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1 Introduction

Powers of ideals are instrumental objects in commutative algebra. In addition,
square-free monomial ideals are intimately connected to combinatorics. In this
chapter, we survey work on secant, symbolic, and ordinary powers of square-free
monomial ideals and their combinatorial consequences in (hyper)graph theory and
linear integer programming.

There are two well-studied basic correspondences between square-free monomial
ideals and combinatorics. Each arises from the identification of square-free
monomials with sets of vertices of either a simplicial complex or a hypergraph.
The Stanley–Reisner correspondence associates to the nonfaces of a simplicial
complex � the generators of a square-free monomial ideal, and vice-versa. This
framework leads to many important results relating (mostly homological) ideal-
theoretic properties of the ideal to properties of the simplicial complex; see
[4, Chap. 5] and [25, Sects. 61–64].

The edge and cover ideal constructions identify the minimal generators of
a square-free monomial ideal with the edges (covers) of a simple hypergraph.
The edge ideal correspondence is more naı̈vely obvious but less natural than
the Stanley–Reisner correspondence, because the existence of a monomial in this
ideal does not translate easily to its presence as an edge of the (hyper)graph.
Nevertheless, this correspondence has proven effective at understanding properties
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of (hyper)graphs via algebra. We focus on powers of square-free monomial ideals
when they are viewed as edge (or cover) ideals of hypergraphs. To the best of our
knowledge, there has been little systematic study of the powers of square-free ideals
from the Stanley–Reisner perspective.

The general theme of this chapter is the relationship between symbolic and
ordinary powers of ideals. This topic has been investigated extensively in the
literature (cf. [2, 8, 17, 20]). Research along these lines has revealed rich and deep
interactions between the two types of powers of ideals, and often their equality leads
to interesting algebraic and geometric consequences (cf. [15, 22, 29–31]). We shall
see that examining symbolic and ordinary powers of square-free monomial ideals
also leads to exciting and important combinatorial applications.

The chapter is organized as follows. In the next section, we collect notation
and terminology. In Sect. 3, we survey algebraic techniques for detecting important
invariants and properties of (hyper)graphs. We consider three problems:

1. Computing the chromatic number of a hypergraph
2. Detecting the existence of odd cycles and odd holes in a graph
3. Finding algebraic characterizations of bipartite and perfect graphs

We begin by describing two methods for determining the chromatic number of a
hypergraph via an ideal-membership problem, one using secant ideals, and the other
involving powers of the cover ideal. Additionally, we illustrate how the associated
primes of the square of the cover ideal of a graph detect its odd induced cycles.

The results in Sect. 3 lead naturally to the investigation of associated primes of
higher powers of the cover ideal. This is the subject of Sect. 4. We explain how to
interpret the associated primes of the sth power of the cover ideal of a hypergraph
in terms of coloring properties of its sth expansion hypergraph. Specializing to
the case of graphs yields two algebraic characterizations of perfect graphs that are
independent of the Strong Perfect Graph Theorem.

Section 5 is devoted to the study of when a square-free monomial ideal has
the property that its symbolic and ordinary powers are equal. Our focus is the
connection between this property and the Conforti–Cornuéjols conjecture in linear
integer programming. We state the conjecture in its original form and discuss
an algebraic reformulation. This provides an algebraic approach for tackling this
long-standing conjecture.

2 Preliminaries

We begin by defining the central combinatorial object of the chapter.

Definition 2.1. A hypergraph is a pair G D .V; E/ where V is a set, called the
vertices of G, and E is a subset of 2V , called the edges of G. A hypergraph is
simple if no edge contains another; we allow the edges of a simple hypergraph to
contain only one vertex (i.e., isolated loops). Simple hypergraphs have also been
studied under other names, including clutters and Sperner systems. All hypergraphs
in this chapter will be simple.
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A graph is a hypergraph in which every edge has cardinality exactly two.
We specialize to graphs to examine special classes, such as cycles and perfect
graphs.

If W is a subset of V , the induced subhypergraph of G on W is the pair .W; EW /

where EW D E \ 2W is the set of edges of G containing only vertices in W .

Notation 2.2. Throughout the chapter, let V D fx1; : : : ; xng be a set of vertices.
Set S D KŒV � D KŒx1; : : : ; xn�, where K is a field. We will abuse notation
by identifying the square-free monomial xi1 : : : xis with the set fxi1 ; : : : ; xis g of
vertices. If the monomial m corresponds to an edge of G in this way, we will denote
the edge by m as well.

Definition 2.3. The edge ideal of a hypergraph G D .V; E/ is

I.G/ D .m W m 2 E/ � S:

On the other hand, given a square-free monomial ideal I � S , we let G.I/ D
.V; gens.I // be the hypergraph associated to I , where gens.I / is the unique set of
minimal monomial generators of I .

Definition 2.4. A vertex cover for a hypergraph G is a set of vertices w such that
every edge hits some vertex of w, i.e., w \ e ¤ ¿ for all edges e of G.

Observe that, if w is a vertex cover, then appending a variable to w results in
another vertex cover. In particular, abusing language slightly, the vertex covers form
an ideal of S .

Definition 2.5. The cover ideal of a hypergraph G is

J.G/ D .w W w is a vertex cover of G/:

In practice, we compute cover ideals by taking advantage of duality.

Definition 2.6. Given a square-free monomial ideal I � S , the Alexander dual of
I is

I _ D
\

m2gens.I /

pm;

where pm D .xi W xi 2 m/ is the prime ideal generated by the variables of m.

Observe that if I D I.G/ is a square-free monomial ideal, its Alexander dual I _
is also square-free. We shall denote by G� the hypergraph corresponding to I _, and
call G� the dual hypergraph of G. That is, I _ D I.G�/. The edge ideal and cover
ideal of a hypergraph are related by the following result.

Proposition 2.7. The edge ideal and cover ideal of a hypergraph are dual to each
other: J.G/ D I.G/_ D I.G�/ (and I.G/ D J.G/_). Moreover, minimal
generators of J.G/ correspond to minimal vertex covers of G, covers such that
no proper subset is also a cover.



376 C.A. Francisco et al.

Proof. Suppose w is a cover. Then for every edge e, w \ e ¤ ¿, so w 2 pe .
Conversely, suppose w 2 I.G/_. Then, given any edge e, we have w 2 pe , i.e.,
w \ e ¤ ¿. In particular, w is a cover. ut

We shall also need generalized Alexander duality for arbitrary monomial ideals.
We follow Miller and Sturmfels’s book [21], which is a good reference for this topic.
Let a and b be vectors in N

n such that bi � ai for each i . As in [21, Definition 5.20],
we define the vector a n b to be the vector whose i th entry is given by

ai n bi D
�

ai C 1 � bi if bi � 1

0 if bi D 0:

Definition 2.8. Let a 2 N
n, and let I be a monomial ideal such that all the minimal

generators of I divide xa. The Alexander dual of I with respect to a is the ideal

I Œa� D
\

xb2gens.I /

.x
a1nb1

1 ; : : : ; xannbn
n /:

For square-free monomial ideals, one obtains the usual Alexander dual by taking
a equal to 1, the vector with all entries 1, in Definition 2.8.

By Definition 2.6, Alexander duality identifies the minimal generators of a
square-free ideal with the primes associated to its dual. The analogy for generalized
Alexander duality identifies the minimal generators of a monomial ideal with the
irreducible components of its dual.

Definition 2.9. A monomial ideal I is irreducible if it has the form I D .x
e1

1 ; : : : ; xen
n /

for ei 2 Z>0 [ f1g. (We use the convention that x1
i D 0.) Observe that the

irreducible ideal I is p-primary, where p D .xi W ei ¤ 1/.

Definition 2.10. Let I be a monomial ideal. An irreducible decomposition of I is
an irredundant decomposition

I D
\

Qj

with the Qj irreducible ideals. We call these Qj irreducible components of I .
By Corollary 2.12 below, there is no choice of decomposition, so the irreducible
components are an invariant of the ideal.

Proposition 2.11. Let I be a monomial ideal, and a be a vector with entries large
enough that all the minimal generators of I divide xa. Then .I Œa�/Œa� D I .

Corollary 2.12. Every monomial ideal has a unique irreducible decomposition.

A recurring idea in our paper is the difference between the powers and symbolic
powers of square-free ideals. We recall the definition of the symbolic power.

For a square-free monomial ideal I , the sth symbolic power of I is

I .s/ D
\

p2Ass.S=I /

ps:
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(This definition works because square-free monomial ideals are the intersection of
prime ideals. For general ideals (even general monomial ideals) the definition is
more complicated.) In general we have I s � I .s/, but the precise nature of the
relationship between the symbolic and ordinary powers of an ideal is a very active
area of research.

In commutative algebra, symbolic and ordinary powers of an ideal are encoded
in the symbolic Rees algebra and the ordinary Rees algebra. More specifically, for
any ideal I � S D KŒx1; : : : ; xn�, the Rees algebra and the symbolic Rees algebra
of I are

R.I / D
M

q�0

I qtq � SŒt� and Rs.I / D
M

q�0

I .q/tq � SŒt�:

The symbolic Rees algebra is closely related to the Rees algebra, but often is
richer and more subtle to understand. For instance, while the Rees algebra of
a homogeneous ideal is always Noetherian and finitely generated, the symbolic
Rees algebra is not necessarily Noetherian. In fact, non-Noetherian symbolic Rees
algebras were used to provide counterexamples to Hilbert’s Fourteenth Problem
(cf. [24, 26]).

3 Chromatic Number and Odd Cycles in Graphs

In this section, we examine how to detect simple graph-theoretic properties of a
hypergraph G from (powers of) its edge and cover ideals. Since the results in this
section involving chromatic number are the same for graphs as for hypergraphs,
modulo some essentially content-free extra notation, we encourage novice readers
to ignore the hypergraph case and think of G as a graph.

Definition 3.1. Let k be a positive integer. A k-coloring of G is an assignment of
colors c1; : : : ; ck to the vertices of G in such a way that every edge of cardinality
at least 2 contains vertices with different colors. We say that G is k-colorable if a
k-coloring of G exists, and that the chromatic number �.G/ of G is the least k such
that G is k-colorable.

Remark 3.2. Since loops do not contain two vertices, they cannot contain two
vertices of different colors. Thus the definition above considers only edges with
cardinality at least two. Furthermore, since the presence or absence of loops has no
effect on the chromatic number of the graph, we will assume throughout this section
that all edges have cardinality at least two.

Remark 3.3. For hypergraphs, some texts instead define a coloring of G to be an
assignment of colors to the vertices such that no edge contains two vertices of the
same color. However, this is equivalent to a coloring of the one-skeleton of G, so
the definition above allows us to address a broader class of problems.
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Fig. 1 The graph G in the
running example

Running Example 3.4. Let G be the graph obtained by gluing a pentagon to
a square along one edge, shown in Fig. 1. The edge ideal of G is I.G/ D
.ab; bc; cd; de; ae; ef; fg; dg/. The chromatic number of G is 3: for example, we
may color vertices a, c, and g red, vertices b, d , and f yellow, and vertex e blue.

The chromatic number of G can be determined from the solutions to either of
two different ideal-membership problems.

Observe that a graph fails to be k-colorable if and only if every assignment of
colors to its vertices yields at least one single-colored edge. Thus, it suffices to test
every color-assignment simultaneously. To that end, let Y1; : : : ; Yk be distinct copies
of the vertices: Yi D fyi;1; : : : ; yi;ng. We think of Yi as the i th color and the vertices
of Yi as being colored with this color. Now let I.Yi / be the edge ideal I D I.G/,
but in the variables Yi instead of V . Now an assignment of colors to G corresponds
to a choice, for each vertex xj , of a colored vertex yi;j ; or, equivalently, a monomial
of the form yi1;1yi2;2 : : : yin;n. This monomial is a coloring if and only if it is not
contained in the monomial ideal eI D I.Y1/ C � � � C I.Yk/. In particular, G is k-
colorable if and only if the sum of all such monomials is not contained in eI .

We need some more notation to make the preceding discussion into a clean
statement. Let m D x1 : : : xn, let Tk D KŒY1; : : : ; Yk�, and let �k W S ! Tk be
the homomorphism sending xi to y1;i C � � � C yk;i . Then �k.m/ is the sum of all
color-assignments, and we have shown the following:

Lemma 3.5. With notation as above, G is k-colorable if and only if �k.m/ 62 eI .

We recall the definition of the kth secant ideal. Secant varieties are common in
algebraic geometry, including in many recent papers of Catalisano, Geramita, and
Gimigliano (e.g., [5]), and, as Sturmfels and Sullivant note in [28], are playing an
important role in algebraic statistics.

Definition 3.6. Let I � S be any ideal, and continue to use all the notation above.
Put T D KŒV; Y1; : : : ; Yk� and regard S and Tk as subrings of T . Then the kth
secant power of I is

I fkg D S \ �eI C .fxi � �k.xi /g/
�

:

Lemma 3.5 becomes the following theorem of Sturmfels and Sullivant [28]:
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Theorem 3.7. G is k-colorable if and only if m 62 I.G/fkg. In particular,

�.G/ D minfk j m 62 I.G/fkgg:

Running Example 3.8. Let G and I be as in Example 3.4. Then I f1g D I and
I f2g D .abcde/ both contain the monomial abcdefg. However, I f3g D 0. Thus G

is 3-colorable but not 2-colorable.

Alternatively, we can characterize chromatic number by looking directly at the
powers of the cover ideal.

Observe that, given a k-coloring of G, the set of vertices which are not colored
with any one fixed color forms a vertex cover of G. In particular, a k-coloring yields
k different vertex covers, with each vertex missing from exactly one. That is, if we
denote these vertex covers w1; : : : ; wk , we have w1 : : : wk D mk�1. In particular, we
have the following result of Francisco, Hà, and Van Tuyl. [11].

Theorem 3.9. G is k-colorable if and only if mk�1 2 J.G/k . In particular,

�.G/ D minfk j mk�1 2 J.G/kg:

Proof. Let J D J.G/. Given a k-coloring, let wi be the set of vertices assigned a
color other than i . Then mk�1 D w1 : : : wk 2 J k . Conversely, if mk�1 2 J k , we
may write mk�1 D w1 : : : wk with each wi a square-free monomial in J . Assigning
the color i to the complement of wi yields a k-coloring: indeed, we have

Q m
wi

D
mk

mk�1 D m, so the m
wi

partition V . ut
Running Example 3.10. In Example 3.4, let m D abcdefg. The cover ideal J.G/

is .abdf ; acdf ; bdef ; aceg; bceg; bdeg/. Because J does not contain m0 D 1, G is
not 1-colorable. All 21 generators of J 2 are divisible by the square of a variable, so
G is not 2-colorable. Thus m 62 J 2, so J is not 2-colorable. However, J 3 contains
m2, so G is 3-colorable.

Remark 3.11. One can adapt the proof of Theorem 3.9 to determine the b-fold
chromatic number of a graph, the minimum number of colors required when each
vertex is assigned b colors, and adjacent vertices must have disjoint color sets.
See [11, Theorem 3.6].

Remark 3.12. The ideal membership problems in Theorems 3.7 and 3.9 are for
monomial ideals, and so they are computationally simple. On the other hand,
computing the chromatic number is an NP-complete problem. The bottleneck in
the algebraic algorithms derived from Theorems 3.7 and 3.9 is the computation of
the secant ideal I.G/fkg or the cover ideal J.G/ given G; these problems are both
NP-complete.

It is naturally interesting to investigate the following problem.

Problem 3.13. Find algebraic algorithms to compute the chromatic number �.G/

based on algebraic invariants and properties of the edge ideal I.G/.
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For the rest of this section, we shall restrict our attention to the case when G is
a graph (i.e., not a hypergraph), and consider the problem of identifying odd cycles
and odd holes in G. As before, let I D I.G/ and J D J.G/.

Recall that a bipartite graph is a two-colorable graph, or, equivalently, a graph
with no odd circuits. This yields two corollaries to Theorem 3.9:

Corollary 3.14. G is a bipartite graph if and only if m 2 J 2.

Corollary 3.15. If G is a graph, then G contains an odd circuit if and only if
m 62 J 2.

It is natural to ask if we can locate the offending odd circuits. In fact, we can
identify the odd induced cycles from the associated primes of J 2.

Definition 3.16. Let C D .xi1 ; : : : ; xis ; xi1 / be a circuit in G. We say that C is an
induced cycle if the induced subgraph of G on W D fxi1 ; : : : ; xis g has no edges
except those connecting consecutive vertices of C . Equivalently, C is an induced
cycle if it has no chords.

Running Example 3.17. G has induced cycles abcde and defg. The circuit
abcdgfe isn’t an induced cycle, since it has the chord de.

Simis and Ulrich prove that the odd induced cycles are the generators of the
second secant ideal of I [27].

Theorem 3.18. Let G be a graph with edge ideal I . Then a square-free monomial
m is a generator of I f2g if and only if Gm is an odd induced cycle.

Sketch of proof. If Gm is an odd induced cycle, then Gm and hence G are not 2-
colorable. On the other hand, if m 2 I f2g, then Gm is not 2-colorable and so has an
odd induced cycle. ut

Now suppose that G is a cycle on .2` � 1/ vertices, so without loss of generality
I D .x1x2; x2x3; : : : ; x2`�1x1/. Then the generators of J include the .2`�1/ vertex
covers wi D xi xiC2xiC4 : : : xiC2`�2 obtained by starting anywhere in the cycle and
taking every second vertex until we wrap around to an adjacent vertex. (Here we
have taken the subscripts mod (2` � 1) for notational sanity.) All other generators
have higher degree. In particular, the generators of J all have degree at least `, so
the generators of J 2 have degree at least 2`. Thus m 62 J 2, since deg.m/ D 2` � 1.
However, we have mxi D wi wiC1 2 J 2 for all xi . Thus m is in the socle of S=J 2,
and in particular this socle is nonempty, so pm D .x1; : : : ; x2`�1/ is associated to
J 2. In fact, it is a moderately difficult computation to find an irredundant primary
decomposition:

Proposition 3.19. Let G be the odd cycle on x1; : : : ; x2`�1. Then

J 2 D
"

2`�1\

iD1

.xi ; xiC1/
2

#
\ .x2

1 ; : : : ; x2
2`�1/:



Powers of Square-Free Ideals and Combinatorics 381

Remark 3.20. Proposition 3.19 picks out the difference between J 2 and the sym-
bolic square J .2/ when G is an odd cycle. The product of the variables m appears in
p2 for all p 2 Ass.S=J /, but is missing from J 2. (Combinatorially, this corresponds
to m being a double cover of G that cannot be partitioned into two single covers.)
Thus m 2 J .2/ X J 2.

Remark 3.21. We can attempt a similar analysis on an even cycle, but we find only
two smallest vertex covers, wodd D x1 : : : x2`�1 and weven D x2 : : : x2`. Then m D
woddweven 2 J 2 is not a socle element. In this case Theorem 3.22 will tell us that J 2

has primary decomposition
T

.xi ; xiC1/
2, i.e., J .2/ D J 2.

In fact, Francisco, Hà, and Van Tuyl show that, for an arbitrary graph G, the odd
cycles can be read off from the associated primes of J 2 [9]. Given a set W � V ,
put ph2i

W D .x2
i W xi 2 W /. Then we have:

Theorem 3.22. Let G be a graph. Then J 2 has irredundant primary decomposition

J 2 D
2

4
\

e2E.G/

p2
e

3

5 \
2

4
\

GW is an induced odd cycle

p
h2i
W

3

5 :

Corollary 3.23. Let G be a graph. Then we have

Ass.S=J 2/ D fpe W e 2 E.G/g [ fpW W GW is an induced odd cycleg :

Corollary 3.23 and Theorem 3.18 are also connected via work of Sturmfels and
Sullivant [28], who show that generalized Alexander duality connects the secant
powers of an ideal with the powers of its dual.

Running Example 3.24. We have Ass.S=J 2/ D E.G/ [ f.a; b; c; d; e/g. The
prime .a; b; c; d; e/ appears here because abcde is an odd induced cycle of G.
The even induced cycle defg does not appear in Ass.S=J 2/, nor does the odd
circuit abcdgfe, which is not induced. Furthermore, per Theorem 3.18, I f2g is
generated by the odd cycle abcde.

Theorem 3.22 and Corollary 3.23 tell us that the odd cycles of a graph G exactly
describe the difference between the symbolic square and ordinary square of its
cover ideal J.G/. It is natural to ask about hypergraph-theoretic interpretations of
the differences between higher symbolic and ordinary powers of J.G/, and of the
differences between these powers for the edge ideal I.G/. The answer to the former
question involves critical hypergraphs, discussed in Sect. 4. The latter question is
closely related to a problem in combinatorial optimization theory. We describe this
relationship in Sect. 5.

The importance of detecting odd induced cycles in a graph is apparent in the
Strong Perfect Graph Theorem, proven by Chudnovsky, Robertson, Seymour, and
Thomas in [6] after the conjecture had been open for over 40 years. A graph G is
perfect if for each induced subgraph H of G, the chromatic number �.H/ equals
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the clique number !.H/, where !.H/ is the number of vertices in the largest clique
(i.e., complete subgraph) appearing in H . Perfect graphs are an especially important
class of graphs, and they have a relatively simple characterization. Call any odd
cycle of at least five vertices an odd hole, and define an odd antihole to be the
complement of an odd hole.

Theorem 3.25 (Strong Perfect Graph Theorem). A graph is perfect if and only
if it contains no odd holes or odd antiholes.

Let G be a graph with complementary graph Gc (i.e., Gc has the same vertex set
as G but the complementary set of edges). Let J.G/ be the cover ideal of G and
J.Gc/ be the cover ideal of Gc . Using the Strong Perfect Graph Theorem along with
Corollary 3.23, we conclude that a graph G is perfect if and only if neither S=J.G/2

nor S=J.Gc/2 has an associated prime of height larger than three. It is clear from
the induced pentagon that the graph from Running Example 3.4 is imperfect; this is
apparent algebraically from the fact that .a; b; c; d; e/ is associated to R=J.G/2.

4 Associated Primes and Perfect Graphs

Theorem 3.22 and Corollary 3.23 exhibit a strong interplay between coloring
properties of a graph and associated primes of the square of its cover ideal. In
this section, we explore the connection between coloring properties of hypergraphs
in general and associated primes of higher powers of their cover ideals. We also
specialize back to graphs and give algebraic characterizations of perfect graphs.

Definition 4.1. A critically d -chromatic hypergraph is a hypergraph G with
�.G/ D d whose proper induced subgraphs all have smaller chromatic number;
G is also called a critical hypergraph.

The connection between critical hypergraphs and associated primes begins
with a theorem of Sturmfels and Sullivant on graphs that generalizes naturally to
hypergraphs.

Theorem 4.2. Let G be a hypergraph with edge ideal I . Then the square-free
minimal generators of I fsg are the monomials W such that GW is critically .s C 1/-
chromatic.

Higher powers of the cover ideal J D J.G/ of a hypergraph have more
complicated structure than the square. It is known that the primes associated to
S=J 2 persist as associated primes of all S=J s for s � 2 [11, Corollary 4.7]. As one
might expect from the case of J 2, if H is a critically .d C 1/-chromatic induced
subhypergraph of G, then pH 2 Ass.S=J d / but pH … Ass.S=J e/ for any e < d .
However, the following example from [11] illustrates that other associated primes
may arise as well.
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Fig. 2 The second expansion
graph of a 5-cycle

Example 4.3. Let G be the graph with vertices fx1; : : : ; x6g and edges

x1x2; x2x3; x3x4; x4x5; x5x1; x3x6; x4x6; x5x6;

where we have abused notation by writing edges as monomials. Thus G is a
five-cycle on fx1; : : : ; x5g with an extra vertex x6 joined to x3, x4, and x5. Let J

be the cover ideal of G. The maximal ideal m D .x1; : : : ; x6/ is associated to S=J 3

but to neither S=J nor S=J 2. However, G is not a critically 4-chromatic graph;
instead, �.G/ D 3.

Consequently, the critical induced subhypergraphs of a hypergraph G may not
detect all associated primes of S=J s. Fortunately, there is a related hypergraph
whose critical induced subhypergraphs do yield a complete list of associated primes.
We define the expansion of a hypergraph, the crucial tool.

Definition 4.4. Let G be a hypergraph with vertices V D fx1; : : : ; xng and edges
E , and let s be a positive integer. We create a new hypergraph Gs , called the
sth expansion of G, as follows. We create vertex sets V1 D fx1;1; : : : ; xn;1g, . . . ,
Vs D fx1;s ; : : : ; xn;sg. (We think of these vertex sets as having distinct flavors. In the
literature, the different flavors xi;j of a vertex xi are sometimes referred to as its
shadows.) The edges of Gs consist of all edges xi;j xi;k connecting all differently
flavored versions of the same vertex, and all edges arising from possible assignments
of flavors to the vertices in an edge of G.

We refer to the map sending all flavors xi;j of a vertex xi back to xi as
depolarization, by analogy with the algebraic process of polarization.

Example 4.5. Consider a five-cycle G with vertices x1; : : : ; x5. Then G2 has vertex
set fx1;1; x1;2; : : : ; x5;1; x5;2g. Its edge set consists of edges x1;1x1;2; : : : ; x5;1x5;2 as
well as all edges xi;j xiC1;j 0 , where 1 � j � j 0 � 2, and the first index is taken
modulo 5. Thus, for example, the edge x1x2 of G yields the four edges x1;1x2;1,
x1;1x2;2, x1;2x2;1, and x1;2x2;2 in G2 (Fig. 2).

Our goal is to understand the minimal monomial generators of the generalized
Alexander dual .J.G/s/Œs�, where s is the vector .s; : : : ; s/, one entry for each vertex
of G. Under generalized Alexander duality, these correspond to the ideals in an
irredundant irreducible decomposition of J.G/s , yielding the associated primes of
S=J.G/s.
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By generalized Alexander duality, Theorem 4.2 identifies the square-free min-
imal monomial generators of .J.G/s/Œs�. Understanding the remaining monomial
generators requires the following theorem [11, Theorem 4.4]. For a set of vertices
T , write mT to denote the product of the corresponding variables.

Theorem 4.6. Let G be a hypergraph with cover ideal J D J.G/, and let s be a
positive integer. Then

.J s/Œs� D .mT

ˇ̌
�.Gs

T / > s/

where mT is the depolarization of mT .

The proof relies on a (hyper)graph-theoretic characterization of the generators
of I.Gs/fsg from Theorem 4.2. One then needs to prove that .J s/Œs� is the
depolarization of I.Gs/fsg, which requires some effort; see [11].

Using Theorem 4.6, we can identify all associated primes of S=J.G/s in terms
of the expansion graph of G.

Corollary 4.7. Let G be a hypergraph with cover ideal J D J.G/. Then P D
.xi1 ; : : : ; xir / 2 Ass.S=J s/ if and only if there is a subset T of the vertices of Gs

such that Gs
T is critically .s C 1/-chromatic, and T contains at least one flavor of

each variable in P but no flavors of other variables.

We outline the rough idea of the proof. If P 2 Ass.S=J s/, then .x
ei1
i1

; : : : ; x
eir
ir

/

is an irreducible component of J s , for some eij > 0. This yields a corresponding
minimal generator of .J s/Œs�, which gives a subset W of the vertices of Gs such that
Gs

W is critically .s C 1/-chromatic, and W depolarizes to x
ei1
i1

: : : x
eir
ir

. Conversely,
given a critically .s C 1/-chromatic expansion hypergraph Gs

T , we get a minimal
generator of .J s/Œs� of the form x

ei1
i1

� � � xeir
ir

, where 1 � eij � s for all ij . Duality
produces an irreducible component of J s with radical P .

Corollary 4.7 explains why m 2 Ass.S=J 3/ in Example 4.3. Let T be the set of
vertices

T D fx1;1; x2;1; x2;2; x3;1; x4;1; x5;1; x6;1g;
a subset of the vertices of G3. Then G3

T is critically 4-chromatic.
As a consequence of this work, after specializing to graphs, we get two algebraic

characterizations of perfect graphs that are independent of the Strong Perfect Graph
Theorem. First, we define a property that few ideals satisfy (see, e.g., [18]).

Definition 4.8. An ideal I � S has the saturated chain property for associated
primes if given any associated prime P of S=I that is not minimal, there exists an
associated prime Q ¨ P with height.Q/ D height.P / � 1.

We can now characterize perfect graphs algebraically in two different ways
[11, Theorem 5.9]. The key point is that for perfect graphs, the associated primes
of powers of the cover ideal correspond exactly to the cliques in the graph.

Theorem 4.9. Let G be a simple graph with cover ideal J . Then the following are
equivalent:
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(1) G is perfect.
(2) For all s with 1 � s < �.G/, P D .xi1 ; : : : ; xir / 2 Ass.R=J s/ if and only if

the induced graph on fxi1 ; : : : ; xir g is a clique of size 1 < r � s C 1 in G.
(3) For all s � 1, J s has the saturated chain property for associated primes.

Proof. We sketch (1) implies (2) to give an idea of how expansion is used. Suppose
G is a perfect graph. A standard result in graph theory shows that Gs is also perfect.
Let P 2 Ass.S=J s/, so P corresponds to some subset T of the vertices of Gs such
that Gs

T is critically .s C 1/-chromatic. Because Gs is perfect, the clique number of
Gs

T is also s C1, meaning there exists a subset T 0 of T such that Gs
T 0

is a clique with
s C1 vertices. Thus Gs

T 0

is also a critically .s C1/-chromatic graph contained inside
Gs

T , forcing T D T 0. Hence Gs
T is a clique, and the support of the depolarization of

NmT is a clique with at most s C 1 vertices. Therefore GP is a clique. ut
Remark 4.10. If J is the cover ideal of a perfect graph, its powers satisfy a condition
stronger than that of Definition 4.8. If P 2 Ass.S=J s/, and Q is any monomial
prime of height at least two contained in P , then Q 2 Ass.S=J s/. This follows
from the fact that P corresponds to a clique in the graph.

Theorem 4.9 provides information about two classical issues surrounding
associated primes of powers of ideals. Brodmann proved that for any ideal J , the
set of associated primes of S=J s stabilizes [3]. However, there are few good bounds
in the literature for the power at which this stabilization occurs. When J is the
cover ideal of a perfect graph, Theorem 4.9 demonstrates that stabilization occurs
at �.G/ � 1. Moreover, though in general associated primes may disappear and
reappear as the power on J increases (see, e.g., [1,14] and also [23, Example 4.18]),
when J is the cover ideal of a perfect graph, we have Ass.S=J s/ � Ass.S=J sC1/

for all s � 1. In this case, we say that J has the persistence property for
associated primes, or simply the persistence property. Morey and Villarreal give
an alternate proof of the persistence property for cover ideals of perfect graphs in
[23, Example 4.21].

While there are examples of arbitrary monomial ideals for which persistence
fails, we know of no such examples of square-free monomial ideals. Francisco, Hà,
and Van Tuyl (see [9, 10]) have asked:

Question 4.11. Suppose J is a square-free monomial ideal. Is Ass.S=J s/ �
Ass.S=J sC1/ for all s � 1?

While Question 4.11 has a positive answer when J is the cover ideal of a perfect
graph, little is known for cover ideals of imperfect graphs. Francisco, Hà, and Van
Tuyl answer Question 4.11 affirmatively for odd holes and odd antiholes in [10], but
we are not aware of any other imperfect graphs whose cover ideals are known to
have this persistence property. One possible approach is to exploit the machinery of
expansion again. Let G be a graph, and let xi be a vertex of G. Form the expansion of
G at fxig by replacing xi with two vertices xi;1 and xi;2, joining them with an edge.
For each edge fv; xi g of G, create edges fv; xi;1g and fv; xi;2g. If W is any subset of
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the vertices of G, form GŒW � by expanding all the vertices of W . Francisco, Hà,
and Van Tuyl conjecture:

Conjecture 4.12. Let G be a graph that is critically s-chromatic. Then there exists
a subset W of the vertices of G such that GŒW � is critically .s C 1/-chromatic.

In [10], Francisco, Hà, and Van Tuyl prove that if Conjecture 4.12 is true for all
s � 1, then all cover ideals of graphs have the persistence property. One can also
state a hypergraph version of Conjecture 4.12; if true, it would imply persistence of
associated primes for all square-free monomial ideals.

Finally, in [23], Morey and Villarreal prove persistence for edge ideals I of
any graphs containing a leaf (a vertex of degree 1). Their proof passes to the
associated graded ring, and the vital step is identifying a regular element of
the associated graded ring in I=I 2. Morey and Villarreal remark that attempts
to prove persistence results for more general square-free monomial ideals lead
naturally to questions related to the Conforti–Cornuéjols conjecture, discussed in
the following section.

5 Equality of Symbolic and Ordinary Powers
and Linear Programming

We have seen in the last section that comparing symbolic and ordinary powers of
the cover ideal of a hypergraph allows us to study structures and coloring properties
of the hypergraph. In this section, we address the question of when symbolic and
ordinary powers of a square-free monomial ideal are the same and explore an
algebraic approach to a long-standing conjecture in linear integer programming, the
Conforti–Cornuéjols conjecture. In what follows, we state the Conforti–Cornuéjols
conjecture in its original form, describe how to translate the conjecture into algebraic
language, and discuss its algebraic reformulation and related problems.

The Conforti–Cornuéjols conjecture states the equivalence between the packing
and the max-flow-min-cut (MFMC) properties for clutters which, as noted before,
are essentially simple hypergraphs.

As before, G D .V; E/ denotes a hypergraph with n vertices V D fx1; : : : ; xng
and m edges E D fe1; : : : ; emg. Let A be the incidence matrix of G, i.e., the
.i; j /-entry of A is 1 if the vertex xi belongs to the edge ej and 0 otherwise.
For a nonnegative integral vector c 2 Z

n�0, consider the following dual linear
programming system:

max
˚h1; yi j y 2 R

m�0; Ay � c
� D min

˚hc; zi j z 2 R
n�0; ATz � 1

�
: (1)

Definition 5.1. Let G be a simple hypergraph.

(1) The hypergraph G is said to pack if the dual system (1) has integral optimal
solutions y and z when c D 1.
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(2) The hypergraph G is said to have the packing property if the dual system (1)
has integral optimal solutions y and z for all vectors c with components equal
to 0, 1, and C1.

(3) The hypergraph G is said to have the MFMC property or to be Mengerian if
the dual system (1) has integral optimal solutions y and z for all nonnegative
integral vectors c 2 Z

n�0.

Remark 5.2. In Definition 5.1, setting an entry of c to C1 means that this entry
is sufficiently large, so the corresponding inequality in the system Ay � c can be
omitted. It is clear that if G satisfies the MFMC property, then it has the packing
property.

The following conjecture was stated in [7, Conjecture 1.6] with a reward prize of
$5,000 for the solution.

Conjecture 5.3 (Conforti–Cornuéjols). A hypergraph has the packing property if
and only if it has the MFMC property.

As we have remarked, the main point of Conjecture 5.3 is to show that if a
hypergraph has the packing property then it also has the MFMC property.

The packing property can be understood via more familiar concepts in (hyper)
graph theory, namely, vertex covers (also referred to as transversals), which we
recall from Sect. 1, and matchings.

Definition 5.4. A matching (or independent set) of a hypergraph G is a set of
pairwise disjoint edges.

Let ˛0.G/ and ˇ1.G/ denote the minimum cardinality of a vertex cover and the
maximum cardinality of a matching in G, respectively. We have ˛0.G/ � ˇ1.G/

since every edge in any matching must hit at least one vertex from every cover.
The hypergraph G is said to be König if ˛0.G/ D ˇ1.G/. Observe that giving

a vertex cover and a matching of equal size for G can be viewed as giving integral
solutions to the dual system (1) when c D 1. Thus, G is König if and only if G packs.

There are two operations commonly used on a hypergraph G to produce new,
related hypergraphs on smaller vertex sets. Let x 2 V be a vertex in G. The deletion
G n x is formed by removing x from the vertex set and deleting any edge in G that
contains x. The contraction G=x is obtained by removing x from the vertex set and
removing x from any edge of G that contains x. Any hypergraph obtained from G

by a sequence of deletions and contractions is called a minor of G. Observe that
the deletion and contraction of a vertex x in G has the same effect as setting the
corresponding component in c to C1 and 0, respectively, in the dual system (1).
Hence,

G satisfies the packing property if and only if G and all of its minors are König.

Example 5.5. Let G be a 5-cycle. Then G itself is not König (˛0.G/ D 3 and
ˇ1.G/ D 2). Thus, G is does not satisfy the packing property.
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Example 5.6. Any bipartite graph is König. Therefore, if G is a bipartite graph,
then (since all its minors are also bipartite) G satisfies the packing property.

We shall now explore how Conjecture 5.3 can be understood via commutative
algebra, and, more specifically, via algebraic properties of edge ideals.

As noted in Sect. 2, symbolic Rees algebras are more complicated than the
ordinary Rees algebras, and could be non-Noetherian. Fortunately, in our situation,
the symbolic Rees algebra of a square-free monomial ideal is always Noetherian
and finitely generated (cf. [15, Theorem 3.2]). Moreover, the symbolic Rees algebra
of the edge ideal of a hypergraph G can also be viewed as the vertex cover algebra
of the dual hypergraph G�.

Definition 5.7. Let G D .V; E/ be a simple hypergraph over the vertex set V D
fx1; : : : ; xng.

(1) We call a nonnegative integral vector c D .c1; : : : ; cn/ a k-cover of G ifP
xi 2e ci � k for any edge e in G.

(2) The vertex cover algebra of G, denoted by A.G/, is defined to be

A.G/ D
M

k�0

Ak.G/;

where Ak.G/ is the k-vector space generated by all monomials x
c1

1 : : : xcn
n tk

such that .c1; : : : ; cn/ 2 Z
n�0 is a k-cover of G.

Lemma 5.8. Let G be a simple hypergraph with edge ideal I D I.G/, and let G�
be its dual hypergraph. Then

Rs.I / D A.G�/:

We are now ready to give an algebraic interpretation of the MFMC property.

Lemma 5.9. Let G D .V; E/ be a simple hypergraph with n vertices and m edges.
Let A be its incidence matrix. For a nonnegative integral vector c 2 Z

n�0, define

�.c/ D maxfh1; yi j y 2 Z
m�0; Ay � cg and

�.c/ D minfhc; zi j z 2 Z
n�0; ATz � 1g:

Then

(1) c is a k-cover of G� if and only if k � �.c/.
(2) c can be written as a sum of k vertex covers of G� if and only if k � �.c/.

Proof. By definition, a nonnegative integral vector c D .c1; : : : ; cn/ 2 Z
n�0 is a

k-cover of G� if and only if

k � min

(
X

xi 2e

ci j e is any edge of G�
)

: (2)
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Let z be the .0; 1/-vector representing e. Observe that e is an edge of G� if and only
if e is a minimal vertex cover of G, and this is the case if and only if ATz � 1.
Therefore, the condition in (2) can be translated to

k � minfhc; zi j z 2 f0; 1gn; ATz � 1g
D minfhc; zi j z 2 Z

n�0; ATz � 1g D �.c/:

To prove (2), let a1; : : : ; am be representing vectors of the edges in G (i.e.,
the columns of the incidence matrix A of G). By Proposition 2.7, a1; : : : ; am

represent the minimal vertex cover of the dual hypergraph G�. One can show that a
nonnegative integral vector c 2 Z

n can be written as the sum of k vertex covers (not
necessarily minimal) of G� if and only if there exist integers y1; : : : ; ym � 0 such
that k D y1 C � � � C ym and y1a1 C � � � C ymam � c. Let y D .y1; : : : ; ym/. Then

h1; yi D y1 C � � � C ym and Ay D y1a1 C � � � C ymam:

Thus,

�.c/ D maxfk j c can be written as a sum of k vertex covers of G�g: ut

Theorem 5.10. Let G be a simple hypergraph with dual hypergraph G�. Then the
dual linear programming system (1) has integral optimal solutions y and z for all
nonnegative integral vectors c if and only if Rs.I.G// D A.G�/ is a standard
graded algebra or, equivalently, if and only if I.G/.q/ D I.G/q for all q � 0.

Proof. Given integral optimal solutions y and z of the dual system (1) for a
nonnegative integral vector c, we get

�.c/ D �.c/:

The conclusion then follows from Lemmas 5.8 and 5.9. ut
The following result (see [16, Corollary 1.6] and [12, Corollary 3.14]) gives an

algebraic approach to Conjecture 5.3.

Theorem 5.11. Let G be a simple hypergraph with edge ideal I D I.G/.
The following conditions are equivalent:

(1) G satisfies the MFMC property.
(2) I .q/ D I q for all q � 0.
(3) The associated graded ring grI WD L

q�0 I q=I qC1 is reduced.
(4) I is normally torsion-free, i.e., all powers of I have the same associated primes.

Proof. The equivalence between (1) and (2) is the content of Theorem 5.10. The
equivalences of (2), (3), and (4) are well-known results in commutative algebra
(cf. [19]). ut

The Conforti–Cornuéjols conjecture now can be restated as follows.
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Conjecture 5.12. Let G be a simple hypergraph with edge ideal I D I.G/. If G

has packing property then the associated graded ring grI is reduced. Equivalently,
if G and all its minors are König, then the associated graded ring grI is reduced.

It remains to give an algebraic characterization for the packing property.
To achieve this, we shall need to interpret minors and the König property. Observe
that the deletion G n x at a vertex x 2 X has the effect of setting x D 0 in
I.G/ (or equivalently, of passing to the ideal .I.G/; x/=.x/ in the quotient ring
S=.x/), and the contraction G=x has the effect of setting x D 1 in I.G/ (or
equivalently, of passing to the ideal I.G/x in the localization Sx). Thus, we call
an ideal I 0 a minor of a square-free monomial ideal I if I 0 can be obtained from I

by a sequence of taking quotients and localizations at the variables. Observe further
that ˛0.G/ D htI.G/, and if we let m-grade I denote the maximum length of a
regular sequence of monomials in I then ˇ1.G/ D m-grade I.G/. Hence, a simple
hypergraph with edge ideal I is König if htI D m-grade I . This leads us to a
complete algebraic reformulation of the Conforti–Cornuéjols conjecture:

Conjecture 5.13. Let I be a square-free monomial ideal such that I and all of its
minors satisfy the property that their heights are the same as their m-grades. Then
grI is reduced; or equivalently, I is normally torsion-free.

The algebraic consequence of the conclusion of Conjecture 5.13 (and equiva-
lently, Conjecture 5.3) is the equality I .q/ D I q for all q � 0 or, equivalently, the
normally torsion-freeness of I . If one is to consider the equality I .q/ D I q , then it is
natural to look for an integer l such that I .q/ D I q for 0 � q � l implies I .q/ D I q

for all q � 0, or to examine square-free monomial ideals with the property that
I .q/ D I q for all q � q0. On the other hand, if one is to investigate the normally
torsion-freeness then it is natural to study properties of minimally not normally
torsion-free ideals. The following problem is naturally connected to Conjectures 5.3
and 5.13, and part of it has been the subject of work in commutative algebra (cf.
[13]).

Problem 5.14. Let I be a square-free monomial ideal in S D KŒx1; : : : ; xn�.

(1) Find the least integer l (may depend on I ) such that if I .q/ D I q for 0 � q � l

then I .q/ D I q for all q � 0.
(2) Suppose that there exists a positive integer q0 such that I .q/ D I q for all q � q0.

Study algebraic and combinatorial properties of I .
(3) Suppose I is minimally not normally torsion-free (i.e., I is not normally

torsion-free, but all its minors are). Find the least power q such that Ass.S=I q/ 6D
Ass.S=I /.
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