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Abstract Nations and organizations need to secure locations of economic,

military, or political importance from groups or individuals that can cause harm.

The fact that there are limited security resources prevents complete security cover-

age, which allows adversaries to observe and exploit patterns in patrolling or

monitoring and enables them to plan attacks that avoid existing patrols. The use

of randomized security policies that are more difficult for adversaries to predict and

exploit can counter their surveillance capabilities and improve security. In this

chapter we describe the recent development of models to assist security forces in

randomizing their patrols and their deployment in real applications. The systems

deployed are based on fast algorithms for solving large instances of Bayesian

Stackelberg games that capture the interaction between security forces and

adversaries. Here we describe a generic mathematical formulation of these models,

present some of the results that have allowed these systems to be deployed in

practice, and outline remaining future challenges. We discuss the deployment of

these systems in two real-world security applications: (1) The police at the Los

Angeles International Airport uses these models to randomize the placement of

checkpoints on roads entering the airport and the routes of canine unit patrols within

the airport terminals. (2) The Federal Air Marshal Service (FAMS) uses these

models to randomize the schedules of air marshals on international flights.
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3.1 Introduction

Nations and organizations need to secure locations of economic, military, or

political importance from groups or individuals that can cause harm. Protecting

such critical sites and targets, such as airports, historical landmarks, power

generation facilities, and political figures, is a challenging task for police and

security agencies worldwide. The growing threat of international terrorism has

exacerbated this challenge in recent years. For instance, transportation networks

such as buses, trains, and airplanes carry millions of people per day to their

destinations, making them a prime target for terrorists and extremely difficult to

protect for law enforcement agencies. The September 11, 2001 attack on the

World Trade Center in New York City via commercial airliners resulted in

$27.2 billion of direct short-term costs (Looney, 2002) as well as a government-

reported 2,974 lives lost. The 2004 Madrid commuter train bombings resulted in

191 lives lost, 1,755 wounded, and an estimated cost of 212 million Euros (Blanco

et al., 2007). Finally, in the 2005 London subway and bus bombings, 52 lives were

lost, 700 were wounded, and there was an estimated economic cost of two billion

pounds (Thornton, 2005).

Measures for protecting potential target areas include monitoring entrances or

inbound roads and patrolling the network at transfer points and aboard transporta-

tion vehicles. However, limited resources imply that it is typically impossible to

provide full security coverage at all times. Furthermore, adversaries can observe

security arrangements over time and exploit any predictable patterns to their

advantage. One way to mitigate the ability of adversaries to exploit patterns is the

judicious use of randomization in scheduling the actions of security forces. For

example, police patrols, baggage screenings, vehicle checkpoints, and other secu-

rity procedures are often randomized. However, security forces face many

difficulties in effectively randomizing their operations. One of these difficulties is

how to weigh the different actions the defender could take. A strategy in which all

targets are equally likely to be defended fails to take into account that some targets

are more attractive or vulnerable than others. A defense strategy that weighs the

protection of each target against the value of that target still fails to account for the

possibility that the attacker is intelligent and will update their strategy based on

the actions of the defender. Asking a human to generate a random security policy

has additional difficulties as humans are not good at generating truly random

behavior (Wagenaar, 1972; Treisman and Faulkner, 1987) and can easily fall into

predictable patterns. Furthermore, in transportation networks and many other

security domains, the problem of scheduling security forces is prohibitively large,

even without considering randomization. Creating a schedule by hand is a costly

and labor-intensive process.

Our work on randomized patrol planning has lead to a number of deployed

software assistants that address many of these key difficulties of randomization

and provide an easy-to-use solution for security forces. These assistants use game-

theoretic models and solution algorithms to determine good randomization
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strategies that take into account target values and assume intelligent adversary

responses to security measures. Game theory is a well-established paradigm for

reasoning about situations with multiple self-interested decision

makers (Fudenberg and Tirole, 1991). We model security games as Stackelberg

games (von Stackelberg, 1934) between the defender (i.e., the security forces)

and the attacker (i.e., a terrorist adversary). Stackelberg games are a bilevel

model (Bard, 1999) that account for the ability of an attacker to gather informa-

tion about the defense strategy before planning an attack. These games specify

different payoff values for both players in the event of an attack on every potential

target. Extending these games to Bayesian Stackelberg games (Conitzer and

Sandholm, 2006) allows us to capture uncertainty about these payoffs in the

game model. Solutions to these games provide a randomized policy for the

defense strategy, which can be used to generate specific schedules for security

patrols.

In this chapter we describe how we applied this game-theoretic approach in

two different software solutions that provide assistance in scheduling real security

operations. The ARMOR program (Pita et al., 2008), developed for the Los

Angeles international airport (LAX) police, randomizes checkpoints on the

roadways entering the airport and canine patrol routes within the airport

terminals. The IRIS program (Tsai et al., 2009) was developed for the Federal

Air Marshal Service (FAMS) to assist with randomly scheduling air marshals on

flights. These software assistants are interactive, and domain experts can change

domain parameters when necessary. Underlying each of these tools is a model of

the domain as a Bayesian Stackelberg game, along with fast solution algorithms

for computing an optimal solution to the game model. These algorithms use

various techniques for exploiting structure in the security domains to speed up

the computation and enable large real-world problem instances to be solved in

reasonable amounts of time (Paruchuri et al., 2006, 2007; Kiekintveld et al., 2009).

As we highlight later in this chapter, developing these assistants requires a

substantial amount of work in calibrating the Stackelberg game model to capture

expert’s knowledge of the security domain. This is critical so that the defender

strategies proposed are reasonable and useful. Clustering and data-mining

methods can help in formulating a representative security game in situations

where there is sufficient information of events.

The rest of the chapter is organized as follows. Related work is discussed in

Sect. 3.2. The Bayesian Stackelberg security game models, technical formulation,

and solution algorithms are discussed in Sect. 3.3. The LAX and FAMS domains

and the software assistants developed are described in Sect. 3.4. In Sect. 3.5, we

illustrate how to use clustering methods to automatically build a Stackelberg

security game for a network patrolling problem. We present our conclusions in

Sect. 3.6. This chapter is based on our previous work (Paruchuri

et al., 2007; Kiekintveld et al., 2009; Jain et al., 2010) and extends it by describing

a data-driven process to build a Stackelberg security game.
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3.2 Related Work

There are three main areas of related work that we review here: Optimization

techniques for patrol planning that do not take the strategic behavior of adversaries

into account, Stackelberg game models used in diverse security problems, and other

game-theoretic models used for security.

The first area of related work applies optimization techniques that model a

security domain but do not address the strategic aspects of the problem. These

methods provide a randomization strategy for the defender, but they do not take into

account the fact that the adversaries can observe the defender’s actions and then

adjust their behavior. Examples of such authors or approaches include Ruan

et al. (2005) and Paruchuri et al. (2006), which are based on learning, Markov

decision processes (MDPs) and partially observable Markov decision processes

(POMDPs). As part of this work, the authors model the patrolling problem with

locations and varying incident rates in each of the locations and solve for optimal

routes using a MDP framework. Another example is the “Hypercube Queueing

Model” (Larson, 1974) which is based on queueing theory and depicts the detailed

spatial operation of urban police departments and emergency medical services. It

has found application in police beat design, in allocation of patrolling time, etc.

Such frameworks can address many of the problems we raise, including different

target values and increasing uncertainty by using many possible patrol routes.

However, they fail to account for the possibility that an intelligent attacker will

observe and exploit patterns in the security policy. If a policy is based on the

historical frequency of attacks, it is essentially a reactive policy and an intelligent

attacker will always be one step ahead.

A second area of work uses Stackelberg games to model a variety of security

domains. Bier (2007) give a strong endorsement of this type of modeling for

security problems. Game-theoretic models have been applied in a variety of home-

land security settings, such as protecting critical infrastructure (Brown

et al., 2006; Pita et al., 2008; Nie et al., 2007). Wein (2009) apply Stackelberg

games in the context of screening visitors entering the USA. In their work, they

model the US Government as the leader who specifies the biometric identification

strategy to maximize the detection probability using finger print matches, and the

follower is the terrorist who can manipulate the image quality of the finger print.

They have also been used for studying missile defense systems (Brown et al., 2005)

and for studying the development of an adversary’s weapon systems (Brown

et al., 2005). A family of Stackelberg games known as inspection games is closely

related to the security games we are interested in and includes models of arms

inspections and border patrols (Avenhaus et al., 2002). Other recent work uses

Stackelberg games to obtain randomized patrolling in a generic “police and

robbers” scenario (Gatti, 2008) and perimeter patrols (Agmon et al., 2008).

Our work belongs to this line of research, focusing on Stackelberg games for

patrol planning. Our work differs from the previous work mainly in the solution

approach used and the domain constraints considered, which have arisen from our
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work deploying these systems in the real world. In addition to the ARMOR and

IRIS systems that will be discussed in detail in this chapter, we are currently

working on designing new game-theoretic scheduling assistants for other security

agencies. For instance, GUARDS (Pita et al., 2011) is a system for scheduling

activities being developed for the Transportation Security Administration.

GUARDS is being evaluated at an undisclosed airport for potential nationwide

deployment. Finally, PROTECT (An et al., 2011) is in use for scheduling the patrols

of the United States Coast Guard in the port of Boston; it is currently

being deployed in the port of New York and may be deployed at multiple other

ports in the USA.

The third area of related work is the application of game-theoretic techniques

that are not based on Stackelberg games to security applications. Security problems

are increasingly studied using game-theoretic analysis, ranging from computer

network security (Lye andWing, 2005; Srivastava et al., 2005) to terrorism (Sandler

and Arce, 2003). Babu et al. (2006) have worked on modeling passenger security

system at US airports using linear programming approaches; however, their objec-

tive is to classify the passengers in various groups and then screen them based on

the group to which they belong.

3.3 Methodology

A generic Stackelberg game has two players, a leader and a follower. These players
need not represent individuals but could also be groups that cooperate to execute a

joint strategy, such as a police force or terrorist organization. For the modeling of

security, the leadership role is assumed by the police, and the role of follower by

criminals. Decisions made by each player are where to protect and where to attack

respectively. Thus, having police act first reflects the fact that patrols conducted by

police officers are observable by criminals and, in the long run, the latter are able to

estimate the probability of encountering police in a given sector. Thus, the decision

of offenders is carried out once the likelihood of facing the police is observed.

The actions for the security forces represent the action of scheduling a patrol or

security procedure to protect a set of targets, e.g., a checkpoint at the LAX airport or

assigning federal air marshals to a flight. The actions for an adversary represent

possible attacks at one of the targets being protected, e.g., a terminal at LAX or a

certain flight.

3.3.1 Stackelberg Equilibrium

In a Stackelberg game each player has a set of possible pure strategies, denoted
sd ∈ Sd and sa ∈ Sa. A mixed strategy allows a player to play a probability

distribution over pure strategies, denoted dd ∈ Dd and da ∈ Da. Payoffs for each

3 Deployed Security Games for Patrol Planning 49



player are defined over all possible joint pure-strategy outcomes: Od : Sa � Sd

! r for the defender and similarly for each attacker. The payoff functions are

extended to mixed strategies in the standard way by taking the expectation over

pure-strategy outcomes. The follower can observe the leader’s strategy and then act

in a way to optimize its own payoffs. Formally, the attacker’s strategy in a

Stackelberg security game becomes a function that selects a strategy for each

possible leader strategy: Fa : Dd ! Da.

The most common solution concept in game theory is a Nash equilibrium, which
is a profile of strategies for each player in which no player can gain by unilaterally

changing to another strategy (Osbourne and Rubinstein, 1994). Stackelberg equi-

librium is a refinement of Nash equilibrium specific to Stackelberg games. It is a

form of subgame perfect equilibrium in which it requires that each player select the

best-response in any subgame of the original game (where subgames correspond to

partial sequences of actions). The effect is to eliminate equilibrium profiles that are

supported by non-credible threats off the equilibrium path. Subgame perfection is a

natural requirement, but it does not guarantee a unique solution in cases where the

follower is indifferent among a set of strategies. The literature contains two forms

of Stackelberg equilibria that identify unique outcomes, first proposed by

Leitmann (1978), and typically called “strong” and “weak” after (Breton

et al., 1988). The strong form assumes that the follower will always choose the

optimal strategy for the leader in cases of indifference, while the weak form

assumes that the follower will choose the worst strategy for the leader. Unlike the

weak form, strong Stackelberg equilibria are known to exist in all Stackelberg

games (Basar and Olsder, 1995). A standard argument suggests that the leader is

often able to induce the favorable strong form by selecting a strategy arbitrarily

close to the equilibrium which causes the follower to strictly prefer the desired

strategy (von Stengel and Zamir, 2004). We adopt strong Stackelberg equilibrium

(SSE) as our solution concept in part for these reasons but also because it is the most

commonly used in related literature (Osbourne and Rubinstein, 1994; Conitzer and

Sandholm, 2006; Paruchuri et al., 2008).

Definition 1 A set of strategies (dd, Fa) form a SSE if they satisfy the following:

1. The leader plays a best-response:

Od(dd, Fa(dd)) � Od(dd0, Fa(dd0)) 8dd0 ∈ Dd.

2. The follower plays a best-response:

Oa(dd, Fa(dd)) � Oa(dd, da) 8dd ∈ Dd, da ∈ Da.

3. The follower breaks ties optimally for the leader:

Od(dd, Fd(dd)) � Od(dd, da) 8dd ∈ Dd, da ∈ Da
∗ (dd), where Da

∗ (dd) is the set

of follower best-responses, as above.

Whether or not the Stackelberg leader benefits from the ability to commit

depends on whether commitment to mixed strategies is allowed. Committing to a

pure strategy can be either good or bad for the leader; for example, in the “Rock,

Paper, and Scissors” game, forcing commitment to a pure strategy would guarantee

a loss. However, it has been shown that the ability to commit to a mixed strategy
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always weakly increases the leader’s payoffs in equilibrium profiles of the game

(von Stengel and Zamir, 2004). In the context of a Stackelberg security game, a

deterministic policy is a liability for the defender (the leader), but a credible

randomized security policy is an advantage. Our model allows commitment to

mixed strategies by the defender.

The Bayesian extension to the Stackelberg game allows for multiple types of

players, with each type associated with its own payoff values. For the security games

of interest in this chapter, we assume that there is only one leader type (e.g., only one

police force), although there are multiple follower types (e.g., multiple adversary

types trying to infiltrate security). The set of follower types is denoted by G. Each
type g is represented by a different payoff matrix. The leader does not know the

follower’s type. The goal is to find the optimal mixed strategy for the leader to

commit to, given that each follower type will know the mixed strategy of the leader

when choosing its own strategy. Payoffs for each type are defined over all possible

joint pure-strategy outcomes:Od : SG
a � Sd ! r for the defender and similarly for

each attacker type. The leader’s best response is now a weighted best response to the

followers’ responses, where the weights are based on the probability of occurrence

of each type. The strategy of each attacker type g becomes: Fa
g : Dd ! Da

g, which

still satisfies constraints 2 and 3 in Definition 1.

3.3.2 Security Game Representation

There are two major problems with using conventional methods to represent

security games in normal form. First, many solution methods require the use of a

Harsanyi transformation when dealing with Bayesian games (Harsanyi and

Selten, 1972). The Harsanyi transformation converts a Bayesian game into a

normal-form game, but the new game may be exponentially larger than the original

Bayesian game. Our compact representation avoids this Harsanyi transformation,

and instead we directly operate on the Bayesian game. Operating directly on the

Bayesian representation is possible in our model because the evaluation of the

leader strategy against a Harsanyi-transformed game matrix is equivalent to its

evaluation against each of the game matrices for the individual follower types. (For

more details, see the Appendix; a further detailed explanation appears in Paruchuri

et al. (2008)). The second problem arises because the defender has many possible

resources to schedule in the security policy. This can also lead to a combinatorial

explosion in a standard normal-form representation. For example, if the leader has

m resources to defend n entities, then normal-form representations model this

problem as a single leader with n
m

� �
rows, each row corresponding to a leader action

of covering m targets with security resources. However, in our compact representa-

tion, the game representation would only include n rows, each row corresponding to

whether the corresponding target was covered or not. Such a representation is

equivalent to the normal form representation for the class of problems we address

in this work (see Kiekintveld et al. 2009 for additional details). This compactness in
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our representation is possible because the payoffs for the leader in these games

simply depend on whether the attacked target was covered or not, and not on what

other targets were covered (or not covered). The representation we use here avoids

both of these potential problems, using methods similar to other compact

representations for games (Koller and Milch, 2003; Jiang and Leyton-

Brown, 2006).

We now introduce our compact representation for security games. Let T ¼ {t1,
. . ., tn} be a set of targets that may be attacked, corresponding to pure strategies for

the attacker. The defender has a set of resources available to cover these targets,

R ¼ {r1, . . ., rm} (e.g., in the FAMS domain, targets could be flights and resources

could be federal air marshals). Associated with each target are four payoffs defining

the possible outcomes for an attack on the target, as shown in Table 3.1. There are

two cases, depending on whether or not the target is covered by the defender. The

defender’s payoff for an uncovered attack when facing an adversary of type g is

denoted Ud
g, u(t), and for a covered attack Ud

g, c(t). Similarly, Ua
g, u(t) and Ua

g, c(t)
are the payoffs of the attacker.

A crucial feature of the model is that payoffs depend only on the target attacked,

and whether or not it is covered by the defender. The payoffs do not depend on the

remaining aspects of the schedule, such as whether any unattacked target is covered

or which specific defense resource provides coverage. For example, if an adversary

succeeds in attacking Terminal 1, the penalty for the defender is the same whether

the defender was guarding Terminal 2 or 3. Therefore, from a payoff perspective,

many resource allocations by the defender are identical. We exploit this by

summarizing the payoff-relevant aspects of the defender’s strategy in a coverage
vector, C, that gives the probability that each target is covered, ct. The analogous

attack vector Ag gives the probability of attacking a target by a follower of type g.
We restrict the attack vector for each follower type to attack a single target with

probability 1. This is without loss of generality because a SSE solution still exists

under this restriction (Paruchuri et al., 2008). Thus, the follower of type g
can choose any pure strategy sa

g ∈ Sa
g, that is, attack any one target from the set

of targets.

The payoff for a defenderwhen a specific target t is attacked by an adversary of type
g is given by Ud

g(t, C) and is defined in (3.1). Thus, the expectation of Ud
g(t, C) over

t gives Ud
g, which is the defender’s expected payoff given coverage vector C when

facing an adversary of type g whose attack vector is Ag. Ud
g is defined in (3.2). The

same notation applies for each follower type, replacing “d” with “a.” Thus, Ua
g(t, C)

gives the payoff to the attacker when a target t is attacked by an adversary of type g.
We will see Ua

g(t, C) and Ud
g(t, C) used in the MILP discussed later. We also define

the useful notion of the attack set in (3.3),Lg(C), which contains all targets that yield
themaximum expected payoff for the attacker type g given coverageC. This attack set

Table 3.1 Example payoffs

for an attack on a target
Covered Uncovered

Defender 5 �20

Attacker �10 30
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is used by the adversary to break ties when calculating a SSE. Moreover, in these

security games, exactly one adversary is attacking in one instance of the game;

however, the adversary could be of any type and the defender does not know the

type of the adversary faced.

Ug
dðt;CÞ ¼ ctU

g;c
d ðtÞ þ ð1� ctÞUg;u

d ðtÞ (3.1)

Ug
dðC;AgÞ ¼

X
t2Ta

g
t � ðct � Ug;c

d ðtÞ þ ð1� ctÞUg;u
d ðtÞÞ (3.2)

LgðCÞ ¼ ft : Ug
aðt;CÞ � Ug

aðt0;CÞ8t0 2 Tg: (3.3)

In an SSE, the attacker selects the target in the attack set with maximum payoff for

the defender. Let t∗ denote this optimal target. Then the expected SSE payoff for

the defender when facing this adversary of type g with probability pg is Ûg
dðCÞ

¼ Ug
dðt� ;CÞ � pg, and for the attacker Ûg

aðCÞ ¼ Ug
aðt� ;CÞ.

3.3.3 Solution Method

We introduce the ERASER-C algorithm (Efficient Randomized Allocation of

Security Resources with Constraints), which takes as input a security game in the

compact form described in Sect. 3.3.2 and solves for an optimal coverage vector

corresponding to a SSE strategy for the defender. We allow resources to be assigned

to schedules covering multiple targets. The set of legal schedules S ¼ {s1, . . ., sl}
is a subset of the power set of the targets, with restrictions on this set representing

scheduling constraints. We define the relationship between targets and schedules

with the functionH : S�T ! {0, 1}, which evaluates to 1 if and only if t is covered
in s. The defender’s strategy is now an assignment of resources to schedules, rather

than targets. Another important notion is the presence of resource types, O ¼ {o1,

. . ., ov}, each with the capability to cover a different subset of S. The number of

available resources of each type is given by the function rðoÞ . Coverage

capabilities for each type are given by the function Ca : S �O ! {0, 1}, which

is 1 if the type is able to cover the given schedule and 0 otherwise.1

The combination of schedules and resource types captures key elements of the

security domains. For example, in FAMS, federal air marshals are resources, and

flights are potential targets, with payoff values defined by risk analysis of the flight.

Due to location and timing constraints, however, a marshal cannot be on all possible

flights. For example, a marshal in New York cannot board flights flying out of Los

Angeles. Legal schedules can be used to define the set of possible flights that a

1Our current implementation uses completematrices to representH andCa, but sparse representations
could offer additional performance improvements.
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federal air marshal could fly, given these constraints. Resource types are use to

define the initial state (notably, location) of a marshal, which defines a subset of

legal schedules that any given marshal could fly.

Adding scheduling and resource coverage constraints reduces the space of

feasible coverage vectors. Consider an example with a single federal air marshal

defending three flights. Suppose that there are two legal schedules, covering targets

{1, 2} and {2, 3}. Given only these schedules, it is not possible to implement a

coverage vector that places 50% probability on both targets 1 and 3, with no

coverage of target 2.

The algorithm is a mixed-integer linear program (MILP) described in

(3.4)–(3.11), with notation presented in Table 3.2. Constraints (3.5) and (3.12)

force each adversary to select a pure strategy attacking a single target. The coverage

vector C is constrained by the number of available resources through (3.8) and the

coverage in each target to be in the range [0, 1] by (3.13). The coverage of each

schedule must sum to the contributions of the individual resource types, specified

by constraint (3.6). The mapping between the coverage of schedules and coverage

of targets is enforced in (3.7). Constraint (3.8) restricts the schedule so that only the

available number of resources of each type are used. Constraint (3.9) enforces that

no probability may be assigned infeasible schedules for each resource type. The

defender’s expected payoff is defined with constraint (3.10) when follower g
attacks target Ag. Since the objective maximizes dg, for any optimal solution dg ¼
Ud

g(C, Ag). This also implies that C is maximal, given Ag for any optimal solution,

since dg is maximized. In a similar way, constraint (3.11) forces the attacker to

Table 3.2 Notation table

Symbol Meaning

dg Reward of defender against adversary of type g
kg Reward of adversary type g
pg Probability of occurrence of adversary of type g
G Set of adversary types

T Set of targets

Ag Attack vector for the adversary of type g
at
g Probability of adversary of type g attacking target t

C Coverage vector of the defender

ct Probability of defender covering target t

h(s, o) Probability of coverage of schedule s by defender type o
xs Total coverage probability over schedule s

S Set of valid schedules

O Set of resource types

Ca(s, o) Capability: 1 if type o can cover schedule s; 0 otherwise

RðoÞ Number of available resources of type o
H(s, t) Mapping: 1 if schedule s covers target t; 0 otherwise

M Huge positive constant

Ud
g(t, C) Utility of the defender when facing adversary type g who attacks target t when defender

coverage is C

Ua
g(t, C) Utility of the adversary of type g when target t is attacked and defender coverage is C
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select a strategy in the attack set of C. If the attack vector specifies a target that is

not maximal, this constraint is violated. Therefore, taken together, the objective and

constraints (3.10)–(3.11) imply that C and Ag are mutual best-responses for the

defender and the adversary in any solution. Thus, the defender mixed strategy C and

the adversary attack vector Ag for each adversary type g form an SSE of the security

Stackelberg game.

max
a;c;q;h;d;k

X

g2G
dgpg (3.4)

X

t2T
agt ¼ 1 g 2 G (3.5)

X

o2O
hs;o ¼ xs s 2 S (3.6)

X

s2S
xsHðs; tÞ ¼ ct t 2 T (3.7)

X

s2S
hs;oCaðs;oÞ � rðoÞ o 2 O (3.8)

hs;o � Caðs;oÞ s;o 2 S� O (3.9)

dg � Ug
dðt;CÞ � ð1� agt Þ �M t 2 T; g 2 G (3.10)

0 � kg � Ug
aðt;CÞ � ð1� agt Þ �M t 2 T; g 2 G (3.11)

agt 2 f0; 1g t 2 T; g 2 G (3.13)

ct 2 ½0; 1� t 2 T (3.13)

xs 2 ½0; 1� s 2 S (3.14)

hs;o 2 ½0; 1� s;o 2 S� O (3.15)

The payoff valuesUd
g(t, C) andUa

g(t, C) are calculated based on (3.1) and (3.2).
The values of Ud

g, c and Ud
g, u used in these equations are the payoff values to the

defender when a target is covered and uncovered, respectively. These values are

provided by the domain experts, as described in Sect. 3.5. Similarly, the payoff

values for the adversaries are also provided by the domain experts.

The values of other model parameters are calculated based on the user input and

the game specification. Police officers and canines are the resources for ARMOR for
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checkpoint and ARMOR for canine, respectively. ARMOR does not differentiate

between different resources (e.g., all canines are assumed to be equally capable), and

hence there is exactly one resource type O. The number of resources r , i.e.,

checkpoints or canines, is directly input by the user in the system. In the case of

ARMOR, the set of legal schedules is an assignment of a checkpoint to an inbound

road and is automatically generated by the system since ARMOR is aware of the

road map of the airport. The capability matrix Ca in ARMOR consists of all ones

since any resource could be assigned to any target. For example, any canine could be

scheduled to any terminal.

Similarly, all the model parameters are defined based on user input and domain

constraints in IRIS. The federal air marshals are the resources for IRIS. In IRIS, the

different FAMS Offices form the different resource types. This information has

already been supplied to IRIS by the domain experts. The numbers of resources of

each type r, that is the number of federal air marshals in each office, is directly

input in IRIS by the end users. The set of legal schedules S is provided as an input to
the system by the FAMS in IRIS. Each schedule in IRIS is a sequence of flights that

a federal air marshal can take to complete a tour. In IRIS, the capability matrix Ca is
defined based on resource types; for example, federal air marshals at the FAM

office based in Los Angeles can only cover schedules flying out of Los Angeles, and

hence only those schedules would have their capabilities set to 1. The mappingM is

also calculated by the systems based on the domain specifications. For example, in

IRIS, if schedule s is to take flight f1 followed by flight f2, then the row in M
corresponding to s would have ones only for columns corresponding to f1 and f2.

Kiekintveld et al. (2009) have shown that the ERASER-C MILP corresponds to

an SSE of the security game. The intuition behind the proof are two claims: (1) the

coverage probability of the leader and the attack set of the follower are mutual best-

responses by the construction of the MILP, and (2) the coverage probability of the

leader gives the leader the optimal utility.

3.4 Software Systems Deployed at the LAX

and FAMS Domains

Both LAX and FAMS are security scenarios in which there is a leader/follower

dynamic between the security forces and terrorist adversaries. In both domains

there are limited resources available to protect a very large space of possible targets,

so it is not possible to provide complete coverage. Finally, the targets have diverse

values and vulnerabilities in each domain. The domains, however, differ primarily

due to size. In the LAX security domain there are eight terminals that must be

protected, while the air marshals are responsible for protecting tens of thousands of

commercial flights each day. This difference in size requires, in addition to scalable

solution algorithms, different types of interfaces to have domain experts specify

each game. Finally, while in the LAX domain all security resources can reach all
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targets, in the FAMS domain, the security resources must satisfy more complicated

constraints (e.g., a given marshal cannot be assigned to two flights with overlapping

time schedules).

In this section, we describe both security domains (LAX and FAMS) and discuss

the architecture of the software systems developed for these domains. We begin

with a description of the generic software architecture and then describe each

domain and their specific software assistant. We finish this section with a list of

lessons learned in doing these deployments.

3.4.1 Software Assistants

We now describe in detail the system architecture for each of the two software

assistants, focusing primarily on the ARMOR system but providing some discussion

of IRIS as a point of comparison. We paid particular attention to organization

acceptance during the development process. The end users of both ARMOR and

IRIS are security officers, and the system must be simple enough for them to be

comfortable using it on a regular basis. In particular, the systems are designed to hide

as much of the complexity of the game-theoretic models as possible, while still

allowing enough flexibility for the users to input important parameters that change

regularly. This required considerable effort in both user interface design and

identifying ways to simplify and reduce the inputs required by the system to specify

a gamemodel. In the case of IRIS, it was also very important to build in functionality

to import data from other systems to ease the burden of data entry (e.g., importing

flight information from existing databases). Finally, the schedules that the system

produces must be presented in a format that is easy to understand, with tools that

allow final modifications if necessary.

Both ARMOR and IRIS are stand-alone desktop applications. ARMOR was

developed in the Microsoft.NET framework, while IRIS is a stand-alone Java

application. Due to security concerns, both systems are run on machines that are

not connected to any network. The underlying solution methods use the open source

GLPK2 toolkit to solve the necessary mixed-integer programs. The general struc-

ture of the two applications is shown in Fig. 3.1. The core architecture can be

divided into three modules, which we describe in detail in the subsequent sections:

1. Input: Interface for the user to enter parameters and domain knowledge.

2. Back-end: Inputs are translated into a game model, which is passed to the

Bayesian Stackelberg game solver and then to a final process that generates a

specific sample schedule based on the computed probabilities.

3. Display Module: The final schedule is presented to the user, with options to

modify the output if necessary.

2 http://www.gnu.org/software/glpk/.
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We rely on the users and domain experts to provide the knowledge required to

specify the game model. While some elements of the model do not change over

time, others change frequently. For these, we must provide the users a convenient

way to enter the necessary values. The basic inputs that both ARMOR and IRIS

require fall into four categories: (1) the number of available resources and their

capabilities, (2) the set of targets, (3) payoff values for each target, and (4)

supplemental data to improve the user experience (e.g., names and labels). Both

applications allow users to save and reuse this information across multiple

executions.

The balance of how much information is hard-coded and how much is entered by

the user is quite different for ARMOR and IRIS. For example, in ARMOR the set of

targets is hard-coded because the number of terminals at LAX changes very rarely.

However, in IRIS the flight information may change every time the system is run, so

this is part of the user input. Determining which parameters were necessary to

expose to the user was a significant task, and required several iterations with the

domain experts and end users to strike the right balance between the complexity of

the inputs and the flexibility of the system to capture the necessary information.

The Back-end module is fairly common to the two applications. This model

builds a specific instance of a Bayesian Stackelberg game, based on all of the data

provided by domain experts and entered through the GUI by end users. Some of the

necessary information is hard-coded in each system, while other inputs can be

modified by the user during the scheduling process.

Fig. 3.1 General structure for the security assistants
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Once an explicit game model has been generated, it is passed as input to

the ERASER-C mixed-integer program. This model is solved using the standard

open source solver GLPK in these applications. ERASER-C returns an optimal

mixed strategy for the defender—a probability distribution over the defender’s

actions—which represents a randomized policy for allocating the security resources

of either LAX or FAMS. We sample the randomized schedule found to generate a

specific schedule for the security forces. This sample schedule specifies exactly

where and when each resource should be assigned to each target. If necessary, it is

also possible to “resample” from the randomized schedule to get another specific

schedule, though this capability is used rarely. Any specific constraints that the

schedules must satisfy are taken into consideration when final schedules are sam-

pled. These sampled schedules are then displayed for the user through the Display

Module.

The output module presents the generated sampled schedule to the user. The user

can then review the schedule and accept it as is, or add additional constraints and

run the scheduling process again. Since the specifics of Input and Display Modules

are domain dependent we describe both of them, first for LAX and then for FAMS.

3.4.2 LAX Domain: ARMOR

LAX is the fifth busiest airport in the USA, the largest destination airport in the

USA, and serves 60–70 million passengers per year (General descrip-

tion, 2007; Stevens et al., 2006). LAX is known to be a prime terrorist target on

the west coast of the USA, with multiple arrests of plotters attempting to attack

LAX (Stevens et al., 2006). To protect LAX, the airport police have designed a

security system that utilizes multiple rings of protection. As is evident to anyone

traveling through the airport, these rings include such things as vehicular

checkpoints, police units patrolling the roads to the terminals, patrolling inside

the terminals (with canines), and security screening and bag checks for passengers.

Airport police use intelligent randomization within two of these rings: (1) placing

vehicle checkpoints on inbound roads that service the LAX terminals, including

both location and timing (a checkpoint is shown in Fig. 3.2), and (2) scheduling

patrols for bomb-sniffing canine units at the different LAX terminals (as shown in

Fig. 3.2). The numbers of available vehicle checkpoints and canine units are

limited by resource constraints, so randomization is used as a method to increase

the effectiveness of these resources while avoiding creating patterns in deployment.

The eight different terminals at LAX have very different characteristics, leading

to different assessments of the value/risk for each terminal. For example, interna-

tional flights are concentrated at a few terminals, while terminals have varying

physical size and passenger loads. Because uncertainty about the adversary was

identified by airport police as a key problem, the model should take into account the

different types of adversaries that may be encountered. For example, there may be

both hard-line, well-funded international terrorists planning attacks as well as
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amateur individuals. The payoff values for different attack scenarios should depend

on the type of attacker and their capabilities.

The interface for the ARMOR checkpoints program is shown in Fig. 3.3 and

provides options for the number of available resources, the number of scheduled

days, the time slots to schedule, and the monthly calendar. A spreadsheet is used to

display the proposed schedule and provide additional opportunities for the end users

to modify the schedules in an iterative process. Three options are provided to

change the possible scheduling actions: (a) number of checkpoints allowed during

a particular time slot; (b) the time interval of each time slot; (c) the number of days

to schedule over. Furthermore, three options are given to the user to enforce

Fig. 3.3 ARMOR interface

Fig. 3.2 Security checkpoints and canine patrols at LAX
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constraints onto the schedule: (a) forced checkpoint; (b) forbidden checkpoint; (c)

at least one checkpoint. These constraints are intended to be used sparingly to

accommodate situations where a user, faced with exceptional circumstances and

extra knowledge, wishes to influence the output of the game. The user can impose

these specific actions in the schedule using the spreadsheet interface. Each restric-

tion is represented by a different color in the spreadsheet. The interface for the

ARMOR Canine Patrols at LAX has similar features.

ARMOR generates a different game for each time slot on each day. The number

of defender resources in the model is the number of canine units/checkpoints

specified by the user. The number of targets is the number of terminals for the

canines system, and the number of inbound roads for the checkpoints system.

Generating the game matrix also requires values for the payoffs associated with

each possible target. These payoff values depend on a variety of conditions, such as

passenger loads, cost of the infrastructure, and publicity to the adversary. Domain

experts provided us with formulae to automatically generate payoff values for all

possible combinations of such conditions, which we encode in ARMOR. The system

is also provided with estimates of the passenger load and other elements (the details

of these formulae and tools cannot be discussed due to security concerns). For any

given day, ARMOR is able to take the conditions for this day and select appropriate

payoff values for the targets. As a result, it is not necessary for LAX police officers to

enter these values by hand to generate each schedule, which is both time-consuming

and error-prone. The system still retains a high degree of flexibility because values

are precomputed and stored for a wide range of possible conditions.

The generated schedule of checkpoints and canines is presented to the user via a

spreadsheet. Each row in the output spreadsheet corresponds to 1 h. Each column in

the sheet corresponds to a terminal. Each entry in the sheet represents a schedule

generated by ARMOR. The familiarity of the police officers with spreadsheets

helped in the acceptance of the ARMOR schedules.

When ARMOR identifies that user constraints are causing unreasonably low

likelihood of scheduling a checkpoint, it presents the schedule to the user with

alerts. The user may then alter the schedule by modifying the forbidden/required

checkpoints, or possibly by directly altering the schedule. Both possibilities are

accommodated in ARMOR. If the user simply adds or removes constraints,

ARMOR can create a new schedule. Once the schedule is finalized, it can be

saved for actual use, thus completing the system cycle. This full process was

designed to specifically meet the requirements at LAX for checkpoint and canine

allocation.

3.4.3 FAMS Domain: IRIS

The FAMS places undercover law enforcement personnel aboard flight soriginating

in and departing from the USA to dissuade potential aggressors and prevent an

attack should one occur (TSA, 2008). The exact methods used to evaluate the risks
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posed by individual flights is not made public by the service, but we can identify

many factors that might influence such an evaluation. For example, flights have

different numbers of passengers, and some fly over densely populated areas while

others do not. International flights also serve different countries, which may pose

different risks. Special events can also change the risks for particular flights at

certain times (Federal Air Marshal Service, 2008).

The scale of the domain is massive. There are currently tens of thousands of

commercial flights scheduled each day, and public estimates state that there are

thousands of air marshals. Air marshals must be scheduled on tours of flights that

obey various constraints (e.g., the time required to board, fly, and disembark).

Simply finding schedules for the marshals that meet all of these constraints is a

computational challenge. Our task is made more difficult by the need to find a

randomized policy that meets these scheduling constraints, while also accounting

for the different values of each flight.

The FAMS domain is considerably larger, and the information required to build

a game model in this domain changes much more frequently. For these reasons the

application is considerably more complex than ARMOR in terms of the user

interface and the mechanisms required to input all of the necessary information.

This additional complexity is necessary in this domain to accurately capture the

situation and provide all of the functionality requested by the end users. However, it

does place a greater burden on the users to learn the system, and scheduling is a

more time-consuming process than in ARMOR. Again, finding the right level of

complexity to expose to the users was an iterative process that involved many

discussions with the users and domain experts.

In the FAMS domain, we require information about the available air marshals,

their scheduling constraints, the possible flights, and information about the

risks/values to associate with each flight. The data about resources include infor-

mation about the number and location of air marshals, as well as the conditions that

define legal flight schedules. Flight information includes various data about each

flight, including flight number, carrier, origin, destination, aircraft type, etc. Finally,

some information is collected to improve usability, even though it is not strictly

necessary for the game-theoretic analysis. This includes naming schemes for

airports and airlines and other information that allows the system to output

schedules in a more usable format or to interface easily with other systems. IRIS

also includes functionality to import data from existing databases with flight data

and other information. This greatly reduces the amount of data entry necessary to

create a schedule.

Specifying the payoff values for every possible flight was a particular challenge

in this domain, since there are thousands of flights to consider. We use an attributed-

based system to elicit these values, based on the Threat, Vulnerability, and Conse-

quence (TVC) model for estimating terrorism risk (Willis et al., 2005). By eliciting

values for attributes of flights rather than specific flights, we are able to dramatically

reduce the number of entries required by the user. Each flight is then given an

aggregate value based on these components; the specific calculations used to

determine flight risk are sensitive information and cannot be revealed. The values
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of the attributes for each flight can be populated automatically from existing

databases. To allow for specific intelligence or exceptional circumstances, the

individual payoff values for any flight can also be directly edited by the end user.

However, this is only rarely necessary and the majority of the analysis can be

effectively automated.

This preference elicitation system of IRIS has substantially reduced the number

of values that must be entered by the user. During a restricted test run on real data,

the attribute-based approach called for a total of 114 values to input regardless of

the number of flights. By contrast, there were 2,571 valid flights over a week, each

requiring four payoff values, summing to 10,284 user-entered values without the

attribute-based preference elicitation system. The attribute-based approach clearly

requires far fewer inputs and remains constant as the number of flights increases,

allowing for excellent scalability as we deal with larger and larger sets of flights.

Equally importantly, attribute-based risk assessment is an intuitive and highly

scalable method that can be used in any problem where people must distill numer-

ous attributes of a situation into a single value for a large number of situations that

share the same attributes.

The generated schedules are presented to the user via the application window.

The schedule created is shown in the interface, and allows the users to view more

detailed information about each target. The user is also able to output the schedule

to a file which can then be used to analyze the schedule in more detail. The sample

assignment of federal air marshals to flight schedules is exactly a schedule that

could be used by the FAMS. At this point, the scheduling assistant allows the expert

using the system to create numerous sample schedules based on the same optimal

mixed strategy or to change the assignment of federal air marshals to flight

schedules by hand to create a final schedule that meets the needs of the FAMS.

Of course, the user can also adjust any of the parameters entered and resolve the

game completely. The output of IRIS is in the same format as the other systems

used by the FAMS officers. It has not been presented here for simplicity and

because of security concerns.

3.4.4 Lessons Learned

The design and deployment of ARMOR and IRIS have posed numerous challenges.

We outline some key lessons learned during the design and deployment of these tools.

First, there is a critical need for randomization in security operations. Security officials

are aware that requiring humans to generate randomized schedules is unsatisfactory

because, as psychological studies have often shown (Wagenaar, 1972; Treisman and

Faulkner, 1987), humans have difficulty in randomizing, and they can also fall into

predictable patterns. Instead, game-theoretic randomization that appropriately weighs

the costs and benefits of different actions and randomizes with appropriate weights

leads to improved results. Security officials were therefore extremely enthusiastic in

their reception of our research and eager to apply it to their practices.
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Second, organizational acceptance is a key issue. In creating solutions for

people, we must be cognizant of how difficult it will be for a user to adopt our

solution. Each deviation from existing methodology is a step away from the

familiar that we must convince the user to accept. Instead of asking people to

make numerous and sometimes unnecessary changes, minimizing these differences

and complexities can help pave the way toward a successful implementation. For

example, tweaking the GUI to achieve a look and feel that the user is familiar and

comfortable with can help the user understand the system faster and better. Simi-

larly, because infrastructural changes are often costly and/or time-consuming, ease

of incorporating our work into their daily routine is essential. For example, using

inputs and creating outputs that were in the same format as existing protocols

minimized the additional work that our assistant would create for the security

officers and lead to easier acceptance of the system.

Third, it is important to provide the users with operational flexibility. When

initially generating schedules for canine patrols, we created a very detailed sched-

ule, micro-managing the patrols. This did not get as positive a reception from the

officers. Instead, an abstract schedule that afforded the officers some flexibility to

respond to situations on the ground was better received.

3.5 A Generic Network Security Problem

As noted above, implementing a Stackelberg security game model to plan patrols is

a difficult process that to date has been undertaken with substantial effort in

collaboration with the security providers. In many situations, however, there is

enough information about the security process that a data-driven process could be

used to assist security providers in defining the actions and payoffs of the security

game. In this section we illustrate recent work that aims to automatically build a

Stackelberg security game for the problem of patrolling a street network to prevent

crime. The proposed approach uses data-mining tools on a database of past reported

crime and events to identify the locations to be patrolled, the times at which the

game changes, and the types of adversaries faced. The idea is to exploit temporal

and spatial patterns of crime on the area to be patrolled to determine the priorities

on how to use the limited security resources.

We consider the street network depicted in Fig. 3.4 which corresponds to a

centric commercial, turistic, and economic district in Santiago, Chile. This is a busy

part of the city usually with large crowds on the street and that historically

concentrates a high number of crimes, for the most part theft or minor aggressions.

This type of crime in particular can be deterred or reduced with appropriate

patrolling by police. To represent the problem of deciding where to patrol as a

Stackelberg security game, security providers need to identify the specific points on

this street network that concentrate crime and determine the payoffs defenders and

attackers would receive if crimes at these locations are committed or are prevented.

In this security game, police patrols on foot would go to the points selected
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following the random optimal mixed strategy that maximizes the defender’s utility.

Different types of criminals would, knowing the optimal mixed strategy of the

police patrols, then decide where to attack on the network, if at all. We assume that

both police and criminals appear at the point selected, without interacting in other

parts of the network. In addition to the description of the street network, we

obtained from the Chilean national police force information about reported crimes

in the area and the police reports for a 2-year period. Each reported crime has a

location, a date and time, and a description of the crime (classification of crime

[robbery, theft, etc.], amount stolen, level of violence, etc.). The police reports

include information about the available resources in each shift, which helps esti-

mate the police resources used for preventive patrolling.

3.5.1 Building a Data-Driven Security Game

This information is then processed in an automated data-driven procedure to build a

security game in five steps: (1) Define the amount of data that will be relevant to

calibrate the security game, (2) Determine locations to patrol, (3) Identify attacker

types from data, (4) Determine times to patrol, (5) Determine payoffs for leader and

followers.

Fig. 3.4 Patrolling area with a density plot of reported crimes in the period 12/15/2002–12/14/

2004
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Step 1: In determining which data to use to build a representative security game,

we must strike a balance between selecting too much data and too little.

Sufficient past data should be included so that significant but perhaps rare

patterns of crime are taken into consideration. However, if too much data

are taken into account, we run the risk of representing crime patterns that

no longer exist. You must rely on expert opinion to estimate how represen-

tative past data are of the current security situation leading to an estimate of

how much of the past information to use in identifying the locations of the

patrols, the types of adversaries, and the utilities for each. In the results we

show below, we used a time window of 2 years of data (from December 15,

2002 until December 14, 2004) to build a week long game (for the week of

December 15–22, 2004).

Step 2: We used an off-the-shelf clustering software to identify the locations to be

patrolled from the density plot of reported crime displayed in Fig. 3.5.

These locations are selected anywhere on the road network in a way that

summarizes the geographical distribution of crimes without requiring a

massive number of locations. We used the software DBSCAN (density-

based spatial clustering of applications with noise) (Ester et al., 1996). This

is a density segmentation tool which also removes the noise in the data and

automatically selects the number of segments to consider. In the results we

obtained, DBSCAN identifies 119 locations to protect in which there are at

least 10 crimes within a radius of 20 m. These points represent 89.23% of

Fig. 3.5 Optimal mixed strategy on locations selected. Node color corresponds to probability of

coverage of the node, with a darker color indicating a higher probability of coverage
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the reported crimes. We note that a number of good clustering algorithms

can help in identifying a set of locations that are representative of the

spatial crime distribution.

Step 3: We follow the knowledge discovery in databases (KDD) scheme (Fayyad

et al., 1996) to process the database of reported crimes and identify

different types of attackers. The KDD approach is a generic scheme that

outlines a series of procedures to, among other things, create a target data

set, remove data noise and outliers, handle missing data, identify useful

features in the data, etc. Each of the processes can be implemented with any

of a number of existing tools. For the selection of attributes, we chose a

wrapper technique that automatically selects the attributes that help seg-

mentation (Dy and Brodley, 2004). To identify the clusters of crimes we

use a k-means clustering model. We found that this model was superior to

alternative clustering models we tried (X-means, expectation maximiza-

tion) for this problem, both in runtime and the quality of solutions found,

which are more easily interpretable. The number of reported crimes in each

cluster informs us of the frequency of different types of crime and thus the

likelihood of facing each. The crimes in the 2-year database were classified

into 9 significant clusters that were characterized by 24 significant

attributes.

Step 4: Since the security conditions change during the day and the Stackelberg

security game describes static conditions, we separate the day into different

time intervals (or blocks) in which the security conditions remain almost

constant. The different types of crime identified in Step 3 include three

different time blocks which are found to be significant. Intersecting these

times with the police patrolling shifts gives us a total of seven time

intervals, or blocks, where the likelihood and composition of different

types of crime and patrolling resources are kept about constant.

Block From To Block From To Block From To

S1 0:00 6:59 S2 7:00 9:59 S3 10:00 14:59

S4 15:00 17:59 S5 18:00 19:59 S6 20:00 21:59

S7 22:00 23:59

In blocks S2 and S3 there are 23 patrolling units available, in blocks

S4, S5, and S6 there are 24 patrolling units, and in blocks S1 and S7 there

are nine patrolling units. Here, one patrolling unit corresponds to a pair of

policemen on foot.

We determine the probability of facing each type of adversary by the

frequency with which each of the nine types of crimes occur. To make this

frequency more dependent on recent events, the past event data are scaled

with an exponential decay function. Table 3.3 shows these frequencies for

each of the nine types of crimes over the seven time blocks found.
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Step 5: In this work we determine the payoffs for the attacker as a valuation of the

monetary payoff of being successful or getting caught for each type of

crime. In the case of the police, we estimate that the payoff for catching a

criminal is zero (for all types) while the penalty for a successful crime equals

the expected amount earned by that type of criminal. We first determine

from the information on the database the average expected reward for the

criminal in a successful attack. To determine the penalty of an unsuccessful

attack, we estimated the expected number of days in jail for that type of

crime and evaluated the amount of forgone earnings for the criminal for not

being able to commit crimes during that period. We note that there are a

number of alternative models that can be incorporated here, in particular

models of risk aversion that better represent human behavior in adversarial

environments, such as prospect theory (Kahneman and Tvesky, 1979) or

quantal response (McKelvey and Palfrey, 1995). Table 3.4 presents the

values of payoffs for the Stackelberg game for each of the nine types of

adversaries.

Table 3.4 Expected payoff for each type of criminal, in US dollars, if attack is successful (average

utility) and if attack is unsuccessful (average cost, using a 40 % discount rate while in prison)

Cluster Average utility Prison time Average cost

0 182 61 638

1 209 1,752 731

2 136 63 476

3 451 1,746 1,579

4 175 1,747 614

5 217 1,686 761

6 139 74 486

7 138 1,757 485

8 218 1,739 764

Table 3.3 Probability of facing each follower in the different time blocks

Cluster S1 S2 S3 S4 S5 S6 S7 Total

0 0.234 0.516 0.624 0 0.603 0.562 0.395 1,815

1 0.078 0.057 0.048 0.142 0.049 0.079 0.097 679

2 0 0 0 0.470 0 0 0 545

3 0.032 0.018 0.018 0 0.012 0.027 0.050 369

4 0 0 0 0.260 0 0 0 405

5 0.253 0.091 0.063 0.079 0.066 0.093 0.150 808

6 0.023 0.027 0.022 0.048 0.033 0.016 0.024 419

7 0 0 0 0 0 0.223 0.285 575

8 0.381 0.291 0.225 0 0.238 0 0 1,110

Total 727 457 1,892 1,217 939 881 612
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3.5.2 Additional Considerations in a Data-Driven
Security Game

The procedure above helps security providers build a Stackelberg security game to

determine efficient patrols in an urban street network. This game can then be

formulated as the mixed integer programs described in Sect. 3.3 and solved to

optimality. A solution for this problem is depicted in Fig. 3.5. The color at each

node corresponds to the amount of coverage in the optimal mixed strategy for a

certain time block. To implement this solution, the police should sample from this

distribution to decide which locations to patrol each day in every time block.

The game developed can also be used to evaluate the current practice and the

proposed patrol plan. Currently police direct their preventive patrols to the

locations where the highest concentration of crime is expected to occur, based on

recent past activity (2 weeks). We assume that the highest concentration of crime

are the locations where the game predicts the highest payoff for the adversary,

therefore directing the patrols to the maximum payoff locations leading to a

minimax strategy. Table 3.5 presents the defender’s expected profits in each time

block under each of four different strategies: the optimal mixed and pure strategies

of the Stackelberg game and Minimax. We note that the utility for the leader is

always better in the Stackelberg game (mixed).

The set of tools described here hope to complement the experience and intuition

of law enforcement. There is much information that is difficult to include in

decisions on how to patrol. This is the case in part because of the amount of data

and in part because the data are not being collected or are biased. We note that a

better description of the security problem can be obtained, and thus a better security

game formulated, by incorporating additional sources of information, such as

surveys of victimization and physical description of places. We believe this is an

interesting avenue of future research to create robust systems that would be more

easily deployable in diverse settings.

3.6 Conclusions

Monitoring and patrolling are key components of law enforcement in security

domains. In generating schedules for these patrols, it is important to account for

varying weights of the targets being protected as well as the fact that potential

Table 3.5 Defender’s expected utility in different time blocks

Block of time S1 S2 S3 S4 S5 S6 S7

Stackelberg (mixed) � 1.87 � 0.31 � 0.29 � 0.24 � 0.21 � 0.22 � 1.63

Stackelberg (pure) � 8.87 � 3.90 � 3.62 � 3.27 � 3.53 � 3.48 � 8.30

Maximin (mixed) � 5.40 � 2.42 � 2.21 � 1.94 � 2.18 � 2.18 � 5.10

Maximin (pure) � 8.87 � 3.95 � 3.67 � 3.27 � 3.53 � 3.48 � 8.30
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attackers can often observe the procedures being used. This chapter describes

scheduling assistants for the LAX police, ARMOR, and the FAMS, IRIS, which

provide game-theoretic solutions to this problem. The two systems assist the

security forces in generating randomized patrols while ensuring that differences

in importance of different targets are preserved. A critical observation in the

deployment of these scheduling assistants is the difficulty faced in reducing a

complex security domain to a Stackelberg game model. To address this difficulty

we present a data-mining-based model to assist security personnel in defining the

Stackelberg security game from historic data.

ARMOR and IRIS make use of algorithmic advances in multi-agent systems

research to solve the class of massive security games with complex constraints that

were not previously solvable in realistic time-frames. Thus, although our applications

were designed to be deployed at LAX and FAMS, they provide a general framework

for solving patrolling scheduling problems in other domains as well.

Our approach of using Stackelberg games to model real-world security problems

is applicable in a wide range of domains that share the following attributes: (a) there

are intelligent players, (b) one player’s strategy is observable by the other player,

(c) player’s have varying preferences among targets, and (d) it is not possible to

provide full coverage of all targets. Some examples of similar security situations

include security in computer networks, checkpoints at subway stations, security

inspections at ports, and monitoring of other mediums of public transport.

Ultimately the security providers (Police, Air Marshals) are the judge of the

usefulness of these Stackelberg security game models. As in any model it is critical

to allow for expert knowledge to inform the system and provide feedback on the

quality of solutions. With this in mind the development of the interface of these

deployed systems has been an important aspect of this work. This research and these

applications have been effective in helping in the security officers with scheduling

and patrolling concerns. Thus, ARMOR and IRIS represent successful transitions of

game-theoretic advances to applications that have been in use and effective in the

real world. There are a number of additional improvements to these systems that

could be done in the future to facilitate deployment to different domains. Some lines

of future research include methods to incorporate qualitative information (estimates

of unreported crime, fear of crime, etc.) to construct the Stackelberg games; coordi-

nation of different security resources; and considering attackers who deviate from

rational behavior (due to differences in information or human bias).

References

Agmon N, Sadov V, Kaminka GA, Kraus S (2008) The impact of adversarial knowledge on

adversarial planning in perimeter patrol. In: AAMAS

An B, Pita J, Shieh E, Tambe M, Kiekintveld C, Marecki J (2011) GUARDS and PROTECT: next

generation applications of security games. ACM SIGecom Exchanges 10(1):31–34

Avenhaus R, von Stengel B, Zamir S (2002) Inspection games. In: Aumann RJ, Hart S (eds)

Handbook of game theory, vol 3. North-Holland, Amsterdam, pp 1947–1987 (Chap. 51)

70 F. Ordóñez et al.
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Paruchuri P, Pearce JP, Tambe M, Ordóñez F, Kraus S (2007) An efficient heuristic approach for

security against multiple adversaries. In: Proceedings of the 6th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2007). Honolulu, Hawaii, May

14–18

Paruchuri P, Pearce JP, Marecki J, Tambe M, Ordóñez F, Kraus S (2008) Playing games with
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