need to limit ourselves to such charts as line charts, bar charts, pie charts, and 
maps. As we illustrate below, simple charts can be presented in a manner that pro-
vides many insights while highlighting the value of underlying analyses. 

 In the Phase IV setting, the audience covers a range from specialized scientists to 
sales representatives. Therefore, the types of graphics used vary in complexity from 
simple and quickly understood presentations as described for the Sales and 
Marketing setting to fairly involved presentations for non-statistician scientists and 
medical experts. The recipients of the information may use it for decision purposes 
but more often need it for education and understanding of new  fi ndings.  

    20.2   Post-approval Uses of Clinical Data 

 Consistent with the ICH general guidelines (ICH 8  1998  ) , we de fi ne Phase IV trials 
as those studies with a valid scienti fi c objective that are initiated after regulators 
approve of a drug. These include but are not limited to clinical trials of any design, 
drug–drug interaction trials, and long term safety studies. Phase IV data reach a 
broader audience compared to a pre-approval, regularity submission environment. 
Interactions with the users of the analyses are direct and more frequent and include 
colleagues from marketing and commercial, market access teams, external leading 
medical experts, and legal representatives (both within and external). Because of 
these different backgrounds, statisticians need to accommodate people with a wide 
range of quantitative abilities and communicate at the appropriate level. Hence the 
dissemination of these results raises considerable challenges. 

 In this section we summarize graphical data presentations in the clinical com-
munications and marketing settings. These can be separated under 3 titles: internal 
communications, external communications, and communications to non-statisti-
cians. Internal communications can be of the following types: brainstorming meet-
ings, preparations for congresses, and planning new study design based on 
accumulated clinical trials data. Examples of the external meetings are public pre-
sentations, expert panel meetings, and regulatory interactions (e.g., FDA advisory 
committees or type C meetings). Communication to non-statisticians includes 
explanations of statistical methods to legal representatives, marketing colleagues, 
and clinicians. 

 Our examples come from epilepsy and neuropathic pain clinical trials settings 
and will consider both ef fi cacy and safety (adverse events). The primary criterion 
to establish ef fi cacy in neuropathic pain studies is the endpoint mean pain score, 
derived from a daily pain diary recorded by the patient using an 11-point numeric 
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(integer) rating scale (NRS). Upon awakening, the patient evaluates the pain expe-
rienced during the previous 24 hours by circling the number on the scale that best 
describes the pain. The integer scale ranges from 0 (no pain) to 10 (worst possible 
pain). Weekly averages of these pain scores form the dependent variable(s) in 
analyses. The change from baseline (the average of the values prior to receiving 
treatment) also typically gets analyzed with more negative changes indicating 
improvement (reduction) in pain. Finally, what we present here is a small set of 
examples from a much larger and constantly evolving set of graphical presenta-
tions in the post-approval phase. 

    20.2.1   Internal Communications and Brain Storming 

 Internal communications are integral part of planning and execution of drug devel-
opment and promotion. In Phase IV we have the following types: brainstorming 
meetings, preparations for congresses, and designing new studies based on accumu-
lated clinical trials data. 

 The typical brainstorming meetings may occur twice yearly with a goal such as 
idea development for new publications based on current and past trials’ data. 
A team of scientists will discuss questions and ideas of interest and statisticians 
will present background analyses to medical or clinical colleagues. During one of 
these meetings, we provided a graph to describe the placebo effect, which is statis-
tically quite simple but conceptually useful in one of these cross-disciplinary meet-
ings (Fig.  20.1 ).  

 The question of interest behind this  fi gure arose out of an observed increase in 
pain ef fi cacy among the placebo patients in many trials. This is a big concern since 
it means that we can easily miss the incremental drug improvements over placebo. 
So we examined the placebo arms of the 8 completed pain trials. We plotted the 
weekly averages of the change from baseline NRS pain values against the weeks of 
the trial duration. Using input from the clinical colleagues, we identi fi ed 4 of those 
studies as the high placebo response (HPR) studies, those that had a greater than 
2-point improvement (negative values indicate improvement) from the baseline 
(shaded as orange). We identi fi ed the other 4 studies as low placebo response (LPR) 
studies (<2-point improvement from the baseline—shaded as green). We also 
marked the approval status of the studies as whether they are pre- (solid lines) or 
post-approval (dotted lines). Lastly, we identi fi ed the ratio of the active to control 
arms as 1:1 ratio as red, 2:1 as green and 3:1 as blue colored lines. This presentation 
easily displays that differences in placebo response to pain were observed for time 
of the study (pre- or post-approval), ratio of active to control, and study duration. 
Higher placebo responses on pain were observed in post-approval studies compared 
to pre-approval studies. Using these initial observations, statisticians could then 
help the clinical and medical staff hypothesize on reasons for the apparent differ-
ences and, in some cases, test those hypotheses. These results were eventually 
 presented at a clinical congress (Freeman et al.  2010  ) . 
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    20.2.1.1   Preparations for Congress Activities 

 Our clinical team collected patient level pain symptom data using the Neuropathic 
Pain Symptom Inventory (Bouhassira et al.  2004  )  scale in 4 separate trials with dif-
ferent disease mechanisms. This 12-item questionnaire was given to the patients at 
baseline and during treatment. The clinical question of interest was whether patients 
cluster into different homogenous groups relative to the inventory symptom items. 
Each NPSI item ranges between 0 (no pain) and 10 (worst imaginable pain) except 
items 4 and 10, which were excluded from the analysis. The remaining 10 items 
gather pain symptom information on Burning, Squeezing, Pressure, Electric Shocks, 
Stabbing, Provoked by Brushing, Provoked by Pressure, Provoked by Cold, Pins 
and Needles, and Tingling. 

 Scaling is an important component of the cluster analysis. Because the patient 
disease populations differ for each of the 4 trials, the cluster analysis will need to 
account for variation in questionnaire results that arise from population differences. 
For a given patient, they will rate some items with high scores (lots of that pain 
sensation) and others relatively low. To factor out disease driven differences we can 
 fi rst  normalize the data using a variety of techniques. In Fig.  20.2 , each boxplot 
displays a representative example based on 1 out of every 20 patients with similar 

  Fig. 20.1    Weekly placebo response over time in mean pain score. This  fi gure uses simple statistics 
and trial characteristics identi fi cation to generate hypotheses on what factors may contribute to 
increased placebo effect       
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means. For Fig.  20.2a , we plotted the original scores. Next, for Fig.  20.2b , we 
subtracted the individual means from each scale and boxplot the same patients. 
The skewness still exists in these mean-subtracted values. So in Fig.  20.2c , we 
quantile-normalized (Amaratunga and Cabrera  2001 ) the data (similar to a Fisher-
Yates transformation (Cabrera and Emir  2012  ) ). Using these simple graphics we 
monitor the effects of the different transformations and decide which to pass through 
to the cluster analysis step. Subsequent cluster analyses results then were used as 
part of a presentation at a scienti fi c congress and as part of manuscript.    

    20.2.2   Planning New Study Design Based on Accumulated 
Clinical Trials Data 

 Studies that support a particular concept for drug treatment (proof of concept or POC 
studies) are an important part of drug development. In most cases, POC studies are 
the  fi rst time that patients get exposed to a new drug to test its ef fi cacy. In the  fi eld of 
epilepsy trials, a leading expert collaborated with us to evaluate a POC design para-
digm using our repository of clinical trial epilepsy data (French et al.  2011  ) . The 
question was how much to shorten the epilepsy patients’ exposure in POC trials, 
which typically required 12 weeks on treatment following a 6–8 week baseline 
observation period. That is, if the drug is ef fi cacious, we want to take it to next phase 
of testing as quickly as possible and if it has little or no ef fi cacy then we want to 
quickly and reliably learn about it. Regardless of the drug’s ef fi cacy we also want to 
minimize each patient’s exposure to an experimental treatment for safety reasons. 

 Our trials include at least 6 weeks of baseline observation during which we col-
lect data on the number of seizures they experience. Once the patient satis fi es inclu-
sion and exclusion criteria, he is randomized and takes placebo or one of different 
doses of drug for at least 12 weeks—the standard epilepsy trial design even for 
POC. To explore alternatives to these longer exposures we truncate the amount of 
data used in our analysis and see if we lose much power. We do this by looking at all 
6 week by 12 week combinations of baseline and treatment exposures using the origi-
nal study de fi nitions for an ef fi cacy signal—an odds ratio (OR) of 2 as a cutoff. We 
reanalyzed the response (a 50% reduction in seizures relative to baseline value) to 
treatment using a logistic regression with covariates for baseline seizure rate, study, 
and treatment. We plotted these ORs as a color-coded graph (sometimes called “heat 
map”), see Fig.  20.3 . After consulting with experts, we reached a recommendation to 
use 4 weeks of baseline and 2 weeks of post-randomization for the POC trial to test 
a new drug. We also looked at sample size issues but do not present them here.   

    20.2.3   Sales Representatives 

 Sales representatives regularly visit physicians to update them about the latest on 
the safety and ef fi cacy of the medicine that they represent—sometimes called drug 
detailing. Recent rulings have increased the limits on drug company representa-
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tives’ interactions with the physicians. Hence it is very important to relay the medi-
cine information to the treating physician in a short time, without ambiguity and 
with a clear “fair balance.” We present a typical example of the post-approval use as 
shown in Fig.  20.4 . In this promo piece, we simply graph the LSMEANS mixed 
model repeated measure (MMRM) values against time (weeks). On the right hand 

  Fig. 20.4    A typical sales promotional graphic showing pain relief maintenance over time and with 
accompanying fair-balance language for the drug product. Such materials must convey large 
amounts of statistical information that must be easily understood by non-statisticians in a matter of 
minutes or less       

  Fig. 20.3    Heat map for 
power in a proof of concept 
study. This  fi gure shows the 
ability of a study to detect a 
difference between an 
ef fi cacious treatment and 
placebo based on the amount 
of baseline observation in 
weeks (Preweek) and on 
treatment exposure 
(Postweek). The lighter 
colors, yellow or lighter, 
indicate that the 
corresponding combination 
of observation times works 
well for a given sample size       
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side, for fair balance the AE information and study details are provided in text. 
Marketing colleagues test these materials for clarity and ease of understanding. 
Afterwards, the representatives are trained on how to use them.  

 With this graph our markers simply wanted to convey the behavior of drug over 
time. It is the outcome of an MMRM analysis which is not easy to describe in lay 
language. This graphic displays the  p -values, which are always an interest, for 
each week. The  y - and  x -axis clearly defi ne the direction of pain improvement.  

    20.2.4   Regulatory Interactions (Safety—Adverse Drug Effects) 

 In post-approval settings regulatory bodies such as the FDA or EMEA generate que-
ries to drug companies about marketed products and their safety pro fi le. The follow-
ing data come from an FDA advisory committee regarding suicide and antiepileptic 
drugs. The reader can  fi nd more detailed information at the FDA website ( http://
www.fda.gov/ohrms/dockets/ac/08/briefi ng/2008-4372b1-01-FDA-Katz.pdf ). 

 Figure  20.5  shows a Bayesian analysis of odds ratios for suicide related events 
for 2 of the drugs in the query. The events are rare so Bayesian methods were applied 
using Jeffreys prior. The primary FDA analysis uses standard frequentist methods 
that ignore any studies with no events even though those studies still provide some 
information on overall exposure. Figure  20.5  shows the effect of excluding these 
studies for drug C and drugs C and D combined. The “All Studies” intervals are 

  Fig. 20.5    Comparison of estimates and intervals for odds ratios when including and excluding 
studies with no events of interest from estimation process       
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  Fig. 20.6    Missing value imputation illustrated       
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shorter as a result of including the larger body of study information—compared 
with the “Only Events Studies” interval lengths.   

    20.2.5   Multiple Imputation Presentation 

 The statistician’s job does not end once the data gathering, analysis and interpreta-
tion are completed. We have seen the importance of the dissemination of the results 
and interpretations to a diverse group of disciplines. Statisticians also get called 
upon to explain the function and value of methods that non-statisticians may not 
have previously seen. Figure  20.6  shows a tutorial piece used to explain to company 
clinicians and other non-statisticians the idea behind multiple imputation (MI) 
methods and why they may work better than other methods for handling missing 
data. Note that in presentation the slide illustrates how more than one imputed value 
arises from the chosen MI distributions.  

 The audience for these slides wanted to know more about the MI methodology 
without getting lost in details. In this case, words tended to add confusion but 
when participants are presented with the build of this slide they then see more 
clearly the key features of MI. In this MI each patient’s missing values will be 
imputed using one of two ways: (a) using the distribution of the placebo group or 
(b) using the distribution of the baseline scores. The example patient’s observed 
scores at each time point are indicated by Xs in the slide and the mean of the pla-
cebo distribution is indicated by Ps. As the slide builds, each value drawn from the 
placebo distribution (shown schematically at the right side as a bell curve) appears 
for each imputation. The bell curve shows the distribution from which these val-
ues were drawn. A similar scenario follows in red for imputed values drawn using 
the baseline scores distribution instead of the post-treatment placebo scores’ 
distribution.   

    20.3   Sales and Marketing Data 

    20.3.1   Trend Analysis 

 Trend breaks of a certain metric is one of the most widely sought information, almost 
every week, by managers of various sales and marketing organizations. For example, 
brand managers and sales managers look for this information when they are  concerned 
about possible negative implications due to such factors as competitor promotions, 
economy, bad publicity, loss of exclusivity of a brand, and so on. They also want to 
know whether a trend improves following a market trial, a new sales promotion, a 
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formulary win, and so on. The metrics they typically look at are NRx (new Rx scripts 
prescribers write), TRx (total Rx), NRx Market Share, and TRx Market Share. 
Depending on the state of maturity of the brand they usually know that the current 
trend is negative or positive, but it is often dif fi cult to tell whether the trend improves 
or gets worse. Given a set of latest time series data on the metric of interest, they like 
to know whether a trend break has occurred after an event such as those described 
above. Since the above metrics are highly noisy, they look for this information week 
after week following the event to detect as early as possible whether a statistically 
signi fi cant trend break has occurred. 

 The fact that the detection of trend breaks is not obvious is evident from the time 
series plot of NRx given in Fig.  20.7  for a hypothetical brand in a certain district. 
Notice that due to high level of noise in data, it is not very clear whether or not we 
have suffi cient data to declare that a trend break of statistical signi fi cance has 
occurred.  

 Therefore, it is desirable to provide graphical aid so that a client can see whether 
the trend is getting better or worse lately. A widely used graphic to accomplish this 
is the CUSUM (cumulative sum) control chart enabling detection of deviations from 
a constant trend (Page  1954 ). To brie fl y explain how this works in the context of 
detecting trend breaks, let  Y  

1
 ,  Y  

2
 , …,  Y  

 T 
  be a set of time series data on a metric of 

interest observed at equally spaced  T  time periods. The CUSUM control chart is 
based on recursive residuals from a series of simple regressions of the form

  Fig. 20.7    NRx volume by week (period) in district of interest       
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     = + +t tY t εa b    (20.1)  

 fi tted to the increasing window of data points starting with an initial window size of 
at least 2, starting at time  t  
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 t 
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Then, the CUSUM plot is based on the vector  U  = ( U  
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  =  w  

 i 
 /SD( w ), where SD( w ) is the standard deviation of the weighted residu-

als  w  = ( w  
 t 0
 ,  w  

 t 0+1
 , …,  w  

 T 
 ). Then, the CUSUM chart for detecting trend breaks would 

comprise a plot of  U ( t ) as a function  t  along with con fi dence bounds,

     ( )± - + - -( 1) 2( 1) / ( 1) ,q T t T    (20.2)  

where  q  is equal to 1.14 for the 99% con fi dence interval and 0.95 for the 95% 
con fi dence interval. 

 Shown in the chart is CUSUM control chart for trend breaks in the above situ-
ation. From the CUSUM plot it is clear that the trend is getting better lately. 
However, the trend does not come close to crossing the upper con fi dence bound. 
This example highlights a major drawback in CUSUM for detecting trend breaks, 
namely the technique is too slow in detecting trend breaks. Therefore, it is a good 
idea to carry out a statistical test such as the simple Chow Test (Chow  1960 ) or the 
Generalized Chow test under heteroscedasticity (Weerahandi  1987 ) and present 
results right on the chart. In applying the Chow test in this situation, we divide the 
time period into 2 equal halves, estimate the slope in each half and then apply a 
 t -test to conclude whether the change in slopes is statistically signi fi cant or not. In 
the chart below, the  fi nding is reported as an Early Alert by an automated process 
that generates the chart    (Fig.  20.8 ).   

    20.3.2   Benchmarking 

 An equally important notion in performance tracking is benchmarking. In this appli-
cation, the performance of a certain geographical area, a segment, or any other unit 
is measured by a certain metric of interest as compared to another geographical area 
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of relevance. Here we refer to the former as the  Test Group  and the latter as the 
 Control Group  or the  Benchmark . In this application as well metrics such as NRx, 
TRx, and Market share with respect to NRx or TRx are of interest. For example, if 
a market trial has been conducted in a region, a market analyst may wish to see 
whether or not Rx performance in that region is better than in a comparable region. 
Although eventually one needs to carry out a careful analysis, a simple graphical aid 
that can be tracked weekly or monthly is desirable before undertaking a time con-
suming analysis. 

 With typical data, noise is so high that it is not easy to tell whether the test group 
is doing better or worse than the benchmark, particularly when the metric of interest 
is of different magnitude. For example, this is the case when a regional manager 
wishes to see the sales performance of a certain state when benchmarked against the 
average performance of the region. As illustrated by the top chart of Fig.  20.9 , the 
issue of different orders of magnitude of metrics can be tackled by presenting each 
metric on an Index scale as 

     ( )=Index at time 100 Metric at time / Base Metric ,t t    (20.3)  

thus making the values of each metric vary around 100, where base metric can be 
set to such quantities as the average of the metric, the value of the metric at the  fi rst 
time period, and so on. In Fig.  20.9 , NRx is the metric, and average NRx during the 

  Fig. 20.8    CUSUM control chart for testing trend break in district       
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study period is taken as the base. The index plot in Fig.  20.9  suggests that the test 
region might be doing better compared to the control region, but it is not clear 
whether the improvement is statistically signi fi cant or not. Therefore, a benchmark-
ing control chart is presented in the same chart to enable signi fi cance testing. The 
control chart for benchmarking is similar to the CUSUM procedure, except for two 
modi fi cations: (1) the regressions in ( 20.1 ) are run on the observed metric values of 
the Benchmark in place of time  t  and (2) weighted residuals  E  

 i 
 s are plotted without 

cumulating. 
 Deviation of residuals above the 95% upper con fi dence bound during recent 

periods would suggest better performance of the test group, and that happening 
more than once in latter periods would make the improvement highly signi fi cant. 
In the example under study, residuals corresponding to the last 6 months cross the 
upper con fi dence only once, but note that all 6 residuals are positive. One can eas-
ily reject the hypothesis that this happened by chance at a low level of Type I error, 
and therefore, we can declare signi fi cance and mark this as an early alert of better 
performance of the test region, as in the bottom chart in Fig.  20.9 . In this chart  the 
x -axis, namely the period, is common to each of the two charts. The two charts 
basically provide the same information, but the index chart is more intuitive to 
non-statisticians, whereas the control chart helps detecting whether the latest per-
formance of the test compared to the benchmark is statistically signi fi cant or not.  

  Fig. 20.9    Performance of test group benchmarked against the control group: (1) index chart of 
100(Rx/Average Rx), (2) control chart of deviations from constant relationship       
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    20.3.3   Field Force Optimization 

 One of the primary promotions of most of the pharmaceutical companies is their 
 fi eld representatives calling on doctors. The number of times a  fi eld representative 
going to a doctor’s of fi ce during a certain period is referred to as the number of 
details in that period. The  fi eld representatives go to doctors’ of fi ces and tell the lat-
est on the safety and ef fi cacy of the medications (referred to as detailing) and drop 
off a certain amount of starters (referred to as samples) since they could positively 
impact on the way doctors prescribe the brand of interest. Actually  fi eld representa-
tives visiting a prescriber’s of fi ce too often or too in frequently could have negative 
impact; the former could cause sample cannibalization of sales, and the latter could 
result in new patients starting on competing brands. Therefore, detailing at a level 
close to the optimum level is important, a task that requires careful analysis. The 
prescribing behavior of a doctor is a function of many variables, including details, 
samples, trend, competition, and so on. Also TV and other type of direct to consumer 
advertisements affect the way some patients ask for a certain brand by name. 

 The analysts of many pharmaceutical companies now estimate doctor response 
to detailing using what is known as marketing mix models, which allow one to con-
trol for all drivers of prescribing behavior while estimating the response parameter 
of interest. Most analysts perform response estimation by a certain set of segments, 
as opposed to individual prescribers. The segments are based on such attributes as 
doctors specialty, Rx quintile bucket, region, and so on. Then, the response param-
eters are estimated by segment in a mixed model setting. A major drawback of 
response estimation by segment is that individual prescribers in any segment could 
have nonresponders and high-responders and what we get is the average response 
for the segment. This approach has limited use and does not allow to optimize the 
call frequency to individual prescribers. Therefore, some companies such as P fi zer 
have developed their own method to estimate response for every prescriber, some-
thing we will not discuss further due to the proprietary nature of the methodology. 
When individual prescriber level response estimates are available or segment level 
estimates are granular enough, one can determine the optimum level of  fi eld force 
by territory of  fi eld representative or by district, the lowest level of the management 
of  fi eld representatives’ activity. 

 In this type of application, it is good to present a chart that helps easily under-
standing of how the optimization works. Figure  20.10  shows how it works using 2 
variables of importance in different scales for a given region of interest. When there 
is no sales cannibalization, typically NRx lift, and hence the revenue lift, we get 
increases at a diminishing rate, as illustrated by the blue colored curve in the chart. 
On the other hand the cost incurred by such calls (details) almost linearly increases 
with the number of calls. Then it is easily seen that the pro fi t as a function of details 
becomes a concave function with the maximum occurring at a certain point with a 
reasonable range of details per month. This is illustrated by the red color curve in 
the chart. In this illustration, the optimal average detail per doctor is slightly above 
1.5 details per month in the region of interest. When response estimates for each 
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region are available by such attributes as prescriber’s specialty and quintile, opti-
mum details are computed for each such segment. In the implementation, however, 
unless one has individual doctor’s response estimates, the same calling frequency 
will have to be maintained for each prescriber in a given segment. If response is 
estimated by segment rather than by individual prescriber, the low responders in a 
segment will receive too many details/samples and high responders will receive 
inadequate details/samples, thus resulting in a sub-optimum solution.  

 In communicating the bene fi ts of  fi eld force optimization with clients, it is impor-
tant that statistics such as sales lift and pro fi t lift are presented in simple charts such 
that non-statisticians can easily understand the power and potential of the optimiza-
tion. In the illustration below, current call frequency (details per month, per pre-
scriber), optimum call frequency, current pro fi t that can be attributed to detailing, 
and the optimum pro fi t are presented using 2 sets of grouped bar charts. We have 
implemented this and other graphical displays through an interactive software sys-
tem that enables metadata display,  fi ltering, and dropdown. In particular, this enables 
to visualize the annual pro fi t lift potential due to detail optimization when a user 
moves the mouse from one state into another. For example, for the hypothetical 
brand under study, the tools highlight that the pro fi t lift potential via detail optimiza-
tion in New York state is close to a million dollars (Fig.  20.11 ).  

  Fig. 20.10    Revenue and pro fi t by number of details per month       
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 Further insight concerning the implications of the optimization could be pro-
vided with additional charts such as the interactive color-coded map shown below. 
The interactive software system allows one to look at any regional business unit 
such as the Northeast business unit in the above example. In Fig.  20.12 , we use the 
optimization carried out for the South business unit using the hypothetical data 
under study. The interactive color-coded map below shows the states with largest 
potential with respect to various metrics such as average NRx lift and average pro fi t 
lift due to optimization in green color, lowest in red color, and average in yellow 
color, for every state in the South business unit. Those states that fall in between are 
colored with the corresponding mixed colors. The interactive software system also 
allows one to move the mouse from one state to another and get a glimpse of impor-
tant statistics that highlight the pro fi t potential along with related statistics if the 
optimization is carried out.        

  Fig. 20.11    Pro fi t lift due to detail optimization       
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  Abstract   Increasing the knowledge about the safety of medical products remains a 
top priority throughout the pharmaceutical development life cycle and particularly 
after regulatory approval when the products are used in real-world populations. The 
increasing availability and use of observational healthcare data, such as administra-
tive claims and electronic health records, provides opportunity for generating 
 better information to support therapeutic decision-making. 

Analysis of observational databases is quite different from randomized clinical 
trials, and offers unique opportunities for exploratory visualization to complement 
traditional epidemiologic investigations. The Observational Medical Outcomes 
Partnership was established to conduct methodological research on the appropriate 
use of observational data to identify and evaluate the effects of medical products in 
the real world.

Several visualization tools were developed throughout the process, which dem-
onstrate the value in combining standardized analytics with interactive graphics. 
These tools include a patient pro fi le to study longitudinal patterns within clinical 
observations for a given person; a cohort pro fi le to evaluate collections of patients; 
a treemap to assess  disease prevalence across a database; a trellis scatterplot to 
investigate subgroup differences in drug utilization; a heatmap to support evaluation 
of high-dimensional confounding adjustment; and a multi-method forest plot to 
enable sensitivity analyses of estimated effects of drug and outcomes. This chapter 
illustrates these visualizations through a case study exploring the relationship 
between ACE inhibitor exposure and the subsequent health event angioedema.      

    P.   Ryan   (*)
     Epidemiology Analytics ,  Janssen Research and Development , 
  1125 Trenton-Harbourton Road ,  Titusville ,  NJ   08560 ,  USA    
e-mail:  ryan@omop.org   

    Chapter 21   
 Using Exploratory Visualization in the Analysis 
of Medical Product Safety in Observational 
Healthcare Data       

      Patrick   Ryan         



392 P. Ryan

    21.1   Introduction 

 Drug safety continues to be a major public health concern in the United States. In 
order for patients and health care providers to make appropriate therapeutic deci-
sions, they need to be informed of the potential bene fi ts and harms of alternative 
treatment options. While the ef fi cacy of prescription medicines is generally well-
characterized from the series of randomized clinical trials conducted during drug 
development, the safety pro fi le of medicines is often less certain and more poorly 
understood (Berlin et al.  2008  ) . 

 Research suggests that drug safety information is the highest information prior-
ity for patients, and that the perception of side effects is in fl uential in many patients’ 
decisions about taking a medicine (Knapp et al.  2004  ) . This patient focus is well-
justi fi ed. Lazarou et al. estimated that, in 1994, between 76,000 and 137,000 hospi-
tal patients died from an adverse drug reaction (ADR), ranking adverse drug 
reactions as the 4 th  to 6 th  leading cause of death (Lazarou et al.  1998  ) , and resulting 
in health care costs of $3.6 billion annually (Bennett et al.  2007  ) . 

 Traditional methods of drug safety surveillance involve literature searching and 
case-by-case analysis of spontaneous adverse event reports, as well as crude fre-
quency counts and calculation of reporting rates (US Department of Health and 
Human Services  1999  ) . Statistical data mining algorithms are becoming increas-
ingly popular supplementary tools for safety reviewers (Almenoff et al.  2005  ) . 

 Currently, the FDA conducts spontaneous data mining by applying the Multi-
item Gamma Poisson Shrinker (MGPS) method to the Adverse Event Reporting 
System (AERS) database (DuMouchel  1999 ; Szarfman et al.  2002  ) . Many groups 
have recognized the signi fi cant limitations in the current system (Berlin et al.  2008 ; 
Almenoff et al.  2005 ; Waller and Evans  2003  ) . As part of the FDA Amendment Act 
of 2007, Congress mandated the use of observational data (including administrative 
claims and electronic health records) as part of an active drug safety surveillance 
system that would supplement current practice (Public Law 110–85  2007  ) . 

 It is expected that a national active surveillance system will consist of several 
interrelated processes, including signal detection, signal strengthening, signal vali-
dation, and hypothesis testing in a formal pharmacoepidemiologic study (Racoosin 
 2009  ) . While these observational data sources have been actively studied for phar-
macoepidemiologic evaluation studies (Schneeweiss  2009 ; Schneeweiss and Avorn 
 2005  ) , appropriate statistical methods for screening observational data to generate 
and triage hypotheses about potential drug effects are nascent and have not yet been 
rigorously explored across a network of disparate data sources. Alongside this need 
for methodological development comes the opportunity to assess the role of explor-
atory visualization within this new analytical paradigm. 

 While large-scale clinical trials and pooled meta-analysis results are often desir-
able to produce the most reliable measure of an effect, they are often logistically 
infeasible or ethically untenable. Observational studies provide an alternative 
approach to evaluating drug safety questions that can provide the necessary infor-
mation about the drug effects to support clinical decision-making. Depending on the 
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questions posed, the primary analysis of an appropriate observational study may 
provide better information than the analysis of an existing clinical trial data set 
(Foody  2010  ) . Observational studies provide empiric investigations of exposures 
and the effects they cause, but differ from experiments in that there is no control of 
assignment of treatment to subjects (Rosenbaum  2002  ) . 

 One resource that has provided fertile ground for epidemiologic investigation 
has been observational healthcare databases. Administrative claims and electronic 
health record databases have been actively used in pharmacoepidemiology for over 
30 years (Strom  2005  ) , but have seen increased use in the past decade due to 
increased availability at lower costs and technological advances that made compu-
tational processing on large-scale data more feasible. Observational healthcare 
databases, captured as part of the healthcare delivery system, offer researchers 
the opportunity for a secondary use of data to study effects amongst any observed 
medical products. 

 Many such databases contain large numbers of patients that make it possible to 
examine rare events and speci fi c subpopulations that previously could not be stud-
ied with suf fi cient power (Rodriguez et al.  2001  ) . The large population size makes 
it possible to estimate absolute incidence rates across a wide array of potential out-
comes and to measure amount of exposure in a large population to produce more 
accurate measures of potential public health impact (Rockhill et al.  1998  ) . Because 
the data re fl ect healthcare activity within a real-world population, they offer the 
potential to complement clinical trial results which suffer from lack of generaliz-
ability. Long-term longitudinal capture of data in these sources can enable studies 
to monitor the performance of risk management programs over time (Weatherby 
et al.  2002  ) . 

 Administrative claims databases have been the most actively used observational 
healthcare data source. Administrative claims databases typically capture data ele-
ments used within the reimbursement process. Providers of health care services 
(i.e., physicians, pharmacies, hospitals, and laboratories) submit encounter informa-
tion so that they will be paid for services delivered (Hennessy  2006  ) . This com-
monly includes pharmacy claims for prescription drug  fi lls (providing what drug 
was dispensed, the dispensing date, and the days supply), and medical (inpatient 
and outpatient) claims that detail the date and type of service rendered. Medical 
claims typically contain diagnosis codes used to justify reimbursement for the pro-
cedures (also coded). Age and gender can also commonly be inferred from the 
available data. 

 In these databases, data are recorded only when a patient has a reimbursable 
encounter with the health care system that has been properly  fi led, coded, and adju-
dicated by the payer (Schneeweiss and Avorn  2005  ) . As a result, many key data 
elements may not be available. Information on over-the-counter drug use and in-
hospital medication is usually unavailable and the patient’s actual consumption pat-
tern of the prescription is generally unknown (Suissa and Garbe  2007  ) . Retail 
pharmacy claims data can be used to study drug utilization pattern, but the com-
pleteness of these data can vary by patient age (Polinski et al.  2009  )  or other unob-
servable characteristics. Claims can be aggregated by payers, healthcare systems, or 
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data aggregators, though each may have a different perspective on how to de fi ne 
observation periods (whether it be the time insured, the time in the system, or  simply 
the span of time that data was observed). While the databases offer longitudinal 
coverage, the amount of times that patients persist within a given database can vary 
signi fi cantly because of annual health care coverage choices among employees, eli-
gibility for entitlement programs, or employment status changes. 

 Electronic health records (EHR) generally contain data captured at the point of 
care, with the intention of supporting the clinical process. A patient chart may include 
demographics (birth date, gender, and race), height and weight, and family and med-
ical history. Many EHR systems support provider entry of diagnoses, signs, and 
symptoms, and also capture of other clinical observations, such as vital signs, labora-
tory values, and imaging reports. Beyond this, EHRs may often contain  fi ndings of 
physical examinations and the results of diagnostic tests (Schneeweiss and Avorn 
 2005  ) . EHR systems usually also have the capability to record other important health 
status indications, such as alcohol use and smoking status (Lewis and Brensinger 
 2004  ) , but the data may be missing in many patient charts (Hennessy  2006  ) . 

 Unless integrated across an entire health system, EHR systems are generally 
maintained independently by physician practices or individual hospitals. The pro-
vider and of fi ce staff enter information elicited from the patient or generated by the 
physician, but are also responsible for entering relevant clinical information from 
services rendered outside the practice, including conditions diagnosed by outpatient 
specialist physicians or during hospital admissions (Hennessy  2006  ) . 

 Drug exposure may be inferred from various sources; providers may use the 
EHR system to capture patient-reported medication history and/or to write prescrip-
tions, but there may be no con fi rmation that prescription was  fi lled at a pharmacy. 
As a result of discontinuous care within the US health care system, a patient may 
have multiple EHRs scattered throughout the providers they have seen, but rarely 
are those records integrated together, so each re fl ect a different and incomplete per-
spective of that person’s healthcare experience. 

 For both administrative claims and electronic health records, drug safety analy-
ses are considered a secondary use of the data. Therefore, the onus is on the 
researcher to fully understand and assess the relative strengths and limitations of 
each potential source, prior to conducting an evaluation. Data recorded in either 
system re fl ects data used for its primary intent, and therefore, may not necessarily 
represent the optimal information for study. 

 For example, diagnoses recorded on medical claims are used to support 
justi fi cation for the payment of a given procedure; this diagnosis could represent the 
condition that the procedure was used to “rule out” or can be an administrative arti-
fact of being the code used by a medical assistant to maximize reimbursement. 
Similarly, patients without a diagnosis recorded do not necessarily re fl ect the 
absence of a condition, as the code may not be used due to lack of seriousness or 
convenience to facilitate payment procedures .

 A similar limitation exists in EHR systems, where in addition to concerns about 
incomplete capture, data used for clinical care may not accurately re fl ect the patient’s 
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underlying disease status. For example, physicians may neglect to update condi-
tions that have resolved. Most systems have insuf fi cient processes to evaluate data 
quality a priori, requiring intensive work on behalf the researcher to prepare the data 
prior to analysis (Hennessy et al.  2007  ) . Both types of sources require inferences to 
estimate potential drug exposure. Inferences can be made in administrative claims 
sources based on pharmacy dispensing records, while inferences for EHR systems 
rely on the patient self-report and the physician prescribing orders (Hennessy  2006  ) . 
Neither re fl ect the timing, dose, or duration of drug ingested, so assumptions are 
required in interpretation of all study results. Proper investigation of an observa-
tional data source prior to analysis is challenging, time-consuming, and susceptible 
to error. Standardized exploratory analytics and accompanying interactive visual-
ization tools offer the potential to improve both the ef fi ciency and effectiveness of 
observational research.  

    21.2   Observational Medical Outcomes Partnership 

 The Observational Medical Outcomes Partnership (OMOP,   http://omop.fnih.org    ) 
is a public–private partnership managed by the Foundation for the National Institutes 
of Health and chaired by the Food and Drug Administration. OMOP is conducting 
methodological research on the appropriate use of observational healthcare data 
(administrative claims and electronic health records) for identifying and evaluating 
the real-world effects of medical products (Stang et al.  2010  ) . 

 OMOP developed a distributed network of disparate observational data sources, 
both administrative claims and EHRs, covering de-identi fi ed patient-level data for 
more than 200 million lives. The network of data sources consisted of  5  central 
datasets and  5  distributed datasets. The central data included one EHR database 
from GE Centricity (GE) and 4 administrative claims datasets licensed from 
Thomson Reuters MarketScan ®  Research Databases: MarketScan Commercial 
Claims and Encounters (CCAE), Medicare Supplemental Bene fi ciaries (MDCR), 
Multistate Medicaid Database (MDCD), and the MarketScan Lab Supplement 
(MSLR) database. 

 The  5  distributed datasets were housed by their respective partners—the 
Department of Veterans Affairs Pharmacy Bene fi ts Management Center for 
Medication Safety (VA); Humana, Inc. (HUM); Partners Healthcare System 
(PHCS); the Regenstrief Institute af fi liated with Indiana University School of 
Medicine (RI); and SDI Health (SDI_MID). OMOP also established a community 
of methodologists to develop and apply statistical models to estimate the strength of 
association across a wide array of drugs and health outcomes of interest. 

 These methods include implementations of epidemiologic designs, such as inci-
dent user cohort design using high-dimensional propensity score adjustment (HDPS) 
(Schneeweiss et al.  2009  ) , case-crossover design (CCO) (Schneeweiss et al.  1997  ) , 
and univariate self-controlled case series (USCCS) (Whitaker et al.  2006  ) , as well 

http://omop.fnih.org
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as data mining algorithms adapted for longitudinal data, such as disproportionality 
analysis (DP) (Zorych et al.  2011  )  and temporal pattern discovery (ICTPD) (Norén 
et al.  2008  ) . 

  As part of its research, OMOP has developed a suite of open-source standardized 
analytical tools for characterizing and exploring patient-level data and aggregate 
summary results. Such tools include a common data model (CDM) (Overhage et al. 
 2011  )  to standardize the structure and terminologies used to represent  disparate data 
sources, and standardized procedures to summarize population-level attributes of 
each database. Aggregate results were compiled within the OMOP central coordi-
nating center for further analysis and dissemination. The visualizations described in 
this chapter are the result of this research, and were all generated using TIBCO 
Spot fi re ®  3.2. 

    21.3   Case Study: ACE Inhibitor and Angioedema 

 Among the test cases used for evaluation in the OMOP experiments was the known 
positive association between Angiotensin Converting Enzyme (ACE) Inhibitor 
exposure and angioedema onset. ACE Inhibitors provide a solid basis for method-
ological research because the class represents a large set of mature products (includ-
ing lisinopril, benazapril, ramipril, quinapril, and captopril) that are actively used in 
the broad population. 

ACE Inhibitors block the conversion of angiotensin I to angiotensin II within the 
renin–angiotensin system, which plays an important role in the pathology of hyperten-
sion, cardiovascular health, and renal function (Chou et al.  1995 ; Norris et al.  2010  ) . 
ACE inhibitors have been found to be effective in the control of hypertension, as well 
as reduce the risk of acute myocardial infarction among patients with heart failure, left 
ventricular remodeling after acute myocardial infarction, mortality among patients 
with severe heart failure and reduced left ventricular ejection fraction, and progression 
of renal disease among diabetic and non-diabetic patients (Norris et al.  2010  ) . 

The Joint National Committee on Prevention, Detection, Evaluation and 
Treatment of High Blood Pressure (JNC-7) currently recommends ACE inhibitors 
or Angiotensin Receptor Blockers (ARBs) as  fi rst line options for patients with 
stage 1 hypertension who have diabetes, chronic kidney disease, history of stroke or 
myocardial infarction, or high cardiovascular risk (Chobanian  2009  ) . While rare in 
incidence, angioedema has been consistently shown as a potential risk across all 
ACE inhibitors in clinical trials, and reinforced by observational database studies 
(Miller et al.  2008  ) . 

 Angioedema is the rapid swelling of the dermis, subcutaneous tissue, mucosa 
and submucosal tissues, and can require immediate medical attention to avert air-
way obstruction and suffocation.  

 Enalapril was shown to have a 4-fold increase in angioedema risk relative to 
placebo, from 1 per 1,000 to 4 per 1,000 among all subjects (Kostis et al.  1996  ) . The 
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ALLHAT study of demonstrated the same incidence and relative effects in lisino-
pril, with a rate of 4 per 1,000 for lisinopril users, versus less than 1 per 1,000 for 
the other treatments (ALLHAT  2002  ) . 

 The HOPE trial showed comparable  fi ndings for ramipril (Yusuf et al.  2000  ) . 
Rates in angioedema were also consistent in trials for captopril (Chalmers et al. 
 1992  )  and perindopril (Speirs et al.  1998  ) . The risk of ACE inhibitor-related angioe-
dema is increased in patients of African descent, with an observed 2- (ALLHAT 
 2002  )  to 4-fold (Brown et al. Jul  1996  )  increased risk relative to white Americans. 
The AASK trial showed the signi fi cantly different rates of angioedema among 
ramipril users over 3.5–6 years of follow-up (6.4%), versus 2.3% and 2.7% for 
metoprolol and amlodipine, respectively (Chou et al.  1995  ) . 

 The ACE inhibitor–angioedema association served as one of 9 positive 
 controls within the OMOP experiment. The predictive accuracy of statistical 
methods was measured on the basis by which analyses could discriminate 
between the positive controls and 44 negative controls. More generally, the out-
standing research question is: to what degree can we learn from observational 
healthcare data to better understand the effects of medical products? (Madigan 
and Ryan  2011  ) . 

 An epidemiological study can be conducted that will estimate the strength of 
association between ACE inhibitor exposure and angioedema, but without proper 
context, study results can be easily misinterpreted. Observational research requires 
a comprehensive understanding of the underlying data at both patient level and 
population level, and also requires suf fi cient evaluation of the potential sources of 
bias that can in fl uence study  fi ndings. 

 Interactive visualization offers opportunities for augmenting traditional epide-
miologic practice by enabling ef fi cient exploration of standardized summaries to 
establish the proper context necessary for interpreting observational study results. 
As a motivating example, the ACE inhibitor–angioedema relationship is explored 
using  5  visualizations developed in OMOP as standardized procedures for obser-
vational research. These visualizations include:

    • Patient pro fi le —A longitudinal summary of all clinical observations for a given 
patient  
   • Cohort pro fi le —A graphical display of all exposed cases within a database to 
enable identi fi cation of patterns across patients  
   • Prevalence treemap —A hierarchical representation of the proportion of patients 
with drug exposure or disease occurrence that allows for comparisons within and 
across databases  
   • Subgroup trellis scatterplot —A summary graphic to allow comparisons of drug 
utilization or disease prevalence within patient subgroups by age, gender, and 
calendar year  
   • Trellis forest plot —an adaption of typical meta-analysis forest plots to assess 
heterogeneity across data sources and due to study designs as a means of sensi-
tivity analysis     
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    21.4   Patient Pro fi le 

 Figure  21.1  is a patient pro fi le constructed using a scatterplot, displaying select 
clinical observations within the longitudinal record of a single individual. The  y -axis 
identi fi es the data domains presented in this pro fi le, which includes records from the 
DRUG_ERA, CONDITION_ERA, and PROCEDURE_OCCURRENCE tables 
from the OMOP common data model. The  x -axis provides the temporal relation in 
days between each observation, relative to a de fi ned index date. Here, day 0 is the 
date of the patient’s  fi rst ACE inhibitor exposure. 

 Using days to index, rather than calendar dates, allows for complete data display 
while protecting patient privacy, as observation dates are typically regarded as pro-
tected health information. Each point within the graph represents a clinical observa-
tion, a record from a speci fi c data table that was recorded on a particular date 
(transformed into days relative to the index date). The shape of the icon depicts the 
type of date represented: drug eras represent a span of time that a patient is inferred 
to have persistent exposure to an active ingredient, so the start date is represented 

  Fig. 21.1    Patient pro fi le: This scatterplot displays select clinical observations within the longitu-
dinal record of a single individual, with days relative to some index date shown in the  x -axis and 
the type of observation categorized on the  y -axis. Color, size, and shape are used to illustrate attri-
butes of the observation that is pertinent to exploring the speci fi c drug–outcome relationship within 
the person’s record       
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by the triangle pointing right, and the end date is represented by the triangle point-
ing left .

 The outcome of interest (here, angioedema) is represented by a star. The color of 
the points represents that observations’ relationship to either the target drug or tar-
get outcome; yellow identi fi es the drug era observations for ACE inhibitor expo-
sure, red highlights the angioedema occurrence; light blue highlights observations 
that are related to the exposure (e.g., conditions for which the drug is indicated or is 
used off-label, such as hypertension; and drugs that are alternative treatments for the 
same indication as the target drug, such as beta-blockers and angiotensin receptor 
blockers); dark blue highlights observations related to outcome (e.g., drugs indi-
cated as treatments for the outcome, such as prednisone); and gray is used to color 
observations with no direct relationship to either the target drug or outcome. 

 The relationships between clinical observations can be derived through auto-
mated heuristics using the OMOP standard vocabulary. The size of the icon is used 
to further focus the user’s attention on the target drug and outcome (largest icons), 
then those observations related to either the drug or outcome (medium size), and to 
deprioritize focus on the unrelated observations (smallest icons). Within each data 
domain (table name groups on the  y -axis), the points are jittered vertically to mini-
mize data overlap.  

 As a static graphic, this patient pro fi le serves several purposes. It provides infor-
mation about the time-to-event relationship by evaluating when the outcome occurs 
relative to drug initiation; here, the  fi rst event occurred 47 days after drug start. The 
graph also allows for assessing the magnitude of information available for the 
patient when conduct case adjudication; this patient has no prior medical history 
before the ACE inhibitor exposure and relatively few comorbidities and concomi-
tant medications observed during the period of ACE inhibitor exposure. However, 
this  fi gure is limited in its current form in that it does not directly convey what 
speci fi c drugs, conditions, and procedures are represented at each timepoint. 

 As an interactive exploratory visualization, the patient pro fi le becomes more 
powerful. Researchers can hover over each clinical observation to learn more infor-
mation, such as the speci fi c concept name, the type of relation to either the drug or 
the outcome, the days relative to index, and the patient’s age at the time of the event. 
Researchers can highlight multiple observations to display labels and begin to posit 
hypotheses for the clinical circumstances that are observed in the pro fi le. 

 For example, the researcher could see that speci fi c ACE inhibitor exposure was 
lisinopril. On day 47, when the angioedema diagnosis was observed, we could see 
the patient had a pharmacy dispensing for prednisone (a treatment for angioedema) 
and carvedilol (an alternative antihypertensive treatment). This information strength-
ens the hypothesis that the angioedema event is true, as it appears the patient received 
care consistent with a belief in that diagnosis, since they received treatment and 
were switched to a different antihypertensive not known to be associated with 
angioedema. 

 The carvedilol start date and subsequent lisinopril end date underscores one chal-
lenge in inferring patterns from administrative claims data. Start dates are typically 
derived based on the dispensing date recorded on a pharmacy billing claim. 
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Pharmacy billing claims also contain other data elements, such as quantity of pills 
dispensed and number of days supplied, which can be used to infer an exposure end 
date. However, the true end of exposure is not obtainable from these sources. 

 In this case, it could be reasonably expected that when the angioedema event 
occurred, the provider provided a prescription for carvedilol and directed the patient 
to immediately stop the lisinopril prescription (since lisinopril may have been sus-
pected to have caused the angioedema). If that were the case, the true lisinopril end 
date would have been day 47, but since this provider–patient interaction is not 
explicitly recorded, the researcher needs to make assumptions about how to inter-
pret the estimated lisinopril end date that occurs 18 days after the angioedema 
occurrence represents a potential de-challenge event. 

 The other value of situating this patient pro fi le within an interactive framework 
is the ability to rapidly explore patterns across multiple patients and to zoom in and 
out of longitudinal patterns and data domains. Figure  21.2  shows a patient pro fi le 
for a different patient with additional data domains shown (DRUG_ERA, DRUG_
EXPOSURE, CONDITION_ERA, PROCEDURE_OCCURRENCE, VISIT_
OCCURRENCE, OBSERVATION). Unlike the patient shown in Fig.  21.1  who had 

  Fig. 21.2    Patient pro fi le with six dimensions, categorized on the  y -axis, and key observations 
marked and labeled to facilitate further exploration of the temporal relationship between drug 
exposure and outcome occurrence, and the plausibility of a causal effect       
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less than 3 months of time displayed, Fig.  21.3  reveals patient-level data for approx-
imately 2 years.   

 The DRUG_EXPOSURE table contains all pharmacy dispensing records (dis-
played on the dispensing date); these records are used to derive the DRUG_ERA 
periods of inferred persistent use. In this case, the  fi gure shows that the ACE inhibi-
tor era that is over 1 year in length was derived from 12 dispensings which occurred 
approximately every month, consistent with typical 30-day re fi ll behavior. 

 The pro fi le reveals that during the  fi rst 6 months of ACE inhibitor exposure, this 
patient had few concomitant medications, and little recorded health service utiliza-
tion. The patient had greater procedures administered after exposure in the second 
year. This patient had few observations recorded, with select laboratory values cap-
tured at 2 time points. 

 Interactively exploring this visualization further reveals added insights that may 
support assessment of the patient’s clinical circumstances and events. Filters can 
be used to select which types of observations to show, so the  y -axis can be expanded 
or contracted based on which tables are of interest. A zoom slider can be used on 

  Fig. 21.3    Patient pro fi le with rechallenge pattern. Drug exposure and condition occurrence are 
categorized on the  y -axis. The temporal pattern, as displayed by days from index on the  x -axis, 
allows users to observe the potential relationship between exposure and outcome, where the out-
come was observed during exposure on 2 successive episodes of uses       
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the  x -axis to allow narrowing focus on particular areas of the longitudinal record 
(such as the month pre- and post-event) and to zoom out to see the entire 3 years 
of observation, as shown here. Highlighting select icons, as shown in Fig.  21.2 , 
allows researchers to identify the active ingredient (enalapril) and drill down to the 
speci fi c dose and form (enalapril 5 mg oral tablet). 

 To further characterize the angioedema event, researchers can select observa-
tions proximal to that event. Here we see the patient had a procedure recorded that 
indicates the patient was brought to the emergency department with moderate 
severity, and was administered prednisone on that same date. These observations 
are consistent with a  serious event that required urgent care and resulted in imme-
diate treatment. We note that no additional enalapril prescriptions were dispensed 
after the event, and the patient began having pharmacy dispensing records for 
atenolol (a beta blocker indicated for hypertension), indicative of a de-challenge 
attempt. 

 Figure  21.3  illustrates a different pattern in exposure and outcome occurrence. 
This  fi gure provides all records from the DRUG_EXPOSURE, CONDITION_ERA, 
and VISIT_OCCURRENCE to allow exploration of pharmacy dispensings, diagno-
ses, and general health service utilization. This patient has over 3 years of longitudi-
nal data capture, including more than 200 days prior to  fi rst ACE inhibitor exposure 
(potentially indicating incident use). We see that the patient had 2 dispensings during 
the  fi rst episode of use, but an angioedema diagnosis was recorded after the second 
dispensing and no re fi lls were immediately observed. 

 Initially, this pattern looks consistent with the de-challenge story observed with 
the prior 2 patient pro fi les. At day 623, nearly 2 years after the initial exposure, we 
see the patient received a new dispensing for an ACE inhibitor. An angioedema 
diagnosis is recorded 9 days after this new ACE inhibitor exposure, and no subse-
quent ACE dispensings are observed. This pattern is consistent with a rechallenge 
event, whereby the patient has an exposure, experiences an event, stops the treatment 
and the event subsides, reinitiates the exposure and the event reemerges. 

 There is substantial literature in evaluation of rechallenge events from spontane-
ous adverse event reporting and clinical trials (Hill  1965 ; Agbabiaka et al.  2008 ; 
Arimone et al.  2007 ; Bandekar et al.  2010 ; Papay et al.  2009 ; Perrio et al.  2007  ) , but 
little research has been carried out to assess the potential for identifying and explor-
ing rechallenge events from administrative claims and electronic health records. To 
some degree, this may be attributable to the complexities of extracting longitudinal 
patterns from large observational healthcare datasets that may contain orders of 
magnitude greater numbers of exposures and exposed cases. Exploratory visualiza-
tion, through tools like the interactive patient pro fi le, can enable rapid assessment of 
large numbers of exposed cases and supports generating and evaluating hypotheses 
of observed patterns across patients. 

 Patient pro fi les can be used to identify and characterize expected patterns indica-
tive of potential drug-related outcomes. Equally as valuable, these pro fi les can sup-
port researchers in identifying unexpected patterns and highlighting challenges that 
may complicate further analyses. Figure  21.4  highlights a 4 th  patient with ACE 
inhibitor exposure and subsequent angioedema diagnosis. This patient record 
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contains clinical observations spanning 3 years of time with active health service 
utilization throughout. 

The patient has a large number of comorbidities and concomitant medications. 
Moreover, the temporal relationship between ACE inhibitor exposure and 
 Angioedema onset is less clear, as the initial drug era was stopped for 100 days prior 
to the  fi rst angioedema diagnosis, and subsequent diagnoses occurred prior to when 
the patient reinitiated ACE inhibitor use. The 3 angioedema diagnoses observed 
between days 500 and 600 may not represent unique events, but instead the same 
diagnosis being recorded multiple times as part of the follow-up in clinical care. 

 Evaluating clinical observations in the context of other data in temporal proxim-
ity of the event allows for a more critical assessment about the con fi dence that the 
researcher should place on each data element, which can be often obscured when 
looking at each event independently in tabular form or when conducting population-
level analyses that do not incorporate patient-level case review.  

 The patient pro fi le can be powerful tool for researchers to explore patient-level 
data to develop and evaluate outcome de fi nitions, to re fi ne criteria based on clinical 
review of quality of cases, and to select speci fi c events that warrant further investi-
gation. Such a tool could be instrumental throughout the lifecycle of a study, from 

  Fig. 21.4    Patient pro fi le of suspicious exposure–event relationship. The temporal display allows 
the researcher to observe the condition being diagnosed after the  fi rst period of drug exposure, and 
successive diagnoses occurring prior the second exposure       
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design to analysis to interpretation of results, and allows researchers to complement 
the interpretation of population-level effects in the data.  

    21.5   Cohort Pro fi le 

 One challenge in reviewing patient pro fi les is that population-level patterns observ-
able across patients can be dif fi cult to discern. It can be dif fi cult to see the forest 
when the researcher focuses exclusively on each tree. The cohort pro fi le is a graphi-
cal complement to the patient pro fi le, showing the forest by highlighting the key 
elements from all the trees in the dataset. Figure  21.5  provides a cohort pro fi le repre-
sentation that allows patient-level information to be evaluated across a population.  

 The cohort pro fi le is analogous to stacking patient pro fi les on top of one another, 
and is similarly constructed as a scatterplot. The  x -axis is the time relative to an 
index date, such as the  fi rst ACE inhibitor exposure as shown here. The  y -axis is 
treated as a categorical variable and is used to order patients by time-to-event (the 

  Fig. 21.5    Cohort pro fi le. This scatterplot allows exploration of all patients with co-occurrence of 
drug exposure and outcome in their longitudinal record. The  x -axis displays the number of days 
from an index date, which is the  fi rst exposure of ACE inhibitor. The  y -axis is used to categorize 
observations by unique person identi fi er, and sort the patients by the duration from exposure start 
to subsequent outcome       
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number of days from the  fi rst ACE inhibitor exposure to the next angioedema diag-
nosis). The  y -axis additionally uses PERSON_ID as a further categorization to 
avoid overlap of patients with the same time-to-event measure. The plot is restricted 
to displaying the target drug eras, shown as yellow triangles for the start and end 
dates, and the target outcome, shown as red stars. 

 The cohort pro fi le can show macro-level patterns across a large set of patients. 
For example, Fig.  21.5  displays 445 patient pro fi les, representing all the ACE 
 inhibitor–angioedema events in the Thomson MarketScan Lab Supplemental 
 database. Several types of patterns can be identi fi ed in this plot. Notably, the time-
to-event distribution becomes apparent, as the plot represents a version of a cumu-
lative distribution function. 

 We can see that less than 20% of the cases occur within the  fi rst 30-day pre-
scription dispensing, suggesting that angioedema is not always an acute onset 
event. We note that, amongst the entire cohort of events, only 4 patients had an 
angioedema diagnosis prior to  fi rst ACE inhibitor exposure (seen by the red stars 
with negative days to index). We also note that there is only a modest number of 
patients with subsequent angioedema events after the initial angioedema diagno-
sis, based on the number of red stars to the right of the time-to-event distribution.  

 We observe that ACE inhibitor exposure is often stopped after initial angioe-
dema diagnosis, by noting the proportion of events that are immediately followed 
by a drug era end date. We can also see a surprisingly high frequency with which 
patients stop and restart treatment after the angioedema event, based on the num-
ber of right-pointing yellow triangles to the right of the time-to-event distribution. 
Since angioedema is a known side effect of ACE inhibitors and has potential for 
recurrence, ACE inhibitor use is contraindicated in patients with prior history of 
Angioedema.  

 These data suggest that either the angioedema diagnoses are not indicative of 
true events, or that patients are receiving subsequent exposures that are not recom-
mended. In some instances, these patients demonstrate patterns indicative of a 
positive rechallenge: (1) the exposure is introduced, (2) the event is observed, (3) 
the exposure is stopped, (4) the event is no longer observed, (5) the exposure is 
reintroduced, and (6) the event recurs.  

 In clinical trials and spontaneous adverse event reports, rechallenge cases often 
represent strong evidence in support of a causal association. The cohort pro fi le, in 
conjunction with the patient pro fi le, demonstrate opportunities for how interactive 
visualization can help researcher navigate to observational data to  fi nd patient-
level patterns that may be equally valuable in the causal assessment of medical 
product effects.  

    21.6   Prevalence Treemap 

 In most epidemiologic investigations, a speci fi c question is posed and available data 
are used to yield the least-biased answer. For example, researchers may be inter-
ested in estimating the prevalence of hypertension. Often times, additional context 
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for a given answer can make the response more informative, such as understanding 
how the prevalence of hypertension compares to other chronic conditions within the 
same population, or how the prevalence in one database compares to observed 
hypertension in other data. Access to prevalence information across multiple dis-
eases and across a network of disparate data sources would enable exploratory 
comparisons. 

 OMOP developed the Observational Source Characteristics Analysis Report 
(OSCAR) as an automated routine to estimate standardized prevalence for all drugs 
and all conditions within a database. OSCAR results from all data partners were 
compiled in the OMOP central coordinating center, which facilitated cross-source 
comparisons via treemap visualization. 

 Treemaps provide a visualization technique to explore relationships within hier-
archical entities. The hierarchy is represented through nested rectangles. Each rect-
angle represents a unique observation, of which 2 attributes for the observation can 
be displayed based on the rectangle size and color. In Fig.  21.6 , each rectangle rep-
resents a single active ingredient, and all ingredients are organized by the Anatomical 
Therapeutic Classi fi cation (ATC) hierarchy for medical products. The size of the 
rectangle indicates the relative prevalence of the drug in the Thomson MarketScan 
Lab Supplement (MSLR) database, based on the number of persons in the database 
with at least one exposure to that product. The color of the rectangle indicates how 
the prevalence in this database compares to the community of data sources.  

  Fig. 21.6    Treemap of drug prevalence. Each  rectangle  represents an active ingredient. The size of 
the rectangle re fl ects the standardized prevalence in the MSLR database, and the  color  indicates 
how different the prevalence in this database is to a referent community of databases.  Rectangles  
are organized hierarchically by the ATC classi fi cation system       
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 The top-left rectangle, “Lisinopril” is classi fi ed in the “ACE Inhibitors, plain” 
class, which is subsumed within the “Agents Acting On the Renin–Angiotensin 
System,” which is one of several classes within the high-level group of “Cardiovascular 
System.” Among drugs within the “ACE inhibitors, plain” class, lisinopril is the 
most prevalent product in the class, followed by benazepril, ramipril, and quinapril. 
The green color for the lisinopril rectangle indicates the MSLR prevalence is not 
substantially different from the average prevalence among the OMOP community, 
while other ACE inhibitors appear more frequently in MSLR than other sources. 

 Hovering over “Lisinopril” provides a drill-down summary to display more 
speci fi c information; the standardized prevalence is 5.22%, which is 9% higher than 
the average lisinopril prevalence observed across OMOP. The size of the speci fi c 
products within the ACE inhibitor class, as well as the composite size of the ACE 
inhibitor class itself, can be compared to products outside the class. These compari-
sons allow the researcher to observe that other antihypertensive drug classes such as 
diuretics and beta-blockers have higher prevalence. Such information could be use-
ful for identifying viable comparator drugs to use in cohort studies, or for evaluating 
preferential prescribing patterns for alternative treatments. 

 Figure  21.7  provides a treemap that displays disease prevalence for the top 100 
conditions across the OMOP community. Conditions are organized hierarchically 
using the Medical Dictionary for Regulatatory Activities (MedDRA) classi fi cation 

  Fig. 21.7    Treemap of disease prevalence. Each  rectangle  represents a condition. The size of the 
rectangle re fl ects the standardized prevalence in the MSLR database, and the  color  indicates how 
different the prevalence in this database is to a referent community of databases.  Rectangles  are 
organized hierarchically by the MedDRA classi fi cation system       
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system, with each Preferred Term concept shown within its associated System 
Organ Class. The graph allows the researcher to immediately identify patterns 
within the database and relative to data from across the OMOP community. The 
diagnosis code for “Laboratory procedure” is highly prevalent, and most 
signi fi cantly different in MSLR relative to other sources, which logically makes 
sense given that MSLR is a population de fi ned as patients with one or more labo-
ratory result. 

 Other prevalent conditions include: acute upper respiratory infection, hyperlipi-
demia, and diabetes mellitus type 2. Multiple diagnoses related to hypertension are 
prevalent, suggesting that study of patients with ACE inhibitor exposure for the 
primary indication may be viable. In general, since the majority of the rectangles are 
in orange, we see that the background rate of most conditions is higher in MSLR 
than in the OMOP community. This insight may be important when considering the 
impact of comorbidities on estimating the association between ACE inhibitor expo-
sure and angioedema. By hovering over, we see additional details on “Essential 
Hypertension” to learn that the standardized prevalence is 9.9%, which is 46% 
higher than the OMOP community average.   

    21.7   Subgroup Trellis Scatterplot 

 The prevalence treemaps allow for comparison of population-level effects across 
concepts and databases. Sometimes, further exploration is needed to characterize 
subpopulations within a given concept. For example, one may want to assess how 
the prevalence of hypertension varies by age. Standardized prevalence estimates are 
composite summaries that are generated from strati fi ed estimates within speci fi c 
patient subpopulations. Speci fi cally, the standardized prevalence estimates dis-
played in the treemap are computed based on strata-speci fi c estimates across age 
groups, gender, and calendar year. 

 These strati fi ed estimates can provide additional insights if discrepancies between 
strata can be easily observed. The subgroup trellis scatterplot is one tool that 
researchers in OMOP have used to try to discern such patterns. Figure  21.8  provides 
an illustration to explore lisinopril utilization. The plot uses 2-dimensional trellis-
ing, with trellis rows displaying different databases and trellis columns partitioning 
prevalence by year. 

 Within each trellis plot is a scatterplot with the  x -axis used to categorize age in 
deciles and two series differentiated by color are used to depict gender. The  y -axis 
displays the drug prevalence, as de fi ned by the proportion of patients with the sub-
group with at least one exposure.  

 As expected, the prevalence of lisinopril exposure increases with age, with the 
highest rates of use in patients over 50 years of age. In MDCR and GE, males have 
higher prevalence than females; in MSLR, the gender-rates are similar in 2003–
2005, but men are observed to have higher prevalence in 2006. MSLR is observed 
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to have higher lisinopril prevalence across all age groups and genders, consistently 
across all 4 years, than either MDCR or GE. At least 10% of patients above 50 years 
of age had at least one lisinopril record in MSLR. Both MDCR and GE exhibit 
increasing prevalence over time. 

 One value of the subgroup trellis plot is that it allows rapid exploration of poten-
tial patterns in prevalence across multiple dimensions simultaneously. By looking 
down a column, one can compare databases; by looking across a row, one can exam-
ine trends over time; by comparing the slopes of the colors within a given plot, one 
can study both age and gender differences. Consistencies observed across the trellis 
plot give indications of macro-level trends that can be expected within subsequent 
analysis.  

    21.8   Trellis Forest Plot 

 A primary output of many observational studies is an effect estimate and a measure 
of variance. While the relative risk may be the  fi nal answer, proper interpretation 
requires complete understanding of the database, the contributing populations, and 
the minimization of bias, as has been explored in the prior visualizations. Further 

  Fig. 21.8    Subgroup trellis scatterplot for lisinopril prevalence. Each  panel  is a scatterplot display-
ing the relationship between drug prevalance ( y -axis) and age group ( x -axis), and panels are trel-
lised by year ( columns ) and database ( rows )       
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examination of the  fi nal result can also be supported through sensitivity analysis 
across databases and methodological approaches. In the context of a distributed 
network of observational databases, effect estimates can be obtained from each con-
tributed data partner and aggregated centrally, and then meta-analytic estimates 
(both  fi xed effects and random effects models) can be generated using most statisti-
cal software using the source-speci fi c data to evaluate composite summaries. 

 As shown in Fig.  21.9 , the trellis forest plot displays distinct methods within 
each column. The  y -axis categorizes each of the contributing databases. Composite 
estimates using both  fi xed-effects and random-effects meta-analysis are shown at 
the bottom, and highlighted in light blue. Within each column, the  x -axis shows the 
relative risk plotted on a logarithmic scale, with RR = 1 reference further reinforced 
with a dashed vertical line. For each database-method combination, the estimated 
relative risk and associated 95% con fi dence interval is plotted. The color indicates 
whether the estimate was statistically signi fi cant (green denotes  p  < 0.05, while 
orange denotes nonsigni fi cance).  

 This  fi gure demonstrates the consistency in effect estimates observed when 
studying the ACE inhibitor–angioedema association. With one exception (the 

     Fig. 21.9    Trellis forest plot for ACE inhibitor-angioedema effect estimates. Each  panel  is a forest 
plot that displays the effect estimate ( x -axis) across the network of observational databases ( y -axis), 
with the meta-analysis composite estimates provided at the bottom. Panels are trellised by study 
design in columns to enable evaluation of consistency across data sources and analysis strategies       
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disproportionality analysis estimate in the Partners Healthcare database), all effect 
estimates were positive and statistically signi fi cant. The random-effects meta-
analysis estimates suggest that the relative risk may exist within a range from 
RR = 1.5–6, depending on the method employed. 

 The trellis plot allows examination of heterogeneity within databases by holding 
method constant and looking down each column. The plot also allows for side-by-
side comparison of different methods, which enables examination of how methods 
vary both in point estimate and standard error. The trellis forest plot provides a mul-
tidimensional approach to sensitivity analysis that should allow more comprehen-
sive examination of heterogeneity, a more robust assessment of key factors 
in fl uencing an observation, and better context for drawing inferences when inter-
preting effect estimates.  

    21.9   Conclusions 

 Observational healthcare data offer tremendous potential for enhancing our under-
standing of the real-world effects of medical products. These data also present 
unique challenges for analysis, such as the massive size (millions of patients with 
billions of observations), irregular data capture, non-constant longitudinal coverage, 
and a large number of recordable observations. 

 Standardized analytics with interactive visualizations provide one approach to 
systematically harness the value of observational data at all stages of analysis, from 
patient-level case review to population-level pattern detection to design-level con-
founding assessment to study-level sensitivity analysis and synthesis. As the scope 
and complexity of observational data continues to grow, exploratory visualization 
 fi gures are to play an increasingly important role in the analysis of medical product 
safety.      
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