
Chapter 1
Introduction to Probability Theory

1.1 Summary of Basic Notions of Probability Theory

In this chapter we summarize the most important notions and facts of probability
theory that are necessary for an elaboration of our topic. In the present summary,
we will apply the more specific mathematical concepts and facts – mainly measure
theory and analysis – only to the necessary extent while, however, maintaining
mathematical precision.

Random Event We consider experiments whose outcomes are uncertain, where
the totality of the circumstances that are or can be considered does not determine
the outcome of the experiment. A set consisting of all possible outcomes is called
a sample space. We define random events (events for short) as certain sets of
outcomes (subsets of the sample space). It is assumed that the set of events is
closed under countable set operations, and we assign probability to events only;
they characterize the quantitative measure of the degree of uncertainty. Henceforth
countable means finite or countably infinite.

Denote the sample space by � D f!g. If � is countable, then the space �

is called discrete. In a mathematical approach, events can be defined as subsets
A � � of the possible outcomes � having the properties (�-algebra properties)
defined subsequently.

A given event A occurs in the course of an experiment if the outcome of the
experiment belongs to the given event, that is, if an outcome ! 2 A exists. An event
is called simple if it contains only one outcome !. It is always assumed that the
whole set � and the empty set ¿ are events that are called a certain event and an
impossible event, respectively.

Operation with Events; Notion of � -Algebra Let A and B be two events. The
union A [ B of A and B is defined as an event consisting of all elements ! 2 �

belonging to either event A or B , i.e., A [ B D f! W ! 2 A or ! 2 Bg.
The intersection (product) A\B .AB/ of events A and B is defined as an event

consisting of all elements ! 2 � belonging to both A and B , i.e.,
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A \ B D f! W ! 2 A and ! 2 Bg:

The difference AnB , which is not a symmetric operation, is defined as the set of
all elements ! 2 � belonging to event A but not to event B , i.e.,

AnB D f! W ! 2 A and ! … Bg:

A complementary event A of A is defined as a set of all elements ! 2 � that
does not belong to A, i.e.,

A D �nA:

If A \ B D ˛, then sets A and B are said to be disjoint or mutually exclusive.
Note that the operations [ and \ satisfy the associative, commutative, and

distributive properties

.A [ B/ [ C D A [ .B [ C /; and .A \ B/ \ C D A \ .B \ C /;

A [ B D B [ A; and A \ B D B \ A;

A \ .B [ C / D .A \ B/ [ .A \ C /; and A [ .B \ C / D .A [ B/ \ .A [ C /:

DeMorgan identities are valid also for the operations union, intersection, and
complementarity of events as follows:

A [ B D A \ B; A \ B D A [ B:

With the use of the preceding definitions introduced, we can define the notion of
�-algebra of events.

Definition 1.1. Let � be a nonempty (abstract) set, and let A be a certain family of
subsets of the set � satisfying the following conditions:

(1) � 2 A.
(2) If A 2 A, then A 2 A.
(3) If A1; A2; : : : 2 A is a countable sequence of elements, then

1[

iD1

Ai 2 A:

The family A of subsets of the set � satisfying conditions (1)–(3) is called a
�-algebra. The elements of A are called random events, or simply events.

Comment 1.2. The pair .�;A/ is usually called a measurable space, which forms
the general mathematical basis of the notion of probability.

Probability Space, Kolmogorov Axioms of Probability Theory Let � be a
nonempty sample set, and let A be a given �-algebra of subsets of �, i.e., the pair
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.�;A/ is a measurable space. A nonnegative number P .A/ is assigned to all events
A of �-algebra satisfying the axioms as follows.

A1. 0 � P .A/ � 1, A 2 A.
A2. P .�/ D 1.
A3. If the events Ai 2 A, i D 1; 2; : : :, are disjoint (i.e., Ai Aj D ˛; i ¤ j ), then

P

 1[

iD1

Ai

!
D

1X

iD1

P .Ai /:

The number P .A/ is called the probability of event A, axioms A1, A2, and A3
are called the Kolmogorov axioms, and the triplet .�;A; P/ is called the probability
space. As usual, axiom A3 is called the �-additivity property of the probability. The
probability space characterizes completely a random experiment.

Comment 1.3. In the measure theory context of probability theory, the function P
defined on A is called a probability measure. Conditions A1–A3 ensure that P is
nonnegative and that � is an additive and normed [P .�/ D 1] set function on A,
i.e., a normed measure on A. Our discussion basically does not require the direct
use of measure theory, but some assertions cited in this work essentially depend on
this theory.

Main Properties of Probability Let .�;A; P/ be a probability space. The follow-
ing properties of probability are valid for all probability spaces.

Elementary properties:

(a) The probability of an impossible event is zero, i.e.,
P .˛/ D 0.

(b) P
�
A
� D 1 � P .A/ for all A 2 A.

(c) If the relationship A � B is satisfied for given events A; B 2 A, then
P .A/ � P .B/,
P .B � A/ D P .B/ � P .A/.

Definition 1.4. A collection fAi ; i 2 I g of a countable set of events is called a
complete system of events if Ai ; i 2 I are disjoint (i.e., Ai \ Aj D ˛ if i ¤ j ,
i; j 2 I ) and

S
i2I

Ai D �.

Comment 1.5. If the collection of events fAi ; i 2 I g forms a complete system of
events, then

P

 
[

i2I

Ai

!
D 1:

Probability of Sum of Events, Poincaré Formula For any events A and B it is
true that

P .A [ B/ D P .A/ C P .B/ � P .AB/:
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Using this relation, a more general formula, called the Poincaré formula, can be
proved. Let n be a positive integer number; then, for any events A1; A2; : : : ; Ai 2 A,

P .A1 C : : : C An/ D
nX

kD1

.�1/k�1S
.n/

k ;

where S
.n/

k D P
1�i1�:::�ik�n

P
�
Ai1 : : : Aik

�
.

Subadditive Property of Probability For any countable set of events fAi ; i 2 I g
the inequality

P

 
[

i2I

Ai

!
�
X

i2I

P .Ai /

is true.

Continuity Properties of Probability Continuity properties of probability are
valid for monotonically sequences of events, each of which is equivalent to
axiom A3 of probability. A sequence of events A1; A2; : : : is called monotonically
increasing (resp. decreasing) if A1 � A2 � : : : (resp. A1 � A2 � : : :).

Theorem 1.6. If the sequence of events A1; A2; : : : is monotonically decreasing,
then

P

 1\

iD1

Ai

!
D lim

n!1P .An/:

If the sequence of events A1; A2; : : : is monotonically increasing, then

P

 1[

iD1

Ai

!
D lim

n!1P .An/:

Conditional Probability and Its Properties, Independence of Events In prac-
tice, the following obvious question arises: if we know that event B occurs (i.e.,
the outcome is in B 2 A), what is the probability that the outcome is in A 2 A?
In other words, how does the occurrence of an event B influence the occurrence of
another event A? This effect is characterized by the notion of conditional probability
P .AjB/ as follows.

Definition 1.7. Let A and B be two events, and assume that P .B/ > 0. The
quantity

P .AjB/ D P .AB/=P .B/

is called the conditional probability of A given B .
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It is easy to verify that the conditional probability possesses the following
properties:

1. 0 � P .AjB/ � 1.
2. P .BjB/ D 1.
3. If the events A1; A2; : : : are disjoint, then

P

 1X

iD1

Ai jB
!

D
1X

iD1

P .Ai jB/:

4. The definition of conditional probability P .AjB/ D P .AB/=P .B/ is equiva-
lent to the so-called theorem of multiplication

P .AB/ D P .AjB/P .B/ and P .AB/ D P .BjA/P .A/:

Note that these equations are valid in the cases P .B/ D 0 and P .A/ D 0 as well.
One of the most important concepts of probability theory, the independence of

events, is defined as follows.

Definition 1.8. We say that events A and B are independent if the equation

P .AB/ D P .A/P .B/

is satisfied.

Comment 1.9. If A and B are independent events and P .B/ > 0, then the
conditional probability P .AjB/ does not depend on event B since

P .AjB/ D P .AB/

P .B/
D P .A/P .B/

P .B/
D P .A/:

This relation means that knowing that an event B occurs does not change the
probability of another event A.

The notion of independence of an arbitrary collection Ai ; i 2 I of events is
defined as follows.

Definition 1.10. A given collection of events Ai ; i 2 I is said to be mutually
independent (independent for short) if, having chosen from among them any finite
number of events, the probability of the product of the chosen events equals the
product of the probabilities of the given events. In other words, if fi1; : : : ; ikg is any
subcollection of I , then one has

P
�
Ai1 \ . . . \ Aik

� D P .Ai1/ : : : P
�
Aik

�
:
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This notion of independence is stricter when pairs are concerned since it is easy
to create an example where pairwise independence occurs but mutual independence
does not.

Example 1.11. We roll two dice and denote the pair of results by

.!1; !2/ 2 � D f.i; j /; 1 � i; j � 6g:

The number of elements of the set � is j�j D 36, and we assume that the dice are
standard, that is, P f.!1; !2/g D 1=36 for every .!1; !2/ 2 �. Events A1, A2, and
A3 are defined as follows:

A1 D fthe result of the first die is eveng;
A2 D fthe result of the second die is oddg;
A3 D fboth the first and second dice are odd or both of them are eveng:

We check that events A1, A2, and A3 are pairwise independent, but they are not
(mutually) independent. It is clear that

A1 D f.2; 1/; : : : ; .2; 6/; .4; 1/; : : : ; .4; 6/; .6; 1/; : : : ; .6; 6/g;
A2 D f.1; 1/; : : : ; .6; 1/; .1; 3/; : : : ; .6; 3/; .1; 5/; : : : ; .6; 5/g;
A3 D f.1; 1/; .1; 3/; .1; 5/; .2; 2/; .2; 4/; .2; 6/; .3; 1/; .3; 3/;

.3; 5/; : : : ; .6; 2/; .6; 4/.6; 6/g;

thus
jA1j D 3 � 6 D 18; jA2j D 6 � 3 D 18; jA3j D 6 � 3 D 18:

We have, then, P .Ai/ D 1
2
; i D 1; 2; 3, and the relations

P
�
Ai Aj

� D 1

4
D P .Ai /P

�
Aj

�
; 1 � i; j � 3; i ¤ j;

which means events A1, A2, and A3 are pairwise independent. On the other hand,

P .A1A2A3/ D 0 ¤ 1

8
D P .A1/P .A2/P .A3/I

consequently, the mutual independence of events A1, A2, and A3 does not follow
from their pairwise independence.

Formula of Total Probability, Bayes’ Rule Using the theorem of multiplication
for conditional probability we can easily derive the following two theorems. Despite
the fact that the two theorems are not complicated, they represent quite effective
tools in the course of the various considerations.
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Theorem 1.12 (Formula of total probability). Let the sequence fAi; i 2 I g be a
complete system of events with P .Ai > 0/; i 2 I ; then for all events B

P .B/ D
X

i2I

P .BjAi/P .Ai /

is true.

Theorem 1.13 (Bayes’ rule). Under the conditions of the preceding theorem, the
following relation holds for all indices n 2 I :

P .AnjB/ D P .BjAn/P .An/P
i2I

P .BjAi /P .Ai /
:

Concept of Random Variables Let .�;A; P/ be a probability space that is to
be fixed later on. In the course of random experiments, the experiments usually
result in some kind of value. This means that the occurrence of a simple event !

results in a random X.!/ value. Different values might belong to different simple
events; however, the function X.!/, depending on the simple event !, will have
a specific property. We must answer such basic questions as, for example, what is
the probability that the result of the experiment will be smaller than a certain given
value x? We have only determined probabilities of events (only for elements of the
set A) in connection with the definition of probability space; therefore, it has the
immediate consequence that we may only consider the probability of the set if the
set f! W X.!/ � xg is an event, which means that the set belongs to �-algebra A:

f! W X.!/ � xg 2 A.

This fact led to one of the most important notions of probability theory.

Definition 1.14. The real-valued function X W � ! R is called a random variable
if the relationship

f! W X.!/ � xg 2 A
is valid for all real numbers x 2 R. A function satisfying this condition is called A
measurable.

A property of random variables should be mentioned here. Define by B D B1

the �-algebra of Borel sets of R as the minimal �-algebra containing all intervals
of R; the elements of B are called the Borel sets of R. If X is A measurable, then
for all Borel sets D of R the set f! W X.!/ 2 Dg is also an element of A, i.e.,
f! W X.!/ 2 Dg is an event. Thus the probability PX ŒD� D P .f! W X.!/ 2 Dg/,
and so P .f! W X.!/ � xg/ are well defined. An important special case of random
variables are the so-called indicator variables defined as follows. Let A 2 A be an
event, and let us introduce the random variable IfAg, A 2 A:
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IfAg D IfAg.!/ D
�

1; if ! 2 A;

0; if ! … A:

Distribution Function Let X D X.!/ be a random variable; then the probability
P .X � x/, x 2 R, is well defined.

Definition 1.15. The function FX .x/ D P .X � x/ for all real numbers x 2 R is
called a cumulative distribution function(CDF) of random variable X .

Note that the CDFs FX and function PX determine each other mutually and
unambiguously. It is also clear that if the real line R is chosen as a new sample
space, and B is a �-algebra of Borel sets as the �-algebra of events, then the
triplet .R;B; PX / determines a new probability space, where PX is referred to as
a probability measure induced by the random variable X .

The CDF FX has the following properties.

(1) In all points of a real line �1 < x0 < 1 the function FX .x/ is continuous
from the right, that is,

lim
x!x0C0

FX .x/ D FX .x0/.

(2) The function FX .x/; �1 < x < 1 is a monotonically increasing function of
the variable x, that is, for all �1 < x < y < 1 the inequality FX .x/ � FX .y/

holds.
(3) The limiting values of the function FX .x/ exist under the conditions x ! �1

and x ! 1 as follows:

lim
x!�1FX .x/ D 0 and lim

x!1FX .x/ D 1:

(4) The set of discontinuity points of the function FX .x/, that is, the set of points
x 2 R for which FX .x/ ¤ FX .x � 0/, is countable.

Comment 1.16. It should be noted in connection with the definition of the CDF
that the literature is not consistent. The use of FX .x/ D P .X < x/; �1 < x < 1
as a CDF is also widely applied. The only difference between the two definitions
lies within property (1) (see preceding discussion), which means that in the latter
case the CDF is continuous from the left and not from the right, but all the other
properties remain the same. It is also clear that if the CDF is continuous in all
x 2 R, then there is no difference between the two definitions.

Comment 1.17. From a practical point of view, it is sometimes useful to allow that
property (3) (see preceding discussion) does not satisfy the CDF FX of random
variable X , which means that, instead, one or both of the following relations hold:
In this case P .jX j < 1/ < 1, and the CDF of random variable X has a defective
distribution function.
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Let a and b be two arbitrary real numbers for which �1 < a < b < 1; then
we can determine the probability of some frequently occurring events with the use
of the CDF of X as follows:

P .X D a/ D FX .a/ � FX .a � 0/;

P .a < X < b/ D FX .b � 0/ � FX .a/;

P .a � X < b/ D FX .b � 0/ � FX .a � 0/;

P .a < X � b/ D FX .b/ � FX .a/;

P .a � X � b/ D FX .b/ � FX .a � 0/:

These equations also determine the connection between the CDF FX and the
distribution PX for special Borel sets of a real line.

Discrete and Continuous Distribution, Density Function We distinguish two
important types of distributions in practice, the so-called discrete and continuous
distributions. There is also a third type of distribution, the so-called singular
distribution, in which case the CDF is continuous everywhere and its derivative
(with respect to the Lebesgue measure) equals 0 almost everywhere; however, we
will not consider this type. This classification follows from the Jordan decomposi-
tion theorem of monotonically functions, that is, an arbitrary CDF F can always
be decomposed into the sum of three functions – the monotonically increasing
absolutely continuous function, the step function with finite or countably infinite sets
of jumps (this part corresponds to a discrete distribution), and the singular function.

Definition 1.18. Random variable X is discrete or has a discrete distribution if
there is a finite or countably infinite set of values fxk; k 2 I g such that

P
k2I

pk D 1,

where pk D P .X D xk/; k 2 I . The associated function

fX .x/ D
�

pk; if x D xk; k 2 I;

0; if x ¤ xk; k 2 I;
x 2 R;

is termed a probability density function (PDF) or probability mass function
(PMF).

It is easy to see that if random variable X is discrete with possible values
fxk; k D 0; 1; : : :g and with distribution fpk; k D 0; 1; : : :g, then the relationship
between the CDF FX and the PMF can be given as

FX .x/ D
X

xk<x

pk; �1 < x < 1:
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Definition 1.19. A random variable X is continuous or has a continuous distri-
bution if there exists a nonnegative integrable function fX .x/; �1 < x < 1 such
that for all real numbers a and b, �1 < a < b < 1,

FX .b/ � FX .a/ D
bZ

a

fX .x/dx

holds. The function fX .x/ is called the PDF of random variable X , or just the
density function of X .

Comment 1.20. It is clear that

FX .x/ D
xZ

�1
fX .u/du; �1 < x < 1;

and it is also true that the PDF is not uniquely defined since if we take instead of
fX .u/ the function fX .u/Cg.u/, where the function g.u/ is nonnegative, integrable,

and
xR

�1
g.u/du D 0, then the function fX.u/ C g.u/ is also a PDF of random

variable X , which can naturally differ from the original fX .

An arbitrary PDF fX .x/ is nonnegative and integrable,

1Z

�1
fX .x/dx D 1;

and almost everywhere in R (with respect to the Lebesgue measure) the equation
F 0

X .x/ D fX .x/ is true.

Distribution of a Function of a Random Variable Let X D X.!/ be a random
variable. Let h.x/; x 2 R be a real-valued function, and let us define it as Y D
h.X/. The equation Y D h.X/ determines a random variable if for all y 2 R the
set f! W Y.!/ D h.X.!// � yg is an event that is an element of �-algebra A. If h is
a continuous function or, more generally, is a Borel-measurable function (h is Borel
measurable if for all x the relationship fu W h.u/ � xg 2 B is true), then Y , which is
determined by the equation Y D h.X/, is a random variable. The question is how
the CDF and the density function (if the latter exists) of random variable Y can be
determined. It is usually true that

FX .y/ D P .Y � y/ D P .h.X/ � y/ D PX Œfx W h.x/ � yg�; �1 < y < 1:

If h is a strictly monotonically increasing function, then this formula can be given
in a simpler form. Let us denote by h�1 the inverse function of h, which in this case
must exist. Then
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FX .y/ D P .h.X/ � y/ D P
�
X � h�1.y/

� D FX .h�1.y//; �1 < y < 1:

If h is a strictly monotonically decreasing function, then

FX .y/ D P .h.X/ � y/ D P
�
X � h�1.y/

� D 1�FX.h�1.y/�0/; �1 < y < 1:

With these relations, a formula can be given for the PDF of Y in special cases.

Theorem 1.21. Let us suppose that random variable X has a PDF fX and h is a
strictly monotonically, differentiable real function. Then

fY .y/ D fX .h�1.y//

ˇ̌
ˇ̌ d

dy
h�1.y/

ˇ̌
ˇ̌ ; �1 < y < 1:

Comment 1.22. If h is a linear function, that is, h.y/ D ay Cb; a ¤ 0, and X has
a PDF fX , then the random variable Y D h.X/ also has a PDF and the formula

fY .y/ D 1

jajfX

�y � a

b

�
; �1 < y < 1;

is true.

Joint Distribution and Density Function of Random Variables, Marginal
Distributions In the majority of problems arising in practice, we have not one but
several random variables, and we examine the probability of events where random
variables simultaneously satisfy certain conditions.

Let .�;A; P/ be a probability space, and let there be two random variables X

and Y on that space. The joint statistical behavior of the two random variables can
be determined by a joint CDF. We should note that the joint analysis of the random
variables X and Y corresponds to the examination of two-dimensional random
vector variables such as .X; Y / that have random variable coordinates.

Definition 1.23. The function

FXY .x; y/ D P .X � x; Y � y/; �1 < x; y < 1;

is called the joint CDF of random variables X and Y .

From a practical point of view, the two most important types of distributions are
the discrete and the continuous ones, as in the one-dimensional case.

Definition 1.24. The joint distribution function of random variables X and Y

is called discrete; in other words, the random vector .X; Y / has a discrete
distribution if random variables X and Y are discrete. If we denote the values
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of random variables X and Y by fxi ; i 2 I g and
˚
yj ; j 2 J

�
, respectively, then

the function

fX;Y .x; y/ D
�

pi;j ; if x D xi ; y D yj ; i 2 I; j 2 J;

0; if x ¤ xi ; y ¤ yj ; i 2 I; j 2 J;
x 2 R;

is called a joint PMF or joint PDF.

It is clear that in the discrete case the joint distribution function is

FXY .x; y/ D
X

xi �x; yj �y

pij :

The case of a joint continuous distribution is analogous to the discrete one.

Definition 1.25. The joint distribution of random variables X and Y is called con-
tinuous; in other words, the random vector .X; Y / has a continuous distribution if
there exists a nonnegative, real-valued integrable function on the plane fXY .x; y/,
�1 < x; y < 1, for which the relation

FXY .x; y/ D
xZ

�1

yZ

�1
fXY .u; v/dudv

holds for all �1 < x; y < 1.

Definition 1.26. If FXY denotes the joint CDF of random variables X and Y , then
the CDFs

FX .x/ D lim
y!1FXY .x; y/;

FY .y/ D lim
x!1FXY .x; y/

are called marginal distribution functions.

It is not difficult to see that marginal distribution functions do not determine the
joint CDF. It is also clear that if a joint PDF fXY .x; y/ of random variables X and
Y exists, then marginal PDFs can be given in the form

fX .x/ D
1Z

�1
fXY .x; y/dy; �1 < x < 1;

fY .y/ D
1Z

�1
fXY .x; y/dx � 1 < y < 1:

If there are more than two random variables X1; : : : ; Xn; n � 3, i.e., in the
case of an n-dimensional random vector .X1; : : : ; Xn/, then the definitions of joint
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distribution function and density functions can be given analogously to the case
of two random variables, so there is no essential difference. We will return to this
question when we introduce the concept of stochastic processes.

Conditional Distributions Let A be an arbitrary event, with P.A/ > 0, and X an
arbitrary random variable. Using the notion of conditional probability, we can define
the conditional distribution of random variable X given event A as the function

FX .xjA/ D P .X � xjA/; x 2 R.

The function FX .xjA/ has all the properties of a distribution function mentioned
previously.

The function fX.xjAi / is called a conditional density function of random
variable X given event A if a nonnegative integrable function fX .xjA/ exists for
which the equation

FX .xjA/ D
xZ

�1
fX .ujA/du; �1 < x < 1;

holds.
The result for the distribution function FX .x/ can be easily proved in the same

way as the theorem of full events. If the sequence of events A1; A2; : : : is a complete
system of events with the property P .Ai / > 0; i D 1; 2; : : :, then

FX .x/ D
1X

iD1

FX .xjAi /P .Ai /; �1 < x < 1:

A similar relation holds for the conditional PDFs fX .xjAi /; i � 1, if they exist:

fX .x/ D
1X

iD1

fX .xjAi /P .Ai /; �1 < x < 1:

A different approach is required to define the conditional distribution function
FX jY .xjy/ of random variable X given Y D y, where Y is another random variable.
The difficulty is that if a random variable Y has a continuous distribution function,
then the probability of the event fY D yg equals zero, and therefore the conditional
distribution function FX jY .xjy/ cannot be defined with the help of the notion of
conditional probability. In this case the conditional distribution function FX jY .xjy/

is defined as follows:

FX jY .xjy/ D lim
�y!C0

P .X � xjy � Y < y C �y/

if the limit exists.
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Let us assume that the joint density function fXY .x; y/ of random variables X

and Y exists. In such a case random variable X has the conditional CDF FX jY .xjy/

and conditional PDF fX jY .xjy/ given Y D y. If a joint PDF exists and fX.y/ > 0,
then it is not difficult to see that the following relation holds:

FX jY .xjy/ D lim
�y!C0

P .X � xjy � Y < y C �y/

D lim
�y!C0

P .X � x; y � Y < y C �y/

P .y � Y < y C �y/

D lim
�y!C0

FXY .x;yC�y/�FXY .x;y/

�y

FY .yC�y/�FY .y/

�y

D 1

fY .y/

@

@y
FXY .x; y/:

From this relation we get the conditional PDF fX jY .xjy/ as follows:

fX jY .xjy/ D @

@x
FX jY .xjy/ D 1

fY .y/

@2

@x@y
FXY .x; y/ D fXY .x; y/

fY .y/
: (1.1)

Independence of Random Variables Let X and Y be two random variables. Let
FXY .x; y/ be the joint distribution function of X and Y , and let FX .x/ and FY .y/

be the marginal distribution functions.

Definition 1.27. Random variables X and Y are called independent of each other,
or just independent, if the identity

FXY .x; y/ D FX .x/FY .y/

holds for any x; y, �1 < x; y < 1.

In other words, random variables X and Y are independent if and only if the joint
distribution function of X and Y equals the product of their marginal distribution
functions.

The definition of independence of two random variables can be easily generalized
to the case where an arbitrary collection of random variables fXi; i 2 I g is given,
analogously to the notion of the independence of events.

Definition 1.28. A collection of random variables fXi; i 2 I g is called mutually
independent (or just independent), if for any choice of a finite number of elements
Xi1; : : : ; Xin the relation

FXi1 ;:::;Xin
.x1; : : : ; xn/ D FXi1

.x1/ � : : : � FXin
.xn/; x1; : : : ; xn 2 R

holds.
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Note that from the pairwise independence of random variables fXi; i 2 I g,
which means that the condition

FXi1 ;Xi2
.x1; x2/ D FXi1

.x1/FXi2
.x2/; x1; x2 2 R; i1; i2 2 I;

is satisfied, mutual independence does not follow.

Example 1.29. Consider Example 1.11 given earlier and preserve the notation.
Denote by Xi D IfAi g the indicator variables of the events Ai ; i D 1; 2; 3. Then
we can verify that random variables X1, X2, and X3 are pairwise independent, but
they do not satisfy mutual independence. The pairwise independence of random
variables Xi can be easily proved. Since the events A1; A2; A3 are independent and

fXi D 1g D Ai and fXi D 0g D Ai ;

then, using the relation proved in Example 1.11, we obtain for i ¤ j

P
�
Xi D 1; Xj D 1

� D P
�
Ai Aj

� D P .Ai /P
�
Aj

� D 1

4
;

P
�
Xi D 1; Xj D 0

� D P
�
Ai Aj

� D P .Ai /P
�
Aj

� D 1

4
;

P
�
Xi D 0; Xj D 0

� D P
�
Ai Aj

� D P
�
Ai

�
P
�
Aj

� D 1

4
;

while, for example,

P .X1 D 1; X2 D 1; X3 D 1/ D P .A1A2A3/ D 0 ¤ 1

8

D P .A1/P .A2/P .A3/ D P .X1 D 1/P .X2 D 1/P .X3 D 1/:

Consider how we can characterize the notion of independence for two random
variables in the discrete and continuous cases (if more than two random variables
are given, then we may proceed in a similar manner).

Firstly, let us assume that the sets of values of discrete random variables X and
Y are fxi ; i � 0g and

˚
yj ; j � 0

�
, respectively. If we denote the joint and marginal

distributions of X and Y by

˚
pij D P

�
X D xi ; Y D yj

�
; i; j � 0

�
; fqi D P .X D xi /; i � 0g ;

and
˚
rj D P

�
Y D yj

�
; | � 0

�
;

then the following assertion holds. Random variables X and Y are independent if
and only if

pij D qi rj ; i; j � 0:



18 1 Introduction to Probability Theory

Now assume that random variables X and Y have joint density fXY .x; y/ and
marginal densities fX .x/ and fY .y/. Thus, in this case, random variables X and Y

are independent if and only if the joint PDF takes a product form, that is,

fXY .x; y/ D fX .x/fY .y/; �1 < x; y < 1:

Convolution of Distributions Let X and Y be independent random variables
with distribution functions FX .x/ and FY .y/, respectively, and let us consider the
distribution of the random variable Z D X C Y .

Definition 1.30. The distribution (CDF, PDF) of the random variable Z D XCY is
called the convolution of the distribution (CDF, PDF), and the equations expressing
the relation among them are called convolution formulas.

Definition 1.31. Let X1; X2; : : : be independent identically distributed random
variables with the common CDF FX . The CDF F �n

X of the sum Zn D X1 C : : :CXn

.n � 1/ is uniquely determined by FX and is called the n-fold convolution of the
CDF of FX .

Note that the CDF FZ.z/ of the random variable Z D X C Y , which is called
the convolution of CDFs FX .x/ and FY .y/, can be given in the general form

FZ.z/ D P .Z � z/ D P .X C Y � z/ D
1Z

�1
FX .z � y/ dFY .y/:

This formula gets a simpler form in cases where the discrete random variables X

and Y take only integer numbers, or if the PDFs fX .x/ and fY .y/ of X and Y exist.
Let X and Y be independent discrete random variables taking values in

f0; ˙1; ˙2; : : :g with probabilities fqi D P .X D xi /g and
˚
rj D P

�
Y D yj

��
,

respectively. Then the random variable Z D X CY takes values in f0; ˙1; ˙2; : : :g,
and its distribution satisfies the identity

sk D
1X

nD�1
qk�nrn; k D 0; ˙1; ˙2; : : : :

If the independent random variables X and Y have a continuous distribution with
the PDFs fX .x/ and fY .y/, respectively, then random variable Z is continuous and
its PDF fZ.z/ can be given in the integral form

fZ.z/ D
1Z

�1
fX .z � y/fY .y/dy:

Mixture of Distributions Let F1.x/; : : : ; Fn.x/ be a given collection of CDFs, and
let a1; : : : ; an be nonnegative numbers with the sum a1 C : : :Can D 1. The function
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F.x/ D a1F1.x/ C : : : C anFn.x/; �1 < x < 1;

is called a mixture of CDFs F1.x/; : : : ; Fn.x/ with weights a1; :::; an .

Comment 1.32. Any CDF can be given as a mixture of discrete, continuous, and
singular CDFs, where the weights can also take a value of 0.

Clearly, the function F.x/ possesses all the properties of CDFs; therefore it is
also a CDF. In practice, the modeling of mixture distributions plays a basic role in
stochastic simulation methods. A simple way to model mixture distributions is as
follows.

Let us assume that the random variables X1; : : : ; Xn with distribution functions
F1.x/; : : : ; Fn.x/ can be modeled. Let Y be a random variable taking values in
f1; : : : ; ng and independent of X1; : : : ; Xn. Assume that Y has a distribution P.Y D
i/ D ai ; 1 � i � n (ai � 0; a1 C : : : C an D 1). Let us define random variable Z

as follows:

Z D
nX

iD1

IfY DigXi ;

where Ifg denotes the indicator variable. Then the CDF of random variable Z equals
F.z/.

Proof. Using the formula of total probability, we have the relation

P .Z � z/ D
nX

iD1

P .Z � zjY D i/P .Y D i/ D
nX

iD1

P .Xi � z/ai D F.z/:

ut
Concept and Properties of Expectation A random variable can be completely
characterized in a statistical sense by its CDF. To define a distribution function F.x/,
one needs to determine its values for all x 2 R, but this is not possible in many cases.
Fortunately, there is no need to do so because in many cases it suffices to give some
values that characterize the CDF in a certain sense depending on concrete practical
considerations. One of the most important concepts is expectation, which we define
in general form, and we give the definition for discrete and continuous distributions
as special cases.

Definition 1.33. Let X be a random variable, and let FX .x/ be its CDF. The
expected value (or mean value) of random variable X is defined as

E .X/ D
1Z

�1
xdFX .x/

if the expectation exists.
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Note that the finite expected value E .X/ exists if and only if
R1

�1 jxjdFX.x/ <

1. It is conventional to denote the expected value of the random variable X by �X .

Expected Value of Discrete and Continuous Random Variables Let X be
a discrete valued random variable with countable values fxi ; i 2 I g and with
probabilities fpi D P .X D xi /; i 2 I g. The finite expected value E .X/ of random
variable X exists and equals

E .X/ D
X

i2I

pixi

if and only if the sum is absolutely convergent, that is,
P

i2I pi jxi j < 1. In
the case of continuous random variables, the expected value can also be given in
a simple form. Let fX .x/ be the PDF of a random variable X . If the conditionR1

�1 jxj fX .x/dx < 1 holds (i.e., the integral is absolutely convergent), then the
finite expected value of X exists and can be given as

E .X/ D
1Z

�1
xfX .x/dx:

From a practical point of view, it is generally enough to give two special,
discrete, and continuous cases. Let X be a random variable that has a mixed CDF
with discrete and continuous components F1.x/ and F2.x/, respectively, and with
weights a1 and a2, that is,

F.x/ D a1F1.x/ C a2F2.x/; a1; a2 � 0; a1 C a2 D 1.

Assume that the set of discontinuities of F1.x/ is fxi ; i 2 I g and denote pi D
F1.xi / � F1.xi �/; i 2 I . In addition, we assume that the continuous CDF F2.x/

has the PDF f .x/. Then the expected value of random variable X is determined as
follows:

E .X/ D a1

X

i2I

pi xi C a2

1Z

�1
xf .x/dx

if the series and the integral on the right-hand side of the last formula are absolutely
convergent. The expected values related to special and different CDFs will be given
later in this chapter.

The operation of expectation can be interpreted as a functional

E W X ! E .X/

that assigns a real value to the given random variable. We enumerate the basic
properties of this functional as follows.
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1. If random variable X is finite, i.e., if there are constants x1 and x2 for which the
inequality x1 � X � x2 holds, then

x1 � E .X/ � x2:

If random variable X is nonnegative and the expected value E .X/ exists, then

E .X/ � 0.

2. Let us assume that the expected value E .X/ exists; then the expected value of
random variable cX exists for an arbitrary given constant c, and the identity

E .cX/ D cE .X/

is true.
3. If random variable X satisfies the condition P .X D c/ D 1, then

E .X/ D c:

4. If the expected values of random variables X and Y exist, then the sum X C Y

has an expected value, and the equality

E .X C Y / D E .X/ C E .Y /

holds. This relation can usually be interpreted in such a way that the operation
of expectation on the space of random variables is an additive functional.

5. The preceding properties can be expressed in a more general form. If there
are finite expected values of random variables X1; : : : ; Xn and c1; : : : ; cn are
constants, then the equality

E .c1X1 C : : : C cnXn/ D c1E .X1/ C : : : C cnE .Xn/

holds. This property means that the functional E ./ is a linear one.
6. Let X and Y be independent random variables with finite expected value. Then

the expected value of the product of random variables X � Y exists and equals
the product of expected values, i.e., the equality

E .XY / D E .X/ � E .Y /

is true.

Expectation of Functions of Random Variables, Moments and Properties Let
X be a discrete random variable with finite or countable values fxi ; i 2 I g and with
distribution fpi ; i 2 I g. Let h.x/; x 2 R be a real-valued function for which the
expected value of the random variable Y D h.X/ exists; then the equality
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E .Y / D E .h.X// D
X

i2I

pi h.xi /

holds.
If the continuous random variable X has a PDF fX .x/ and the expected value of

the random variable Y D h.X/ exists, then the expected value of Y can be given in
the form

E .Y / D
1Z

�1
h.x/fX .x/dx:

In cases where the expected value of functions of random variables (functions of
random vectors) are investigated, analogous results to the one-dimensional case can
be obtained. We give the formulas in connection with the two-dimensional case only.
Let X and Y be two random variables, and let us assume that the expected value of
the random variable Z D h.X; Y / exists. With the appropriate notation, used earlier,
for the cases of discrete and continuous distributions, the expected value of random
variable Z can be given in the forms

E .Z/ D
X

i2I

X

j 2J

h.xi ; yj /P
�
X D xi ; Y D yj

�
;

E .Z/ D
1Z

�1

1Z

�1
h.x; y/fXY .x; y/dxdy:

Consider the important case where h is a power function, i.e., for a given positive
integer number k, h.x/ D xk . Assume that the expected value of Xk exists. Then
the quantity

�k D E
�
Xk
�
; k D 1; 2; : : : ;

is called the kth moment of random variable X . It stands to reason that the first
moment � D �1 D E

�
X1
�

is the expected value of X and the frequently used
second moment is �2 D E

�
X2
�
.

Theorem 1.34. Let j and k be integer numbers for which 1 � j � k. If the kth
moment of random variable X exists, then the j th moment also exists.

Proof. From the existence of the kth moment it follows that E
�jX jk� < 1. Since

k=j � 1, the function xk=j ; x � 0, is convex, and by the use of Jensen’s inequality
we get the relation

�
E
�jX jj �	k=j � E

��jX jj �k=j
�

D E
�jX jk� < 1:

ut
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The kth central moment E
�
.X � E .X//k

�
is also used in practice; it is defined

as the kth moment of the random variable centered at the first moment (expected
value). The kth central moment E

�
.X � E .X//k

�
can be expressed by the noncen-

tral moments �i ; 1 � i � k of random variable X as follows:

E
�
.X � E .X//k

� D E

 
kX

iD0

 
k

i

!
Xi .�E .X//k�i

!

D
kX

iD0

 
k

i

!
E
�
Xi
�
.�E .X//k�i .

In the course of a random experiment, the observed values fluctuate around
the expected value. One of the most significant characteristics of the quantity of
fluctuations is the variance. Assume that the second moment of random variable X

is finite. Then the quantities

Var .X/ D E
�
.X � E .X//2

�

are called the variance of random variable X . The standard deviation of a random
variable X is the square root of its variance:

D .X/ D
p

E ..X � E .X//2/:

It is clear that the variance of X can be given with the help of the first and second
moments as follows:

D2 .X/ D Var .X/ D E
�
.X � E .X//2

� D E
�
X2
� � 2E .X/ � E .X/ C .E .X/2/

D E
�
X2
� � .E .X//2 D �2 � �2.

It is conventional to denote the variance of the random variable X by �2
X D D2 .X/.

It should be noted that the variance of a random variable exists if and only if its
second moment is finite. In addition, from the last inequality it follows that an upper
estimation can be given for the variance as

D2 .X/ � E
�
X2
�
:

It can also be seen that for every constant c the relation

E
�
.X � c/2

� D E
�
Œ.X � E .X// C .E .X/ � c/�2

�
D D2 .X/ C .E .X/ � c/2

holds, which is analogous to the Steiner formula, well known in the field of
mechanics.
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As an important consequence of this identity, we have the following result: the
second moment E

�
.X � c/2

�
takes the minimal value for the constant c D E .X/.

We will now mention some frequently used properties of variance.

1. If the variance of random variable X exists, then for all constants a and b the
identity

D2 .aX C b/ D a2D2 .X/

is true.
2. Let X1; : : : ; Xn be independent random variables with finite variance; then

D2 .X1 C : : : C Xn/ D D2 .X1/ C : : : C D2 .Xn/: (1.2)

The independence of random variables that play a role in formula (1.2) is
not required for the last identity, and it is also true if instead of assuming
the independence of the random variables X1; : : : ; Xn we assume that they are
uncorrelated. The notion of correlation is to be defined later. If X1; : : : ; Xn are
independent and identically distributed random variables with finite variance � , then

D2 .X1 C : : : C Xn/ D D2 .X1/ C : : : C D2 .Xn/ D n�2;

from which
D .X1 C : : : C Xn/ D �

p
n

follows.
In the literature on queueing theory, the notion of relative variance CV .X/2 is

applied, which is defined as

CV .X/2 D D2 .X/

E .jX j/2
:

Its square root CV .X/ D D .X/=E .jX j/ is called the coefficient of variation,
which serves as a normalized measure of variance of a distribution. The following
inequalities hold:

Exponential distribution: C V D 1;

Hyperexponential distribution: C V > 1;

Erlang distribution: C V < 1:

Markov and Chebyshev Inequalities The role of the Markov and Chebyshev
inequalities is significant, not only because they provide information concerning
distributions with the help of expected value and variance but because they are also
effective tools for proving certain results.

Theorem 1.35 (Markov inequality). If the expected value of a nonnegative random
variable X exists, then the following inequality is true for any constant " > 0;:
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P .X � "/ � E .X/

"
:

Proof. For an arbitrary positive constant " > 0 we have the relation

E .X/ � E
�
XIfX�"g

� � "E
�IfX�"g

� D " P .X � "/;

from which the Markov inequality immediately follows. ut
Theorem 1.36 (Chebyshev inequality). If the variance of random variable X is
finite, then for any constant " > 0 the inequality

P .jX � E .X/j � "/ � D2 .X/

"2

holds.

Proof. Using the Markov inequality for a constant " > 0 and for the random variable
.X � E .X//2 we find that

P .jX � E .X/j � "/ D P
�
.X � E .X//2 � "2

�
� E .X � E .X//2

"2
D D2 .X/

"2
;

from which the assertion of the theorem follows. ut
Comment 1.37. Let X be a random variable. If h.x/ is a convex function and
E .h.X// exists, then the Jensen inequality E .h.X// � h.E .X// is true. Using
this inequality we can obtain some other relations, similar to the case of the Markov
inequality.

Example 1.38. As a simple application of the Chebyshev inequality, let us consider
the average .X1 C : : : C Xn/=n, where the random variables X1; : : : ; Xn are
independent identically distributed with finite second moment. Let us denote the
joint expected value and variance by � and �2, respectively. Using the property
(1.2) of variance and the Chebyshev inequality and applying .n"/ instead of ", we
get the inequality

P .jX1 C : : : C Xn � n�j � n"/ D P
�
.X1 C : : : C Xn � n�/2 � n2"2

�

� n�2

.n"/2
D �2

n"2
I

then

P

ˇ̌
ˇ̌X1 C : : : C Xn

n
� �

ˇ̌
ˇ̌ � "

�
� �2

n"2
:
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As a consequence of the last inequality, for every fixed positive constant " the
probability P

�ˇ̌
X1C:::CXn

n
� �

ˇ̌ � "
�

tends to 0 as n goes to infinity. This assertion is
known as the weak law of large numbers.

Generating and Characteristic Functions So far, certain quantities characteriz-
ing the distribution of random variables have been provided. Now such transfor-
mations of distributions will be given where the distributions and the functions
obtained by the transformations uniquely determine each other. The investigated
transformations provide effective tools for determining, for instance, distributions
and moments and for proving limit theorems.

Definition 1.39. Let X be a random variable taking values in f0; 1; : : :g, with
probabilities p0; p1; : : :. Then the power series

GX .z/ D E
�
zX
� D

1X

iD0

piz
i

is convergent for all z 2 Œ�1; 1�, and the function GX .z/ is called the probability
generating function (or just generating function) of the discrete random vari-
able X .

In engineering practice, the power series defining the generating function is
applied in a more general approach instead of in the interval Œ�1; 1�, and the
generating function is defined on the closed complex unit circle z 2 C; jzj � 1,
which is usually called a z-transform of the distribution fpi ; i D 0; 1; : : :g. This
notion is also applied if, instead of a distribution, a transformation is made to an
arbitrary sequence of real numbers.

It should be noted that jGX .z/j � 1 if z 2 C and the function GX .z/ is
differentiable on the open unit circle of the complex plane z 2 C; jzj < 1 infinitely
many times and the kth derivative of GX .z/ equals the sum of the kth derivative of
the members of the series.

It is clear that
pk D G

.k/
X .0/=kŠ; k D 0; 1; : : : :

This formula makes it possible to compute the distribution if the generating function
is given. It is also true that if the first and second derivatives G0

X .1�/ and G00
X .1�/

exist on the left-hand side at z D 1, then the first and second moments of random
variable X can be computed as follows:

E .X/ D G0
X .1�/ and E

�
X2
� D �

zG0
X .z/

�0ˇ̌ˇ
zD1

D G00
X .1�/ C G0

X .1�/:

From this we can obtain the variance of X as follows:

D2 .X/ D G00
X .1�/ C G0

X .1�/ � .G0
X .1�//2:
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It can also be verified that if the nth derivative of the generating function GX .z/
exists on the left-hand side at z D 1, then

E .X.X � 1/ : : : .X � m C 1// D
1X

kDm

k.k � 1/ : : : .k � m C 1/pk

D G
.m/
X .1�/; 1 � m � n:

Computing the expected values on the left-hand side of these identities, we can
obtain linear equations between the moments �k D E.Xk/; 1 � k � m, and the
derivatives G

.m/
X .1�/ for all 1 � m � n. The moments �m; m D 1; 2; : : : ; n can be

determined in succession with the help of the derivatives G
.k/
X .1�/; 1 � k � m:

The special cases of k D 1; 2 give the preceding formulas for the first and second
moments.

Characteristic Function

Definition 1.40. The complex valued function

'X.s/ D E
�
eisX

� D E .cos.sX// C iE .sin.sX//; s 2 R;

is called the characteristic function of random variable X , where i D p�1.

Note that a characteristic function can be rewritten in the form

'X.s/ D
1Z

�1
eisxdFX.x/;

which is the well-known Fourier–Stieltjes transform of the CDF FX .x/.
Using conventional notation, in discrete and continuous cases we have

'X .s/ D
1X

kD0

pkeisxk , and 'X .s/ D
1Z

�1
eisxfX .x/dx:

The characteristic function and the CDFs determine each other uniquely. Now
some important properties of characteristic functions will be enumerated.

1. The characteristic function is real valued if and only if the distribution is
symmetric.

2. If the kth moment E
�
Xk
�

exists at point 0, then

E
�
Xk
� D '

.k/
X .0/

ik
:
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3. If the derivative '
.2k/
X .0/ is finite for a positive integer k, then the moment

E
�
X2k

�
exists. Note that from the existence of the finite derivative '

.2kC1/
X .0/

only the existence of the finite moment E
�
X2k

�
follows.

4. Let X1; : : : ; Xn be independent random variables; then the characteristic func-
tion of the sum X1 C : : : C Xn equals the product of the characteristic functions
of the random variables Xi , that is,

'X1C:::CXn.s/ D E
�
eis.X1C:::CXn/

� D E
�
eisX1 : : : eisXn

�

D E
�
eisX1

� � : : : � E
�
eisXn

� D 'X1.s/ : : : 'X1.s/:

Note that property 4 plays an important role in the limit theorems of probability
theory.

Laplace–Stieltjes and Laplace Transforms If, instead of the CDFs, the Laplace–
Stieltjes and Laplace transforms were used, the problem could be solved much
easier in many practical cases and the results could additionally often be given
in more compact form. Let X be a nonnegative random variable with the CDF
F.x/ .F.0/ D 0/. Then the real or, in general, complex varying function

F �.s/ D E
�
e�sX

� D
1Z

0

e�sxdF.x/; Res � 0; F �.0/ D 1

is called the Laplace–Stieltjes transform of the CDF F . Since
ˇ̌
e�sX

ˇ̌ � 1 if Res �
0, then the function F �.s/ is well defined. If f is a PDF, then the function

f �.s/ D
1Z

0

e�sxf .x/dx; Res � 0;

is called the Laplace transform of the function f . These notations will be used
even if the functions F and f do not possess the necessary properties of distribution
and PDFs but F �.s/ and f �.s/ are well defined. If f is a PDF related to the CDF
F , then the equality

F �.s/ D f �.s/ D sF �.s/ (1.3)

holds.

Proof. It is clear that

F �.s/ D
1Z

0

e�sxdF.x/ D
1Z

0

e�sxf .x/dx D f �.s/;

and integrating by parts we have
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F �.s/ D
1Z

0

e�sxdF.x/ D
1Z

0

se�sxF .x/dx D sF �.s/:

ut
Since the preceding equation is true between the two introduced transforms, it is

enough to consider the Laplace–Stieltjes transform only and to enumerate its main
properties.

(a) F �.s/; Res � 0 is a continuous function and 0 � jF �.s/j � 1; Res � 0.
(b) F �

aXCb.s/ D e�bsF �.as/.
(c) For all positive integers k

.�1/kF �.k/.s/ D
1Z

0

xke�sxdF.x/; Res > 0:

If the kth moment �k D E
�
Xk
�

exists, then �k D .�1/kF �.k/.0/.
(d) If the nonnegative random variables X and Y are independent, then

F �
XCY .s/ D F �

X .s/F �
Y .s/:

(e) For all continuity points of the CDF F the inversion formula

F.x/ D lim
a!1

X

n�ax

.�1/n.F �.a//.n/ an

nŠ

is true.

Covariance and Correlation Let X and Y be two random variables with finite
variances �2

X and �2
Y , respectively. The covariance between the pair of random

variables .X; Y / is defined as

cov.X; Y / D E ..X � E .X//.Y � E .Y ///:

The covariance can be rewritten in the simple computational form

cov.X; Y / D E .XY / � E .X/E .Y /:

If the variances �2
X and �2

Y satisfy the conditions D .X/ > 0; D .Y / > 0, then
the quantity

corr.X; Y / D cov



X � E .X/

D .X/
;

Y � E .Y /

D .Y /

�
D cov.X; Y /

D .X/D .Y /

is called the correlation between the pair of random variables .X; Y /.
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Correlation can be used as a measure of the dependence between random
variables. It is always true that

�1 � corr.X; Y / � 1;

provided that the variances of random variables X and Y are finite and nonzero.

Proof. Since by the Cauchy–Schwartz inequality for all random variables U and V

with finite second moments

.E .U V //2 � E
�
U 2
�
E
�
V 2
�
;

therefore

.cov.X; Y //2 � E
�
.X � E .X//2

�
E
�
.Y � E .Y //2

� D D2 .X/D2 .Y /;

from which the inequality jcorr.X; Y /j � 1 immediately follows. ut
It can also be proved that the equality jcorr.X; Y /j D 1 holds if and only if a

linear relation exists between random variables X and Y with probability 1, that is,
there are two constants a and b for which P .Y D aX C b/ D 1.

Both covariance and correlation play essential roles in multivariate statistical
analysis. Let X D .X1; : : : ; Xn/T be a column vector whose n elements X1; : : : ; Xn

are random variables. Here it should be noted that in probability theory and statistics
usually column vectors are applied, but in queueing theory row vectors are used if
Markov processes are considered. We define

E .X/ D .E .X1/; : : : ; E .Xn//T ;

provided that the expected values of components exist. The upper index T denotes
the transpose of vectors or matrices. Similarly, if a matrix W D �

Wij

� 2 R
k�m is

given whose elements Wij are random variables of finite expected values, then we
define

E .W / D �
E
�
Wij

��
; 1 � i � k; 1 � j � m/:

If the variances of components of a random vector X D .X1; : : : ; Xk/T are finite,
then the matrix

R D E
�
.X � E .X// .X � E .X//T� (1.4)

is called a covariance matrix of X . It can be seen that the .i; j / entries of matrix R

are Rij D cov.Xi ; Xj /; which are the covariances between the random variables Xi

and Xj .
The covariance matrix can be defined in cases where the components of X are

complex valued random variables replacing in definition (1.4) .X � E .X//T by
.X � E .X//�T the complex composed of transpose.
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An important property of a covariance matrix R is that it is nonnegative definite,
i.e., for all real or complex k-dimensional column vectors z D .z1; : : : ; zk/T the
inequality

zRzT � 0

holds.
The matrix r D .ri;j / with components ri;j D corr.Xi ; Xj /; 1 � i � k; 1 �

j � m is called a correlation matrix of random vector X .

Conditional Expectation and Its Properties The notion of conditional expecta-
tion is defined with the help of results of set and measure theories. We present the
general concept and important properties and illustrate the important special cases.

Let .�;A; P/ be a fixed probability space, and let X be a random variable whose
expected value exists. Let C be an arbitrary sub-�-algebra of A. We wish to define
the conditional expectation Z D E .X jC/ of X given C as a C-measurable random
variable for which the random variable satisfies the condition E

�
E .X jC/IfC g

� D
E
�
XIfC g

�
for all C 2 C. As a consequence of the Radon–Nikodym theorem, a

random variable Z exists with probability 1 that satisfies the required conditions.

Definition 1.41. Random variable Z is called the conditional expectation of X

given �-algebra C if the following conditions hold:

(a) Z is a C-measurable random variable.
(b) E

�
E .X jC/IfC g

� D E
�
XIfC g

�
for all C 2 C.

Definition 1.42. Let A 2 A be an event. The random variable P .AjC/ D
E
�IfAgjC

�
is called the conditional expectation of event A given �-algebra C.

Important Properties of Conditional Expectation Let C, C1, and C2 be sub-�-
algebras of A, and let X , X1, and X2 be random variables with finite expected
values. Then the following relations hold with probability 1:

1. E .E .X jC// D E .X/:

2. E .cX jC/ D cE .X jC/ for all constant c.
3. If C0 D f˛; �g is the trivial �-algebra, then E .X jC0/ D E .X/:

4. If C1� C2, then E .E .X jC1/jC2/ D E .E .X jC2/jC1/ D E .X jC1/:

5. If random variable X does not depend on the �-algebra C, i.e., if for all
Borel sets D 2 B and for all events A 2 C the equality P .X 2 D; A/ D
P .X 2 D/P .A/ holds, then E .X jC/ D E .X/.

6. E .X1 C X2jC/ D E .X1jC/ C E .X2jC/:

7. If the random variable X1 is C-measurable, then E .X1X2jC/ D X1E .X2jC/:

Definition 1.43. Let Y be a random variable, and denote by AY the �-algebra
generated by random variable Y , i.e., let AY be the minimal sub-�-algebra of A for
which Y is AY -measurable. The random variable E .X jY / D E .X jCY / is called
the conditional expectation of X given random variable Y .

Main Properties of Conditional Expectation Firstly, consider the case where
random variable Y is discrete and takes values in the set Y D fy1; : : : ; yng and
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P .Y D yi / > 0; 1 � i � n. We then define the events Ci D fY D yi g; 1 �
i � n. It is clear that the collection of events fC1; : : : ; Cng forms a complete
system of events, i.e., they are mutually exclusive, P .Ci / > 0; � i � n and
P .C1/ C : : : C P .Cn/ D 1. The �-algebra CY D �.C1; : : : ; Cn/ � A, which is
generated by random variable Y , is the set of events consisting of all subsets of
fC1; : : : ; Cng. Note that here we can write “algebra” instead of “�-algebra” because
the set fC1; : : : ; Cng is finite. Since the events Ci have positive probability, the
conditional probabilities

E .X jCi/ D E
�
XIfCi g

�

P .Ci/

are well defined.

Theorem 1.44. The conditional expectation E .X jCY / satisfies the relation

E .X jCY / D E .X jCY /.!/ D
nX

kD1

E .X jCk/IfCkg with probability 1. (1.5)

Note that Eq. (1.5) can also be rewritten in the form

E .X jY / D E .X jY /.!/ D
nX

kD1

E .X jY D yk/IfY Dykg: (1.6)

Proof. Since the relation

fE .X jCY / � xg D [fCi W E .X jCi/ � xg 2 CY

holds for all x 2 R, then E .X jCY / is a CY -measurable random variable. On the
other hand, if C 2 CY ; C ¤ f¿g, then C D [fCi W i 2 Kg stands with an
appropriately chosen set of indices K � f1; : : : ; ng, and we obtain

E
�
E .X jCY /IfC g

� D E

 
X

k2K

E .X jCk/IfCkg

!

D
X

k2K

E .X jCk/P .Ck/ D
X

k2K

E
�
XIfCkg

� D E
�
XIfC g

�
:

If C D f˛g, then E
�
E .X jCY /IfC g

� D E
�
XIfC g

� D 0. Thus we have proved that
random variable (1.5) satisfies all the required properties of conditional expectation.

ut
Comment 1.45. From expression (1.6) the following relation can be obtained:
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E .X/ D E .E .X jY // D
1Z

�1
E .X jY D y/dFY .y/: (1.7)

This relation remains valid if, instead of the finite set Y D fy1; : : : ; yng, we choose
the countable infinite set Y D fyi ; i 2 I g for which P .Y D yi / > 0, i 2 I:

Comment 1.46. Denote the function g by the relation

g.y/ D
�

E .X jY D yk/; if y D yk for an index k,
0; otherwise.

(1.8)

Then, using formula (1.6), the conditional expectation of X given Y can be obtained
with the help of the function g as follows:

E .X jY / D g.Y / (1.9)

with probability 1.

Continuous Random Variables .X; Y / Consider a pair of random variables
.X; Y / having joint density fX;Y .x; y/ and marginal densities fX .x/ and fY .y/,
respectively. Then the conditional density fX jY .xjy/ exists and, according to (1.1),
can be defined as

fX jY .xjy/ D
8
<

:

fXY .x; y/

fY .y/
; if fY .y/ > 0;

0; otherwise :

Define g.y/ D E .X jY D y/ D
1R

�1
xfX jY .xjy/dx. Then the conditional expecta-

tion of X given Y can be determined with probability 1 as follows:

E .X jY / D g.Y /;

and so we can define
E .X jY D y/ D g.y/:

Proof. It is clear that g.Y / is a CY -measurable random variable; therefore, it is
enough to prove that the equality

E
�
E .X jY /IfY 2Dg

� D E
�
XIfY 2Dg

�

holds for all Borel sets D of a real line. It is not difficult to see that

E
�
E .X jY /IfY 2Dg

� D E
�
g.Y /IfY 2Dg

�
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D
Z

D

1Z

�1
x

fXY .x; y/

fY .y/
fY .y/dxdy

D
Z

D

1Z

�1
xfXY .x; y/dxdy

and, on other hand,

E
�
XIfY 2Dg

� D
Z

D

1Z

�1
xfXY .x; y/dxdy:

ut
Comment 1.47. In the case where a pair of random variables has a joint normal
distribution, the conditional expectation E .X jY / is a linear function of random
variable Y with probability 1, that is, the regression function g is a linear function
and the relation

E .X jY / D E .X/ C cov.X; Y /

D .X/
.X � E .X//

holds.

General Case By the definition of conditional expectation, E .X jY / is CY -
measurable; therefore, there is a Borel-measurable function g such that E .X jY /

can be given with probability 1 in the form

E .X jY / D g.Y /: (1.10)

This relation makes it possible to give the conditional expectation E .X jY D y/ as
the function

E .X jY D y/ D g.y/;

which is called a regression function. It is clear that the regression function is not
necessarily unique and is determined on a Borel set of the real line D satisfying the
condition P .Y 2 D/ D 1.

Comment 1.48. Let X and Y be two random variables. Assume that X has finite

variation. Consider the quadratic distance E
�
ŒX � h.Y /�2

�
for the set HY of

all Borel-measurable functions h, for which h.Y / has finite variation. Then the
assertion

min
n
E
�
ŒX � h.Y /�2

�
W h 2 HY

o
D E

�
ŒX � g.Y /�2

�
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holds. This relation implies that the best approximation of X by Borel-measurable
functions of Y in a quadratic mean is the regression E .X jY / D g.Y /.

Formula of Total Expected Value A useful formula can be given to compute the
expected value of random variable X if the regression function E .X jY D y/ can
be determined.

Making use of relation 1 given as a general property of conditional expectation
and Eq. (1.10), it is clear that

E .X/ D E .E .X jY // D E .g.Y //

D
1Z

�1
g.y/dFY .y/ D

1Z

�1
E .X jY D y/dFY .y/:

From this relation we have the so-called formula of total expected value. If random
variable Y has discrete or continuous distributions, then we have the formulas

E .X/ D
X

i2I

E .X jY D yi /P .Y D yi /

and

E .X/ D
1Z

�1
E .X jY D y/fY .y/dy:

1.2 Frequently Used Discrete and Continuous Distributions

In this part we consider some frequently used distributions and give their defini-
tions and important characteristics. In addition to the formal description of the
distributions, we will give appropriate mathematical models that lead to a given
distribution. If the distribution function of a random variable is given as a function
FX .xI a1; : : : ; an/ depending on a positive integer n and constants a1; : : : ; an, then
a1; : : : ; an are called the parameters of the density function FX .

1.2.1 Discrete Distributions

Bernoulli Distribution Be.p/; 0 � p � 1. The PDF of random variable X with
values f0; 1g is called a Bernoulli distribution if

pk D P .X D k/ D
�

p; if k D 1;

1 � p; if k D 0:
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Expected value and variance: E .X/ D p; D2 .X/ D p.1 � p/I
Generating function: 1 � p C pzI
Characteristic function: 1 � p C pei t :

Example. Let X be the number of heads appearing in one toss of a coin, where

p D P .head appearing in a toss/:

Then X has a Be.p/ distribution.

Binomial Distribution B.n; p/. The distribution of a discrete random variable X

with values f0; 1; : : : ; ng is called binomial with the parameters n and p; 0 < p < 1,
if its PDF is

pk D P .X D k/ D
 

n

k

!
pk.1 � p/n�k; k D 0; 1; : : : ; n:

Expected value and variance: E .X/ D np; D2 .X/ D np.1 � p/I
Generating function: G.z/ D .pz C .1 � p//nI
Characteristic function: '.t/ D .1 C p.ei t � 1//n:

Example. Consider an experiment in which we observe that an event A with
probability p D P .A/; 0 < p < 1, occurs (success) or not (failure). Repeating
the experiment n times independently, define random variable X by the frequency
of event A. Then the random variable has a B.n; p/ PDF.

Note that if the Be.n; p/ random variables X1; : : : ; Xn are independent, then the
random variable X D X1 C : : : C Xn has a B.n; p/ distribution.

Polynomial Distribution The PDF of a random vector X D .X1; : : : ; Xk/T taking
values in the set f.n1; : : : ; nk/ W ni � 0; n1 C : : : C nk D ng is called polynomial
with the parameters n and p1; : : : ; pk .pi : > 0; p1 C : : : C pk D 1/ if X has a PDF

pn1;:::;nk
D P .X1 D n1; : : : ; Xk D nk/ D nŠ

n1Š : : : nkŠ
p

n1

1 : : : p
nk

k :

Note that each coordinate variable Xi of random vector X has a B.pi ; n/ binomial
distribution whose expected value and variance are npi and npi.1 � pi /.

Expected value E .X/ D .np1; : : : ; npn/TI
Covariance matrix R D .Rij /1�i;j �k, where Rij D

�
npi .1 � pi /; if i D j;

npipj ; if i ¤ j I
Characteristic function: '.t1; : : : ; tk/ D .p1ei t1 C : : : C pkei tk /n:

Example. Let A1; : : : ; Ak be k disjoint events for which pi D P.Ai / > 0; p1 C
: : :Cpk D 1: Consider an experiment with possible outcomes A1; : : : ; Ak and repeat
it n times independently. Denote by Xi the frequency of event Ai in the series of n
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observations. Then the distribution of X is polynomial with the parameters n and
p1; : : : ; pk .

Geometric Distribution The PDF of random variable X taking values in f1; 2; : : :g
is called a geometric distribution with the parameter p; 0 < p < 1; if its PDF is

pk D P .X D k/ D .1 � p/k�1p; k D 1; 2; : : : :

Expected value and variance: E .X/ D 1
p

; D2 .X/ D 1�p

p2 I
Generating function: G.z/ D pz

1�.1�p/z I
Characteristic function: '.t/ D p

1�.1�p/ei t :

Theorem 1.49. If X has a geometric distribution, then X has a so-called
memoryless property, that is, for all nonnegative integer numbers i; j the following
relation holds:

P .X � i C j jX � i/ D P .X � j /:

Proof. It is easy to verify that for k � 1

P .X � k/ D
1X

`Dk

P .X D `/ D
1X

`Dk

.1 � p/`�1p

D .1 � p/k�1p

1X

`D0

.1 � p/` D .1 � p/k�1;

therefore,

P .X � i C j jX � i/ D P .X � i C j; X � i/

P .X � i/

D P .X � i C j /

P .X � i/

D .1 � p/iCj �1

.1 � p/i�1
D .1 � p/j ; j D 0; 1; : : : :

ut
Note that a geometric distribution is sometimes defined on the set f0; 1; 2; : : :g

instead of f1; 2; : : : ; g; in this case, the PDF is determined by

pk D .1 � p/kp; k D 0; 1; 2; : : : :

Example. Consider a sequence of experiments and observe whether an event A,
p D P.A/ > 0, occurs (success) or does not (failure) in each step. If the event



38 1 Introduction to Probability Theory

occurs in the kth step first, then define the random variable as X D k. In other
words, let X be the number of Bernoulli trials of the first success. Then random
variable X has a geometric distribution with the parameter p.

Negative Binomial Distribution The distribution of random variable X taking
values in f0; 1; : : :g is called a negative binomial distribution with the parameter
p; 0 < p < 1; if

pk D P .X D k C r/ D
 

r C k � 1

k

!
.1 � p/kpr ; k D 0; 1; : : : :

Expected value and variance: E .X/ D r 1
p

; D2 .X/ D r
1�p

p2 I
Generating function: G.z/ D

�
pz

1�.1�p/z

�r I
Characteristic function: '.t/ D pr

�
1 � .1 � p/ei t

��r
:

Example. Let p; 0 < p < 1; and the positive integer r be two given constants.
Suppose that we are given a coin that has a probability p of coming up heads. Toss
the coin repeatedly until the r th head appears and define by X the number of tosses.
Then random variable X has a negative binomial distribution with parameters .p; r/.

Note that from this example it immediately follows that X has a geometric
distribution with the parameter p when r D 1.

Poisson Distribution The PDF of a random variable X is called a Poisson
distribution with the parameter � .� > 0/ if X takes values in f0; 1; : : :g and

pk D P .X D k/ D �k

kŠ
e��; k D 0; 1; : : : :

Expected value and variance: E .X/ D �; D2 .X/ D �I
Generating function: G.z/ D e�.z�1/I
Characteristic function: '.t/ D e�.ei t �1/:

The following theorem establishes that a binomial distribution can be approxi-
mated with a Poisson distribution with the parameter � when the parameters .p; n/

of the binomial distribution satisfy the condition np ! �, n ! 1.

Theorem 1.50. Consider a binomial distribution with the parameter .p; n/. As-
sume that for a fixed constant �; � > 0, the convergence np ! �, n ! 1, holds;
then the limit of probabilities satisfies the relation

 
n

k

!
pk.1 � p/n�k ! �k

kŠ
e��; k D 0; 1; : : : :

Proof. For any fixed k � 0 integer number we have
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n

k

!
pk.1 � p/n�k D .np/..n � 1/p/ : : : ..n � k C 1/p/

kŠ
e.n�k/ log.1�p/:

Since np ! �, n ! 1, therefore p ! 0, and we obtain

.np/..n � 1/p/ : : : ..n � k C 1/p/

1 � 2 � : : : � k
! �k

kŠ
; np ! �:

On the other hand, if p ! 0, then we get the asymptotic relation log.1 � p/ D
�p C o.p/. Consequently,

.n � k/ log.1 � p/ D �.n � k/.p C o.p// ! ��; np ! �; n ! 1I

therefore, using the last two asymptotic relations, the assertion of the theorem
immediately follows. ut

1.2.2 Continuous Distributions

Uniform Distribution Let a; b .a < b/ be two real numbers. The distribution of
random variable X is called uniform on the interval .a; b/ if its PDF is given by

f .x/ D
�

1
b�a

; ha x 2 .a; b/;

0; ha x … .a; b/:

Expected value and variance: E .X/ D aCb
2

; D2 .X/ D .b�a/2

12
I

Characteristic function: '.t/ D 1
b�a

ei tb�ei ta

i t
:

Note that if X has a uniform distribution on the interval .a; b/; then the random
variable Y D X�a

b�a
is distributed uniformly on the interval .0; 1/.

Exponential Distribution Exp.�/; � > 0. The distribution of a random variable
X is called exponential with the parameter �; � > 0, if its PDF

f .x/ D
�

�e��x; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D 1
�
; D2 .X/ D 1

�2 I
Characteristic function: '.t/ D �

��i t
:

The Laplace and Laplace–Stieltjes transforms of the density and distribution
function of an Exp.�/ distribution are determined as
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E
�
e�sX

� D f �.s/ D F �.s/ D �

s C �
:

The exponential distribution, similarly to the geometric distribution, has the
memoryless property.

Theorem 1.51. For arbitrary constants t; s > 0 the relation

P .X > t C sjX > t/ D P .X > s/

holds.

Proof. It is clear that

P .X > t C sjX > t/ D P .X > t C s; X > t/

P .X > t/
D

D P .X > t C s/

P .X > t/
D e��.tCs/

e��t
D e��s:

ut
Hyperexponential Distribution Let the PDF of random variable X be a mixture
of exponential distributions with the parameters �1; : : : ; �n and with weights
a1; : : : ; an .ak > 0; a1 C : : : C an D 1/. Then the PDF

f .x/ D
8
<

:

nP
kD1

ak�ke��kx if x > 0;

0; if x � 0;

of random variable X is called hyperexponential.

Expected value and variance: E .X/D
nP

kD1

ak

�k
; D2 .X/D2

nP
kD1

ak

�2
k

�



nP
kD1

ak

�k

�2

I

Characteristic function: '.t/ D
nP

kD1

ak
�k

�k�i t
:

Denote by �.x/ D
1R

0

yx�1e�ydy; x > �1 the well-known gamma function �

in analysis, which is necessary for the definition of the gamma distribution.

Gamma Distribution Gamma.˛; �/; ˛; � > 0.
The distribution of a random variable X is called a gamma distribution with the

parameters ˛; � > 0, if its PDF is
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f .x/ D
(

�˛

�.˛/
x˛�1e��x; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D ˛
�
; D2 .X/ D ˛

�2 I
Characteristic function: '.t/ D �

�
��i t

�˛
:

Comment 1.52. A gamma distribution with the parameters ˛ D n; � D n� is
called an Erlang distribution.

Comment 1.53. If the independent identically distributed random variables
X1; X2; : : : have an exponential distribution with the parameter �, then the
distribution of the sum Z D X1 C : : : C Xn is a gamma distribution with the
parameter .n; �/. This relation is easy to see because the characteristic function
of an exponential distribution with the parameter � is .1 � i t=�/�1; then the
characteristic function of its nth convolution power is .1 � i t=�/�n, which equals
the characteristic function of a Gamma.n; �/ distribution.

Beta Distribution Beta.a; b/; a; b > 0. The distribution of random variable X is
called a beta distribution if its PDF is

f .x/ D
(

�.aCb/

�.a/�.b/
xa�1.1 � x/b�1; if x 2 .0; 1/;

0; if x … .0; 1/:

Expected value and variance: E .X/ D a
aCb

; D2 .X/ D ab
.aCb/2.aCbC1/

I
Characteristic function in the

form of power series: '.t/ D �.˛Cˇ/

�.˛/

1P
kD0

.i t/k

kŠ

�.˛Ck/

�.˛CˇCk/
:

Gaussian (Also Called Normal) Distribution N.�; �/; �1 < � < 1; 0 < � <

1. The distribution of random variable X is called Gaussian with the parameters
.�;�/ if it has a PDF

f .x/ D 1p
2	�

e�.x��/2=2�2

; �1 < x < 1:

Expected value and variance: � D E .X/ and �2 D D2 .X/I
Characteristic function: '.t/ D exp

n
i�t � �2

2
t2
o

:

The N.0; 1/ distribution is usually called a standard Gaussian or standard normal
distribution, and its PDF is equal to

f .x/ D 1p
2	

e�x2=2; �1 < x < 1:
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It is easy to verify that if a random variable has an N.�; �/ distribution, then the
centered and linearly normed random variable Y D .X � �/=� has a standard
Gaussian distribution.

Multidimensional Gaussian (Normal) Distribution N.�; R/ Let Z D .Z1;

: : : ; Zn/ be an n-dimensional random vector whose coordinates Z1; : : : ; Zn are
independent and have a standard N.0; 1/ Gaussian distribution. Let V 2Rm�n be
an .m 	 n/ matrix and � D .�1; : : : ; �m/T 2 R

m an m-dimensional vector. Then
the distribution of the m-dimensional random vector X defined by the equation
X D VZ C � is called an m-dimensional Gaussian distribution.

Expected value and variance matrix:

E .X/ D �X D � and D2 .X/ D RX D E
�
.X � �/.X � �/T

� D VVTI

Characteristic function:

'.t/ D exp

�
i tT��1

2
tTRXt

�
; where t D .t1; : : : ; tm/T 2 R

m:

If V is a nonsingular quadratic matrix (m D n and det V ¤ 0), then the random
vector X has a density in the form

fX.x/ D 1

.2	 det RX /n=2
exp

�
�1

2
.x��/TR�1

X .x��/

�
; x D .x1; : : : ; xn/T 2 R

n:

Example. If the random vector X D .X1; X2/
T has a two-dimensional Gaussian

distribution with expected value � D .�1; �2/
T and covariance matrix

RX D



a b

b c

�
;

then its PDF has the form

fX.x/ D
p

ac � b2

2	
exp

�
�1

2
Œa.x1 � �1/2 C 2b.x1 � �1/.x2 � �2/ C c.x2 � �2/2�

�
;

where a; b; c; �1; �2 are constants satisfying the conditions a > 0; c > 0, and
b2 < ac.

Note that the marginal distributions of random variables X1 and X2 are N.�1; �1/

and N.�2; �2/ Gaussian, respectively, where

�1 D
r

a

ac � b2
; �2 D

r
c

ac � b2
and b D cov.X1; X2/:
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Distribution Functions Associated with Gaussian Distributions Let Z; Z1;

Z2; : : : be independent random variables whose distributions are standard Gaussian,
i.e., with the parameters .0; 1/. There are many distributions, for example the 
2

and the logarithmically normal distributions defined subsequently (further examples
are the frequently used t , F , and Wishart distributions in statistics [46]), that can
be given as distributions of appropriately chosen functions of random variables
Z; Z1; Z2; : : :.


2 Distribution The distribution of the random variable X D Z2
1 C : : : C Z2

n is
called a 
2 distribution with parameter n. The PDF is

fn.x/ D
(

1

2n=2�.n=2a/
xn=2�1e�x=2; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D n; D2 .X/ D 2nI
Characteristic function: '.t/ D .1 � 2it/�n=2:

Logarithmic Gaussian (Normal) Distribution If random variable Z has an
N.�; �/ Gaussian distribution, then the distribution of the random variable X D eZ

is called a logarithmic Gaussian (normal) distribution. The PDF is

f .x/ D
(

1p
2	�x

exp
n

.log x��/2

2�2

o
; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D e�2=2C�; D2 .X/ D e�2=2C�
�

ee2 � 1
�

:

Weibull Distribution The Weibull distribution is a generalization of the expo-
nential distribution for which the behavior of the tail distribution is modified by
a positive constant k as follows:

F.x/ D
(

1 � e�.x=�/k
; if x > 0;

0; if x � 0I

f .x/ D
( �

k
�

� �
x
�

�k�1
e�.x=�/k

; if x > 0;

0; if x � 0:

Expected value and variance:

E .X/ D ��.1 C 1=k/; D2 .X/ D �2
�
�.1 C 2=k/ � �2.1 C 1=k/

�
:
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Pareto Distribution Let c and � be positive numbers. The density function and the
PDF of a Pareto distribution are defined as follows:

F.x/ D
�

1 � . x
c
/��; if x > c;

0; if x � 0I

f .x/ D
( �

�
c

� �
x
c

����1
if x > c;

0; if x � c:

Since the PDF of the Pareto distribution is a simple power function in consequence
of this property, it tends to zero with polynomial order as x goes to infinity and the
nth moment exists if and only if n < �.

Expected value (if k > 1) and variance (if k > 2):

E .X/ D ck

k � 1
; D .X/ D c2k

.k � 1/2.k � 2/
:

1.3 Limit Theorems

1.3.1 Convergence Notions

There are many convergence notions in the theory of analysis, for example,
pointwise convergence, uniform convergence, and convergences defined by various
metrics. In the theory of probability, several kinds of convergences are also used that
are related to the sequences of random variables or to their sequence of distribution
functions. The following notion is the so-called weak convergence of distribution
functions.

Definition 1.54. The sequence of distribution functions Fn; n D 1; 2; : : : weakly
converges to the distribution function F (abbreviated Fn

w! F; n ! 1) if the
convergence Fn.x/ ! F.x/; n ! 1, holds in all continuity points of F .

If the distribution function F is continuous, then the convergence Fn

w! F; n !
1 holds if and only if Fn.x/ ! F.x/; n ! 1 for all x 2 R. The weak
convergence of the sequence Fn; n D 1; 2; : : : is equivalent to the condition that
the convergence

1Z

�1
g.x/dFn.x/ !

1Z

�1
g.x/dF.x/

is true for all bounded and continuous functions g.
In addition, the weak convergence of a distribution function can be given with

the help of an appropriate metric in the space F D fF g of all distribution functions.
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Let G and H be two distribution functions (i.e., G; H 2 F), and define the Levy
metric [96] as follows:

L.G; H/ D inff" W G.x/ � H.x C "/ C "; H.x/ � G.x C "/ C "; for all x 2 Rg:

Then it can be proved that the weak convergence Fn

w! F; n ! 1, of the
distribution functions F; Fn; n D 1; 2; : : :, holds if and only if lim

n!1L.Fn; F / D 0.

The most frequently used convergence notions in probability theory for a
sequence of random variables are the convergence in distribution, convergence in
probability, convergence with probability 1, or almost surely (a.s.), and convergence
in mean square (convergence in L2), which will be introduced subsequently. In cases
of the last three convergences, it is assumed that the random variables are defined
on a common probability space .�;A; P .//:

Definition 1.55. The sequence of random variables X1; X2; : : : converges in distri-

bution to a random variable X (abbreviated Xn

d! X; n ! 1) if their distribution
functions satisfy the weak convergence

FXn

w! FX ; n D 1; 2; : : : :

Definition 1.56. The sequence of random variables X1; X2; : : : converges in prob-

ability to a random variable X (Xn

P! X; n ! 1) if the convergence

lim
n!1P .jXn � X j > "/ D 0

holds for all positive constants ".

Definition 1.57. The random variables X1; X2; : : : converge with probability 1

(or almost surely) to a random variable X (abbreviated Xn

a.s.! X; n ! 1) if the
condition

P
�

lim
n!1Xn D X

�
D 1

holds.

The limit lim
n!1Xn D X exists if there are defined random variables with

probability 1 X 0 D lim sup
n!1

Xn and X 00.!/ D lim inf
n!1 Xn for which the relation

P
�
X 0.!/ D X 00.!/ D X.!/

� D 1

is true. This means that there is an event A 2 A, P .A/ D 0, such that the equality

X 0.!/ D X 00.!/ D X.!/; ! 2 � n A

holds.
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Theorem 1.58 ([84]). The convergence limn!1 Xn D X with probability 1 is true
if and only if for all " > 0

P

 
sup
k�n

jXk � X j > "

!
D 0:

Definition 1.59. Let Xn; n � 1 and X be random variables with finite variance.
The sequence X1; X2; : : : converges in mean square to random variable X

(abbreviated Xn

L2! X; n ! 1) if

E
�
jXn � X j2

�
! 0; n ! 1:

This type of convergence is often called an L2 convergence of random variables.

The enumerated convergence notions are not equivalent to each other, but we can
mention several connections between them. The convergence in distribution follows
from all the others. The convergence in probability follows from the convergence
with probability 1 and from the convergence in mean square. It can be proved that if
the sequence X1; X2; : : : is convergent in probability to the random variable X , then
there exists a subsequence Xn1; Xn2; : : : such that it converges with probability 1 to
random variable X .

1.3.2 Laws of Large Numbers

The intuitive introduction of probability implicitly uses the limit behavior of the
average

Sn D X1 C : : : C Xn

n
; n D 1; 2; : : : ;

of independent identically distributed random variables X1; X2; : : :. The main
question is: under what condition does the sequence Sn converge to a constant �

in probability (weak law of large numbers) or with probability 1 (strong law of large
numbers) as n goes to infinity?

Consider an experiment in which we observe that an event A occurs or not.
Repeating the experiment n times independently, define the frequency of event A

by Sn.A/ and the relative frequency by Sn.A/.

Theorem 1.60 (Bernoulli). The relative frequency of an event A tends in probabil-
ity to the probability of the event p D P.A/, that is, for all " > 0 the relation

lim
n!1P

�ˇ̌
Sn.A/ � p

ˇ̌
> "

� D 0

holds.
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If we introduce the notation

Xi D
�

1; if the i -th outcome in A;

0; otherwise,

then the assertion of the last theorem can be formulated as follows:

Sn D X1 C : : : C Xn

n

p! p; n ! 1;

which is a simple consequence of the Chebyshev inequality because the Xi are
independent and identically distributed and E .Xi/ D p D P .A/; D2 .Xi / D p.1�
p/; i D 1; 2; : : :. This result can be generalized without any difficulties as follows.

Theorem 1.61. Let X1; X2; : : : be independent and identically distributed random
variables with common expected value � and finite variance �2. Then the conver-
gence in probability

Sn D X1 C : : : C Xn

n

p! �; n ! 1;

is true.

Proof. Example 1.38, which is given after the proof of the Chebyshev inequality,
shows that for all " > 0 the inequality

P

ˇ̌
ˇ̌X1 C : : : C Xn

n
� �

ˇ̌
ˇ̌ � "

�
� �2

n"2

is valid. From this the convergence in probability Sn

p! �; n ! 1 follows. It is

not difficult to see that the convergence in L2 is also true, i.e., Sn

L2! �; n ! 1.
ut

It should be noted that the inequality P
�ˇ̌

X1C:::CXn

n
� �

ˇ̌ � "
� � �2

n"2 , which
guarantees the convergence in probability, gives an upper bound for the probability
P
�ˇ̌

X1C:::CXn

n
� �

ˇ̌ � "
�

also.
The Kolmogorov strong law of large numbers gives a necessary and sufficient

condition for convergence with probability 1.

Theorem 1.62 (Kolmogorov). If the sequence of random variables X1; X2; : : : is
independent and identically distributed, then the convergence

X1 C : : : C Xn

n

a:s:! �; n ! 1
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holds for a constant � if and only if the random variables Xi have finite expected
value and E .Xi/ D �:

Corollary 1.63. If Sn.A/ defines the relative frequency of an event A occurring in
n independent experiments, then the Bernoulli law of large numbers

Sn.A/
p! p D P .A/; n ! 1;

is valid. By the Kolmogorov law of large numbers, this convergence is true with
probability 1 also, that is,

Sn.A/
a:s:! p D P .A/; n ! 1:

1.3.3 Central Limit Theorem, Lindeberg–Feller Theorem

The basic problem of central limit theorems is as follows. Let X1; X2; : : : be in-
dependent and identically distributed random variables with a common distribution
function FX .x/. The question is, under what conditions does a sequence of constants
�n and �n; �n ¤ 0; n D 1; 2; : : : exist such that the sequence of centered and
linearly normed sums

Sn D X1 C : : : C Xn � �n

�n

; n D 1; 2; : : : (1.11)

converges in the distributions

FSn

w! F; n ! 1

and have a nondegenerate limit distribution function F ? A distribution function
F.x/ is nondegenerate if there is no point x0 2 R satisfying the condition F.x0/ �
F.x0�/ D 1, that is, the distribution does not concentrate at one point.

Theorem 1.64. If the random variables X1; X2; : : : are independent and identically
distributed with finite expected value � D E .X1/ and variance �2 D D2.X1/, then

P



X1 C : : : C Xn � n�p
n�

� x

�
! ˚.x/ D

xZ

�1

1p
2	

e�u2=2du

holds for all x 2 R, where the function ˚.x/ denotes the distribution function of
standard normal random variables.

If the random variables X1; X2; : : : are independent but not necessarily identically
distributed, then a general, so-called Lindeberg–Feller theorem is valid.
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Theorem 1.65. Let X1; X2; : : : be independent random variables whose variances
are finite. Denote

�n D E .X1/ C : : : C E .Xn/; �n D
q

D2 .X1/ C : : : C D2 .Xn/; n D 1; 2; : : : :

The limit

P



X1 C : : : C Xn � �n

�n

� x

�
! ˚.x/; n ! 1;

is true for all x 2 R if and only if the Lindeberg–Feller condition holds:

lim
n!1 max

1�j �n

1

�2
j

E
�
X2

jIfjXj j>"�ng
�

D 0; x 2 R; " > 0;

where Ifg denotes the indicator variable.

1.3.4 Infinitely Divisible Distributions and Convergence to the
Poisson Distribution

There are many practical problems for which model (1.11) and results related to
it are not satisfactory. The reason is that the class of possible limit distributions is
insufficiently large; for instance, it does not consist of discrete distributions. An
example of this is a Poisson distribution, which is an often-used distribution in
queueing theory.

As a generalization of model (1.11), consider the sequence of series of random
variables (sometimes called a sequence of random variables of triangular arrays)

fXn;1; : : : ; Xn;kng ; n D 1; 2; : : : ; kn ! 1;

satisfying the following conditions for all fixed positive integers n:

1. The random variables Xn;1; : : : ; Xn;kn are independent.
2. The random variables Xn;1; : : : ; Xn;kn are infinitesimal (in other words, asymp-

totically negligible) if the limit for all " > 0

lim
n!1 max

1�j �kn

P
�ˇ̌

Xn;j

ˇ̌
> "

� D 0

holds.

Considering the sums of series of random variables

Sn D Xn;1 C : : : C Xn;kn ; n D 1; 2; : : : ;
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the class of possible limit distributions (so-called infinitely divisible distributions)
is already a sufficiently large class containing, for example, a Poisson distribution.

Definition 1.66. A random variable X is called infinitely divisible if it can be given
in the form

X
dD Xn;1 C : : : C Xn;n

for every n D 1; 2; : : :, where the random variables Xn;1; : : : ; Xn;n are independent
and identically distributed.

Infinitely divisible distributions (to which, for example, the normal and Poisson
distributions belong) can be given with the help of their characteristic functions.

Theorem 1.67. If random variable X is infinitely divisible, then its characteristic
function has the form (Lévy–Khinchin canonical form)

log f .t/ D i�t � �2

2
t2 C

0Z

�1



ei tx � 1 � i tx

1 C x2

�
dL.x/

C
1Z

0



ei tx � 1 � i tx

1 C x2

�
dR.x/;

where the functions L and R satisfy the following conditions:

(a) � and � .� � 0/ are real constants.
(b) L.x/; x 2 .�1; 0/ and R.x/; x 2 .0; 1/ are monotonically increasing

functions on the intervals .�1; 0/ and .0; 1/, respectively.
(c) L.�1/ D R.1/ D 0 and the inequality condition

0Z

�1
x2dL.x/ C

1Z

0

x2dR.x/ < 1

holds.

If an infinitely divisible distribution has finite variation, then its characteristic
function can be given in a more simple form (Kolmogorov formula):

log f .t/ D i�t C
1Z

�1

�
ei tx � 1 � i tx

� 1

x2
dK.x/;

where � is a constant and K.x/ (K.�1/ D 0) is a monotonically nondecreasing
function.
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As special cases of the Kolmogorov formula, we get the normal and Poisson
distributions.

(a) An infinitely divisible distribution is normal with the parameters .�,�/ if the
function K.x/ is defined as

K.x/ D
�

0; if x � 0;

�2; if x > 0:

Then the characteristic function is

f .t/ D i�t � �2

2
t2:

(b) An infinitely divisible distribution is Poisson with the parameter � (� > 0) if
� D � and the function K.x/ is defined as

K.x/ D
�

0; if x � 1;

�; if x > 1:

In this case the characteristic function can be given as follows:

f .t/ D i�t C
1Z

�1

�
ei tx � 1 � i tx

� 1

x2
dK.x/ D �.ei t � 1/:

The following theorem gives an answer to the question of the conditions under
which the limit distribution of sums of independent infinitesimal random variables is
Poisson. This result will be used later when considering sums of independent arrival
processes of queues.

Theorem 1.68 (Gnedenko, Marczinkiewicz). Let fX1;n; : : : ; Xkn;ng ; n D 1; 2; : : :,
be a sequence of series of independent infinitesimal random variables. The sequence
of distributions of sums

Xn D Xn1 C : : : C Xn;kn ; n � 1;

converges weakly to a Poisson distribution with the parameter � (� > 0) as n ! 1
if and only if the following conditions hold for all " .0 < " < 1/:

(A)
knP

j D1

R

R"

dFnj .x/ ! 0.

(B)
knP

j D1

R

jx�1j<"

dFnj .x/ ! �.
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(C)
knP

j D1

R

jxj<"

dFnj .x/ ! 0.

(D)
knP

j D1

2

4 R

jxj<"

x2dFnj .x/ �
 
R

jxj<"

xdFnj .x/

!2
3

5 ! 0,

where Fnj .x/ D P
�
Xnj � x

�
and R" D R n .fjxj < "g [ fjx � 1j < "g/ :

Note that conditions (A) and (B) guarantee the convergence of the Poisson part
to the appropriate Poisson distribution of the limit, (C) means that there is no
centralization, and from (D) it follows that the limit distribution does not contain
a Gaussian part.

1.4 Exercises

Exercise 1.1. Let X be a nonnegative random variable with CDF FX . Given 0 �
t � X [P .X > t/ ¤ 0], find the CDF of residual lifetime X .

Exercise 1.2. Let X and Y be independent random variables with a Poisson
distribution of parameters � and �, respectively. Verify that

(a) The sum X C Y has a Poisson distribution with the parameter � C �;
(b) For any nonnegative integers m � n the conditional distribution P.X D m j

X C Y D n/ is binomial with the parameter .n; �
�C�

/, i.e.,

P .X D m j X C Y D n/ D
 

m

n

!

�

� C �

�m 

1 � �

� C �

�n�m

:

Exercise 1.3. Let X and Y be independent random variables having a uniform
distribution on the interval .0; 1/ and an exponential distribution with the parameter
1, respectively. Find the probability (concrete number) that X < Y .

Exercise 1.4. Divide the interval .0; 1/ into three parts with two independently and
randomly chosen points U1 and U2 of the interval .0; 1/. Find the probability of
event A that the three parts can determine a triangle.

Exercise 1.5. Show that for a nonnegative random variable X with a finite nth (n �
1) moment it is true that E .Xn/ D

1R
0

P .x < X/nxn�1dx.

Exercise 1.6. Let X and Y be independent random variables with a uniform
distribution on the interval .0; 1/. Find the quantities

(a) E .jX � Y j/, D2 .jX � Y j/,
(b) P .jX � Y j/ > 1

2
.
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Exercise 1.7. Let X and Y be independent random variables having an exponential
distribution with the parameters � and �, respectively.

(a) Determine the density function of the random variable Z D X C Y .
(b) Find the density function of the random variable W D min.X; Y /.

Exercise 1.8. Let X1; : : : ; Xn be independent random variables having an exponen-
tial distribution with the parameter �.
Find the expected values of the random variables Vn D max.X1; : : : ; Xn/; and
Wn D min.X1; : : : ; Xn/.

Exercise 1.9. Let X and Y be independent random variables with density func-
tions fX .x/ and fY .x/, respectively. Determine the conditional expected value
E.X j X < Y /.

Exercise 1.10. Determine the conditional expectations E .X jY D y/ and
E .X jY / if the joint PDF of the random variables X and Y has the form

(a) fX;Y .x; y/ D
�

2; if 0 < x; y and x C y < 1;

0; otherwise;

(b) fX;Y .x; y/ D
�

3.x C y/; if 0 < x; y and x C y < 1;

0; otherwise:

Exercise 1.11. Let X1; X2; : : : be independent random variables with an exponen-
tial distribution of the parameter �. Let N be a geometrically distributed random
variable with the parameter p [pk D P .N D k/ D p.1 � p/k; k D 1; 2; : : :],
which does not depend on random variables (X1; X2; : : :). Prove that the sum
Y D X1 C : : : C XN has an exponential distribution with the parameter p�.

Exercise 1.12. Consider the distribution function of the sum Y40 of independent
random variables X1; : : : ; X40 having an exponential distribution with the parame-

ter 1. Give an estimate for the probability p D P
� jY40�E.Y40/j

D.Y40/
> 0:05

�
calculated

with the help of the central limit theorem. We can numerically calculate this
probability because the random variable Y40 has a gamma distribution with the
parameter .40; 1/. Using this fact, what result can we obtain for the considered
probability? (On the numerical calculation of the gamma distribution see, for
example, [72] or [63].)
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