Chapter 5
Markov Chains with Special Structures

The previous chapter presented methods for analyzing stochastic models where
some of the distributions were other than exponential. In these cases the analysis
of the models is more complex than the analysis of Markov models. In this chapter
we introduce a methodology to extend the set of models that can be analyzed by
Markov models while the distributions can be other than exponential.

5.1 Phase Type Distributions

Combination of exponential distributions, such as convolution and probabilistic
mixtures, was used for a long time to approximate nonexponential distributions such
that the composed model remained a Markov model. The most general class
of distributions fulfilling these requirement is the set of phase-type distributions
(commonly abbreviated as PH distributions) [73, 74].

Definition 5.1. Time to absorption in a Markov chain with N transient and 1
absorbing state is phase-type distributed (cf. Fig. 5.1).

5.1.1 Continuous-Time PH Distributions

Definition 5.1 is valid for both CTMCs and DTMC:s. In this section we focus on the
case of CTMCs.

It is possible to define a PH distribution by defining the initial probability vector
p and the generator matrix Q of a Markov chain with N + 1 states. Let states of the
Markov chain be numbered so that the first N states are transient and the N + 1th is
absorbing and let X (¢) be the state of the Markov chain at time ¢. The distributions
of the time to absorption, 7', is related to the transient probabilities of the Markov
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Fig. 5.1 Markov chain with p1
five transient and an
absorbing states defines a PH

distribution

P4

chain, which can be computed from the initial probability vector and the generator
matrix as follows:

P(T <t)=PX(t) =N + 1) = peel .

where ey is the row vector whose only nonzero element the N + Ith is one.
A multiplication of a row vector with e}, results in the N + 1th element of the
TOW vector.

Analysis of PH distributions based on this expression results in technical
difficulties in more complex cases. A more convenient expression can be derived
from the partitioned generator matrix, where the set of states is divided into transient
states and an absorbing one

_|Aa
o-|7a]

where a = —A1 and 1 is a column vector whose elements equal to one. The size
of 1 is always assumed to be such that the multiplication is valid. A multiplication
of arow vector by 1 results in the sum of the elements of the row vector. A column
vector a that contains the transition rates to the absorbing state (Fig.5.1) can be
computed from A due to the fact that the row sum of Q is zero. The last row of Q
is zero because the state N + 1 is absorbing.

Matrix A is called a transient generator (or PH generator). It inherits its main
properties from matrix Q. The diagonal elements of A are negative, the nondiagonal
elements are nonnegative, and the row sums of A are nonpositive. Due to the
fact that the first N states are transient, matrix A is nonsingular, in contrast with
matrix @, which is singular because Q1 = 0.

In this book we restrict our attention to the case where a Markov chain starts from
one of the transient states with probability one. In this case, the partitioned form of
vector p is p = [a | 0]. Based on the partitioned form of p and Q, the CDF of the
PH distribution is

Frt)=P(T <t)=P(T <t) =P(X(t)=N+1)=1-P(X(t) <N + 1)

=1-[a|0]e [O]—l W"”gn[oo} [0}
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where e denotes an irrelevant matrix block. Furthermore the PDF, the Laplace
transform, and the moments of the PH distribution can be computed as

[e.]

fT(I) = %FT(I) = —%eAt]l = - ;%i—l‘ A'l
= -« i t AT Al = —a et A1 = a eta,
(i — 1)
o0 o0
fr(s) = / e fr(1)dt = a / e Sedldr a
t=0 t=0

o0
=« / eI g = o (sT — A)'a,
t=0
o0 o0
E(T") = /t”fT(t)dt =a /t”eA’dta =anl(—4A)" "a
t=0 t=0

=anl(—A)" " (—A)l =an!(—A)™"1.

The infinite integrals of the preceding derivations are computed as follows:

T

o0 Looo ;
t i
/ I g — qim [ eCSIHFD g — lim / Z — (=sI + A) dt
T—00 T—>00 . l!
1=0 1=0 r=0 =0
o it . '
= lim —sI + A)" —sI + A)~
r—>oo§(i+1)!( +4) (sl +4)

= lim (e<—”+A>f - 1) (—sI + A)"' = (sI —A)™", (5.1)

T—>00

where e(™*7+4)7 vanishes in the convergence region of 7 (s). The moments can
also be computed from the Laplace transform
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dn

dn
BT = 1 /70| = o6l -4
=(=D"a (=D)"n!(sI — A)_”_I}F()a =anl(-4)" a
=an!l(—4)™"1.

The elements of (—A)~! have an important stochastic interpretation. Let 7;; be the
time spent in state j before moving to the absorbing state when the process starts in
state i :

E(T3;) = / E (Zix)=j1x)=i}) df = / P(X() = j|X(0)=i)ds
=0 t=0
= / (), dr = /eA’dt = (™), - (5.2)
t=0 t=0 ij

Consequently, (—A )~ is nonnegative. Some characteristics of PH distributions can
be seen from these expressions. From

det(sI — A)

we have that the Laplace transform is a rational function of s where the degree
of the polynomial in the numerator is at most N — 1 and in the denominator
it is at most N, where N is the number of transient states and det(sI — A);;
denotes the subdeterminant associated with element i, j. The related properties of
PH distributions in the time domain can be obtained from the spectral decomposition
of A. Let n be the number of eigenvalues of A and A; the ith eigenvalue whose
multiplicity is ;. In this case

noni
fT(t) = eA’a = ZZaijtj_leAf’.

i=1j=1

This means that in the case of distinct eigenvalues (n = N, n;, = 1) fr(t)
is a combination of exponential functions with possibly negative coefficients,
and in the case of multiple eigenvalues fr(¢) is a combination of exponential
polynomial functions. As a consequence, as ¢ goes to infinity, the exponential
function associated with the eigenvalue with maximal real part dominates the
density, meaning that PH distributions have asymptotically exponentially decaying
tail behavior.

A wide range of positive distributions can be approximated with PH distributions
of size N. A set of PH distributions approximating different positive distributions
are depicted in Fig. 5.2. The exponentially decaying tail behavior is not visible in
the figure, but there is another significant limitation of PH distributions of size N.
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W1 - Weibull [1, 1.5] W2 - Weibull [1, 0.5] LI - Lognormal [1, 1.8]

Density Density

L2 - Lognormal [1, 0.8] L3 - Lognormal [1, 0.2] UL - Uniform [0-1]

U2 - Uniform [1-2] SE - Shifted Exponential

Fig. 5.2 Approximation of different positive distributions with N = 2,4,8 (figure copied
from [13])

Theorem 5.2 ([3]). The squared coefficient of variation of T (cv*(tr) =
E (T?) JE(T)?) satisfies

1
2 >
cv (r)_N,

and the only CPH distribution that satisfies the equality is the Erlang (N)
distribution:

Figure 5.2 shows several distributions with low coefficient of variation whose
approximation is poor due to this bound of the coefficient of variation. It is visible
that PH distributions with larger N approximate these distributions significantly
better. Theoretical results prove that as N tends to infinity, any positive distribution
can be approximated arbitrarily closely.
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5.1.2 Discrete-Time PH Distributions

The majority of the analysis steps and the properties of discrete-time PH
distributions are similar to those of continuous-time PH distributions. Using
a similar approach as for continuous-time PH distributions, the state-transition
Bb

01 ,where b = 1 — B1 and
the initial probability vector p as p = [« | 0]. B is a sub-stochastic matrix, whose
elements are nonnegative and row sums are not greater than one. The probability
that the chain moves to the absorbing state in the kth step is

probability matrix can be partitioned as P = |:

re = Pr(T = k) = aB*'b,

which defines the probability mass function (PMF) of 7. The CDF can be
obtained as

Fky=Pr(T<k)=Pr(Xe =N+1)=1-Pr(Xy <N +1)=1—aB"1,

and the z-transform or generator function of 7 is

o0
F(i) =E (ZT) = szrk =za(l —zB) 'b.
k=0
The factorial moments are

n

d
T @le=1 =ntad - B)"B"'1.
4

v =ET(T =1)...(T—n+1)) =

Like the continuous-time case the z-transform is a rational function of z

F@)=E(")=zall -B) b=z« [M} b,

det(I — zB)

and based on the spectral decomposition of B, the PMF is a combination of
geometric series. The coefficient of variation of discrete PH (DPH) distributions
is also bounded from below, but one of the most significant differences between the
continuous and discrete PH distributions is that the bound in this case also depends
on the mean of the distribution, u = E (T').

Theorem 5.3 ([92]). The squared coefficient of variation of T satisfies the
inequality

1 —
()( > () ifiL < N.
V() > (5.3)
1 1
N u ifu>N,
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where (x) denotes the fraction part of x (x = |x] 4+ (x)). For u < N, CVyyin is
provided by the mixture of two deterministic distributions. Its DPH representation is

0 0 () 1={m) 0
: : : 1 : 1 1 : 1 :

For u > N, CVyi, is provided by the discrete Erlang distribution, whose DPH
representation is

0 0
- — —
N N N
2 2 I
N L. N L_N

1
1—

5 5 B

5.1.3 Special PH Classes

The set of PH distributions with N transient states is often too complex for particular
practical applications (e.g., derivations by hand). There are special subclasses with
restricted flexibility whose application is often more convenient. The most often
used subclasses are

e Acyclic PH distributions,
* Hyper-Erlang distributions,
» Hyperexponential distributions (“parallel,” “cv > 17).

Acyclic PH Distributions

Definition 5.4. Acyclic PH distributions are PH distributions whose generator is an
upper triangular matrix.

A direct consequence of the structural property of acyclic PH distributions is that
the eigenvalues are explicitly given in the diagonal of the generator.

The practical applicability of acyclic PH distributions is due to the following
result.

Theorem 5.5 ([25]). Any acyclic PH distribution can be transformed into the
following canonical form. In the case of continuous-time acyclic PH distributions:
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in the case of discrete-time acyclic PH distributions:
al a2 an
g%plgipZ g%pn
4 4o 4y
where the transition rates and probabilities are ordered such that A; < A;41 and
Pi = Di+1.

This essential result allows one to consider only these canonical forms with 2N
parameters to represent the whole acyclic PH class with N transient states.

Hyper-Erlang Distributions

Definition 5.6. A hyper-Erlang distribution is a probabilistic mixture of Erlang
distributions.

Hyper-Erlang distributions are special acyclic PH distributions, and even fewer than
2N parameters can define them. Let ¢ be the number of Erlang branches, p; the
probability of taking branch i, and A; and n; the parameters of the i th Erlang branch.
These 3¢ parameters completely define the hyper-Erlang distribution

A’nr t}’l,—l —Ait

f) = Z L P 1T

i=1

Hyperexponential Distributions

Definition 5.7. A hyperexponential distribution is a probabilistic mixture of
exponential distributions.

Hyperexponential distributions are special hyper-Erlang distributions where the
order parameter of the Erlang distribution is one (n; = 1). The PDF of hyperex-
ponential distributions

s
f@6)y =" pidie™

i=1
is monotonically decreasing due to the fact that it is the mixture of monotonically
decreasing exponential density functions.
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5.1.4 Fitting with PH Distributions

As was mentioned in the introduction of this chapter, PH distributions are often
used to approximate experimental or exactly given but nonexponential positive
distributions in order to analyze the obtained system behavior with discrete-state
Markov chains. The engineering description of the fitting procedure is rather
straightforward: given a nonnegative distribution or a set of experimental data, find
a “similar” PH distribution, but for the practical implementation of this approach we
need to answer several underlying questions. First we formalize the problem as an
optimization problem:
PHpgll“iliIESlerS Distance(FpH (l), FOriginal(l)) s

that is, we optimize the parameters of the PH distribution such that the distance
between the original distribution and the PH distribution is minimal. The two main
technical problems are finding a proper distance measure and solving the opti-
mization problem. Several solutions to these problems have been proposed in the
literature, but there is room for further improvement. Some of the typical distance
measures are

o0
¢ Squared CDF difference: / (F(t) — ﬁ(t))zdt;
0
o0

* Density difference: / | f@) — f(2)|dt;

0

o0 t
* Relative entropy: / f@) log (fA( )> dr.

0

f@)

The optimization problems according to these distance measures are typically
nonlinear and numerically difficult. The close relation of the relative entropy
measure with commonly applied statistical parameters (likelihood) makes this
measure the most popular one in practice. It is worth mentioning that the complexity
of the optimization procedures largely depends on the number of parameters of
the PH distributions. That is why we discussed the number of parameters of the
aforementioned special PH subclasses. A few implemented fitting procedures are
available on the Internet. One fitting procedure that uses acyclic PH distributions
is PhFit [43], and one using hyper-Erlang distributions is G-fit [93]. The literature
of PH fitting is rather extended. Several other heuristic fitting approaches exist, e.g.,
combined with moment matching, that are left to the ambitions of interested readers.

5.2 Markov Arrival Process

A continuous-time Markov arrival process (MAP) is a generalization of a Poisson
process such that the interarrival times are PH distributed and can be dependent. One
of the simplest interpretations of MAPs considers a CTMC, J(¢), with N states and
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Fig. 5.3 Structure of Markov chain describing arrivals of a MAP

with generator D, which determines the arrivals in the following way. While the
Markov chain remains in state i, it generates arrivals according to a Poisson process
at rate A;. When the Markov chain experiences a state transition from state i to
J» then an arrival occurs with probability p;; and does not occur with probability
1—p;j.Based on generator D, rates A; (i = 1,..., N), and probabilities p;; (i, ] =
1,...,N,i # j), one can easily simulate the behavior of the MAP. Due to technical
convenience MAPs are most commonly defined by a pair of matrices Dy, Dy, which
are obtained from the previously introduced parameters in the following way:
Dy, = D;i(1—pij)ifi # j, D, — D;jpi;ifi # j,

T\ Di—A ifi= YT A ifi =

In this description, matrix D is associated with events that do not result in an
arrival, and matrix D is associated with events that result in arrivals. By these
definitions we have Dy + D = D.

Based on these two matrices, we can investigate the counting process of arrivals.
Let N(¢) be the number of arrivals of a MAP and J(¢) the state of the background
Markov chain at time ¢. The (N(¢), J(t)) (N(¢) e N, J(¢t) € {1,..., N}) process is
a CTMC. The transition structure of this Markov chain is depicted in Fig.5.3. The
set of states where the number of arrivals is n is commonly referred to as level n, and
the state of the background Markov chain (J(¢)) is commonly referred to as phase.

If the states are numbered in lexicographical order ((0, 1),..., (0, N),(1,1),...,
(1, N),...), then the generator matrix has the form

Dy D,
Do D
Q= Dy Dy

Do D;
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where the matrix blocks are of size N. Comparing this with the CTMC describing
the number of arrivals of the Poisson process in Eq. (3.18), we have conspic-
uous similarities: only the diagonal elements/blocks and the first subdiagonal
elements/blocks are nonzero, and the transition structure of the arrival process is
independent of the number of arrivals.

It is commonly assumed that N(0) = 0, and thus the initial probability is O for
all states (n, j) where n > 0. Let vector m( be the initial probability for states
with n = 0. The arrival instants are determined by N (¢) as follows: ®, = min(t :
N(t) = n), and the nth interarrival time is 7, = 0, — ©,_;. Based on the simple
block structure of the CTMC, we can analyze the properties of N(¢) and 7,,. For
example, the distribution of 7] is

P(Ti <) =1-P(T1 >0)=1-P(N()=0)
N

1= P(N@) =0.J(t) =) = 1 = moeP'1,
i=1

that is, 77 is PH distributed with initial vector & and generator D . For the analysis
of the nth interarrival time we introduce the phase distributions vector after the
n — lth arrivals, ,—;. The ith element of this vector is the probability that after
the n — 1th arrivals the background Markov chain is in state 7, that is, (w,—); =
P (J(®,—1) = i). Based on &,_; the distribution of 7}, is

P(T,<t)=1-P(T,>t)=1-P(N(t+0,_)=n—1)

N N
1= 2 PO =1)

i=1j=1

PINt+O,_)=n—1,Jt +0,_1) = jlJ(O,_) =i)=1—-8,_eP"1,

that is, 7, is PH distributed with initial vector m,—; and generator Dy. The =,
vectors can be computed recursively. The ith element of m; has the following
stochastic interpretation:

oo N
ATOZZP(J(nA) = j. T > nA)

n=0j=1
xP (J((nj—i—l)A) =i,nA <T) < (n+1)A)

= lim ZZ (mwePond). Dll,A—i-o(A))

A—0
—O]—l

— Z BeDO’ jide,

r=0 /=1

()i

where the first term on the right-hand side of the first row is the probability that there
is no arrival up to time nA and the background Markov chain is in state j at time
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nA, and the second term on the right-hand side of the first row is the probability that
there is an arrival between nA and (n+1)A such that the background Markov chain
is in state i at time (n+1)A. Using Eq. (5.1), we further have

o0
B, =8 / e dr Dy =B8(—Dy)"'D;. (5.4)
t=0

According to Eq. (5.4) we can compute the phase distribution after the first arrival
from the initial distribution and the phase-transition probability matrix P =
(=Dy)™'D,. P is a stochastic matrix because from (Do + D)1 = 0 we have
—Dyl = D1, from which P1 = (—Do)_lDl]l = (—Do)_l(—Do)]l =1, and
(—=Do)~! is nonnegative according to Eq. (5.2). Applying the same analysis for the
nth interval starting with initial phase distribution ,—; we have &, = x,— P.

5.2.1 Properties of Markov Arrival Processes

The basic properties of MAPs or the (N (t), J(¢)) CTMC [with level process N(¢) €
N and phase process J(¢) € {1,..., N}] are as follows.

» The phase distribution at arrival instants form a DTMC with transition probability
matrix P = (—Dg)~'D,. As a consequence, the phase distributions might be
correlated at consecutive arrivals.

e The interarrival times are PH distributed with representation (7g, D), (71, Do),
(12, Do), .... The interarrival times can be correlated due to the correlation of
the initial phases.

* The phase process (J(¢)) is a CTMC with generator D = Dy + D,, which
means that some properties of the phase process can be analyzed independent of
the level process.

* The (time) stationary phase distribution e is the solution of «D = 0, ¢l = 1.

* The (embedded) stationary phase distribution right after an arrival  is the
solutionof P = w,xl = 1.

» These stationary distributions are closely related. On the one hand, the row vector
of the mean time spent in the different phases during the stationary interarrival
interval is w(—D)~" [cf. Eq. (5.2)], from which the portion of time spent in the
phases is

_ w(=Dy)™"!
o (—D 0)_1 1
On the other hand, when the phase process is (time) stationary, the arrival
intensities resulting in different initial phases for the next interarrival period are
given by a D |, and after normalizing the result we have
oaD 1
T = .
aD 1 1
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e The stationary interarrival time (7°) is PH distributed with representation
(, Dy), and its nth moment is E (T") = n!ln(—Dy)™"1.
» The stationary arrival intensity can be computed both from « and & as follows:

(I 1
E(X) #m(=Doy) 'l

)&ZO(Dl]l:

The first equality is based on the arrival intensities in the (time) stationary phase
process. The second equality is based on the mean stationary interarrival time.

Further properties of stationary MAPs can be computed from the joint density
functions of consecutive interarrivals:

Dox Dox Doxy
fTo,Tl AAAAA Tk(xo,...,xk)zne OODle 0 1D1...e Ole]l.

This joint density function describes the probability density that the process starts
in phase i with probability s; at time 0, it does not generate an arrival until time
Xo, and an arrival occurs at x( according to the arrival intensities in D ;. This arrival
results in the second interarrival period’s starting in phase j, and so on. If the MAP
starts from a different initial phase distribution, e.g., y, then the stationary embedded
phase distribution vector m needs to be replaced by y and the same joint density
function applies. For example, we can compute the joint pdf of 7y and T} as

fTo,Tk(Xvak):/ /fT()T] ..... 7 (X0, + s Xg) dxg—1 ... dxy

X1 _

— neDox(]D]Pk_leDOXle]l,

where we used that fx ePo¥dx = (—Dg)~" according to Eq. (5.1). This expression
indicates that 7; and T} are dependent due to their dependent initial phases. It is also
visible that as k tends to infinity, this dependency vanishes according to the speed at
which the Markov chain of the initial vectors with transition probability matrix P
converges to its stationary distribution .

The lag-k correlation of a MAP can be computed based on f7;, 7, (xo. xx) as
follows:

E(ToTy) =

Il\g

o0
/ 7 we?' D, P*"1ePoT D1 dr dr

ir(—Do)_lel"k_l(—Do)_2 D1
——

—Do1

1
n(=Do) ' P*(=Dg)7'1 = T aP*(—Dy)™'1,
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since
o0 o0
/ tePdr = [t (Do)~ 'eP ] — /(DO)_l el dr
N—
t=0 0 t=0
and

)
i T 0 DL Ti+l
Dot T oo D! ; T 0
/e de —hmT—>°°Zi=0i_!°{Zld[ - TILn;oZi_'i +1
t=0 i=0

— : -1 DT _ _ (_ -1
= TlLH;O(Do) e Il =(=Do) .
-0

Based on E (7T} ) the covariance is

1 _ 1
Cov(Ty, Ty) = E(TyTy) —E(T)* = T aP(=Dyp)™'1 — v

and the coefficient of correlation is

Cov(To, T) s =1 A aP*(=Do)'1—1
Corr(Ty, Ty) = = =

E(T?)-E(I) ET) | 2ha(=Do)~'1-1"
E(T)?

Starting from the joint density function of consecutive interarrivals we compute
any joint moment for arbitrary series of interarrivals in a similar way as the lag-k
correlation. For the interarrival series ag = 0 < ay < a; < ... < a; we have

ST Tay Ty, (X0, X1, <+ Xk)

= geloop, pa—wlePoip pema-t | eDoup 1,

and from that the joint moment E (70, T0, ... T[0) is
io i i
E(T0. T, ....TY)

= migl(=Do) 0 P00, (= D) P gl (= Do) M 1.

5.2.2 Examples of Simple Markov Arrival Processes

In this section we describe some basic arrival processes with MAP notations.

* PH renewal process: Consider an arrival process whose interarrival times are
independent PH distributed with representation (&, A). This is a special MAP
characterized by Dy = A, D| = aa.
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e Interrupted Poisson process (IPP): Consider an arrival process determined by a
background CTMC with two states, ON and OFF. The transition rate from ON
to OFF is @ and from OFF to ON it is 8. There is no arrival in state OFF, and
customers arrive according to a Poisson process at rate A in state ON. The MAP
description of the process is

Doz—a—/\ o ’ Dl:)LO.
0 |- 0|0

e Markov modulated Poisson process (MMPP): Consider the arrival process
determined by a background CTMC with generator Q. While the CTMC is in
state 7, arrivals occur according to a Poisson process at rate A;. Let A be the vector
of arrival rates. This is a special MAP with representation Dy = Q — diag(A),
D = diag(A).

 Filtered MAP: Consider a MAP with representation DA(], 131. The arrivals of this
MAP are discarded with probability p. The obtained process is a MAP with
representation D = DAO + pﬁl, D, =(1- p)ﬁl.

e Cyclically filtered MAP: In the previous example, every MAP arrival is dis-
carded with probability p. Now we consider the same MAP such that only every
second arrival is discarded with probability p. It requires that we keep track of
odd and even arrivals of the original MAP. It can be done by duplicating the
phases such that the first half of them represents odd arrivals of the original MAP
and the second half of them the even arrivals of the original MAP. The obtained
process is a MAP with representation

Dy | O 0 D,

Dy = , D, = .
pD1| Dy (1-p)Dq| O

* Superposition of MAPs: Consider two MAPs with representation Dy, Dy and
Dy, D;. The superposition of their arrival processes is a MAP with

D() = DAo@ﬁo, andD1 = l’jl@ﬁl,

AuB ... A, B
where the Kronecker product is defined as 4 Q B = : * |and

AnB ... AyuB
the Kronecker sum as A B = A QI + I Q B. This example indicates
one advantage of the Dy, D; description of MAPs. Using these matrices
the description of the superposed process inherits the related property of the
Cartesian product of independent Markov chains.

* Consider an arrival process where the interarrival time is either exponentially
distributed with parameter A or with parameter A, (A; # A;). The arrivals are
correlated such that an interarrival period with parameter A, is followed by one
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with parameter A; with probability p or one with parameter A, with probability
1 — p. The interarrival periods with parameter A, follow the same behavior. The
obtained process is a MAP with

—Ail O pAr (1= p)A

Dy = , D, =
"Tlo a2 TN a=-pir| prs

Probability p has a very intuitive meaning in this model. If p — 1, then the
correlation of the consecutive interarrivals is increasing and vice versa.

5.2.3 Batch Markov Arrival Process

A batch Markov arrival process (BMAP) is an extension of MAP with batch arrivals.
It has an interpretation similar to that of a MAP.

A CTMC with generator D determines arrivals in the following way. While the
Markov chain stays in state i, arrivals of batch size k occur according to a Poisson
process at rate )Ll(k). When the Markov chain experiences a state transition from

state i to j, arrivals of batch size k occur with probability pgc) and no arrival
occurs with probability 1 — )", pi(j]»{). Generator D, rates kfk) @=1,...,N),and
probabilities pl-(j]-c) (i,j = 1,...,N,i # j) determine the stationary behavior of
BMAPs. Additionally, the initial distribution of the CTMC is needed for the analysis

of the transient behavior. A BMAP is commonly described by matrices Dy, which
are obtained from the previously introduced parameters in the following way:

1 k) e .
Dy, = | Pall =X p)ifi £

k) .o . .
ey (P01
D;i - A% ifi =, Y

A0 =

Based on this description the (N (z), J(z)) (N(¢) € N, J(t) € {1, ..., N}) process is
a CTMC with transition structure depicted in Fig. 5.4. If the states are numbered in
lexicographical order ((0, 1),...,(0,N), (1, 1),...,(1, N),...), then the generator
matrix has the form

DO 1 2 D3 D4
o | D1 | Ds| Dy
Q o| Dy | D,
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Fig. 5.4 Structure of Markov chain describing arrivals of a BMAP

To avoid complex cases it is commonly assumed that the considered BMAPs are
regular:

e The phase process (D) is irreducible.
e The mean interarrival time is positive and finite (D¢ nonsingular).
¢ The mean arrival rate, d = Z,fio kD1, is finite.

BMAP properties are similar to MAP properties. We refer the reader to [62] for
further details.

5.3 Quasi-Birth-Death Process

There are very few Markov chain structures that ensure solutions with convenient
analytical properties. One of these few Markov chain structures is the quasi-birth-
death (QBD) process.

Definition 5.8. A CTMC {N(t), J(t)} with state space {n,j} (n € N, j €
{1,...,J}) is a OBD process if transitions are restricted to modify n by at most
one and the transitions are homogeneous for different n values for n > 1, i.e., the
transition rate from {n, j} to {n’, j'} is zero if |n — n’| > 2 and the transition rate
from {n, j} to {n’, j'} equals the transition rate from {1, j} to {n’ —n + 1, j'} (cf.
Fig.5.5).

These structural descriptions are relaxed subsequently by considering various
versions of this basic regular QBD model. Similar to the case of MAPs, N(¢) is
commonly referred to as a level process (it represents, e.g., the number of customers
in a queue), and J(¢) is commonly referred to as a phase process (it represents,
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Fig. 5.5 Transition structure of QBD processes

e.g., the state of a randomly changing environment). Henceforth we assume that
the considered QBD processes are irreducible with irreducible phase processes at
the n > 1 levels (as detailed below).

Due to the structural properties of QBD processes, their state transitions can be
classified as forward (n — n + 1), local (n — n), and backward (n — n — 1). We
apply the following notations:

e Matrix F of size J x J contains the rates of the forward transitions. The i, j
element of F is the transition rate from {n,i} to{n + 1, j} (n > 0).

e Matrix L of size J x J contains the rates of the local transitions forn > 1.

e Matrix L’ of size J x J contains the rates of the local transitions for n = 0.
Level 0 is irregular because there is no backward transition from level 0.

e Matrix B of size J x J contains the rates of the backward transitions. The 7, j
element of F is the transition rate from {n + 1,7} to {n, j} (n > 0).

With these notations the structure of the generator matrix of a QBD process is

L' |F

B |L|F

The name QBD process comes from the fact that on the matrix block level the
generator matrix has a birth—death structure.
Condition of Stability

The phase process of a QBD process in the regular part (n > 1) is a CTMC with
generator matrix A = F + L + B. Let A be irreducible with stationary distribution
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a (thatis, A = 0,al = 1). The drift associated with the stationary distribution
of the regular phase process is d = a F1 — aB1. The sign of this drift indicates
whether the average tendency of the level process is increasing in the regular part.
If d < 0, then the QBD process is positive recurrent [74]. That is, the condition of
stability of QBD processes is d = a«F1 —aB1 < 0, where « is the solution of
o(F+L+B)=0,aal =1.

5.3.1 Matrix-Geometric Distribution

The stationary solution of a QBD process with generator @ is the solution of the
linear system of equations tQ = 0, xl = 1, where & is the row vector of
stationary probabilities. To utilize the regular structure of matrix Q, we partition
vector & according to the levels of the QBD process: # = {mo, w1, w2, ...}. Using
this partitioning the linear system of equations takes the following form:

.n'()L, +m B =0, (5.5)

tyF +a, L +mn,-1B=0 Vn=>1I, (5.6)
o0

 mdl=1. (5.7)
=0

Theorem 5.9. The solution of Egs. (5.5)—(5.7) in the case of a stable QBD process
is, = mwoR", where matrix R is the only solution of the quadratic matrix equation

F +RL+R’B =0,

whose eigenvalues are inside the unit disk, and vector m is the solution of a linear
system of size J

zo(L’+ RB) =0
with normalizing condition

mo(Il —R)™'1 =1.

Proof. In the case of stable irreducible CTMCs, the solution of the linear system
7#Q = 0, 1 = 1 is unique and identical with the stationary distribution of the
CTMC. In this proof we only show that &, = moR" satisfies the linear system and
do not discuss the properties of the solutions of the quadratic matrix equations. The
details of the spectral properties of the solutions are discussed, for example, in [62].
Substituting the 7, = moR" solution into Eq. (5.6) gives

moR"'F + noR"L + moR""'B = myR""'(F + RL+ R°B) =0 Vn=>1,
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which holds according to the definition of R. Due to the fact that the eigenvalues
of R are inside the unit disk, the infinite sum Z:io R" is finite, and we have
Y2 o R" = (I — R)™!. Using this and substituting the =, = moR" solution
into Egs. (5.5) and (5.7) gives

aol’ +noRB =0,

o0
Y m Rl =mo(I-R)'L =1,

n=0

which is the linear system defining . O

The stationary distribution of the form n, = moR" are commonly referred to
as matrix geometric distributions. This terminology refers also to the relation of
homogeneous birth and death processes and QBD processes since the stationary
distribution of homogeneous birth and death processes is geometric. Similar to the
relation of Poisson processes and MAPs, QBD processes can be interpreted as an
extension of birth and death processes such that their generator matrices have the
same structure on the level of matrix blocks.

An extensive literature exists that deals with the properties of QBD processes
and the efficient computation of matrix R; therefore, we present here only two
computational methods for matrix R and refer interested readers to [12] and
references therein.

Linear algorithm

R :=0;
REPEAT
R,s = R;
R:=F(-L—-RB)™";
UNTIL||R - R()ld” <€

Logarithmic algorithm

H:=F (-L)™";
K:=B(-L)";
R :=H;
T:=K;
REPEAT
Ros = R;
U := HK + KH;
H:=H*(I-U)"';
K:=K*(I-U)"";
R := R + HT;
T := KT;
UNTIL||R — R,uil| < €
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The input data of these algorithms are matrices F, L, B, and a predefined
accuracy parameter €. The main differences between the algorithms are that the
linear algorithm has a simpler iteration step and is more sensitive to drift d. When
the drift is close to 0, the linear algorithm performs a huge number of iterations. The
properties of the logarithmic algorithm are different. It has a more complex iteration
step, but the number of iterations is tolerable also for drift values close to 0.

The following sections present different QBD variants whose stationary distribu-
tions are different variants of the matrix geometric distribution.

5.3.2 Quasi-Birth-and-Death Process with Irregular Level ()

Many practical examples exist where the system has a regular behavior when it is in
normal operation mode in some sense, but it has a different behavior (e.g., a different
state transition structure or rates or even a different number of phases) when it is idle
in some sense. Additionally, any CTMC that exhibits a regular QBD structure from
a given point on can be considered a QBD process with irregular level 0, where level
0 is defined such that it contains the whole irregular part of the state space.

In general, a QBD process with irregular level O has the following block structure

L' | F'
B'|L|F
Q- B|L|F
B| L | F
where the sizes of the blocks are identical for levels 1,2, ..., but the sizes of the

blocks at level 0 can be different from the regular block size. If J is the regular
block size and J, the block size at level 0, then matrices F, L, and B are of size
J x J, matrix F’ is of size Jy x J, matrix L’ is of size Jy x Jy, and matrix B’ is of
size J x Jy.

In this case, the partitioned form of the linear system z Q = 0, x1l = 1 is

]t()L’—i-.n'lB, =0, (5.8)
IZQF,—‘r.n'lL—i-HzB =0, 5.9)
ty F +a, L +m,-1B=0 Vn>2, (5.10)

o0
Y omd=1. (5.11)
n=0
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Theorem 5.10. The solution of Egs. (5.8)-(5.11) in the case of a stable QBD
process is wy and &, = ]th"_l (n > 1), where matrix R is the only solution
of the quadratic matrix equation

F+RL+R*B=0

whose eigenvalues are inside the unit disk and vectors m, | come from the solution
of the linear system of size Jo + J

a0l + ;B =0,
moF" +n(L"+ RB) =0,
with normalizing condition
mol + (I —R)™'1 = 1.

Proof. The proof follows the same pattern as that of Theorem 5.9. Substituting
the matrix-geometric solution into the partitioned form of the stationary equations
indicates that the solution satisfies the stationary equations. O

The linear system for x( and & can be rewritten into the matrix form

L'l F
[0l 1] =[0]0].
B'|L + RB

5.3.3 Finite Quasi-Birth-and-Death Process

Another frequently applied variant of QBD processes is the case where the level
process has an upper limit. When the upper limit is at level m, the generator matrix
takes the form

L' |F
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and the partitioned form of the stationary equation is

]t()L’—i-.n'lB =0, (5.12)
tyF +a,L+n,-1B=0 1<n<m-—1, (5.13)
Tm F + 7L =0, (5.14)
m
Y ml=1. (5.15)
n=0

Theorem 5.11. The solution of Egs. (5.12)—~(5.15) in the case of a finite QBD
process with d < 0is &, = aR" + BS"™" (0 < n < m), where matrix R is
the only solution of the quadratic matrix equation

F+RL+RB=0

whose eigenvalues are inside the open unit disk, matrix S is the only solution of the
quadratic matrix equation

B+SL+S* =0

whose eigenvalues are on the closed unit disk, and vectors a and B are the solution
of the size 2J linear system

«(L’+RB)+BS"'(SL"+ B) =0,

«R""(F+RL")+B(SF+L") =0,

with normalizing condition

oczm:R”]l—i—ﬂZm:S”]l =1.
n=0 n=0

Proof. The proof follows the same pattern as that of Theorem 5.9. Substituting
the solution into the partitioned form of the stationary equations indicates that the
solution satisfies the stationary equations. O

The matrix form of the linear system for & and B is

L' + RB R"'(F+RL")

[@|B] . =[o]o0].
S™ ' (SL' + B) SF + L
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Matrix S can be computed by the same linear or logarithmic procedures as
matrix R. If the drift is positive (d > 0) in a finite QBD process, then the numbering
of the levels needs to be inverted (0 — m,1 - m —1,...,m — 0), and we obtain
a new finite QBD process whose drift is negative. It is worth mentioning that due to
the fact that d < 0, matrix S has an eigenvalue on the unit circle, and consequently
3>, S" does not converge. Fortunately, this does not affect the applicability of
Theorem 5.11 because we need to compute only the finite sum Y ', S”.

5.4 Exercises

Exercise 5.1. X and Y are independent continuous-time PH distributed random
variables with representations (e, A) and (B, B), respectively. Define the distribu-
tion of the following random variables:

c Zi=aX;

e Z, equals X with probability p and to ¥ with probability 1 — p;
s Zz=cX +aY;

e Zy=Min(X,Y);

* Zs =Max(X,Y).

Exercise 5.2. X and Y are independent discrete-time PH distributed random vari-
ables with representations (&, A) and (B, B), respectively. Define the distribution
of the following random variables:

c Zi=aX;

e Z, equals to X with probability p and to Y with probability 1 — p;
s Zz=cX +Y;

e Zy=Min(X,Y);

* Zs =Max(X,Y).

Exercise 5.3. There are two machines, A and B, at a production site. Their
failure times are exponentially distributed with parameters A 4 and A g, respectively.
Their repair times are also exponentially distributed with parameters (4 and wp,
respectively. A lone repairman can work on only one machine at a time. At a given
time, both machines work. Compute the distribution and the moments of the time to
the first complete breakdown when both machines fail.
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