
Chapter 10
Queueing Networks

10.1 Introduction of Queueing Networks

Up to now, we have overviewed the main methods for the analysis of individual
queueing systems. But the analysis of large telecommunication systems or computer
systems executing complex interrelated tasks (e.g., transaction processing systems,
Web server farms) requires the application of systems models that contain several
servers (potentially of different kinds) where customers are traveling among these
servers for consecutive services.

Queueing network models are commonly used for the analysis of these kinds of
systems. A queueing network is a graph with directed arcs whose nodes represent
the kinds of queueing systems that we have studied till now. The arcs of the graph
describe the potential transitions of customers among these queueing systems.

It is a commonly applied modeling assumption in queueing networks that the
transition of a customer from one node to the next is memoryless and independent
of the network state, i.e., it is independent of the past history of the network, the
current number of customers at the network nodes, and the status of the servers.
After being served at a network node a customer chooses the next node according
to the weight (probability) associated with the outgoing arcs of the given node.

There are two main classes of queueing networks: open and closed queueing
networks. In closed queueing networks, a fixed number of customers circulate in the
network, and there is no arrival/departure from/to the environment. In open queueing
networks customers arrive from the environment, obtain a finite number of services
at the network nodes (nodes are potentially visited more than once), and leave the
network eventually.

Queueing networks are classified also based on the structure of the directed
arcs. Queueing networks without a loop (series of directed arcs forming a loop)
are referred to as acyclic or feedforward queueing networks, and those with a
loop are referred to as cyclic or feedback queueing networks. Acyclic networks
are meaningful only in the case of open queueing networks. The nodes of acyclic
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networks can be numbered such that arcs are always directed from a node with a
lower index to a node with a higher index or to the environment. Henceforth we
assume that the nodes of acyclic networks are numbered in this way.

10.2 Burke’s Theorem

It is possible to analyze a class of open acyclic queueing networks based on the
following theorem.

Theorem 10.1 ([17]). The customer departure process of a stable M=M=m queue
is a Poisson process with the same rate as the arrival process of the queue.

Proof. The number of customers in an M=M=m queue is a reversible Markov chain
(Sect. 3.3.6). The time reverse of the process is stochastically identical (according
to all finite-dimensional joint probabilities) with the original process. In this way
the departure instances of the original process (which are the arrival instants of the
reverse process) are stochastically identical with the arrival instants of the original
process (which are the departure instants of the reverse process) which is a Poisson
process. ut

An important consequence of the theorem is that in equilibrium the time till the
next departure is exponentially distributed, i.e., memoryless.

Let D�.s/ be the Laplace transform of the time till the next departure, A�.s/ the
Laplace transform of the interarrival time distribution, B�.s/ the Laplace transform
of the service time distribution, and p the probability that in equilibrium the queue
will be idle; then

D�.s/ D p B�.s/ C .1 � p/ A�.s/ B�.s/:

Using that B�.s/ D �

sC�
, A�.s/ D �

sC�
, p D �

�
, we have

D�.s/ D �

�

�

s C �
C � � �

�

�

s C �

�

s C �
;

and after some algebra

D�.s/ D �

s C �

s� C �2 C �� � �2

�.s C �/
D �

s C �
:

This expression indicates that we often have exponentially distributed interar-
rival, interdeparture times in Markovian queueing networks.
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10.3 Tandem Network of Two Queues

The simplest queueing network is the open tandem network (Fig. 10.1) composed
of two M=M=1 queues in which customers arriving from the environment get in
queue 1 and after being served in queue 1 get in queue 2, from where, after being
served, they depart to the environment. Let the arrival rate from the environment to
queue 1 be � and the service rate at queue 1 and 2 be �1 and �2, respectively.

From Burke’s theorem we have that the arrival intensity to both queues is �, and
in this way the condition of stability is

�

�1

< 1
�

�2

< 1

that is
� < min.�1; �2/:

Let us consider a Markov chain describing the number of customers in both
queues. We identify the states of this Markov chain by a vector of the number of
customers in the first queue and the second queue. That is, state fi; j g refers to the
state where there are i customers in the first and j customers in the second queue.
The transition rates of this Markov chain are as follows:

fi; j g ! fi C 1; j g W �;

fi; j g ! fi � 1; j C 1g W �1 when i � 1;

fi; j g ! fi; j � 1g W �2 when j � 1:

We denote the stationary probability of state fi; j g by pi;j . The balance equations
of the Markov chains are

8
ˆ̂
<

ˆ̂
:

�p0;0 D �2p0;1;

.� C �2/p0;j D �1p1;j �1 C �2p0;j C1 when j � 1;

.� C �1/pi;0 D �pi�1;0 C �2pi;1 when i � 1;

.� C �1 C �2/pi;j D �pi�1;j C �1piC1;j �1 C �2pi;j C1 when i; j � 1:

According to Burke’s theorem, in equilibrium the arrival process of queue 2 is a
Poisson process with rate �. Using this fact the stationary state probabilities are

pi;j D p
.1/
i p

.2/
j D

�

1 � �

�1

��
�

�1

�i �

1 � �

�2

��
�

�2

�j

;

μ
2μ

1

λ

Fig. 10.1 Tandem network
of two nodes
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Fig. 10.2 Acyclic queueing network

where p
.1/
i and p

.2/
j are the stationary distributions of the corresponding M=M=1

queues.
Stationary solutions of this kind are referred to as product-form solution because

the joint distribution is the product of two marginal distributions. It is important to
note that despite the product-form stationary distribution the number of customers
in the two queues is not independent. There is a very strong correlation between
those processes, namely, a departure from the first queue results in an arrival at the
second queue.

Based on the stationary distribution we can easily determine the important
performance indices. For example, the mean number of customers in the system, the
mean time spent in the network, and the mean waiting time spent in the network are

E .N / D
X

i

X

j

.i C j /pi;j D
X

i

ip
.1/
i C

X

j

jp
.2/
j D

�
�1

1 � �
�1

C
�
�2

1 � �
�2

;

E .T / D E .N /

�
D

1
�1

1 � �
�1

C
1

�2

1 � �
�2

D 1

�1 � �
C 1

�2 � �
;

E .W / D E .T / � 1

�1

� 1

�2

;

where we used Little’s law to obtain the last two quantities.

10.4 Acyclic Queueing Networks

Acyclic queueing networks (Fig. 10.2) are queueing networks in which the outgoing
arcs of the nodes are directed toward nodes with a higher index or to the
environment. Consequently, in such queueing networks a customer visits each node
at most once.

Based on Burke’s theorem and the results on the superposition and filtering of
independent Poisson processes [Property (h) of Poisson processes in Sect. 2.7.3],
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we can apply the same approach as the one applied for the analysis of the tandem
queueing network. That is, we can (explicitly) compute the arrival rate to each node
of the network, and we can assume that the arrival process at the given node is a
Poisson process with that arrival rate. Based on this assumption, the product-form
solution remains valid, that is,

pk1;k2;��� ;kN D
NY

iD1

p
.i/

ki
;

where p
.i/

ki
is the stationary probability of the ki state of an M/M/1 queue with a

Poisson arrival process with the parameter �i and exponentially distributed service
time with the parameter �i , which is

p
.i/

ki
D
�

1 � �i

�i

��
�i

�i

�ki

:

10.5 Open, Jackson-Type Queueing Networks

In the previous subsections we discussed acyclic queueing networks and, based
on Burke’s theorem, we assumed that the arrival processes of the queues were
independent Poisson processes. Based on this assumption we obtained product-form
solutions. From now on we consider cyclic queueing networks and consequently
we can no longer apply Burke’s theorem due to the dependencies on the arrival
processes of customers at a queue.

The main results of this kind of queueing networks were published by Jackson
[44] in 1963. Since then, these kinds of networks have often been referred to
as Jackson-type networks (Fig. 10.3). Jackson considered the following queueing
network model:

• The network is composed of N nodes.
• There are mi servers at node i.
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Fig. 10.3 Jackson-type queueing network
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• The service time distribution at node i is exponentially distributed with the
parameter �i .

• From the environment customers arrive at node i according to a Poisson process
at rate �i .

• A customer getting served at node i goes to node j with probability ri;j (i; j D
1; 2; � � � ; N ), and the probability that the customer departs from the network is

ri;0 D 1 �
NX

kD1

ri;k i; j D 1; 2; � � � ; N:

Stability Condition of Jackson-Type Queueing Networks

The following traffic equations define the traffic rate at the nodes of the network:

�i D �i C
NX

j D1

�j rj;i i D 1; 2; � � � ; N: (10.1)

The left-hand side of the equation represents the aggregate traffic intensity arriving
at node i . Due to the stability of the network nodes, the arriving traffic intensity is
identical with the departing traffic intensity from node i . The right-hand side of the
equation gives the traffic components arriving at node i . �i is the traffic component
arriving from the environment, and �j rj;i is the traffic component that departs from
node j and goes to node i .

Introducing the row vector � D f�ig and � D f�ig and matrix R D frij g the
traffic equation can be written in the following vector form:

� D � C �R;

whence
� D �.I � R/�1

if .I � R/ is nonsingular.
The elements of the matrix .I �R/�1 have a well-defined physical interpretation

according to the following theorem. Let Lij denote the number of visits to node j

(before departing to the environment) by a customer arriving at node i :

Theorem 10.2. �
.I � R/�1

�

i;j
D E

�
Li;j

�
;

where the left-hand side denotes the i; j element of the matrix .I � R/�1.

Proof. The number of visits to node j satisfies the following equation:

E
�
Li;j

� D ıi;j C
NX

kD1

ri;kE
�
Lk;j

�
;
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where ıi;j is the Kronecker delta, that is, ıi;j D 1 if i D j , 0 otherwise. Introducing
matrix L whose i; j element is E

�
Li;j

�
we can rewrite the preceding equation in

matrix form:

L D I C RL;

from which the theorem comes. ut
The theorem gives a condition for the nonsingularity of the matrix .I � R/.

.I � R/ is nonsingular if all customers leave the queueing network after a finite
number of visits to the nodes of the network.

A queueing network is said to be stable if all queues are stable, which holds when

�i < mi�i ; i D 1; 2; � � � ; N:

Stationary Distribution of Jackson-Type Queueing Networks

According to the properties of Jackson-type queueing networks, the number of
customers at the nodes of the network is a continuous-time Markov chain. Let
ki denote the number of customers at node i , and let us introduce the following
notations:

N D .k1; � � � ; ki ; � � � ; kj ; � � � ; kN /;

Ni;0 D .k1; � � � ; ki C 1; � � � ; kj ; � � � ; kN /;

N0;j D .k1; � � � ; ki ; � � � ; kj � 1; � � � ; kN /;

Ni;j D .k1; � � � ; ki C 1; � � � ; kj � 1; � � � ; kN /;

where in the last two cases kj � 1. Using these notations we can describe the
possible transitions of Markov chains representing the number of customers at the
network nodes.

• N0;j ! N: a new customer arrives at node j from the environment, increasing
the number of customers at node j from kj � 1 to kj . This happens at rate �j .

• Ni;0 ! N: a customer departs to the environment from node j , decreasing the
number of customers at node j from kj C1 to kj . This happens at rate ri;0˛i .ki C
1/�i .

• Ni;j ! N: a customer gets served at node i and goes to node j . This transition
decreases the number of customers at node i from ki C 1 to ij and increases
the number of customers at node j from kj � 1 to kj . This happens at rate
ri;j ˛i .ki C 1/�i .

In the preceding expressions ˛i .ki / D minfki ; mig defines the coefficient of the
service rate of node i when there are ki customers at the node. When there are more
customers at the node than servers, then all servers are working and the service rate
is mi�i ; when there are fewer customers than servers, then there are idle servers and
the service rate is ki �i .
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Theorem 10.3. A Markov chain characterized by the previously defined state
transitions has a product-form stationary distribution, that is,

pN D pk1;��� ;kN D p
.1/

k1
p

.2/

k2
� � � p.N /

kN
; (10.2)

where p
.i/

ki
is the stationary distribution of an M/M/mi queue with a Poisson arrival

process at rate �i and exponentially distributed service time with the parameter �i .
The stationary probabilities of such queues are given as a function of p

.i/
0 :

p
.i/

ki
D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

p
.i/
0

�
�i

�i

�ki 1

ki Š
0 � ki � mi ;

p
.i/
0

�
�i

�i

�ki 1

mi Š
m

mi �ki

i ; ki � mi

(10.3)

and p
.i/
0 can be obtained from the normalizing equation

P1
ki D0 p

.i/

ki
D 1.

Proof. Based on the possible state transitions of a Markov chain, the balance
equation of state N is as follows:

pN

 
NX

iD1

�i C
NX

iD1

˛i .ki / �i

!

D
NX

iD1

pNi;0˛i .ki C 1/ �i ri;0

C
NX

j D1

pN0;j �j Ifkj >0g C
NX

iD1

NX

j D1

pNi;j ˛i .ki C 1/ �i ri;j ; (10.4)

where Ifkj >0g is the indicator of kj > 0, i.e., Ifkj >0g D 1 if kj > 0 and
Ifkj >0g D 0 otherwise.

The left-hand side of the equation is the rate at which the process departs from
state N in equilibrium. It contains the state transitions due to a new customer arrival
from the environment and due to a service completion. The right-hand side of the
equation is the rate at which the process moves to state N in equilibrium. This can
happen due to a service of a queue from which the customer leaves the network, due
to the arrival of a new customer from the environment, or due to a service completion
at node i from where the customer moves to node j .

If �i > 0 and �i > 0, then the Markov chain is irreducible, the solution of
the stationary equation is unique, and it is enough to show that the product-form
solution (10.2) satisfies the balance Eq. (10.4). First we substitute the product-form
solution into the right-hand side of the balance equation and use the fact that from
Eq. (10.3) we have p

.i/

ki C1 D p
.i/

ki

�i

�i ˛i .ki C1/
and p

.i/

ki �1 D p
.i/

ki

�i ˛i .ki /

�i
. We obtain that
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NX

iD1

p
.1/

k1
� � � p.i/

ki C1 � � � p.N /

kN
˛i .ki C 1/ �i ri;0

C
NX

j D1

p
.1/

k1
� � � p.j /

kj �1 � � � p.N /

kN
�j Ikj >0

C
NX

iD1

NX

j D1

p
.1/

k1
� � � p.i/

ki C1 � � � p.j /

kj �1 � � � p.N /

kN
˛i .ki C 1/ �i ri;j

D p
.1/

k1
� � � p.N /

kN

0

@
NX

iD1

�i ri;0C
NX

j D1

�j ˛j .kj /

�j

�j C
NX

iD1

NX

j D1

�j ˛j .kj /

�j

�i ri;j

1

A

D p
.1/

k1
� � � p.N /

kN

0

B
B
B
B
B
@

NX

iD1

�i ri;0C
NX

j D1

�j ˛j .kj /

�j

�j C
NX

j D1

�j ˛j .kj /

�j

NX

iD1

�i ri;j

„ ƒ‚ …
�j ��j

1

C
C
C
C
C
A

D p
.1/

k1
� � � p.N /

kN

0

@
NX

iD1

�i ri;0 C
NX

j D1

�j ˛j .kj /

1

A

D p
.1/

k1
� � � p.N /

kN

0

@
NX

iD1

�i C
NX

j D1

�j ˛j .kj /

1

A : (10.5)

In the third step of the derivation we used the traffic equation of queue j ,
Eq. (10.1), and in the fourth step we utilized that the intensity of customer arrivals
from the environment

PN
iD1 �i is identical to the intensity of customer departures

to the environment,
PN

iD1 �i ri;0, in equilibrium.
The obtained expression is the left-hand side of the balance equation assuming a

product-form solution of the stationary distribution. ut
There might be loops in a Jackson-type queueing network of which the arrival

processes of the nodes are not independent Poisson processes and to which Burke’s
theorem is not applicable. Consequently, in this case we obtain a product-form so-
lution despite the queues’ dependent input processes. The reverse reasoning cannot
be applied. The product-form solution has no implications for the dependencies of
the arrival processes of the queues.

Traffic Theorem for Open Queueing Networks

Jackson-type queueing networks possess a traffic property similar to the PASTA
(Poisson arrival sees time average) property of queueing systems with a Poisson
arrival process.
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Theorem 10.4. The distribution of the number of customers in the queues at the
arrival instants of node j is identical to the stationary distribution of the number of
customers in the queues.

Proof. We define an extended queueing network that contains one additional single-
server node, node 0, with respect to the original queueing network. The traffic matrix
is also similar to the original one. It is modified only such that customers going to
node j are driven to node 0 and from node 0 to node j . The rest of the traffic
matrix is unchanged. The extended queueing network is also of a Jackson type, and
consequently its stationary distribution is product form: pN0 D p

.0/

k0
p

.1/

k1
p

.2/

k2
� � � p.N /

kN
.

The service rate of node 0 is �0. As �0 ! 1, the behavior of the extended
queueing network becomes identical to that of the original and the arrival instants
of node j are the instants when there is one customer in node 0. In this way the
distribution of the customers at an arrival instants of node j is

P .K1 D k1; � � � ; KN D kN jK0 D 1/ D P .K0 D 1; K1 D k1; � � � ; KN D kN /

P .K0 D 1/

D pN:

ut
This theorem is important for computing the delays in a queueing system.

10.6 Closed, Gordon–Newell-Type Queueing Networks

The analysis of the closed queueing network counterpart of Jackson-type queueing
networks was first published by Gordon and Newell in 1967 [40]. Since that time,
this kind of queueing network has often carried their name. The node behavior
of Gordon–Newell-type queueing networks is identical to that of Jackson-type
networks. At node i there are mi servers with exponentially distributed service time
with parameters �i and an infinite buffer.

In contrast to the Jackson-type networks, there is no arrival from or departure to
the environment in closed queueing networks. Thus, the number of customers in the
network is constant, denoted by K . If ki denotes the number of customers at node
i , then in each state of the network we have

NX

iD1

ki D K:

As with the Jackson-type network, the number of customers at the nodes of the
network form a Markov chain. In a closed queueing network the only possible state
transition in this Markov chain is the Ni;j ! N transition, that is, a customer gets
served at node i and moves to node j ; the transition rate of this state transition is
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˛i .ki C 1/�i ri;j . This state transition decreases the number of customers at node
i from ki C 1 to ki and increases the number of customers at node j from kj � 1

to kj .
The aggregate arrival rate of the nodes are characterized by the traffic equation

�i D
NX

j D1

�j rj;i i D 1; 2; � � � ; N: (10.6)

Equation (10.6) indicates that customers arriving at node i are those customers that
departed from node j and were directed to node i with probability rij . In a closed
queueing network,

PN
j D1 rij D 1 since there is no departure to the environment.

The solution of the traffic equation of closed queueing networks is not unique.
Multiplying an arbitrary solution by a constant gives another solution of the traffic
equation.

Theorem 10.5. The stationary distribution of the number of customers in a
Gordon–Newell-type queueing network has product form. That is,

pN D pk1;��� ;kN D 1

G

NY

iD1

h
.i/

ki
; (10.7)

where �i is an arbitrary nonzero solution of the traffic equation,

h
.i/

ki
D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�
�i

�i

�ki 1

ki Š
0 � ki � mi ;

�
�i

�i

�ki 1

mi Š
m

mi �ki
i ki � mi;

(10.8)

and G D P
N

QN
iD1 h

.i/

ki
.

Proof. The proof follows the same pattern as that for the Jackson-type network. The
balance equation for N is

pN

 
NX

iD1

˛i .ki / �i

!

D
NX

iD1

NX

j D1

pNi;j ˛i .ki C 1/ �i ri;j ; (10.9)

where the left-hand side of the equation is the rate at which state N is left and
the right-hand side is the rate at which state N is entered in equilibrium. Due to
the irreducibility of a Markov chain, we assume a unique solution of the balance
equations (together with the normalizing equation,

P
N2S pN D 1), and we only

show that the product form satisfies the balance equation.
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Substituting the product form into the right-hand side of the balance equation
gives

NX

iD1

NX

j D1

p
.1/

k1
� � � p.i/

ki C1 � � � p.j /

kj �1 � � � p.N /

kN
˛i .ki C 1/ �i ri;j

D p
.1/

k1
� � � p.N /

kN

0

@
NX

iD1

NX

j D1

�j ˛j .kj /

�j

�i ri;j

1

A

D p
.1/

k1
� � � p.N /

kN

0

B
B
B
B
B
@

NX

j D1

�j ˛j .kj /

�j

NX

iD1

�i ri;j

„ ƒ‚ …
�j

1

C
C
C
C
C
A

D p
.1/

k1
� � � p.N /

kN

0

@
NX

j D1

�j ˛j .kj /

1

A ; (10.10)

which is identical to the left-hand side of the balance equation when the product-
form solution is assumed. The normalizing constant, G, ensures that the normalizing
equation is satisfied. ut

The main difficulties of the analysis of closed queueing networks are that the
solution of the traffic equation is not unique and that the normalizing constant cannot
be computed in a node-based manner only for the whole network. The computation
of G requires the evaluation of all system states, which gets very high even for
reasonably small networks. When there are N nodes and K customers in a network,
the number of system states is

�
N CK�1

K

�
(e.g., for N D 10; K D 25 there are

52;451;256 states).
The commonly applied solution of the first problem is to add an additional

equation to the set of traffic equations, �1 D 1, which makes its solution unique.
The second problem, the computation of the normalizing constant, G, is a real

research challenge. Many proposals exist for computing the normalizing constant
efficiently. Here we summarize the convolution algorithm [18] and the mean value
analysis (MVA) algorithm [79].

Convolution Algorithm

The convolution algorithm was first published by Buzen [18]. In the original paper
the nodes have a single server, but it is easy to extend the algorithm to Gordon–
Newell-type queueing networks where the node i has mi (mi � 1) servers and an
infinite buffer. We present the more general version of the algorithm.
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Assuming that there are n nodes and k customers in the network, let the assumed
normalizing constant be

g.k; n/ D
X

.k1;:::;kn/;
P

j kj Dk

nY

iD1

h
.i/

ki
;

and g.0; n/ D 1. When g.k; n/ is known, we obtain the normalizing constant of the
network with N nodes and K customers as G D P

N

QN
iD1 h

.i/

ki
D g.K; N /.

The following formula allows one to determine g.k; n/ in a recursive manner:

g.k; n/ D
(

h
.1/

k ha n D 1;
Pk

j D0 h
.n/
j g.k � j; n � 1/ ha n > 1:

(10.11)

In the case of one node (n D 1) and k � 1 customers, the recursive formula
gives h

.1/

k , and in the case of more than one nodes we have

g.k; n/ D
X

.k1;:::;kn/;
P

j kj Dk

nY

iD1

h
.i/

ki

D
X

.k1;:::;kn/;
P

j kj Dk;knD0

h
.n/
0

n�1Y

iD1

h
.i/

ki
C : : :

C
X

.k1;:::;kn/;
P

j kj Dk;knDk

h
.n/

k

n�1Y

iD1

h
.i/

ki

D h
.n/
0 g.k; n � 1/ C : : : C h

.n/

k g.0; n � 1/:

This expression relates the normalizing constant of a network with n nodes to the
normalizing constant of a network with n � 1 nodes.

The convolution algorithm starts from n D 1, k D 1; : : : ; K , and increases
n to N step by step according to Eq. (10.11). The computational complexity of
this algorithm is proportional to N and K2 [denoted by O.NK2/], and its memory
complexity is proportional to K [denoted by O.K/].

Another benefit of the convolution algorithm is that some interesting perfor-
mance parameters are closely related to the g.k; n/ parameters. For example, the
probability that there are ` customers in queue k is

P .k` D k/ D
X

.k1;:::;kn/;
P

j kj DK;k`Dk

1

G

nY

iD1

h
.i/

ki
D h

.`/

k

g.K�k; N �1/

g.K; N /
;
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and from this the utilization of node ` is

U` D 1 � P .k` D 0/ D 1 � h
.`/
0

g.K; N �1/

g.K; N /
:

Traffic Theorem for Closed Queueing Networks

The MVA algorithm is based on the traffic theorem for closed queueing networks,
so we present the theorem first.

Theorem 10.6. In a closed Gordon–Newell-type queueing network containing K

customers, the distribution of the number of customers upon a customer’s arrival at
node j is identical to the stationary distribution of the same network with K � 1

customers.

Proof. The proof is practically identical to that provided for open queueing net-
works. We extend the network with a single-server node 0 and redirect all customers
going to node j to node 0 and from node 0 all customers go to node j . The rest of
the network is left unchanged. The extended network is of a Gordon–Newell type
as well; thus it has a product-form stationary distribution, p

k0;k1;:::;kN ;
PN

iD0 ki DK
D

1
G0

QN
iD0 h

.i/

ki
.

The service rate of node 0 is �0. As �0 ! 1, the behavior of the extended
network and that of the original networks are identical, and the arrival instances of
node j are the instances when the number of customers in node 0 is 1. Thus,

P

 

K1 D k1; � � � ; KN D kN ;

NX

iD0

ki D KjK0 D 1

!

D
P
�
K0 D 1; K1 D k1; � � � ; KN D kN ;

PN
iD0 ki D K

	

P .K0 D 1/

D P
�

K1 D k1; � � � ; KN D kN ;
XN

iD1
ki D K � 1

�

:

ut

MVA Algorithm

In the convolution algorithm, the number of nodes increases in an iteration of the
algorithm. The MVA algorithm is a kind of counterpart of the convolution algorithm
in the sense that the MVA algorithm is also an iterative algorithm, but in this case
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the number of customers increases in an iteration step. According to this approach,
we analyze the involved quantities as a function of the number of customers in the
network.

In contrast with the convolution algorithm, the applicability of the MVA algo-
rithm is limited to the case of single servers at the network nodes, i.e., mi D 1; i D
1; : : : ; N , and the algorithm yields mean performance measures, hence its name.

The mean time a customer spends at node i during a visit to node i is

E .Ti .K// D .1 C E
�
N �

i .K/
�
/

1

�i

;

where E
�
N �

i .K/
�

denotes the mean number of customers present at node i upon
the arrival of an observed customer. According to the traffic theorem, E

�
N �

i .K/
�

is identical to the stationary number of customers at node i when the number of
customers in the network is K � 1, i.e., E .Ni .K � 1//, whence

E .Ti .K// D .1 C E .Ni.K � 1///
1

�i

:

On the other hand, the mean number of customers at node i in equilibrium is

E .Ni.K// D K
�i E .Ti .K//

PN
j D1 �j E

�
Tj .K/

�

because the arrival rate at node i is proportional to an arbitrary nonzero solution of
the traffic equation O�i D �i c, according to Little’s law E .Ni.K// D O�i E .Ti .K//

and

K
�i E .Ti .K//

PN
j D1 �j E

�
Tj .K/

� D K
O�i E .Ti .K//

PN
j D1

O�j E
�
Tj .K/

� D K
E .Ni.K//

PN
j D1 E

�
Nj .K/

�

D K
E .Ni.K//

K
D E .Ni.K// :

Applying Little’s law to another time we obtain

O�i D E .Ni.K//

E .Ti .K//
D K

�i
PN

j D1 �j E
�
Tj .K/

� :

With these expressions we have all the ingredients of the iterative algorithm:
Initial value:

E .Ni.0// D 0I
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Iteration step:

E .Ti .K// D .1 C E .Ni.K � 1///
1

�i

;

E .Ni .K// D K
�iE .Ti .K//

PN
j D1 �j E

�
Tj .K/

� I

Closing step:

O�i D E .Ni .K//

E .Ti .K//
:

The computational complexity and memory complexity of the algorithm are
O.KN 2/ and O.N /. Compared to the convolution algorithm the MVA is more
efficient when K is larger than N .

10.7 BCMP Networks: Multiple Customer and Service Types

The Jackson-type and Gordon–Newell-type queueing networks have a product-
form stationary distribution. Thus, efficient computational methods are applicable
for the analysis of systems modeled by this kind of network. For a long time,
the performance analysis and the development of efficient computer systems were
based on these kinds of simple and computable models. The analysis of increasingly
complex system behavior required the introduction of more complex queueing
behavior and the analysis of the obtained queueing network models. This resulted
in fertile research in an effort to find the most general set of queueing networks with
a product-form stationary distribution. The results of this effort are summarized in
[9], and the set of most general queueing networks with a product-form solution
is commonly referred to as BCMP networks, whose abbreviation comes from the
initials of the coauthors: Baskett, Chandy, Muntz, and Palacios [9].

The set of BCMP networks generalizes the previous queueing networks in two
main directions. In the previously discussed queueing networks, customers are
indistinguishable and the service discipline is first come, first served (FCFS). In
BCMP networks, customers belong to customer classes that are distinguished by the
system because customers of different classes might arrive from the environment at
the nodes at different rates, might obtain different services (service time distribution
and service discipline) at the nodes, and might follow a different traffic routing
probability upon completion of a service. Still, customers of the same class are
indistinguishable.
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The arrival of class r customers at node i occurs at rate �ir . When a class r

customer is rendered a service at node i , the customer gets in the queue at node j as
a class s customer with probability Pir;js , i.e., customers might change their class
right after the completion of a service. Let the number of customer classes be C .
Then

NX

j D0

CX

sD1

Pir;js D 1; 8i D 1; : : : ; N; r D 1; : : : ; C;

Pir;0s denotes the probability of departure to the environment.
A wide range of traffic models can be defined with an appropriate setting of the

arrival rate �ir and traffic routing probability Pir;js. Some examples are listed below.

• Customer classes are independent, and some classes behave as in open queueing
networks and others as in closed queueing networks: Pir;js D 0 if r ¤ s, i.e.,
there is no class change. �ir D 0 if r � Cz, and for all r > Cz there exists
i such that �ir > 0, i.e., the first Cz classes of customers behave as in closed
queueing networks and the rest as in open ones. The probability of departure to
the environment is as follows, Pir;0s D 0 for r � Cz, and for all r > Cz there
exists i such that Pir;0s > 0.

• Background traffic at a subset of the network: Let �ir D 0 if i > Nz, r � Cz, and
Pir;js D 0 if i � Nz, j > Nz, r; s � Cz. In this case the class r � Cz customers
load only node i � Nz and form a kind of background traffic for customers of
class r > Cz in that part of the network.

• Multiple service at a node: Customer classes can be used to obtain a fixed number
of services, u, at node i during a single visit to node i by customers of class v.
For example, if for r D v; : : : ; v C u � 2 we let Pir;js D 1 if s D r C 1, j D i ,
and Pir;js D 0 otherwise, and for r D v C u � 1 we let Pir;js � 0 if s D r ,
j ¤ i , and Pir;js D 0 otherwise, then we have the following behavior. A class v
customer arrives at node i and gets served sooner as a class v customer than as
a class v C 1 customer and so on, while it departs as a class v C u � 1 customer
from node i and goes to node j as a class v customer.

The service disciplines at a node of a BCMP network can be one of the following
disciplines:

1. FCFS (first come, first served): Customers arrive at the server in the same order
in which they arrived at the node. With this service discipline the service time
of all customers is exponentially distributed with the same parameter, which
is common to all customer classes. The service intensity might depend on the
number of all customers at the node.

2. Processor sharing (PS): In this case, the service capacity of the server is divided
into as many equal parts as there are customers at the node, and each part of the
server capacity is assigned to a customer. That is, when there are n customers
at the node, all of them are served by a 1=n portion of the full service capacity.
In this case (if there are n customers at the node during the complete service
of a customer), the service time of the customer is n times longer than it would
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have been had the full service capacity been assigned to this customer. With this
service discipline the service time distribution of different customer classes might
be different and can be more general than exponentially distributed. Service time
distributions with rational Laplace transforms (matrix exponential distributions)
are allowed in this case.

3. LCFS–PR (last come first served–preemptive resume): The server serves one
customer at a time, but in such a way that the last arrived customer interrupts the
service of the customer currently being served (if any) and starts being served. If
during this customer’s service time a new customer arrives, the first customer is
interrupted and waits while all of the customers arriving later get served. At this
point, the first cusomter goes to the server again and resumes the service process
starting at the point at which it was interrupted.

Similar to the PS case, with this service discipline the service time distribution
of different customer classes might be different and can be more general than
exponentially distributed. Service time distributions with rational Laplace trans-
forms (matrix exponential distributions) are allowed with this service discipline.

4. Infinite server (IS): There are infinitely many servers in this service discipline,
and thus all arriving customers go to an idle server upon arrival. Similar
to the PS and LCFS–PR cases, with this service discipline the service time
distributions of different customer classes might be different and can be more
general than exponentially distributed. Service time distributions with rational
Laplace transforms (matrix exponential distributions) are allowed with this
service discipline.

With the introduction of customer classes, the traffic equation only slightly
modifies,

�ir D �ir C
NX

j D1

CX

sD1

�js Pjs;ir ; (10.12)

but to describe the product-form solution of BCMP networks, we need to introduce
further cumbersome notations. To avoid this, we restrict our attention to exponen-
tially distributed service times instead of matrix exponentially distributed ones, but
we allow all other generalizations of BCMP service disciplines.

Let Nir denote the number of class r customers at node i and define the vectors
Ni D fNi1; : : : ; NiC g and N D fN1; : : : NNg. Thus, vector N defines the distribution
of the different classes of customers at the network nodes. With this notation the
stationary distribution has the form

pN D 1

G

NY

iD1

h
.i/
Ni

; (10.13)
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where

h
.i/
Ni

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

NiŠ

�
Ni

i

CY

rD1

1

Nir Š
�

Nir

ir if node i is FCFS type;

Ni Š

CY

rD1

1

Nir Š

�
�ir

�ir

�Nir

if node i is PS or IS type;

CY

rD1

1

Nir Š

�
�ir

�ir

�Nir

if node i is LCFS-PR type;

and Ni D PC
rD1 Nir . �ir denotes the service rate of a class r customer at node i .

10.8 Non-Product-Form Queueing Networks

Despite the fact that BCMP networks allow for a wide range of node behaviors,
there are practical examples whose stationary solutions do not exhibit product-form
solutions. The most common reasons for non-product-form solutions are

• Non-Poisson customer arrival process,
• Different exponentially distributed service time at FCFS-type node for different

customer classes,
• Nonexponentially distributed service time at FCFS-type node,
• Nonmatrix exponentially distributed service time,
• Queueing nodes with finite buffer.

In general queueing networks, the stochastic behavior of the number of (different
classes of) customers at the nodes is not a Markov chain (e.g., in the case of general
interarrival or service time distributions). There are also cases where the number of
(different classes of) customers at the nodes is a Markov chain but the stationary
solution of this Markov chain does not possess product form (e.g., in the case of
a Poisson arrival process and exponentially distributed service time distributions
and finite-capacity FCFS-type nodes). In these cases no exact analysis methods are
available, and we must resort to approximate analysis methods.

The majority of the approximate analysis methods are somewhat based on a
product-form solution. They analyze a system as if its solution were of product form
and adjust the result obtained from the product-form assumptions to better satisfy
system equations.

From the set of approximate analysis methods of queueing networks we summa-
rize traffic-based decomposition.
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10.9 Traffic-Based Decomposition

One way to interpret the product-form solution is that the network nodes are
independently analyzed based on the traffic load given by the solution of the traffic
equation and the known service process (discipline and service time) of the node.

Traffic-based decomposition is an iterative procedure that analyzes the nodes
of a network independently, and the traffic load of the node under evaluation
is determined based on the departure processes of the network nodes previously
analyzed.

The advantages of the procedure are its flexibility and low computational cost,
while its disadvantages are the potential inaccuracy of the results and the lack of
evidence about the convergence of the procedure. Despite its disadvantages, this is a
very often applied approximate analysis method in practice because in the majority
of cases it converges and gives reasonable agreement with simulation results.

The traffic-based decomposition procedure iteratively goes through all nodes of
the network and performs the following steps for all nodes:

• Traffic aggregation: aggregates the traffic coming from the environment and from
the departure processes of the other nodes (based on the preceding iterations).

• Node analysis and departure process computation: a single queueing system
analysis step in which the parameters of the departure process are also computed.

• Departure process filtering: computation of traffic components going to other
network nodes.

The complexity of an iteration step and the accuracy of the results depend on the
applied traffic descriptors. The flexibility of the procedure is due to the wide range of
potentially applicable traffic descriptors. The most commonly used traffic descriptor
is the average intensity of the traffic such that a Poisson arrival process is assumed
with a given intensity. Using this traffic model with more than one traffic class
results in a nontrivial analysis problem itself. If a more sophisticated traffic model
is applied to, e.g., higher moments or correlation parameters of the interarrival time
distribution are considered, then the complexity of the analysis steps increases and
the overall accuracy improves.

10.10 Exercises

Exercise 10.1. In the depicted queueing network the requests of input A are
forwarded to output B according to the following traffic routing probabilities:
p D 0:3; q1 D 0:2; q2 D 0:5; q3 D 0:3.

Requests from input A arrive according to a Poisson process at a rate � D 50.
The service times are exponentially distributed in nodes R1, R2, and R3 with the
parameters �1 D 90, �2 D 35, and �3 D 100, respectively. The service time in
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R1 R2

R4R3

q
1

q
3

q
2

p

1−p

A

B

λ

R4 is composed of two phases. The first phase is exponentially distributed with the
parameter �4 D 400, and the second phase is deterministic with D D 0:01.

• Compute the traffic load of the nodes.
• Compute the mean and the coefficient of variation of the service time at node R4.
• Compute the system time at each node.
• Compute �max at which the system is at the limit of stability.

Exercise 10.2. In the depicted queueing network the requests of input A are
forwarded to output B according to the following traffic routing probabilities:
p12 D 0:3; p13 D 0:7.

A B

1 4

2

3

The requests from input A arrive according to a Poisson process at a rate � D 50.
In nodes 1, 2, and 3 there are single servers and infinite buffers, and the service
times are exponentially distributed with the parameters �1 D 80, �2 D 45, and
�3 D 50, respectively. There are two servers and two additional buffers at node R4.
Both servers can serve requests with exponentially distributed service time with the
parameter �4 D 40.

• Characterize the nodes using Kendall’s notation.
• Compute the traffic load of the nodes.
• Compute the system time at each node.
• Compute the server utilization at node 4.
• Compute the packet loss probability.
• Compute the mean time of a request from A to B.
• Which node is the bottleneck of the system? Which node saturates first when �

increases?
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