
Chapter 3
Markov Chains

In the early twentieth century, Markov (1856–1922) introduced in [67] a new
class of models called Markov chains, applying sequences of dependent random
variables that enable one to capture dependencies over time. Since that time,
Markov chains have developed significantly, which is reflected in the achievements
of Kolmogorov, Feller, Doob, Dynkin, and many others. The significance of the
extensive theory of Markov chains and the continuous-time variant called Markov
processes is that it can be successfully applied to the modeling behavior of many
problems in, for example, physics, biology, and economics, where the outcome of
one experiment can affect the outcome of subsequent experiments. The terminology
is not consistent in the literature, and many authors use the same name (Markov
chain) for both discrete and continuous cases. We also apply this terminology.

Heuristically, the property that characterizes Markov chains can be expressed by
the so-called memoryless notion (Markov property) as follows: a Markov chain is a
stochastic process for which future behavior, given the past and the present, depends
only on the present and not on the past.

This chapter presents a brief introduction to the theory of discrete-time Markov
chains (DTMCs) and to the continuous-time variant, continuous-time Markov
chains (CTMCs), that will be applied to the modeling and analysis of queueing
systems. Note that DTMCs and CTMCs taking values in a set of countable elements
have many similar properties; however, in contrast to discrete-time processes, the
characteristics of a sample path essentially differ in continuous cases.

We limit ourselves here to the definition of Markov processes and to their basic
properties with countable state space in discrete time T D f0; 1; : : :g and continuous
time T D Œ0;1/. In connection with the classic results discussed in this chapter,
we refer mainly to the classic works [35, 36].

Consider a discrete-time or continuous-time stochastic process X D .Xt ; t 2 T /

given on a probability space .�;A; P / and taking values in a countable set, called
the state space, X D fx0; x1; : : :g. The state space X is called finite if it consists of a
finite number of elements. The sample path of a discrete-time process with discrete
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sample space is defined in the space of sequences S D fxk0 ; xk1 ; : : :g, xki 2 X ,
while it is an element of the space of all functions S D fxt W xt 2 X ; t � 0g in
continuous-time cases.

We say that the process is in the state x 2 X at the time t 2 T if Xt D x.
The process starts from a state x0 2 X determined by the distribution of the random
variable X0, which is the initial distribution of the process. If there exists a state
x0 2 X for which P.X0 D x0/ D 1, then the state x0 is called the initial state.
The state of the process can change from time to time, and these changes in state are
known as transitions. The probabilities of these state changes are called transition
probabilities, which with the initial distribution determine the statistical behavior
of the process.

If we denote by BX the �-algebra of all subsets of the state space X , then the
pair .X ;BX / is a measurable space and the connection fXt 2 Ag 2 A holds for all
t 2 T and fA 2 BX g 2 A.

Definition 3.1. A stochastic process .Xt ; t 2 T / with the discrete state space X is
called a Markov chain if for every nonnegative integer n and for all t0 < : : : <

tn < tnC1; ti 2 T ; x0; : : : ; xnC1 2 X

P
�
XtnC1

D xnC1 j Xt0 D x0; : : : ; Xtn D xn

� D P
�
XtnC1

D xnC1 j Xtn D xn

�
;

(3.1)

provided that this conditional probability exists. Let x; y 2 X ; s � t; s; t 2 T ;
then the function

px;y.s; t/ D P .Xt D y j Xs D x/

is called a transition probability function of a Markov chain. If the equation
px;y.s; t/ D px;y.t � s/ holds for all x; y 2 X ; s � t; s; t 2 T , then the Markov
chain is called (time) homogeneous; otherwise it is known as inhomogeneous.

In both discrete- and continuous-time cases, this definition expresses the
aforementioned memoryless property of a Markov chain, and it ensures that the
transition probabilities depend only on the present state Xs, not on how the present
state was reached. We start with a discussion of DTMCs.

3.1 Discrete-Time Markov Chains with Discrete State Space

Given a Markov chain X D .Xt ; t 2 T /, T D f0; 1; : : :g on a probability
space .�;A; P / taking values in a finite or countably infinite set of elements X .
It is conventional to denote the finite state space by the set X D f0; 1; : : : ; Kg
.0 < K < 1/ and the countably infinite one by X D f0; 1; : : :g. This notation
is quite reasonable for queueing systems, and in general, it does not lead to a
separate problem if the elements of X serve to distinguish the states only; otherwise,
the state space is chosen based on practical requirements. Assume that the events
fXt D ig; i 2 X , are disjoint for all t 2 T .
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In the discrete-time case we can give an alternative definition of a Markov chain
instead of Eq. (3.1).

Definition 3.2. A discrete-time stochastic process X with state space X is called a
Markov chain if for every n D 0; 1; : : : and for all states i0; : : : ; inC1 2 X

pin;inC1
.n; nC 1/ D P .XnC1 D inC1 j X0 D i0; : : : ; Xn D in/

D P .XnC1 D inC1 j Xn D in/ ; (3.2)

provided that a conditional probability exists. The probability

pi;j .n; nC 1/ D P .XnC1 D j j Xn D i/ ; i; j 2 X , n D 0; 1; : : : ;

is called a one-step transition probability, which is the probability of a transition
from a state i to a state j in a single step from time n to time nC 1.

Relation (3.2) is simpler in our case than that of Eq. (3.1), but it can be easily
checked that they are equivalent to each other. Here we can define, from a practical
point of view, the transition probability pi;j .s; t/ D 0, when the probability of the
event fXs D ig equals 0 at the time point s because if PfXs D ig D 0 holds, then the
sample path arrives at the state i with probability 0 at time s; therefore, the quantity
pi;j .s; t/ can be defined freely in this case.

Definition 3.3. We say that a stochastic process X with state space X is a Markov
chain of m-order (or a Markov chain with memory m) if for every n D 1; 2; : : :

and for arbitrary states ik 2 X ; k D 0; : : : ; nCm,

P .XnCm D inCm j X0 D i0; : : : ; XnCm�1 D inCm�1/

D P .XnCm D inCm j Xn D in; : : : ; XnCm�1 D inCm�1/ ;

provided that a conditional probability exists.

It is not difficult to verify that an m-order Markov chain can be represented as a
first-order one if we introduce a new m-dimensional process as follows. Define the
vector-valued process Y D .Y0; Y1; : : :/;

Yn D .Xn; : : : ; XnCm�1/; n D 0; 1; : : : ;

with state space

X 0 D f.k1; : : : ; km/ W k1; : : : ; km 2 X g:
Then the process Y is a first-order Markov chain because

P .YnC1 D .inC1; : : : ; inCm/ j Y0 D .i0; : : : ; im�1/; : : : ; Yn D .in; : : : ; inCm�1//

D P .XnCm D inCm; : : : ; XnC1 D inC1 j X0 D i0; : : : ; XnCm�1 D inCm�1/

D P .XnCm D inCm; : : : ; XnC1 D inC1 j Xn D in; : : : ; XnCm�1 D inCm�1/

D P .YnC1 D .inC1; : : : ; inCm/ j Yn D .in; : : : ; inCm�1//:
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This is why we consider only first-order Markov chains and why, later on, we
will write only Markov chain instead of Markov chain of first order.

In the theory of DTMCs, the initial distribution

P D .pi ; i 2 X /; where pi D P .X0 D i/;

and the transition probabilities [see Eq. (3.2)]

pij .n; nC 1/; i; j 2 X ; n D 0; 1; : : : ;

play a fundamental role because the statistical behavior of a Markov chain is
completely determined by them (Theorem 3.4).

The states i and j , which play a role in Definition 3.2, can be identical, which
means that the process can remain in the same state at the next time point. We say
that a Markov chain X is (time) homogeneous if the transition probabilities do not
depend on time shifting, that is,

pij D P .XnC1 D j j Xn D i/ D P .X1 D j j X0 D i/; i; j 2 X ; n D 0; 1; : : ::

If a Markov chain is not homogeneous, then it is called inhomogeneous.

3.1.1 Homogeneous Markov Chains

From a practical point of view, the class of homogeneous Markov chains plays a
significant role; therefore, in this chapter we will investigate the properties of this
class of processes. However, many results for homogeneous cases remain valid in
the inhomogeneous case, too.

By definition, for a homogeneous Markov chain the one-step transition proba-
bility (or simply transition probability) pi;j ; i; j 2 X , equals the probability that,
starting from the initial state X0 D i at time 0, the process will be in the state j at
the next time point 1, and this probability does not change if we take the transition
probability in arbitrary time n D 1; 2; : : :,

pij D PfX1 D j j X0 D ig D PfXnC1 D j j Xn D ig:
The transition probabilities satisfy the equation

X

j 2X
pij D 1:

This equation expresses the obvious fact that starting in a state i at the next time
point the process takes certainly some state j 2 X . The following theorem states
that the initial distribution and the transition probabilities determine the finite-
dimensional distribution of a homogeneous Markov chain, and as a consequence we
obtain that a Markov chain can be given in a statistical sense with the state space,
the initial distribution, and the transition probabilities.
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Theorem 3.4. The finite-dimensional distributions of a Markov chain X are
uniquely determined by the initial distribution and the transition probabilities and

P .X0 D i0; : : : ; Xn D in/ D pin�1inpin�2in�1 � : : : � pi0i1pi0 : (3.3)

Proof. Let n be a positive integer, and let i0; : : : ; in 2 X . First, assume that
P .X0 D i0; : : : ; Xn D in/ > 0. By the definition of conditional probability,

P .X0 D i0; : : : ; Xn D in/

D P .Xn D in j X0 D i0; : : : ; Xn�1 D in�1/P .X0 D i0; : : : ; Xn�1 D in�1/ D : : :

D P .Xn D in j X0 D i0; : : : ; Xn�1 D in�1/

� P .Xn�1 D in�1 j X0 D i0; : : : ; Xn�2 D in�2/ � : : : � P .X1 D i1 j X0 D i0/

P .X0 D i0/:

Using the Markov property we can rewrite this formula in the form

P .X0 D i0; : : : ; Xn D in/

D P .Xn D in j Xn�1 D in�1/ � : : : � P .X1 D i1 j X0 D i0/P .X0 D i0/

D pin�1inpin�2in�1 � : : : � pi0i1pi0 :

If P .X0 D i0; : : : ; Xn D in/ D 0, then either P .X0 D i0/ D pi0 D 0 or there
exists an index m, 0 � m � n � 1, for which

P .X0 D i0; : : : ; Xm D im/ > 0 and P .X0 D i0; : : : ; XmC1 D imC1/ D 0:

Consequently,

P .X0 D i0; : : : ; XmC1 D imC1/

D P .XmC1 D imC1 j X0 D i0; : : : ; Xm D im/P .X0 D i0; : : : ; Xm D im/

D pimimC1
P .X0 D i0; : : : ; Xm D im/;

and therefore pimimC1
D 0. This means that the product pin�1inpin�2in�1 � : : : �pi0i1pi0

equals 0 in both cases, and so assertion (3.3) of the theorem is true. ut
Comment 3.5. From relation (3.4) it immediately follows that for any Ai �
X ; 0 � i � n the probability P .X0 2 A0; : : : ; Xn 2 An/ can be given in the form

P .X0 2 A0; : : : ; Xn 2 An/ D
X

i02A0

: : :
X

in2An

P .X0 D i0; : : : ; Xn D in/;

where the probabilities are determined by relation (3.3), that is, with the help of the
initial distribution and the transition probabilities.
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The following remark clarifies an essential property of the homogeneous Markov
chain, and on that basis limit theorems can be proved. This property relates the
behavior of Markov chains to renewal and regenerative processes, which we will
discuss later on in Sects. 4.1 and 4.2.

Comment 3.6. From the memoryless property of a Markov chain X it follows that
we can divide the time access into disjoint parts where the process behavior is
mutually independent and follows the same probabilistic rules. We define the limits
of these independent parts by the time instants when the process stays in the state
i0 2 X .

Formally, we define the sequence of random time points 0 � �1 < �2 < : : : by
the condition X�n D i0, n D 1; 2; : : :, and Xs ¤ i0 if s 62 f�1; �2; : : :g. In this
way 0 � �1 < �2 < : : : are the times of the first, second, etc. visits to the state
i0, and i0 is not visited between �n and �nC1, n D 1; 2; : : :. We define Yn and Zn;k

by Yn D �nC1 � �n and Zn;k D X�nCk; 0 � k < Yn. Yn is the time between
the nth and the n C 1th visits to i0, and Zn;k is the state of the process at k steps
after the nth visit to i0, having that the next visit to i0 is after �n C k. Using the
memoryless property of the Markov chain X we obtain that the random variables
.Yn; Zn;k ; 0 � k < Yn/; n D 1; 2; : : :, are independent and their stochastic
behaviors are identical. This fact ensures that the process is regenerative (Sect. 4.2).

In many cases, the study of Markov chains will be made simpler by the use of
transition probability matrices.

Definition 3.7. The matrices associated with the transition probabilities of a
Markov chain X with finite or countably infinite elements are

… D

2

6
6
6
4

p00 p01 � � � p0N

p10 p11 � � � p1N

:::
:::

: : :
:::

pN 0 pN1 � � � pNN

3

7
7
7
5

and … D

2

6
6
6
4

p00 p01 p12 � � �
p10 p11 p12 � � �
p20 p21 p22 � � �
:::

:::
:::

: : :

3

7
7
7
5

:

These matrices are called (one-step) transition probability matrices.

A matrix with nonnegative entries A D �
aij

�
i;j 2X is called a stochastic matrix

if for every row the sum of row elements equals 1. Then all transition probability
matrices are stochastic ones:

(a) The elements of … are obviously nonnegative,

pij � 0; i; j 2 X :

(b) For every i the sum of the i th row elements of … equals 1,

X

j 2X
pij D 1; i 2 X :
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The first of the following three examples shows that a sequence of independent
and identically distributed discrete random variables is a homogeneous Markov
chain. The second one shows that the sequence of sums of these random variables
also constitutes a homogeneous Markov chain. If in the second case the random
variables are independent, but not identically distributed, then the defined sequences
will be an inhomogeneous Markov chain. The third example describes the stochastic
behavior of a random walk on the real number line; in this case it is reasonable
to choose the state space to be the set of all integer numbers, that is, X D
f0;˙1;˙2; : : :g.

Let Z0; Z1; : : : be a sequence of independent and identically distributed random
variables with a common CDF

P .Zm D k/ D pk; pk � 0; k D 0; 1; : : : ; m D 0; 1; : : : :

Example 3.8. Define the discrete-time stochastic process X with the relation Xn D
Zn; n D 0; 1; : : :. Then X is a homogeneous Markov chain with initial distribution
P .X0 D k/ D pk; k D 0; 1; : : : and transition probability matrix

… D

2

6
66
4

p0 p1 p2 � � �
p0 p1 p2 � � �
p0 p1 p2 � � �
:::

:::
:::

: : :

3

7
77
5

:

Example 3.9. Consider the process Xn D Z1 C : : : C Zn; n D 0; 1; : : :, with the
initial distribution P .X0 D 0/ D 1, i.e., the initial state is 0. The one-step transition
probabilities are

pij .n; nC 1/ D P .XnC1 D j j Xn D i/

D P .Z1 C : : :CZnC1 D j j Z1 C : : :CZn D i/

D P .ZnC1 D j � i/ D
�

pj �i ; ha j � i;

0; ha j < i:

This means that the process X is a homogeneous Markov chain with the transition
probability matrix

… D

2

66
6
6
6
4

p0 p1 p2 p3 p4 � � �
0 p0 p1 p2 p3 � � �
0 0 p0 p1 p2 � � �
0 0 0 p0 p1 � � �
:::

: : :
: : :

: : :
: : :

: : :

3

77
7
7
7
5

:

Example 3.10. Now let
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Fig. 3.1 Random walk

P .Zi D C1/ D p; P .Zi D �1/ D 1 � p .0 < p < 1/; i D 1; 2; : : : ;

be the common distribution function of a sequence of independent random variables
Z0; Z1; : : :, and define the process Xn D Z1 C : : : C Zn; n D 1; 2; : : :.
Let P .X0 D 0/ D 1 be the initial distribution of the process X . Then the process X

is a homogeneous Markov chain with initial state X0 D 0 and transition probability
matrix

pij .n; nC 1/ D P .XnC1 D j j Xn D i/

D P .Z1 C : : :CZnC1 D j j Z1 C : : :CZn D i/

D P .ZnC1 D j � i/ D
8
<

:

p; if j D i C 1;

1 � p; if j D i � 1;

0; if ji � j j ¤ 1:

The process X describes the random walk on the number line starting from the
origin and moves at every step one unit to the right with probability p and to the
left with probability .1�p/, with these moves being independent of each other. The
case p D 1=2 corresponds to the symmetric random walk.

Figure 3.1 demonstrates the transitions of the random walk, while Fig. 3.2 shows
the transitions of a Markov chain with a finite state space.

3.1.2 The m-Step Transition Probabilities

Let X be a DTMC with discrete state space X . Denote by

pij .s; t/ D P .Xt D j j Xs D i/

the transition probabilities of X and by
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Fig. 3.2 Markov chain with finite state space

….s; t/ D �pij .s; t/
�

i;j 2X ; i; j 2 X and 0 � s � t <1

the transition probability matrices. We set for s D t

pij .s; s/ D
�

1; if i D j;

0; if i ¤ j:

If the Markov chain X is homogeneous, then the transition probability pij .s; t/

depends only on the difference t � s. Thus, using the notation t D s Cm, we have

pij .s; s Cm/ D pij .m/; s; m D 0; 1; : : : ; i; j 2 X :

Definition 3.11. The quantities pij .m/; m D 0; 1; : : : ; i; j 2 X are called the
m-step transition probabilities of the Markov chain X , and the matrix ….m/ D�
pij .m/

�
i;j 2X associated with them is called an m-step transition probability

matrix.

Theorem 3.12 (Chapman–Kolmogorov equation). For every nonnegative integer
number r; s, the .r C s/-step transition probabilities of the homogeneous Markov
chain satisfy the equation

pij .r C s/ D
X

k2X
pik.r/pkj .s/: (3.4)

Proof. Assume the initial state of the process is i , that is, the process starts from the
state i at the time point 0. First we note that the relation

pik.r/ D P .Xr D k j X0 D i/ D P .X0 D i; Xr D k/

P .X0 D i/
D 0
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holds for some state k if and only if P .X0 D i; Xr D k/ D 0. On the other hand,
since fXr D kg; k 2 X form a complete system of events,

P
k2X P .Xr D k/ D 1,

and, in accordance with the definitions of the .r C s/-step transition probability and
the conditional probability, we obtain

pij .r C s/ D P .XrCs D j j X0 D i/

D P .XrCs D j; X0 D i/

P .X0 D i/
D
X

k2X

P .XrCs D j; X0 D i; Xr D k/

P .X0 D i/

D
X

k2X
Ifpik¤0g

P .X0 D i; Xr D k/

P .X0 D i/

P .XrCs D j; X0 D i; Xr D k/

P .X0 D i; Xr D k/

D
X

k2X
Ifpik¤0gP .Xr D k j X0 D i/P .XrCs D j j Xr D k; X0 D i/

D
X

k2X
Ifpik¤0gpik.0; r/pkj .r; r C s/ D

X

k2X
pik.r/pkj .s/:

ut
If we use the matrix notation ….s; t/ D �

pij .s; t/
�

i;j 2X , then the Chapman–
Kolmogorov equation can be rewritten in the matrix form

….s; t/ D ….s; r/….r; t/;

where s; r; t , and n are integer numbers satisfying the inequality 0 � s � r � t; n �
1. Successively repeating this relation we have

….0; n/ D ….0; 1/….1; n/ D : : : D ….0; 1/….1; 2/ � : : : �….n � 1; n/:

Consequently, the m-step transition probability matrix of a homogeneous Markov
chain can be given in the form

….m/ D …m;

where … D ….0; 1/ is the (one-step) transition probability matrix of the Markov
chain.

3.1.3 Classification of States of Homogeneous Markov Chains

The behavior of a Markov chain and its asymptotic properties essentially depend on
the transition probabilities, which reflect the connections among the different states.

Denote by Pi .t/ D P .Xt D i/; i 2 X the distribution of the Markov chain X at
the time t � 0. One of the most important questions in the theory of Markov chains



3.1 Discrete-Time Markov Chains with Discrete State Space 87

concerns the conditions under which a limit distribution exists for all initial states
X0 D k 2 X ,

lim
t!1P.t/ D � D .�i ; i 2 X /;

of the time-dependent distribution P.t/D .Pi .t/; i 2 X /, where �i�0;
P

i2X
�i D 1.

In the answer to this question, the arithmetic properties of the transition probabilities
play an important role.

To demonstrate this fact, consider the case where the sample space X can be
divided into two disjoint (nonempty) sets X1 and X2 such that

pij D pj i D 0; for all i 2 X1 and j 2 X2:

Obviously, if X0 D i0 2 X1 is the initial state, then the relation Xt 2 X1 is valid for
all t � 0, and in the opposite case, Xt 2 X2 for all t � 0 holds if the initial state i0
satisfies the condition i0 2 X2. This means that in this case we can in fact consider
two Markov chains .Xk; .Pi .0/; i 2 Xk/; …k/, k D 1; 2, that can be investigated
independently of each other.

Definition 3.13. The state j 2 X is accessible from the state i 2 X (denoted by
i ! j ) if there exists a positive integer m such that pij .m/ > 0. If the states i; j 2
X are mutually accessible from each other, then we say that they communicate
(denoted by i  ! j ).

pii .0/ D 1; i 2 X represents the assumption that “every state is accessible in 0

steps from itself.” If the state j 2 X is not accessible from the state i 2 X (denoted
by i ¹ j ), then pij .m/ D 0; m � 1. It is easy to check that i  ! j is an
equivalence relation: it is reflexive, transitive, and symmetric. Furthermore, if the
states i and j do not communicate, then either pij .m/ D 0; m � 1, or pj i .m/ D 0,
m � 1. If a state i satisfies the condition pii D pii .1/ D 1, then the state i is called
absorbing. This means that if the process visits an absorbing state at time t , then it
remains there forever and no more state transitions occur.

If the state space X does not consist of the states i and j such that i ! j , but
j ¹ i , then X can be given as a union of finite or countable disjoint sets

X D X1 [ X2 [ : : : ;

where for every k the states of Xk communicate, while for every k; n, k ¤ n, the
states of Xk cannot be accessible from the states of Xn.

Definition 3.14. A set of states is called irreducible if all pairs of its elements
communicate.

In the theory of Markov chains, irreducible classes play an important role because
they can be independently analyzed.

Definition 3.15. A Markov chain is called irreducible if all pairs of its states
communicate.
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Clearly, if a Markov chain is irreducible, then it consists of only one irreducible
class of states, that is, for every i; j 2 X there exists an integer m � 1 (depending
on i and j ) such that pij .m/ > 0.

Definition 3.16. For every i denote by d.i/ the greatest common divisor of integer
numbers m � 1 for which pii .m/ > 0. If pii .m/ D 0 for every m, then we set
d.i/ D 0. Then the number d.i/ is called the period of the Markov chain. If d.i/D1

for every state, then the Markov chain is called aperiodic.

Example 3.17 (Periodic Markov chain). Consider the random walk on the number
line demonstrated earlier in Example 3.10. Starting from an arbitrary state i we can
return to state i with positive probabilities in steps 2; 4; : : : only. It is clear that in
this case, pii .2k/ > 0 and pii .2.k�1/C1/ D 0 for every i 2 X and k D 1; 2; : : :;
therefore, d.i/ D 2. At the same time, the Markov chain is obviously irreducible.

Theorem 3.18. Let X be a homogeneous Markov chain with state space X , and let
X 0 � X be a nonempty irreducible class. Then for every i; j 2 X 0, the periods of i

and j are the same, i.e., d.i/ D d.j /.

Proof. Let i; j 2 X 0, i ¤ j , be two arbitrary states. Since X 0 is an irreducible class,
there exist t; s � 1 integers such that the inequalities pij .t/ > 0 and pj i .s/ > 0

hold. From this, by the Chapman–Kolmogorov equation, we obtain

pii .t C s/ � pij .t/pj i .s/ > 0 and pjj .t C s/ � pj i .s/pij .t/ > 0I

therefore, the numbers d.i/ and d.j / differ from 0. Choose arbitrarily an integer
m � 1 such that pii .m/ > 0. Repeatedly applying the Chapman–Kolmogorov
equation, we have for any k � 1

pjj .t C s C km/ � pj i .s/pii .km/pij .t/ � pj i .t/ .pi i .m//k pij .s/ > 0:

Thus by the definition of the period of the state j , d.j / is a divisor of both .tCsCm/

and .tCsC2m/, and hence it is also a divisor of their difference .tCsC2m/�.tC
s Cm/ D m. From this it immediately follows that d.j / is a divisor of every m for
which pii .m/ > 0, and thus it is a divisor of d.i/; therefore, d.j / � d.i/. Changing
the role of i and j we get the reverse inequality d.j / � d.i/, and consequently
d.j / D d.i/. ut

Notice that from this theorem it follows that the states of an irreducible class have
a common period d.X 0/ called the period of the class. As a consequence, we have
the following assertion.

Corollary 3.19. If the Markov chain X is homogeneous and irreducible with state
space X , then every state has the same period d D d.X / > 0 and is periodic or
aperiodic depending on d > 1 or d D 1, respectively.

The main property of the numbers for which the probabilities of returning to a
state i in k steps are positive, i.e., pii .k/ > 0, is given by the following assertion.



3.1 Discrete-Time Markov Chains with Discrete State Space 89

Theorem 3.20. Let X be a homogeneous irreducible Markov chain with state space
X . Then for every state i 2 X there exists an integer Mi such that pii .d.i/m/ > 0

if m �Mi .

Proof. By the previous theorem, d.i/ � 1. Let m1; : : : ; mL be different positive
integer numbers such that, on the one hand, pii .mk/ > 0, 1 � k � L, and
on the other hand, d.i/ can be given as the greatest common divisor of integers
m1; : : : ; mL. Then, using the well-known assertion from the number theory that
there exists an integer Mi such that for every integer m � Mi , the equation
md.i/ D r1m1 C : : : C rLmL has a solution with nonnegative integers i1; : : : ; iL.
Applying this fact and the Chapman–Kolmogorov equation we obtain

pii .md.i// � .pii .m1//
r1 � : : : � .pii .mL//rL > 0;

and consequently the assertion of the theorem is true. ut
Consider now the homogeneous irreducible Markov chain with period d.X / > 1.

We show that for the transitions among the states there exists a cyclic property,
demonstrated in Example 3.28, of the random walk on a number line: if the walk
starts from state 0, then the process can take only even integers in even steps and
only odd integers in odd steps. The cyclic property in this case means that after even
numbers follow odd numbers and after odd numbers follow even numbers as states.
This division of states is generalized subsequently for Markov chains with arbitrary
period d .

Let i0 2 X be an arbitrarily fixed state, and define the sets

Xk D fj 2 X W pi0j .k Cmd/ > 0; for some m � 0g, k D 0; 1; : : : ; d � 1:

That is, Xk is the set of states that are available from i0 in k Cmd (m D 0; 1; : : : ;)
steps.

Theorem 3.21. The sets X1; : : : ;Xd�1 are disjoint, X D X0 [ : : :[Xd�1, and the
Markov chain allows for only the following cyclic transitions among the sets Xk:

X0 ! X1 ! : : :! Xd�1 ! X0: (3.5)

Proof. First we prove that the sets X0; : : : ;Xd�1 are disjoint and their union is X .
In contrast, assume that there exist integers k1; k2; m1; m2 such that 0 � k1 < k2 �
d�1; m1; m2 � 1; pi0j .k1Cm1d/ > 0, and pi0j .k2Cm2d/ > 0. Since the Markov
chain is irreducible, there exists an integer K � 1 such that pii0.K/ > 0. Using the
Chapman–Kolmogorov equation we have

pi0i0 .k1 Cm1d CK/ � pi0j .k1 Cm1d/pj i0.K/ > 0;

pi0i0 .k2 Cm2d CK/ � pi0j .k2 Cm2d/pj i0.K/ > 0:



90 3 Markov Chains

By the definition of the period d , d is a divisor of both .k1 Cm1d CK/ and .k2 C
m2dCK/, thus it is also a divisor of their difference, that is, .k2�k1/C.m2�m1/d .
Consequently, d is a divisor of the difference .k2 � k1/, which is a contradiction,
because 0 < k2 � k1 � d � 1. The irreducibility condition ensures that if all states
i 2 X are accessible from the state i0, then X D X0 [ : : : [ Xd�1.

We now verify that for every k; 0 � k � d � 1; i 2 Xk and j 2 X such that
pij > 0, the relation j 2 XK , 0 � K < d , is true, where

K D
�

k C 1; if 0 � k < d � 1;

0; if k D d � 1:

This property guarantees the transitions between the states in (3.5).
Since j 2 Xk , then, by the definition of the sets Xk , there exists an integer m � 0

such that pi0j .k C md/ > 0. From this, by the use of the Chapman–Kolmogorov
equality, we have

pi0`.k C 1Cmd/ � pi0j .k Cmd/pj ` > 0:

In view of the fact that

k C 1Cmd D
�

K Cm d; if 0 � k < d � 1;

0C .mC 1/ d; if k D d � 1;

from the definition of XK follows the relation j 2 XK . ut
As a consequence of Theorem 3.21, we have the next important corollary, which

allows us to consider an aperiodic Markov chain instead of a periodic one.

Corollary 3.22. Theorem 3.21 states that starting from a state of Xk , k D
0; 1; : : : ; d � 1, after exactly d steps the process returns to a state of Xk . If we
define the quantities

p
.k/
ij D P .Xd D i j X0 D j /; i; j 2 Xk;

then
P

j 2Xk

p
.k/
ij D 1; i 2 Xk follows. This means that the matrices P.k/ D

h
p

.k/
ij

i

i;j 2Xk

are stochastic; they can be interpreted as one-step transition proba-

bility matrices, and consequently the processes

Y .k/ D .Y0; Y1; : : :/; k D 0; 1; : : : ; d � 1;

with the state space Xk and transition probability matrix P.k/, are homogeneous and
irreducible Markov chains, and so, instead of the original chain, d homogeneous
irreducible Markov chains can be considered independently.
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If the states of the Markov chain are numbered according to the Xk , k D
0; 1; : : : ; d � 1, sets, then the transition probability matrix has the following
structure:

X0f 0 P0!1

X1f 0 P1!2

: : :
: : :

Xd�2f 0 Pd�2!d�1

Xd�1f Pd�1!0 0

:

3.1.4 Recurrent Markov Chains

We consider the question of what conditions ensure the existence of limit theorems
for homogeneous aperiodic Markov chains, that is, under what conditions does there
exist the limit distribution � D .�i ; i 2 X /; .�i � 0;

P

i2X
�i D 1/, such that,

independently of the initial distribution .pi ; i 2 X /, the limit is

lim
n!1Pi .n/ D lim

n!1P .Xn D i/ D �i ; i 2 X ‹

To provide an answer to this question, it is necessary to consider some quantities
such as the probability and the expected value of returning to a given state of a
Markov chain or arriving at a state j from another state i . Let i; j 2 X be two
arbitrary states, and introduce the following notations:

Tij D inffn W n > 1; Xn D j j X0 D ig;
fij .0/ D 0;

fij .1/ D P .X1 D j j X0 D i/;

fij .n/ D P .X1 ¤ j; X2 ¤ j; : : : ; Xn�1 ¤ j; Xn D j j X0 D i/; n D 2; 3; : : ::

If i ¤ j , then the quantities fij .n/ D PfTij D ng mean the first hit (or first
passage) probabilities for the state j from i , which is the probability that starting
from the state i at time point 0, the process will be first in the state j during n steps
(or in time n). If i D j , then the quantity fii .n/ means the first return probability
in the state i in n steps.

Denote fij D
1P

kD1

fij .k/; i; j 2 X . Obviously, the quantity fij means the

probability that the Markov chain starts from a state i at time 0 and at some time
arrives at the state j , that is, fij D PfTij <1g.
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Definition 3.23. A state i is called recurrent if the process returns to the state i

with probability 1, that is, fii D PfTii < 1g D 1. If fii < 1, then the state i is
called transient.

From the definition it follows that when i is a transient state, then a process
with positive probability will never return to the state i . The following theorem
describes the connection between the return probabilities and the m-step transition
probabilities of a Markov chain in the form of a so-called discrete renewal equation.

Theorem 3.24. For every i; j 2 X ; n D 1; 2; : : :,

pij .n/ D
nX

kD1

fij .k/pjj .n � k/: (3.6)

Proof. By the definition pjj .0/ D 1, in the case n D 1 we have pij .1/ D
fij .1/pjj .0/ D fij .1/. Now let n � 2. Using conditional probability and the
Markov property we get

P .XnD j; X1D j j X0D i/ D P .XnD j j X1D j; X0D i/P .X1D j j X0D i/

D pjj .n � 1/pij .1/ D fij .1/pjj .n � 1/:

Similarly, we obtain

P .Xn D j; Xk D j; Xm ¤ j; 1 � m � k � 1 j X0 D i/

D fij .k/pjj .n � k/; n D 1; 2; : : ::

On the basis of the last two equations, it follows that

pij .n/ D P .Xn D j; X1 D j j X0 D i/

C
nX

kD2

P .Xn D j; Xk D j; Xm ¤ j; 1 � m � k � 1 j X0 D i/

D fij .1/pjj .n � 1/C
nX

kD2

fij .k/pjj .n � k/; n D 1; 2; : : ::

ut
The notion of the recurrence of a state is defined by the return probabilities, but

the following theorem makes it possible to provide a condition for it with the use of
n-step transition probabilities pii .n/ and to classify the Markov chains.

Theorem 3.25. (a) The state i 2 X is recurrent if and only if

1X

nD1

pi i .n/ D 1:
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(b) If i and j are communicating states and i is recurrent, then j is also recurrent.

(c) If a state j 2 X is transient, then for arbitrary i 2 X
1X

nD1

pij .n/ <1 and consequently lim
n!1pij .n/ D 0:

Proof. (a) By the definition pii .0/ D 1 and using relation (3.6) of the preceding
theorem we obtain

1X

nD1

pi i .n/ D
1X

nD1

nX

kD1

fi i .k/pii .n � k/ D
1X

kD1

1X

nDk

fi i .k/pii .n � k/

D
1X

kD1

fi i .k/

 

pii .0/C
1X

nD1

pi i .n/

!

:

From this equation, if the sum
1P

nD1

pi i .n/ is finite, then we get

fii D
 

1C
1X

nD1

pi i .n/

!�1 1X

nD1

pi i .n/ < 1I

consequently, i is not a recurrent state.
If
P1

nD1 pi i .n/ D 1, then obviously lim
N !1

PN
nD1 pi i .n/ D 1. Since for all

positive integers N the relation

NX

nD1

pi i .n/ D
NX

nD1

nX

kD1

fi i .k/pii .n � k/

D
NX

kD1

NX

nDk

fi i .k/pii .n � k/ �
NX

kD1

fi i .k/

NX

nD0

pi i .n/

�
 

1C
NX

nD1

pi i .n/

!
NX

kD1

fi i .k/

holds, from the limit
NP

nD1

pi i .n/!1

1�fii D
1X

kD1

fi i .k/�
NX

kD1

fi i .k/�
 

1C
NX

kD1

pi i .k/

!�1 NX

kD1

pi i .k/!1; N !1

follows. Consequently, fii D 1, and thus the state i is recurrent.
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(b) Since the states i and j communicate, there exist integers n; m � 1 such that
pij .m/ > 0 and pj i .n/ > 0. By the Chapman–Kolmogorov equation for every
integer k � 1,

pii .mC k C n/ � pij .m/pjj .k/pj i .n/;

pjj .mC k C n/ � pj i .n/pii .k/pij .m/:

From this

1X

kD1

pi i .k/ �
1X

kD1

pi i .mC nC k/ � pij .m/pj i.n/

1X

kD1

pjj .k/;

1X

kD1

pjj .k/ �
1X

kD1

pjj .mC nC k/ � pij .m/pj i.n/

1X

kD1

pi i .k/:

Both series
1P

kD1

pi i .k/ and
1P

kD1

pjj .k/ are simultaneously convergent or

divergent because pij .m/ > 0 and pj i .n/ > 0; thus, by assertion (a) of
the theorem, the states i and j are recurrent or transient at the same time.

(c) Applying the discrete renewal Eq. (3.6) and result (a), assertion (c) immediately
follows.

ut
Definition 3.26. A Markov chain is called recurrent or transient if every state is
recurrent or transient.

Comment 3.27. Using the n-step transition probabilities pii .n/, a simple formula
can be given for the expected value of the number of returns to a state i 2 X . Let
X0 D i be the initial state of the Markov chain. The expected value of the return
number is expressed as

E

 1X

kD1

IfXkDigjX0 D i

!

D
1X

kD1

E
�
IfXkDigjX0 D i

�

D
1X

kD1

P .Xk D i j X0 D i/ D
1X

kD1

pi i .k/:

The assertion of Theorem 3.25 can be interpreted in another way: a state i 2 X is
recurrent if and only if the expected value of the number of returns equals infinity.

Example 3.28 (Recurrent Markov chain). Consider the random walk process X D
.Xn; n D 0; 1; : : :/ described in Example 3.10. The process, starting from the
origin, at all steps moves one unit to the right with probability p and to the left
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with probability .1 � p/, independently of each other. We have proved earlier that
the process X is a homogeneous, irreducible, and periodic Markov chain with period
2. Here we discuss the conditions under which the Markov chain will be recurrent.

By the condition X0 D 0, it is clear that p00.2k C 1/ D 0; k D 0; 1; : : :.
The process can return in 2k steps to the state 0 only if it moves, in some way, k

times to the left and k times to the right, the probability of which is

p00.2k/ D
 

2k

k

!

pk.1 � p/k D .2k/Š

kŠkŠ
Œp.1 � p/�k:

Using the well-known Stirling’s formula, which gives an asymptotic relation for kŠ

as k !1 as follows (see p. 616 of [5]):

p
2�kkC1=2e�k < kŠ <

p
2�kkC1=2e�k

�
1C 1

4k

�
I

then

kŠ �
�

k

e

�kp
2�kI

and thus we have

p00.2k/ �
�

2k

e

�2k p
2�.2k/

 �
k

e

�kp
2�k

!�2

Œp.1 � p/�k D Œ4p.1 � p/�kp
�k

:

By the inequality between arithmetic and geometrical means, the numerator has an
upper bound

4 Œp.1 � p/� � 4

	
p C .1� p/

2


2

D 1;

where the equality holds if and only if p D 1�p, that is, p D 1=2. In all other cases
the product is less than 1; consequently, the sum of return probabilities p00.2k/

is divergent if and only if p D 1=2 (symmetric random walk); otherwise, it is
convergent. As a consequence of Theorem 3.25, we obtain that the state 0, and
together with it all states of the Markov chain, is recurrent if and only if p D 1=2.

Note that a similar result is valid if we consider the random walk with integer
coordinates in a plane. It can be verified that only in the case of a symmetric random
walk will the state .0; 0/ be recurrent, when the probabilities of the movements left-
right-up-down are 1=4 � 1=4. In addition, if a random walk is defined in a similar
way in higher-dimensional (� 3) spaces, then the Markov chain will no longer be
recurrent.
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3.2 Fundamental Limit Theorem of Homogeneous
Markov Chains

3.2.1 Positive Recurrent and Null Recurrent Markov Chains

Let X be a homogeneous Markov chain with the finite (N < 1) or countably
infinite (N D 1) state space X D f0; 1; : : : ; N g and (one-step) transition
probability matrix … D �

pij

�
i2X . Let P D .pi D P .X0 D i/; i 2 X / be the

initial distribution. Denote by P.n/ D .Pi .n/ D P .Xn D i/; i 2 X /; n D 0; 1; : : :,
the time-dependent distribution of the Markov chain; then P.0/ D P:

The main question to be investigated here concerns the conditions under which
there exists a limit distribution of m-step transition probabilities

lim
m!1pij .m/ D �j ; where �j � 0 and

X

i2X
�i D 1

and how it can be determined. The answer is closely related to the behavior of
the recurrent states i of a Markov chain. Note that the condition of recurrence
fii D P1

kD1 fi i .k/ D 1 does not ensure the existence of a limit distribution.
The main characteristics are the expected values of the return times �i D Tii DP1

kD1 kfii .k/, and the recurrent states will be classified according to whether or not
the �i are finite because the condition �i <1; i 2 X , guarantees the existence of
a limit distribution.

Definition 3.29. A recurrent state i 2 X is called positive recurrent (or nonnull
recurrent) if the return time has a finite expected value �i ; otherwise, if �i D 1,
then it is called null recurrent.

Theorem 3.30. Let X be a homogeneous, irreducible, aperiodic, and recurrent
Markov chain. Then for all states i; j 2 X ,

lim
m!1pij .m/ D 1

�j

:

Note that this theorem not only gives the limit of the m-step transition
probabilities with the help of the expected value of the return times, but it
interprets the notion of positive and null recurrence. By definition, a recurrent
state j is positive recurrent if 1=�j > 0 and null recurrent if 1=�j D 0 (here and
subsequently, we write 1=1 D 0). The assertion given in the theorem is closely
related to the discrete renewal Eq. (3.6), and using it we can prove a limit theorem,
as the following lemma shows (see [29] and Chap. XIII of [31]).

Lemma 3.31 (Erdős, Feller, Pollard). Let .qi ; i � 0/ be an arbitrary distribution
on the natural numbers, i.e., qi � 0;

P1
iD0 qi D 1. Assume that the distribution

.qi ; i � 0/ is not latticed, that is, the greatest common divisor of the indices with
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the probabilities qi > 0 equals 1. If the sequence fvn; n � 0g, satisfies the discrete
renewal equation

v0 D 1; vn D
nX

kD1

qkvn�k; n � 1;

then

lim
n!1vn D 1

�
;

where � D
1P

kD1

kqk and 1
�
D 0 if � D 1.

The proof of Theorem 3.30 uses the following result from analysis.

Lemma 3.32. Assume that the sequence .q1; q2; : : :/ of nonnegative real numbers
satisfies the condition

P1
iD0 qi D 1. If the sequence of real numbers .wn; n � 0/ is

convergent, lim
n!1wn D w, then

lim
n!1

nX

kD0

qn�kwn D w:

Proof. It is clear that the elements of fwng are bounded; then there exists a number
W such that jwn j � W; n � 0. From the conditions lim

n!1wn D w and
P1

iD0 qi D 1

it follows for any " > 0 that there exist integers N."/ and K."/ such that

jwn � w j < " and
1X

kDK."/

qk < ":

It is easy to check that for every n > n."/ D max.N."/; K."//,

jwn � w j �
ˇ
ˇ
ˇ
ˇ̌

nX

kD0

qkwn�k �
nX

kD0

qkw

ˇ
ˇ
ˇ
ˇ̌

�
n."/X

kD0

qkjwn�k � w j C
nX

kDn."/C1

qkjwn�k � w j C
1X

kDnC1

qkjw j

�
n."/X

kD0

qk"C
nX

kDn."/C1

qk.W C jwj/C
1X

kDnC1

qkjw j

� "C ".W C jwj/C "jw j D ".1CW C 2jwj/:

Since " > 0 can be chosen freely, we get the convergence wn ! w; n!1. ut
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Proof (Theorem 3.30).

(a) We prove firstly the assertion for the case i D j . By the discrete renewal
equation

pii .0/ D 1; pii .n/ D
nX

kD1

fi i .k/pii .n � k/; n D 1; 2; : : : ;

where the state i is recurrent, fii D
1P

kD1

fi i .k/ D 1 (fii � 0). Using the

assertion of Lemma 3.31 we have

lim
n!1pii .n/ D 1

�i

:

(b) Now let i ¤ j , and apply Lemma 3.32. Since the Markov chain is irreducible

and recurrent, fij D
1P

kD1

fij .k/ D 1 (fij � 0). Then, as n!1,

lim
n!1pij .n/ D lim

n!1

nX

kD1

fij .k/pjj .n�k/ D
1X

kD1

fij .k/
1

�j

D 1

�j

: ut

Similar results can be easily proven for periodic cases. Let X be a homogeneous,
irreducible, and recurrent Markov chain with period d > 1. Then the state space
X can be decomposed into disjoint subsets X0; : : : ;Xd�1 [see Eq. (3.21)] such that
the Markov chain allows only for cyclic transitions between the states of the sets
Xi : X0 ! X1 ! : : : ! Xd�1 ! X0. Let 0 � k; m � d � 1 be arbitrarily fixed
integers; then, starting from a state i 2 Xk , the process arrives at a state of Xk in
exactly

` D
�

m� k; if k < m;

m � k C d; if m � k;

steps. From this follows pij .s/ D 0 if s � 1 is divisible by d .

Theorem 3.33. Let X be a homogeneous, irreducible, and recurrent Markov chain
with period d > 1 and i 2 Xk , j 2 Xm arbitrarily fixed states. Then

lim
n!1pij .`C nd/ D d

�j

;

where �j D
1P

kD1

k fjj .k/ D
1P

rD1

rd fjj .rd/:

Proof. First assume k D m, and consider the transition probabilities pij .nd/
for i; j 2 Xk . This is equivalent to the case (see Conclusion 3.22 according to
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the cyclic transitions of a Markov chain) where we investigate the Markov chain
X with the state space Xk and it has the (one-step) transition probability matrix
… D Œpij �i;j 2Xk

, pij D pij .d/; i; j 2 Xk . Obviously, the Markov chain X that
originated from X is a homogeneous, irreducible, recurrent, and aperiodic Markov
chain. Using the limit theorem 3.31 we obtain

lim
n!1pii .n/ D lim

n!1pii .nd/ D 1
1P

kD1

kfi i .kd/

D d
1P

kD1

kdfi i .kd/

D d
1P

kD1

kfi i .k/

D d

�i
;

where fii .r/ D 0 if r ¤ d; 2d; : : :.
Assume now that k ¤ m. Then fij .k/ D 0 and pij .k/ D 0 if k ¤ `Cnd; n � 0;

moreover, the Markov chain X is recurrent because

fij D
1X

sD1

fij .s/ D
1X

kD1

fij .`C rd/ D 1I

then

pij .`Cnd/ D
`CndX

kD1

fij .k/pjj .`Cnd �k/ D
`CndX

rD1

fij .`C rd/pjj .rd/! d

�j
; n!1:

ut
Theorem 3.34. If the homogeneous Markov chain X is irreducible and has a
positive recurrent state i 2 X , then all its states are positive recurrent.

Proof. Let j 2 X be arbitrary. Since the Markov chain is irreducible, there exist
integers s; t > 0 such that pij .s/ > 0; pj i .t/ > 0. Denote by d the period of
the Markov chain. It is clear that d > 0 because pii .s C t/ � pij .s/pj i .t/ > 0.
Moreover,

pii .s C nd C t/ � pij .s/pjj .nd/pj i .t/;

pjj .s C nd C t/ � pj i .t/pi i .nd/pij .s/:

Applying Theorem 3.33 and taking the limit as n!1 we have

1

�i

� pij .s/
1

�j

pj i .t/;
1

�j

� pij .s/
1

�i

pj i .t/I

thus

1

�i

� pij .s/pj i .t/
1

�j

� Œpij .s/pj i .t/�
2 1

�i

:

From the last inequality it immediately follows that when the state i is recurrent, at
the same time j is also recurrent. ut

Summing up the results derived previously, we can state the following theorem.
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Theorem 3.35. Let X be a homogeneous irreducible Markov chain; then

1. All states are aperiodic or all states are periodic with the same period,
2. All states are transient or all states are recurrent, and in the latter case

– All are positive recurrent or all are null recurrent.

3.2.2 Stationary Distribution of Markov Chains

Retaining the notations introduced previously, P.n/ D .Pi .n/ D P .Xn D i/; i 2
X / denotes the distribution of a Markov chain depending on the time n � 0. Then
P.0/ D .Pi .0/ D pi ; i 2 X / is the initial distribution.

Definition 3.36. Let � D .�i ; i 2 X / be a distribution, i.e., �i � 0 andP

i2X
�i D 1. � is called a stationary distribution of the Markov chain X if by

choosing P.0/ D � as the initial distribution, the distribution of the process does
not depend on time, that is,

P.n/ D �; n � 0:

A stationary distribution is also called an equilibrium distribution of a chain.

With Markov chains, the main problem is the existence and determination of
stationary distributions. Theorem 3.30 deals with the convergence of the sequence
of n-step transition probabilities P.n/ as n!1, and if it converges, then the limit
gives the stationary distribution of the chain. The proofs of these results are not too
difficult but consist of many technical steps [35, 36], and so we omit them here.

Theorem 3.37. Let X be a homogeneous, irreducible, recurrent, and aperiodic
Markov chain. Then the following assertions hold:

(A) The limit

�i D lim
n!1Pi .n/ D 1

�i

; i 2 X ;

exists and does not depend on the initial distribution.

(B) If all states are recurrent null states, then the stationary distribution does not
exist and �i D 0 for all i 2 X .

(C) If all states are positive recurrent, then the stationary distribution � D .�i ; i 2
X / does exist and �i D 1=�i > 0 for all i 2 X and P.n/ ! �; as n ! 1.
The stationary distribution is unique and satisfies the system of linear equations

X

i2X
�i D 1; (3.7)

�i D
X

j 2X
�j pj i ; i 2 X : (3.8)
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Comment 3.38. Since the Markov chain is irreducible, it is enough to require in
part (B) the existence of a positive recurrent state because from the existence of a
single positive recurrent state and the fact that the Markov chain is irreducible it
follows that all states are positive recurrent.

Equation (3.8) of Theorem 3.37 can be rewritten in the more concise form � D
�…, where … is the one-step transition probability matrix of the chain.

The initial distribution does not play a role in Eqs. (3.7) and (3.8); therefore,
when the stationary distribution � exists, it does not depend on the initial distribu-
tion, only on the transition probability matrix ….

Given that the stationary distribution � exists, it can be easily proven that �

satisfies the system of linear Eq. (3.8), and at the same time, these circumstances
lead to an iterative method of solution [see Eq. (3.9) below]. This iterative procedure
to determine the stationary distribution can be applied to chains with finite state
spaces.

The time-dependent distribution P.n/ D .P0.n/; P1.n/; : : :/ satisfies the equa-
tion for all n D 0; 1; : : :,

P.n/ D P.n � 1/…: (3.9)

Repeating this equation n times, we have

P.n/ D P.0/…n; n D 0; 1; : : ::

Since it is assumed that the stationary distribution � exists, we can write

� D lim
n!1P.n/I

thus from the equation

lim
n!1P.n/ D lim

n!1P.n � 1/…

it follows that

� D �…:

Definition 3.39. A state i of an irreducible homogeneous Markov chain X is called
ergodic if the state i is aperiodic and positive recurrent, i.e., d.i/ D 1; �i < 1.
If all states of the chain are ergodic, then the Markov chain is called ergodic.

Here we define the ergodic property only of Markov chains. This property can be
defined for much more complex stochastic processes as well.

By Theorem 3.37, a homogeneous, aperiodic, positive recurrent Markov chain is
always ergodic. Since an irreducible Markov chain with finite state space is positive
recurrent, the following statement is also true.

Theorem 3.40. A homogeneous, irreducible, aperiodic Markov chain with finite
state space is ergodic.
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In practical applications, the equilibrium distributions of Markov chains play
an essential role. In what follows, we give two theorems without proofs whose
conditions ensure the existence of the stationary distribution of a homogeneous,
irreducible, aperiodic Markov chain X with state space X D f0; 1; : : :g. The third
theorem gives an upper bound for the convergence rate to the stationary distribution
of the iterative procedure (3.9).

Theorem 3.41 (Klimov [56]). If there exists a function g.i/; i 2 X , a state i0 2 X ,
and a positive constant " such that the relations

E .g.XnC1/ j Xn D i/ � g.i/ � "; i � i0; n � 0;

E .g.XnC1/ j Xn D i/ <1; i � 0; n � 0;

hold, then the chain X is ergodic.

Theorem 3.42 (Foster [33]). Assume that there exist constants a; b > 0 and ` � 0

such that the inequalities

E .XnC1 j Xn D i/ � a; i � `;

E .XnC1 j Xn D i/ � i � b; i > `;

are valid. Then the Markov chain X is ergodic.

Theorem 3.43 (Bernstein [10]). Assume that there exist a state i0 2 X and a
constant � > 0 such that for all i 2 X the inequality pii0 � � holds. Then

lim
n!1pij .n/ D �j ; i; j 2 X ;

where � D .�i ; i 2 X / denotes the stationary distribution of the Markov chain;
moreover,

X

i2X

ˇ
ˇpij .n/ � �j

ˇ
ˇ � 2.1� �/n; n � 1:

3.2.3 Ergodic Theorems for Markov Chains

Let X be a homogeneous irreducible and positive recurrent Markov chain with
state space X D f0; 1; : : :g and i a fixed state. Compute the time and the relative
frequencies when the process stays in the state i on the time interval Œ0; T � as
follows:

Si.T / D
TX

nD0

IfXnDig;

S i .T / D 1

T

TX

nD0

IfXnDig D 1

T
Si.T /:
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Let us consider when and in what sense there exists a limit of the relative
frequencies Si .T / as T ! 1 and, if it exists, how it can be determined. This
problem has, in particular, practical importance when applying simulation methods.
To clarify the stochastic background of the problem, we introduce the following
notations.

Assume that a process starts at time 0 from the state i . Let 0 D T
.i/
0 < T

.i/
1 <

T
.i/
2 < : : : be the sequence of the consecutive random time points when a Markov

chain arrives at the state i , that is, T
.i/

k ; k D 1; 2; : : :, are the return time points to
the state i of the chain. This means that

X.T .i/
n / D i; n D 0; 1; : : : and X.k/ ¤ i; if k ¤ T

.i/
0 ; T

.i/
1 ; : : ::

Denote by

�
.i/

k D T
.i/

k � T
.i/

k�1; k D 1; 2; : : : ;

the time length between the return time points. Since the Markov chain has the
memoryless property, these random variables are independent; moreover, from
the homogeneity of the Markov chain it follows that �

.i/
n ; n � 1, are also

identically distributed. The common distribution of these random variables �
.i/
n is

the distribution of the return times from the state i to i , namely, .fi i .n/; n � 1/.
Heuristically, it is clear that when the return time has a finite expected value �i ,

then during the time T the process returns to the state i on average T=�i times. This
means that the quantity Si .T / fluctuates around the value 1=�i and has the same
limit as T ! 1. This result can be given in exact mathematical form on the basis
of the law of large numbers as follows.

Theorem 3.44. If X is an ergodic Markov chain, then, with probability 1,

lim
T !1Si .T / D 1

�i

; i 2 X : (3.10)

If the Markov property is satisfied, then not only are the return times independent
and identically distributed, but the stochastic behaviors of the processes on the return
periods are identical as well. This fact allows us to prove more general results for an
ergodic Markov chain as Eq. (3.10).

Theorem 3.45. Let X be an ergodic Markov chain and g.i/; i 2 X , be a real-
valued function such that

P

i2X
�i jg.i/ j <1. Then the convergence

lim
T !1

1

T

TX

nD1

g.Xn/ D
X

i2X
�i g.i/

is true with probability 1, where �i ; i 2 X , denotes the stationary distribution of the
Markov chain, which exists under the given condition.
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3.2.4 Estimation of Transition Probabilities

In modeling ergodic Markov chains an important question is to estimate the
transition probabilities by the observation of the chain. The relative frequencies give
corresponding estimates of the probabilities because by Theorem 3.44 they tend to
them with probability 1 under the given conditions. Note that from the heuristic
approach discussed previously it follows under quite general conditions that not
only can the law of large numbers be derived for the relative frequencies, but the
central limit theorems can as well.

Consider now the estimate of transition probabilities with the maximum like-
lihood method. Let X be an ergodic Markov chain with finite state space X D
f0; 1; : : : ; N g and with the (one-step) transition probability matrix … D .pij /i;j 2X .
Assume that we have an observation of n elements X1 D i1; : : : ; Xn D in starting
from the initial state X0 D i0, and we will estimate the entries of the matrix …. By
the Markov property, the conditional likelihood function can be given in the form

P .X1 D i1; : : : ; Xn D in j X0 D i0/ D pi0i1 : : : pin�1in :

Denote by nij ; i; j 2 X , the number of one-step transitions from the state i to j

in the sample path i0; i1; : : : ; in, and let 00 D 1; 0=0 D 0. Then the conditional
likelihood function given the X0 D i0 initial state is

L.i1; : : : ; inI… j i0/ D
NY

iD0

0

@
NY

j D0

p
nij

ij

1

A : (3.11)

Applying the maximum likelihood method, maximize the expression in pij under
the conditions

pij � 0; i; j 2 X ;
X

j 2X
pij D 1; i 2 X :

It is clear that there are no relations between the products playing a role in the
parentheses of Eq. (3.11) for different i ; therefore, the maximization problem can
be solved by means of N C 1 different, but similar, optimization problems:

max

8
<

:

NY

j D0

p
nij

ij W pij � 0;
X

j 2X
pij D 1

9
=

;
; i D 0; 1; : : : ; N:

Obviously it is enough to solve it only for one state i since the others can be derived
analogously to that one.

Let i 2 X be a fixed state, and denote ni D P

j 2X
nij . Apply the Lagrange

multiplier method; then for every m D 0; : : : ; N ,
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@

@pim

0

@
NY

j D0

p
nij

ij C �.pi0 C p11 C : : :C piN � 1/

1

A D nim

pim

NY

j D0

p
nij

ij C � D 0I

consequently, for a constant �i we have

nim

pim

D �

NY

j D0

p
�nij

ij D �i ; m D 0; : : : ; N:

From this it follows that the equations

nim D �ipim; m D 0; : : : ; N;

hold; then

NX

mD0

nim D ni D �i

NX

mD0

pim D �i :

These relations lead to the conditional maximum likelihood estimates for the
transition probabilities pim as follows:

bpim D nim

�i

D nim

ni

; 0 � i; m � N:

It can be verified that these estimates bpim converge to pim with probability 1 as
!1.

3.3 Continuous-Time Markov Chains

Like the case of the DTMCs, we assume that the state space X is a finite
f0; 1; : : : ; N g or countably infinite set f0; 1; : : :g and assume that the time parameter
varies in T D Œ0;1/. According to the general definition (3.1), a process X D
.Xt ; t � 0/ is said to be CTMC with state space X if for every positive integer n

and 0 � t0 < t1 < : : : < tn, i0; : : : ; in 2 X , the equation

P .Xtn D in j Xtn�1 D in�1; : : : ; Xt0 D i0/

D P .Xtn D in j Xtn�1 D in�1/ D pin�1;in .tn�1; tn/

holds, provided that a conditional probability exists. The Markov chain X is (time)
homogeneous if the transition probability function pij .s; t/ satisfies the condition
pij .s; t/ D pij .t � s/ for all i; j 2 X , 0 � s � t . Denote by ….s; t/ D�
pij .s; t/; i; j 2 X

�
the transition probability matrix.
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In the case of a CTMC the time index t 2 Œa; b� can take uncountably many
values for arbitrary 0 � a < b < 1; therefore, the collection of random
variables Xt ; t 2 .a; b�, is also uncountable. If we consider the questions in
accordance with the sample paths of the chain, then these circumstances can lead
to measurability problems (discussed later). However, the Markov processes that
will be investigated later are the so-called stepwise processes, and they ensure the
necessary measurability property.

We will deal mainly with the part of the theory that is relevant to queueing theory,
and we touch upon only some questions in general cases showing the root of the
measurability problems. A discussion of jumping processes, which is more general
than the investigation of stepwise Markov chains, can be found in [36, Chap. III].

If the Markov chain fXt; t � 0g, is homogeneous, then the transition probability
functions pij .s; t/ can be given in a simpler form:

pij .s; s C t/ D pij .t/; i; j 2 X ; s; t � 0;

and thus the matrix form of transition probabilities is

….s; s C t/ D ….t/; s; t � 0:

As was done previously, denote by

P.t/ D .P0.t/; P1.t/; : : :/; t � 0;

the time-dependent distribution of the chain, where Pi .t/ D P .Xt D i/; i 2 X ;
then P.0/ means the initial distribution, while if there exists a state k 2 X such that
P .X0 D k/ D 1, then k is the initial state.

3.3.1 Characterization of Homogeneous Continuous-Time
Markov Chains

We now deal with the main properties of homogeneous CTMCs. Similarly to the
discrete-time case, the transition probabilities satisfy the following conditions.

(A) pij .s/ � 0; s � 0; pij .0/ D ıij ; i; j 2 X , where ıij is the Kronecker
ı-function (which equals 1 if i D j and 0 if i ¤ j ).

(B)
P

j 2X
pij .s/ D 1; s � 0; i 2 X .

(C) pij .s C t/ D P

k2X
pik.s/pkj .t/; s; t � 0; i; j 2 X .

An additional condition is needed for our considerations.
(D) The transition probabilities of the Markov chain X satisfy the conditions

lim
h!0Cpij .h/ D pij .0/ D ıij ; i; j 2 X : (3.12)
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Comment 3.46. Condition (B) expresses that ….s/; s � 0, is a stochastic matrix.
We will not consider the so-called killed Markov chains, where the lifetime Œ0; �� of
the chain is random (where the process is defined) and with probability 1 is finite,
i.e., Pf� < 1g D 1. It should be noted that condition (B) ensures that the chain is
defined on the whole interval Œ0;1/ because the process will be certainly in some
state i 2 X for any time s � 0.

Condition (C) is the Chapman–Kolmogorov equation related to the continuous-
time case. It can be given in matrix form as follows:

….s C t/ D ….s/….t/, s; t � 0:

Similarly to the discrete-time case, the time-dependent distribution of the chain
satisfies the equation

P.s C t/ D P.s/….t/; s; t � 0;

and thus for all t > 0

P.t/ D P.0/….t/:

The last relation means that the initial distribution and the transition probabilities
uniquely determine the distribution of the chain at all time points t � 0.

Instead of (D) it is enough to assume that the condition

lim
h!0Cpii .h/ D 1; i 2 X ;

holds, because for every i; j 2 X , i ¤ j , the relation

0 � pij .h/ �
X

j ¤i

pij .h/ D 1 � pii .h/! 0; h! 0C;

is true.

Under conditions (A)–(D), the following relations are valid.

Theorem 3.47. The transition probabilities pij .t/; 0 � t < 1; i ¤ j , are
uniformly continuous.

Proof. Using conditions (A)–(D) we obtain

ˇ
ˇpij .t C h/ � pij .t/

ˇ
ˇ D

ˇ̌
ˇ
ˇ
ˇ

X

k2X
pik.h/pkj .t/ �

X

k2X
ıikpkj .t/

ˇ̌
ˇ
ˇ
ˇ

�
X

k2X
jpik.h/ � ıikjpkj .t/

� 1�pii .h/C
X

k¤i

pik.h/ D 2.1�pii .h//! 0; h! 0C :

ut
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Theorem 3.48 ([36, p. 200]). For all i; j 2 X , i ¤ j , the finite limit

qij D lim
h!0C

pij .h/

h

exists.
For every i 2 X there exists a finite or infinite limit

qi D lim
h!0C

1 � pii .h/

h
D �p0

i i .0/:

The quantities qij and qi are the most important characteristics of a homogeneous
continuous-time Markov chain. Subsequently we will use the notation qii D �qi ,
i 2 X , also and interpret the meaning of these quantities.

Definition 3.49. The quantity qij is called the transition rate of intensity from the
state i to the state j , while qi is called the transition rate from the state i .

We classify the states in accordance with whether or not the rate qi is finite. If
qi < 1, then i is called a stable state, while if qi D C1, then we say that i

is an instantaneous state. Note that there exists a Markov chain with the property
qi D C1 [36, pp. 207–210].

Definition 3.50. A stable noninstantaneous state i is called regular if
X

i¤j

qij D �qii D qi ;

and a Markov chain is locally regular if all its states are regular.

Corollary 3.51. As a consequence of Theorem 3.48, we obtain that locally regular
Markov chains satisfy the following asymptotic properties as h! 0C:

P .XtCh ¤ i j Xt D i/ D qi hC o .h/;

P .XtCh D i j Xt D i/ D 1 � qi hC o .h/;

P .XtCh D j j Xt D i/ D qij hC o .h/; j ¤ i:

From Theorem 3.48 it also follows that Markov chains with a finite state space are
locally regular because all qij ; i ¤ j , are finite and, consequently, all qi are also
finite.

The condition

q D sup
i2X

qi <1 (3.13)

will play an important role in our subsequent investigations. We introduce the
notation
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Q D �qij

�
i;j 2X D

h
p0

ij .0/
i

i;j 2X D …0.0/

for locally regular Markov chains. Recall that

lim
t!0C….t/ D ….0/ D I; (3.14)

where I is the identity matrix with suitable dimension.

Definition 3.52. The matrix Q is called a rate or infinitesimal matrix of a
continuous-time Markov chain.

The following assertions hold for all locally regular Markov chains under the
initial condition (3.14) [36, pp. 204–206].

Theorem 3.53. The transition probabilities of a locally regular Markov chain
satisfy the Kolmogorov backward differential equation

…0.t/ D Q ….t/; t � 0 (I).

If condition (3.13) is fulfilled, then the Kolmogorov forward differential equation

…0.t/ D ….t/ Q; t � 0 (II)

is valid. Under condition (3.13) differential Eqs. (I) and (II), referred to as first- and
second-system Kolmogorov equations, have unique solutions.

3.3.2 Stepwise Markov Chains

The results of Theorem 3.53 are related to the analytical properties of transition
probabilities and do not deal with the stochastic behavior of sample paths. In this
part we investigate the so-called stepwise Markov chains and their sample paths.
We introduce the embedded Markov chain and consider the transition probabilities
and holding times. In the remaining part of this chapter we assume that the Markov
chain is locally regular and condition (3.13) holds.

Definition 3.54. A Markov chain X is a jump process if for any t � 0 there exists
a random time 	 D 	.t; !/ > 0 such that

Xs D Xt ; if s 2 Œt; t C	/:

In the definition, 	 can be the remaining time the process stays at state X.t/, and
the definition requires that this time be positive.
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Definition 3.55. We say that a Markov chain has a jump at time t0 > 0 if there
exists a monotonically increasing sequence t1; t2; : : : such that tn ! t0; n ! 1
and at the same time Xtn ¤ Xt0; n D 1; 2; : : :. A Markov chain is called a stepwise
process if it is a jump process and the number of jumps is finite for all sample paths
on all finite intervals Œ0; t �.

It should be noted that a stepwise process is continuous from the right and has a
limit from the left at all jumping points.

Denote by .�0 D/0 < �1 < �2 < : : : the sequence of consecutive jumping points;
then all finite time intervals consist, at most, of finite jumping points. Between two
jumping points the state of the process does not change, and this time is called the
holding time.

Definition 3.56. A stepwise Markov chain is called regular if the sequence of
holding times 
k D �kC1 � �k; k D 0; 1; : : :, satisfies the condition

P

 1X

kD0


k D1
!

D 1:

By the definition of stepwise process, we have

Xs 	 X�i ; s 2 Œ�i ; �iC1/; i D 0; 1; : : ::

Denote by Yk D X�
k
; k D 0; 1; : : :, the states at time points where the transitions

change, and define for i ¤ j

�ij D
(

qij

qi
; if qi > 0;

0; if qi D 0:
(3.15)

In addition, let

�ii D 1 �
X

j ¤i

�ij : (3.16)

By the Markov property, the process .Yk; k � 0/, is a discrete-time homogeneous
Markov chain with the state space X D f0; 1; : : :g and the transition probabilities

P .YnC1 D j j Yn D i/ D �ij ; ij 2 X ; n � 0:

The process .Yk; k � 0/ is called an embedded Markov chain of the continuous-
time stepwise Markov chain X .

Note that the condition qi D 0 corresponds to the case where i is an absorbing
state, and in other cases the holding times for arbitrary state i have an exponential
distribution with parameter qi whose density function is qi e�qi x; x > 0.
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3.3.3 Construction of Stepwise Markov Chains

The construction derived here gives a method for simulating stepwise Markov
chains at the same time. Thus, we construct a CTMC fXt; t � 0g, with initial
distribution P.0/ D .P0.0/; P1.0/; : : :/ and transition probability matrix ….t/ D�
pij .t/

�
; t � 0, satisfying condition (3.13).

Using notations (3.15) and (3.16), define the random time intervals with length
S0; S1; : : :, nonnegative random variables K0; K1; : : :, taking integer numbers and
the random jumping points �m D S0 C : : :C Sm�1; m D 1; 2; : : : ; by the following
procedure.

(a) Generate a random variable K0 with distribution P.0/ [i.e., P .K0 D k/ D
Pk.0/; k 2 X ] and a random variable S0 distributed exponentially with
parameter qK0 conditionally dependent on K0. Define Xt D K0 if 0 � t < S0.

(b) In the mth steps (m D 1; 2; : : :) generate a random variable Km with distribution
P .m/ D .�Km�1;j ; j 2 X /, and a random variable Sm distributed exponentially
with the parameter qKm . Define Xt D Km if �m � t < �mC1; m D 0; 1; : : :.

Then the stochastic process fXt; t � 0g is a stepwise Markov chain with initial
distribution P.0/ and transition probability matrix ….t/; t � 0.

3.3.4 Some Properties of the Sample Path of Continuous-Time
Markov Chains

By the considerations of the sample paths of CTMCs, there are problems that cannot
arise in the case of discrete-time chains. For example, Xt ; t � 0, are random
variables; therefore, fXt � xg 2 A is an event for all t � 0 and x 2 R. But at
the same time, for example, the set

\

a�t<b

f! 2 � W Xt.!/ � xg

is not necessarily an event (element of A). This question is closely connected to the
separability property of the processes (see, for example, [35, Chap. III]). The root
essence is whether a countable and everywhere dense subset S �Œ0;1/ exists such
that the statistical behavior of the process X can be characterized by a countable set
of the random variables Xt; t 2 S. The notion of separability is given in general by
the following definition.

Definition 3.57. A process X D .Xt ; t � 0/ is called separable if there exists an
event N 2 A with probability 0 and a countable subset S D fri ; i D 1; 2; : : :g of
RC D Œ0;1/ that is always dense in RC such that for any open set G � RC and for
any closed set F � X the sets f! W Xri 2 F; ri 2 Gg and f! W Xt 2 F; t 2 Gg
can differ only on the subset of N .
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With the help of transition probabilities one can easily give a simple condition
that ensures the continuity in probability of the process and, at the same time, the
separability property.

Definition 3.58. A stochastic process .Xt ; t � 0/ is called continuous in
probability (or stochastically) at the point t0 � 0 if for all positive numbers "

the convergence

lim
t!t0

P .jXt �Xt0 j > "/ D 0

holds. A process is said to be continuous in probability if it is continuous in
probability everywhere.

Theorem 3.59. If a Markov chain X is locally regular and condition (3.13) is
satisfied, then it is continuous in probability.

Proof. First we check that

ı.h/ D sup
k2X

.1 � pkk.h//! 0; h! 0C : (3.17)

Since by the relation in [36, p. 201]

1 � pkk.h/

h
� lim

h!0C
1 � pkk.h/

h
D qk � q;

then

sup
k2X

.1� pkk.h// � qh! 0; h! 0C :

It is not difficult to see that for arbitrary u; h � 0 and " > 0 we have

P .jXuCh � Xu j > "/ � P .jXuCh � Xu j > 0/

D
X

k2X
P .jXuCh �Xu j > 0 j Xu D k/P .Xu D k/

D
X

k2X
Œ1 � P .jXuCh �Xu j D 0 j Xu D k/P .Xu D k/

D
X

k2X
.1 � pkk.h//P .Xu D k/ � ı.h/! 0; h! 0C;

which means actually the continuity in probability of the chain X . ut
Definition 3.60. The stochastic processes .Xt ; t � 0/ and .X 0

t ; t � 0/, given on
the same probability space, are said to be equivalent if

P
�
Xt D X 0

t

� D 1; t � 0:

The following theorem ensures that under the condition of continuity in
probability, one can consider the separable version of the original process.
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Theorem 3.61. If a process .Xt ; t � 0/ is continuous in probability, then
there exists a continuous-in-probability separable version .X 0

t ; t � 0/ that is
stochastically equivalent to .Xt ; t � 0/.

Theorem 3.62. If a Markov chain satisfies condition (3.13), then there exists a
separable and stochastically equivalent version of this Markov chain.

Proof. From Theorem 3.59 it follows that the Markov chain is continuous in
probability; therefore, as a consequence of Theorem 3.61, we have the assertion
of the present theorem. ut

We assume later on that condition (3.13) is fulfilled because this condition with
Theorem 3.62 guarantees that the Markov chain has a stochastically equivalent
separable version. Assuming that condition (3.13) holds, one can bypass the
measurability problems that can arise in the case of CTMCs, and the holding times
are positive for all states.

Theorem 3.63. If a homogeneous Markov chain X satisfies condition (3.13), then
X has an equivalent stepwise version.

Proof. Since from condition (3.13) follows Eq. (3.17), then by the use of the
theorem of [36, p. 281], we obtain that there exists a stepwise version of the Markov
chain that is equivalent to the original Markov chain. ut

3.3.5 Poisson Process as Continuous-Time Markov Chain

Theorem 3.64. Let .Nt ; t � 0/ be a homogeneous Poisson process with intensity
rate �, N0 D 0. Then the process Nt is a homogeneous Markov chain.

Proof. Choose arbitrarily a positive integer n, integers 0 � i1 � : : : � inC1, and
real numbers t0 D 0 < t1 < : : : < tnC1. It can be seen that

P
�
NtnC1

D inC1 j Ntn D in; : : : ; Nt1 D i1
�

D P
�
NtnC1

D inC1; Ntn D in; : : : ; Nt1 D i1
�

P .Ntn D in; : : : ; Nt1 D i1/

D P
�
NtnC1

�Ntn D inC1 � in; : : : ; Nt2 �Nt1 D i2 � i1; Nt1 D i1
�

P .Ntn �Ntn�1 D in � in�1; : : : ; Nt2 �Nt1 D i2 � i1; Nt1 D i1/
:

Since the increments of the Poisson process are independent, the last fraction can
be written in the form

P
�
NtnC1

�Ntn D inC1 � in
� � : : : � P .Nt2 �Nt1 D i2 � i1/P .Nt1 D i1/

P .Ntn �Ntn�1 D in � in�1/ � : : : � P .Nt2 �Nt1 D i2 � i1/P .Nt1 D i1/

D P
�
NtnC1

�Ntn D inC1 � in
�
:
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From the independence of the increments NtnC1
�Ntn and Ntn D Ntn�N0 it follows

that the events
˚
NtnC1

�Ntn D inC1 � in
�

and fNtn D ing are also independent,
and thus

P
�
NtnC1

�Ntn D inC1 � in
� D P

�
NtnC1

�Ntn D inC1 � in jNtn D in
�

D P
�
NtnC1

D inC1jNtn D in
�
;

and finally we have

P
�
NtnC1

D inC1jNtn D in; : : : ; Nt1 D i1
� D P

�
NtnC1

D inC1jNtn D in
�
:

ut
It is easy to determine the rate matrix of a homogeneous Poisson process with

intensity �. Clearly, the transition probability of the process is

pij .h/ D P .NtCh D j j Nt D i/ D P .Nh D j � i/ D .�h/j �i

.j � i/Š
e��h; j � i;

and

pij .h/ 	 0; j < i:

If j < i , then obviously qij 	 0. Let now i � j ; then

qij D lim
h!0C

pij .h/

h
D lim

h!0C
1

h

.�h/j �i

.j � i/Š
e��h D

�
�; if j D i C 1;

0; if j > i C 1:

Finally, let i D j . By the use of the L’Hospital rule

qi D lim
t!0C

1 � pii .h/

h
D lim

t!0C
1 � e��h

h
D �:

Thus, summing up the obtained results, we have the rate matrix

Q D

2

6
6
4

�� � 0 0 �
0 �� � 0 �
0 0 �� � �
� � � � �

3

7
7
5 : (3.18)

The Poisson process is regular because for all i 2 X
X

j ¤i

qij D � D qi <1:
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3.3.6 Reversible Markov Chains

Definition 3.65. A discrete-time Markov process is called reversible if for every
state i; j the equation

�i pij D �j pj i

holds, where �i is the equilibrium probability of the states i 2 X .

The equation of the definition is usually called a local (or detailed) balance
condition because of its similarity to the (global) balance Eq. (3.8) or, more
precisely, to its form

X

j 2X
�i pij D

X

j 2X
�j pj i ; i 2 X :

The notation of reversibility of Markov chains originates from the fact that if
the initial distribution of the chain equals the stationary one, then the forward and
reverse conditional transition probabilities are identical, that is,

P .Xn D i j XnC1 D j / D P .XnC1 D i j Xn D j /:

Indeed,

P .Xn D i j XnC1 D j / D P .Xn D i; XnC1 D j /

P .XnC1 D j /

D P .Xn D i/P .XnC1 D j j Xn D i/

P .XnC1 D j /

D �i pij

�j

D �j pj i

�j

D pj i

D P .XnC1 D i j Xn D j /:

In the case of CTMCs, a definition can be applied analogously to the
discrete-time case.

Definition 3.66. A CTMC is called reversible if for all pairs i; j of states the
equation

�i qij D �j qj i

holds, where �i is the equilibrium probability of the state i 2 X .

The reversibility property and the local balance equations are often valid for
Markov chains describing the processes in queueing networks (Sect. 10.1); in
consequence the equilibrium probabilities can be computed in a simple, so-called
product form.
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3.4 Birth-Death Processes

Definition 3.67. The right-continuous stochastic process f�.t/; t � 0g is a
birth-death process if

1. Its set of states is I D f0; 1; 2; : : :g [that is, �.t/ 2 I ];
2. The sojourn time in the state k 2 I; k > 0, is exponentially distributed with the

parameter

˛k D ak C bk; ak; bk � 0; k > 0;

and it is independent of the trajectory before arriving at the state k;
3. After the state k 2 I , k � 1, the process visits the state k C 1 with probability

pk D ak

˛k

and state k � 1 with probability qk D 1 � pk D bk

˛k

;

4. For the state 0 we consider the following two cases:

• The process stays an exponentially distributed amount of time in state 0 with
parameter ˛0 D a0 > 0 and after that visits state 1 (with probability p0 D 1).

• Once the process arrives at state 0 it remains there forever (q0 D 1; p0 D 0).

Pk.0/ D P .�.0/ D k/ D 'k; k 2 I , denotes the initial distribution of the
process.

If f�.t/; t � 0g is a birth-death process, then it is an infinite-state
continuous-time (time-homogeneous) Markov chain. The parameters ak and bk

are referred to as the birth rate and the death rate in the state k, respectively, and k

is referred to as the population. The special case where bk 	 0 is referred to as the
birth process and where ak 	 0 as the death process.

Let T0 D 0 < T1 < T2 < : : : denote the time instants of the population changes
(birth and death). The discrete-time f�n; n � 0g process, where �n D �.Tn/ is the
population after the nth change in population [nth jump of �.t/], is referred to as
the Markov chain embedded in the population changes of f�.t/; t � 0g. The state-
transition probability matrix of the embedded Markov chain is

2

6
66
6
6
4

q0 p0 0 0 0 � � �
q1 0 p1 0 0 � � �
0 q2 0 p2 0 � � �
0 0 q3 0 p3 � � �
:::

:::
:::

:::
:::

: : :

3

7
77
7
7
5

:

3.4.1 Some Properties of Birth-Death Processes

The transient state probability, its Laplace transform, and the initial probabilities for
k � 0, t � 0, and Re s > 0 are denoted by
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Pk.t/ D P .�.t/ D k/; p�
k .s/ D

1Z

0

e�st Pk.t/ dt; Pk.0/ D P .�.0/ D k/ D 'k:

In special cases, the following theorems are true. ([69])

Theorem 3.68. If p0 D 1; 0 < pk < 1; k � 1, then the following statements
hold:

1. Pk.t/ satisfies the following ordinary differential equations:

P 0
0.t/ D �a0P0.t/C b1P1.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1.t/PkC1.t/; k � 1:

2. For 'k; k � 0, and Re s > 0 the following linear system defines p�
k .s/:

sp�
0 .s/� '0 D �a0p�

0 .s/C b1p
�
1 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .ak C bk/p�
k .s/C bkC1p

�
kC1.s/; k � 1:

3. For k � 0 the limits

lim
t!1 Pk.t/ D �k

exist and are independent of the initial distribution of the process.

�k D 0; k � 0;

if

1X

kD0

�k <1; (3.19)

where �0 D 1 and �k D a0a1 � � �ak�1

b1b2 � � �bk

; k � 1. Otherwise, �k > 0; k � 0, and

�0 D
0

@
1X

j D0

�j

1

A

�1

; (3.20)

�k D �k�0: (3.21)

Theorem 3.69 (Finite birth-death process). Let the state space of �.t/ be
f0; 1; 2; : : : ; ng, p0 D 1, 0 < pk < 1, for 1 � k � n � 1 and pn D 0; then
the following statements hold:

1. Pk.t/ satisfies the following ordinary differential equations:

P 0
0.t/ D �a0P0.t/C b1P1.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; 1 � k � n � 1;

P 0
n.t/ D an�1Pn�1.t/ � bnPn.t/:
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2. If the initial distribution of the process is 'k D P .�.0/ D k/; 0 � k � n, then
for Re s > 0 the Laplace transforms of the transient state probabilities p�

k .s/

satisfy

sp�
0 .s/ � '0 D �a0p

�
0 .s/C b1p

�
1 .s/;

sp�
k .s/� 'k D ak�1p

�
k�1.s/� .ak C bk/p�

k .s/C bkC1p
�
kC1.s/; 1 � k � n � 1;

sp�
n .s/� 'n D an�1p

�
n�1.s/ � bnp�

n .s/:

3. For 0 � k � n the

lim
t!1 Pk.t/ D �k > 0

limit exists and is independent of the initial distribution:

�j D �j �0; �0 D
0

@
1X

j D0

�j

1

A

�1

;

where

�0 D 1; �j D a0a1 � � �aj �1

b1b2 � � �bj

; 1 � j � n:

Theorem 3.70. The following equations hold.

1. Let p0 D 0; 0 < pk < 1; k � 1; then for Pk.t/ we have

P 0
0.t/ D b1P1.t/;

P 0
1.t/ D �.a1 C b1/P1.t/C b2P2.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; k � 2;

and for Re s > 0 and the initial distribution 'k; k � 0, we have

sp�
0 .s/ � '0 D b1p

�
1 .s/;

sp�
1 .s/ � '1 D �.a1 C b1/p

�
1 .s/C b2p

�
2 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .ak C bk/p�
k .s/C bkC1p

�
kC1.s/; k � 2:

2. Let �.t/ 2 f0; 1; 2; : : : ; ng, p0 D 0, 0 < pk < 1 if 1 � k � n � 1, and pn D 0;
then for Pk.t/ we have

P 0
0.t/ D b1P1.t/;

P 0
1.t/ D �.a1 C b1/P1.t/C b2P2.t/;
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P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; 2 � k � n � 1;

P 0
n.t/ D an�1Pn�1.t/ � bnPn.t/;

and for p�
k .s/, Re s > 0, we have ['k D P .�.0/ D k/; 0 � k � n]

sp�
0 .s/ � '0 D b1p

�
1 .s/;

sp�
1 .s/ � '1 D �.a1 C b1/p

�
1 .s/C b2p

�
2 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .akCbk/p�
k .s/CbkC1p

�
kC1.s/; 2� k� n � 1;

sp�
n .s/� 'n D an�1p�

n�1.s/� bnp�
n .s/:

Comment 3.71. In Theorems 3.68–3.70 the differential equations for Pj .t/ are
indeed the Kolmogorov (forward) differential equations for the given systems. The
equations for p�

j .s/ can be obtained from the related differential equations for Pj .t/

using

1Z

0

e�st P 0
j .t/ dt D sp�

j .s/� P 0
j .0/ :

In Theorem 3.70 state 0 is an absorbing state. In this way, the theorem allows one
to compute the parameters of the busy period of birth-death Markov chains starting
from state k ('k D 1), where the busy period is the time to reach state 0 (which
commonly represents the idle state of a system, where the server is not working, in
contrast to the i > 0 states, where the server is commonly busy). Let …k denote the
length of the busy period starting from state k; then

…k.t/ D P .…k � t/ D P .�.t/ D 0/ D P0.t/

defines the distribution of the length of the busy period, and from Theorem 3.70.1
we have

…0
k.t/ D P 0

0.t/ D b1P1.t/;

from which the Laplace–Stieltjes transform of the distribution of …k.t/, �k.s/, is

�k.s/ D
1Z

0

e�st d…k.t/ D
1Z

0

e�st …0
k.t/ dt

D
1Z

0

e�st b1P1.t/ dt D b1p
�
1 .s/:

If the arrival intensity is constant in all states, i.e., ak D � > 0 (8k � 0), then
the arrival process is a Poisson process at rate �. Further results on the properties of
special birth-death processes can be obtained, e.g., in [48].
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3.5 Exercises

Exercise 3.1. Compute the probability that a CTMC with the generator matrix0

@
�1 0:5 0:5

1 �2 1

1 0 �1

1

A stays in state 1 after the second state transition if the initial

distribution is .0:5; 0:5; 0/.

Exercise 3.2. Compute the stationary distribution of a CTMC with the generator

matrix

0

@
�3 3 0

4 �4 0

0 0 0

1

A if the initial distribution is .0:5; 0; 0:5/.

Exercise 3.3. Zn and Yn, n D 1; 2; : : : ; are discrete independent random variables.
P .Zn D 0/ D 1�p, P .Zn D 1/ D p and P .Yn D 0/ D 1�q, P .Yn D 1/ D q.
Define the transition probability matrix of the DTMC Xn if

XnC1 D .Xn � Yn/C CZn;

where .x/C D max.x; 0/. This equation is commonly referred to as the evolution
equation of a DTMC.

Exercise 3.4. Xn, n D 1; 2; : : : ; is a DTMC with the transition probability

matrix P D
0

@
3=6 1=6 2=6

3=4 0 1=4

0 1=3 2=3

1

A. Compute E .X0X1/ and corr.X0; X1/ if the initial

distribution is .0:5; 0; 0:5/ and the state space is S D f0; 1; 2g.
Exercise 3.5. The generator of a CTMC is defined by

q0j D

8
ˆ̂<

ˆ̂
:

1
3

if j D 1;
1
3

if j D 2;

� 2
3

if j D 0;

0 otherwiseI
qij D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
:

1
3i

if j D i C 1;
1
3i

if j D i C 2;

� 2
3i
� � if j D i;

� if j D i � 1;

0 otherwise;

for i D 1; 2; : : : :

Evaluate the properties of this Markov chain using, e.g., the Foster theorem.

Exercise 3.6. Show examples of

• Reducible
• Periodic (and irreducible)
• Transient (and irreducible)

DTMCs. Evaluate limn!1 P .Xn D i/ for these DTMCs, where i is a state of the
Markov chain.
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Exercise 3.7. Two players, A and B, play with dice according to the following rule.
They throw the dice, and if the number is 1, then A gets £2 from B; if the number
is 2 or 3, then A gets £1 from B; and if the number is greater than 3, then B gets £1

from A. At the beginning of the game both A and B have £3. The game lasts until
one of the players can no longer pay. What is the probability that A wins?

Exercise 3.8. Two players, A and B, play with dice according to the following rule.
They throw the dice, and if the number is 1, then A gets £2 from B; if the number
is 2 or 3, then A gets £1 from B; and if the number is greater than 3, then B gets £1

from A. At the beginning of the game both A and B have £3. If one of them cannot
pay the required amount, then he must give all his money to the other player and the
game goes on. What is the expected amount of money A will have after a very long
run? What is the probability that B will not be able to pay the required amount in
the next step of the game after a very long run?

Exercise 3.9. There are two machines, A and B, at a production site. Their failure
times are exponentially distributed with the parameters �A and �B , respectively.
Their repair times are also exponentially distributed with the parameters �A and
�B , respectively. A single repairman is associated with the two machines; he can
work on only one machine at a time. Compute the probability that at least one of the
machines works.

Exercise 3.10. Let X D .X0; X1; : : :/ be a two-state Markov chain with the state

space X D f0; 1g and with the probability transition matrix P D
	

a 1 � a

1 � b b



,

where 0 < a; b < 1. Prove that P n D 1
2�a�b

… C .aCb�1/n

2�a�b
.I � P /, where … D

	
1� b 1 � a

1� b 1 � a



and I D

	
1 0

0 1



.
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