
83A. Prince (ed.), Mucosal Immunology of Acute Bacterial Pneumonia, 
DOI 10.1007/978-1-4614-5326-0_4, © Springer Science+Business Media New York 2013

          4.1   Introduction 

 During bacterial pneumonias, neutrophils are usually the  fi rst leukocytes recruited 
from the circulation to the lung, where they protect the host by killing microbial 
pathogens through phagocytosis and release of antimicrobial products. In addition 
to their role in eliminating pathogens, the role of neutrophils in shaping the immune 
response and resolution of in fl ammation is now increasingly appreciated. Patients 
with defects in neutrophil production or function suffer from recurrent microbial 
infections, thus illustrating the critical role of neutrophils in host defense. However, 
the very characteristics and functions that make neutrophils useful to the host can 
also injure host tissues, and neutrophil mediated tissue damage has been implicated 
in the pathogenesis of a number of serious disorders, including ALI and ARDS, in 
which both these bene fi cial and harmful effects are integrated. This article focuses 
on the role of neutrophils during bacterial pneumonias (Fig.  4.1 ). The  fi rst sections 
focus on recruitment of neutrophils from the bone marrow and from the blood. The 
later sections focus on neutrophil functions in the lung. There is clearly much work 
remaining to understand these processes, in order to  fi nd and develop ways to treat 
disease and modulate the in fl ammatory and immune response.   
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    4.2   Neutrophil Production, Maturation, and Release 
from the Bone Marrow and Traf fi cking 

 Interactions between the lungs and the bone marrow are important in neutrophil 
homeostasis in healthy individuals and during many lung diseases. During homeo-
stasis, communication between the lungs and the bone marrow contributes to regu-
lating the circulating neutrophil count, as illustrated by the changes in circulating 
neutrophil numbers in response to chronic smoking and the inhalation of air pollut-
ants (van Eeden and Hogg  2000,   2002 ; Corre et al.  1971  ) . During the in fl ammatory 
response, mediators produced in the lungs play a critical role in controlling neutro-
phil production and release from the bone marrow. For example, the time required 
for maturation of neutrophils, as measured by their transit time in the bone marrow, 
is shortened during pneumonia induced by  Streptococcus pneumoniae  (Terashima 
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  Fig. 4.1    Neutrophil kinetics at steady state and during in fl ammation. In the bone marrow, neutro-
phils are produced from precursors, mature and are stored until release. G-CSF is a major cytokine 
that regulates both neutrophil production and release from the bone marrow. CXCR4/CXCL12 
(SDF-1) signaling retains cells within the bone marrow. Upon release into the circulation, intravas-
cular neutrophils may circulate or enter the marginating pool in the liver, lungs, and other organs. 
In the absence of in fl ammation, intravascular neutrophils senesce and become apoptotic and are 
cleared by the reticuloendothelial system in the liver, spleen, bone marrow, and possibly the lung. 
During in fl ammation, chemokines and other mediators induce neutrophil migration into tissue as 
well as enhancing release from the bone marrow. Emigrated neutrophils can die through one of the 
several death pathways. Apoptotic neutrophils are taken up by tissue macrophages, which then 
release IL-23, inducing IL-17 which in turn induces G-CSF       
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et al.  1996  ) . GM-CSF, granulocyte-colony stimulating factor (G-CSF), chemokines, 
and cytokines are produced in the lungs during in fl ammation and have effects on 
neutrophil production and release from the bone marrow, as will be described in 
subsequent sections. Thus, the bone marrow has an important impact on the 
in fl ammatory response, and the interaction between the lungs and the bone marrow 
is critical in the number and maturity of neutrophils that reach the lungs, both of 
which in fl uence the effects of neutrophils in pulmonary in fl ammation. 

 Neutrophil release from the bone marrow is particularly signi fi cant for the lungs 
because the pulmonary microvasculature is the  fi rst capillary bed that the newly 
released neutrophils will traverse. Newly released neutrophils were preferentially 
retained in the lung capillaries during endotoxemia and pneumococcal infections, and 
migrated more slowly into the lung parenchyma (van Eeden et al.  1997 ; Sato et al. 
 1998a,   b ; Lawrence et al.  1996  ) . Newly released circulating neutrophils had decreased 
deformability as measured by  fi lter assays in vitro, which may contribute to their 
preferential retention in the lung for reasons discussed in subsequent sections (van 
Eeden et al.  1997,   2000  ) . The accumulation of immature neutrophils in the lungs is 
exacerbated by shortened transit time of neutrophils in the bone marrow, for example, 
in  S. pneumoniae  pneumonia (Terashima et al.  1996  ) . Morphologically mature neu-
trophils and band cells in human bone marrow exhibit functional de fi ciencies in 
degranulation, respiratory burst, and phagocytosis compared with blood neutrophils 
(Berkow and Dodson  1986  ) , and may thus be less capable of defending the host 
against infection. Furthermore, prolonged sequestration and activation of these imma-
ture neutrophils within the vasculature may result in damage to the endothelium. 

    4.2.1   Neutrophil Production and Circulation in Health 

 The bone marrow is the site of granulopoiesis in mature animals. Neutrophils are 
ultimately derived from a multipotent hematopoietic stem cell (HSC) that gives rise 
to all lineages of hematopoietic cells. Neutrophil progenitors are able to divide up 
to the myelocyte stage; post-mitotic neutrophil precursors undergo a process of 
maturation that lasts several days and involves changes in cell surface molecule 
expression, biomechanical and structural properties, and granule content (Bainton 
 1999  ) . A large number of mature neutrophils reside in the bone marrow stroma 
presumably ready for release into the circulation, and there is a marginating pool of 
neutrophils within the vasculature of the bone marrow (Fig.  4.2 ).  

 The cytokine granulocyte-colony stimulating factor (G-CSF) is a major regulator 
of neutrophil production and release from the bone marrow. G-CSF acts by binding 
to its receptor G-CSFR, which induces Jak/STAT signaling through sequential 
phosphorylation of the Janus family of tyrosine kinases (Jaks), phosphorylation of 
the G-CSFR by Jaks, and recruitment of STATs to the phosphorylated G-CSFR and 
phosphorylation of STATs by Jaks. Jak/STAT signaling, as well as other signaling 
cascades including Ras/MAP kinase and PI3K/Akt, promote proliferation and 
 differentiation toward mature neutrophils and regulate neutrophil release and 
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 function, both at steady state and in conditions of stress (Panopoulos and Watowich 
 2008 ; Nicholson et al.  1994,   1995 ; Shimoda et al.  1994  ) . Mice that are de fi cient in 
G-CSF or G-CSFR have low circulating counts and decreased numbers of neutro-
phils and their precursors in the bone marrow (Liu et al.  1996 ; Lieschke et al.  1994 ; 
Basu et al.  2002 ; Richards et al.  2003  ) . However, mice de fi cient in G-CSF or 
G-CSFR do have neutrophils, albeit in reduced numbers, suggesting that G-CSF-
independent pathways for neutrophil production partially compensate for a lack of 
G-CSF signaling. G-CSF is also important for neutrophil traf fi cking into the circu-
lation both at baseline and during pulmonary bacterial infection (Semerad et al. 
 2002 ; Gregory et al.  2007  ) . 

 After release from the bone marrow, neutrophils circulate in the blood. The con-
centration of neutrophils in the blood varies depending on the site within the vascu-
lature. For example, differences in the neutrophil concentrations in tail, eye, and 
heart have been identi fi ed (Nemzek et al.  2001  ) . In general, concentrations increase 
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  Fig. 4.2    Complex interplay of signals mediated by G protein-coupled receptors and their ligands, 
and G-CSF regulate neutrophil retention in the bone marrow and release into the circulation. 
Binding of SDF-1 (CXCL12) to its receptor CXCR4 mediates neutrophil retention in the bone 
marrow. Binding of the chemokines MIP-2 or KC to CXCR2 during in fl ammation induce neutro-
phil shape changes and release into the circulation. Binding of other in fl ammatory mediators (such 
as complement fragments or the bacterial peptide fMLP) to G protein-coupled receptors also 
induce shape changes and rapid release of neutrophils into the circulation. G-CSF disrupts the 
CXCR4/SDF-1 signaling axis and enhances release induced by MIP-2 or KC. Crosstalk between 
CXCR4 and CXCR2 regulates neutrophil release during in fl ammation through mechanisms that 
are not yet completely clear       
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in vascular beds where blood  fl ow and pressure are less and the diameters and 
branching geometry of the bed favors increased concentration. This increased con-
centration is often described as a marginated pool, but these pools are unlikely to 
be stagnant and in disequilibrium with the circulating pool. The mechanisms for 
the increased concentration in the pulmonary capillaries are discussed in a subse-
quent section. 

 In animals without an in fl ammatory focus, the circulating half-life of neutrophils 
is 4–14 h (Basu et al.  2002 ; Dancey et al.  1976 ; Deubelbeiss et al.  1975 ; Eash et al. 
 2009 ; Gomez et al.  2008 ; Lord et al.  1991 ; Price et al.  1996  ) . Neutrophils that do not 
migrate into in fl ammatory sites become senescent, in which they are unresponsive 
to stimuli that would otherwise induce degranulation or respiratory burst, and die by 
apoptosis. The mechanisms that regulate senescence are not well understood, and 
may be regulated by microRNAs (Ward et al.  2011  ) . At steady state, apoptotic neu-
trophils accumulate in the liver, bone marrow, and spleen, suggesting these are the 
sites of clearance for effete neutrophils (Furze and Rankin  2008a,   b ; Suratt et al. 
 2001  ) . Constitutive removal of apoptotic neutrophils requires macrophages in the 
bone marrow stroma and marginal zone of the spleen (Gordy et al.  2011  ) . The capil-
laries of the lungs may also be a site of clearance, since intravascular neutrophils 
that get trapped in narrow capillary segments may undergo apoptosis or other forms 
of cell death (Bicknell et al.  1994  ) . The recognition systems whereby the reticuloen-
dothelial system recognizes effete neutrophils are becoming clearer, although 
numerous mechanisms are likely to contribute, including increased expression of 
CXCR4 (Eash et al.  2009,   2010 ; Martin et al.  2003 ; Suratt et al.  2004  ) , an important 
molecule in the retention of neutrophils within the bone marrow that is discussed 
below. A recent study reported that expression of the anti-in fl ammatory phospho-
lipid-binding protein Annexin A1 by mouse bone marrow macrophages is critical 
for the uptake of apoptotic neutrophils (Dalli et al.  2012  ) . 

 Constant exposure to the outside world, either through inhalation, ingestion, 
cutaneous routes, or other means, cannot always be managed by  fi rst-line organ-
speci fi c host defense mechanisms. An exposure can result in mild in fl ammatory 
responses that are unlikely to be experienced by the host as the  fi ve cardinal signs 
of in fl ammation, rubor (redness), calor (increased heat), tumor (swelling), dolor 
(pain), and function laesa (loss of function), and thus is not detected clinically. 
However, these common responses may in fl uence circulating neutrophils by induc-
ing ef fl ux of neutrophils from the blood stream or even in altering production by the 
bone marrow, as may occur during more chronic noxic exposures. The lungs are an 
important route of exposure, even though air fl ow patterns through the nasopharynx, 
the nasopharyngeal surfaces themselves, and the mucociliary clearance mechanisms 
in the bronchi and trachea are highly functional  fi rst-line defense mechanisms. For 
example, a reduction in inhaled atmospheric particulates, as occurs upon relocation 
from an urban level of particular matter to that found in Antarctica, is associated 
with a reduction in the numbers of mature and immature neutrophils circulating in 
the blood, and these numbers increase upon return to the urban environment (Sakai 
et al.  2004  ) . Similarly, circulating neutrophil counts in cigarette smokers are higher 
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than in age-matched nonsmokers in the same environment (van Eeden and Hogg 
 2000 ; Corre et al.  1971  ) . 

 Thus, in healthy subjects, the number of circulating neutrophils re fl ects a dynamic 
balance between production and continual release from the bone marrow, the mar-
ginating pools, the clearance of neutrophils from the circulation, and neutrophil 
migration from the circulation into the tissues in response to a constant barrage of 
stimuli, where they usually perform any needed function and are cleared by resident 
macrophages. A clinically relevant injury or infection will alter this equilibrium.  

    4.2.2   Mechanisms of Neutrophil Release from the Bone 
Marrow During In fl ammation 

 In response to injury or infection, the number of neutrophils in the circulation can 
undergo a rapid increase that largely re fl ects the release of neutrophils from the 
bone marrow. Marginating pools of mature or nearly mature neutrophils are present 
both within the stroma of the bone marrow and within the venous sinusoids. Many 
in fl ammatory mediators that are chemotactic agents or activators of neutrophils can 
cause this acute release. For example, infusion of the chemotactic bacterial peptide 
fMLP ( N -formyl- l -methionyl- l -leucyl- l -phenylalanine, also abbreviated fMLF), 
the chemokine interleukin-8 (IL-8), or its murine homolog MIP-2, or complement 
protein fragments (particularly C5a) induce neutrophil release from the venous 
sinusoids and/or from the marginating pool of mature neutrophils in the bone mar-
row stroma into the sinusoids and then the circulation (Jagels et al.  1995 ; Jagels and 
Hugli  1992,   1994 ; Burdon et al.  2008  ) . Neutrophil egress from the stroma into the 
venous sinusoids usually occurs through the endothelial cells, rather than between 
them. For example, neutrophils were observed to squeeze through pores in the bone 
marrow endothelium in response to MIP-2. In perfused rat femurs, the endothelial 
cells presented a barrier, and neutrophil mobilization by MIP-2 required p38 MAPK 
activity but was not affected by the presence of a nonspeci fi c matrix metallopro-
tease inhibitor (Burdon et al.  2008  ) . Thus, neutrophil mobilization is an active pro-
cess that requires the integration of many signals and pathways involving neutrophils 
as well as other cells in the bone marrow. 

    4.2.2.1   The Importance of Biomechanical Properties of Neutrophils 
in Their Production and Release 

 Neutrophils appear to undergo changes in their biomechanical properties as they 
mature (Fig.  4.2 ). Early studies showed that myelocytes were stiffer than mature 
neutrophils (Lichtman  1970  ) , and that mature granulocytes were better able to tran-
sit through smaller pore diameters and respond to a chemoattractant than less mature 
cells (Giordano and Lichtman  1973  ) . Studies using magnetic twisting cytometry 
showed that mature neutrophils isolated from the bone marrow are stiffer than those 
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isolated from circulating blood (Saito et al.  2002  ) . This increased stiffness was 
 associated with the presence of an f-actin rim beneath the cell membrane, and dis-
ruption of the actin cytoskeleton by treatment with cytochalasin D reduced the stiff-
ness of bone marrow neutrophils to the level seen in circulating neutrophils (Saito 
et al.  2002  ) . The greater stiffness of immature neutrophils may facilitate their reten-
tion within the bone marrow, by preventing or slowing the passage of these cells 
through the stroma or pores in the sinusoidal wall, along with other factors such as 
CXCR4/SDF-1 signaling and adhesivity (discussed below). Furthermore, it is also 
possible that the process of neutrophil migration through sinusoidal endothelial 
cells alters their biomechanical properties to decrease their stiffness. 

 During an in fl ammatory stimulus, bone marrow neutrophils deform in order to 
transit toward and enter into the venous sinusoids. Their biomechanical properties 
may be an important factor in their retention or release. Chemokines and other 
mediators that act through serpentine receptors (also called heptahelical receptors or 
G protein-coupled receptors) share the ability to alter the cytoskeleton of neutro-
phils, which is often evaluated as changes in f-actin in neutrophils. This rearrange-
ment of actin appears initially to result in f-actin beneath the cell membrane, 
inducing an increase in stiffness, which further remodels after 1–2 min to a  fl attening 
out and cytoskeletal changes that vary within regions of the neutrophils. In fact, the 
initial stiffening may cause neutrophils to round up and come off the stroma or 
sinusoidal endothelium (Luscinskas et al.  1992 ; Hechtman et al.  1991  ) , which could 
also facilitate release. Studies show that stimulation by fMLP or complement frag-
ments in vitro caused an increase in stiffness in both circulating and bone marrow 
neutrophils and an increase in f-actin beneath the cell membrane (Saito et al.  2002  ) . 
Pretreatment with cytochalasin D prevented the stiffening induced by in fl ammatory 
mediators, suggesting that f-actin rearrangement was responsible for the increased 
stiffness. Infusion of intravascular fMLP and complement fragments induced an 
extremely rapid release (within seven minutes) of mature neutrophils from the bone 
marrow into the circulation (Saito et al.  2002 ; Kubo et al.  1998  ) . The fMLP-induced 
increase in circulating neutrophil counts was not prevented by pretreatment with 
colchicine, indicating that microtubule rearrangements were not required for this 
process (Saito et al.  2002  ) . These observations suggest that structural and mechani-
cal changes induced by circulating mediators may facilitate the release of bone mar-
row neutrophils into the circulation.  

    4.2.2.2   The Role of CXCR4 and SDF-1 in Bone Marrow Release 
of Neutrophils 

 Disruption of G protein signaling by treatment with pertussis toxin led to leukocy-
tosis and mobilization of hematopoietic stem/progenitor cells from the bone mar-
row (Papayannopoulou et al.  2003  ) , indicating that signaling through pertussis 
toxin-sensitive G protein-coupled receptors is important in retaining primitive as 
well as more mature hematopoietic cells within the bone marrow. One of these G 
protein-coupled receptors, CXCR4, has been studied extensively and is expressed 
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on a wide variety of hematopoietic cells, including neutrophils (Broxmeyer  2008  ) . 
Its ligand is SDF-1 (CXCL12), a CXC chemokine produced by stromal cells in the 
bone marrow and a key signal for retaining and maintaining cells in the bone mar-
row through its binding to CXCR4 (Broxmeyer  2008  ) . Ma and colleagues showed 
that mice whose bone marrow was reconstituted with CXCR4-de fi cient fetal liver 
cells had reduced levels of granulocytic cells in the bone marrow and elevated num-
bers of circulating mature and immature granulocytes (Ma et al.  1999  ) . The critical 
role of CXCR4/SDF-1 signaling in retaining neutrophils is also supported by stud-
ies of WHIM syndrome, in which mutations that lead to prolonged signaling or 
hyperactivation of CXCR4 result in immune abnormalities and failure of bone mar-
row release of mature neutrophils, resulting in severe neutropenia, myeloid hyper-
plasia, and apoptosis of mature neutrophils within the bone marrow (myelokathexis) 
(Kawai and Malech  2009  ) . Other studies interfering with CXCR4 signaling have 
shown that treatment of mice with a CXCR4 antagonist (Martin et al.  2003  )  or with 
CXCR4 blocking antibody (Suratt et al.  2004  )  mobilized neutrophils from the bone 
marrow. Selective deletion of CXCR4 in myeloid cells caused increased numbers of 
circulating neutrophils with no increase in immature forms and elevation in the ratio 
of circulating to bone marrow neutrophils, indicating a cell-autonomous require-
ment for CXCR4 in neutrophil retention in the bone marrow (Eash et al.  2009  ) . 
Thus, many approaches have supported the concept that SDF-1/CXCR4 signaling 
serves as a retention signal for neutrophils in the bone marrow. However, the molec-
ular mechanisms initiated by SDF-1 binding to CXCR4 that are responsible for this 
retention are not yet clear. 

 Disruption of CXCR4/SDF-1 signaling in the bone marrow may be a common 
feature of neutrophil release induced by some chemokines or G-CSF. Mobilization 
of bone marrow neutrophils induced by the CXC chemokine KC (CXCL1) was 
enhanced by treatment with a CXCR4 antagonist (Martin et al.  2003  )  or blocking 
antibody (Suratt et al.  2004  ) , whereas Cxcr2−/− neutrophils were not mobilized by 
transiently inhibiting CXCR4 (Eash et al.  2010  ) . Pretreatment of murine neutrophils 
with KC led to a decrease in the calcium  fl ux in response to SDF-1, suggesting that 
KC and other chemokines may mobilize neutrophils in the bone marrow by disrupt-
ing SDF-1 signaling in the bone marrow (Suratt et al.  2004  ) . Conversely, SDF-1 
attenuated neutrophil responses to KC in vitro (Martin et al.  2003  ) . These studies 
suggest that signaling through CXCR4 and CXCR2 act in opposite ways to regulate 
neutrophil release. 

 The interplay between CXCR4/SDF-1 signaling, CXCR chemokines and G-CSF 
is complex. Neutrophil mobilization in response to pulmonary infection with 
 P. aeruginosa  was reduced in mice lacking G-CSF receptor, indicating that G-CSF 
signaling may be critical for neutrophil recruitment in this infection (Gregory et al. 
 2007  ) . Antibody neutralization of G-CSF resulted in fewer neutrophils within the 
lungs at 48 h of  S. pneumoniae  pneumonia by less than but had no effect at 24 h 
(Knapp et al.  2004  ) . G-CSF may induce neutrophil release from the bone marrow 
either directly by reducing expression of CXCR4 on myeloid cells (Kim et al.  2006  )  
or by disrupting CXCR4 signaling through reducing levels of SDF-1 in the bone 
marrow (Semerad et al.  2005 ; Christopher et al.  2009  ) . Giving KC, MIP-2 or G-CSF 
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intravenously resulted in increased neutrophil numbers in the blood and decreased 
numbers in the bone marrow of mice, and infusion of G-CSF and KC together 
mobilized a signi fi cantly greater number of neutrophils compared with either medi-
ator alone in a perfused femoral bone marrow system (Wengner et al.  2008  ) . 
Antibody neutralization of G-CSF, MIP-2, KC, or MIP-2 and KC together reduced 
neutrophil mobilization from the bone marrow and recruitment to the peritoneum of 
mice in thioglycollate-induced acute peritonitis, but inhibition of G-CSF did not 
alter the response to a selective CXCR4 antagonist (Wengner et al.  2008  ) . G-CSF-
induced neutrophil mobilization is attenuated in Cxcr2−/− mice or in wild type 
(WT) mice given blocking antibody to CXCR2, and G-CSF treatment induces 
CXCR2 ligands in the bone marrow (Eash et al.  2010 ; Kohler et al.  2011  ) . Notably, 
Kohler and colleagues found that G-CSF did not directly induce CXCR2 ligands, 
but rather induced thrombopoietin, which induced CXCL1 production from mega-
karyocytes (Kohler et al.  2011  ) . Taken together, these studies suggest that neutro-
phil release is regulated by a complex interplay between CXCR4/SDF-1 signaling 
in the bone marrow and mobilization signals induced by G-CSF and in fl ammatory 
mediators. 

 CXCR4/SDF-1 signaling in the periphery may play a role in neutrophil mobili-
zation and recruitment to tissue during in fl ammation. In LPS-induced pneumonitis, 
SDF-1 expression was upregulated in lung epithelium and SDF-1 blockade pre-
vented neutrophil recruitment to the airspace at 24 h after injury (Petty et al.  2007  ) . 
A recent study reported that SDF-1 blockade prevented the increase in circulating 
neutrophils and decrease in BM neutrophils induced by sepsis at 12 h (Delano 
et al.  2011  ) . Taken together these studies suggest that generation of an SDF-1 gra-
dient in the periphery is required for mobilization. Notably, neutrophil mobiliza-
tion in the murine model of polymicrobial sepsis did not require MyD88, IFN a / b R, 
TRIF, or TLR4, and was not inhibited by CXCR2 blockade, suggesting that other 
pathways can modulate CXCR4/SDF-1 signaling to induce mobilization (Delano 
et al.  2011  ) .  

    4.2.2.3   The Functions of Rac2 

 The small GTPase Rac2 is expressed in leukocytes and activated by signaling down-
stream of many receptors, including G protein-coupled receptors of chemokines/
chemoattractants and the  b 2 integrin, CD11/CD18 expressed on leukocytes. It regu-
lates a wide variety of functions in neutrophils, including cytoskeletal organization 
and rearrangements, superoxide production, chemotaxis, phagocytosis, transcrip-
tion, and cell growth and proliferation (Bokoch  2005  ) . Rac2−/− mice have circulat-
ing neutrophil counts that are several times those seen in wild type animals and a 
slight increase in marrow granulopoiesis, which persist in otherwise asymptomatic 
mutant mice (Roberts et al.  1999  ) . Rac2−/− mice have higher numbers of circulat-
ing HSC/Ps at baseline and after G-CSF treatment compared to WT littermates 
despite having similar numbers of HSC/Ps in the bone marrow (Yang et al.  2001  ) , 
suggesting that Rac2 may be important in the retention and mobilization of these 
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cells from the bone marrow. Rac2−/− HSC/P adhered less to bone marrow stromal 
cells in vitro and exhibited growth defects in stroma-dependent cultures than wild 
type cells, indicating that Rac2 in hematopoietic cells is required for optimal growth 
and development (Jansen et al.  2005  ) . Neutrophil kinetic studies suggested that 
Rac2 modulates the time from the last mitosis to release of neutrophils into the cir-
culation and does not prolong their circulating half-life (Gomez et al.  2008  ) . Lethally 
irradiated wild type mice reconstituted with a mixture of wild type and Rac2−/− 
stem cells were protected from neutrophilia, and neutrophils constituted a greater 
percentage of the Rac2−/− leukocytes than wild type leukocytes in these mice 
(Gomez et al.  2008  ) . These  fi ndings are consistent with the role of Rac2 in transduc-
ing signals downstream of integrin activation (please see next section). However, 
whereas Rac2 de fi ciency in hematopoietic cells alone resulted in increased neutro-
phil production in the bone marrow, Rac2 de fi ciency in both hematopoietic and 
nonhematopoietic cells was required for the increase in circulating neutrophil 
counts, suggesting a role for Rac2 in nonhematopoietic cells in regulating bone 
marrow release of neutrophils (Gomez et al.  2008  ) .  

    4.2.2.4   Adhesion Molecules and the Regulation of Neutrophil Production 
and Release 

 Adhesion of hematopoietic cells to stromal cells or to the extracellular matrix 
within the bone marrow plays an important role in retaining hematopoietic cells 
within the bone marrow and in mediating the return of some hematopoietic cells to 
the bone marrow from the circulation (“homing”). Conversely, adhesive interactions 
may be important in mobilizing hematopoietic cells to enter the circulation, by 
allowing hematopoietic cells to crawl through the bone marrow stroma toward the 
sinusoids and cross the sinusoidal endothelium. Bone marrow neutrophils express 
the integrin VLA-4 ( a 4 b 1 or CD49d/CD29) which binds to VCAM-1 expressed by 
bone marrow stromal cells and endothelium (Petty et al.  2009  ) . Blocking antibod-
ies against VLA-4 or VCAM-1 given intravascularly caused neutrophilia at 4 h, in 
the absence of any in fl ammatory stimulus (Petty et al.  2009  ) . Evidence of interac-
tion between CXCR4 and VCAM-1 in neutrophil mobilization was observed (Petty 
et al.  2009  ) . In contrast, baseline neutrophil release in a model of rat perfused 
femoral bone marrow was not inhibited by blocking CD49d (the alpha subunit of 
VLA-4), and an anti-CD49d antibody partially prevented neutrophil mobilization 
induced by MIP-2 (Burdon et al.  2005  ) . The basis for this discrepancy is not yet 
clear, but these data underline the complexities of VLA-4/VCAM-1, CXCR4/SDF-
1, and CD11/CD18/ICAM-1 axes and signaling. Light may be shed on these com-
plexities by observations made in immature bone marrow hematopoietic cells, 
where VLA-4 plays an important role in mediating homing to and mobilization 
from the bone marrow by binding to VCAM-1 (Bonig et al.  2006 ; Priestley et al. 
 2006 ; Scott et al.  2003  ) . Interestingly, lacking CXCR4 expression in hematopoietic 
cells abolished G-CSF-induced HSC/P mobilization in mice, but had no effect on 
mobilization induced by blocking VLA-4 (Christopher et al.  2009  ) , suggesting 
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multiple independent or redundant mechanisms of HSC/P release that may also 
operate in neutrophils. 

 Integrins of the  b 2 integrin subfamily (CD11/CD18 complex) are the main inte-
grins expressed on the surface of leukocytes. Patients with heterogeneous mutations 
in the gene that encodes CD18 suffer from the clinical syndrome Leukocyte 
Adhesion De fi ciency type I (LAD I). LAD I is characterized by extremely high 
levels of circulating neutrophils, recurrent bacterial infections, impaired wound 
healing, and functional defects in neutrophils. Mice that are completely de fi cient in 
CD18 (Itgb2-/-) express no functional leukocyte  b 2 integrins, including LFA-1 
(CD11a/CD18 or  a L b 2) and Mac-1 (CD11b/CD18 or  a M b 2) and have a phenotype 
similar to human LAD I patients, including granulocytosis, spontaneous infections, 
and myeloid hyperplasia (Scharffetter-Kochanek et al.  1998  ) . Mice de fi cient in 
CD11a/CD18 (LFA-1) (Ding et al.  1999  )  or the CD11/CD18 receptor ICAM-1 
(Sligh et al.  1993  )  have modestly elevated circulating neutrophil counts. 

 The neutrophilia in CD18 de fi ciency is present within the  fi rst few days of life, and 
occurs even when mice were housed in clean, speci fi c pathogen-free facilities and in 
the absence of discernible infections. When lethally irradiated wild type (WT) mice 
are given a 1:1 mixture of WT and CD18-de fi cient fetal liver cells, neutrophilia is 
inhibited by greater than 95 % compared with WT mice given CD18-de fi cient stem 
cells alone (Horwitz et al.  2001  ) , indicating that the neutrophilia seen in CD18 
de fi ciency can be largely corrected by the presence of WT hematopoietic cells. 
Weinmann and colleagues demonstrated that circulating neutrophils in CD18-
de fi cient mice show decreased apoptosis, and the delay in apoptosis of CD18-de fi cient 
neutrophils is abolished in the presence of WT leukocytes (Weinmann et al.  2003  ) . 
These studies led to the hypothesis that neutrophilia in CD18 de fi ciency is mainly due 
to the inability of mutant leukocytes to defend the host from microbial pathogens, 
resulting in chronic infection and subsequent chronic stimulation of the bone marrow. 
The presence of WT neutrophils is thus postulated to remove the stimuli that increase 
neutrophil production in the bone marrow by conferring protection to the host. 

 Cell-intrinsic mechanisms that were not corrected by the presence of wild type 
cells contributed to the granulocytosis observed in CD18 de fi ciency, because a mild 
granulocytosis developed in mice that received a mixture of wild type and CD18-
de fi cient stem cells (Horwitz et al.  2001  ) . In chimeric mice with both wild type and 
CD18-de fi cient bone marrow, a larger than expected fraction of the circulating neu-
trophils are CD18-de fi cient and a much larger proportion of the CD18-de fi cient 
circulating leukocytes are neutrophils, even in the presence of normal numbers of 
wild type neutrophils in the blood and bone marrow (Horwitz et al.  2001  ) . The pro-
portion of apoptotic Gr-1+ cells in both the bone marrow of chimeric animals and 
in vitro cultures of wild type and CD18-de fi cient HSCs was lower in CD18-de fi cient 
than in wild type cells (Gomez and Doerschuk  2010  ) . These data suggest that CD18 
can directly regulate neutrophil production, in part by limiting the survival of neu-
trophils and their precursors. 

 A novel mechanism through which the defects of CD18-de fi cient neutrophils in 
host defense result in neutrophilia was suggested by Forlow and colleagues, who 
showed that CD18-de fi cient mice have increased levels of circulating IL-17 and 
G-CSF and that blocking IL-17 or G-CSF suppressed the neutrophilia in these mice 
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(Forlow et al.  2001  ) . The cytokine IL-17 is produced by T cells and induces G-CSF 
production, and is itself induced by IL-23 produced by macrophages and dendritic 
cells (von Vietinghoff and Ley  2008  ) . Stark and colleagues demonstrated a novel 
feedback loop in which phagocytosis of apoptotic neutrophils by tissue-resident mac-
rophages and dendritic cells inhibits the production of IL-23, thus shutting down the 
IL-17A/G-CSF signaling axis and preventing increased granulopoiesis in the bone 
marrow (Stark et al.  2005  ) . 

 Similar concepts may underlie neutrophilia found in mice de fi cient in signaling 
through CXCR2. Cxcr2−/− mice have increased numbers of neutrophils in the bone 
marrow and circulation, and Cxcl5−/− (LIX-de fi cient) mice have a similar but 
milder phenotype (Mei et al.  2012  ) . The authors showed that the phenotype was due 
to increased IL-17A in the ileum, and the treatment with anti-IL17A or antibiotics 
resulted marked reduction in neutrophils in the blood and bone marrow (Mei 2012). 
The authors propose that CXCL5 (LIX) produced by enterocytes attract circulating 
neutrophils into the gut where they feedback into the IL-17A/G-CSF signaling axis. 
Thus, the failure of neutrophils to migrate into the tissues may underlie the reactive 
neutrophilia observed in mice de fi cient in adhesion molecules or CXCR2 signaling. 
Interestingly, uptake of apoptotic neutrophils by bone marrow-derived macrophages 
induces G-CSF production, whereas LPS-induced G-CSF production by peritoneal 
macrophages is inhibited (Furze and Rankin  2008a  ) , suggesting that neutrophil 
uptake may induce distinct signaling pathways depending on the macrophage popu-
lation and the microenvironment, with IL-17 signaling playing a role in neutrophil 
kinetics during in fl ammation by inducing G-CSF.    

    4.3   Neutrophil Margination and Sequestration in Pulmonary 
Microvasculature and Recruitment into Lung Tissue 

    4.3.1   Neutrophil Traf fi cking and Margination in the Normal 
Pulmonary Microvasculature 

 Within the capillaries of the pulmonary circulation in healthy lungs, there is an 
increased concentration of neutrophils relative to other vessels. This increased con-
centration of neutrophils has been termed the marginated pool, although the impli-
cation that this pool is stagnant is unlikely to be true (Hogg  1987  ) . Many studies 
have shown that this increased concentration is explained by increased transit time 
of neutrophils through the pulmonary capillary bed, compared to the rapid transit 
times of erythrocytes. This longer transit time is likely due to constraints set by the 
diameters of the capillaries and the neutrophils, and the biomechanical properties of 
the neutrophils (Brumwell et al.  1991 ; Doerschuk et al.  1993 ; Hogg et al.  1994 ; Lien 
et al.  1987,   1990 ; Wiggs et al.  1994 ; Yoder et al.  1990 ; MacNee et al.  1989 ; Selby 
et al.  1991  ) . Capillary segments are often narrower than the diameter of spherical 
neutrophils, indicating that neutrophils must stop and deform in order to traverse 
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these narrow segments. Video microscopy demonstrated that in contrast to the 
 continuous movement of the discoid erythrocytes that can fold, leukocytes move in 
hops, stopping once or more in transiting through the capillary bed from a pulmo-
nary arteriole to a venule (Lien et al.  1990  ) . The prolonged transit time of neutro-
phils and other leukocytes through the pulmonary capillaries may be important for 
host defense, by allowing neutrophils to sample their microenvironment for the 
presence of in fl ammatory stimuli and to respond appropriately. The observation that 
transit times are longer has become controversial of late (Summers et al.  2010  ) , but 
the numerous ways in which neutrophil transit times have been studied (imaging, 
morphometry, computational modeling), the many species (human, dog, rabbit, 
mice), the many ways in which neutrophils have been isolated, and the numerous 
studies showing the effect of epinephrine and respiratory maneuvers on the release 
of this pool suggest that neutrophil transit times are longer than erythrocyte transits, 
resulting in an increased concentration of neutrophils in the pulmonary capillary 
blood that is likely important for host defense in the lungs.  

    4.3.2   Neutrophil Sequestration in the Lungs During 
In fl ammation 

 Neutrophils migrate from the circulation to the tissues in response to in fl ammatory 
stimuli. The recruitment of neutrophils and other leukocytes to the tissues during 
in fl ammation occurs in a sequence of events that includes leukocyte recognition of 
the in fl ammatory site, sequestration within the microvasculature,  fi rm adhesion, 
transmigration through the endothelium, and migration in the tissues (Fig.  4.3 ).  

 The mechanisms through which neutrophils are sequestered at a site of 
in fl ammation within the alveolar spaces appear quite different in the pulmonary 
microcirculation compared to the systemic microcirculation. In the systemic micro-
circulation, the initial steps of leukocyte capture and rolling occur within the post-
capillary venules and are mediated by selectins, a family of calcium-dependent 
lectins that includes L-selectin expressed on leukocytes, P-selectin expressed on 
platelets and endothelial cells, and E-selectin expressed on endothelial cells. 
Neutrophils express L-selectin and several ligands that can bind to selectins expressed 
on leukocytes, platelets, and endothelial cells. Among the best characterized selectin 
ligands on neutrophils are PSGL-1, ESL-1, and CD44. Neutrophil PSGL-1 can bind 
to all three selectins, whereas ESL-1 and CD44 can bind to E-selectin expressed on 
activated endothelial cells. Binding of E-selectin to PSGL-1, ESL-1, or CD44 on 
neutrophils elicits distinct signals that correlate with their distribution on the cell 
surface (Hidalgo et al.  2007  ) . The biology of selectin adhesion has been extensively 
studied in vitro and within the systemic post-capillary venules. 

 In contrast, the major site of neutrophil sequestration within the pulmonary micro-
vasculature in response to an in fl ammatory stimulus is the pulmonary capillaries, 
and this sequestration does not require rolling. Rolling does not occur in the pulmo-
nary capillaries, because of the spatial restraints arising from the diameter of many 



96 J.C. Gomez et al.

pulmonary capillaries being narrower than those of round neutrophils (Doerschuk 
et al.  1993 ; Gebb et al.  1995 ; Lien et al.  1991  ) . Rather, mediator-induced changes in 
the biomechanical properties of neutrophils appear to underlie their sequestration in 
the pulmonary capillaries (Doerschuk  2001  ) . The binding of in fl ammatory mediators 
present at the in fl ammatory site to G protein-coupled receptors on leukocytes leads 
to changes in the biomechanical properties of neutrophils that decrease their ability 
to deform and change shape. In normal lungs as mentioned above, the transit times 
of neutrophils are longer than for erythrocytes, allowing them 2–20 s or more to 
assess their environment. The binding of neutrophil receptors by chemokines or bac-
terial products induces an f-actin rim to form beneath the cell membrane within 
seconds, which causes neutrophils to become stiffer and less deformable (Downey 
et al.  1991 ; Inano et al.  1992  ) . This increased stiffness appears to prevent them from 
deforming and passing into the pulmonary venules, resulting in their sequestration at 
in fl ammatory sites. During bacterial pneumonias in rats, neutrophils with f-actin 
rims were preferentially retained in the lungs over those without f-actin rims at a 
time when sequestration was actively ongoing (Yoshida et al.  2006  ) . CD18 blockade 
had no effect on this preferential sequestration of f-actin rimmed neutrophils, and 
L-selectin expression or platelet binding made no difference in which neutrophils 
were preferentially retained. Furthermore, L-selectin-de fi cient mice had no defect in 
neutrophil sequestration within lung capillaries induced by intravascular activated 
complement or intra-alveolar  S. pneumoniae  (Doyle et al.  1997  ) . 
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  Fig. 4.3    Postulated pathway of neutrophil recruitment during in fl ammation in the lungs. Complex 
signaling processes occurring in and between neutrophils and endothelial cells facilitate the early 
stages of neutrophil recruitment from the circulation.  Asterisk  depending on the stimulus, neutro-
phils migrate into the airspaces of the lungs using CD11/CD18-dependent or -independent mecha-
nisms.  Double asterisks  most transendothelial migration occurs paracellularly as depicted; 
a minority of cells migrate through endothelial cells (transcellularly). Please see text for details       
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 Although selectins appear to play no role in the immediate recruitment of 
 neutrophils in the pulmonary capillaries, this family of adhesion molecules was 
required for prolonged retention of neutrophils in the lungs in response to intravascu-
lar complement fragments (Kubo et al.  1999  ) . During bacterial pneumonia, the 
requirement for selectins may depend upon the bacterial species. For example, neu-
trophil sequestration and migration in response to  S. pneumoniae  does not appear to 
require selectins, whereas L-selectin does contribute to emigration induced by 
 Escherichia coli  (Doyle et al.  1997 ; Mizgerd et al.  1996  ) . This requirement may 
re fl ect a role of selectins in integrin activation (see below) and other signaling pro-
cesses in neutrophils and other cells. For example, platelet-derived P-selectin-mediated 
platelet-neutrophil interactions, and P-selectin blockade abrogated neutrophil recruit-
ment and lung injury in a model of acid-respiration induced lung injury (Zarbock 
et al.  2006  ) . Thromboxane A2 released by platelet-neutrophil aggregates increased 
the expression of ICAM-1, the receptor for the major leukocyte integrin, on endothe-
lial cells and adhesion of neutrophils to endothelial cells (Zarbock et al.  2006  ) .  

    4.3.3   Neutrophil Adhesion to Endothelial Cells and Migration 
into the Lungs 

    4.3.3.1   The Biology of Integrin Activation 

 Firm adhesion of leukocytes is mediated by activated integrins present on the cell 
surface. Integrins expressed on resting leukocytes generally have low af fi nity for 
their ligands. Integrin activation caused by binding of various agonists to receptors 
on the cell surface induces structural changes in integrins that result in increased 
af fi nity for ligands (inside-out signaling) and clustering of integrins on the cell sur-
face. Integrins on leukocytes can be rapidly activated by the binding of chemokines 
and other in fl ammatory mediators to cognate G protein-coupled receptors on the 
leukocyte surface. Binding of agonists to the N terminal extracellular portion of 
their cognate G protein-coupled receptors results in activation of the associated 
cytoplasmic G protein, which dissociates into the GTP-bound G a  subunit and G b  g  
dimers. The G protein subunits activate downstream effectors, including phospholi-
pase C, the small GTPase Rap, GEFs including CALDAG-GEF1, and the cytoskel-
etal protein talin, that mediate integrin activation to allow high af fi nity binding to 
ligands. Upon binding ligand, integrins transmit signals that control a wide variety 
of cellular processes, including structural and mechanical changes, adhesion, and 
migration (outside-in signaling). Integrin structure and signaling are discussed in 
detail in recent reviews (Abram and Lowell  2009 ; Luo et al.  2007  ) . 

 The functional importance of integrin activation is apparent in patients with LAD 
type 3/type 1 variant (LAD III/1V), who manifest defects in integrin activation in 
leukocytes and platelets that lead to immune de fi ciencies and bleeding disorders. The 
disease is due to mutations in the gene FERMT3 that encodes Kindlin-3 (Malinin 
et al.  2009 ; Moser et al.  2009 ; Svensson et al.  2009 ; Kuijpers et al.  2009  ) . Kindlin-3 
binds to the distal portion of the cytoplasmic tail of  b 1 and  b 3 integrins on platelets 
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and  b 2 integrins on leukocytes and mediates inside-out activation (Moser et al.  2008, 
  2009  ) . Kindlin-3-de fi cient neutrophils do not  fi rmly adhere to and spread on  b 2 ligands 
ICAM-1 and iC3b after stimulation, and show defects in adhesion to endothelial 
cells and extravasation in response to in fl ammatory mediators (Moser et al.  2009  ) . 

 In addition to rapid activation by GPCRs, integrins on neutrophils can also be 
activated by engagement of L-selectin by glycoproteins, or by binding of selectin 
ligands on neutrophils by E-selectin (expressed by stimulated endothelial cells) or 
P-selectin (expressed on platelets and endothelial cells). The transition of integrins 
from low to high af fi nity states can be bridged by an intermediate af fi nity state trig-
gered by rolling on selectins, which can be modulated by hemodynamic shear forces 
(Alon and Ley  2008  ) . Engagement of PSGL-1 on neutrophils by E-selectin on 
endothelial cells can activate rolling on ICAM-1 by LFA-1, via Syk, the Src family 
kinase Fgr, and the immunotyrosine activation motifs (ITAM)-containing adaptors 
FcR g  and DAP12 (Zarbock et al.  2007a,   2008  ) . PSGL-1 binding to P-selectin 
expressed by platelets and endothelial cells activated LFA-1 and Mac-1 through a 
pathway that involved phosphorylation of Naf1 by Src family kinases and subse-
quent activation of PI(3)K (Wang et al.  2007  ) . Yago showed that E-selectin engages 
CD44 or PSGL-1 to activate slow rolling on LFA-1 through the Src kinases Hck, 
Fgr, and Lyn, the adaptors FcR g  and DAP12, Syk, Btk, and p38 MAPK (Yago et al. 
 2010  ) . Thus binding of endothelial selectins to neutrophil ligands induces signaling 
pathways that result in activation of  b 2 integrins. 

 In vivo, GPCR and selectin-dependent pathways likely cooperate to induce inte-
grin activation. Very little information is available about the integration of these 
signaling pathways to regulate adhesion and migration in the lungs, although there 
are hints that this is occurring. In venules of cremaster muscles in fl amed by TNF- a , 
both pertussis-toxin inhibitable G protein-coupled receptors including CXCR2 and 
E-selectin contributed to neutrophil adhesion (Smith et al.  2004  ) . Similarly, during 
thioglycollate-induced peritonitis, defects in neutrophil recruitment were observed 
only when E-selectin-de fi cient mice were treated with pertussis toxin or when 
CXCR2-de fi cient mice were given a blocking anti-E-selectin antibody (Smith et al. 
 2004  ) . Other studies are pursuing an understanding of the complexities of integrin 
activation during neutrophil recruitment, including roles for Syk, Galphai2, the Src 
kinase Fgr, and the adaptors FcR gamma and DAP12 (Zarbock et al.  2007b,   2008 ; 
Van Zif fl e and Lowell  2009  ) . The contributions of G protein-coupled receptors and 
selectin ligands to integrin activation are very likely to depend on the stimulus and 
the recruitment site.  

    4.3.3.2   Integrin Activation in the Lungs and Integrin-Independent 
Adhesion and Migration 

 As discussed in detail above, much of the recruitment of neutrophils to the distal 
airways and the alveoli occurs through the pulmonary capillaries, which are too nar-
row to allow rolling (Fig.  4.3 ). Thus, the selectin- and integrin-mediated processes 
that mediate neutrophil rolling and tethering in the systemic circulation may not be 
required for the initial processes of neutrophil sequestration. However, integrin 
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activation by GPCR and/or selectin signaling may be required for neutrophil adhesion 
and migration along the endothelium, transendothelial cell migration and travel into 
the tissues, as well as carrying out their effector function. GPCR signaling is required 
for neutrophil recruitment and lung injury in a number of models of acute lung 
injury. De fi ciency of the GPCR CXCR2 or blockade of CXCR2 ligand interactions 
resulted in reduction in neutrophil recruitment and lung injury in a mouse model of 
ventilation-induced lung injury (Belperio et al.  2002  ) . Signaling through CXCR2 
expressed on neutrophils and nonhematopoietic cells mediated neutrophil recruit-
ment and lung injury induced by inhaled LPS (Reutershan et al.  2006  ) . G a i2 in 
neutrophils was required for KC-induced neutrophil arrest and for neutrophil 
recruitment into the lung induced by LPS inhalation (Zarbock et al.  2007b  ) . 
Engagement of ESL-1 on neutrophils by E-selectin led to activation of the integrin 
CD11b/CD18 ( a M b 2) on microdomains in neutrophils, capture of platelets and 
release of reactive oxygen species (ROS) in cremasteric venules in a model of 
 transfusion-related acute lung injury (Hidalgo et al.  2009  ) . Blocking E-selectin or 
CD11b/CD18 but not P-selectin prevented lung injury in this model, suggesting that 
heterotypic interactions may be occurring in the lung as well. 

 In the post-capillary venules of the systemic circulation, neutrophil adhesion 
usually requires the CD11/CD18 adhesion complex. However, neutrophil migration 
from the pulmonary capillaries to in fl ammatory sites in the airspaces of the lung 
utilizes either CD11/CD18-dependent or CD11/CD18-independent mechanisms. 
Even in CD11/CD18 dependent emigration, inhibition of this adhesion complex 
blocks only 70–80 % of neutrophils from migrating, and 20–30 % of neutrophils 
still migrate. The adhesion pathway depends on the stimulus. For example, in the 
lungs, stimuli that induce primarily CD18-dependent emigration include  E. coli , 
 E. coli  lipopolysaccharide,  P. aeruginosa , IgG immune complexes, IL-1, and phor-
bol myristate acetate (PMA). Those inducing CD11/CD18-independent neutrophil 
emigration include  S. pneumoniae , group B  Streptococcus ,  Staphylococcus aureus , 
hydrochloric acid, hyperoxia, pulmonary PMN sequestration early in the course of 
ventilator-induced lung injury, C5a, and the chemokine KC (Doerschuk  2000 ; 
Mackarel et al.  2000 ; Ridger et al.  2001 ; Doerschuk et al.  1990 ; Choudhury et al. 
 2004  ) . In vitro, fMLP-induced CD18-dependent migration of neutrophils across 
either pulmonary arterial endothelial cells or HUVECs, whereas IL-8, LTB4, and 
sputum from patients with purulent bronchiectasis induced CD18-independent 
 neutrophil transendothelial migration (Doerschuk  2000 ; Mackarel et al.  2000 ; 
Ridger et al.  2001 ; Doerschuk et al.  1990 ; Morland et al.  2000  ) . 

 The mechanisms underlying CD18-independent neutrophil recruitment into the 
lung are poorly understood. CD11/CD18-independent leukocyte migration has also 
been reported in liver sinusoids, a site where selectin-dependent rolling and tether-
ing also do not occur (reviewed in (Lee and Kubes  2008 )) and where binding of 
CD44 to hyaluronan contributes to neutrophil sequestration in in fl amed liver sinu-
soids (McDonald et al.  2008 ). However, in the lungs, CD44 had no role in neutro-
phil migration into the airspaces of the lungs when induced by S. pneumoniae, a 
stimulus that induces neutrophil recruitment through predominantly CD18-
independent mechanisms (Wang et al.  2002 ; van der Windt et al.  2011 ). However, 
curiously, in pneumonias induced by E. coli and Klebsiella pneumoniae, stimuli 
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which induce CD18-dependent neutrophil emigration, CD44 de fi ciency enhanced 
neutrophil recruitment (Wang et al.  2002 ; van der Windt et al.  2010 ). Studies 
addressing the adhesion molecules and signaling pathways mediating CD18-
independent migration of neutrophils in the lungs have suggested a partial and 
sometimes small contribution of VLA-4 (CD29d) in mediating neutrophil recruit-
ment during S. pneumoniae pneumonia (Tasaka et al.  2002 ) and for both CD29b and 
CD29d during KC-induced pulmonary in fl ammation (Ridger et al.  2001 ). The 
mechanisms mediating CD18-independent adhesion in the lungs remain unclear, 
despite their obvious importance. The remainder of this section will focus on CD18-
dependent neutrophil recruitment and signaling into the endothelium. 

     4.3.3.3   Neutrophil Traf fi cking from the Capillaries to the Alveoli 

 Thus, during an acute in fl ammatory response in the lung, neutrophils rapidly 
sequester in the pulmonary capillary bed (Fig.  4.3 ). Endogenous or exogenous 
chemoattractants alter the biomechanical properties of circulating neutrophils, 
resulting in a prolonged transit time for a neutrophil to cross the pulmonary capil-
lary bed and neutrophil sequestration. As an in fl ammatory response progresses, 
cytokines are produced to activate lung parenchymal cells including the  endothelium. 
Chemokines are induced, which are necessary to activate the integrins on  neutrophils 
and to further signal the neutrophils to stop in the lung. In addition, adhesion mol-
ecules such as ICAM-1 are expressed and activated on endothelial cells, and these 
molecules mediate  fi rm adhesion of neutrophils to the endothelium. Neutrophils 
then spread and crawl on the endothelial surface until they reach the site for transmi-
gration. Intravascular crawling is mediated by CD11b/CD18 on the neutrophils and 
ICAM-1 on endothelial cells. This spreading and crawling implies that the adhesive 
bonds between integrins and their ligands must be displaced while new bonds are 
formed. This requires coordinated signaling from chemokines, integrins, and ICAM-
1. Besides regulating neutrophil adhesion and locomotion on endothelial cells, sig-
naling during adhesion also modulates endothelial cell junctions, and induces 
expression of in fl ammatory genes. These responses likely play important roles in the 
progression of an in fl ammatory response by modulating endothelial cell permeabil-
ity, neutrophil transmigration and production of in fl ammatory mediators. Neutrophil 
transmigration through the endothelium can occur at endothelial cell borders (para-
cellular transmigration) or through endothelial cells (transcellular migration) in vitro 
and in vivo. During paracellular migration another set of adhesion molecules are 
engaged that include platelet endothelial cell adhesion molecule (PECAM)-1, 
VE-cadherin, junctional adhesion molecules and CD99 (Muller  2009  ) . 

 In vivo studies suggest that most neutrophils sequestered within the capillaries of 
in fl amed lungs reenter the circulation, while only a small fraction transmigrate to 
reach the extravascular space (Doerschuk et al.  1994  ) . Whether this is a random 
process or whether there are localized responses that guide neutrophils to reach the 
site of transmigration and how these responses occur remain important questions. 

 The path neutrophils take from the capillary to the alveoli has been described else-
where (Burns et al.  2003  ) . In other tissues and often in vitro, whether a sequestered 
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neutrophil will take a paracellular or transcellular route to migrate through the 
endothelium appears to depend on the nature of the in fl ammatory stimulus, the tis-
sue microenvironment, the level of ICAM-1 expression, and the localization of 
ICAM-1 (Yang et al.  2005 ; Carman and Springer  2004 ; Feng et al.  1998 ; Cinamon 
et al.  2004 ; Millan et al.  2006 ; Nieminen et al.  2006 ; Wood fi n et al.  2010  ) . However, 
in the pulmonary microvasculature, the majority of the neutrophils (and perhaps 
nearly all) take the paracellular route between endothelial cells (Burns et al.  2003 ; 
Walker et al.  1995 ; Behzad et al.  1996  ) . Fibroblasts in the interstitium may guide the 
migrating neutrophils from the endothelial cell junctions to discontinuities at the 
basal aspect of the epithelial borders. Neutrophils then migrate into the alveolar 
space through tricellular corners at the junctions of type I and type II epithelial cells 
(Burns et al.  2003 ; Walker et al.  1995 ; Behzad et al.  1996  ) . These sites may be pre-
ferred due to the discontinuous nature of the tight junctions. A role for both the 
leukocyte adhesion complex CD11/CD18 and the  b 1 integrin CD29 are important 
in neutrophil migration through the pulmonary interstitium toward the alveolar 
space (Ridger et al.  2001 ; Ong et al.  2003  ) . 

 Once in the alveolar space, neutrophils adhere to the apical surface of epithelial 
cells, possibly through ICAM-1 interactions. Interestingly, a soluble form of 
ICAM-1 (sICAM-1) is present in the plasma and in the lung lining  fl uid. sICAM 
may be generated through alternative splicing or by proteolytic cleavage of the 
membrane-bound form (mICAM-1). The mechanisms of sICAM-1 production are 
different in type I alveolar epithelial cells (AEC) and pulmonary microvascular 
endothelial cells (PVEC). High baseline release of sICAM-1 in AEC and presence 
in the alveolar epithelial lining  fl uid were observed. TNF a  or LPS had little effect 
on sICAM-1 expression in AEC, but greatly increased sICAM-1 from PVEC 
(Mendez et al.  2008  ) . AEC sICAM-1 shedding was inhibited by a serine protease 
inhibitor; whereas protease inhibitors had no effect on PVEC sICAM-1 expression. 
These differences may re fl ect the roles of sICAM-1 in the vasculature versus the air 
spaces. Overexpression of sICAM-1 in the alveolar space distal lung resulted in 
decreased survival after intranasal infection with  K. pneumoniae  (Mendez et al. 
 2011  ) . At 24 h, a greater percentage of the transgenic mice (SPC-sICAM-1) had 
bacteria in the spleen compared with WT mice, while bacterial burden in the lungs 
was similar, and the number of neutrophils in the BALF was threefold greater in the 
SPC-sICAM-1 mice. These data suggest that sICAM-1 modulates host defense 
toward pathogens in the lung.    

    4.4   Neutrophil Functions in the Lung 

    4.4.1   Bactericidal Functions 

 Upon arrival at the site of infection, neutrophils contribute to microbial killing by 
binding and phagocytosing pathogens, and subsequently releasing highly toxic 
granule contents and radicals into the phagosome (Fig.  4.4 ). Oxidant production 
and other effector functions is enhanced by priming neutrophils with in fl ammatory 
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mediators or chemokines and cytokines, including TNF- a , IL-8, or IFN- g , or by the 
processes of adhesion and migration. The recognition of microbes or microbial 
products may be mediated by pattern recognition receptors, including toll-like 
receptors, C-type lectin receptors, NLRs, and RIG-I helicase receptors. Human neu-
trophils have been demonstrated to express all the TLRs except TLR3, and also 
express CLEC7A (dectin 1), CLEC2 (CLEC1B), RIG-I, MDA5, NOD1, and FPR1 
(reviewed in (Mantovani et al.  2011  ) ).  

 Uptake of bacteria and other particles by phagocytes (neutrophils, macrophages, 
and to a lesser extent dendritic cells) is markedly enhanced by coating the particle 
surface with opsonins, which include antibodies, complement fragments, pentrax-
ins, and collectins such as mannan- binding lectin and in the lung, SP-A and SP-D 
(Greenberg and Grinstein  2002  ) . Targets coated with antibodies or complement 
fragments bind phagocytic receptors expressed on the surface of phagocytes (Lee 
et al.  2003 ; Flannagan et al.  2009  ) . The main phagocytic receptors in neutrophils are 
Fc g  receptors that bind particles coated with IgG, and complement receptors that 
recognize particles coated with complement fragments (Greenberg and Grinstein 
 2002 ; Lee et al.  2003  ) . The low af fi nity Fc receptors Fc g RIIIB and Fc g RIIA are 
constitutively expressed in human neutrophils, whereas the high af fi nity receptor 
Fc g RI is induced by the treatment with G-CSF or IFN- g  (Repp et al.  1991 ; Cassatella 
et al.  1990 ; Nimmerjahn and Ravetch  2006  ) . Fc g RIIA has ITAM in its cytoplasmic 
domain which become phosphorylated upon ligand binding. Fc g RIIIB is GPI-
anchored to the cell membrane and may signal intracellularly by acting in con-
cert with Fc g RIIa in lipid microdomains (Chuang et al.  2000 ; Marois et al.  2011  ) . 
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  Fig. 4.4    Neutrophil effector functions during in fl ammation. Release of granule contents and 
 reactive oxygen species into phagosomes or into the surrounding environment occurs upon stimu-
lation. Granule contents and ROS have direct antimicrobial effects, as well as modulating the 
in fl ammatory response. Other neutrophils functions include secretion of soluble signaling mole-
cules, extracellular pathogen killing through NETs, and regulating host defense through direct 
interactions with cells present in the in fl ammatory milieu, including other leukocytes       
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Fc g RI has a short cytoplasmic tail and requires an associated gamma-chain to induce 
signaling. Binding of ligands to Fc receptors leads to receptor clustering and recruit-
ment of Src family kinases, which phosphorylate tyrosine residues in the ITAM 
domains, leading to recruitment of the tyrosine kinase Syk and activation of small 
GTPases, and triggering a signaling cascade that mediates target engulfment (Lee 
et al.  2003 ; Flannagan et al.  2009  ) . 

 Complement receptor 3 (CR3) is the leukocyte integrin CD11b/CD18 (Mac-1), 
and it binds particles coated with C3bi, a cleavage product of C3b which is in turn 
produced by proteolysis of C3 during complement activation. Whereas phagocyto-
sis of IgG-coated particles is characterized by the extension of pseudopods that 
surround and engulf the target, complement-coated targets are observed to sink into 
the cell, indicating distinct mechanisms of engulfment (Lee et al.  2003  ) . Crosstalk 
between the Fc receptors and complement receptors modulate their respective 
 activities. For example, in human monocytes, CR3-mediated phagocytosis is 
 inhibited by binding Fc g RI and enhanced by binding Fc g RII (Huang et al.  2011  ) . 

 The nascent phagosome undergoes a complex process of maturation, whereby it 
acquires the machinery and materials for microbial killing and degradation (reviewed 
in (Lee et al.  2003 ; Flannagan et al.  2009 ; Nordenfelt and Tapper  2011  ) ). The pro-
cess culminates in the release of granule contents into the phagosome and the 
assembly and activation of NADPH oxidase on the membrane. In contrast to mac-
rophages, phagocytosis in neutrophils occurs in seconds rather than minutes, matu-
ration involves the fusion of preformed granules with the phagosome rather than the 
endocytic maturation pathway in macrophages, large amounts of oxidants are pro-
duced through NADPH oxidase activity, and the phagosomal pH is neutral rather 
than acidic (Nordenfelt and Tapper  2011 ; Bianchi et al.  2009  ) . 

 Neutrophil granule contents are synthesized and packaged during neutrophil 
development in the bone marrow (Borregaard and Cowland  1997 ; Borregaard et al. 
 2007 ; Faurschou and Borregaard  2003  ) . Neutrophil granules are generally classi fi ed 
based on the timing of their synthesis and their major contents. Primary (azurophil) 
granules are made earliest and contain myeloperoxidase, as well as serine proteases, 
defensins, and bactericidal permeability-increasing protein. Speci fi c or secondary 
granules are peroxidase-negative and contain lactoferrin, as well as the cathelicidin 
hCAP-18 (precursor for the antimicrobial peptide LL-37), whereas tertiary granules 
contain gelatinase. The membrane of speci fi c granules contains the cytochrome 
b558 moiety of NADPH oxidase which is incorporated into the phagosome and cell 
membrane upon neutrophil activation. Secretory vesicles are made during the termi-
nal stages of maturation and enriched in receptors including the complement recep-
tors CR1 (CD35) and CR3 (CD11b/CD18), and albumin. The membranes of 
secretory vesicles are incorporated into the plasma membrane in response to chemot-
actic factors and early during leukocyte recruitment, thus supplying membrane pro-
teins including adhesion receptors that are critical for neutrophil function. Using a 
calcium ionophore or the chemotactic peptide fMLF to induce degranulation, the 
contents of granules are released in the opposite order to their synthesis: secretory 
vesicles are mobilized most readily, the threshold for exocytosis of gelatinase gran-
ules, and speci fi c granules are progressively higher (Sengelov et al.  1993  ) . 
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 Non-oxidative killing of microbes by neutrophils is effected by antimicrobial 
peptides and proteases stored in granules and released into the phagosome, includ-
ing serine proteases, matrix metalloproteinases, and various antimicrobial peptides. 
In addition to their role in killing pathogens in the phagosome, neutrophil granule 
contents may also kill pathogens extracellularly in neutrophil extracellular traps 
(NETs, described in the following section). 

 The neutrophil serine proteases neutrophil elastase (NE), cathepsin G (CG), and 
proteinase-3 are structurally related, abundantly expressed enzymes stored in the 
azurophilic granules (Pham  2006,   2008  ) . Before being packaged into primary gran-
ules, the proenzyme form of these serine proteases are processed by dipeptidyl pep-
tidase (DPPI, or cathepsin C) to yield the active forms. Serine proteases can cleave 
a large variety of substrates, including bacterial constituents, components of the 
extracellular matrix, plasma proteins, cytokines, and growth factors (Pham  2006, 
  2008  ) . The diversity of substrates indicates that neutrophil serine proteases may 
play many roles in the in fl ammatory response. 

 Neutrophil serine proteases have been shown to kill a variety of microbial 
 pathogens in vitro. For example, puri fi ed NE or CG kill  S. pneumoniae  in vitro, and 
inhibitors of serine proteases abrogate this microbicidal activity (Standish and Weiser 
 2009  ) . NE degrades virulence factors of Gram-negative enterobacteria  Shigella , 
 Salmonella , and  Yersinia  (Weinrauch et al.  2002  ) . Serine proteases can regulate host 
defense by proteolytic modi fi cation of cytokines and chemokines which results in 
either enhanced activity or inactivation of their targets, and by activation of speci fi c 
cellular receptors (Pham  2006,   2008  ) . For example, serine proteases process IL-8 to 
more active truncated forms (Padrines et al.  1994  ) , NE induces apoptosis of lung 
epithelial cells through PAR-1 activation (Suzuki et al.  2005,   2009  ) , and CG and NE 
cleave IL-33 into active mature forms (Lefrancais et al.  2012  ) . 

 The role of serine proteases in infection models have been tested in vivo using 
mice that are de fi cient in one or a combination of these enzymes, or mice de fi cient 
in DPPI. DPPI-de fi cient mice have no defect in clearance of the fungus  Aspergillus 
fumigatus  from the lung, and studies of bacterial clearance remain to be pursued 
(Vethanayagam et al.  2011  ) . Surprisingly, DPPI de fi ciency was protective in 
a murine model of sepsis due to increased levels of IL-6 (Mallen-St Clair et al. 
 2004  ) . Humans with Papillon–Lefevre syndrome due to DPPI de fi ciency have pyo-
genic liver abscesses, but no clear defect in neutrophil killing of  S. aureus  or  E. coli  
(Pham et al.  2004 ; Almuneef et al.  2003  ) . NE-de fi cient mice exhibit impaired host 
defense following intraperitoneal infection with  K. pneumoniae  and  E. coli  but not 
 S. aureus  (Belaaouaj et al.  1998  ) . NE null mice have increased susceptibility and 
impaired bacterial killing in  P. aeruginosa  pneumonia (Hirche et al.  2008  ) . However, 
NE is not required for neutrophil recruitment into the lungs or peritoneum in 
response to  P. aeruginosa  or LPS (Hirche et al.  2004  ) . Puri fi ed CG does not inhibit 
the growth of  S. aureus ,  K. pneumoniae , or  E. coli , and no defect in clearance or 
survival upon challenge in vivo with any of these organisms (MacIvor et al.  1999  ) . 
In a model of pneumonia induced by  S. pneumoniae , mice de fi cient in CG or in both 
CG and NE had reduced survival and increased bacterial load (Hahn et al.  2011  ) . 
These studies indicate that the serine proteases have site- and organism-speci fi c and 
often nonredundant roles in host defense against microbes. 
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 The matrix metalloproteinases are a family of zinc-dependent endopeptidases 
expressed in many cell types, including neutrophils, that degrade extracellular 
matrix components and are thus implicated in tissue remodeling, but also regulate 
host defense by targeting cell adhesion molecules, cytokines, and growth factors 
(Greenlee et al.  2007  ) . MMP-8 (neutrophil collagenase) and MMP9 (gelatinase B) 
are stored in secondary granules and secreted or expressed on the surface upon acti-
vation. The levels of MMP-8 and MMP-9 were elevated in lung lavage  fl uid and 
plasma from patients with hospital-acquired pneumonia (Hartog et al.  2003  ) , sug-
gesting that these MMPs may play a role during pulmonary infections. Membrane-
expressed MMP8 has recently been shown to cleave MIP-1 a  and attenuate injury in 
LPS-induced ALI (Quintero et al.  2010  ) . IL-8 binding to CXCR2 stimulates 
the release of MMP9 (gelatinase B) which processes IL-8 to increase its activity 
(Van den Steen et al.  2000 ; Chakrabarti and Patel  2005  ) . A recent study demonstrated 
that MMP9 (gelatinase B) was critical for ef fi cient phagocytosis and superoxide 
production by neutrophils, and cleaved IL-17A in vitro (Hong et al.  2011  ) . MMP2/9 
double-de fi cient mice have more neutrophils in the lungs, greater bacterial load, and 
are more susceptible to  S. pneumoniae -induced acute pneumonia (Hong et al.  2011  ) . 
Clearly MMP-8 and MMP-9 can modulate the host response by processing some 
cytokines directly, but their effect can also be indirect, for example collagen diges-
tion by MMP-8, MMP-9, and prolyl endopeptidase generates proline-glycine-pro-
line fragments which are potent neutrophil chemoattractants (Gaggar et al.  2008 ; 
Weathington et al.  2006  ) . 

 The antimicrobial peptides defensins and cathelicidins are small cationic peptides 
with antimicrobial and immune regulatory properties (Yang et al.  2004  ) . There are four 
human neutrophil  a -defensins, human neutrophil peptides 1–4, which are stored in 
primary granules and released upon neutrophil activation (Lehrer and Lu  2012  ) . The 
human cathelicidin hCAP18 is cleaved by serine proteases to yield the antimicrobial 
fragment LL-37. Defensins and cathelicidins can kill a broad range of pathogens 
through permeabilization of target membranes. In addition to their antimicrobial 
effects, these antimicrobial peptides can modulate immune responses by serving as 
alarmins to recruit and activate immune cells (Chertov et al.  1996 ; Grigat et al.  2007  ) . 

 In resting neutrophils, the NADPH oxidase complex is separated into cytoplas-
mic and membrane-bound components. When neutrophils are activated by a variety 
of stimuli, including in fl ammatory mediators, adhesion via integrins or binding of 
opsonized particles, the cytoplasmic components of the phagocyte NADPH oxidase 
(p40, p47, p67, and the small GTPase Rac) associate with the membrane bound 
cytochrome b558 heterodimer of gp91 and p22 to assemble the functional enzyme 
that catalyzes the production of superoxide from molecular oxygen (Quinn and 
Gauss  2004 ; Nauseef  2004 ; Babior  2004  ) . Superoxide anion is converted spontane-
ously or enzymatically into hydrogen peroxide, which is converted by myeloperoxi-
dase into the potent microbicide hypochlorous acid. Superoxide and other ROS 
formed downstream can interact with a large variety of molecules and alter their 
target structure and function. Fusion and release of granule contents into the phago-
some is coincident with NADPH oxidase activity, so that the engulfed bacterium is 
exposed to high ROS levels, proteases, and a plethora of antimicrobial proteins. 
NADPH oxidase-generated oxidants are generally thought to be major effectors of 
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bacterial killing. An alternative hypothesis has implicated protease activation in the 
phagosome by ion  fl uxes generated during NADPH oxidase activation, but this 
remains controversial (Segal  2005 ; Nauseef  2007  ) . It seems clear, however, that 
oxidase activity is required for host defense caused by some organisms. For exam-
ple, in mice with pulmonary  A. fumigatus  or systemic  Burkholderia cepacia  infec-
tion, NADPH oxidase activity rather than serine proteases was required for protection 
(Vethanayagam et al.  2011  ) . Interestingly, NADPH oxidase appears to downmodu-
late in fl ammation in certain conditions (Marriott et al.  2008 ; Morgenstern et al. 
 1997 ; Segal et al.  2010  ) , most clearly through ROS-mediated inactivation of 
chemokines, cytokines, and other in fl ammatory mediators. Consistent with both the 
microbicidal functions and the in fl ammatory downmodulatory effects, patients with 
chronic granulomatous disease characterized by having defects in NADPH oxidase 
function often have  B. cepacia  and  A. fumigatus  infections and over-exuberant 
 sterile in fl ammation. 

 ROS can modify the function of many signaling molecules by targeting thiols on 
cysteine residues. Signaling molecules that are targeted by ROS leading to changes 
in their signaling pathways include the protein tyrosine phosphatases, the small 
GTPase Rho, and Src kinases. Notably, a recent paper showed that NADPH oxidase 
de fi ciency or inhibiting NADPH oxidase led to defects in chemotaxis in human 
neutrophils, implicating NADPH oxidase-generated oxidants as regulators of neu-
trophil chemotaxis (Hattori et al.  2010  ) . NADPH oxidase is also required for the 
production of IFN- g  by neutrophils during  S. pneumoniae  pneumonia (Yamada 
et al.  2011  ) . NADPH oxidase is required for elaboration of NETs, as discussed in 
the following section.  

    4.4.2   NET Formation 

 NETs were  fi rst described as extracellular structures composed of decondensed chro-
matin with histones and granular contents that are able to bind and kill bacteria 
(Brinkmann et al.  2004  ) . Inducers of NET formation include bacteria and their com-
ponents, fungi, PMA, cytokines, and chemokines including IL-8 and IFN- g  (von 
Kockritz-Blickwede and Nizet  2009  ) . The formation of NETs is initially marked by 
chromatin decondensation, perhaps through posttranslational histone modi fi cation 
(Neeli et al.  2008,   2009 ; Li et al.  2010  )  or through cleavage by neutrophil elastase 
translocated to the nucleus (Papayannopoulos et al.  2010  ) . This is followed by break-
down of the nuclear and granular membranes and contact between granular contents 
and nuclear material, and subsequently the cell ruptures and NETs are released extra-
cellularly (Fuchs et al.  2007  ) . NET formation requires NADPH oxidase (Bianchi 
et al.  2009 ; Fuchs et al.  2007  )  and is regulated by neutrophil elastase and myeloper-
oxidase (Papayannopoulos et al.  2010 ; Metzler et al.  2011  ) . This pathway of NET 
formation usually occurs over a span of several hours and is likely a form of cell death 
(Fuchs et al.  2007 ; Remijsen et al.  2011a  ) . Rapid NET formation has also been 
induced by platelet binding to neutrophils after TLR4 stimulation (Clark et al.  2007  ) . 
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Other pathways of NET formation occur more rapidly and may not require lytic cell 
death. Live GM-CSF-primed neutrophils form extracellular nets in response to 
TLR4 or C5a signaling by extruding their mitochondrial DNA (Youse fi  et al.  2009  ) . 
Release of chromatin in vesicles from intact neutrophils induced by  S. aureus , dis-
tinct from later lytic release of DNA, has been reported as an oxidant-independent 
pathway of NET production (Pilsczek et al.  2010  ) . The Raf-MEK-ERK pathway 
was identi fi ed by a chemical inhibitor screen as a critical step for NET formation, 
likely upstream of NADPH oxidase (Hakkim et al.  2011  ) . Notably, PKC inhibition 
by staurosporine led to a marked decrease in NET  induction by PMA and PAF but 
not by  Helicobacter pylori , indicating some redundancy in NET signaling pathways 
depending on the stimulus. 

 NETs have been reported to kill bacteria, fungi, and protozoa in vitro (Brinkmann 
et al.  2004 ; Fuchs et al.  2007 ; Guimaraes-Costa et al.  2009 ; Parker et al.  2012 ; 
Urban et al.  2006,   2009 ; Young et al.  2011  ) . The antimicrobial functions of NETs 
are due to killing by histones, oxygen radicals, and microbicidal granular contents 
and to trapping of pathogens in the chromatin mesh (Brinkmann et al.  2004 ; Clark 
et al.  2007 ; Parker et al.  2012 ; Urban et al.  2006,   2009 ; Papayannopoulos and 
Zychlinsky  2009  ) . NETs from human neutrophils stimulated with PMA contained 
molecules with known antimicrobial properties: granular proteins (leukocyte 
elastase, lactotransferrin, azurocidin, cathepsin G, myeloperoxidase, leukocyte pro-
teinase-3, lysozyme C, and neutrophil defensins 1 and 3), nuclear components (his-
tones), and the cytoplasmic calprotectin complex (Urban et al.  2009  ) . 

 Determining the speci fi c contribution of NETs in host defense in vivo is compli-
cated because many of the neutrophil constituents present in NETs and the pro-
cesses required in NET formation are involved in other antimicrobial processes 
(Fig.  4.4 ). Supporting an antimicrobial role for NETs in vivo is the observation that 
bacterial pathogens appear to have evolved mechanisms to counter them. Pathogenic 
group A streptococci possess endonucleases that allow them to escape from NETs 
(Buchanan et al.  2006 ; Walker et al.  2007  ) . Pneumococcal strains express an endo-
nuclease that allows them to escape from NETs, and mutant pneumococci lacking 
endonuclease have impaired ability to spread to the lung and blood in mice infected 
intranasally (Beiter et al.  2006  ) . Pneumococci also modify their surface charge to 
repulse antimicrobial peptides present in NETs and synthesize a capsule that enables 
them to evade entrapment (Wartha et al.  2007  ) . 

 NETs may have deleterious effects by entangling or activating host immune 
cells, or by directly damaging tissues through contact with NET contents. NETs 
have been implicated in the pathogenesis of autoimmune diseases (Hakkim et al. 
 2010 ; Kessenbrock et al.  2009 ; Lef fl er et al.  2012 ; Garcia-Romo et al.  2011 ; Lande 
et al.  2011  ) , gout (Mitroulis et al.  2011  ) , sepsis (Clark et al.  2007  ) , and venous 
thrombosis (von Bruhl et al.  2012 ; Brill et al.  2012 ; Fuchs et al.  2010  ) . In vitro, 
NETs damage endothelial cells and the lung epithelial cancer cell line (A549) likely 
through the activities of proteases and histones (Clark et al.  2007 ; Saffarzadeh et al. 
 2012 ; Gupta et al.  2010  ) . 

 NETs may play a role in host defense in the lung during bacterial pneumonias. 
NETs were induced in a murine model of acute pneumonia induced by  K. pneumoniae  
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(Papayannopoulos et al.  2010  )  and  S. pneumoniae  (Yamada et al.  2011 ; Beiter et al. 
 2006 ; Wartha et al.  2007  ) . Notably fewer NETs were observed when pneumonia was 
induced by  E. coli  (Yamada et al.  2011  ) . IFN- g  production by neutrophils was 
required for NET formation and decreased bacterial load (Yamada et al.  2011  ) .  

    4.4.3   Recruitment of More Neutrophils from the Bone Marrow 
and Blood 

 In fl ammatory mediators emanating from the in fl ammatory stimulus itself (bacterial 
constituents such as fMLP, for example), or produced by resident cells and cells 
recruited to the lung during the infection can recruit neutrophils into the lungs from 
the blood and bone marrow. Alveolar macrophages, epithelial cells, and endothelial 
cells produce mediators that recruit neutrophils. Among these mediators are 
 complement fragments, lipid mediators such as LTB4, cytokines such as IL-1 b  and 
TNF- a , and chemokines such as IL-8. Neutrophils contribute to this process in several 
ways, primarily by producing mediators themselves. For example, human neutrophils 
make lipid mediators and IL-8, and are thus able to attract more neutrophils into the 
site of in fl ammation. LL-37, a cathelicidin released upon degranulation, is chemotac-
tic for neutrophils, monocytes, and T lymphocytes (De et al.  2000  ) . Neutrophil pro-
teases may also contribute to this process by modifying chemokines and their receptors, 
or cleaving collagen to generate the chemoattractant PGP (discussed previously).  

    4.4.4   Immunoregulatory Functions 

 The complex and critical role of neutrophils in regulating innate and adaptive immu-
nity is increasingly being appreciated (Mantovani et al.  2011  ) . In addition to their 
well-described roles in pathogen killing and clearance, neutrophils regulate the 
immune response by producing and releasing molecules with immunoregulatory 
activities (Fig.  4.4 ). Proteases, antimicrobial peptides, and radicals that are released 
upon neutrophil activation can regulate the functions of surrounding cells, recruit 
immune cells, or act on signaling molecules in the surrounding milieu, as described 
in the previous sections. Neutrophils can also produce soluble cell signaling mole-
cules, including potent cytokines such as IFN- g  and TNF- a , chemokines such as 
IL-8, growth factors such as G-CSF, pattern recognition molecules that enhance 
pathogen recognition by neutrophils and other cells, and lipid-derived mediators 
(Mantovani et al.  2011  ) . For example, neutrophils make IFN- g  in pneumonias 
induced by  S. pneumoniae  and  S. aureus , but not by  E. coli  or  P. aeruginosa  (Yamada 
et al.  2011  ) . Production of IFN- g  by neutrophils requires NADPH oxidase. IFN- g  
modulates NET production and improves bacterial clearance (Yamada et al.  2011  ) . 

 Direct contact between neutrophils and other cells can modulate their respec-
tive functions. For example, engulfment of apoptotic neutrophils modi fi es mac-
rophage function, as described below. Crosstalk through direct interactions between 
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neutrophils and monocytes, dendritic cells, or T cells, leading to modulation of the 
subsequent immune response, has also been demonstrated. For example, CD49d-
expressing neutrophils induce Fc e RI expression on lung dendritic cells, facilitating 
the recruitment of Th2 cells in a murine model of post-viral asthma (Cheung et al. 
 2010  ) . Finally, neutrophils are critical for resolving in fl ammation or setting the 
stage for the immune response, as described in the next section.  

    4.4.5   Resolution of In fl ammatory Response or Transition 
from In fl ammatory to Innate Immune Response 

 Resolution is not merely the passive cessation of pro-in fl ammatory responses, but 
rather requires an active response from the host, resulting in tissue repair and return 
to homeostasis. Ideally, neutrophilic in fl ammation is self-limiting and resolves with 
the proper removal of apoptotic neutrophils by scavenging macrophages and tissue 
repair. Several classes of lipid-derived mediators of resolution have been identi fi ed 
including lipoxins, D- and E-series resolvins, protectins, and maresins. Resolvins 
bind G protein-coupled receptors, decreasing neutrophil recruitment and downregu-
lating production of in fl ammatory mediators and ROS, while promoting apoptotic 
neutrophil uptake by macrophages (Uddin and Levy  2011  ) . For example, in a model 
of acid aspiration-induced lung injury and bacterial challenge with  E. coli , prophylac-
tic treatment with RvE1 decreased neutrophil accumulation in the lungs and bacterial 
load, and improved survival (Seki et al.  2010  ) . These were associated with decreased 
levels of pro-in fl ammatory mediators IL-1beta, IL-6, HMGB-1, MIP-1alpha, MIP-
1beta, keratinocyte-derived chemokine, and MCP-1 (Seki et al.  2010  ) . RvD1 and 
RvD2 target leukocytes and reduce neutrophil recruitment (Spite et al.  2009  ) . 

 A role for CD44 has also recently been described in the process of resolution. 
Interestingly, de fi ciency of CD44 results in improved clearance of either  S. pneumo-
niae  or  K. pneumoniae  (van der Windt et al.  2010,   2011  ) , suggesting that CD44 
facilitates bacterial growth and dissemination. However, CD44-de fi cient mice also 
show delayed resolution of the in fl ammatory process (van der Windt et al.  2010, 
  2011  )  suggesting that CD44 contributes to resolution through its interactions with 
hyaluronan or other ligands. Studies investigating bleomycin-induced lung 
in fl ammation and  fi brosis also show that CD44 is important in resolving the 
in fl ammatory process (Teder et al.  2002  ) . 

 In addition to their immunoregulatory and pro-resolution functions described pre-
viously, neutrophils can modulate the transition from in fl ammation to innate immune 
response by activating antigen presenting cells through alarmins. Lactoferrin, 
 a -defensins, cathelicidin, and HMGB-1 are considered alarmins for their ability to 
serve as endogenous danger signals that alert the immune system (Yang and 
Oppenheim  2009  ) . Neutrophils can also modulate monocyte recruitment by releas-
ing granule proteins that activate endothelial cells or modify chemokines by prote-
olysis, and neutrophils and monocytes/macrophages interact and regulate each other’s 
functions (Soehnlein and Lindbom  2010 ; Soehnlein et al.  2009  ) . For example, uptake 
of apoptotic neutrophils modulates macrophage function, as described below.   
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    4.5   Clearance of Neutrophils 

    4.5.1   Apoptosis 

 The fate of emigrated neutrophils can be one of the several death pathways with 
varying in fl ammatory and immunogenic consequences for the host; apoptosis, 
NETosis and necrosis (Fig.  4.1 ) (Bratton and Henson  2011  ) . Neutrophil apoptosis 
occurs via the intrinsic and extrinsic pathways resulting in death without release of 
cellular contents that may otherwise be released into the surrounding tissue and 
amplify in fl ammation (Bratton and Henson  2011 ; Witko-Sarsat et al.  2011 ; Fox 
et al.  2010  ) . As described in several recent reviews (Witko-Sarsat et al.  2011 ; Fox 
et al.  2010  ) , the distinct features of neutrophil apoptosis include the key role of the 
prosurvival factor Mcl-1, the dual role of TNF a  which can induce apoptosis or 
prolong the lifespan of neutrophils, the proapoptotic role of ROS and NADPH 
oxidase activation, and the role of the granule protein cathepsin D which can acti-
vate caspase-8 (Conus et al.  2008,   2012  )  or process the pro-apoptotic Bcl-2 protein 
Bid to promote apoptosis (Blomgran et al.  2007  ) . These and other pathways may 
be modi fi ed during the in fl ammatory response to prolong neutrophil lifespan. For 
example, cathepsin D release in the cytosol is blocked during in fl ammation, inhib-
iting its activation of caspase 8 (Conus et al.  2008  ) . These reviews and the studies 
described therein highlight the complex nature of apoptosis programs in neutro-
phils, and the differences between spontaneous versus in fl ammation-induced apop-
tosis, indicating that regulation of neutrophil life span may be a therapeutic target. 

 Apoptotic neutrophils are removed by scavenging macrophages (efferocytosis) 
that are attracted to the site by “ fi nd me” signals and recognize the so-called “eat 
me” signals on the surface of apoptotic neutrophils (Bratton and Henson  2011  ) . 
Diffusible  fi nd me signals include extracellular nucleotides (ATP and UTP), while 
the most studied “eat me” signal is phosphatidylserine, which can directly engage 
receptors on macrophages or bind soluble pattern recognition molecules that are 
recognized by macrophage receptors (Bratton and Henson  2011  ) . In the in fl ammat-
ory microenvironment, pattern recognition molecules that coat apoptotic target cells 
facilitate efferocytosis (Litvack and Palaniyar  2010  ) . For example, the lung collec-
tins SP-A and SP-D regulate in fl ammatory mediator production and efferocytosis in 
contrasting ways, depending on the signaling complexes bound and the phagocyte 
subset (Janssen et al.  2008 ; Gardai et al.  2003  ) . 

 During in fl ammation, the induction of neutrophil apoptosis and clearance of 
apoptotic neutrophils limit tissue injury and promote resolution (Fox et al.  2010 ; El 
Kebir and Filep  2010 ; Elliott and Ravichandran  2010  ) . Apoptotic neutrophils are 
generally functionally spent, and uptake of apoptotic neutrophils by macrophages 
prevents the release of toxic neutrophil contents into the tissues. Phagocytosis of 
apoptotic cells by macrophages suppresses macrophage release of pro-in fl ammatory 
mediators such as TNF a , and increases macrophage release of anti-in fl ammatory 
mediators such as IL-10 and TGF b  (Fox et al.  2010 ; El Kebir and Filep  2010 ; Elliott 
and Ravichandran  2010  ) . Neutrophil apoptosis as well as clearance of apoptotic 
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neutrophils is regulated by pro-in fl ammatory cytokines and toll-like receptor agonists. 
Pro-in fl ammatory mediators such as TNF- a , high mobility group protein-1 and toll-
like receptor agonists such as LPS, peptidoglycans, and CpG DNA can rescue 
neutrophils from apoptosis and inhibit apoptotic cell clearance in the lung (Borges 
et al.  2009 ; Liu et al.  2008 ; Michlewska et al.  2009 ; Banerjee et al.  2011  ) .  

    4.5.2   NETosis 

 NETosis was coined to describe the death of neutrophils associated with the produc-
tion of NETs, described above (Steinberg and Grinstein  2007  ) . Morphologically, 
NETosis proceeds in the following stages: initially, the nuclei lose their lobules and 
chromatin begins to decondense; then, the nuclear envelope vesiculates and  chromatin 
is decondensed, subsequently the granules disappear, and the chromatin mixes with 
cytoplasmic and granular contents, as evidenced by colocalization of elastase with 
chromatin (Fuchs et al.  2007  ) . Compared with apoptosis and necrosis, the distin-
guishing morphological features of NETosis are the mixing of nuclear and cytoplas-
mic constituents after the nuclear membrane disintegrates and the disappearance of 
internal membranes and cytoplasmic organelles (Fuchs et al.  2007  ) . In contrast to 
apoptosis, neutrophils undergoing NETosis do not exhibit chromatin condensation 
or DNA fragmentation, do not express PS on the outer surface of the cell membrane 
prior to cell rupture, and are resistant to pan-caspase inhibitor (Fuchs et al.  2007 ; 
Remijsen et al.  2011a,   b  ) . Notably, NETs may be produced without undergoing 
NETosis, as in the case of neutrophils that extrude mitochondrial DNA (Youse fi  
et al.  2009  )  or neutrophils that release chromatin in vesicles (Pilsczek et al.  2010  ) .  

    4.5.3   Necrosis 

 Primary necrosis occurs when emigrated neutrophils simply disintegrate at the site 
of in fl ammation, releasing their contents into the surrounding environment, with 
potentially deleterious effects due to the cytotoxic properties of their contents and to 
increased in fl ammation. Secondary necrosis occurs when apoptotic neutrophils are 
not taken up by scavenging phagocytes because the scavenging capacity is exceeded 
by a large number of apoptotic cells or the macrophages themselves are damaged or 
targeted by pathogens (Silva  2010a,   b  ) . Secondary necrosis may be particularly rel-
evant in the pneumonia, where accumulation of apoptotic neutrophils leads to 
increased in fl ammation without increased bacterial load (Silva  2010b ; Haslett 
 1999  ) . A pathway of programmed necrosis or necroptosis occurring via death recep-
tor signaling and requiring the kinases RIP1 or RIP3 has also been described 
(Vandenabeele et al.  2010 ; Han et al.  2011  ) . Neutrophils exposed to  Shigella  fl exneri  
underwent death by this pathway rather than apoptosis (Francois et al.  2000  ) .       
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