
Chapter 4
Renewal and Regenerative Processes

4.1 Basic Theory of Renewal Processes

Let fN.t/; t � 0g be a nonnegative-integer-valued stochastic process that counts
the occurrences of a given event. That is, N.t/ is the number of events in the time
interval Œ0; t/. For example,N.t/ can be the number of bulb replacements in a lamp
that is continuously on, and the dead bulbs are immediately replaced (Fig. 4.1).

Let 0 � t1 � t2 � : : : be the times of the occurrences of consecutive events and
t0 D 0 and Ti D ti � ti�1, i D 1; 2; 3; : : : be the time intervals between consecutive
events.

Definition 4.1. t1 � t2 � : : : is a renewal process if the time intervals between
consecutive events Ti D ti � ti�1, i D 2; 3; : : :, are independent and identically
distributed (i.i.d.) random variables with CDF

F.x/ D P .Tk � x/; k D 1; 2; : : : :

The nth event time, tn; n D 1; 2; : : :, is referred to as the nth renewal point
or renewal time. According to the definition, the first time interval might have a
different distribution.

We assume that F.0/ D 0 and F.C0/ D P .Tk D 0/ < 1. In this case

t0 D 0; tn D T1 C : : :C Tn; n D 1; 2; : : : ;

N.0/ D 0; N.t/ D supfn W tn � t; n � 0g D
1X

iD1
Ifti�tg; t > 0:

Remark 4.2. fN.t/; t � 0g and ftn; n � 1g mutually and univocally determine
each other because for arbitrary t � 0 and k � 1 we have

N.t/ � k , tk � t:
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N(t)Fig. 4.1 Renewal process

Definition 4.3. When P .Tk � x/ D F.x/; k D 2; 3; : : :, but F1.x/ D
P .T1 � x/ 6� F.x/, the process is referred to as a delayed renewal process.

Remark 4.4. T1; T2; : : : are i.i.d. random variables and from tn D T1C : : :CTn, and
we can compute the distribution of the time of the nth event F .n/.x/ D P .tn � x/

using the convolution formula

F .n/.x/ D
1Z

0

F .n�1/.x � y/dF.y/ D
xZ

0

F .n�1/.x � y/dF.y/; n � 2; x � 0;

F .n/.x/ � 0; if x � 0 and n � 1:

Starting from F .1/.x/ D F1.x/ the same formula applies in the delayed case.

Definition 4.5. The functionH.t/ D E .N.t//; t � 0, is referred to as a renewal
function.

One of the main goals of renewal theory is the analysis of the renewal function
H.t/ and the description of its asymptotic behavior. Below we discuss the related
results for regular renewal processes. The properties of delayed renewal processes
are similar, and we do not provide details on them here. We will show that the law of
large numbers and the central limit theorem hold for the renewal process (see also
Ch. 5. in [48]).

Theorem 4.6. If fTn; n D 1; 2; : : :g is a series of nonnegative i.i.d. random
variables and P .T1 D 0/ < 1, then there exists �0 > 0 such that for all 0 < � < �0
and t � 0

E
�
e�N.t/

�
< 1

holds.

Proof (Proof 1 of Theorem 4.6). From the Markov inequality (Theorem 1.35)
we have

E
�
e�N.t/

� D
1X

kD0
e�kP .N.t/ D k/ �

1X

kD0
e�kP .N.t/ � k/

D
1X

kD0
e�kP .tk � t/ �

1X

kD0
e�ket�k� D et .1 � e�.���//�1;
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where � < �0 D �, � D log 1
h

, and h D E
�
e�T1�. Additionally, h < 1 because

F.0/ D 0 and P .T1 D 0/ < 1. ut
Proof (Proof 2 of Theorem 4.6). According to the condition of the theorem,
there exist � and ı positive numbers such that P .Tk � ı/ > �. Introducing
fT 0

k D ıIfTk�ıg; k D 1; 2; : : :g (where T 0
n; n D 1; 2; : : :, is a series of i.i.d.

random variables) and the related fN 0.t/; t � 0g renewal process we have that
P
�
T 0
k � Tk

� D 1; k � 1, and consequently P .N 0.t/ � N.t// D 1; t � 0.
The distribution of N 0.t/ is negative binomial with the parameter p D P

�
T 0
k � ı

�

and order r D bt=ıc,

P
�
N 0.t/ D k C r

� D
 
k C r � 1
r � 1

!
pr.1 � p/k; k D 0; 1; 2; : : : ;

from which the statement of the theorem follows. ut
Corollary 4.7. All moments of N.t/ .t � 0/ are finite, and the renewal function
H.t/ is also finite for all t � 0.

Proof. The corollary comes from Theorem 4.6 and the inequality xn � nŠex;
n � 1; x � 0. ut

Before conducting an analysis of the renewal function we recall some properties
of convolution.

Let A.t/ and B.t/ be monotonically nondecreasing right-continuous functions
such that A.0/ D B.0/ D 0.

Definition 4.8. The convolution of A.t/ and B.t/ [denoted by A � B.t/] is

A � B.t/ D
tZ

0

B.t � y/dA.y/; t � 0:

Lemma 4.9. A � B.t/ D B � A.t/.

Proof. From B.0/ D 0 we have B.t � y/ D
t�yR

0

dB.s/, and consequently

A � B.t/ D
tZ

0

8
<

:

t�yZ

0

dB.s/

9
=

; dA.y/ D
tZ

0

tZ

0

Ifs<t�ygdA.y/dB.s/

D
tZ

0

tZ

0

Ify<t�sgdA.y/dB.s/ D
tZ

0

8
<

:

t�sZ

0

dA.y/

9
=

; dB.s/

D B � A.t/:
ut
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Remark 4.10. The definition of the renewal functionH.t/

H.t/ D E .N.t// D E

 1X

iD1
Ifti�tg

!
D

1X

iD1
P .T1 C : : :C Ti � t/

immediately determines the relation between the renewal function and the order k
of the convolutions of the event time distribution

H.t/ D
1X

kD1
F .k/.t/:

Theorem 4.11. If fTn; n D 1; 2; : : :g is a series of i.i.d. random variables and
P .T1 < 0/ D 0; P .T1 D 0/ < 1, then H.t/ satisfies the renewal equation

H.t/ D F.t/C
tZ

0

H.t � y/dF.y/; t � 0:

Proof. According to Remarks 4.4 and 4.10, the renewal function can be written as

H.t/ D F .1/.t/C
1X

kD1

tZ

0

F .k/.t � y/dF.y/

D F.t/C
tZ

0

 1X

kD1
F .k/.t � y/

!
dF.y/

D F.t/C
tZ

0

H.t � y/dF.y/ ;

where the order of the summation and the integration are interchanged based on
Corollary 4.7. ut

In the case of a delayed renewal process, the renewal function is denoted
by H1.t/, and the same composition holds as for the regular renewal process
(Remark 4.10)

H1.t/ D
1X

kD1
F .k/.t/; t � 0; .F .k/.t/ D P .tk � t//;

but in this case F1 6� F .
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Theorem 4.12. The renewal function can be written in the following forms:

H1.t/ D F1.t/CH1 � F.t/ D F1.t/C F �H1.t/;

H1.t/ D F1.t/CH � F1.t/ D F1.t/C F1 �H.t/;
H.t/ D F.t/CH � F.t/ D F.t/C F �H.t/:

Renewal Equations

Definition 4.13. An integral equation of the type

A.t/ D a.t/C
tZ

0

A.t � x/dF.x/; t � 0;

where a.t/ and F.t/ are known functions and A.t/ is unknown, is referred to as a
renewal equation (see also Theorem 4.1 of Ch. 5. in [48]).

Theorem 4.14. If a.t/; t � 0, is a bounded real function that is Riemann–Stieltjes
integrable according to H.t/ over any finite interval, then there uniquely exists the
functionA.t/; t � 0, which is finite over any finite interval and satisfies the renewal
equation

.i/ A.t/ D a.t/C
tZ

0

A.t � x/dF.x/; t � 0;

and furthermore it satisfies

.ii/ A.t/ D a.t/C
tZ

0

a.t � x/dH.x/; t � 0;

where H.t/ D
1P
kD1

F .k/.t/; t � 0, is the renewal function.

Proof. First we show that the function A.t/, t � 0, defined by equation (ii), is (a)
bounded on the Œ0; T � interval for all T > 0 and (b) satisfies (i). Next we prove that
(c) all solutions of (i) that are bounded on Œ0; T � can be given in form (ii), i.e., the
solution is unique.
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(a) Since a.t/ is bounded and H.t/ is monotonically nondecreasing, we have

sup
0�t�T

jA.t/j � sup
0�t�T

ja.t/j C
TZ

0

Œ sup
0�y�T

ja.y/jdH.x/

� sup
0�t�T

ja.t/j.1CH.T // < 1:

(b) Furthermore, we have

A.t/ D a.t/CH � a.t/ D a.t/C
 1X

kD1
F .k/

!
� a.t/

D a.t/C F � a.t/C
 1X

kD2
F .k/

!
� a.t/

D a.t/C F � Œa.t/C
 1X

kD1
F .k/

!
� a.t/�

D a.t/C F � A.t/:
(c) We prove this by successive approximation. According to equation (i), A D

aC F � A. Substituting this into (i) we have

A D a.t/C F � .a C F � A/ D aC F � a C F � .F � A/
D aC F � a C F .2/ � A:

Continuously substituting equation (i) we obtain for n � 1 that

A D aC F � aC F .2/ � .aC F �A/ D : : : D aC
n�1X

kD1
.F .k/ � a/C F .n/ �A:

Since A.t/ is bounded on every finite interval according to (a), F .n/.0�/ D 0;

F .n/.y/ is monotonically nondecreasing, and F .n/.t/ ! 0; n ! 1, for all
fixed t , we have that for a fixed t

jF .n/�A.t/j D
ˇ̌
ˇ̌
ˇ̌

tZ

0

A.t � y/dF .n/.y/

ˇ̌
ˇ̌
ˇ̌� sup

0�y�t
jA.t�y/jF .n/.t/ ! 0; n ! 1:

From the fact that a.t/ is bounded it follows that

lim
n!1

 
n�1X

kD1
F .k/

!
� a.t/ D

 1X

kD1
F .k/

!
� a.t/ D H � a.t/;
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and consequently

A.t/ D a.t/C lim
n!1

" 
n�1X

kD1
F .k/

!
� a.t/C F .n/A.t/

#
D a.t/CH � a.t/:

This means that if A is a bounded solution of (i), then it is identical with (ii).

ut

Analysis of the Renewal Function

One of the main goals of the renewal theorem is the analysis of the renewal function.
According to Theorem 4.12, in the case of delayed renewal processes the renewal
function H1.t/ can be obtained from F1.t/ and H.t/. In the rest of this section we
focus on the analysis of the renewal function of an ordinary renewal process, H.t/,
that is, Fk D F; k � 1. During the subsequent analysis we assume that F.t/ is
such that F.0�/ D 0 and F.0C/ < 1.

Theorem 4.15 (Elementary renewal theorem). There exists the limit

lim
t!1

H.t/

t
D 1

E .T1/
;

and it is 0 if E .T1/ D 1.

Definition 4.16. The random variable X has a lattice distribution if there exists
d > 0 and r 2 R such that the random variable 1

d
.X � r/ is distributed on the

integer numbers, that is, P
�
1
d
.X � r/ 2 Z

� D 1. The largest d with that property is
referred to as the step size of the distribution.

Remark 4.17. If X has a lattice distribution with step size d , then

d D minfs W j .2�=s/j D 1g;

where  .u/ D E
�
eiuX

�
; u 2 R, denotes the characteristic function of X . In this

case, j .u/j < 1 if 0 < juj < 2�=d . If the distribution of X is not lattice, then
j .u/j < 1 if u ¤ 0.

Theorem 4.18 (Blackwell’s theorem). If F.t/ is a lattice distribution with step
size d , then

lim
n!1 qn D d

E .T1/
;
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where qn D H.nd/�H..n� 1/d/. If F.t/ is not a lattice distribution, then for all
h > 0

lim
t!1.H.t C h/�H.t// D h

E .T1/

holds.

The following theorems require the introduction of direct Riemann integrability,
which is more strict than Riemann integrability.

Let g be a nonnegative function on the interval Œ0;1/ and

s.ı/ D ı

1X

nD1
inffg.x/ W .n� 1/ı � x � nıg;

S.ı/ D ı

1X

nD1
supfg.x/ W .n � 1/ı � x � nıg:

Definition 4.19. The function g is directly Riemann integrable if s.ı/ and S.ı/ are
finite for all ı > 0 and

lim
ı!0

ŒS.ı/� s.ı/� D 0:

Remark 4.20. If the function g is directly Riemann integrable, then g is bounded,
and the limit of s.ı/ and S.ı/ at ı ! 0 is equal to the infinite Riemann integral,
that is,

lim
ı!0

s.ı/ D lim
ı!0

S.ı/ D
1Z

0

g.x/dx D lim
y!1

yZ

0

g.x/dx:

Sufficient and necessary conditions for direct Riemann integrability:

(a) There exists ı > 0 such that S.ı/ < 1.
(b) g is almost everywhere continuous along the real axes according to the

Lebesgue measure (that is, equivalent to Riemann integrability on every finite
interval).

Sufficient conditions for direct Riemann integrability:
g is bounded and has a countable number of discontinuities, and at least either

condition (a) or (b) holds:

(a) g equals 0 apart from a finite interval.

(b) g is monotonically decreasing and
1R

0

g.x/dx < 1.

Theorem 4.21 (Smith’s renewal theorem). If g.x/ � 0, x � 0, is a nonincreasing
directly Riemann integrable function on the interval Œ0;1/, then for t ! 1 one of
the following identities holds:
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(a) If F is a nonlattice distribution, then

lim
t!1H � g.t/ D lim

t!1

tZ

0

g.t � u/dH.u/ D 1

E .T1/

1Z

0

g.u/du:

(b) If F is a lattice distribution with step size d , then

lim
n!1H�g.xCnd/ D lim

n!1

xCndZ

0

g.xCnd�u/dH.u/ D d

E .T1/

1X

kD0
g.xCkd/:

Remark 4.22. Blackwell’s theorem (Theorem 4.18) follows from Smith’s renewal
theorem (Theorem 4.21) assuming that g.u/ D If0<u�hg. The reverse direction is an
implicit consequence of the proof of Blackwell’s theorem provided by Feller in [31].

Before proving Theorem 4.21 we collect some simple properties of the renewal
functionH.t/.

Lemma 4.23. H is monotonically nondecreasing and continuous from the right.

Proof. F .k/.t/ is monotonically nondecreasing and continuous from the right for all
k � 1, and the series

P1
kD1 F .k/.t/ is uniformly convergent on every finite interval,

from which the lemma follows. ut
Lemma 4.24. The functionH is subadditive, that is,

H.t C h/ � H.t/CH.h/ (4.1)

for t; h � 0.

Proof. Since H.0/ D 0, it is enough to consider the case where t; h > 0. Let
n.t/ D inffn W tn � t; n � 0g. If tn � t for all n � 0, then let n.t/ D 1. This case
can occur only on a set with measure 0.

Due to the fact that P .T1 D 0/ might be positive, the relation of n.t/ and N.t/
is not deterministic. It holds that n.t/ � N.t/C 1 and the right continuity of N.t/
implies N.tn.t// D N.t/; t � 0. Using that we have

N.t C h/ �N.t/ D N.t C h/ �N.tn.t// � N.tn.t/ C h/�N.tn.t//;

and using the total probability theorem, we obtain

E .N.t C h/ �N.t// � E
�
N.tn.t/ C h/�N.tn.t//

�

D
1X

kD1
E
�
N.tn.t/ C h/�N.tn.t//jn.t/ D k

�
P .n.t/ D k/

D
1X

kD1
E .N.tk C h/�N.tk/jn.t/ D k/P .n.t/ D k/:
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Since tk is a renewal point, the conditional expected value in the last summation
does not depend on the condition

E .N.tk C h/ �N.tk/jn.t/ D k/ D E .N.h/�N.0// D E .N.h//;

and in this way we have

E .N.t C h/ �N.t// �
1X

kD1
E .N.h//P .n.t/ D k/

D E .N.h//
1X

kD1
P .n.t/ D k/ D E .N.h//;

from which the lemma follows. ut
Lemma 4.25. For the renewal functionH the following inequality holds:

H.t/ � H.1/.1C t/; t � 0: (4.2)

Proof. From the previous statement and the monotonicity of H

H.t/ � H.btc C 1/ � H.1/CH.btc/ � H.1/C .H.1/CH.btc � 1// �
� : : : � H.1/C btcH.1/ � H.1/C tH.1/ D H.1/.1C t/:

ut
Remark 4.26. The nonnegative subadditive functions can be estimated from the
preceding expression by a linear function.

Lemma 4.27. For arbitrary � > 0 the Laplace–Stieltjes transform H�.�/ DR1
0

e��tdH.t/, � � 0, of the functionH can be represented in the Laplace–Stieltjes
transform as

H�.�/ D .1 � '�.�//�1;

where '�.�/ D E
�
e��T1� is the Laplace–Stieltjes transform of the distribution

function F .

Proof. For � > 0 there obviously exists H�.�/ since, according to Eqs. (1.3)
and (4.2),

H�.�/ D �

1Z

0

e��tH.t/dt � �H.1/

1Z

0

e��t .1C t/dt < 1:

It is clear that

1Z

0

e��tdN.t/ D
1X

kD0
e��tk D 1C

1X

kD1

kY

iD1
e��Ti :
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Using this equality we obtain

E

0

@
1Z

0

e��tdN.t/

1

A D E

0

@�
1Z

0

N.t/e��tdt

1

A

D �

1Z

0

H.t/e��tdt D
1Z

0

e��tdH.t/ D .h.�/ D/

D E

 
1C

1X

kD1

kY

iD1
e��Ti

!
D 1C

1X

kD1
.'.�//k D 1

1 � '.�/ ;

where 0 < '.�/ < 1 if � > 0. ut
Proof of Elementary Renewal Theorem. First we prove that the limit exists. If t � 1,
then we have that 0 � H.t/

t
� 1Ct

t
H.1/ � 2H.1/ is bounded. Let c D inf

t�1
H.t/

t
.

Then for arbitrary � > 0 there exists a number t0 > 0 such that

H.t0/

t0
< c C �:

Moreover, for all integers k � 1 and � � 0

H.kt0 C �/

kt0 C �
� kH.t0/CH.�/

kt0
� c C � C H.�/

kt0
;

and consequently

lim sup
t!1

H.t/

t
� c C �;

and

c � lim inf
t!1

H.t/

t
� lim sup

t!1
H.t/

t
� c

follows. We have proved the existence of the limit.
Using the preceding expression for the Laplace–Stieltjes transform h.�/,

1Z

0

e��tH.t/dt D 1

�

1Z

0

e��tdH.t/ D 1

�
h.�/ D 1

�

1

1 � '.�/ ;

and we obtain

�

1 � '.�/
D �2

1Z

0

e��tH.t/dt D
1Z

0

e�t �H
�
t

�

�
dt: (4.3)
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By means of the relation for the derivative of the Laplace–Stieltjes transform

lim
�!C0

�

1 � '.�/ D lim
�!C0

�
E
�
1 � e��T1

�

���1
D
(
0; if E .T1/ D 1;
1

E.T1/
; if E .T1/ < 1:

On the other hand, in the case 0 < � � 1, we can give a uniform upper estimation
for the integrand in Eq. (4.3):

e�t �H
�
t

�

�
� e�t �

�
1C t

�

�
H.1/ � e�t .1C t/H.1/I

furthermore,

lim
�!C0 �H

�
t

�

�
D t lim

�!C0
H
�
t
�

�

t
�

D tc;

so from the Lebesgue majorated convergence theorem

lim
�!C0

1Z

0

e�t �H
�
t

�

�
dt D

1Z

0

e�t ctdt D c:

Summing up the previous results we obtain

c D lim
�!C0

�

1 � '.�/
D
(
0 if E .T1/ D 1;
1

E.T1/
if E .T1/ < 1:

ut

4.1.1 Limit Theorems for Renewal Processes

Theorem 4.28. Let 0 < E .T1/ D 	 < 1; then the following stochastic
convergence holds:

N.t/

t

P! 1

	
; t ! 1:

Proof. The proof of Theorem 4.28 is based on the relation

fN.t/ > kg D ftk � tg

from Comment 4.2. Let us estimate the probability P .jN.t/=t � 1=	j > �/ for
arbitrary � > 0. Let n D n.t/ D bt=	C �tc; then
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P
�
N.t/

t
� 1

	
> �

�
D P

�
N.t/ >

t

	
C �t

�
� P .N.t/ > n/

D P .tn � t/ D P
�
tn

n
� t

bt=	C �tc
�

� P
�
tn

n
� t

t=	C �t � 1

�

D P
�
tn

n
� 1

1=	C � � 1=t

�

� P
�
tn

n
� 	

1C 	�=2

�
if t � 2=�;

which by Bernoulli’s law of large numbers tends to 0 for the sequence tn,
n D 1; 2; : : :, as t ! 1. The probability P .N.t/=t � 1=	 < ��/ is estimated in
a similar way. ut
Remark 4.29. By the strong law of large numbers, tk

k
! 	, k ! 1, with

probability 1. Using this fact one can prove that with probability 1

N.t/

t
! 1

	
; t ! 1:

The convergence with probability 1 remains valid for delayed renewal processes if
the first time interval is finite with probability 1.

Theorem 4.30. If E .T1/ D 	 > 0; D2 .T1/ D 
2 < 1, then as t ! 1

lim
t!1 P

 
N.t/� t=	p
t
2=	3

� x

!
D ˆ.x/ D 1p

2�

xZ

�1
e�u2=2du:

Proof. Let x be a real number and denote

r.t/ D bt=	C x
p
t
2=	3c:

Note that r.t/ � 1 if
p
t C x
=

p
	�	=pt � 0. Since r.t/ ! 1 as t ! 1, then

from the central limit theorem it follows that for all x 2 R

P

 
tr.t/ � 	r.t/



p
r.t/

� x

!
! ˆ.x/ D 1p

2�

xZ

�1
e�u2=2du; t ! 1: (4.4)
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Using the relation fN.t/ � r.t/g D ftr.t/ > tg we have

P

 
N.t/� t=	p
t
2=	3

� x

!
D P

�
N.t/ � t=	C x

p
t
2=	3

�

D P .N.t/ � r.t// D P
�
tr.t/ > t

�

D P

 
tr.t/ � 	r.t/


p
r.t/

>
t � 	r.t/



p
r.t/

!

D 1 � P

 
tr.t/ � 	r.t/


p
r.t/

� t � 	r.t/



p
r.t/

!
:

It can be easily checked that

t � 	r.t/


p
r.t/

! �x; t ! 1;

and the continuity of the standard normal distribution function implies the
convergence

P

 
N.t/� t=	p
t
2=	3

� x

!
! 1 �ˆ.�x/ D ˆ.x/; t ! 1:

The equation 1�ˆ.�x/ D ˆ.x/ follows from the symmetry of the standard normal
distribution. ut

The following results (without proof) concerning the mean value and variance of
the renewal process N.t/ are a generalization of previous results and are valid for
the renewal processes with delay, too.

Theorem 4.31. If 	2 D E
�
T 21
�
< 1 and T1 has a nonlattice distribution, then as

t ! 1 [31, XIII-12�]

E .N.t// � t

	
D H.t/ � t

	
! 	2

2	2
� 1;

D2 .N.t// D 	2 � 	2
	3

t C o.t/:

If, additionally, 	3 D E
�
T 31
�
< 1, then [31]

D2 .N.t// D 	2 � 	2

	3
t C

�
5	22
4	4

� 2	3

3	3
� 	2

2	2

�
C o .1/:
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4.2 Regenerative Processes

Many queueing systems can be described by means of regenerative processes. This
property makes it possible to prove the limit and stability theorems in order to use
the method of simulation.

Definition 4.32. Let T be a nonnegative random variable and Z.t/; t 2 Œ0; T / be
a stochastic process. The pair .T;Z.t//, taking on values in the measurable space
.Z;B/, is called a cycle of length T .

Definition 4.33. The stochastic process Z.t/, t � 0, taking on values in the
measurable space .Z;B/, is called a regenerative process with moments of
regeneration t0 D 0 < t1 < t2 < : : : if there exists a sequence of independent
cycles .Tk;Zk.t//; k � 1, such that

(1) Tk D tk � tk�1; k � 1;
(2) P .Tk > 0/ D 1; P .Tk < 1/ D 1;
(3) All cycles are stochastically equivalent.
(4) Z.t/ D Zk.t � tk�1/ if t 2 Œtk�1; tk/; k � 1.

Definition 4.34. If property (3) is fulfilled only starting with the second cycle
(analogously to the renewal processes), then we have a delayed regenerative
process.

Remark 4.35. tk; k � 1, is a renewal process.

In the case of regenerative processes, an important task is to find conditions assuring
the existence and possibility of determining the limit

lim
t!1 P .Z.t/ 2 B/; B 2 B:

It is also important to estimate the rate of convergence (especially upon examination
of the stability problems of queueing systems and simulation procedures).

Let fZ.t/; t � 0g be a regenerative process taking on values in the measurable
space .Z;B/ with regeneration points t0 D 0 < t1 < t2 < : : :, Tn D tn � tn�1; n D
1; 2; : : :. Assume that Z.t/ is right continuous and there exists a limit from the left.
Then the cycles fTn; fZ.tn�1 C u/ W 0 � u < Tngg; n D 1; 2; : : :, are independent
and stochastically equivalent; ftn; n � 1g; and the corresponding counting process
fN.t/; t � 0g is a renewal process. Let F denote the common distribution of
random variables fTn; n � 1g.

The most important application of Smith’s theorem is the determination of limit
values limt!1 E .W.t// for the renewal and regenerative processes, whereW.t/ D
‰.t;N;Z/ is the function of t , the renewal processN , and the regenerative process
Z. The determination of the limit value is based on a more general theorem.
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Theorem 4.36. Let fV.t/; t � 0g be a real-valued stochastic process on the same
probability space as the process fN.t/; t � 0g, and for which the mean value
f .t/ D E .V .t// is bounded on each finite interval. Let

g.t/ D E
�
V.t/IfT1>tg

�C
tZ

0

ŒE .V .t/jT1 D s/� E .V .t � s//� dF.s/; t � 0:

Assume that the positive and negative parts of g are directly Riemann integrable.
If F is a nonlattice distribution, then

lim
t!1f .t/ D lim

t!1 E .V .t// D 1

	

1Z

0

g.x/dx:

A similar result is valid if F is a lattice distribution.

Remark 4.37. In the theorem, the property of direct Riemann integrability was
required separately for the positive and negative parts of the function g. The reason
is that the property is defined only for nonnegative functions.

Proof. It is clear that

f .t/ D E
�
V.t/IfT1>tg

�C E
�
V.t/IfT1�tg

�

D E
�
V.t/IfT1>tg

�C
tZ

0

E .V .t/jT1 D s/dF.s/:

Let us add and subtract F � f .t/; then we get the renewal equation

f D g C F � f:
The solution of the equation is f .t/ D g C H � g.t/, which because of the
convergence g.t/ ! 0; t ! 1, and the elementary renewal theorem as a simple
consequence of direct Riemann integrability tends to 1

	

R1
0
g.x/dx as t ! 1. ut

Remark 4.38. From the proof it is clear that under the condition of Theorem 4.36
for an arbitrary process V.t/ there exists the representation E .V .t// D H � g.t/
and for the existence of the limit the direct Riemann integrability is required. This
representation is interesting if V.t/ depends on Z.t/.

Special Case Let h W Z ! R be a measurable function for which, for all t ,
E .jh.Z.t//j/ < 1. Z.t/ is a regenerative process, and the part starting with the
second cycle is independent of the first cycle of length T1, so for arbitrary 0 < s < t

E ..h.Z.t//jT1 D s// D E .h.Z.t � s///:
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Using the previous notation

g.t/ D E
�
h.Z.t//IfT1>tg

�
:

Theorem 4.39. If gC and g� are directly Riemann integrable, then

lim
t!1 E .h.Z.t/// D 	�1

1Z

0

g.s/ ds

D 	�1
1Z

0

E
�
h.Z.s/IfT1>sg

�
ds

D 	�1E

0

@
T1Z

0

h.Z.s//

1

A ds:

For arbitrary A 2 B the following equality holds:

lim
t!1 P .Z.t/ 2 A/ D 	�1

1Z

0

P .Z.s/ 2 A; T1 > s/ ds

D 	�1E

0

@
T1Z

0

IfZ.s/2Ag ds

1

A:

Proof. The first relation follows from the previous theorem, and for the second
one it is necessary to mention that, since the trajectories of Z are right continuous
and have left limits, the (integrable, bounded) function P .Z.s/ 2 A; T1 > s/ has
a countable number of discontinuities and, consequently, is directly Riemann
integrable. ut

We give one more limit theorem (without proof) that is often useful in practice.

Theorem 4.40. Let F be a nonlattice distribution, and let at least one of the
following conditions be fulfilled:

(a) P .Z.t/ 2 A/ is Riemann integrable on an arbitrary finite interval, and 	 DR1
0
x dF.x/ < 1 holds.

(b) Starting with a certain integer n � 1 the distribution functions defined by
F .1/ D F; F .nC1/ D F .n/ � F , are absolute continuous and 	 DR1
0
x dF.x/ < 1.
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Then the following relation holds:

lim
t!1 P .Z.t/ 2 A/ D 	�1

1Z

0

P .Z.s/ 2 A; T1 > s/ ds

D 	�1E

0

@
T1Z

0

IfZ.s/2Ag ds

1

A:

Example 4.41. Let us consider the renewal process fN.t/; t � 0g; the renewal
moments are

t0 D 0; tn D T1 C T2 C : : :C Tn; n � 1;

and, furthermore, P .Tk � x/ D F.x/; k � 1 , 	 D R1
0
x dF.x/. For arbitrary

t > 0 we define

ı.t/ D t � tN.t/; the age;
�.t/ D tN.t/C1 � t; the residual lifetime;
ˇ.t/ D �.t/ � ı.t/ D tN.t/C1 � tN.t/; the total lifetime:

(For example, at instant t , ı.t/ indicates how much time passed without a car
arriving at the station, and �.t/ indicates how long it was necessary to wait till the
arrival of the next car, on the condition that the interarrival times are i.i.d. random
variables with the common distribution function F .)

Theorem 4.42. fı.t/; t � 0g and f�.t/; t � 0g are regenerative processes, and in
the case of the nonlattice distribution F ,

lim
t!1 P .ı.t/ � x/ D lim

t!1 P .�.t/ � x/ D 1

	

xZ

0

.1 � F.u// du;

lim
t!1 P .ˇ.t/ � x/ D 1

	

xZ

0

s dF.s/:

Proof. Both processes are obviously regenerative with common regeneration points
tn; n � 1. By our previous theorem,

lim
t!1 P .ı.t/ � x/ D 1

	

1Z

0

P .ı.s/ � x; T1 > s/ dsI

furthermore,

P .ı.s/ � x; T1 > s/ D P .s � x; T1 > s/ D
�
1 � F.s/; if s < x;
0; if s � x;
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so

lim
t!1 P .ı.t/ � x/ D 1

	

xZ

0

.1 � F.s//ds D 1

	

xZ

0

.1 � F.s//ds

using the identity 	 D R1
0
.1 � F.s//ds (Exercise 1.5). Similarly, for the process

f�.t/; t � 0g we obtain

lim
t!1 P .�.t/ � x/

D 1

	

1Z

0

P .�.s/ � x; T1 > s/ds D 1

	

1Z

0

P .T1 � s � x; T1 > s/ds

D 1

	

1Z

0

P .s � T1 < s C x/ds D 1

	

1Z

0

.F.s C x/ � F.s//ds

D � 1
	

0

@
1Z

x

.1 � F.s//ds �
1Z

0

.1 � F.s//ds
1

A D 1

	

xZ

0

.1 � F.s//ds:

The statement for f�.t/; t � 0g can be obtained analogously. ut
Similarly to the renewal processes, the law of large numbers and the central limit

theorem can be proved for the regenerative processes, too. Here we will not deal
with these questions.

4.2.1 Estimation of Convergence Rate for Regenerative
Processes

For a wide class of regenerative processes (e.g., stochastic processes describing
queueing systems) one can estimate the rate of convergence of distributions of
certain parameters to a stationary distribution by means of the so-called coupling
method [65].

Lemma 4.43 (Coupling lemma). For the arbitrary random variablesX and Y and
an arbitrary Borel set A of the real line the following statements hold:

(i) jP .X 2 A/ � P .Y 2 A/j � P .X ¤ Y /:

(ii) IfX D X1C : : :CXn and Y D Y1C : : :CYn, then jP .X 2 A/�P .Y 2 A/j �
nP

kD1
P .Xk ¤ Yk/:

Proof. If P .X 2 A/ D P .Y 2 A/, then (i) is obviously true.
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Suppose that P .X 2 A/ > P .Y 2 A/ (if one changes the notation, then this can
always be done if the two probabilities differ). Then

jP .X 2 A/ � P .Y 2 A/j D P .X 2 A/ � P .Y 2 A/
� P .X 2 A/ � P .Y 2 A;X 2 A/
D P .X 2 A; Y 2 Ac/ � P .X ¤ Y /:

Proof of relation (ii). Since fX ¤ Y g �
nS

kD1
fXk ¤ Ykg, we have

P .X ¤ Y / � P

 
n[

kD1
fXk ¤ Ykg

!
�

nX

kD1
P .Xk ¤ Yk/:

ut
Application of Coupling Lemma Let Z D fZ.j /; j � 1g be the discrete-time,
real-valued regenerative process under consideration. Assume that there exists the
weak stationary limit of the process QZ D fZ.j C n/; j � 1g as n ! 1 (its finite-
dimensional distributions weakly converge to the finite-dimensional distributions
of a stationary process), which is also regenerative, and let Y D fY.j /; j � 1g
be its realization, not necessarily different from Z on the same probability space.
Let � denote the first instant when the processes Z and Y are regenerated at the
same time (in many concrete cases the distribution of � can be easily estimated).
Then the convergence rate of the distribution of Z.j / can be estimated by means
of the distribution of � as follows: if after the regeneration point � the process Z is
replaced by the next part of process Y following the common regeneration point � ,
then the finite-dimensional distributions of process Z do not change. It is clear that
f� < j g � fZ.j / D Y.j /g, i.e., fZ.j / ¤ Y.j /g � f� � j g, from which, using
the coupling lemma for the arbitrary Borel set A of the real line, the estimation

jP .Z.j / 2 A/� P .Y.j / 2 A/j � P .Z.j / ¤ Y.j // � P .� � j /

holds.

4.3 Analysis Methods Based on Markov Property

Definition 4.44. A discrete-state, continuous-time stochastic process, X.t/, pos-
sesses the Markov propety at time tn if for all n;m � 1, 0 � t0 < t1 < : : : < tn <

tnC1 < : : : < tnCm, and x0; x1; : : : ; xn; xnC1; : : : ; xnCm 2 S we have

P .X.tnCm/ D xnCm; : : : ; X.tnC1/ D xnC1jX.tn/ D xn; : : : ; X.t0/ D x0/

D P .X.tnCm/ D xnCm; : : : ; X.tnC1/ D xnC1jX.tn/ D xn/: (4.5)

In this case tn is referred to as a regenerative point.
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A commonly applied interpretation of the Markov property is as follows.
Assuming that the current time is tn (present), which is a regenerative point, and
we know the current state of the process X.tn/, then the future of the stochastic
process X.t/ for tn � t is independent of the past history of the process X.t/ for
0 � t < tn, and it only depends on the current state of the process X.tn/. That is, if
one knows the present state, the future is independent of the past.

In the case of discrete-time processes, it is enough to check if the one-step state
transitions are independent of the past, i.e., it is enough to check the condition for
m D 1.

Usually, we restrict our attention to stochastic processes with nonnegative
parameters (positive half of the time axes), and in these cases we assume that t D 0

is a regenerative point.

4.3.1 Time-Homogeneous Behavior

Definition 4.45. The stochastic process X.t/ is time homogeneous if the stochastic
behavior ofX.t/ is invariant for time shifting, that is, the stochastic behavior ofX.t/

and X 0.t/ D X.t C s/ are identical in distribution X.t/
dD X 0.t/.

Corollary 4.46. If the time-homogeneous stochastic process X.t/ possesses the

Markov property at time T and X.T / D i , then X.t/
dD X.t � T / if X.0/ D i .

The corollary states that starting from two different Markov points with the same
state results in stochastically identical processes.

4.4 Analysis of Continuous-Time Markov Chains

Definition 4.47. The discrete-state, continuous-time stochastic process X.t/ is a
continuous-time Markov chain (CTMC) if it possesses the Markov property for all
t � 0.

Based on this definition and assuming time-homogeneous behavior we obtain the
following properties.

Corollary 4.48. An arbitrary finite-dimensional joint distribution of a CTMC
is composed of the product of transition probabilities multiplied by an initial
probability.

Corollary 4.49. For the time points t < u < v the following Chapman–
Kolmogorov equation holds:

Opij .t; v/ D
X

l2S
Opil .t; u/ Oplj .u; v/I O….t; v/ D O….t; u/ O….u; v/; (4.6)
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where Opij .t; u/ D P .X.u/ D j j X.t/ D i/ for all i; j 2 S; 0 � t � u, O….t; u/ D	 Opij .t; u/


. In the case of time-homogeneous processes the time shifts u � t D �1

and v � u D �2 play a role:

pij .�1 C �2/ D
X

l2S
pil.�1/plj .�2/I ….�1 C �2/ D ….�1/….�2/; (4.7)

where ….�/ D 	
pij .�/



; pij .�/ D P .X.�/ D j j X.0/ D i/; for all

i; j 2S; 0 � � .

Definition 4.50. The stochastic evolution of a CTMC is commonly characterized
by an infinitesimal generator matrix (commonly denoted byQ) that can be obtained
from the derivative of the state-transition probabilities as follows:

d

dt
….t/ D lim

ı!0

….t C ı/�….t/

ı
D ….t/ lim

ı!0

….ı/� I

ı„ ƒ‚ …
Q

D ….t/Q: (4.8)

Corollary 4.51. The sojourn time of a CTMC in a given state i is exponentially
distributed with the parameter qi D �qii . The probability that after state i the next
visited state will be state j is qij =qi , and it is independent of the sojourn time in
state i .

Remark 4.52. Based on Corollary 4.51 and the properties of the exponential
distribution, the state transitions of a CTMC can also be interpreted in the following
way. When the CTMC moves to state i , several exponentially distributed activities
start, exactly one for each nonzero transition rate. The time of the activity associated
with the state transition from state i to state j is exponentially distributed with the
parameter qij . The CTMC leaves state i and moves to the next state when the first
one of these activities completes. The next visited state is the state whose associated
activity finishes first.

Corollary 4.53 (Short-term behavior of CTMCs). During a short time period 
,
the behavior of a CTMC is characterized by the following transition probabilities:

(a) P .X.t C
/ D i jX.t/ D i/ D 1 � qi
C o .
/;
(b) P .X.t C
/ D j jX.t/ D i/ D qij
C o .
/ for i ¤ j ;
(c) P .X.t C
/ D j;X.u/ D kjX.t/ D i/ D o .
/ for i ¤ k, j ¤ k, and t <

u < t C
,

where o .x/ denotes the set of functions with the property limx!0 o .x/ =x D 0.

According to the corollary, two main events can happen with significant proba-
bility during a short time period:

• The CTMC stays in the initial state during the whole period [(a)].
• It moves from state i to j [(b)].
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The event that more than one state transition happens during a short time period
[(c)] has a negligible probability as 
 ! 0.

Corollaries 4.51 and 4.53 allow different analytical approaches for the descrip-
tion of the transient behavior of CTMCs.

4.4.1 Analysis Based on Short-Term Behavior

Let X.t/ be a CTMC with state space S , and let us consider the change in state
probability Pi.t C
/ D P .X.t C
/ D i/ (i 2 S ) considering the possible events
during the interval .t; t C
/. The following cases must be considered:

• There is no state transition during the interval .t; tC
/. In this case Pi.tC
/ D
Pi .t/, and the probability of this event is 1� qi
C o .
/.

• There is one state transition during the .t; t C
/ interval from state k to state i .
In this case Pi.tC
/ D Pk.t/, and the probability of this event is qki
Co .
/.

• The process stays in state i at time t C 
 such that there is more than one state
transition during the interval .t; t C
/. The probability of this event is o .
/.

Considering these cases we can compute Pi.t C 
/ from Pk.t/, k 2 S , as
follows:

Pi .t C
/ D .1 � qi
C o .
//Pi .t/C
X

k2S;k¤i
.qki
C o .
//Pk.t/C o .
/

D .1 � qi
/Pi .t/C
X

k2S;k¤i
.qki
/Pk.t/C o .
/ ;

from which

Pi.tC
/�Pi.t/



D �qiPi .t/C
X

k2S;k¤i
qkiPk.t/Co .
/



D
X

k2S
qkiPk.t/Co .
/



:

Finally, setting the limit 
 ! 0 we obtain that

dPi.t/

dt
D
X

k2S
qkiPk.t/:

Introducing the row vector of state probabilities P.t/ D fPi.t/g; i 2 S , we obtain
the vector-matrix form of the previous equation:

d

dt
P.t/ D P.t/Q: (4.9)

A differential equation describes the evolution of a transient state probability
vector. To define the state probabilities, we additionally need to have an initial
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condition. In practical applications, the initial condition is most often the state
probability distribution at time 0, i.e., P.0/. The solution of Eq. (4.9) with initial
condition P.0/ is [55]

P.t/ D P.0/eQt D P.0/

1X

nD0

Qn tn

nŠ
:

Transform Domain Description The Laplace transform of the two sides of
Eq. (4.9) gives

s P �.s/ � P.0/ D P �.s/Q;

from which we can express P �.s/ in the following form:

P �.s/ D P.0/ŒsI � Q��1:

Comparing the time and transform domain expressions we have that eQt and
ŒsI � Q��1 are Laplace transform pairs of each other.

Stationary Behavior If limt!1 Pi.t/ exists, then we say that limt!1Pi.t/ D Pi
is the stationary probability of state i . In this case, limt!1 dPi.t/=dt D 0, and the
stationary probability satisfies the system of linear equations

P
k2S qkiPk.t/ D 0

for all k 2 S .

4.4.2 Analysis Based on First State Transition

Let X.t/ be a CTMC with state space S , and let T1; T2; T3; : : : denote the
time of the first, second, etc. state transitions of the CTMC. We assume that
T0 D 0, and �1; �2; �3; : : : are the sojourn times spent in the consecutively visited
states (�i D Ti � Ti�1). We compute the state-transition probability �ij .t/ D
P .X.t/ D j j X.0/ D i/ assuming that T1 D h, i.e., we are interested in

�ij .t jT1 D h/ D P .X.t/ D j j X.0/ D i; T1 D h/:

We have

�ij .t jT1 D h/ D

8
<̂

:̂

ıij ; h � t;
X

k2S;k¤i

qik

�qii �kj .t � h/; h < t;
(4.10)

where ıij is the Kronecker delta ( ıij D 1 if i D j and ıij D 0 if i ¤ j ), and qik
�qii

is the probability that after visiting state i the Markov chain moves to state k. In the
case of general stochastic processes, this probability might depend on the sojourn
time in state i , but in the case of CTMCs, it is independent.
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Equation (4.10) has two cases:

• If the time point of interest, t , is before the first state transition of the CTMC,
h � t , then the conditional state-transition probability is either 1 (if the initial
and final states are identical i D j ) or 0 (if i ¤ j ).

• If the time point of interest, t , is after the first state transition of the CTMC,
T1 < t , then we can analyze the evolution of the process from T1 to t using the
fact that the process possesses the Markov property at time T1. In this case we
need to consider all possible states that might be visited at time T1, k 2 S; k ¤ i ,
with the associated probability qik

�qii . The state-transition probabilities from T1 to
t are identical with the state-transition probabilities of the original process from
0 to T1 � t , assuming that the original process starts from state k.

The distribution of T1 is known. It is exponentially distributed with the parameter
�qii . Its cumulated and probability density functions are FT1.x/ D 1 � eqii x and
fT1.x/ D �qiieqii x , respectively. With that we can apply the total probability
theorem to compute the (unconditional) state-transition probability �ij .t/:

�ij .t/ D
Z 1

hD0
�ij .t jT1 D h/ fT1.h/ dh

D
Z 1

hDt
ıij fT1 .h/ dhC

Z t

hD0

X

k2S;k¤i

qik

�qii �kj .t � h/ fT1.h/ dh

D ıij .1 � FT1.t//C
Z t

hD0

X

k2S;k¤i

qik

�qii �kj .t � h/ fT1.h/ dh

D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0
�kj .t � h/ eqii h dh: (4.11)

The obtained integral equation is commonly referred to as a Volterra integral
equation. Its only unknown is the state-transition probability function �ij .t/.
The numerical methods developed for the numerical analysis of Volterra integral
equations can be used to compute the state-transition probabilities of a CTMC.

Relation of Analysis Methods We can rewrite Eq. (4.11) in the following form:

�ij .t/ D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0
�kj .t � h/ eqii h dh

D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0
�kj .h/ eqii .t�h/ dh

D ıij eqii t C
X

k2S;k¤i
qik eqii t

Z t

hD0
�kj .h/ e�qii h dh: (4.12)
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The derivation of the two sides of Eq. (4.12) according to t is as follows:

� 0
ij .t/ D ıij qi i eqii tC

X

k2S;k¤i
qik

�
qi i eqii t

Z t

hD0
�kj .h/ e�qii h dhC eqii t �kj .t/ e�qii t

�

D
X

k2S;k¤i
qik �kj .t/C qi i

�
ıij eqii t C

X

k2S;k¤i
qik eqii t

Z t

hD0
�kj .h/ e�qii h dh

„ ƒ‚ …
�ij .t/

�

D
X

k2S
qik�kj .t/;

where we used Eq. (4.11) for the substitution of the integral expression. The
obtained differential equation is similar to that provided by the analysis of the short-
term behavior.

Transform Domain Description To relate the two transient descriptions of
the CTMC, one with a differential equation and one with an integral equation,
we transform these descriptions into a Laplace transform domain. It is easy to
take the Laplace transform from the last line of Eq. (4.11) because the second term
of the right-hand side is a convolution integral. That is,

��
ij .s/ D ıij

1

s � qii
C

X

k2S;k¤i
qik �

�
kj .s/

1

s � qii :

Multiplying by the denominator and using that �qii D
X

k2S;k¤i
qik we obtain

s ��
ij .s/ D ıij C

X

k2S
qik �

�
kj .s/;

which can be written in the matrix form

s …�.s/ D I C Q…�.s/:

Finally, we have

…�.s/ D ŒsI � Q��1;

which is identical to the Laplace transform expression obtained from the differential
equation.

Embedded Markov Chain at State Transitions Let Xi 2 S; i D 0; 1; : : :,
denote the i th visited state of the Markov chain X.t/, which is the state of the
Markov chain in the interval .Ti ; TiC1/ (Fig. 4.2). The X0;X1; : : : series of random
variables is a discrete-time Markov chain (DTMC) due to the Markov property of
X.t/. This DTMC is commonly referred to as a Markov chain embedded at the
state transitions or simply an embedded Markov chain (EMC). The state-transition
probability matrix of the EMC is
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…ij D
8
<

:

qij

�qii ; i ¤ j;

0; i D j:

Stationary Analysis Based on the EMC The stationary distribution of the EMC
OP (which is the solution of OP D OP…;Pi

OPi D 1) defines the relative frequency of
the visits to the state of the Markov chain. The higher the stationary probability is,
the more frequently the state is visited. The stationary behavior of the CTMC X.t/
is characterized by two main factors: how often the state is visited (represented by
OPi ) and how long a visit lasts. If state i is visited twice as frequently as state j

but the mean time of a visit to state i is half the mean time of a visit to j , then
the stationary probabilities of states i and j are identical. This intuitive behavior is
summarized in the following general rule of renewal theory [58]:

Pi D
OPi O�iX

j

OPj O�j
;

where O�j is the mean time spent in state j , which is known from the diagonal
element of the infinitesimal generator, O�j D �1=qjj .

Discrete-Event Simulation of CTMCs There are at least two possible
approaches.

• When the CTMC is in state i , first draw an exponentially distributed random
sample with parameter �qii for the sojourn time in state i , then draw a discrete
random sample for deciding the next visited state with distribution…ij , j 2 S .

• When the CTMC is in state i , draw an exponentially distributed random sample
with parameter qij , say �ij , for all positive transition rates of row i of the
infinitesimal generator matrix. Find the minimum of these samples, minj �ij .
The sojourn time in state i is this minimum, and the next state is the one whose
associated random sample is minimal.

4.5 Semi-Markov Process

Definition 4.54. The discrete-state, continuous-time random process X.t/ is a
semi-Markov process if it is time homogeneous and it possesses the Markov
property at the state-transition instances (Fig. 4.2).

The name semi-Markov process comes from the fact that such processes do not
always possess the Markov property (during its sojourn in a state), but there are
particular instances (state-transition instances) when they do.
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T4T3T2

j

X(t)

tT1

k

i

Fig. 4.2 Semi-Markov
process that possesses the
Markov property at the
indicated time points

Corollary 4.55. The sojourn time in state i can be any general real-valued positive
random variable. During a sojourn in state i , both the remaining time in both that
state and the next visited state depend on the elapsed time since the process entered
state i .

k

j

i

Z.t/

t
�

�k

�j

�i

Example 4.56. A two-state (up/down) system fails at a rate � (the up time of the
system is exponentially distributed with parameter �) and gets repaired at a rate
	. To avoid long down periods, the repair process is stopped and a replacement
process is initialized after a deterministic time limit d . The time of the replacement
is a random variable with a distribution G.t/. Define a system model and check if
it is a semi-Markov process.

Because a CTMC always possesses the Markov property, it follows that the
sojourn time in a state is exponentially distributed and that the distribution of the
next state is independent of the sojourn time. For example, considering the first
state transition and the sojourn time in the first state we have

P .X1 D j; T1 D cjX0 D i/ D P .X1 D j jX0 D i/P .T1 D cjX0 D i/:

This property does not hold for semi-Markov processes in general. The most
important consequences of the definition of semi-Markov processes are the follow-
ing ones. The sojourn time in a state can have any positive distribution, and the
distribution of the next state and the time spent in a state are not independent in
general. Consequently, to define a semi-Markov process, this joint distribution must
be given. This is usually done by defining the kernel matrix of a process whose i; j
element is

Qij .t/ D P .X.TiC1/ D j; �iC1 � t jX.Ti/ D i/:

Utilizing the time homogeneity of the process we further have for Ti that

Qij .t/ D P .X.TiC1/Dj; �iC1 � t jX.Ti/Di/DP .X.T1/Dj; T1 � t jX.0/ D i/:
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The analysis of semi-Markov processes is based on the results of renewal theory
and the analysis of an EMC (of state-transition instances). The definition of a
semi-Markov process requires knowledge of the kernel matrix Q.t/ D fQij .t/g
(for t � 0) and an initial distribution. It is commonly assumed that X.t/ possesses
the Markov property at time t D 0.

4.5.1 Analysis Based on State Transitions

Let X.t/ 2 S be a continuous-time semi-Markov process, T1; T2; T3; : : : the state-
transition instances, and �1; �2; �3; : : : the consecutive sojourn times (�i D Ti�Ti�1).
We assume T0 D 0. We intend to compute the state-transition probability �ij .t/ D
P .X.t/ D j j X.0/ D i/ assuming that the sojourn in the first state finishes at time
h (T1 D h), that is,

�ij .t jT1 D h/ D P .X.t/ D j j X.0/ D i; T1 D h/:

In this case

�ij .t jT1 D h/ D

8
<̂

:̂

ıij ; h � t;
X

k2S
P .X.T1/ D k j X.0/ D i; T1 D h/ �kj .t � h/; h < t;

(4.13)
where P .X.T1/ D j j X.0/ D i; T1 D h/ is the probability that the process will
start from state i at time 0 and is in state j right after the state transition at time
T1 assuming T1 D h. In contrast with CTMCs, this probability depends on the
sojourn time in state i :

P.X.T1/ D j j X.0/ D i; T1 D h/

D lim

!0

P .X.T1/ D j; h < T1 � hC
 jX.0/ D i/

P .h < T1 � hC
 jX.0/ D i/

D lim

!0

Qij .hC
/�Qij .h/

Qi.hC
/�Qi.h/
D dQij .h/

dQi.h/
; (4.14)

whereQi.h/ denotes the distribution of time spent in state i ,

Qi.t/ D P .T1 � t jZ.0/Di/D
X

j

P .Z.T1/Dj; T1 � t jZ.0/Di/D
X

j

Qij .t/:

It is commonly assumed that state transitions are real, which means that
after staying in state i a state transition moves the process to a different state.
This means that Qii .t/ D 0; 8i 2 S . It is also possible to consider virtual state
transitions from state i to state i , but this does not expand the set of semi-Markov
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processes and we do not consider it here. Note that the meaning of a diagonal
element of a semi-Markov kernel matrix is completely different from that of a
diagonal element of an infinitesimal generator of a CTMC. One of the technical
consequences of this difference is the fact that we do not need to exclude the
diagonal element from the summations over the set of states.

Two cases are considered in Eq. (4.13):

• If the time point of interest, t , is before the first state transition of the process
(h � t), then the conditional state-transition probability is either 0 or 1 depending
on the initial and final states. If the initial state i is identical with the final state
j , then the transition probability is 1 because there is no state transition up to
time t , otherwise it is 0.

• If the time point of interest, t , is after the first state transition of the process (h <
t), then we need to evaluate the distribution of the next state k, assuming that the
state transition occurs at time h, and after that the state-transition probability from
the new state k to the final state j during time t�h, using the Markov property of
the process at time h. The probability that the process moves to state k assuming
it occurs at time h is dQij .h/

dQi .h/
, and the probability of its moving from state k to

state j during an interval of length t � h is �ij .t � h/.
The distribution of the condition of Eq. (4.13) is known. The distribution of the

sojourn time in state i is Qi.h/. Using the law of total probability we obtain

�ij .t/ D
Z 1

hD0
�ij .t jT1 D h/ dFT1.h/

D
Z 1

hDt
ıij dQi.t/C

Z t

hD0

X

k2S

dQik.h/

dQi.h/
�kj .t � h/ dQi.h/

D ıij .1 �Qi.t//C
Z t

hD0

X

k2S
�kj .t � h/ dQik.h/: (4.15)

Similar to the case of CTMCs, analysis based on the first state transition resulted
in a Volterra integral equation also in the case of semi-Markov processes. The
transient behavior of semi-Markov processes can be computed using the same
numerical procedures.

Transform Domain Description We take the Laplace transform of both sides of
the Volterra integral Eq. (4.15). The only nontrivial term is a convolution integral on
the right-hand side:

��
ij .s/ D ıij .1 �Q�

i .s//C
X

k2S
q�
ik.s/ �

�
kj .s/;

where qik.t/ D dQik.t/=dt and the transform domain functions are defined as
f �.s/ D R1

0
f .t/e�stdt .
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Introducing the diagonal matrix D�.s/ composed of the elements 1 � Q�
i .s/,

that is , D�.s/ D diagh1 � Q�
i .s/i, the Laplace transforms of the state transition

probabilities are obtained in matrix form,

…�.s/ D D�.s/C q�.s/…�.s/;

from which

…�.s/ D ŒI � q�.s/��1D�.s/:

Stationary Behavior The stationary analysis of a semi-Markov process is very
similar to the stationary analysis of a CTMC based on an EMC. Let the transition
probability matrix of the EMC be …. It is obtained from the kernel matrix through
the following relation:

…ij D P .Z.T1/ D j jZ.0/ D i / D lim
t!1

P .Z.T1/ D j; T1 � t jZ.0/ D i / D lim
t!1

Qij .t/:

The stationary distribution of the EMC OP is the solution of the linear system
OP D OP…;Pi

OPi D 1. The stationary distribution of the semi-Markov process is

Pi D
OPi O�iX

j

OPj O�j
; (4.16)

where O�i is the mean time spent in state i . It can be computed from a kernel matrix
using O�i D R1

0
.1 �Qi.t//dt .

Discrete-Event Simulation of Semi-Markov Processes The initial distribution
and the Qij .t/ kernel completely define the stochastic behavior of a semi-Markov
process. As a consequence, it is possible to simulate the process behavior based
on them.

The key step of the simulation is to draw dependent samples for the sojourn
time and the next visited state. This can be done based on the marginal distribution
of one of the two random variables and a conditional distribution of the other one.
Depending on which random variable is sampled first, there are two ways to simulate
a semi-Markov process:

• When the process is in state i , first draw a Qi.t/ distributed sample for
the sojourn time, denoted by � , then draw a sample for the next state as-
suming that the sojourn is � based on the discrete probability distribution
P .X.T1/ D j jX.0/ D i; T1 D �/ (8j 2 S ) given in Eq. (4.14).

• When the process is in state i , first draw a sample for the next visited state
based on the discrete probability distribution …ij D P .X.T1/ D j jX.0/ D i/

(8j 2 S ), then draw a sample for the sojourn time given in the next state with a
distribution

P .T1 � t jZ.0/ D i; Z.T1/ D j / D Qij .t/

…ij

: (4.17)
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Fig. 4.3 Analysis of
semi-Markov process with
supplementary variable

4.5.2 Transient Analysis Using the Method of Supplementary
Variables

A semi-Markov process does not possess the Markov property during its sojourn in
a state. For example, the distribution of the time till the next state transition may
depend on the amount of time that has passed since the last state transition. It is
possible to extend the analysis of semi-Markov processes so that all information
that makes the future evolution of the process conditionally independent of its past
history is involved in the process description for 8t � 0. It is indeed the Markov
property for 8t � 0. In the case of semi-Markov processes, this means that the
discrete state of the process X.t/ and the time passed since the last state transition
Y.t/ D t � max.Ti � t/ need to be considered together because the vector-valued
stochastic process fX.t/; Y.t/g is already such that the future behavior of this vector
process is conditionally independent of its past given the current value of the vector.
That is, the fX.t/; Y.t/g process possesses the Markov property for 8t � 0. The
behavior of the fX.t/; Y.t/g process is depicted in Fig. 4.3.

This extension of a random process with an additional variable such that the
obtained vector-valued process possesses the Markov property is referred to as the
method of supplementary variables [24].

With X.t/ and Y.t/ and the kernel matrix of the process we can compute the
distribution of time till the next state transition at any time instant; this is commonly
referred to as the remaining sojourn time in the given state. If at time t the process
stays in state i for a period of � [X.t/ D i , Y.t/ D �] and the distribution of the
total sojourn time in state i is Qi.t/, then the distribution of the remaining sojourn
time in state i , denoted by � , is

P .� � t/ D P .�t � t C � j �t > �/ D Qi.t C �/ �Qi.�/

1 �Qi.�/
;

where �t denotes the total time spent in state i during this visit in state i .
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To analyze the fX.t/; Y.t/g process, we need to characterize the joint distribution
of the following two quantities:

hi .t; x/ D P .X.t/ D i; x � Y.t/ < x C
/



:

It is possible to obtain hi .t; x/ based on the analysis of the short-term behavior of
CTMCs:

hi .t C
; x/

D PŒthere is no state transition in the interval .t; t C
/�

	 hi .t C
; x j there is no state transition/

C PŒthere is one state transition in the interval .t; t C
/�

	 hi .t C
; x j there is one state transition/C o .
/;

where hi.tC
; x j condition/ denotes
P .X.t/ D i; x � Y.t/ < x C
 j condition/



.

The probability of the state transition can be computed based on the distribution of
the remaining sojourn time:

PŒthere is one state transition in the interval .t; t C
/�

D P .remaining sojourn time � 
/ D Qi.x C
/�Qi.x/

1 �Qi.x/
;

from which

PŒthere is no state transition in the interval .t; t C
/� D 1 �Qi.x C
/

1 �Qi.x/
:

Immediately following a state transition Y.t/ is reset to zero. Consequently, the
probability that Y.tC
/ D x for a fixed x > 0 is zero when
 is sufficiently small.
That is,

hi Œt C
; x j there is one state transition in the interval .t; t C
/� D 0 if x > 0:

It follows that

hi .t C
; x/

D PŒthere is no state transition in the interval .t; t C
/�

	 hi Œt C
; x j there is no state transition in the interval .t; t C
/�

D 1 �Qi.x C
/

1 �Qi.x/

 hi .t; x �
/:
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Analysis of the process fX.t/; Y.t/g is made much simpler by the use of the
transition rate of ˛i instead of its distributionQi.t/. The transition rate is defined by

�i.t/ D lim

!0

P .˛i � t C
 j ˛i > t/



D lim

!0

Qi.t C
/�Qi.t/


 .1 �Qi.t//
D Q0

i .t/

1 �Qi.t/
:

It is also referred to as the hazard rate in probability theory. The probability of a
state transition can be written in the following form:

PŒthere is one state transition in the interval .t; t C
/�

D Qi.x C
/�Qi.x/

1 �Qi.x/
D �i .x/
C o .
/ ;

from which

PŒthere is no state transition in the interval .t; t C
/� D 1 � �i .x/
C o .
/ :

Based on all of these expressions, hi .t; x/ satisfies

hi .t C
; x/ D
�
1 � �i.x/
C o .
/

�
hi.t; x �
/:

From this difference equation we can go through the usual steps to obtain the partial
differential equation for hi .t; x/. First we move hi .t; x �
/ to the other side,

hi .t C
; x/ � hi .t; x �
/ D
�

� �i .x/
C o .
/

�
hi .t; x �
/;

then we add and subtract hi .t; x/,

hi .t C
; x/� hi .t; x/C hi .t; x/� hi .t; x �
/ D
�

� �i .x/
C o .
/

�
hi .t; x �
/;

and reorder the terms,

hi .t C
; x/� hi .t; x/



C hi .t; x/� hi .t; x �
/



D
�

� �i .x/C o .
/




�
hi .t; x �
/:

Finally, the 
 ! 0 transition results in

@hi .t; x/

@t
C @hi .t; x/

@x
D ��i .x/ hi .t; x/: (4.18)

This partial differential equation describes hi .t; x/ for x > 0. The case of x D 0

requires a different treatment:
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P .X.t C
/ D i; Y.t/ � 
/

D
X

k2S;k¤i

Z 1

xD0
P .X.t/ D k; Y.t/ D x; one transition to state i in .t; t C
// dx:

The probability that in the interval .t; t C
/ the process moves from state k to
state i is

PŒthere is one state transition in the interval .t; t C
/ from k to i �

D PŒone state transition in the interval .t; t C
/�

	PŒstate transition from k to i j one state transition in the interval .t; t C
/�

D Qk.x C
/�Qk.x/

1 �Qk.x/

 Qki .x C
/ �Qki.x/

Qk.x C
/ �Qk.x/
;

where the second term is already known from Eq. (4.14). We can also introduce the
intensity of transition from k to i :

�ki .x/ D lim

!0

PŒthere is a transition in the interval .t; t C
/ from k to i �




D lim

!0

Qki .x C
/�Qki .x/


.1 �Qk.x//
D Q0

ki .x/

1 �Qk.x/
:

The transition probability can be written in the form

PŒthere is a transition in the interval .t; t C
/ from k to i � D �ki .x/
C o .
/ :

Using this we can write

P.X.t C
/ D i; Y.t/ � 
/ D hi .t C
; 0/


D
X

k2S;k¤i

Z 1

xD0
.�ki .x/
C o .
// hk.t; x/ dx;

from which a multiplication with 
 and the 
 ! 0 transition result in

hi.t; 0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.t; x/ dx: (4.19)

In summary, the method of supplementary variable allows for the analysis of
the process fX.t/; Y.t/g through the function hi .t; x/, which is given by a partial
differential equation (4.18) for x > 0 and a boundary equation (4.19) for x D 0.
Based on these equations and the initial distributions of hi .0; x/ for 8i 2 S

numerical partial differential solutions methods can be applied to compute the
transient behavior of a semi-Markov process.
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Stationary Behavior If the limit limt!1 hi .t; x/ D hi .x/ exists for all states i 2
S , then we can evaluate the limit t ! 1 of Eqs. (4.18) and (4.19)

dhi .x/

dx
D ��i.x/ hi .x/; (4.20)

hi .0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.x/ dx: (4.21)

The solution of ordinary differential Eq. (4.20) is

hi.x/ D hi .0/e
R x

uD0 ��i .u/ du;

where the unknown quantity is hi .0/. It can be obtained from Eq. (4.21) as follows:

hi .0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.0/e

R x
uD0 ��k.u/ du dx

D
X

k2S;k¤i
hk.0/

Z 1

xD0
�ki .x/e

R x
uD0 ��k.u/ du dx;

where
Z 1

xD0
�ki .x/e

R x
uD0 ��k.u/ du dxDP .after state k the process moves to state i/ D …ki :

That is, we are looking for the solution of the linear system

hi .0/ D
X

k2S;k¤i
hk.0/ …ki 8i 2 S

with the normalizing condition

X

i2S

Z 1

xD0
hi .x/ dx D 1;

where the normalizing condition is the sum of the stationary-state probabilities.
From

X

i2S

Z 1

xD0
hi .x/ dx D

X

i2S
hi .0/

Z 1

xD0
e
R x

uD0 ��i .u/ du dx D
X

i2S
hi .0/ O�i D 1

and Eq. (4.16) we have that the required solution is
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hi .0/ D
OPiX

j

OPj O�j
:

4.6 Markov Regenerative Process

Definition 4.57. The X.t/ discrete-state, continuous-time, time-homogeneous
stochastic process is a Markov regenerative process if there exists a random
time series T0; T1; T2; : : : (T0 D 0) such that the X.t/ process possesses the Markov
property at time T0; T1; T2; : : : [23, 58] (Fig. 4.4).

Compared to the properties of semi-Markov processes, where the process
possesses the Markov property at all state-transition points, the definition of Markov
regenerative processes is less restrictive. It allows that at some state-transition point
the process does not possess the Markov property, but the analysis of Markov
regenerative processes is still based on the occurrence of time points where the
process possesses the Markov property.

Since Definition 4.57 does not address the behavior of the process between
the consecutive time points T0; T1; T2; : : :, Markov regenerative processes can be
fairly general stochastic processes. In practice, the use of a renewal theorem for the
analysis of these processes is meaningful only when the stochastic behavior between
the consecutive time points T0; T1; T2; : : : is easy to analyze.

A common method for analyzing Markov regenerative processes is based on the
next time point with the Markov property (T1).

Definition 4.58. The series of random variables fYn; TnIn � 0g is a time-
homogeneous Markov renewal series if

P .YnC1 D y; TnC1 � Tn � t jY0; : : : ; Yn; T0; : : : ; Tn/

D P .YnC1 D y; TnC1 � Tn � t jYn/

D P .Y1 D y; T1 � T0 � t j y0/

for all n � 0, y 2 S , and t � 0.

tT2T1 T4T3

j

X(t)

k

i
Fig. 4.4 Markov
regenerative process; circles
denote points with Markov
property
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It can be seen from the definition of Markov renewal series that the series
Y0; Y1; : : : is a DTMC. According to Definition 4.57, the sequence of states X.Ti/
of a Markov regenerative process at the time sequence Ti instants with the Markov
property and the time sequence Ti instants with the Markov property form a Markov
renewal sequence fX.Ti/; Tig (i D 0; 1; : : :).

Analysis of Markov regenerative processes is based on this embedded Markov
renewal series. To this end the joint distribution of the next time point and the state
in that time point must be known. In contrast with the similar kernel of semi-Markov
processes, in the case of Markov regenerative processes, the kernel is denoted by

Kij .t/ D P .X1 D j; T1 � T0 � t jX0 D i/ ; i; j 2 S;
and the matrix K.t/ D fKij .t/g is referred to as the global kernel of a Markov
regenerative process. The global kernel of a Markov regenerative process com-
pletely defines the stochastic properties of the Markov regenerative process at time
points with the Markov property. The description of the process between those
time points is complex, but for a transient analysis of the process (more precisely
for computing transient-state probabilities) it is enough to know the transient-state
probabilities between consecutive time points with the Markov property. This is
given by the local kernel matrix of the Markov regenerative processE.t/ D fEij .t/g
whose elements are

Eij .t/ D P .X.t/ D j; T1 > t; jZ.0/ D i/;

where Eij .t/ is the probability that the process will start in state i , the first point
with the Markov property will be later than t , and the process will stay in state j at
time t .

4.6.1 Transient Analysis Based on Embedded Markov Renewal
Series

Let the transient-state transition probability matrix be ….t/ whose elements are

…ij .t/ D P .X.t/ D j jX.0/ D i/:

Assuming that T1 D h, we can compute the conditional state-transition
probability as follows:

…ij .t jT1 D h/ D

8
ˆ̂<

ˆ̂:

P .X.t/ D j jT1 D h; X.0/ D i/; h > t;

X

k2S

P .X.T1/ D k j X.0/ D i; T1 D h/ 
 …kj .t � h/; h � t:

(4.22)
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Similar to the transient analysis of semi-Markov processes, Eq. (4.22) describes
two exclusive cases: h � t and h > t . In the case of semi-Markov processes, the
h > t case results in 0 or 1; in the case of a Markov regenerative process, the
conditional probability for h > t can be different from 0 or 1 because the process
can have state transitions also before T1.

Using the distribution of T1 and the formula of total probability we obtain

…ij .t/ D
Z 1

hDt
P .X.t/ D j jT1 D h; X.0/ D i/ dKi.h/

C
Z t

hD0

X

k2S

dKik.t/

dKi .t/
…kj .t � h/ dKi.h/ : (4.23)

Let us consider the first term on the right-hand side:

Z 1

hDt
P .X.t/ D j jT1 D h; X.0/ D i/ dKi.h/

D
Z 1

hDt
lim

!0

P .X.t/ D j j h � T1 < hC
; X.0/ D i/ dKi.h/

D
Z 1

hDt
lim

!0

P .X.t/ D j; h � T1 < hC
 jX.0/ D i/

P .h � T1 < hC
; jX.0/ D i/
dKi.h/

D
Z 1

hDt
dh P .X.t/ D j; T1 < h jX.0/ D i/

dKi.h/
dKi.h/

D P .X.t/ D j; t < T1 jX.0/ D i/;

from which

…ij .t/ D Eij .t/ C
X

k2S

Z t

hD0
…kj .t � h/ dKik.h/ : (4.24)

Assuming that K.t/ is derivable and dK.t/=dt D k.t/ we have

…ij .t/ D Eij .t/ C
X

k2S

Z t

hD0
…kj .t � h/ kik.h/ dh: (4.25)

Similar to the transient analysis of CTMCs and semi-Markov processes we obtain
a Volterra equation for the transient analysis of Markov regenerative processes.

Transform Domain Description The Laplace transform of Eq. (4.25) is

…�
ij .s/ D E�

ij .s/C
X

k2�
k�
ik.s/…

�
kj .s/; (4.26)

which can be written in matrix form:
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…�.s/ D E�.s/ C k�.s/…�.s/: (4.27)

The solution of Eq. (4.27) is

…�.s/ D ŒI � k�.s/��1 E�.s/: (4.28)

Based on Eq. (4.28), numerical inverse Laplace methods can also be used for the
transient analysis of Markov regenerative processes.

Stationary Behavior Despite the differences between semi-Markov and Markov
regenerative processes, their stationary analysis follows the same steps. The state-
transition probability of the DTMC embedded in time points with the Markov
property is

…ij D P .Z.T1/ D j jZ.0/ D i/ D lim
t!1 P .Z.T1/ D j; T1 � t jZ.0/ D i/ D lim

t!1Kij .t/:

The stationary distribution of the EMC is the solution of OP D OP…;Pi
OPi D 1.

Now we need to compute the mean time spent in the different states during the
interval .T0; T1/. Fortunately, the local kernel carries the necessary information.
Let �ij be the mean time the process spends in state j during the interval .T0; T1/
assuming that it starts from state i (X.T0/ D i ). Then

�ij D E
�Z 1

tD0
IfX.t/Dj;T1>t j X.0/Digdt

�

D
Z 1

tD0
P .X.t/ D j; T1 > t j X.0/ D i/dt

D
Z 1

tD0
Eij .t/dt;

where If�g is the indicator of event �. The mean length of the interval .T0; T1/ is

�i D
X

j2S
�ij :

Finally, the stationary distribution of the process can be computed as

Pi D

X

j2S
OPj �j i

X

j2S
OPj �j

:
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4.7 Exercises

Exercise 4.1. Applying Theorem 4.42, find the limit (stationary) distributions of
age, residual lifetime, and total lifetime [ı.t/ D t � tN.t/; �.t/ D tN.t/C1 � t;

ˇ.t/ D tN.t/C1 � tN.t/] if the interarrival times are independent random variables
having a joint exponential distribution with the parameter �. Show the expected
values for the limit distributions.

Exercise 4.2 (Ergodic property of semi-Markov processes). Consider a system
with the finite state space X D f1; : : : ; N g. The system begins to work at the
moment T0 D 0 in a state X0 2 X and changes states at the random moments
0 < T1 < T2 < : : :. Denote by X1;X2; : : : the sequence of consecutive states
of the system, and suppose that it constitutes a homogeneous, irreducible, and
aperiodic Markov chain with initial distribution .pi D P .X0 D i/; 1 � i � N/

and probability transition matrix … D �
pij
�n
i;jD1. Define the process X.t/ D

Xn�1; Tn�1 � t < Tn; n D 1; 2; : : :, assume that the sequence of holding times
Yk D Tk � Tk�1; k D 1; 2; : : :, depends only conditionally on the states Xk�1 D i

and Xk D j , and denote Fij .x/ D P .Yk � x j Xk�1 D i; Xk D j / if pij > 0,
where �ij D R1

0
xdFij .x/ < 1.

Find the limits for

(a) The average number of transitions/time;
(b) The relative frequencies of states i in the sequence X0;X1; : : :;
(c) The limit distribution P .Xt D i/; i 2 X ;
(d) The average time spent in a state i 2 X .
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