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Preface

The purpose of this book is to enlighten policy makers and decision makers about

the power of operations research (OR) to help organizations plan for and respond to

terrorist attacks, natural disasters, and public health emergencies.

The intended audience includes (1) policy makers and decision makers in

federal, state, and local government agencies related to homeland security,

emergency management, and public health preparedness; (2) nongovernment

organizations with similar missions; and (3) operations research workers, students,

and scholars.

This book begins with a general overview of how operations research can be

used and then provides specific examples of operations research techniques and

their application to homeland security problems.

Chapter 1, “Using Operations Research Methods for Homeland Security

Problems,” describes OR techniques and highlights their use to solve homeland

security problems. This is intended to give policy makers and decision makers

insight into what OR can do and how it is relevant to their particular concerns and

problems. After discussing how to use OR, the chapter reviews four areas: (1)

understanding what has happened; (2) considering what could happen; (3) deciding

what to do; and (4) finding the best solution.

Chapter 2, “Operations Research and Homeland Security: Overview and Case

Study of Pandemic Influenza,” provides additional context by describing the origins

of operations research (OR) at the beginning of World War II and reviewing OR

tools and techniques that can be used for three types of decisions: long range

(strategic), medium range (tactical), and real time (operational). It then discusses

the results of a study of the process of manufacturing, delivering, and administering

the flu vaccine during the 2009 influenza pandemic.

Chapter 3, “Deployed Security Games for Patrol Planning,” presents models that

can help security forces generate randomized security policies that are more

difficult for adversaries to predict and exploit. The chapter describes a generic

mathematical formulation of these models, presents some of the results that have

allowed these systems to be deployed in practice, and outlines remaining future

challenges. The chapter discusses the deployment of these systems in two homeland
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security applications: (1) the police at the Los Angeles International Airport use

these models to randomize the placement of checkpoints on roads entering the

airport and the routes of canine unit patrols within the airport terminals and

(2) the Federal Air Marshal Service uses these models to randomize the schedules

of air marshals on international flights.

Chapter 4, “Interdiction Models and Applications,” describes an approach for

assessing the vulnerabilities of operational systems. Interdiction models can be used

to answer the following questions: How is the system operated? What are the

vulnerabilities of that system? How can we invest to make the system more

resilient? This chapter discusses the application of these models to four problems:

(1) delaying an enemy’s development of a nuclear weapon; (2) understanding the

vulnerabilities of an electric power system; (3) locating sensors that can rapidly

detect the contamination of a municipal water system; and (4) locating radiation

sensors to detect nuclear smugglers. The chapter also discusses practical

implications and insights obtained from the models in these applications.

Chapter 5, “Time Discrepant Shipments in Manifest Data,” presents an innova-

tive data mining technique for identifying suspicious activity by identifying and

recording unusual patterns that have high activity. The chapter focuses on container

shipments to US ports. By analyzing the origin–destination pairs, container

contents, and shipment dates, the procedure creates a variety of graphs to visualize

the shipment activity, measures the discrepancy of shipment patterns, and distills a

data fossil that aggregates these patterns over time.

Chapter 6, “Achieving Realistic Levels of Defensive Hedging Based on

Non-Monotonic and Multi-Attribute Terrorist Utility Functions,” addresses the

problem of allocating limited resources to defend a set of targets. When there is

uncertainty about which targets the terrorists are most likely to attack, decision

makers are likely to insist on some degree of “hedging” (defending targets with

only moderate value). The work discussed in this chapter uses game theory to find

the optimal strategy for the defender and shows that non-monotonic attacker

objective functions do typically yield greater hedging.

Chapter 7, “Mitigating the Risk of an Anthrax Attack with Medical

Countermeasures,” presents a simulation model that can be used to prepare for a

bioterrorism attack that releases anthrax spores and exposes thousands of persons to

this deadly disease. The model predicts the expected number of deaths using

information about the size of the population, the number exposed, the progress of

the disease, the resources available for distributing medication and treating the ill,

and the size of local medication stockpiles. The chapter also presents a risk

management approach for allocating a limited medication stockpile to multiple

cities to minimize the expected number of deaths. The results show that the optimal

allocation can be quite different from allocations that are proportional to population

size.

Chapter 8, “Service Networks for Public Health and Medical Preparedness:

Medical Countermeasures Dispensing and Large-scale Disaster Relief Efforts,”

discusses the results of collaborations between OR experts, the Centers for Disease

Control and Prevention, and other public health agencies to develop useful tools for
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planning efforts to respond to public health emergencies. Such emergencies include

bioterrorism attacks, naturally occurring pandemics, and severe meteorological and

geological events. In paricular, the chapter describes OR models for optimizing

mass dispensing operations.

Chapter 9, “Disaster Response Planning in the Private Sector and the Role of

Operations Research,” discusses how organizations in the private sector can be

effective first responders in the aftermath of disasters. The chapter describes the

disaster response planning process implemented by The Home Depot, discusses

the role of OR methods to assist decision making, and presents an optimization

model to improve advance purchasing and inventory allocation.

This book is the result of a team effort. The authors who contributed their

valuable time to produce the informative chapters that comprise this volume must

be thanked first. I appreciate their effort to develop, write, and revise their chapters

and complete the necessary supporting tasks.

I would like to thank Fred Hillier for inviting me to edit this handbook, for it is an

honor to be a part of this distinguished series. My thanks also go to Matthew

Amboy, who guided the process of transforming our chapters and ideas into a book.

In addition to caring for our family, my wife Laury provided useful editorial

assistance, and I appreciate the time and effort that she spent helping me on this

project.

Finally, I am indebted to my generous family and the wonderful friends,

colleagues, teachers, and students who have shared their wisdom, energy, and

talents with me.

Maryland, USA Jeffrey W. Herrmann
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Chapter 1

Using Operations Research Methods

for Homeland Security Problems

Jeffrey W. Herrmann

Abstract This chapter describes operations research (OR) techniques and

highlights their use to solve homeland security problems. This is intended to give

policy makers and decision makers insight into what OR can do and how it is

relevant to their particular concerns and problems. After discussing how to use OR,

the chapter reviews four areas: (1) understanding what has happened; (2) consider-

ing what could happen; (3) deciding what to do; and (4) finding the best solution.

The techniques available for understanding what has happened include data mining

and monitoring time series data. Considering what could happen requires risk

analysis and using queueing models and simulation models. Decision analysis

and game theory can be used to make decisions, but finding the best solution

requires formulating and solving an optimization problem. Because the examples

illustrate how specific techniques have been applied, homeland security

professionals can use this chapter to understand what operations research can

offer and identify the techniques that are relevant to their problems. The chapter

also includes references to essential books and articles that can provide more

information.

1.1 Introduction

Operations research (OR) is “the discipline of applying advanced analytical methods

to help make better decisions” (INFORMS 2011). OR methods provide understand-

ing into what has happened in the past and what could happen in the future. As the

OR community increased its consideration of the problems that occur in the area of

homeland security, surveys of this growing body of knowledge also appeared.

Different surveys took quite different approaches to organizing previous work.
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The survey by Wright et al. (2006) adopted a framework that followed the

science and technology portfolios that the U.S. Department of Homeland Security

had at that time. [These portfolios have since become a similar list of focus areas

(DHS 2011).] The Wright survey reviewed OR related to countermeasures, border

and transportation security (including border security, airline security, port and rail

security, and truck security), critical infrastructure protection, cyber security,

emergency preparedness and response, and threat analysis. The discussion of

emergency preparedness and response research covered work on emergency

response, including the studies of the operations of the New York City fire and

police departments in the 1970s. A recurring problem in this area is one of deciding

where to locate resources such as fire companies, emergency warning sirens, and

cellular base stations. The Wright survey also covered work on modeling

evacuations from buildings and from cities and problems related to responding to

disasters. The study discussed how OR work has covered problems in three of the

four phases of emergency management: planning for disasters, preventing disasters,

and responding to disasters. The authors found no papers on problems related to

recovering from disasters.

The review by Altay and Green (2006) focused on OR related to disaster

operations management. Like the Wright survey, the Altay and Green review

considered the four phases of emergency management: mitigation (preventing or

reducing the impact of disasters), preparedness (planning the response), response,

and recovery. The Altay and Green review systematically identified 109 articles

describing OR work in these areas by searching research databases for papers

published after 1980 and examining the citations of these articles. They found

that 44% of the OR papers were related to mitigation, 21% were related to

preparedness, 24% were related to response, and 11% were related to recovery.

They also described the distribution of these papers by the disaster type, the decade

published, the methodology used, and the type of research [management science,

management engineering, or management consulting (cf. Denizel et al. 2003)]. The

review showed which papers fell into which categories, but did not explain what

each paper did. The survey concluded by emphasizing the need for more research,

particularly research that considers the coordination of multiple agencies, research

that uses soft methodologies, research that considers the recovery phase, research

related to business continuity, and research into infrastructure design.

Because these two surveys have provided a good overview of the range of

problems to which OR has been applied, this chapter focuses instead on describing

OR techniques and highlighting their use to solve problems related to homeland

security. This is intended to give policy makers and decision makers insight into

what OR can do and how it is relevant to their particular concerns and problems.

After discussing how to use OR, the chapter reviews four areas (1) understanding

what has happened (through data mining and monitoring time series data), (2)

considering what could happen (using risk analysis, queueing models, and simula-

tion models), (3) deciding what to do (with help from decision analysis and game

theory), and (4) finding the best solution (by solving mathematical programs,

facility location problems, and vehicle routing problems).
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1.2 How to Use Operations Research

The examples discussed in this chapter demonstrate numerous ways to apply OR

methods successfully to understand problems and make better decisions. There is no

single way to proceed with ORmethods. Within this diversity, a key process for using

OR begins with creating a model that represents a real-world situation, analyzing or

executing that model, and then translating the results into something that has meaning

in the real-world situation. The following steps illustrate how this can be done:

1. Describe the problem.

2. Design a model and collect relevant data.

3. Build and validate the model.

4. Use the model to gain insight into the problem.

5. Translate the results into a solution.

6. Implement and evaluate the solution.

Ideally OR is a process that iterates through the phases of description, explanation,

and testing (Meredith 2001). Krings and Azadmanesh (2005) described OR as a

“transformation” process. This process begins by transforming the problem into a

model and mapping data about the problem into the parameters of the model. The

model is classified, analyzed, and optimized. The answer that results must be trans-

lated by reversing the mappings used to create and instantiate the model, which yields

a solution that can be implemented in the real-world application.

OR has even greater benefits for organizations that go beyond using OR for a

single study (or decision-making setting) and institutionalize OR. The early OR

groups successfully improved U.S. military operations during World War II

through their close relationship and alignment with the military decision makers

(Defense Science Board 2009). Establishing an effective OR capability requires

(1) maintaining leadership commitment and support for OR professionals and their

analysis, (2) establishing OR as a distinct career field in which professionals are

recruited and developed, (3) using OR across a range of operations and settings, and

(4) aligning OR analysts, decision makers, and operations personnel (Defense

Science Board 2009).

1.3 What Happened? Finding Patterns in Data

In the quest for understanding, a natural starting point is to consider what has

happened in the past. Organizations that have large collections of data about

persons and their transactions (like customers or travelers and their purchases or

phone calls) have the ability to run standard reports on these data sets to monitor

their operations and support routine decision making. In addition, users may submit

queries to obtain data for answering questions that they develop. Finding patterns

that are not even imagined, however, require more sophisticated techniques.

1 Using Operations Research Methods for Homeland Security Problems 3



1.3.1 Data Mining

Data mining, unlike the queries of curious analysts, is a knowledge discovery

technique that automatically discovers relationships that were previously unknown.

In general, data mining starts with collecting and managing the data that are

relevant to the problem. Data mining techniques can consider the data in multiple,

heterogeneous databases as well as very large transactional databases. The analyst

may specify a list of variables (fields) in that data to consider. Limiting the

procedure to certain fields avoids wasting time looking for relationships involving

irrelevant data. Data mining algorithms then begin processing the data to identify

new relationships among the variables. There are many different analysis

techniques. For descriptions of the key algorithms used in data mining, see, for

example, Hastie et al. (2009).

The problem of identifying terrorists before they attack is a natural domain for

knowledge discovery in general and data mining in particular. Algorithms that can

search multiple databases to find suspicious actions and lead officials to the

terrorists would be extremely valuable. The efforts to do this have led to concerns

about privacy and to assessments that data mining is not the appropriate tool

because the rate of false alarms (likely to be high) will waste valuable investigative

resources and violate civil liberties (Jonas and Harper 2006). Moreover, data

mining relies upon finding patterns that occur repeatedly, but terrorist cells are

unique and can deliberately act in ways unlike past groups.

Data mining has other homeland security applications, however. In 2004, the

U.S. Government Accountability Office (GAO) reported that government agencies

were using or planning at least 29 data mining projects for analyzing intelligence

and detecting criminal and terrorist activities (Fienberg 2008).

Data mining can also be used to understand the activities of terrorist

organizations and extremist groups. A study of the web sites belonging to such

organizations in the USA, Latin America, and the Middle East revealed that the

groups from the Middle East have most actively used the Internet. Their web sites

were technically sophisticated and provided the richest multimedia content. The

U.S. groups used Internet communication technologies, including chat rooms and

electronic commerce. The web sites of Latin American groups were not as sophis-

ticated technically and used Internet communication technologies less effectively

(Qin et al. 2008).

Data mining has been used to develop intrusion detection systems that can

protect computer networks by identifying unauthorized or abnormal activities that

may be cyber attacks (Chen et al. 2005). Chen et al. started with a dataset generated

by a network security module that logged all system calls over 35 days, converted

the raw data into human readable ASCII form, and then extracted individual

sessions, processes, and system calls. Data about normal sessions and attack

sessions from 5 days were treated as the training data set. (Data about normal

sessions and attack sessions from a different 5-day period were treated as the testing

data set.) Chen et al. used the training data set to train an artificial neural network
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that could determine whether a process was abnormal based on information about

the system calls in that process. They also used the training set to train a support

vector machine that can perform the same type of function. Essentially, the artificial

neural network (ANN) and the support vector machine (SVM) are sets of rules that

recognize deviations from normal usage patterns and flag them as intrusions.

Although based on the same training data, the two models use different types of

rules and thus sometimes disagree. Chen et al. then tested the two models on the

testing data set. Because the researchers knew which processes and sessions were

normal and which were attacks, they could determine that the SVM could detect all

of the attacks with a false-positive rate (the fraction of normal sessions classified as

attacks) of 8.5%. Although the ANN could also detect all of the attacks, its false-

positive rate was 39.3%. From this and other similar results, they concluded that the

SVM performance was superior to the ANN performance.

1.3.2 Monitoring Time Series Data

Monitoring variables that change from day to day can provide important, timely

information about what has happened. Those who monitor a system or population

are most interested in when something has changed. This change (e.g., the failure of

a component in a machine or the release of a pathogen in a population) will affect

the distributions of the variables that are being monitored. A variety of statistical

techniques have been developed to analyze the observed values and signal when a

significant change has occurred.

In the context of homeland security, syndromic surveillance is a well-known

effort to observe and analyze time series data. Syndromic surveillance focuses on

data about the symptoms of individuals who seek care in emergency rooms,

doctors’ offices, and other health care services. The goal of syndromic surveillance

is to detect changes that signal the outbreak of an infectious disease or bioterrorism

attack.

Many of the analytical techniques used in syndromic surveillance are derived

from the methods used in statistical process control, which was developed for

monitoring a manufacturing process and determining when it changes from normal

(in control) to out of control. The key planning steps are to develop a model of how

the process normally behaves and to develop a rule for sounding an alarm. The rule

usually corresponds to the occurrence of an event that should be rare when the

process is in control but is more likely when the process is out of control. Monitor-

ing the process requires collecting data about the process, calculating the relevant

statistic at regular intervals, and then using the rule to determine whether an alarm

should be sounded.

The simplest algorithms work on only a single variable, like the sample mean of

some recent observations. Shewhart’s algorithm and the cumulative sum (CuSum)

algorithm are common and can be extended to multivariate algorithms. Stoto et al.

(2006) conducted experiments on these methods with data from emergency room
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admissions in Washington, D.C., and concluded that the CuSum algorithms are

preferable to Shewhart’s algorithm for syndromic surveillance.

Algorithms like Shewhart’s algorithm raise an alarm by considering only the

current value of the statistic, which makes the algorithm responsive to large

changes but less useful for detecting changes that occur more slowly. Statistics

that use more past data include the CuSum and the exponentially weighted moving

average (EWMA). The EWMA, unlike the CuSum, gives more recent observations

higher weights. Other useful time series models include the autoregressive moving

average (ARMA) models, which add predictors to the model, which are useful in

biosurveillance for handling the impact of weekends and holidays on the data. For

more on these techniques, see Shmueli and Fienberg (2006) for their application to

biosurveillance and Box et al. (1994) for the mathematical details.

Both EWMA and ARMA techniques have been used in ESSENCE II, a widely

used syndromic surveillance system that systematically collects nontraditional,

nonspecific indicators of health status, grouped into health syndromes among a

patient population (Lombardo et al. 2004). The system collects information from

hospitals, sentinel providers, over-the-counter pharmaceutical sales, and school-

based absenteeism reports. It applies statistical algorithms to detect unexpected

changes in the data and provides the information to health officials in a web-based

application. To avoid the considerable effort required to train such algorithms,

especially when multiple symptoms at multiple hospitals will be monitored, Sparks

et al. (2010) developed adaptive EWMA and adaptive CuSum approaches.

Although syndromic surveillance is the most widely known application of time

series monitoring in the context of homeland security, similar techniques could be

used to monitor computer system attacks and other phenomena.

1.4 What Could Happen? Building Stochastic Models

Understanding what could happen often requires considering the uncertainty of

future events. By far the most common way to handle an uncertainty is to describe it

using a probability distribution. That is, it becomes a random variable. If one has a

model of the system (or process) being studied, using random variables as the inputs

to the model yields outputs of the system (such as measures of system performance)

that are also random.

Stochastic models are models that have random variables. Stochastic models can

be used to identify the distribution of possible outcomes of a process (as in risk

analysis) and to estimate the performance of a system in which the events are

random (for example, queueing models).

If the system is relatively simple and the probability distributions describing the

random variables have convenient shapes, then mathematical analysis can be used

to predict system performance exactly. Otherwise, mathematical equations can be

used to estimate the system performance, or one can resort to detailed simulation
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models that sample the random variables and calculate the associated system

performance.

1.4.1 Risk Analysis

Risk analysis considers the range of possible outcomes from a process and the

likelihood and consequences of each outcome. The primary components of risk

analysis are risk assessment, risk management, and risk communication (Modarres

2006). Risk assessment estimates likelihood and magnitude of consequences (usu-

ally losses) by considering what can go wrong, how likely is it, and what the losses

(consequences) would be. Risk management is a decision-making process in which

an organization tries to minimize and control risks by preventing problems,

minimizing the consequences of problems (perhaps through buffers), and creating

contingency plans.

Many homeland security and emergency preparedness activities are risk analy-

sis, and a variety of tools have been developed for different types of risk assessment

(Moore et al. 2010). Operations research techniques can improve the processes of

risk analysis in various ways, as the following examples demonstrate. The follow-

ing paragraphs focus on risk assessment, as the techniques for risk minimization fall

generally into the area of optimization; see, for example, Jacobson et al. (2003) and

Kobza and Jacobson (1996, 1997).

Terrorism risk is often modeled as the product of three components (Ezell et al.

2010): the threat (the probability of an attack), the vulnerability (the probability of

an attack’s success given that it occurs), and the consequences (the fatalities,

injuries, economic impacts, and other losses that result from a successful attack).

Adopting this view leads to a probabilistic risk analysis (PRA). Li et al. (2009)

described the use of PRA to assess and rank the risks from natural hazards, human-

induced accidents, and malicious acts in a community.

Designing an effective access control system requires information about the

likelihood of threats and the probability of false alarms. Jacobson et al. (2000) used

probability theory to develop an approach for estimating these parameters from

alarm information generated about items that are known threats, items that are

known not be threats, and other items. Their approach calculated both estimators

and confidence intervals.

More generally, counterterrorism efforts assess the threats posed by terrorist

organizations and the risk to particular facilities. The usefulness of these efforts can

be improved by integrating them in a venue-specific risk assessment model (Shahar

2008). In this approach, the likelihood of an attack on a facility depends upon both

the characteristics of the terrorists and the characteristics of the facility because the

terrorists’ capabilities and goals vary. For example, some terrorists want to maxi-

mize casualties, while others target high-profile facilities that require extensive

planning.
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The approach presented by Shahar starts by determining which terrorist

organizations pose the greatest threat and should be included in the analysis.

Then, the vulnerabilities of the facility are determined and a list of potential

scenarios (types of attacks) is generated and evaluated. The last step integrates

these results to estimate the likelihood that each terrorist organization will execute

each attack type at that facility.

The use of PRA for terrorism risk assessment in particular has been criticized,

however. Brown and Cox (2011) argue that “attack probabilities depend on what

the attacker knows or believes, rather than on what the defender knows or believes.

In contrast to risk analysis for defense against random events, risk analysis for

reasoning attackers should consider how what the attacker discovers in the future

may affect his future decisions.” That is, when conducting risk assessments, it is

important to consider the difference between random processes (like weather) that

essentially ignore emergency and defensive preparations and intelligent adversaries

(like terrorists) who look for the best way to attack. Probabilistic risk analysis

techniques are more relevant in the first case, while it is important to use game

theory models in the second.

Game theory can improve our understanding of “the nature of the key decisions

that intelligent attackers and defenders must make” and emphasizes “that vulnera-

bility and consequence are usually functions of the allocation decisions made by the

players, not exogenous numbers or random variables” (Cox 2009). Cox also

provided some simple examples illustrating the use of game theory in risk analysis.

Examples of using game theory to optimize defensive resource allocations will

be discussed later in this chapter.

1.4.2 Queueing Models

Queueing systems refer generally to those systems in which various entities enter a

system, wait for service by resources, receive service, and then depart. In the

domain of homeland security, typical queueing systems include travelers waiting

at security checkpoints and residents waiting to receive medication. In these

queues, the customers are physically waiting in a line. On the other hand, some

queues, like terror plots waiting to be investigated, do not appear as lines.

When studying queueing systems, it is important to predict their performance.

Common performance measures include the average time that entities spend in the

system, the average number of entities in the system, and the maximal rate at which

the system can service entities. Queueing theory is concerned with developing

mathematical models that can make these predictions (Hall 1991; Newell 1982).

In some cases, the models can provide an exact answer; in others, the models

provide only estimates. More generally, queueing theory provides guidance on how

much capacity is needed to provide adequate service.

To design a passenger security screening process at a new airport terminal,

Gilliam (1979) used queueing theory to determine the number of screening stations
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required and to determine how system performance degraded if the screening rate

(the number of passengers screened per minute) decreased.

Points of dispensing (PODs), also known as mass dispensing and vaccination

clinics, are a key component of the plans for responding to a bioterrorism attack.

Public health staff would vaccinate residents of the area affected (for smallpox, for

instance) or dispense medication to them (for anthrax, for instance). PODs are also

used for influenza vaccination campaigns (like those opened in 2009 to provide

vaccinations during the H1N1 influenza pandemic).

Carefully planning PODs is important. The health department must train the

right number of people beforehand (although they can do some training at the time

of need) and must assign the right number of workers to various roles when the

clinic begins operations. They must consider the capacity of each clinic (the number

of residents it can serve per hour) and how much time residents would spend in the

clinic (the time in system, the flow time, or the throughput time). Clinic capacity

affects the number of clinics needed and the total time needed to vaccinate the

affected population. The time in system affects the number of residents who would

be inside the clinic waiting for treatment; too many residents in the clinic (and not

enough space) can cause crowding and confusion.

Queueing network models can be used to create easy-to-use modeling tools,

implemented using spreadsheet software, to help public health officials plan PODs

(Aaby et al. 2006a, b; Herrmann 2008). The models require information about the

number of persons to be served, the stations that the persons will visit, and the

processing times at each station. The model requires information about the variance

of the interarrival times and the processing times. The models calculate the mini-

mum number of staff required and, for a given staffing plan, estimate the POD

capacity and how long persons spend in the POD.

Understanding how people will evacuate an area in an emergency is an impor-

tant part of planning for emergencies such as hurricanes or fires in large buildings.

A variety of simulation and analytical queueing models have been developed for

this problem (Bakuli and Smith 1996; Wright et al. 2006).

Analyzing a particular building starts with modeling it as a queueing network.

The nodes of this network are the channels through which evacuees must pass

(e.g., hallways and stairwells). Some channels will have finite capacity; that is, there

is a limit on howmany people can pass through per minute. Each node is modeled as a

queueing system. Given information about the rate at which evacuees arrive and the

capacity of the channel, one can estimate the delays that occur and how long it will

take for evacuees to leave the building. Bakuli and Smith (1996) used a queueing

network model to quantify how increasing corridor width increases corridor capacity.

Queueing theory can also be used to understand how intelligence agents inter-

cept and disrupt terror plots (Kaplan 2010). In Kaplan’s model, the customers that

move through the queueing system are terror plots, and the servers are intelligence

agents. The queue consists of terror plots that are in the planning stage. If the

planning is completed before the terror plot can be served (intercepted) by an

intelligence agent, then it is successful; otherwise, it is intercepted and disrupted.

Kaplan presented and analyzed a mathematical model of this queueing system, in
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which the arrival of terror plots, the time required to plan them, and the time needed

to intercept and disrupt them are all random variables. The model was used to

estimate the rate at which terror plots are intercepted and disrupted (for a given

number of intelligence agents) and how changing the number of intelligence agents

would change this rate. The model was also used to estimate the number of terror

plots in the planning stage. Of course, the values required to populate the model are

sensitive, so Kaplan presented only hypothetical examples, but security agencies

like the FBI, MI5, and the Shabak can generate the numbers for their operations.

1.4.3 Simulation Models

Simulation models are computer programs that replicate the performance of

a system. State-of-the-art simulation software allows one to construct and run a

wide variety of simulation models with a large number of objects in them.

The simulation software can calculate statistics about system performance

measures, dynamically monitor the value of variables during a simulation run,

and show the behavior of the system using high-quality animations. Simulation

can be used for almost any type of system, from very small to very large, and can

simulate a long time period within seconds on a computer. Simulation models can

include great detail if one wants to include it, and can also ignore details in order to

simplify the model and reduce computational effort. Within operations research,

discrete-event simulation is the most common type of simulation, for it allows one

to model the discrete entities that move through a system (ships, airplanes,

trucks, cars, passengers, and bags, for example) and the discrete state of the system

resources and entities (whether a machine is busy or idle or broken, or the condition

of a sick patient, for instance). A popular text on simulation modeling is

Law (2007).

Generally, modeling and simulation are viewed as an important technique for

both planning and optimizing the responses to possible emergencies and training

personnel to perform their roles, (O’Hara et al. 2010). A federated simulation

architecture (based on the ideas of Jain et al. (2007)) that integrated multiple

simulation models was used successfully to support a multi-departmental exercise

in which participants exchanged information in a counterterrorism scenario

(McCormick et al. 2010).

Simulation models can be used to represent large populations in order to predict

how a disease spreads through a community. Das et al. (2008) presented a large-

scale simulation model of how influenza would affect a large urban area (as part of

an influenza pandemic). The model simulates the spread of the disease in the

presence of mitigation strategies that combine vaccination, prophylaxis, hospitali-

zation, and social distancing. The simulation predicts the total number infected,

the number of deaths, the number denied hospital admission, the number denied

vaccines and antiviral drugs, and an aggregate cost measure that combines

healthcare cost and lost wages. The model is location specific and requires
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information about demographic and community features and the activities of the

residents. Das et al. showed how the simulation model can be used to determine

which controllable factors have a significant impact on the number who will

become ill.

Aleman et al. (2011) described an agent-based simulation model of an influenza

outbreak in greater Toronto (which has a population of almost five million people).

The model uses information about each person’s age, health, vaccination status,

home location, work location, transportation route, and household membership to

determine the probabilities that they become infected and then recover. By using a

parallel computing cluster, their implementation of the model can run 1,000 60-day

runs in 13 min. The model is used to evaluate the impact of mitigation strategies on

the number of people infected. Their results showed the extent to which an outbreak

is less severe as more infected persons stay home.

EpiSims, another large-scale agent-based simulation model, has been used to

evaluate the impact of mitigation strategies on the transmission of smallpox

(Michalak and Wilson 2006) and influenza (Stroud et al. 2007). The model includes

details of the activities that persons perform each day and the different modes of

transportation that they use. The model can evaluate school closures, household

quarantine, administering antivirals, vaccination campaigns, social distancing, and

other strategies.

Simulation is also commonly used to model specific operations, such as a point

of dispensing, a security checkpoint, or a hospital. Miller et al. (2006) used a

discrete-event simulation of a health care network (clinics, hospitals, and other

facilities) to predict the resources required to treat the ill during a smallpox

outbreak. Patients are diagnosed and then treated in intensive care units and other

facilities. Their treatment requirements are determined randomly. Patients moved

from one facility to another if they needed resources that are not available where

they are. The model evaluates the utilization of resources in the health care network.

Miller et al. used the model to determine the possible benefits of vaccination and

quarantine in San Antonio, Texas.

1.5 What Should We Do? Making Decisions

Understanding should lead to better decision making. Although decision making is

sometimes easy, it can be difficult when the decision requires considering many

alternatives, many interacting issues, multiple criteria, or uncertainty in the

outcomes. Moreover, humans often make poor decisions, even after spending

significant time and effort on the process.

Decision making is a process that involves identifying the most important

objectives, defining the criteria that will be used to screen and sort alternatives,

identifying alternatives, evaluating the alternatives on the key criteria, and selecting

the best alternative. Models that provide insight into what has happened and models

that predict what could happen yield valuable information for decision makers.
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When the number of alternatives is large, optimization models provide a way to

search the space of possible solutions and find superior solutions (as discussed in

the next section).

This section covers decision analysis, which includes some useful tools for

performing these steps, and game theory, which provides insights into making

decisions that involve other rational actors.

1.5.1 Decision Analysis

Decision analysis “provides structure and guidance for thinking systematically

about hard decisions” (Clemen and Reilly 2001). As a body of knowledge, decision

analysis is generally prescriptive because it suggests how one should make a

decision. This begins with presenting a standard decision analysis process.

The techniques typically associated with decision analysis include structuring

tools like influence diagrams and decision trees, using utility functions to model

preferences about multiple criteria and uncertainty, and estimating the value of

information. The textbook by Clemen and Reilly (2001) is a good introduction to

these techniques.

An influence diagram is a model of a decision that represents the relationships

between decisions, uncertainties (if there are any), and the objectives. An influence

diagram has arcs and nodes. The nodes are decision nodes, chance nodes, intermediate

consequences nodes, and a payoff node. The arcs can represent relevance or sequence

relationships. Arcs into a chance node represent relevance, meaning that something

affects that chance (the probabilities associated with that chance). (For instance,

weather affects the chance of an accident; or the speed at which one drives affects

the chance of an accident.) Relevance arcs can also go into consequences and payoffs,

obviously, since the decisions and outcomes affect these. Arcs into a decision node

indicate sequence. That is, they showwhat is knownwhen the decisionmust be made.

For instance, a driver observes the weather before he decides his speed.

For example, Paté-Cornell (2009) presented an influence diagram that showed

how the consequences of a terrorist attack depend upon aspects of the terrorists

(their preferences, their supply chain, and whether Americans assist them). These

factors influence the terrorists’ choice of target, weapon, and means of delivery.

All of these factors influence the intelligence signals collected and analyzed by

those protecting the USA. These signals and analysis, in turn, influence the

countermeasures selected by American decision makers. The terrorists’ choices

and the countermeasures selected affect the outcome (the potential consequences of

an attack). The influence diagram is useful both as a way to understand and

communicate how different factors affect the outcome and also as a quantitative

model for estimating the probability of an attack. The model was later extended to

consider the terrorists’ decisions and objectives (Paté-Cornell and Guikema 2002).

A decision tree displays additional detail about a decision by explicitly showing

the alternatives available to a decision maker and the possible outcomes of random

12 J.W. Herrmann



events. Decision trees can be used to identify the best alternative at any point in

time. They also help stakeholders understand the range of possible outcomes, along

with the likelihood of each outcome.

For example, Martonosi and Barnett (2006) used a decision tree to model an

airline passenger screening process in which some passengers are selected for

secondary screening while most go through primary screening. The model was

used to calculate the probability that a terrorist with weapons will be able to board

an aircraft. This probability was based on the probability that the terrorist is

classified as high risk, the probability that low-risk passengers are selected for

secondary screening, and the effectiveness of the screening procedures to detect

weapons. Thus, the model could be used to make some general points about which

improvements in screening effectiveness have the most impact.

When a decision requires evaluating and making tradeoffs between multiple

objectives, such as cost, performance, and time, it is often useful to have some way

to combine the multiple objectives (the attributes) into a single measure that can be

used to sort the alternatives and identify the best ones. A multiattribute utility

(MAU) model does this by combining utility functions for each attribute to get an

overall utility for each alternative. Each attribute’s utility function converts perfor-

mance on that attribute (a cost, for instance) into a utility that reflects the decision

maker’s preferences about that attribute. Moreover, the multiattribute utility func-

tion that combines the utility functions reflects the decision maker’s preferences

about the relative importance of the different attributes.

For example, a MAU model was used to help the U.S. Department of Energy

(DOE) and Russian scientists evaluate alternatives for the disposition of surplus

weapons-grade plutonium (Dyer et al. 1998; Butler et al. 2005). Keeping this

plutonium secure is important to protect the public and the environment from the

harmful effects of radiation and to prevent terrorists from acquiring it. Thirteen

different disposal options were considered on a large set of objectives. The nonpro-

liferation objectives included minimizing the opportunities for others to steal the

plutonium, minimizing the ability of anyone to divert the plutonium during

processing, maximizing the difficulty of recovering the plutonium after processing,

fostering international cooperation, and minimizing the time required to start and

end the disposition. The environment, safety, and health objectives included

minimizing the impact on the public and workers, minimizing the impact on the

environment, and minimizing the impact on the economy. There were also

objectives to minimize investment and life-cycle costs. The analysts and DOE

experts created a MAU model by assessing the single-attribute utility functions

and the weights associated with each objective. They also created a decision tree to

consider how the Russians could respond to the U.S. decision, which led to the DOE

adopting a hybrid approach that pursued two alternatives in parallel. Later, the DOE

decided to convert the plutonium into mixed oxide fuel. The U.S. team then worked

with Russian scientists to build a similar MAU model that reflected the Russian

preferences and used this to evaluate 12 alternatives. This analysis led the Russians

to select the same type of disposition. As Butler et al. (2005) noted, using the MAU

model allowed to discussion of the alternatives to consider multiple points of view

(without emotion) and maintain a balanced perspective.
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1.5.2 Game Theory

Game theory studies multiple decision makers who decide independently, but the

outcome is determined by their joint decision. In some cases, whatever one player

gains, the other player loses (a zero-sum game). In mixed-motive games, the

payoffs to each player are more general. Nash (1951), a classic reference in game

theory, studied non-cooperative games. Other classic texts are von Neumann and

Morgenstern (2007) and Luce and Raiffa (1957). Raiffa et al. (2007) placed game

theory in the context of negotiations, and the collection by Bier and Azaiez (2009)

presented applications to analyzing security threats.

When we consider games, we often think of activities such as chess or tic-tac-toe,

where the players alternate their moves. Unless the state space gets too large, as it

does in chess, such games are relatively easy to analyze because, when a player

needs to decide which move to make, they know everything.

In simultaneous games like rock-paper-scissors, neither player is sure what the

other one will do. In the traditional case, each player knows what the other could do,

and both players know the payoff matrix, which describes the reward (or penalty)

that each player will receive (pay) given their joint decisions.

In the domain of homeland security, game theory is a valuable tool because, as

Bier (2006) concluded, “protecting against intentional attacks is fundamentally

different from protecting against accidents or acts of nature.” The terrorists’ ability

to evaluate defensive measures and then choose the best way to attack requires

considering game theoretic approaches.

In some situations, the agents (the attackers and the defenders) move simulta-

neously, but in others they move sequentially.

Game theory is especially useful (and relatively easy to use) for making

decisions in the following situations (Cox 2009): (1) the defender allocates his

resources (e.g., money, personnel, and equipment) to defend targets; (2) the

attacker, after observing the defender’s allocation of defensive resources, allocates

his resources to attack targets; and (3) each player receives a consequence. The

defender’s consequences may include the number of people killed or injured, the

property destroyed, and the psychological harm and lifestyle disruption.

Hausken (2011) not only emphasized that different types of models are needed

for these different situations but also demonstrated that incorrectly assuming that

the agents move simultaneously when, in reality, one agent moves first can lead one

to choose a poor alternative with disastrous consequences.

An example of a simultaneous game was presented by Gaver et al. (2009), who

considered a counterterrorism agent searching for a terrorist in a crowd of neutral

individuals. The counterterrorism agent must decide how much time to spend

investigating each individual encountered. Spending too little time results in

many mistakes, which waste time; spending too much time reduces the rate at

which individuals are investigated. Both cases increase the total time needed to

intercept and neutralize the terrorist. Meanwhile, the terrorist is looking for a target

whose value is greater than a threshold that he must select. A game-theoretic model
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was used to identify the optimal investigation time and to show that the optimal

time is robust to uncertainties in certain parameters of the model.

1.6 What Is the Best Solution? Solving Problems

with Optimization

Optimization is a key technique in operations research. Optimization is essentially a

search technique that is most appropriate when the set of possible solutions is large

and complex and evaluating a possible solution requires significant effort

(Bonabeau 2003). An optimization problem is usually defined by a set of decision

variables, a set of constraints, and an objective function. The decision variables are

those that need to be determined; selecting values for the decision variables

specifies a particular solution. The constraints are relationships (expressed as

mathematical equations) between the decision variables that determine whether a

possible solution is feasible. A possible solution is feasible if and only if each and

every constraint is satisfied. The objective function, also a mathematical expres-

sion, calculates the performance measure that is to be optimized.

It is not always necessary or possible to write the optimization problem using

mathematical expressions. In some types of optimization problems, it is difficult or

tedious to write down the constraints explicitly. For instance, in the vehicle routing

problem, a feasible solution cannot have partial routes (called “subtours”) that do

not begin and end at the depot. A very large set of constraints is needed to express

this restriction. In simulation optimization problems, simulation models are

required to evaluate the objective function or the constraints.

Using optimization to solve a problem or make a decision begins with

identifying the decision variables, formulating the constraints, and determining

the objective function. The next step is to select a technique (the “solver”) for

finding the optimal solution. It is desirable to select a solver that can exploit any

special structure in the formulation. For instance, if all of the decision variables are

continuous real variables and the constraints and objective function are all linear

expressions, then one can use specialized solvers for linear programming.

The existence of special-purpose solvers often influences the formulation. For

instance, approximating a complicated objective function by a simpler linear one

allows one to solve the problem more quickly. When the complexity of the problem

makes finding the optimal solutions a difficult and time-consuming process, heuris-

tic searches such as simulated annealing and genetic algorithms can be used to look

for high-quality solutions; these will require less time but the best solution found

may not be optimal.

After selecting and running the solver to find the optimal solution, it is often

useful to conduct a sensitivity analysis to determine how any changes to the input

parameters would affect the values of the optimal solution and optimal objective

function value.
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The work described in the following sections on mathematical programming,

facility location problems, and vehicle routing problems all fall into the general

area of optimization.

Preventing terrorists from exploding bombs onboard commercial flights

requires screening the baggage that the passengers check and carry on these planes.

Because the number of baggage screening devices is limited, not all bags can be

appropriately screened, however. This leads to two different measures of the risk of

a bombing (1) the number of flights with unscreened baggage onboard and (2) the

number of passengers on these flights (Jacobson et al. 2005). Given a set of bags

that need to be screened (but not enough time and resources to screen all of them),

one needs to select a subset that can be screened in time. Jacobson et al. (2003,

2005) presented optimization models for designing screening systems that mini-

mize these two risk measures. Their results on real-world cases indicated that

minimizing the number of flights with unscreened baggage is not difficult and

also reduces the number of passengers on these flights and so should be considered

a superior risk minimization strategy.

Similarly, Candalino et al. (2004) used optimization to find good strategies

for airport security operations. The decision variables were the configuration of

baggage screening security devices: a specific type of security screening device for

each level of baggage screening. The objective function calculated the costs of

purchasing and operating baggage screening security devices and the costs of

screening errors (including false alarms). The goal was to minimize the total cost.

The constraints were expressions that calculate the screening error rates and the

number of devices (of the selected type) at each level. Also, because there are

40 different types of security screening devices, the value of each decision variable

was an integer in the range from 1 to 40.

Although this problem could have been formulated explicitly using mathemati-

cal expressions, there is no solver that can find an optimal solution in reasonable

time. Thus, Candolino et al. used simulated annealing to find high-quality solutions.

In general, a simulated annealing procedure begins with one solution and randomly

selects another solution that is “near” the current solution. If the new solution is

better, then it is accepted. If not, the procedure accepts the new solution with a

probability that depends upon how bad it is (a worse solution has a lower probabil-

ity of being accepted). This continues until the search converges. Candolino et al.

showed that the best screening strategy depended upon the threat level. When the

threat level is high, the overall cost was less when more precise (but more expen-

sive) screening devices are purchased, as this lowers the operational costs and the

costs of screening errors.

1.6.1 Mathematical Programming

Mathematical programming is a class of optimization techniques that relies upon

formally expressing the optimization problem as a set of mathematical expressions
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that represent the objective function and the constraints of the problem. The most

important classes of mathematical programming include linear programming, net-

work models, integer programming, dynamic programming, and nonlinear pro-

gramming (Bradley et al. 1977).

Because mathematical programming is a type of optimization approach, the

general technique follows that used for optimization. As mentioned earlier, for

some types of mathematical programming problems, specialized solvers exist to

find optimal solutions quickly. The simplex method is a well-known technique for

solving linear programs. When specialized solvers are not available, one can

choose from a variety of general purpose optimization algorithms and search

procedures.

A wide variety of mathematical programming techniques have been applied to

problems related to homeland security. The following paragraphs will provide some

examples.

Lim et al. (2009) used linear programming to formulate the problem of quickly

evacuating a metropolitan area in advance of a hurricane. The decision variables

were the number of people who move between pairs of adjacent locations in a time

period. The objective function was to maximize the number of people who reach a

safe place during the evacuation period (before the hurricane arrives). The

constraints ensured the conservation of flow. A given evacuation period was

feasible if a solution exists in which everyone reaches a safe place.

Cormican et al. (1998) considered the problem of network interdiction, in which an

adversary (e.g., drug smugglers) will use the arcs of the network (e.g., roads) to move

material. The decision maker can interdict arcs, which prevents the adversary from

using them (e.g., by installing roadblocks). The decisionmaker wants to select a set of

arcs that, when interdicted, minimizes the maximum flow through the network. The

decision variable is the set of arcs to interdict. Interdicting an arc requires resources

(e.g., money), which are limited. This limitation imposes the following constraint: the

total resources spent to interdict arcs must be less than or equal to the resources

available (e.g., the budget). Because the problem is difficult to solve optimally,

Cormican et al. developed a specialized algorithm to find high-quality solutions.

In a binary integer program, the decision variables are all “yes/no” variables that

indicate whether an object is selected for some reason. Nehme and Morton (2009)

formulated a binary integer program for deciding which border checkpoints should

have nuclear detectors. The objective function was to minimize the probability that

a smuggler avoids detection.

Lim and Smith (2007) studied a version of the network interdiction problem in

which there were multiple commodities and solved it by reformulating the problem

as a mixed integer program. That is, there were both continuous and binary

variables. They solved the problem using a commercial optimization solver.

Bansal and Kianfar (2010) formulated a nonlinear programming problem for

deciding where a surveillance camera should point when different areas are likely

to generate interesting objects. The problem had two decision variables (the two-

dimensional coordinates that describe where the surveillance camera should point).

The objective function was to maximize the “value” of the area covered by the
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camera. Bansal and Kianfar presented a branch-and-bound algorithm that implicitly

searched the set of feasible solutions.

Martonosi (2011) studied the problem of switching servers between different

queues. For example, managers may move security personnel from one passenger

screening area to another where the number of passengers waiting is very long.

Unfortunately, because the passenger arrival rates can change during the day and

time is wasted when switching servers, reducing the average waiting time is

difficult, and simple rules are not effective. Martonosi presented an approximate

dynamic programming approach that can find, for a two-queue system, the optimal

policy. This policy describes, given the queue lengths at a point in time, how many

(if any) servers should be switched from one queue to the other.

1.6.2 Facility Location Problems

Facility location problems are a class of optimization problems concerned with

finding the best locations to place facilities. In the context of homeland security, the

facilities to be placed include emergency warning sirens (cf. Current and O’Kelly

1992); prepositioned caches of medical supplies that will be delivered soon after an

emergency; Receipt, Storage, and Stage (RSS) facilities that will handle the

supplies being delivered to the site of an emergency; PODs where residents will

pick up medication; and disaster recovery centers where officials provide recovery

assistance to victims.

In general, facilities should be located near those who need their services

(the demand points). If the number of facilities is fixed, then the objective is to

minimize the distance from the demand points. The n-median problem minimizes

the total distance between demand points and facilities. The n-center problem

minimizes the maximum distance between demand points and facilities. In both

types of problems, the demand points may have weights that correspond to the

amount of demand or the cost of satisfying that demand.

Otherwise, the objective is to minimize the number of facilities needed while

satisfying constraints on the distance from demand points to facilities. This is

known as the covering model (or problem). The two primary subclasses are the

Location Set Covering Problem (LSCP) and the Maximal Covering Location

Problem (MCLP).

Dekle et al. (2005) studied the problem of minimizing the total number of

disaster recovery centers (temporary offices where officials provide recovery assis-

tance to victims) in Alachua County, Florida, subject to each county resident being

close to a facility (that is, the distance between a demand point and the closest

facility must be less than a given threshold). The problem, a covering model,

was solved for three possible choices of the distance threshold: 10, 15, and 20

miles to identify optimal locations. Then, buildings near these coordinates were

evaluated as potential disaster recovery center sites. Because the underlying road

network resembles a grid, the distance between demand points and facilities was
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estimated using a rectilinear distance measure. In addition, the number of demand

points and possible facility sites was reduced by aggregating those that were very

near each other.

Jia et al. (2007) presented a general facility location problem for a Large-scale

Emergency Medical Service (LEMS). For a particular scenario, the problem is to

locate n facilities so that the required number of facilities services each demand

point with the same quality. The problem generalizes the covering, n-median, and

n-center problems. The covering model finds a solution that maximizes the demand

that can be covered. The n-median problem minimizes the sum of the service

distances for all demand points; the n-center problem minimizes the maximum

service distance.

Jia et al. illustrated the use of these models by formulating location problems for

dirty bomb, anthrax, and smallpox terrorist attacks. For the dirty bomb attack,

supplies such as protective equipment and anti-radioactive drugs must be

prepositioned at facilities in the region. For the anthrax attack, RSS facilities

must be placed to minimize the maximum distance from demand points. For the

smallpox attack, the locations of local caches of vaccine for first responders is

determined by using a n-center model, and the location of RSS facilities is deter-

mined by using a n-median model.

1.6.3 Vehicle Routing Problems

Vehicle routing problems are a class of optimization problems concerned with

finding the best way to route a set of vehicles to deliver material to a number of

customers (Toth and Vigo 2002). Solving such problems is especially important

when it is necessary to deliver emergency supplies and medication to the victims of

a terrorist attack quickly. Most of the research on vehicle routing problems has

considered the objective of minimizing the number of vehicles needed, the total

travel time, or the total transportation cost. In the context of homeland security,

however, the objective is to meet demand quickly given the limited resources

available. Delays in meeting demand cause additional suffering and casualties.

Vehicle routing problems also occur in the context of delivering disaster relief

supplies.

For example, Shen et al. (2009b) considered the problem of routing vehicles to

meet demand in an emergency. In this problem, each demand site has a deadline,

and it may not be possible to visit all sites in time. The objective, therefore, is

to minimize the unmet demand. The travel times between sites and demand at

each site are unknown. Because probability distributions for the travel times and

demand are given, however, the formulation includes constraints that require a

solution to be feasible (with respect to deadlines and demand) most of the time

(technically, the model is a chance-constrained model). Shen et al. (2009a) included

this problem as the first stage of a two-stage approach. Solving the first stage before

the emergency occurs generates preplanned routes, which can be useful for
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exercises and training. The second stage is solved after the emergency occurs; at

this point, the actual travel times and demands are known, and the original solution

can be adjusted by modifying the delivery quantities, skipping low-demand sites, or

finding a completely new solution.

The inventory slack routing problem (ISRP) is a much different problem that

occurs because not all material is available initially and demand sites use material

over time (it is not all required at a single point in time) (Herrmann et al. 2009;

Montjoy and Herrmann 2010). Vehicles must return to the central depot to get more

material when it arrives and deliver it to the demand sites. It is critical to deliver

sufficient material in a timely manner so that sites can continue operating without

interruption. As a hedge (or buffer) against the uncertainty in the travel times, it is

desirable to have slack in the deliveries (that is, the deliveries occur earlier than

needed). In order to be fair to all demand sites, the objective of the ISRP is to

maximize the minimum slack. Herrmann et al. (2009) separated the problem into a

routing subproblem and a scheduling subproblem and solved each subproblem

using fast heuristics; Montjoy and Herrmann (2010) adopted the same separation

but solved the routing subproblem using a search heuristic.

1.7 Summary

This chapter described a diverse set of OR techniques that can be used to help

homeland security professionals make better decisions. Unlike previous reviews,

which focused on the range of applications for OR techniques, this review briefly

described relevant OR techniques and presented examples of how they have been

used to model homeland security problems.

Homeland security, like other domains such as manufacturing and transporta-

tion, involves decisions related to planning, monitoring, and controlling operations

at many levels. OR techniques can help decision makers understand what has

happened by analyzing large data sets and monitoring time series data; consider

what could happen by analyzing risk, modeling queueing systems, and simulating

complex systems; improve decision making by analyzing decisions and considering

what others might do; and find better solutions by formulating and solving optimi-

zation problems.

Some problems in homeland security require only the straightforward applica-

tion of common OR techniques and can be done by anyone who can use a

spreadsheet. Other problems require significant extensions to existing techniques

or specialized skills to formulate and solve the problem.

Homeland security professionals can use this chapter to understand what

operations research can offer and identify specific techniques that may be relevant

to their problems. The chapter includes references to essential books and articles

that can provide more information about the techniques. The examples (with

citations to references for more information) illustrate how specific techniques

have been applied to homeland security problems.
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Chapter 2

Operations Research and Homeland

Security: Overview and Case Study

of Pandemic Influenza

Richard C. Larson, Anna Teytelman, and Stan Finkelstein

Abstract This chapter starts with a brief review of the birth of operations research

(OR) in a war-focused homeland security setting. In more frequent non-war

settings, homeland security requires diligent planning for and responding to low

probability, high consequence (LPHC) events. Resulting decisions are described by

time frame, from long-term planning decisions to minute-to-minute operational

decisions. After a brief review of OR tools and techniques and of related literature,

the chapter then provides details of recent OR research by the authors into a major

threat to homeland security: pandemic influenza. In the context of the 2009 H1N1

pandemic flu, we examine a supply chain problem in pandemic flu response: the

manufacture, delivery, and administering of flu vaccine. Using a combination of

axiomatically derived OR models and data obtained from a representative sample

of states of the USA, we evaluate the effectiveness of the deployment of flu

vaccines in 2009. We show that, for many states, the vaccines arrived far too late

to be useful. We suggest alternative vaccine allocation policies that could dramati-

cally increase the numbers of flu infections averted. We offer practical takeaways

for those whose responsibility it is to design homeland security response strategies

for their own states and communities.

2.1 Introduction and Overview

Operations research (OR) is the world’s most important invisible profession! OR is

everywhere and yet not seen. It is in logistics, health care, urban systems, retailing,

energy, mining, entertainment, and much more. OR is concerned with

conceptualizing and implementing mathematical models to help solve planning

and operating problems arising in the public and private sectors. These models are
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used to provide decision makers with better insights into their problems and to

assist them in selecting the most effective courses of action. In a nutshell, OR uses

science and mathematics to provide insight to decision makers, hopefully leading to

better decisions. Here, a decision is an allocation of resources.
Homeland security gave birth to OR as we know it today, and thus the

OR-Homeland-Security connection is a most appropriate focus for this chapter.

OR was born in Great Britain and in the USA at the beginning of World War II, by

physicists P.M.S. Blackett in the UK and Philip M.Morse in the USA. The resources

to be allocated using OR methods were men and material associated with the war

effort (Morse and Kimball 2003). There were numerous successes, including the

optimal deployment of the then new, scarce and expensive radar stations in England,

to optimal search strategies for destroyers in the North Atlantic—seeking out

enemy submarines. B.O. Koopman’s work on search theory was so important

that it was classified Top Secret and published in the open literature only in the

late 1950s, fully 15 years after its creation (Koopman 1957).

In this chapter we first review briefly some aspects of OR as applied to current

definitions of homeland security. In our view, homeland security requires diligent

planning for and responding to low probability, high consequence (LPHC) events—

such as severe acts of Mother Nature, damaging human-caused accidents and

terrorist attacks. Much has been written about OR as applied to homeland security,

and we provide some guidance to the literature and some illustrative takeaways.

Second, we go into detail applying OR to the planning for and responding to a

major LPHC event—pandemic influenza. This work has been carried out over the

last 5 years by the authors and our associates at MIT and at the Harvard School of

Public Health.

The initial motivation was the threat that the highly lethal H5N1 flu virus, often

called “bird flu,” would mutate and become highly transmittable from human to

human. Leaders in the international health community feared a repeat of the

infamous 1918 “Spanish Flu” pandemic, which killed about 50,000,000 people

worldwide in a matter of months. The arrival of the H1N1 pandemic virus in 2009

provided a “dress rehearsal” for such a future killer contagion. The matter is even

more urgent now, as the H5N1 flu could, it is feared, be used as a bio-terrorism

weapon of mass destruction. This possibility has been brought more sharply into

focus now that scientists have discovered sequences of mutations of H5N1 that make

it highly transmittable and yet retain its high lethality (Greenfieldboyce 2011).

2.2 OR-Informed Decisions for Homeland Security

We focus on LPHC events and decisions to be made. Decisions come in three

flavors: strategic, tactical, and operational. The words are taken from the military

roots of OR. They basically relate to the time frames involved: long-range (strate-

gic), medium range (tactical), and real time (operational). But the issues are generic
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to all types of decision situations. The coach of a football team shares the same

three decision flavors:

• Strategic: How should I build my team by player drafts and trades to have the

most potent team possible, subject to all sorts of constraints such as budgets?

• Tactical: On a week-to-week basis, which players should I field on game day and

which ones should I place off-roster?

• Operational: It is fourth down and one yard to go on our opponent’s 48-yard

line. Do I punt the ball to the other team or try to make a first down, recognizing

that if we fail, we give the opposing team terrific field position?

OR professionals have a rich set of tools in their toolbox to deal with these types

of decisions for football coaches such as Bill Belichick of the New England Patriots

(Leonhardt 2004) and for the professionals who have to plan for and respond to

LPHC events.

Here is one possible set of decisions related to planning for and responding to

LPHC events:

• Strategic: How many resources should I have that can be devoted to a given type

of LPHC event in my state? Think hurricane, earthquake, blizzard, flood, major

industrial accident, or terrorist attack. And what additional resources can I call

on if my own resources become overwhelmed?

• Tactical: How frequently should I plan for disaster drills, using not only my own

resources but neighboring resources under a mutual aid agreement?

• Operational: A magnitude 7.4 earthquake centered a few miles south of

San Francisco has just devastated parts of the city. Right now, where should

I place my limited rescue resources, how do I triage for injuries, and what do

I communicate to the public?

Not every aspect of these decisions is guided by OR modeling and analysis. But

a significant fraction of them can be. Others are guided by experience, craft

knowledge, and common sense.

As one illustrative application of problem framing OR tools, let us examine

queueing theory. A queue is a waiting line, and in a disaster, queues will exist in

many places. A queue appears whenever arriving “customers” require more service

than there is capacity to serve those customers. In supermarkets and coffee shops,

queues may be annoying and delay you for a few minutes of your life, but in LPHC

disasters they may be long and life threatening. Almost invariably, an LPHC

disaster will result in queues having far more service requirements than there is

locally available capacity to serve them. Managing these queues effectively is

vitally important and requires intelligent triage to prioritize the queue, separate

people requiring emergency service into different priority levels, and treat them

accordingly. Sometimes the decisions are difficult and tragic, as they were in Pearl

Harbor on December 7, 1941, when—to ease pain—nurses provided morphine to

critically injured servicemen, whose foreheads were then marked by the nurse’s

lipstick with an “M,” “C,” or “D,” representing “morphine,” “critical,” or

“deceased,” respectively. Improvisation is often required. Rapid assessment of
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the situation is vital to selecting and implementing an intelligent triage policy and

then administering the best possible service to the sick and wounded. Queueing

theory, studied and internalized by planners ahead of time, can lay bare the

essentials of service capacity, anticipated delays in queue as a function of the

number of “customers,” the consequences of alternative prioritization or triage

strategies, the numbers of required servers, and more. The Walt Disney World

theme parks employ 15–20 OR analysts to study and “optimize” queues in their

theme parks. Planners for LPHC events must do the same—for situations much

more critical than amusement park ride delays.

Queue delays grow highly nonlinearly with the numbers of “customers” and in

fact can exponentially explode, resulting in intolerably huge queues. Even queues

operating in non-emergency situations can become large due to the variability in

the system, i.e., unscheduled times of arrivals of customers and widely varying

service requirements—meaning service times. Anyone planning for disasters

should have a staff member study the essentials of queueing theory to help create

a feasible and effective response plan that treats the most critical “customers” first.

The plan must also include the procedures to bring in additional queue “servers,”

often via local and regional mutual aid agreements. As teaching guides, accessible

applications of queueing theory to day-to-day public safety systems are readily

available (Larson 1972).

Queuing theory is but one tool in the OR tool box. There are many others,

including optimization methods such as linear programming and dynamic program-

ming, transportation network analysis, and decision theory. Most of these tools

have relevance to planning for and responding to LPHC events.

For those who wish to explore further the general application of OR to LPHC

events, we suggest some publications previously written by one or more of us

(usually with other coauthors). And each paper contains many references that are

also important for LPHC events. The first is “Disasters: Lessons from the Past 105

Years” (Eshghi and Larson 2008). This overview paper shows an alarming reported

increase in frequency of disasters over the most recent century-plus time period,

some of the increase due to improved monitoring technologies (e.g., for

earthquakes) and some due to population growth where people now live in more-

disaster-prone places. The second is “Responding to Emergencies: Lessons

Learned and the Need for Analysis” (Larson et al. 2006). This paper contains

historical reviews of five major emergencies—the Oklahoma City bombing

(1995), the crash of United Airlines Flight 232 (1989), the sarin attack in the

Tokyo subway (1995), Hurricane Floyd (1999), and Hurricane Charlie (2004).

The paper draws lessons from these five LPHC events and outlines required

additional OR research that is needed to cope better with similar disasters in the

future. The third is “Decision Models for Emergency Response Planning” (Larson

2005). This book chapter covers OR not only as it applies to response to major

disasters including terrorism but also to routine public safety operations (police,

fire, and ambulance) and to dangerous operations such as transporting hazardous

materials.
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2.3 Pandemic Flu: Background

Those who have heard of OR but have not studied it may think that the only

applications of OR to pandemic flu are strictly operational. A popular idea for

instance is to apply queueing theory to the system of vaccine dispensing in a public

clinic, with the goal of dispensing the vaccine quickly and fairly. While this

certainly can be done, and should be done, it represents only a tiny fraction of the

myriad decision problems that arise when planning for and responding to pandemic

influenza. And many, perhaps most, of these decision problems can be better

informed by OR problem framing and analysis.

In considering vaccines to immunize people against a particular flu strain, we

expand our OR problem framing beyond the public clinic offering the vaccine all

the way back to the origins of the new flu virus, the creation of a new vaccine, and

its distribution and administration throughout the country. This is a process that

involves designing a new product, manufacturing it in sufficient quantities to satisfy

customer demand, transporting it to regional distribution centers, deploying it to

local centers (such as flu clinics), and then delivering it to customers (susceptible

members of the population). This is a typical OR supply chain analysis problem.

It requires analysis of the entire system, not just the queueing at the end of the

process. Clinic queueing may be optimized, almost reduced to zero in the clinics,

but that is of no consequence to citizens who are susceptible to the flu if the vaccine

does not arrive in time to help them avoid infection.

Vaccines traditionally have been considered the most effective societal

interventions to mitigate the impact of an epidemic of infectious disease such as

influenza. After the initial cases are reported, and when the specific, causative strain

had not been anticipated, a period of up to 6 months will elapse before immuniza-

tion can be expected to protect members of the population from contracting the

disease. During this time, the infectious agent needs to be characterized, and the

vaccine must be configured, tested, manufactured, and distributed. Some additional

days will be needed until the persons to whom the vaccine was administered

develop immunity. Scientific and technological advances will someday reduce

these time lags. Until then, or unless an efficacious “universal” flu vaccine is

developed, the elapsed time between first cases and vaccine availability is, unfortu-

nately, unavoidable.

Our flu case study contains two principal themes. The first is to examine the

experience of vaccine allocation and distribution in the USA during the 2009 H1N1

influenza pandemic. We examine whether vaccine was administered in time mate-

rially to affect the course of the disease outbreak. The second theme is to make use

of OR approaches to frame the question of whether there is a better way to distribute

and allocate vaccine on the basis of the “dynamics” of the disease, which might

allow substantial quantities of vaccine to be sent to geographical regions where they

could be expected to offer the greatest benefits to the population.
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2.4 Vaccine Allocation and Distribution During

the 2009 H1N1 Pandemic

First, let us look at how vaccine was actually distributed in the recent influenza

outbreak, in relation to the outbreak of cases of illness. We compared the statewide

case incidence of influenza over time to two sources of vaccine distribution data.

In the USA, all vaccines are developed and allocated by one governing body, the

CDC. Our first set of data is the vaccine shipment data, which track the number of

vaccines shipped to each state over time. This information was provided on a

weekly basis by the CDC during the initial vaccination period (Centers for Disease

Control and Prevention 2010). We obtained these data for 50 states. The second

source provided data on vaccine actually administered, as each health-care provider

was required to report quantities to state health authorities before being given

additional vaccine. These federally mandated vaccine administration tracking

data were aggregated on a weekly basis and forwarded to the CDC (Centers for

Disease Control and Prevention 2012). We obtained this information from individ-

ual state health departments for 11 states (Finkelstein et al. 2011a).

Accounting for an 8–10 day delay once an individual receives vaccine before the

development of immunity (Washington State Department of Health 2010), and

observing from our data a delay of at least a week between vaccine shipment and

delivering vaccinations into people’s arms, some 2 weeks likely would elapse from

the first week of vaccine shipment (Week of October 10, MMWRWeek 40) before

the first vaccinated members of a state’s population would be protected from

contracting the illness. We observed that in 24 of the 50 states the epidemic had

already begun to decline before any individuals receiving the vaccine likely would

have been protected from contracting the infection. Further, among the 11 states for

which we were able to obtain data on actual vaccines administered, no more than

2% of the population received vaccinations before the outbreak had peaked.

Consider Fig. 2.1, where we illustrate the epidemic curves of the USA as a whole

together with two states with very different timing of H1N1 epidemic curves.

Note that while Maine received its vaccines in time to prepare for the oncoming

epidemic, Georgia received its vaccines well after the peak. Figure 2.2 summarizes

the “early/late” situation for all 50 US states.

After an outbreak of contagious illness has peaked, it is, of course, still possible

to contract it, but much less likely. So, vaccinating population members would be

expected to continue to offer some, albeit declining, benefit. However, the decline

in the number of new cases is synonymous with the observation that “herd immu-

nity” has been achieved, at which time the risks of transmitting disease decline

rapidly.

Both the disease occurrence data and the vaccine availability data are subject to

limitations. In the USA, the data collection channel from individual health-care

providers and institutions through state health departments to the CDC suffers from

chronic underreporting. On the other hand, some speculate that the “worried well”

report to hospital emergency rooms, prompted by media coverage, leading to
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overestimates of true influenza-like illness (ILI) incidence. Despite these possible

complications, we believe that the available data support the broader observation

that relatively few individuals had the opportunity to be vaccine-protected until

after the risks of acquiring the flu from others were dramatically reduced.

First vaccines delivered with
respect to peak of infection

> 4 weeks after peak

> 4 weeks before peak

between 2 and 4 weeks after peak

between 2 and 4 weeks before peak

1 weeks after peak

at peak

1 week before peak

Fig. 2.2 Timing of shipment of first vaccine with respect to the peak of the infection in US states

Fig. 2.1 Comparison of USA, Georgia, and Maine epidemic curves
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2.5 Steps to Take Prior to Arrival of the Vaccine

The data we present characterize a situation in which vaccine was not available

until well after influenza incidence peaked and began to decline in half of the states.

In the absence of faster and more reliable vaccine production methods, it is likely

that such a situation will occur again. Our results reinforce the question: what can

public health officials do to reduce the risk of contracting flu before vaccine is

available? What can individuals and families do?

A sensible approach, prior to arrival of vaccine, would be to focus on Non-

pharmaceutical Interventions (NPIs), especially diligent hygienic behavior and

reduction of human-to-human contacts. Until scientific and technological advances

serve to reduce significantly the time needed to develop, test, produce, and admin-

ister vaccine, NPIs may be the only viable recourse to protect the millions of at-risk

individuals.

To understand the potential very positive effects of NPIs, we need to discuss

briefly an equation that relates human behavior to disease spread. As anyone who

has seen the film Contagion (Contagion 2011) knows, the fundamental parameter of

disease progression is R0, where

R0 ¼ the mean number of new infections caused by a newly infected person at

the start of the epidemic when nearly everyone is susceptible to the disease.

To be an epidemic, we must see R0 > 1.0. That is, each newly infected person

will—on average–infect more than one additional person at the start of the epi-

demic, thereby creating exponential increases in the numbers infected. If R0 < 1,

then there is no exponential increase and no epidemic; the disease simply dies

away.

Here is the good news: While R0 does depend on characteristics of the particular

flu virus, it also depends strongly on the behavior of humans. Close proximity and

lack of good hygienic behavior can dramatically increase R0. Likewise, reducing

proximity to others by “social distancing” and being diligent in hygiene (such as

vigorous hand washing several times a day) can dramatically reduce R0. Here is the

OR equation that summarizes these relationships:

R0 ¼ lp;

where

l ¼ average number of daily face-to-face human contacts and p ¼ “transmis-

sion probability” ¼ conditional probability that an infectious person will pass on

the infection during a random face-to-face contact with a susceptible person

(Larson and Nigmatulina 2010).

We can control l by reducing our number of daily face-to-face human contacts.

And we can reduce p by hand washing; not touching our mouth, nose, and eyes; not

shaking hands with people (perhaps substituting the “elbow bump”!), and more.

In a typical flu situation, R0 is usually in the range of 1.2–1.8. Only a 30% reduction

in each l and p can bring R0 down to below 1.0! If everyone did that, we could—in
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theory—by human NPI behavior alone stop the spread of the flu. Even if we cannot

accomplish that goal, we can dramatically reduce R0, thereby reducing the chances

that we and our loved ones will become infected. This is the best we can do prior to

the arrival of the vaccine. Additional NPI strategies are discussed in two recently

published papers (Finkelstein et al. 2009, 2011b).

2.6 Using Operations Research Approaches to Find a Better

Way to Allocate Vaccine

We now use OR approaches to examine what went wrong with vaccine allocation

and distribution during the 2009 H1N1 pandemic. We fit a model to this disease

occurrence, generate a similar model assuming no vaccine, and then estimate the

numbers of averted cases of illness. This information then informs our decisions

about deploying available vaccine in the future.

To estimate thenumber of infectionsaverted fromvarious vaccineprograms,wefirst

use available data to estimate the epidemic curve during the period in the fall of 2009

whenH1N1wasmost prevalent. Onceweobtain an estimated epidemic curve,we use it

in conjunction with reported vaccine administration data to fit the observed epidemic

curve to the one generated by amathematicalmodel based on difference equations.We

use a discrete-time version of the standard Kermack–McKendrick model to estimate

infection spread within each state (McKendrick and Kermack 1927). In the model

calibration process, we estimate the relevant parameters such as R0 within each state.

We estimate the R0 for each state individually, since different states have different

demographic, geographic, and cultural attributes. Moreover, states experienced the

H1N1 outbreak at different times and implemented their vaccination programs in

different ways (Hopkins 2009), so the extent of infection varied markedly. We then

estimate a different,non-observablefluwave curve for the scenario inwhichno vaccine
is available.Howdowedo that?Weuse the samemodel, just calibrated to reporteddata,

but remove the vaccine component of themodel. That is, we obtain an estimate of what

would have happened if no vaccine had been delivered. This multi-step process

provides a data-informed, model-supported basis for estimating the positive effects, if

any, of the vaccine as administered in each of the states.

We refer the reader to Larson and Teytelman (2011) for the detailed discrete-

time equations.

2.7 Results

Consider Oklahoma as an illustrative example of the modeling process. Figure 2.3

contains (1) the epidemic curve for the US state of Oklahoma and (2) the time-

sequenced vaccine administration data reported by the state.
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In Fig. 2.4 we again include the empirical epidemic curve and three model-

generated epidemic curves:

• The curve generated by using the Oklahoma-reported vaccine administration

data fitted to correspond best to the empirical epidemic curve.

• The curve generated in the hypothetical case where vaccines were not

administered at all.

• The curve generated in the hypothetical case where vaccines were administered

2 weeks earlier than had actually occurred.

The total number of infections in Oklahoma is calculated by finding the area

under an epidemic curve. The estimated effect of the vaccines administered in

Oklahoma can be determined by calculating the area between the “actual” model-

generated curve, and the “no-vaccine” model-generated curve (Fig. 2.5).

We analyzed 11 states in the same manner and inferred the total number of

infections that have been prevented as a result of their respective immunization

programs. Officials in Illinois, Indiana, Massachusetts, Mississippi, Montana,

New Jersey, New York, North Dakota, Oklahoma, South Carolina, and Virginia

graciously provided us with precise data on vaccines as they were dispensed

throughout the outbreak. In Table 2.1 we display two cases for each state:

1. The optimistic case, in which all vaccines are effective immediately and are

100% effective.

Fig. 2.3 Estimated Oklahoma epidemic curve compared to vaccines as administered in the state
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Fig. 2.5 A closer look at Fig. 2.4. (The shaded region represents the difference between the

estimated number of H1N1 infections that would have occurred without intervention of vaccines

and the estimated number of infections that actually occurred with the vaccine)

Fig. 2.4 The estimated epidemic curve along with the model-generated curves with and without

vaccines
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2. The pessimistic case, in which vaccines are effective 2 weeks after administra-

tion and are effective for only 75% of the individuals receiving the vaccine.

The actual effect of the vaccine should lie within the range specified by these two

cases.

2.8 Discussion

While examining the estimated number of infections averted, we can identify two

major contributing factors. The first is the total number of vaccines administered to

the general population. The second is the timing of the vaccine administration with

respect to the peak of the infections. Once the H1N1 virus had been identified as a

potentially devastating pandemic in the spring of 2009, the CDC worked to develop

and distribute H1N1 vaccines. These vaccines were sent out to the individual states

at the same time, and first doses were administered on October 5, 2009. These

vaccines, however, had varying effects as the peak of the outbreak in different states

occurred at markedly different times.

The peak of infection usually occurs when “herd immunity” occurs, which is the

time when every infectious person at that time infects on average just one other

person. At this point, R0 no longer applies, as many of people have recovered from

the disease and are now immune to further infection. The “real time” R0 at time of

herd immunity, called R(tHI), where tHI is the time of herd immunity, is equal to 1.0.

At the time of herd immunity, the number of infections in the next generation is

approximately the same as it was in the previous one. We say “approximately” due

Table 2.1 Summary of best-fitted values for R0 and model-determined effects of vaccines as they

were distributed

(3) State

Estimated

R0

% Population

vaccinated

Optimistic infections

averted (in % of total

population)

Pessimistic infections

averted (in % of total

population)

Illinois 1.21 9 3.43 1.2

Indiana 1.15 20 4.28 1.81

Massachusetts 1.16 29 13.71 6.84

Mississippi 1.16 8 0.13 0.05

Montana 1.15 20 2.81 1.04

New Jersey 1.20 12 3.36 1.1

New York 1.20 14 3.23 1.12

North Dakota 1.16 27 2.95 1.06

Oklahoma 1.14 13 2.29 0.93

South Carolina 1.16 8 0.4 0.12

Virginia 1.19 22 1.77 0.52

In the optimistic scenario vaccines are 100% effective and take effect immediately. In the

pessimistic scenario vaccines are 75% effective and take effect 2 weeks later
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to statistical fluctuations in the actual number of susceptible people that any one

newly infectious person will infect. Soon afterwards, infectious people no longer

replace themselves with newly infected individuals, and so the number of infected

and infectious people in each generation decreases. Earlier administration of

vaccines decreases the number of people who still “need to be infected” for the

population to reach herd immunity and decreases the height of the peak. Late

administration of the vaccine has almost no effect on the dynamics of the outbreak,

and has little benefit to the society other than immunizing the people who received

the vaccine. Such late immunizations may be important if the flu were to return later

in a new wave.

Consider again the southeastern states of the USA, the first region to report

infection peaks. As early victims they received vaccines after the worst of the

infection had already passed. Louisiana, Indiana, and South Carolina did not start

administering vaccines until after the peak of the outbreak. And these states were

least successful in averting infections. On the other hand, Massachusetts and

Virginia started administering their vaccines 5 and 3 weeks, respectively, before

their respective peaks. These two states enjoyed a particularly good impact from

their vaccination programs. In addition to having 5 weeks of vaccinations prior to

the H1N1 peak in Massachusetts, that state vaccinated 29% of its population, the

most of any state in our sample. As a result, as much as 7–14% of the population

may have been spared infection and possible complications from influenza. While

Massachusetts and Virginia had effective experiences with their vaccinations, most

states did not. On average for our sample, vaccines were delivered just before the

peak of the states’ outbreaks.

To quantify the effect of time in averting infection we consider one of the states

that vaccinated almost 20% of its population, Indiana. The hypothetical case where

the same number of vaccines is delivered just 2 weeks earlier resulted in averting

more than twice the number of infections than the vaccines as administered. Timing

is everything!

With a more granular approach, we considered the marginal benefit of

administering just one vaccination at a given time. We mapped the total projected

number of infections that could be averted if just one vaccination were to be

administered to a random susceptible person at different times during the outbreak.

That is, we calculated the total number of infections that would occur in Indiana if

exactly one vaccine were administered at different points in time, and compared

that number to the total number of infections that would happen if no vaccines were

administered at all. The differences are presented in Fig. 2.6. As expected,

administered vaccines have a monotonically decreasing benefit with respect to

time. A striking feature of Fig. 2.6 is the fact that one vaccination to a susceptible

person well before the flu wave starts averts almost two infections in the population,

even with a low value for R0 (1.15) and even considering the fact that the vaccinated

person has a greater than ever chance of never becoming infected assuming no

vaccination. Clearly, vaccines administered well before the peak carry the added

benefit of diluting the susceptible population with immune people and are particu-

larly useful in mitigating the spread of infection.
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Another insightful feature of the graph of Fig. 2.6 is the slope of the marginal

benefit curve, which represents the time-dependence of effective vaccines. While

starting vaccine administration in Indiana in July would be most effective for

Indiana, the effect of those vaccines would not change significantly until the

beginning of September. That is, if vaccines were to be available in July, Indiana

could have waited to receive its share until September with minimal losses.

Similarly, vaccines received after December will have the same (minimal) effect

whether they are administered in December or February. The effectiveness of

vaccines, however, is extremely time-sensitive from the end of September to

mid-November, where each week results in a significant loss of effectiveness.

Vaccines that become available during this critical period need to be administered

as soon as possible. These results encourage us to recommend a more detailed

cost–benefit analysis of trying to get some vaccine, even if in much smaller

quantities, to the states at the beginning of this “critical period,” when the popula-

tion is particularly sensitive to the timing of vaccination. A small amount of vaccine

delivered early should have a more significant effect on the total number of

infections averted than a batch delivered just a few weeks later.

The timeliness of the vaccines also appears to be closely related to the total

amount of vaccine accepted by the population. Largely dictated by political

considerations, the CDC distributes its vaccines proportionally according to the

population of each region. This allocation process does not minimize the total

number of infections incurred nationally. Once the regional peak of the outbreak

had passed and H1N1 had been determined to be less dangerous than originally

Fig. 2.6 The graph shows the number of infections averted by administering exactly one

vaccination to a susceptible person at different points throughout the outbreak

38 R.C. Larson et al.



feared, the populations of the “early victim” states were less likely to obtain a flu

vaccination. Their decision could relate to time spent getting the flu shot and

perceived risks’ possible side effects. States vary considerably in the amount of

vaccine that was actually used. Mississippi used less than 40% of its allocated

vaccine, most likely due to “flu fatigue.” While the media are particularly helpful at

warning the public of an ongoing pandemic and encouraging diligent hygienic

behavior and social distancing through school closures and cancellation of public

events, they can also give the impression that the outbreak is over or has been blown

out of proportion—thereby creating flu fatigue.

2.9 Thought Experiment

As shown in Fig. 2.7, in the first few weeks of vaccine distribution, when demand

for vaccine clearly exceeded supply, the CDC allocated vaccine to states propor-

tionally to their populations (Centers for Disease Control and Prevention 2010).

Particularly in early October, this simple distribution scheme ensured that all states

received amounts that could be used to immunize the same proportion of the

population. Come November, those states that saw little demand started placing

fewer orders for vaccine, while those with later epidemics like Massachusetts and

Virginia were still experiencing high demand and were shipped larger quantities of

vaccine, confirming the intuition from Fig. 2.6.

Thus we see that the same vaccines administered in states that already experi-

enced the peak of the infection at the time vaccines started arriving were much less

effective than those administered in states that had not yet experienced the peak.

Fig. 2.7 CDC distribution of vaccines, initially approximately proportional to state populations
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States that were past the peak saw less demand for vaccines and thus used only a

fraction of their allocated vaccine. Consider a side-by-side analysis of Mississippi

and North Dakota, as shown in Table 2.2.

It is clear that vaccines administered in North Dakota were significantly more

effective than those in Mississippi. In fact, the Mississippi vaccines had almost

no effect because the infection was barely spreading by the time vaccines became

available. Coupled with this, North Dakota was experiencing more demand

for the vaccines at the beginning of its program. Motivated by this we believe

that there is a need for more effective procedures of allocating vaccines to US

States.

Allocating all of Mississippi’s vaccine to North Dakota would be not only

unethical but also politically infeasible. Instead, as a thought experiment, suppose

that just 20% of Mississippi’s unused vaccine were to be transferred to North

Dakota during the first 4 weeks of vaccine distribution. Suppose that, with this

addition, 60% of the new vaccines were actually administered. This additional

vaccine would decrease the total number of infections in North Dakota by 5%. That

is a significant improvement for a relatively small cost. An adaptive decision like

this can be made during the allocation process. We can form even approximate

predictions about how much vaccine will actually be demanded by the state and

how effective the extra vaccines would be in reducing infections. For example, by

using data collected from our 11 states, we can weakly estimate that a state that

experiences the peak of infection 6 weeks before receiving the first shipment of

vaccine can be expected to vaccinate no more than 4% of its population in the first

4 weeks of the vaccination program. In the first 4 weeks of the 2009 H1N1

pandemic, the CDC allocated to Mississippi enough vaccine to cover 7% of its

population. With accurate data, some portion of that could have been redirected to

states that are more likely to use and benefit from the vaccine.

Flu-specific takeaways:

• Early vaccines are significantly more effective than late vaccines.

• Data shows that vaccines that start being administered early on in the epidemic

tend to have a higher acceptance rate in the population.

Table 2.2 Comparison of vaccination programs in North Dakota and Mississippi

North Dakota Mississippi

• Started administration 1 week before peak • Received vaccines 6 weeks after peak

• A hypothetical single batch of 32,342

vaccines (5% of the population)

administered on October 10, averts 33,745

infections (5.2% of the population)

• A hypothetical single batch of 147,599

vaccines (5% of the population)

administered on October 10, averts

27,173 infections (0.9% of the

population)

• In the first 4 weeks administered 62%

of available vaccines

• In the first 4 weeks administered less

than 25% of available vaccines
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• There exists a time-sensitive “critical period” within a few weeks of the peak of

an epidemic where the effectiveness of the vaccines is extremely time-

dependent. This is the time when it is important to vaccinate as much of the

population as possible.

• Practitioners taking these points into account and combining them with OR

resource allocation methods will see significant improvements in the benefits

of available vaccine.

2.10 Conclusion

The use of OR methods to address homeland security issues, such as an influenza

pandemic, forces a logical and systematic examination of the whole problem,

rather than just certain parts of it. Commonly, the result is to uncover relationships

that are non-intuitive, or even counter-intuitive. An improved understanding of

the whole problem can benefit planning at strategic, tactical, and operational

levels.

Let us again consider the context of the allocation of vaccine by the CDC to the

individual states once a pandemic is already underway. If and when a southern

state, for example, experiences a wave of cases, a natural tendency would be to

make a tactical decision to ship via express courier the state’s proportional share of

the vaccine to address what appears to be an imminent, growing problem. But the

total system situation is far more complicated than a one-state-at-a-time decision

analysis. Consider Scenario 1: The southern states are just now experiencing a

rapidly rising flu wave and the northern states do not yet have the flu. In this

situation, the southern states should receive priority and be shipped a number of

vaccines above their proportional population share. This is because the northern

states can wait without significant penalty. Now consider Scenario 2: The vaccines
are delayed and the southern states have all reached peak, herd immunity has

occurred, and their respective flu waves have started to decrease. By the time the

vaccine reaches the southern state in question, many who were sick would have

recovered, are now immune, and risks to remaining healthy persons have become

much less. A better decision would be to increase the allocation to more vulnerable

northern regions that had so far seen few cases and must have many more suscepti-

ble individuals.

The results of one OR analysis might suggest the need for others. For example, it

is highly likely that a time interval will exist after cases of illness are recognized,

but before vaccine can be produced and distributed. The value of diligent hygiene

and social distancing, especially under these circumstances, are already widely

recognized. In planning for future outbreaks of illness, it would be useful to

quantify the benefits of devoting resources to systematic campaigns to modify

certain patterns of personal behavior, in relation to the effort’s costs.

A great benefit of operations research is that it forces a logical and systematic

consideration of all aspects of a problem. Pandemics and other LPHC events

2 Operations Research and Homeland Security: Overview and Case Study 41



gravely threaten lives and the security of our homeland. We are hopeful that the

approaches we have described offer the prospect of mitigating the future impact of

these kinds of adverse events.
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Chapter 3

Deployed Security Games for Patrol Planning

Fernando Ordóñez, Milind Tambe, Juan F. Jara, Manish Jain,

Christopher Kiekintveld, and Jason Tsai

Abstract Nations and organizations need to secure locations of economic,

military, or political importance from groups or individuals that can cause harm.

The fact that there are limited security resources prevents complete security cover-

age, which allows adversaries to observe and exploit patterns in patrolling or

monitoring and enables them to plan attacks that avoid existing patrols. The use

of randomized security policies that are more difficult for adversaries to predict and

exploit can counter their surveillance capabilities and improve security. In this

chapter we describe the recent development of models to assist security forces in

randomizing their patrols and their deployment in real applications. The systems

deployed are based on fast algorithms for solving large instances of Bayesian

Stackelberg games that capture the interaction between security forces and

adversaries. Here we describe a generic mathematical formulation of these models,

present some of the results that have allowed these systems to be deployed in

practice, and outline remaining future challenges. We discuss the deployment of

these systems in two real-world security applications: (1) The police at the Los

Angeles International Airport uses these models to randomize the placement of

checkpoints on roads entering the airport and the routes of canine unit patrols within

the airport terminals. (2) The Federal Air Marshal Service (FAMS) uses these

models to randomize the schedules of air marshals on international flights.
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3.1 Introduction

Nations and organizations need to secure locations of economic, military, or

political importance from groups or individuals that can cause harm. Protecting

such critical sites and targets, such as airports, historical landmarks, power

generation facilities, and political figures, is a challenging task for police and

security agencies worldwide. The growing threat of international terrorism has

exacerbated this challenge in recent years. For instance, transportation networks

such as buses, trains, and airplanes carry millions of people per day to their

destinations, making them a prime target for terrorists and extremely difficult to

protect for law enforcement agencies. The September 11, 2001 attack on the

World Trade Center in New York City via commercial airliners resulted in

$27.2 billion of direct short-term costs (Looney, 2002) as well as a government-

reported 2,974 lives lost. The 2004 Madrid commuter train bombings resulted in

191 lives lost, 1,755 wounded, and an estimated cost of 212 million Euros (Blanco

et al., 2007). Finally, in the 2005 London subway and bus bombings, 52 lives were

lost, 700 were wounded, and there was an estimated economic cost of two billion

pounds (Thornton, 2005).

Measures for protecting potential target areas include monitoring entrances or

inbound roads and patrolling the network at transfer points and aboard transporta-

tion vehicles. However, limited resources imply that it is typically impossible to

provide full security coverage at all times. Furthermore, adversaries can observe

security arrangements over time and exploit any predictable patterns to their

advantage. One way to mitigate the ability of adversaries to exploit patterns is the

judicious use of randomization in scheduling the actions of security forces. For

example, police patrols, baggage screenings, vehicle checkpoints, and other secu-

rity procedures are often randomized. However, security forces face many

difficulties in effectively randomizing their operations. One of these difficulties is

how to weigh the different actions the defender could take. A strategy in which all

targets are equally likely to be defended fails to take into account that some targets

are more attractive or vulnerable than others. A defense strategy that weighs the

protection of each target against the value of that target still fails to account for the

possibility that the attacker is intelligent and will update their strategy based on

the actions of the defender. Asking a human to generate a random security policy

has additional difficulties as humans are not good at generating truly random

behavior (Wagenaar, 1972; Treisman and Faulkner, 1987) and can easily fall into

predictable patterns. Furthermore, in transportation networks and many other

security domains, the problem of scheduling security forces is prohibitively large,

even without considering randomization. Creating a schedule by hand is a costly

and labor-intensive process.

Our work on randomized patrol planning has lead to a number of deployed

software assistants that address many of these key difficulties of randomization

and provide an easy-to-use solution for security forces. These assistants use game-

theoretic models and solution algorithms to determine good randomization
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strategies that take into account target values and assume intelligent adversary

responses to security measures. Game theory is a well-established paradigm for

reasoning about situations with multiple self-interested decision

makers (Fudenberg and Tirole, 1991). We model security games as Stackelberg

games (von Stackelberg, 1934) between the defender (i.e., the security forces)

and the attacker (i.e., a terrorist adversary). Stackelberg games are a bilevel

model (Bard, 1999) that account for the ability of an attacker to gather informa-

tion about the defense strategy before planning an attack. These games specify

different payoff values for both players in the event of an attack on every potential

target. Extending these games to Bayesian Stackelberg games (Conitzer and

Sandholm, 2006) allows us to capture uncertainty about these payoffs in the

game model. Solutions to these games provide a randomized policy for the

defense strategy, which can be used to generate specific schedules for security

patrols.

In this chapter we describe how we applied this game-theoretic approach in

two different software solutions that provide assistance in scheduling real security

operations. The ARMOR program (Pita et al., 2008), developed for the Los

Angeles international airport (LAX) police, randomizes checkpoints on the

roadways entering the airport and canine patrol routes within the airport

terminals. The IRIS program (Tsai et al., 2009) was developed for the Federal

Air Marshal Service (FAMS) to assist with randomly scheduling air marshals on

flights. These software assistants are interactive, and domain experts can change

domain parameters when necessary. Underlying each of these tools is a model of

the domain as a Bayesian Stackelberg game, along with fast solution algorithms

for computing an optimal solution to the game model. These algorithms use

various techniques for exploiting structure in the security domains to speed up

the computation and enable large real-world problem instances to be solved in

reasonable amounts of time (Paruchuri et al., 2006, 2007; Kiekintveld et al., 2009).

As we highlight later in this chapter, developing these assistants requires a

substantial amount of work in calibrating the Stackelberg game model to capture

expert’s knowledge of the security domain. This is critical so that the defender

strategies proposed are reasonable and useful. Clustering and data-mining

methods can help in formulating a representative security game in situations

where there is sufficient information of events.

The rest of the chapter is organized as follows. Related work is discussed in

Sect. 3.2. The Bayesian Stackelberg security game models, technical formulation,

and solution algorithms are discussed in Sect. 3.3. The LAX and FAMS domains

and the software assistants developed are described in Sect. 3.4. In Sect. 3.5, we

illustrate how to use clustering methods to automatically build a Stackelberg

security game for a network patrolling problem. We present our conclusions in

Sect. 3.6. This chapter is based on our previous work (Paruchuri

et al., 2007; Kiekintveld et al., 2009; Jain et al., 2010) and extends it by describing

a data-driven process to build a Stackelberg security game.
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3.2 Related Work

There are three main areas of related work that we review here: Optimization

techniques for patrol planning that do not take the strategic behavior of adversaries

into account, Stackelberg game models used in diverse security problems, and other

game-theoretic models used for security.

The first area of related work applies optimization techniques that model a

security domain but do not address the strategic aspects of the problem. These

methods provide a randomization strategy for the defender, but they do not take into

account the fact that the adversaries can observe the defender’s actions and then

adjust their behavior. Examples of such authors or approaches include Ruan

et al. (2005) and Paruchuri et al. (2006), which are based on learning, Markov

decision processes (MDPs) and partially observable Markov decision processes

(POMDPs). As part of this work, the authors model the patrolling problem with

locations and varying incident rates in each of the locations and solve for optimal

routes using a MDP framework. Another example is the “Hypercube Queueing

Model” (Larson, 1974) which is based on queueing theory and depicts the detailed

spatial operation of urban police departments and emergency medical services. It

has found application in police beat design, in allocation of patrolling time, etc.

Such frameworks can address many of the problems we raise, including different

target values and increasing uncertainty by using many possible patrol routes.

However, they fail to account for the possibility that an intelligent attacker will

observe and exploit patterns in the security policy. If a policy is based on the

historical frequency of attacks, it is essentially a reactive policy and an intelligent

attacker will always be one step ahead.

A second area of work uses Stackelberg games to model a variety of security

domains. Bier (2007) give a strong endorsement of this type of modeling for

security problems. Game-theoretic models have been applied in a variety of home-

land security settings, such as protecting critical infrastructure (Brown

et al., 2006; Pita et al., 2008; Nie et al., 2007). Wein (2009) apply Stackelberg

games in the context of screening visitors entering the USA. In their work, they

model the US Government as the leader who specifies the biometric identification

strategy to maximize the detection probability using finger print matches, and the

follower is the terrorist who can manipulate the image quality of the finger print.

They have also been used for studying missile defense systems (Brown et al., 2005)

and for studying the development of an adversary’s weapon systems (Brown

et al., 2005). A family of Stackelberg games known as inspection games is closely

related to the security games we are interested in and includes models of arms

inspections and border patrols (Avenhaus et al., 2002). Other recent work uses

Stackelberg games to obtain randomized patrolling in a generic “police and

robbers” scenario (Gatti, 2008) and perimeter patrols (Agmon et al., 2008).

Our work belongs to this line of research, focusing on Stackelberg games for

patrol planning. Our work differs from the previous work mainly in the solution

approach used and the domain constraints considered, which have arisen from our
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work deploying these systems in the real world. In addition to the ARMOR and

IRIS systems that will be discussed in detail in this chapter, we are currently

working on designing new game-theoretic scheduling assistants for other security

agencies. For instance, GUARDS (Pita et al., 2011) is a system for scheduling

activities being developed for the Transportation Security Administration.

GUARDS is being evaluated at an undisclosed airport for potential nationwide

deployment. Finally, PROTECT (An et al., 2011) is in use for scheduling the patrols

of the United States Coast Guard in the port of Boston; it is currently

being deployed in the port of New York and may be deployed at multiple other

ports in the USA.

The third area of related work is the application of game-theoretic techniques

that are not based on Stackelberg games to security applications. Security problems

are increasingly studied using game-theoretic analysis, ranging from computer

network security (Lye andWing, 2005; Srivastava et al., 2005) to terrorism (Sandler

and Arce, 2003). Babu et al. (2006) have worked on modeling passenger security

system at US airports using linear programming approaches; however, their objec-

tive is to classify the passengers in various groups and then screen them based on

the group to which they belong.

3.3 Methodology

A generic Stackelberg game has two players, a leader and a follower. These players
need not represent individuals but could also be groups that cooperate to execute a

joint strategy, such as a police force or terrorist organization. For the modeling of

security, the leadership role is assumed by the police, and the role of follower by

criminals. Decisions made by each player are where to protect and where to attack

respectively. Thus, having police act first reflects the fact that patrols conducted by

police officers are observable by criminals and, in the long run, the latter are able to

estimate the probability of encountering police in a given sector. Thus, the decision

of offenders is carried out once the likelihood of facing the police is observed.

The actions for the security forces represent the action of scheduling a patrol or

security procedure to protect a set of targets, e.g., a checkpoint at the LAX airport or

assigning federal air marshals to a flight. The actions for an adversary represent

possible attacks at one of the targets being protected, e.g., a terminal at LAX or a

certain flight.

3.3.1 Stackelberg Equilibrium

In a Stackelberg game each player has a set of possible pure strategies, denoted
sd ∈ Sd and sa ∈ Sa. A mixed strategy allows a player to play a probability

distribution over pure strategies, denoted dd ∈ Dd and da ∈ Da. Payoffs for each
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player are defined over all possible joint pure-strategy outcomes: Od : Sa � Sd

! r for the defender and similarly for each attacker. The payoff functions are

extended to mixed strategies in the standard way by taking the expectation over

pure-strategy outcomes. The follower can observe the leader’s strategy and then act

in a way to optimize its own payoffs. Formally, the attacker’s strategy in a

Stackelberg security game becomes a function that selects a strategy for each

possible leader strategy: Fa : Dd ! Da.

The most common solution concept in game theory is a Nash equilibrium, which
is a profile of strategies for each player in which no player can gain by unilaterally

changing to another strategy (Osbourne and Rubinstein, 1994). Stackelberg equi-

librium is a refinement of Nash equilibrium specific to Stackelberg games. It is a

form of subgame perfect equilibrium in which it requires that each player select the

best-response in any subgame of the original game (where subgames correspond to

partial sequences of actions). The effect is to eliminate equilibrium profiles that are

supported by non-credible threats off the equilibrium path. Subgame perfection is a

natural requirement, but it does not guarantee a unique solution in cases where the

follower is indifferent among a set of strategies. The literature contains two forms

of Stackelberg equilibria that identify unique outcomes, first proposed by

Leitmann (1978), and typically called “strong” and “weak” after (Breton

et al., 1988). The strong form assumes that the follower will always choose the

optimal strategy for the leader in cases of indifference, while the weak form

assumes that the follower will choose the worst strategy for the leader. Unlike the

weak form, strong Stackelberg equilibria are known to exist in all Stackelberg

games (Basar and Olsder, 1995). A standard argument suggests that the leader is

often able to induce the favorable strong form by selecting a strategy arbitrarily

close to the equilibrium which causes the follower to strictly prefer the desired

strategy (von Stengel and Zamir, 2004). We adopt strong Stackelberg equilibrium

(SSE) as our solution concept in part for these reasons but also because it is the most

commonly used in related literature (Osbourne and Rubinstein, 1994; Conitzer and

Sandholm, 2006; Paruchuri et al., 2008).

Definition 1 A set of strategies (dd, Fa) form a SSE if they satisfy the following:

1. The leader plays a best-response:

Od(dd, Fa(dd)) � Od(dd0, Fa(dd0)) 8dd0 ∈ Dd.

2. The follower plays a best-response:

Oa(dd, Fa(dd)) � Oa(dd, da) 8dd ∈ Dd, da ∈ Da.

3. The follower breaks ties optimally for the leader:

Od(dd, Fd(dd)) � Od(dd, da) 8dd ∈ Dd, da ∈ Da
∗ (dd), where Da

∗ (dd) is the set

of follower best-responses, as above.

Whether or not the Stackelberg leader benefits from the ability to commit

depends on whether commitment to mixed strategies is allowed. Committing to a

pure strategy can be either good or bad for the leader; for example, in the “Rock,

Paper, and Scissors” game, forcing commitment to a pure strategy would guarantee

a loss. However, it has been shown that the ability to commit to a mixed strategy
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always weakly increases the leader’s payoffs in equilibrium profiles of the game

(von Stengel and Zamir, 2004). In the context of a Stackelberg security game, a

deterministic policy is a liability for the defender (the leader), but a credible

randomized security policy is an advantage. Our model allows commitment to

mixed strategies by the defender.

The Bayesian extension to the Stackelberg game allows for multiple types of

players, with each type associated with its own payoff values. For the security games

of interest in this chapter, we assume that there is only one leader type (e.g., only one

police force), although there are multiple follower types (e.g., multiple adversary

types trying to infiltrate security). The set of follower types is denoted by G. Each
type g is represented by a different payoff matrix. The leader does not know the

follower’s type. The goal is to find the optimal mixed strategy for the leader to

commit to, given that each follower type will know the mixed strategy of the leader

when choosing its own strategy. Payoffs for each type are defined over all possible

joint pure-strategy outcomes:Od : SG
a � Sd ! r for the defender and similarly for

each attacker type. The leader’s best response is now a weighted best response to the

followers’ responses, where the weights are based on the probability of occurrence

of each type. The strategy of each attacker type g becomes: Fa
g : Dd ! Da

g, which

still satisfies constraints 2 and 3 in Definition 1.

3.3.2 Security Game Representation

There are two major problems with using conventional methods to represent

security games in normal form. First, many solution methods require the use of a

Harsanyi transformation when dealing with Bayesian games (Harsanyi and

Selten, 1972). The Harsanyi transformation converts a Bayesian game into a

normal-form game, but the new game may be exponentially larger than the original

Bayesian game. Our compact representation avoids this Harsanyi transformation,

and instead we directly operate on the Bayesian game. Operating directly on the

Bayesian representation is possible in our model because the evaluation of the

leader strategy against a Harsanyi-transformed game matrix is equivalent to its

evaluation against each of the game matrices for the individual follower types. (For

more details, see the Appendix; a further detailed explanation appears in Paruchuri

et al. (2008)). The second problem arises because the defender has many possible

resources to schedule in the security policy. This can also lead to a combinatorial

explosion in a standard normal-form representation. For example, if the leader has

m resources to defend n entities, then normal-form representations model this

problem as a single leader with n
m

� �
rows, each row corresponding to a leader action

of covering m targets with security resources. However, in our compact representa-

tion, the game representation would only include n rows, each row corresponding to

whether the corresponding target was covered or not. Such a representation is

equivalent to the normal form representation for the class of problems we address

in this work (see Kiekintveld et al. 2009 for additional details). This compactness in
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our representation is possible because the payoffs for the leader in these games

simply depend on whether the attacked target was covered or not, and not on what

other targets were covered (or not covered). The representation we use here avoids

both of these potential problems, using methods similar to other compact

representations for games (Koller and Milch, 2003; Jiang and Leyton-

Brown, 2006).

We now introduce our compact representation for security games. Let T ¼ {t1,
. . ., tn} be a set of targets that may be attacked, corresponding to pure strategies for

the attacker. The defender has a set of resources available to cover these targets,

R ¼ {r1, . . ., rm} (e.g., in the FAMS domain, targets could be flights and resources

could be federal air marshals). Associated with each target are four payoffs defining

the possible outcomes for an attack on the target, as shown in Table 3.1. There are

two cases, depending on whether or not the target is covered by the defender. The

defender’s payoff for an uncovered attack when facing an adversary of type g is

denoted Ud
g, u(t), and for a covered attack Ud

g, c(t). Similarly, Ua
g, u(t) and Ua

g, c(t)
are the payoffs of the attacker.

A crucial feature of the model is that payoffs depend only on the target attacked,

and whether or not it is covered by the defender. The payoffs do not depend on the

remaining aspects of the schedule, such as whether any unattacked target is covered

or which specific defense resource provides coverage. For example, if an adversary

succeeds in attacking Terminal 1, the penalty for the defender is the same whether

the defender was guarding Terminal 2 or 3. Therefore, from a payoff perspective,

many resource allocations by the defender are identical. We exploit this by

summarizing the payoff-relevant aspects of the defender’s strategy in a coverage
vector, C, that gives the probability that each target is covered, ct. The analogous

attack vector Ag gives the probability of attacking a target by a follower of type g.
We restrict the attack vector for each follower type to attack a single target with

probability 1. This is without loss of generality because a SSE solution still exists

under this restriction (Paruchuri et al., 2008). Thus, the follower of type g
can choose any pure strategy sa

g ∈ Sa
g, that is, attack any one target from the set

of targets.

The payoff for a defenderwhen a specific target t is attacked by an adversary of type
g is given by Ud

g(t, C) and is defined in (3.1). Thus, the expectation of Ud
g(t, C) over

t gives Ud
g, which is the defender’s expected payoff given coverage vector C when

facing an adversary of type g whose attack vector is Ag. Ud
g is defined in (3.2). The

same notation applies for each follower type, replacing “d” with “a.” Thus, Ua
g(t, C)

gives the payoff to the attacker when a target t is attacked by an adversary of type g.
We will see Ua

g(t, C) and Ud
g(t, C) used in the MILP discussed later. We also define

the useful notion of the attack set in (3.3),Lg(C), which contains all targets that yield
themaximum expected payoff for the attacker type g given coverageC. This attack set

Table 3.1 Example payoffs

for an attack on a target
Covered Uncovered

Defender 5 �20

Attacker �10 30
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is used by the adversary to break ties when calculating a SSE. Moreover, in these

security games, exactly one adversary is attacking in one instance of the game;

however, the adversary could be of any type and the defender does not know the

type of the adversary faced.

Ug
dðt;CÞ ¼ ctU

g;c
d ðtÞ þ ð1� ctÞUg;u

d ðtÞ (3.1)

Ug
dðC;AgÞ ¼

X
t2Ta

g
t � ðct � Ug;c

d ðtÞ þ ð1� ctÞUg;u
d ðtÞÞ (3.2)

LgðCÞ ¼ ft : Ug
aðt;CÞ � Ug

aðt0;CÞ8t0 2 Tg: (3.3)

In an SSE, the attacker selects the target in the attack set with maximum payoff for

the defender. Let t∗ denote this optimal target. Then the expected SSE payoff for

the defender when facing this adversary of type g with probability pg is Ûg
dðCÞ

¼ Ug
dðt� ;CÞ � pg, and for the attacker Ûg

aðCÞ ¼ Ug
aðt� ;CÞ.

3.3.3 Solution Method

We introduce the ERASER-C algorithm (Efficient Randomized Allocation of

Security Resources with Constraints), which takes as input a security game in the

compact form described in Sect. 3.3.2 and solves for an optimal coverage vector

corresponding to a SSE strategy for the defender. We allow resources to be assigned

to schedules covering multiple targets. The set of legal schedules S ¼ {s1, . . ., sl}
is a subset of the power set of the targets, with restrictions on this set representing

scheduling constraints. We define the relationship between targets and schedules

with the functionH : S�T ! {0, 1}, which evaluates to 1 if and only if t is covered
in s. The defender’s strategy is now an assignment of resources to schedules, rather

than targets. Another important notion is the presence of resource types, O ¼ {o1,

. . ., ov}, each with the capability to cover a different subset of S. The number of

available resources of each type is given by the function rðoÞ . Coverage

capabilities for each type are given by the function Ca : S �O ! {0, 1}, which

is 1 if the type is able to cover the given schedule and 0 otherwise.1

The combination of schedules and resource types captures key elements of the

security domains. For example, in FAMS, federal air marshals are resources, and

flights are potential targets, with payoff values defined by risk analysis of the flight.

Due to location and timing constraints, however, a marshal cannot be on all possible

flights. For example, a marshal in New York cannot board flights flying out of Los

Angeles. Legal schedules can be used to define the set of possible flights that a

1Our current implementation uses completematrices to representH andCa, but sparse representations
could offer additional performance improvements.
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federal air marshal could fly, given these constraints. Resource types are use to

define the initial state (notably, location) of a marshal, which defines a subset of

legal schedules that any given marshal could fly.

Adding scheduling and resource coverage constraints reduces the space of

feasible coverage vectors. Consider an example with a single federal air marshal

defending three flights. Suppose that there are two legal schedules, covering targets

{1, 2} and {2, 3}. Given only these schedules, it is not possible to implement a

coverage vector that places 50% probability on both targets 1 and 3, with no

coverage of target 2.

The algorithm is a mixed-integer linear program (MILP) described in

(3.4)–(3.11), with notation presented in Table 3.2. Constraints (3.5) and (3.12)

force each adversary to select a pure strategy attacking a single target. The coverage

vector C is constrained by the number of available resources through (3.8) and the

coverage in each target to be in the range [0, 1] by (3.13). The coverage of each

schedule must sum to the contributions of the individual resource types, specified

by constraint (3.6). The mapping between the coverage of schedules and coverage

of targets is enforced in (3.7). Constraint (3.8) restricts the schedule so that only the

available number of resources of each type are used. Constraint (3.9) enforces that

no probability may be assigned infeasible schedules for each resource type. The

defender’s expected payoff is defined with constraint (3.10) when follower g
attacks target Ag. Since the objective maximizes dg, for any optimal solution dg ¼
Ud

g(C, Ag). This also implies that C is maximal, given Ag for any optimal solution,

since dg is maximized. In a similar way, constraint (3.11) forces the attacker to

Table 3.2 Notation table

Symbol Meaning

dg Reward of defender against adversary of type g
kg Reward of adversary type g
pg Probability of occurrence of adversary of type g
G Set of adversary types

T Set of targets

Ag Attack vector for the adversary of type g
at
g Probability of adversary of type g attacking target t

C Coverage vector of the defender

ct Probability of defender covering target t

h(s, o) Probability of coverage of schedule s by defender type o
xs Total coverage probability over schedule s

S Set of valid schedules

O Set of resource types

Ca(s, o) Capability: 1 if type o can cover schedule s; 0 otherwise

RðoÞ Number of available resources of type o
H(s, t) Mapping: 1 if schedule s covers target t; 0 otherwise

M Huge positive constant

Ud
g(t, C) Utility of the defender when facing adversary type g who attacks target t when defender

coverage is C

Ua
g(t, C) Utility of the adversary of type g when target t is attacked and defender coverage is C
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select a strategy in the attack set of C. If the attack vector specifies a target that is

not maximal, this constraint is violated. Therefore, taken together, the objective and

constraints (3.10)–(3.11) imply that C and Ag are mutual best-responses for the

defender and the adversary in any solution. Thus, the defender mixed strategy C and

the adversary attack vector Ag for each adversary type g form an SSE of the security

Stackelberg game.

max
a;c;q;h;d;k

X

g2G
dgpg (3.4)

X

t2T
agt ¼ 1 g 2 G (3.5)

X

o2O
hs;o ¼ xs s 2 S (3.6)

X

s2S
xsHðs; tÞ ¼ ct t 2 T (3.7)

X

s2S
hs;oCaðs;oÞ � rðoÞ o 2 O (3.8)

hs;o � Caðs;oÞ s;o 2 S� O (3.9)

dg � Ug
dðt;CÞ � ð1� agt Þ �M t 2 T; g 2 G (3.10)

0 � kg � Ug
aðt;CÞ � ð1� agt Þ �M t 2 T; g 2 G (3.11)

agt 2 f0; 1g t 2 T; g 2 G (3.13)

ct 2 ½0; 1� t 2 T (3.13)

xs 2 ½0; 1� s 2 S (3.14)

hs;o 2 ½0; 1� s;o 2 S� O (3.15)

The payoff valuesUd
g(t, C) andUa

g(t, C) are calculated based on (3.1) and (3.2).
The values of Ud

g, c and Ud
g, u used in these equations are the payoff values to the

defender when a target is covered and uncovered, respectively. These values are

provided by the domain experts, as described in Sect. 3.5. Similarly, the payoff

values for the adversaries are also provided by the domain experts.

The values of other model parameters are calculated based on the user input and

the game specification. Police officers and canines are the resources for ARMOR for
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checkpoint and ARMOR for canine, respectively. ARMOR does not differentiate

between different resources (e.g., all canines are assumed to be equally capable), and

hence there is exactly one resource type O. The number of resources r , i.e.,

checkpoints or canines, is directly input by the user in the system. In the case of

ARMOR, the set of legal schedules is an assignment of a checkpoint to an inbound

road and is automatically generated by the system since ARMOR is aware of the

road map of the airport. The capability matrix Ca in ARMOR consists of all ones

since any resource could be assigned to any target. For example, any canine could be

scheduled to any terminal.

Similarly, all the model parameters are defined based on user input and domain

constraints in IRIS. The federal air marshals are the resources for IRIS. In IRIS, the

different FAMS Offices form the different resource types. This information has

already been supplied to IRIS by the domain experts. The numbers of resources of

each type r, that is the number of federal air marshals in each office, is directly

input in IRIS by the end users. The set of legal schedules S is provided as an input to
the system by the FAMS in IRIS. Each schedule in IRIS is a sequence of flights that

a federal air marshal can take to complete a tour. In IRIS, the capability matrix Ca is
defined based on resource types; for example, federal air marshals at the FAM

office based in Los Angeles can only cover schedules flying out of Los Angeles, and

hence only those schedules would have their capabilities set to 1. The mappingM is

also calculated by the systems based on the domain specifications. For example, in

IRIS, if schedule s is to take flight f1 followed by flight f2, then the row in M
corresponding to s would have ones only for columns corresponding to f1 and f2.

Kiekintveld et al. (2009) have shown that the ERASER-C MILP corresponds to

an SSE of the security game. The intuition behind the proof are two claims: (1) the

coverage probability of the leader and the attack set of the follower are mutual best-

responses by the construction of the MILP, and (2) the coverage probability of the

leader gives the leader the optimal utility.

3.4 Software Systems Deployed at the LAX

and FAMS Domains

Both LAX and FAMS are security scenarios in which there is a leader/follower

dynamic between the security forces and terrorist adversaries. In both domains

there are limited resources available to protect a very large space of possible targets,

so it is not possible to provide complete coverage. Finally, the targets have diverse

values and vulnerabilities in each domain. The domains, however, differ primarily

due to size. In the LAX security domain there are eight terminals that must be

protected, while the air marshals are responsible for protecting tens of thousands of

commercial flights each day. This difference in size requires, in addition to scalable

solution algorithms, different types of interfaces to have domain experts specify

each game. Finally, while in the LAX domain all security resources can reach all
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targets, in the FAMS domain, the security resources must satisfy more complicated

constraints (e.g., a given marshal cannot be assigned to two flights with overlapping

time schedules).

In this section, we describe both security domains (LAX and FAMS) and discuss

the architecture of the software systems developed for these domains. We begin

with a description of the generic software architecture and then describe each

domain and their specific software assistant. We finish this section with a list of

lessons learned in doing these deployments.

3.4.1 Software Assistants

We now describe in detail the system architecture for each of the two software

assistants, focusing primarily on the ARMOR system but providing some discussion

of IRIS as a point of comparison. We paid particular attention to organization

acceptance during the development process. The end users of both ARMOR and

IRIS are security officers, and the system must be simple enough for them to be

comfortable using it on a regular basis. In particular, the systems are designed to hide

as much of the complexity of the game-theoretic models as possible, while still

allowing enough flexibility for the users to input important parameters that change

regularly. This required considerable effort in both user interface design and

identifying ways to simplify and reduce the inputs required by the system to specify

a gamemodel. In the case of IRIS, it was also very important to build in functionality

to import data from other systems to ease the burden of data entry (e.g., importing

flight information from existing databases). Finally, the schedules that the system

produces must be presented in a format that is easy to understand, with tools that

allow final modifications if necessary.

Both ARMOR and IRIS are stand-alone desktop applications. ARMOR was

developed in the Microsoft.NET framework, while IRIS is a stand-alone Java

application. Due to security concerns, both systems are run on machines that are

not connected to any network. The underlying solution methods use the open source

GLPK2 toolkit to solve the necessary mixed-integer programs. The general struc-

ture of the two applications is shown in Fig. 3.1. The core architecture can be

divided into three modules, which we describe in detail in the subsequent sections:

1. Input: Interface for the user to enter parameters and domain knowledge.

2. Back-end: Inputs are translated into a game model, which is passed to the

Bayesian Stackelberg game solver and then to a final process that generates a

specific sample schedule based on the computed probabilities.

3. Display Module: The final schedule is presented to the user, with options to

modify the output if necessary.

2 http://www.gnu.org/software/glpk/.
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We rely on the users and domain experts to provide the knowledge required to

specify the game model. While some elements of the model do not change over

time, others change frequently. For these, we must provide the users a convenient

way to enter the necessary values. The basic inputs that both ARMOR and IRIS

require fall into four categories: (1) the number of available resources and their

capabilities, (2) the set of targets, (3) payoff values for each target, and (4)

supplemental data to improve the user experience (e.g., names and labels). Both

applications allow users to save and reuse this information across multiple

executions.

The balance of how much information is hard-coded and how much is entered by

the user is quite different for ARMOR and IRIS. For example, in ARMOR the set of

targets is hard-coded because the number of terminals at LAX changes very rarely.

However, in IRIS the flight information may change every time the system is run, so

this is part of the user input. Determining which parameters were necessary to

expose to the user was a significant task, and required several iterations with the

domain experts and end users to strike the right balance between the complexity of

the inputs and the flexibility of the system to capture the necessary information.

The Back-end module is fairly common to the two applications. This model

builds a specific instance of a Bayesian Stackelberg game, based on all of the data

provided by domain experts and entered through the GUI by end users. Some of the

necessary information is hard-coded in each system, while other inputs can be

modified by the user during the scheduling process.

Fig. 3.1 General structure for the security assistants
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Once an explicit game model has been generated, it is passed as input to

the ERASER-C mixed-integer program. This model is solved using the standard

open source solver GLPK in these applications. ERASER-C returns an optimal

mixed strategy for the defender—a probability distribution over the defender’s

actions—which represents a randomized policy for allocating the security resources

of either LAX or FAMS. We sample the randomized schedule found to generate a

specific schedule for the security forces. This sample schedule specifies exactly

where and when each resource should be assigned to each target. If necessary, it is

also possible to “resample” from the randomized schedule to get another specific

schedule, though this capability is used rarely. Any specific constraints that the

schedules must satisfy are taken into consideration when final schedules are sam-

pled. These sampled schedules are then displayed for the user through the Display

Module.

The output module presents the generated sampled schedule to the user. The user

can then review the schedule and accept it as is, or add additional constraints and

run the scheduling process again. Since the specifics of Input and Display Modules

are domain dependent we describe both of them, first for LAX and then for FAMS.

3.4.2 LAX Domain: ARMOR

LAX is the fifth busiest airport in the USA, the largest destination airport in the

USA, and serves 60–70 million passengers per year (General descrip-

tion, 2007; Stevens et al., 2006). LAX is known to be a prime terrorist target on

the west coast of the USA, with multiple arrests of plotters attempting to attack

LAX (Stevens et al., 2006). To protect LAX, the airport police have designed a

security system that utilizes multiple rings of protection. As is evident to anyone

traveling through the airport, these rings include such things as vehicular

checkpoints, police units patrolling the roads to the terminals, patrolling inside

the terminals (with canines), and security screening and bag checks for passengers.

Airport police use intelligent randomization within two of these rings: (1) placing

vehicle checkpoints on inbound roads that service the LAX terminals, including

both location and timing (a checkpoint is shown in Fig. 3.2), and (2) scheduling

patrols for bomb-sniffing canine units at the different LAX terminals (as shown in

Fig. 3.2). The numbers of available vehicle checkpoints and canine units are

limited by resource constraints, so randomization is used as a method to increase

the effectiveness of these resources while avoiding creating patterns in deployment.

The eight different terminals at LAX have very different characteristics, leading

to different assessments of the value/risk for each terminal. For example, interna-

tional flights are concentrated at a few terminals, while terminals have varying

physical size and passenger loads. Because uncertainty about the adversary was

identified by airport police as a key problem, the model should take into account the

different types of adversaries that may be encountered. For example, there may be

both hard-line, well-funded international terrorists planning attacks as well as
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amateur individuals. The payoff values for different attack scenarios should depend

on the type of attacker and their capabilities.

The interface for the ARMOR checkpoints program is shown in Fig. 3.3 and

provides options for the number of available resources, the number of scheduled

days, the time slots to schedule, and the monthly calendar. A spreadsheet is used to

display the proposed schedule and provide additional opportunities for the end users

to modify the schedules in an iterative process. Three options are provided to

change the possible scheduling actions: (a) number of checkpoints allowed during

a particular time slot; (b) the time interval of each time slot; (c) the number of days

to schedule over. Furthermore, three options are given to the user to enforce

Fig. 3.3 ARMOR interface

Fig. 3.2 Security checkpoints and canine patrols at LAX
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constraints onto the schedule: (a) forced checkpoint; (b) forbidden checkpoint; (c)

at least one checkpoint. These constraints are intended to be used sparingly to

accommodate situations where a user, faced with exceptional circumstances and

extra knowledge, wishes to influence the output of the game. The user can impose

these specific actions in the schedule using the spreadsheet interface. Each restric-

tion is represented by a different color in the spreadsheet. The interface for the

ARMOR Canine Patrols at LAX has similar features.

ARMOR generates a different game for each time slot on each day. The number

of defender resources in the model is the number of canine units/checkpoints

specified by the user. The number of targets is the number of terminals for the

canines system, and the number of inbound roads for the checkpoints system.

Generating the game matrix also requires values for the payoffs associated with

each possible target. These payoff values depend on a variety of conditions, such as

passenger loads, cost of the infrastructure, and publicity to the adversary. Domain

experts provided us with formulae to automatically generate payoff values for all

possible combinations of such conditions, which we encode in ARMOR. The system

is also provided with estimates of the passenger load and other elements (the details

of these formulae and tools cannot be discussed due to security concerns). For any

given day, ARMOR is able to take the conditions for this day and select appropriate

payoff values for the targets. As a result, it is not necessary for LAX police officers to

enter these values by hand to generate each schedule, which is both time-consuming

and error-prone. The system still retains a high degree of flexibility because values

are precomputed and stored for a wide range of possible conditions.

The generated schedule of checkpoints and canines is presented to the user via a

spreadsheet. Each row in the output spreadsheet corresponds to 1 h. Each column in

the sheet corresponds to a terminal. Each entry in the sheet represents a schedule

generated by ARMOR. The familiarity of the police officers with spreadsheets

helped in the acceptance of the ARMOR schedules.

When ARMOR identifies that user constraints are causing unreasonably low

likelihood of scheduling a checkpoint, it presents the schedule to the user with

alerts. The user may then alter the schedule by modifying the forbidden/required

checkpoints, or possibly by directly altering the schedule. Both possibilities are

accommodated in ARMOR. If the user simply adds or removes constraints,

ARMOR can create a new schedule. Once the schedule is finalized, it can be

saved for actual use, thus completing the system cycle. This full process was

designed to specifically meet the requirements at LAX for checkpoint and canine

allocation.

3.4.3 FAMS Domain: IRIS

The FAMS places undercover law enforcement personnel aboard flight soriginating

in and departing from the USA to dissuade potential aggressors and prevent an

attack should one occur (TSA, 2008). The exact methods used to evaluate the risks
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posed by individual flights is not made public by the service, but we can identify

many factors that might influence such an evaluation. For example, flights have

different numbers of passengers, and some fly over densely populated areas while

others do not. International flights also serve different countries, which may pose

different risks. Special events can also change the risks for particular flights at

certain times (Federal Air Marshal Service, 2008).

The scale of the domain is massive. There are currently tens of thousands of

commercial flights scheduled each day, and public estimates state that there are

thousands of air marshals. Air marshals must be scheduled on tours of flights that

obey various constraints (e.g., the time required to board, fly, and disembark).

Simply finding schedules for the marshals that meet all of these constraints is a

computational challenge. Our task is made more difficult by the need to find a

randomized policy that meets these scheduling constraints, while also accounting

for the different values of each flight.

The FAMS domain is considerably larger, and the information required to build

a game model in this domain changes much more frequently. For these reasons the

application is considerably more complex than ARMOR in terms of the user

interface and the mechanisms required to input all of the necessary information.

This additional complexity is necessary in this domain to accurately capture the

situation and provide all of the functionality requested by the end users. However, it

does place a greater burden on the users to learn the system, and scheduling is a

more time-consuming process than in ARMOR. Again, finding the right level of

complexity to expose to the users was an iterative process that involved many

discussions with the users and domain experts.

In the FAMS domain, we require information about the available air marshals,

their scheduling constraints, the possible flights, and information about the

risks/values to associate with each flight. The data about resources include infor-

mation about the number and location of air marshals, as well as the conditions that

define legal flight schedules. Flight information includes various data about each

flight, including flight number, carrier, origin, destination, aircraft type, etc. Finally,

some information is collected to improve usability, even though it is not strictly

necessary for the game-theoretic analysis. This includes naming schemes for

airports and airlines and other information that allows the system to output

schedules in a more usable format or to interface easily with other systems. IRIS

also includes functionality to import data from existing databases with flight data

and other information. This greatly reduces the amount of data entry necessary to

create a schedule.

Specifying the payoff values for every possible flight was a particular challenge

in this domain, since there are thousands of flights to consider. We use an attributed-

based system to elicit these values, based on the Threat, Vulnerability, and Conse-

quence (TVC) model for estimating terrorism risk (Willis et al., 2005). By eliciting

values for attributes of flights rather than specific flights, we are able to dramatically

reduce the number of entries required by the user. Each flight is then given an

aggregate value based on these components; the specific calculations used to

determine flight risk are sensitive information and cannot be revealed. The values
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of the attributes for each flight can be populated automatically from existing

databases. To allow for specific intelligence or exceptional circumstances, the

individual payoff values for any flight can also be directly edited by the end user.

However, this is only rarely necessary and the majority of the analysis can be

effectively automated.

This preference elicitation system of IRIS has substantially reduced the number

of values that must be entered by the user. During a restricted test run on real data,

the attribute-based approach called for a total of 114 values to input regardless of

the number of flights. By contrast, there were 2,571 valid flights over a week, each

requiring four payoff values, summing to 10,284 user-entered values without the

attribute-based preference elicitation system. The attribute-based approach clearly

requires far fewer inputs and remains constant as the number of flights increases,

allowing for excellent scalability as we deal with larger and larger sets of flights.

Equally importantly, attribute-based risk assessment is an intuitive and highly

scalable method that can be used in any problem where people must distill numer-

ous attributes of a situation into a single value for a large number of situations that

share the same attributes.

The generated schedules are presented to the user via the application window.

The schedule created is shown in the interface, and allows the users to view more

detailed information about each target. The user is also able to output the schedule

to a file which can then be used to analyze the schedule in more detail. The sample

assignment of federal air marshals to flight schedules is exactly a schedule that

could be used by the FAMS. At this point, the scheduling assistant allows the expert

using the system to create numerous sample schedules based on the same optimal

mixed strategy or to change the assignment of federal air marshals to flight

schedules by hand to create a final schedule that meets the needs of the FAMS.

Of course, the user can also adjust any of the parameters entered and resolve the

game completely. The output of IRIS is in the same format as the other systems

used by the FAMS officers. It has not been presented here for simplicity and

because of security concerns.

3.4.4 Lessons Learned

The design and deployment of ARMOR and IRIS have posed numerous challenges.

We outline some key lessons learned during the design and deployment of these tools.

First, there is a critical need for randomization in security operations. Security officials

are aware that requiring humans to generate randomized schedules is unsatisfactory

because, as psychological studies have often shown (Wagenaar, 1972; Treisman and

Faulkner, 1987), humans have difficulty in randomizing, and they can also fall into

predictable patterns. Instead, game-theoretic randomization that appropriately weighs

the costs and benefits of different actions and randomizes with appropriate weights

leads to improved results. Security officials were therefore extremely enthusiastic in

their reception of our research and eager to apply it to their practices.
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Second, organizational acceptance is a key issue. In creating solutions for

people, we must be cognizant of how difficult it will be for a user to adopt our

solution. Each deviation from existing methodology is a step away from the

familiar that we must convince the user to accept. Instead of asking people to

make numerous and sometimes unnecessary changes, minimizing these differences

and complexities can help pave the way toward a successful implementation. For

example, tweaking the GUI to achieve a look and feel that the user is familiar and

comfortable with can help the user understand the system faster and better. Simi-

larly, because infrastructural changes are often costly and/or time-consuming, ease

of incorporating our work into their daily routine is essential. For example, using

inputs and creating outputs that were in the same format as existing protocols

minimized the additional work that our assistant would create for the security

officers and lead to easier acceptance of the system.

Third, it is important to provide the users with operational flexibility. When

initially generating schedules for canine patrols, we created a very detailed sched-

ule, micro-managing the patrols. This did not get as positive a reception from the

officers. Instead, an abstract schedule that afforded the officers some flexibility to

respond to situations on the ground was better received.

3.5 A Generic Network Security Problem

As noted above, implementing a Stackelberg security game model to plan patrols is

a difficult process that to date has been undertaken with substantial effort in

collaboration with the security providers. In many situations, however, there is

enough information about the security process that a data-driven process could be

used to assist security providers in defining the actions and payoffs of the security

game. In this section we illustrate recent work that aims to automatically build a

Stackelberg security game for the problem of patrolling a street network to prevent

crime. The proposed approach uses data-mining tools on a database of past reported

crime and events to identify the locations to be patrolled, the times at which the

game changes, and the types of adversaries faced. The idea is to exploit temporal

and spatial patterns of crime on the area to be patrolled to determine the priorities

on how to use the limited security resources.

We consider the street network depicted in Fig. 3.4 which corresponds to a

centric commercial, turistic, and economic district in Santiago, Chile. This is a busy

part of the city usually with large crowds on the street and that historically

concentrates a high number of crimes, for the most part theft or minor aggressions.

This type of crime in particular can be deterred or reduced with appropriate

patrolling by police. To represent the problem of deciding where to patrol as a

Stackelberg security game, security providers need to identify the specific points on

this street network that concentrate crime and determine the payoffs defenders and

attackers would receive if crimes at these locations are committed or are prevented.

In this security game, police patrols on foot would go to the points selected
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following the random optimal mixed strategy that maximizes the defender’s utility.

Different types of criminals would, knowing the optimal mixed strategy of the

police patrols, then decide where to attack on the network, if at all. We assume that

both police and criminals appear at the point selected, without interacting in other

parts of the network. In addition to the description of the street network, we

obtained from the Chilean national police force information about reported crimes

in the area and the police reports for a 2-year period. Each reported crime has a

location, a date and time, and a description of the crime (classification of crime

[robbery, theft, etc.], amount stolen, level of violence, etc.). The police reports

include information about the available resources in each shift, which helps esti-

mate the police resources used for preventive patrolling.

3.5.1 Building a Data-Driven Security Game

This information is then processed in an automated data-driven procedure to build a

security game in five steps: (1) Define the amount of data that will be relevant to

calibrate the security game, (2) Determine locations to patrol, (3) Identify attacker

types from data, (4) Determine times to patrol, (5) Determine payoffs for leader and

followers.

Fig. 3.4 Patrolling area with a density plot of reported crimes in the period 12/15/2002–12/14/

2004
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Step 1: In determining which data to use to build a representative security game,

we must strike a balance between selecting too much data and too little.

Sufficient past data should be included so that significant but perhaps rare

patterns of crime are taken into consideration. However, if too much data

are taken into account, we run the risk of representing crime patterns that

no longer exist. You must rely on expert opinion to estimate how represen-

tative past data are of the current security situation leading to an estimate of

how much of the past information to use in identifying the locations of the

patrols, the types of adversaries, and the utilities for each. In the results we

show below, we used a time window of 2 years of data (from December 15,

2002 until December 14, 2004) to build a week long game (for the week of

December 15–22, 2004).

Step 2: We used an off-the-shelf clustering software to identify the locations to be

patrolled from the density plot of reported crime displayed in Fig. 3.5.

These locations are selected anywhere on the road network in a way that

summarizes the geographical distribution of crimes without requiring a

massive number of locations. We used the software DBSCAN (density-

based spatial clustering of applications with noise) (Ester et al., 1996). This

is a density segmentation tool which also removes the noise in the data and

automatically selects the number of segments to consider. In the results we

obtained, DBSCAN identifies 119 locations to protect in which there are at

least 10 crimes within a radius of 20 m. These points represent 89.23% of

Fig. 3.5 Optimal mixed strategy on locations selected. Node color corresponds to probability of

coverage of the node, with a darker color indicating a higher probability of coverage

66 F. Ordóñez et al.



the reported crimes. We note that a number of good clustering algorithms

can help in identifying a set of locations that are representative of the

spatial crime distribution.

Step 3: We follow the knowledge discovery in databases (KDD) scheme (Fayyad

et al., 1996) to process the database of reported crimes and identify

different types of attackers. The KDD approach is a generic scheme that

outlines a series of procedures to, among other things, create a target data

set, remove data noise and outliers, handle missing data, identify useful

features in the data, etc. Each of the processes can be implemented with any

of a number of existing tools. For the selection of attributes, we chose a

wrapper technique that automatically selects the attributes that help seg-

mentation (Dy and Brodley, 2004). To identify the clusters of crimes we

use a k-means clustering model. We found that this model was superior to

alternative clustering models we tried (X-means, expectation maximiza-

tion) for this problem, both in runtime and the quality of solutions found,

which are more easily interpretable. The number of reported crimes in each

cluster informs us of the frequency of different types of crime and thus the

likelihood of facing each. The crimes in the 2-year database were classified

into 9 significant clusters that were characterized by 24 significant

attributes.

Step 4: Since the security conditions change during the day and the Stackelberg

security game describes static conditions, we separate the day into different

time intervals (or blocks) in which the security conditions remain almost

constant. The different types of crime identified in Step 3 include three

different time blocks which are found to be significant. Intersecting these

times with the police patrolling shifts gives us a total of seven time

intervals, or blocks, where the likelihood and composition of different

types of crime and patrolling resources are kept about constant.

Block From To Block From To Block From To

S1 0:00 6:59 S2 7:00 9:59 S3 10:00 14:59

S4 15:00 17:59 S5 18:00 19:59 S6 20:00 21:59

S7 22:00 23:59

In blocks S2 and S3 there are 23 patrolling units available, in blocks

S4, S5, and S6 there are 24 patrolling units, and in blocks S1 and S7 there

are nine patrolling units. Here, one patrolling unit corresponds to a pair of

policemen on foot.

We determine the probability of facing each type of adversary by the

frequency with which each of the nine types of crimes occur. To make this

frequency more dependent on recent events, the past event data are scaled

with an exponential decay function. Table 3.3 shows these frequencies for

each of the nine types of crimes over the seven time blocks found.
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Step 5: In this work we determine the payoffs for the attacker as a valuation of the

monetary payoff of being successful or getting caught for each type of

crime. In the case of the police, we estimate that the payoff for catching a

criminal is zero (for all types) while the penalty for a successful crime equals

the expected amount earned by that type of criminal. We first determine

from the information on the database the average expected reward for the

criminal in a successful attack. To determine the penalty of an unsuccessful

attack, we estimated the expected number of days in jail for that type of

crime and evaluated the amount of forgone earnings for the criminal for not

being able to commit crimes during that period. We note that there are a

number of alternative models that can be incorporated here, in particular

models of risk aversion that better represent human behavior in adversarial

environments, such as prospect theory (Kahneman and Tvesky, 1979) or

quantal response (McKelvey and Palfrey, 1995). Table 3.4 presents the

values of payoffs for the Stackelberg game for each of the nine types of

adversaries.

Table 3.4 Expected payoff for each type of criminal, in US dollars, if attack is successful (average

utility) and if attack is unsuccessful (average cost, using a 40 % discount rate while in prison)

Cluster Average utility Prison time Average cost

0 182 61 638

1 209 1,752 731

2 136 63 476

3 451 1,746 1,579

4 175 1,747 614

5 217 1,686 761

6 139 74 486

7 138 1,757 485

8 218 1,739 764

Table 3.3 Probability of facing each follower in the different time blocks

Cluster S1 S2 S3 S4 S5 S6 S7 Total

0 0.234 0.516 0.624 0 0.603 0.562 0.395 1,815

1 0.078 0.057 0.048 0.142 0.049 0.079 0.097 679

2 0 0 0 0.470 0 0 0 545

3 0.032 0.018 0.018 0 0.012 0.027 0.050 369

4 0 0 0 0.260 0 0 0 405

5 0.253 0.091 0.063 0.079 0.066 0.093 0.150 808

6 0.023 0.027 0.022 0.048 0.033 0.016 0.024 419

7 0 0 0 0 0 0.223 0.285 575

8 0.381 0.291 0.225 0 0.238 0 0 1,110

Total 727 457 1,892 1,217 939 881 612
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3.5.2 Additional Considerations in a Data-Driven
Security Game

The procedure above helps security providers build a Stackelberg security game to

determine efficient patrols in an urban street network. This game can then be

formulated as the mixed integer programs described in Sect. 3.3 and solved to

optimality. A solution for this problem is depicted in Fig. 3.5. The color at each

node corresponds to the amount of coverage in the optimal mixed strategy for a

certain time block. To implement this solution, the police should sample from this

distribution to decide which locations to patrol each day in every time block.

The game developed can also be used to evaluate the current practice and the

proposed patrol plan. Currently police direct their preventive patrols to the

locations where the highest concentration of crime is expected to occur, based on

recent past activity (2 weeks). We assume that the highest concentration of crime

are the locations where the game predicts the highest payoff for the adversary,

therefore directing the patrols to the maximum payoff locations leading to a

minimax strategy. Table 3.5 presents the defender’s expected profits in each time

block under each of four different strategies: the optimal mixed and pure strategies

of the Stackelberg game and Minimax. We note that the utility for the leader is

always better in the Stackelberg game (mixed).

The set of tools described here hope to complement the experience and intuition

of law enforcement. There is much information that is difficult to include in

decisions on how to patrol. This is the case in part because of the amount of data

and in part because the data are not being collected or are biased. We note that a

better description of the security problem can be obtained, and thus a better security

game formulated, by incorporating additional sources of information, such as

surveys of victimization and physical description of places. We believe this is an

interesting avenue of future research to create robust systems that would be more

easily deployable in diverse settings.

3.6 Conclusions

Monitoring and patrolling are key components of law enforcement in security

domains. In generating schedules for these patrols, it is important to account for

varying weights of the targets being protected as well as the fact that potential

Table 3.5 Defender’s expected utility in different time blocks

Block of time S1 S2 S3 S4 S5 S6 S7

Stackelberg (mixed) � 1.87 � 0.31 � 0.29 � 0.24 � 0.21 � 0.22 � 1.63

Stackelberg (pure) � 8.87 � 3.90 � 3.62 � 3.27 � 3.53 � 3.48 � 8.30

Maximin (mixed) � 5.40 � 2.42 � 2.21 � 1.94 � 2.18 � 2.18 � 5.10

Maximin (pure) � 8.87 � 3.95 � 3.67 � 3.27 � 3.53 � 3.48 � 8.30

3 Deployed Security Games for Patrol Planning 69



attackers can often observe the procedures being used. This chapter describes

scheduling assistants for the LAX police, ARMOR, and the FAMS, IRIS, which

provide game-theoretic solutions to this problem. The two systems assist the

security forces in generating randomized patrols while ensuring that differences

in importance of different targets are preserved. A critical observation in the

deployment of these scheduling assistants is the difficulty faced in reducing a

complex security domain to a Stackelberg game model. To address this difficulty

we present a data-mining-based model to assist security personnel in defining the

Stackelberg security game from historic data.

ARMOR and IRIS make use of algorithmic advances in multi-agent systems

research to solve the class of massive security games with complex constraints that

were not previously solvable in realistic time-frames. Thus, although our applications

were designed to be deployed at LAX and FAMS, they provide a general framework

for solving patrolling scheduling problems in other domains as well.

Our approach of using Stackelberg games to model real-world security problems

is applicable in a wide range of domains that share the following attributes: (a) there

are intelligent players, (b) one player’s strategy is observable by the other player,

(c) player’s have varying preferences among targets, and (d) it is not possible to

provide full coverage of all targets. Some examples of similar security situations

include security in computer networks, checkpoints at subway stations, security

inspections at ports, and monitoring of other mediums of public transport.

Ultimately the security providers (Police, Air Marshals) are the judge of the

usefulness of these Stackelberg security game models. As in any model it is critical

to allow for expert knowledge to inform the system and provide feedback on the

quality of solutions. With this in mind the development of the interface of these

deployed systems has been an important aspect of this work. This research and these

applications have been effective in helping in the security officers with scheduling

and patrolling concerns. Thus, ARMOR and IRIS represent successful transitions of

game-theoretic advances to applications that have been in use and effective in the

real world. There are a number of additional improvements to these systems that

could be done in the future to facilitate deployment to different domains. Some lines

of future research include methods to incorporate qualitative information (estimates

of unreported crime, fear of crime, etc.) to construct the Stackelberg games; coordi-

nation of different security resources; and considering attackers who deviate from

rational behavior (due to differences in information or human bias).
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Chapter 4

Interdiction Models and Applications

Nedialko B. Dimitrov and David P. Morton

Abstract Through interdiction models, we infer the vulnerabilities inherent in an

operational system. This chapter presents four applications of interdiction

modeling: (a) to delay an adversary’s development of a first nuclear weapon;

(b) to understand vulnerabilities in an electric power system; (c) to locate sensors

in a municipal water network; and (d) to secure a border against a nuclear smuggler.

In each case, we detail and interpret the mathematical model and characterize

insights gained from solving instances of the model. We point to special structures

that sometimes arise in interdiction models and the associated implications for

analyses. From these examples, themes emerge on how one should model, and

defend against, an intelligent adversary.

This chapter describes how to assess the vulnerabilities of operational systems by

using interdiction models. We do so in the context of four applications from the

literature: delaying an adversary’s development of a first nuclear weapon; under-

standing vulnerabilities in an electric power system; locating sensors to rapidly

detect an illicit contaminant injected in a municipal water system; and locating

radiation sensors to detect a nuclear smuggler. The key steps in this approach

involve answering the following questions: (1) How is the system operated? and

(2) What are the vulnerabilities of that system? Operations research has a rich

history of developing mathematical models to answer question (1). Key to our

approach is that we must be able to answer question (1) when any subset of the

system’s components has been interdicted.
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We may be the operators of the system of interest, or an adversary may operate

the system or be operating within a system we own. The former case arises when the

system involves critical infrastructure, such as an electric power system or munici-

pal water system. In such situations, a third question arises: (3) How can we invest

to make the system more resilient? The latter case arises, for example, when an

adversary is managing a project or attempting to transport illicit material across our

transportation network.

In answering question (1), we assume operation of the system optimally adapts

after interdiction of a subset of system components. Here, interpret the term

interdiction liberally. It can mean an action that removes or degrades one more

more system components, e.g., damaging a generator, substation, or transmission

line in an electric power system, or it can mean an action that delays completion of a

task in a project. Interdiction can also mean detecting illicit operations on, or threats

to, a system that we own. Interdiction models identify a set of system components to

interdict, subject to resource limits, so that system performance is optimally

degraded. The system components identified indicate the vulnerabilities of the

system, answering question (2). Again, central to the analysis is the recognition

that system operation will optimally adapt, post-interdiction, to the residual system.

The sections that follow develop four applications of interdiction modeling.

We motivate each application, describe a mathematical model, discuss important

modeling choices, discuss computational tractability, and describe insights from

analysis utilizing the model. In Sect. 4.1, we discuss delaying the development of a

nuclear weapon; in Sect. 4.2, we discuss identifying vulnerabilities in the nation’s

power grid; in Sect. 4.3, we discuss detecting deliberate contamination of our

drinking water supply; and in Sect. 4.4, we discuss securing our nation’s borders

against illicit smuggling of nuclear material.

4.1 Delaying an Adversary’s Nuclear Weapons Project

Preventing a nation from covertly developing a first nuclear weapon is an interna-

tional priority. More countries are pursuing civilian nuclear energy, and that growth

may continue given concerns both with volatility in fossil fuel supplies and global

warming. There is apprehension that, with more states having civilian nuclear power

programs, some states might pursue a clandestine enrichment and reprocessing

program for the purpose of developing a nuclear weapon (McGoldrick, 2011).

Once the international community detects an illicit program, the tools available to

stop or delay proliferation include diplomatic actions, economic embargoes,

embargoes of key technologies, poaching of key personnel, sabotage, and military

strikes. How should the potential effectiveness of such options be evaluated?

In a pair of papers, Harney et al. (2006) first build a detailed operational model of

how a “proliferator” would manage the complex project of building a first nuclear

weapon, or rather, a small batch of such weapons. Then, Brown et al. (2009)

formulate a model on top of that operational model in which an “interdictor” selects
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a resource-constrained set of tasks to interdict so as to maximally delay completion

of the nuclear weapons project. Reed (1994) describes a lower-fidelity model but

one with a similar notion of interdiction. We summarize this line of work in this

section.

4.1.1 Project Management for a First Nuclear Weapon

The natural modeling framework for representing how the proliferator would

manage the project of building a first nuclear weapon is that of the program

evaluation review technique (PERT)/critical path method (CPM). O’Brien (1969)

discusses the origins of CPM and PERT, with the former beginning at Du Pont in

1956, and the US Navy developing the latter in 1958 in conjunction with the Polaris

missile program. These tools have since been employed pervasively in industry and

government (Shtub et al., 2005).

In its simplest form a PERT network models a collection of tasks represented by

nodes that have specified durations and precedence relationships represented by

directed arcs that indicate prerequisites. The length of the longest path in this

network, called the critical path, indicates the minimum time required to complete

the project. This time is achieved if all tasks on the critical path experience no

delay, start as soon as possible, and tasks that are off the critical path are not

sufficiently delayed.

Over the last several decades, PERT/CPM methods have evolved to capture the

features needed to schedule and manage large, complex projects. Figure 4.1 depicts

a simple PERT network with one such improvement: The “decision node” (node D

in the figure) points to three alternative means to accomplishing a task. Brown

et al. model three alternative technologies available to the proliferator to enrich

uranium (gas centrifuges, gaseous diffusion, and aerodynamic enrichment) as well

as these further enhancements:

Start

A C

E

F

G

DB I

finish

H

Fig. 4.1 An example PERT network. The nodes, A through I, denote tasks that have a duration.

Arcs denote precedence relationships. For example, to start task C both tasks A and B must finish.

The triangular node, D, and its successors, E through G, denote a decision task. Only one of the

three tasks E, F, or G must be completed to begin task I, and in order to finish the project
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1. In addition to the standard finish-to-start precedence relationship, start-to-start,

finish-to-finish, and start-to-finish relationships are included. So in Fig. 4.1, task

C might have a start-to-start precedence relationship with task B with the

addition of a 10-week lead time, meaning the earliest task C can start is

10 weeks after the start of task B.

2. In addition to consuming time, tasks consume resources including energy,

raw materials, and three types of labor: scientific, skilled, and unskilled. Con-

sumption of these resources, in turn, consumes a monetary budget. We assume

that the proliferator’s capability, i.e., his level of each of these resources, is

known. To understand the sensitivity of the results to the assumed capability, we

run several analyses, varying the capability assumptions.

3. The proliferator can expedite, or “crash,” tasks, subject to resource limits. A task

has a nominal duration, �d, which the proliferator can decrease to d. Crashing is

assumed to be linear so that cr units of resource r are consumed per week, say,

that the task is expedited.

To simplify presentation of the proliferator’s operational model, we choose to

neglect some of the key fidelity introduced in Brown et al. (2009). We do not

include start-to-start, finish-to-finish, and start-to-finish precedence relationships.

We further neglect a combinatorial aspect of the proliferator’s problem in which he

must make decisions as to alternative means of accomplishing tasks, as indicated in

the decision node D of Fig. 4.1. The simplified proliferator’s operational model can

be formulated as follows.

Sets

i, j ∈ N Nodes representing tasks

(i, j) ∈ A Precedence relationships; task i must finish before j can start

r ∈ RP Proliferator resources

Data [units]
�di Nominal duration of task i [weeks]

di Duration of task i if it is maximally expedited [weeks]

cir Unit consumption of resource r for expediting task i [$/week]

br Budget of resource r for expediting tasks [$]

lagij Lag time between the completion of i and the start of j [weeks]

Proliferator’s decision variables [units]

Si Earliest start time of task i [weeks]

Ei Time by which task i is expedited [weeks]

We distinguish two special nodes in N denoted “start” and “finish” as shown in

Fig. 4.1. These artificial tasks have zero duration and consume no resources.

min
S;E

Sfinish (4.1a)

s.t. Sj � Si � ð�di � EiÞ þ lagij; ði; jÞ 2 A (4.1b)
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X

i2N
cirEi � br; r 2 RP

(4.1c)

0 � Ei � �di � di; i 2 N (4.1d)

Si � 0; i 2 N (4.1e)

Sstart � 0: (4.1f)

Based on a finish-to-start precedence relationship, constraint (4.1b) indicates

that the earliest start time for task j is the sum of: the earliest start time for task i, the
duration of task i, and any additional lag time between the completion of i and the

start of j. Constraint (4.1c) limits the consumption of resources, which have been

allocated for expediting tasks. These resources include energy, raw materials, and

different types of labor. Carrying out the tasks at their nominal durations also

consumes resources, but that consumption has already been accounted in the br
values. Constraint (4.1d) limits the magnitude by which each task can be expedited,

and the time at which the project finishes is minimized in (4.1a).

4.1.2 Formulation and Tractability in Delaying a Project

Given model (4.1), under which the proliferator is presumed to operate, the

interdictor seeks to maximally delay completion of the proliferator’s project. The

interdictor is the nation, or group of nations, determined to delay the proliferator.

The interdictor is limited by a monetary budget and diplomatic constraints as well

as limits on economic and environmental consequences. Logical constraints on

interdiction are also easily incorporated. For example, perhaps at most one of the

tasks A, C, and E can be interdicted. The interdictor’s model requires the following

additional constructs.

Sets

r0 ∈ RI Resources for interdiction

Data [units]

vir0 Consumption of resource r0 from interdicting task i [$]

wr0 Budget of resource r0 for interdicting tasks [$]

delayi Delay in completing task i from its interdiction [weeks]

Interdictor’s decision variables

Xi Binary variable that takes value 1 if task i is interdicted and 0 otherwise
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The set of feasible interdiction plans is given by

X ¼ X :
X

i2N
vir0Xi � wr0; r0 2 RI;Xi 2 f0; 1g; i 2 Ng:

(

The set X can include further constraints such as the logical implications just

mentioned. We let f(X) denote the optimal value of model (4.1), except that the

right-hand side of constraint (4.1b) is replaced by

ð�di � Ei þ delayiXiÞ þ lagij;

in which the duration to complete task i is modified to include delayi if task i is
interdicted, i.e., if decision variable Xi ¼ 1. The interdictor’s optimization problem

is then

max
X2X

f ðXÞ: (4.2)

Subject to the constraints dictated by X , the interdictor in model (4.2) seeks to

maximally delay completion of the proliferator’s project. The nested max–min

structure of model (4.2), with f(X) defined via the optimal value of model (4.1),

modified to incorporate delays, means the interdictor:

1. First chooses one or more tasks to interdict.

2. After the interdictor’s plans are revealed, the proliferator chooses a plan to best

expedite his project and, in the full version of model (4.1) in Brown et al. (2009),

the proliferator further chooses an enrichment technology associated with a

decision node in the PERT network.

There are a number of questions that one can pose, regarding the appropriateness

of the model just put forward. They include:

• Will the proliferator actually use PERT/CPM in planning his project?

• What if the proliferator behaves differently?

• Can the interdictor adapt his interdiction plan over time?

• Has the proliferator already committed to some decisions?

While the tools of PERT/CPM have been well known since the 1950s, and there

are widely available commercial products that ease their application, we do not

know whether the proliferator will employ these off-the-shelf tools. That said, the

proliferator is building a nuclear weapon, and so it is arguably reasonable to assume

he will use such tools to manage that project. If the proliferator behaves

suboptimally, he will finish the project later than what we predict, and in this

sense, our prediction of the induced delay is appropriately conservative. In reality,

the interdictor could adapt his interdiction plan over time, and the proliferator may

commit to a partial course of action prior to when some decisions must be made by

the interdictor. The two-stage model we have sketched is more computationally

tractable than a richer multistage model. The two-stage model is also conservative
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in the same sense that we have just mentioned: If the model predicts a completion

time induced by a set of interdiction activities then the actual completion time is at

least that long.

4.1.3 Practical Implications and Insights

Harney et al. (2006) and Brown et al. (2009) describe a PERT/CPM model instance

with about 200 tasks and 600 precedence relationships for the proliferator’s project.

The model is similar to model (4.1) but with the enhancements discussed above.

The proliferator has a budget of $380 million that can be allocated to the five types

of resources: energy, raw materials, and scientific, skilled, and unskilled labor.

Brown et al. build an interdiction model in the form of (4.2); they label the types of

interdiction they consider as mild, nonmilitary delays; and, they introduce a limit on

the total number of tasks that can be interdicted.

If the interdictor does nothing, then the proliferator completes the project in

about 260 weeks to about 5 years. The same result holds if the proliferator’s budget

grows from $380 to $480 million.

Next, Brown et al. (2009) assume that the proliferator plans his project, ignoring

the possibility of interdiction. Knowing this, the interdictor selects two tasks to

interdict. Then, post-interdiction, the proliferator does not adapt his plans. In this

case, the proliferator completes his project in 356 weeks, a delay of 37 %. This

analysis runs counter to the notion of planning conservatively, which we sketch at

the end of Sect. 4.1.2, but its value will become clear shortly.

Now suppose the interdictor selects two tasks to interdict, assuming the

proliferator will adapt his plan optimally post-interdiction, and the proliferator

does indeed respond optimally post-interdiction; i.e., we are in the setting of

model (4.2). In this case, the proliferator completes his project in 348 weeks, a

delay of 34 % over the nominal 260 weeks. The proliferator saves only 8 weeks by

reacting optimally to the interdiction of two tasks, relative to not reacting at all. This

may counter our intuition that optimal adaptation by the proliferator should better

insulate his project from delay. As Brown et al. indicate, this means that the

interdictor has uncovered “unavoidable fragilities” in the proliferator’s project.

Further analysis shows that as the number of tasks to interdict ranges from one to

four, the interdictor can delay the project from 1.1 to 2.4 years when the proliferator

has a budget of $380 million. This range changes to 1.1–2.25 years when the

proliferator has an additional $100 million. When examining the tasks selected

for interdiction, we see that these tasks need not be on the (original) critical path.

Finally, the specific task of “cascade loading” is a task that is interdicted in all the

variants that the authors consider, a fact clearly of interest to decision makers.

Since the publication of the pair of papers (Brown et al., 2009; Harney

et al., 2006) discussed above, there have been a number of related developments

reported in the popular press. From January 2010 through January 2012, five Iranian

nuclear scientists have been attacked, and four killed, most with a bomb
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magnetically attached to their cars by motorcyclists; see, e.g., Borger (2012).

The so-called Stuxnet worm targeted control software for centrifuges used to enrich

uranium, and it has been reported as being the most sophisticated malware ever

developed (see, e.g., Broad et al. 2011; Keizer 2010). In September 2007, Israeli Air

Force jets bombed what is reported to have been a partially developed nuclear

reactor in Syria (see, e.g., Kessler and Wright 2007). According to the web site

WikiLeaks, in a diplomatic cable dated April 20, 2008, between the US Embassy in

Riyadh and Washington, the Saudi ambassador to the USA, Adel al-Jubeir, is

reported as having “recalled the King’s frequent exhortations to the US to attack

Iran and so put an end to its nuclear weapons program.” al-Jubeir is reported to have

said, “He told you to cut off the head of the snake.” WikiLeaks documents further

indicate that then Secretary of Defense Robert Gates indicated that any such strike

on Iran would not eliminate their nuclear program. Rather, it would only delay their

pursuit of a nuclear weapon “by one to three years.”

4.2 Vulnerabilities in the Electric Power Grid

In August 2003, a power surge blacked out parts of eight states in the northeast

USA (Barron, 2003). The nation’s essential demand for electricity and our depen-

dence on the electric power grid to deliver electricity have been recognized in

congressional assessments (Office of Technology Assessment U.S. Congress, 1990),

and presidential policy planning groups (National Energy Policy Development

Group, 2001). A congressional assessment dating back to 1990 states that “The

bulk power system is vulnerable to terrorist attacks targeted on key facilities. Major

metropolitan areas and even multi-state regions could lose virtually all power

following simultaneous attacks on three to eight sites. . . ” (Office of Technol-

ogy Assessment U.S. Congress, 1990). In addition, the growth in demand for

electric power is outpacing the development of new generation (National Energy

Policy Development Group, 2001), while new sources of power such as wind and

solar have highly variable generation and are difficult to integrate into the sys-

tem (GE Energy for The National Renewable Energy Laboratory, 2010). All of

these developments highlight the need to understand the vulnerabilities in our

electric power grid.

At a high level, there are two approaches to analyzing the sustained operation of an

electric power grid. The first approach studies the reliability of the power grid against
random component failures (Rausand and Høyland, 2003). Such analysis uses data on

the failure of individual components, such as wind turbines (Tavner et al., 2007), to

analyze the system as a whole (Talukdar et al., 2003). However, it has been observed

that the power grid can be quite robust to random failures, and at the same time be quite

susceptible to the failure of a small number of select components (Albert et al., 2004).

This leads to the second analysis approach, to study the vulnerability of the power grid
against worst case component failure—rooted in the idea that an adversary could

select components to attack to induce maximum disruption.
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In the literature, there are twomainmethods of analyzing power-grid vulnerability.

The first method defines some intuitive measures of grid component criticality, and

then ranks the grid components based on those measures (Albert et al., 2004; Chassin

and Posse, 2005; Espiritu et al., 2007; Qiang and Nagurney, 2008). The advantages of

this method are that it does not require extensive computation, and the criticality

measures can be adapted to, or borrowed from, other common networks. The disad-

vantage of this method is that it is not based on the physical properties of the electric

power grid; that is, it is not based on the actual performance of the system. In

particular, often these methods may not be validated with, or derived from, power-

flow models for electricity distribution. Furthermore, as we discuss shortly with a

specific example, the concept of ranking components based on criticality is flawed

because criticality is a property of sets of power-grid components. A single component

may not be critical on its own, but in a set of two components it may be highly critical.

The second approach is to use interdiction models for optimal or near-optimal

interdiction of power-flow as in a pair of papers by Salmerón et al. (2004, 2009).

The benefit of this approach is that it is indeed based on the physical properties of a

given electric grid. An initial drawback of the approach is that it required algorith-

mic and computational tools that were not available when these researchers began

studying the problem. Finally, to make the interdiction computations tractable, a

steady-state optimal power-flow model is typically assumed. Specifically, the

power-flow models used in interdiction do not include cascading failures. Steady-

state power-flow models are good for modeling mid-term or long-term failures

of the electric grid, on the range of weeks or months, as opposed to models of

cascading failures (Mili et al., 2004), which cause outages on much shorter

time scales.

For the remainder of this section, we outline the use of interdiction models to

assess the vulnerabilities of the electric power grid (Salmerón et al., 2004, 2009).

We focus on the intuitive interpretation of the models, basic mathematical formu-

lation, and results from such analysis.

4.2.1 Interdicting the Electric Power Grid

To assess the vulnerability of an electric power grid, we seek to identify

components that are critical to the continued operation of that grid. At a basic

level, the electric power grid consists of transmission lines, buses, generators, and

substations. The core generation and transmission components of the electric power

grid connect to local power distribution networks, which operate at a lower voltage

and deliver power to consumers. Some components of the grid, such as a transmis-

sion line, are relatively easy to repair. Others, such as generators or substations,

could take weeks or months to repair, depending on the nature of the damage. Each

component integrates with the grid in a unique fashion, based on the specific

structure of the grid in question.
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A natural way to measure the criticality of power-grid components is to under-

stand how much disruption is caused by their loss. For example, the loss of a local

power distribution line may cause a power outage to a dozen houses for a few hours,

while the loss of a substation or generator may cause a power outage to a small city

for weeks. We capture this intuitive measure of criticality through the load shed-
ding, or the total demand for power that is not met if the component is lost and

requires repair. We can define the criticality of a set of grid components in a similar

fashion. The criticality of a set of components is the total load shedding if that set of

components is lost and requires repair.

As is common in most interdiction models, the criticality of a set of grid

components is not simply the sum of each component’s criticality, but is instead

determined by the structure of the grid in question and the corresponding system

performance. For example, consider a town that is powered by two identical

generators that each have enough capacity to satisfy the town’s entire demand on

their own. In addition, suppose that each generator is connected to the town’s

distribution network through its own transmission lines. The criticality of each

generator on its own is rather low, because the other generator serves as a backup

and there is no load shedding in the event of the loss of a single generator. However,

the criticality of both generators as a set is very high, because if both generators are

lost at once, all of the town’s demand for power goes unserved.

Finding the set of k most critical components requires us to solve a complex

combinatorial optimization problem. First, we require a model of how load shed-

ding is affected by the loss of subsets of grid components. Second, we have to

compute the set of k components that maximizes that load shedding. Salmerón

et al. (2004, 2009) develop such a model and the associated algorithms for comput-

ing the most critical components.

4.2.2 Formulation and Tractability

The sequence of papers leading to the ability to analyze vulnerabilities of realistic

electric power grids provides an excellent example of the development of interdic-

tion models over time. The sequence begins with a simplified physics-based power-

flow formulation (Salmerón et al., 2004), and builds to higher-fidelity power-flow

models and the ability to analyze grids on the order of 5,000 buses, 5,000 transmis-

sion lines, and 1,000 transformers—the size of a large regional grid (Salmerón

et al., 2009).

At the most basic level, a DC power-flow model is used to measure grid

performance. Let i ∈ I denote buses, g ∈ G generators, ‘ ∈ L transmission lines,

c ∈ C consumer demand sectors, and s ∈ S substations. Additionally, let i ∈ I(s)
denote buses at substation s, g ∈ G(i) generation units connected to bus i, ‘ ∈ Li

bus

lines connected to bus i, ‘ ∈ Ls
sub lines connected to substation s, and ‘ ∈ L‘0

par

lines running parallel to line ‘0. In the model, transformers are represented by lines.
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To fully specify the grid’s structure, we also require a number of data

parameters. Let o(‘) and d(‘) denote the origin and destination buses of line ‘. Let
i(g) denote the bus for generator g, �Pline

‘ be the transmission capacity for line ‘, and
�Pgen
g be the maximum output of generator g. Let r‘ and x‘ be the resistance and

reactance of line ‘, giving a susceptance of B‘ ¼ x‘ / (r‘
2 + x‘

2). Finally, let dic be
the demand for power (load) of consumer sector c at bus i and fic be the load-

shedding cost for consumer sector c at bus i. We can also think of fic as specifying
the relative importance of unmet demand in different consumer sectors, where

shedding load at a hospital may be more costly than in another sector.

The DC power-flow model solves for the required generation from each genera-

tor (Pg
gen), the power-flow on each line (P‘

line), the phase angle at bus i (yi), and the
load shedding in consumer sector c at bus i (Sic). Generating power in some

generators is cheaper than others. It is also possible to introduce costs per generator

and include those in the model, but we leave out that detail for simplicity. For

brevity, let P denote the vector of variables Pg
gen, P‘

line, y denote the vector with

components yi, and S denote that of Sic. The DC power-flow can be computed using

the following linear program:

min
P;y;S

X

i2I

X

c2C
f icSic (4.3a)

s:t: Pline
‘ ¼ B‘ðyoð‘Þ � ydð‘ÞÞ; ‘ 2 L
X

g2GðiÞ
Pgen
g �

X

‘joð‘Þ¼i

Pline
‘ þ

X

‘jdð‘Þ¼i

Pline
‘

(4.3b)

¼
X

c2C
ðdic � SicÞ; i 2 I (4.3c)

� �Pline
‘ � Pline

‘ � �Pline
‘ ; ‘ 2 L (4.3d)

0 � Pgen
g � �Pgen

g ; g 2 G (4.3e)

0 � Sic � dic; i 2 I; c 2 C: (4.3f)

The objective function of the linear program, (4.3a), minimizes load shedding.

Constraint (4.3b) approximates active power flow on each line through a linear

approximation involving the phase angles on the right-hand side; constraint (4.3c)

maintains power balance at each bus; constraint (4.3d) maintains the transmission

capacity of each line; constraint (4.3e) maintains the generating capacity of each

generator; and, constraint (4.3f) enforces that load shedding cannot exceed demand.

Once the power-flow model is formulated, we place an interdiction model on top

of that model to compute the kmost critical components. For the interdiction model,

we introduce binary variables that indicate whether each component is functional
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(binary variable is 0) or not (binary variable is 1). For the power-flow model (4.3),

let the binary interdiction variables be dg
gen, d‘

line, di
bus, and ds

sub, each indicating

whether the corresponding system component is functional. Using the interdiction

variables, we can compute if a transmission line ‘ is down and store the result in a

binary variable d‘ (value of 0 for “no power,” 1 for “may have power”) as follows:

d‘ ¼ ð1� dline‘ Þð1� dbusoð‘ÞÞð1� dbusdð‘ÞÞ
Y

sj‘2Lsubs

ð1� dsubs Þ
Y

‘0j‘02Lpar
‘

ð1� dline‘0 Þ: (4.14)

Equation (4.4) states that transmission line ‘ cannot have power if line ‘ itself is
nonfunctional; its origin or destination buses are nonfunctional; any substation that

the line connects to is nonfunctional; or any parallel line is nonfunctional. The

variable d‘ is only for notational convenience and is not an interdiction variable

itself. For brevity, let the vector of interdiction variables for all components be d.
Using the interdiction variables and the notational convenience of d‘, we can

compute the k most critical components by solving the following optimization

problem:

max
d;d

min
P;y;S

X

i2I

X

c2C
f icSics:t: (4.5a)

X

g2G
dgeng þ

X

‘2L
dline‘ þ

X

i2I
dbusi þ

X

s2S
dsubs ¼ k

d‘ ¼ ð1� dline‘ Þð1� dbusoð‘ÞÞð1� dbusdð‘ÞÞ (4.5b)

Y

sj‘2Lsubs

ð1� dsubs Þ
Y

‘0j‘02Lpar
‘

ð1� dline‘0 Þ; ‘ 2 L (4.5c)

dgeng ; dline‘ ; dbusi ; dsubs ; d‘ 2 f0; 1g; g 2 G; ‘ 2 L; i 2 I; s 2 S (4.5d)

Pline
‘ ¼ B‘ðyoð‘Þ � ydð‘ÞÞd‘; ‘ 2 L (4.5e)

X

g2GðiÞ
Pgen
g �

X

‘joð‘Þ¼i

Pline
‘ þ

X

‘jdð‘Þ¼i

Pline
‘ ¼

X

c2C
ðdic � SicÞ; i 2 I

(4.5f)

� �Pline
‘ d‘ � Pline

‘ � �Pline
‘ d‘; ‘ 2 L (4.5g)

0 � Pgen
g � �Pgen

g ð1� dbusiðgÞÞð1� dgeng Þ; g 2 G (4.5h)

0 � Sic � dic; i 2 I; c 2 C: (4.5i)

Like model (4.2) in Sect. 4.1, the interdiction model (4.5) is a bi-level program

known as a Stackelberg game, with a nested “min–max.” First, components are
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removed from the power grid. This is accomplished by binary decision variables

d subject to the cardinality constraint (4.5b) and binary restrictions (4.5d) along

with the notational convenience, d, defined via constraint (4.5c). Second, using the

remaining components, i.e., the residual power grid, variables P, y, and S compute

an optimal power flow to minimize load shedding. These variables are subject to

constraints (4.5e)–(4.5i), which are similar to those of model (4.3), with additional

parameterization in d. Specifically, the d‘ in constraints (4.5e) and (4.5g) ensure that
no down transmission line can have power. Constraint (4.5h) similarly ensures that

a disconnected or nonfunctional generator cannot generate power.

We can alter constraint (4.5b) to make interdicting some components more

costly than others; for example, interdicting a substation may be more costly than

interdicting a single transmission line. Under such an alteration, k would be

replaced with a total interdiction budget, and the optimization model would find

the best interdiction plan for the specified budget.

Model (4.5) is amenable to interpretation; however, it is not immediately

tractable as written. First, it is not possible to solve the problem with standard

optimization software because some of the variables in the model are attempting to

maximize the objective function, while others are attempting to minimize it.

Second, the constraints of the model are nonlinear. Developing effective algorithms

to solve the interdiction model is central to both the practicality of interdiction

modeling and the majority of research in the area.

There are a number of ways of reformulating and solving a model like (4.5) in a

tractable fashion. The major methods to gain tractability are:

1. Use a heuristic search to find the critical components (Salmerón et al., 2004).

2. Linearize the products of binary variables and take the dual of the inner problem

to obtain a resulting MIP with a single maximization operator (Salmerón

et al., 2004).

3. Apply Benders’ decomposition (Alvarez, 2004).

4. Rewrite the inner minimization model by forming its optimality (KKT)

conditions as constraints (Motto et al., 2005). This method also allows the

inner minimization problem to have a different objective function than the

outer maximization problem (Bard, 1998), which is sometimes desirable.

5. Develop custom, problem-specific algorithms, which subsequently may gener-

alize to handle other problems (Salmerón et al., 2009).

It is often the custom, problem-specific algorithms that lead to truly large-scale

tractability of the interdiction problem—as is the case for interdicting an electric

power grid.

Salmerón et al. (2009) develop what they call a global Benders’ decomposition

algorithm to solve for the most critical components of the electric power grid. The

need for such an algorithm arises because the optimal value of the inner minimiza-

tion is not a concave function in the interdiction variables (or, rather, on the convex

hull of their domain). This issue arises frequently in interdiction models. For

example, the time to complete the adversary’s project, f(�), in the model of

Sect. 4.1, is convex on the convex hull of X , yet the interdictor seeks to maximize
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that function. Such a setup does not naturally lend itself to Benders’ decomposition,

which, by design, forms an outer linearization of the objective function of a convex

program. In some cases, because of the binary nature of the interdiction variables, it

is possible to reformulate the inner problem with the interdiction variables instead in

the objective function, leading to maximization of a concave function (Cormican

et al., 1998; Morton et al., 2007). However, this is not easily done in the case of the

inner model in (4.5), largely because of constraint (4.5e). The ability to apply the

global Benders’ decomposition algorithm of Salmerón et al. hinges on being able to:

(a) evaluate the optimal load shedding of the inner problem given d and (b) form an

affine majorizing function of optimal value of the inner minimization, even though it

is not concave in d. Salmerón et al. (2009) show how to do so using properties of the

optimal power-flow model under two empirically verified assumptions. This allows

us to solve for the most critical components of large-scale instances and yields

explicit optimality gaps if the algorithm is terminated prematurely.

4.2.3 Practical Implications and Insights

Practically, a number of aspects of model (4.5) can be altered to yield higher fidelity

results. As indicated above, it may be more difficult to disable an entire substation

than a single transmission line. This can be reflected by altering constraint (4.5b) to

take into account the relative ease of disabling each component. With such a

modification, one can derive realistic efficiency curves, measuring the vulnerability

of the grid, in load shedding, as a function of an adversary’s capability, captured by

their budget for interdiction. If the vulnerability curve is relatively flat, the grid can

maintain functionality as we increase the number of failed components, or rather

the interdiction budget. If the vulnerability curve increases sharply, it indicates a

fragile grid in which the load shedding increases sharply with a few failed

components.

It is also possible to restrict the set of components that can be interdicted.

As described, every component has an associated interdiction variable. However,

if it is of interest to consider the vulnerability of the entire grid to the failure of

components in a particular geographic region, we can restrict the interdiction model

to select only components in a particular region. Another useful restriction involves

restricting interdiction to a particular type of component. In this way, we can

identify the most critical power generators, for example.

The ability of interdiction algorithms to scale to grids with thousands of

components allows us to analyze realistic scenarios on large-scale problems. We

can use the interdiction model to answer questions such as: What are the three most

critical substations in California? Is there a small set of five to ten components

whose failure can cause a large amount of load shedding for a long period of time?

And finally, if several candidate plans for electric power grid expansion, or harden-

ing, are proposed, which ones decrease the vulnerability of the grid most

effectively?
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4.3 Monitoring Our Drinking Water Supply

Following the attacks of September 11, 2001, the US government distributed

responsibility of the nation’s critical infrastructure to both newly founded and

existing federal agencies. The Environmental Protection Agency (EPA) is

charged with leading protection of the nation’s water supply (Bush, 2003). At about

the same time, the US Government Accountability Office identified “distribution

systems as among the most vulnerable physical components of a drinking water

utility,” placing highest priority on the need to develop new technologies to

monitor and “quickly detect contaminants in treated drinking water on its way to

consumers (GAO, 2003).” These government priorities have directed a decade-

long research effort to develop and deploy early warning systems for rapid

detection of contaminants in our drinking water.

A central problem in designing a warning system to detect contamination is

selecting the best locations for a limited number of water-quality sensors. Histori-

cally, optimization models for selecting sensor locations explicitly contained

constraints that model water flow (Lee and Deininger, 1992). However, modeling

water flow using simulators such as EPANET can produce higher fidelity, physics-

based predictions of contaminant flow (Rossman, 2000). Because of the availability

of high-fidelity water flow simulations, optimization models switched to exploiting

the results of the simulators in selecting sensor locations, instead of modeling water

flow through constraints (Ostfeld and Salomons, 2004).

A long-running collaboration between theEPA and operations researchers at Sandia

National Laboratories has led to the practical application and deployment of

well-designed contamination warning systems. Key to this success was representing

the sensor placement problem as a well-known operations research problem—the

p-median facility location problem (Berry et al., 2004, 2006). Subsequent and signifi-

cant improvements to this initial modeling step have led to the development and

distribution of the TEVA-SPOT software toolkit, a set of tools to help municipal

water utilities locate sensors in their water networks (Berry et al., 2010, 2009; Murray

et al., 2009, 2010; Watson et al., 2009).

For the remainder of this section, we describe the key steps to locating sensors

that monitor our drinking water supply, focusing on some of the optimization

models available in the TEVA-SPOT software toolkit. We provide an intuitive

interpretation of the models, the basic mathematical formulation, and the results

from such analyses. See Hart and Murray (2010) for a review of a number of

different optimization models for placing sensors in water distribution systems.

4.3.1 Locating Sensors to Monitor Drinking Water Networks

A drinking water network can be represented as a set of nodes connected by pipes.

The level of resolution of the network can vary from application to application. For
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example, a single node could represent a single house in some applications, while it

may represent an entire neighborhood in others. The water flow throughout the

network can be quite complex and is determined by time-dependent demand

patterns and operation of pumps and tanks.

Consider a contaminant injected at a single node in the network. The injected

contaminant would then move through the network, following a water system’s

complex flow patterns. If the contaminant flows past an installed sensor, the

contaminant may be detected and actions mitigating the contamination can be

taken. Formulating an optimization model to locate sensors requires clarifying

what makes one placement of sensors preferable to another, and this is complicated

by a number of factors including a system’s complex flow patterns, questions

regarding where the contaminant may be injected, and the inherent stochasticity

of sensor equipment and detection events.

The initial models of the sensor placement problem assume perfect sensors and

simplyseek tomaximizecontaminationdetectioncoverage (LeeandDeininger,1992).
With this objective, a node v in the network is considered covered, if a contaminant

injection at v is detected at any point in the future by some sensor. While such

objectives provide a good starting point for investigation, they can produce some-

what unrealistic results. For example, consider a simple network with two nodes in a

line—an upstream node and a downstream node. Suppose that we have to place a

single sensor at one of the two nodes. For a contaminant injection at the upstream

node, a detection coverage objective would evaluate placing the sensor in either node

as equally good because both locations detect the injection. This objective function

misses the fact that, in reality, a detection after contaminatedwater has reachedmany

households is not as valuable as a detection before contaminated water has reached a

large segment of the population.

That is why modern sensor placement formulations consider an objective func-

tion that minimizes the impact of a contamination event (Berry et al., 2006).

The impact of a contamination can be defined in terms of the number of people

exposed to the contaminant, the key facilities exposed to the contaminant, the

length of time of the exposure, or even a combination of such factors (Hart

et al., 2012). The sensor placement analysis takes as input a set of contamination

scenarios, with each scenario providing a contaminant injection point, injection

rate, and length of time for the injection. The analysis can seek to position sensors

throughout the network to minimize the expected impact of contamination, taken
over the provided contamination scenarios (Berry et al., 2006). It is possible that

placing sensors to minimize expected impact does not adequately detect a few

contamination scenarios with severe impacts. For this reason, we may seek to

minimize the impact of the worst contamination scenario or to minimize other

risk measures, such as the value at risk or the tail-conditional expectation (Watson

et al., 2009).

Computing good sensor locations in large water networks, for many contamina-

tion scenarios, using meaningful objective functions, as informed by water flow

simulations, leads to a complex combinatorial optimization problem. A key insight

by Berry et al. (2006) shows how a variant of this problem can be reduced to the
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well-known p-median problem. This initial step assumes perfect sensors and

focuses on minimizing expected impact. Subsequent work expands on the insight

to incorporate imperfect sensors and objective functions that incorporate other risk

measures (Berry et al., 2009; Watson et al., 2009).

4.3.2 Formulation and Tractability

A basic p-median model for computing good sensor locations can be constructed as

follows. LetA be a set of contamination scenarios. Each scenario a 2 A completely

describes a contamination event, including details such as injection point(s), injec-

tion rate, start and stop times, type of contaminant, etc. For each scenario, a high-

fidelity water flow simulator such as EPANET (Rossman, 2000) is used to compute

a time series of the impact of the scenario. Let da(t) denote the impact of scenario a
at time t after the start of the simulation.

Let V denote the set of potential sensor locations. For this initial model, we

assume perfect sensors that detect the contaminant when concentrations exceed a

given threshold. For a contamination scenario a and a sensor location j, let gaj
denote the earliest time at which concentrations of the contaminant at location

j exceed the detection threshold. Under the perfect sensor assumption, gaj is the time

at which a sensor installed at j sounds an alarm for scenario a. Let daj ¼ d(gaj) be
the impact of scenario a if it is first detected by a sensor at location j. Some sensor

locations may never detect the contamination scenario. For such locations, we set

daj to be the total impact of the undetected contamination scenario. In reality, if a

scenario is not detected by any sensor, it might be detected by another means,

such as reported illnesses.

Let aa denote the probability of encountering contamination scenario a, and
suppose we are limited to installing at most p sensors. We can formulate the

problem of finding sensor locations that minimize the expected impact of contami-

nation over all scenarios as:

min
x;s

X

a2A
aa
X

j2V
dajxaj (4.6a)

s:t:
X

j2V
xaj ¼ 1; a 2 A (4.6b)

xaj � sj; a 2 A; j 2 V (4.6c)

X

j2V
sj � p (4.6d)

sj 2 f0; 1g; j 2 V (4.6e)
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xaj 2 f0; 1g; a 2 A; j 2 V: (4.6f)

The decision variables sj denote whether location j is chosen for sensor installation,
with 1 meaning a sensor is installed and 0 meaning a sensor is not installed. The

variable xaj is an auxiliary variable that has value 1 if contamination scenario a is

first detected by a sensor at location j, and is 0 otherwise. The objective function in

(4.6a) computes the expected impact of contamination over all scenarios, with the

inner sum computing the impact of scenario a. Constraint (4.6b) ensures that each
scenario is first detected by exactly one sensor; constraint (4.6c) ensures that

scenario a can only be detected by a sensor at location j if a sensor is installed at

location j; constraint (4.6d) ensures that no more than p sensors are installed; and

constraints (4.6e) and (4.6f) ensure binary decision variables.

To gain an intuitive understanding of model (4.6), imagine having a set of five

potential sensor locations, V ¼ {1, . . ., 5}, and facing a single contamination

scenario, a. Suppose we are given an installation plan, for example s1 ¼ s2 ¼ s3
¼ 1 installing sensors in the first three locations, and s4 ¼ s5 ¼ 0. The xaj variables
are simply accounting variables that help us compute the impact of scenario a under
the given sensor installation plan. Let j∗ be the location with an installed sensor—

either 1, 2, or 3 in our example—with minimum impact daj. When the model

computes values for the variables xaj, because of (4.6a)–(4.6c), all xaj are set to

zero except xaj
∗ . Thus, model (4.6) calculates the impact of the scenario under the

given sensor installation plan as being equal to minjjsj ¼ 1daj. This makes intuitive

sense since the sensor that sounds the contamination alarm first is the installed

sensor giving minimum impact to the contamination scenario. The reasoning in this

example also shows that we could relax binary constraint (4.29) in favor of

continuous bounds between 0 and 1.

Model (4.6) has the form of the classic p-median facility location problem (see,

e.g., Daskin 1995). Sensor locations correspond to facility locations, scenarios

correspond to demand points, and impacts daj correspond to distances between

demands and facilities. Recognizing this gives us access to a rich set of tractability

improvements based on a large literature devoted to the p-median problem. It is not

our purpose here to review such results for the p-median problem. But, we do note

that reformulating model (4.6) to aggregate similarly performing sensor locations,

dual-based methods employing Lagrangian relaxation, integer-programming based

model reductions, and special-purpose heuristics have been widely studied.

Model (4.6) overlooks two important factors in sensor placement. First, sensors

are not perfect. They can fail to sense a contaminant (a false negative), and they can

alarm when there is no contaminant (a false positive). Berry et al. (2009) show how

to incorporate such imperfect sensors into model (4.6). The basic idea of the

reformulation is to change the meaning of the variables xaj to the probability that

scenario a is first detected by a sensor at location j. These probabilities can be

computed by ordering sensor locations in a temporal manner, with locations that

have an opportunity to detect the contamination first coming first in the ordering.

The probability calculations lead to a nonlinear program, which can be linearized at
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the cost of a significant increase in the number of decision variables. Nevertheless,

the linearized program is able to compute good sensor locations when the sensors

are imperfect.

The second issue with model (4.6) is that an objective function minimizing the

expected impact over all scenarios can leave some contamination scenarios with

extraordinarily high impacts undetected. This is especially a problem if there is

reason to believe an adversary could observe the design of our system and exploit it.

Even if there is no adversary observing our designs, simply determining scenario

probabilities can be extremely difficult. In either case, we may still have interest in

the vulnerability of our system to a collection of posited attack scenarios. In this

setting, we should minimize the impact of the worst contamination scenario. In

other words, we would like to replace objective (4.6a) to change the formulation to

min
x;s

max
a2A

X

j2V
dajxaj

s:t: constraints ð6bÞ � ð6fÞ:
(4.7)

Model (4.7) has a natural interpretation: First we select sensor locations s; second,
an adversary, knowing our sensor locations, selects the worst contamination sce-

nario. Such a model more naturally applies to a terrorist action than does

model (4.6). Solving model (4.7) is possible through a standard linearization

min
x;s;y

y

s:t:
X

j2V
dajxaj � y; a 2 A

constraints (4.6b)--(4.6f);

(4.8)

that is equivalent to the p-center problem. Watson et al. (2009) indicate that it is

possible to have both a low expected impact over all scenarios and a low impact for

the worst scenario. While we do not detail it here, additional risk measures

including value at risk and tail-conditional expectation are explored in Watson

et al. (2009).

4.3.3 Practical Implications and Insights

Practical instances of the sensor location problem can be so large that they do not fit

in the memory of a typical 32-bit workstation. One example in the literature

involves a network with about 12,000 nodes, with sensor locations hedging against

39,000 contamination scenarios. A naive formulation of models (4.6) or (4.7)

would require about a half billion variables (Berry et al., 2006; Murray et al., 2009).

Even heuristics for sensor placement require on the order of 8 GB of memory to
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solve such an instance. Through careful reformulations and special purpose

algorithms, researchers have been able to find near-optimal solutions to such

instances in seconds on a standard laptop computer.

The EPA and Sandia National Laboratories have packaged these methods for

computing water sensor locations for municipal water systems in a software

package called TEVA-SPOT (Berry et al., 2010), which is available for free

download on the Internet (Sandia National Laboratories, 2012). The package has

been used to analyze the networks of at least 18 water utilities, and the results have

been used to operationally deploy sensors in at least eight utilities. The mean

savings from sensor deployment, in terms of reduction in the expected economic

impact of a contamination incident if one were to occur, ranged from $1 to $33.4

billion with a median of $5.8 billion. The expected economic impact of the worst

contaminations, those in the 95th percentile, dropped by a median of $19 billion. In

more than half of the utilities studied, the expected number of fatalities expected

from a contamination dropped by at least 50% (Murray et al., 2009).

The long-term research efforts in water sensor placement have significantly

increased the use of operations research in the water resource planning community.

Interactions between government, academia, and industry have prompted a realistic

mathematical model design and resulted in theoretical, computational, and opera-

tional advances. The resulting software continues to be improved and employed

by the EPA, with the goal of securing the more than 50,000 water utilities across

the USA.

4.4 Securing a Border Against a Nuclear Smuggler

The international atomic energy agency (IAEA) maintains an Illicit Trafficking

Database (IAEA, 2012) to which over 100 nation states contribute by reporting

events involving illicit trafficking, or other unauthorized possession, of nuclear

material and other radioactive material. From 1993 to 2011 over 2,000 such

incidents were reported, and about 400 incidents involved criminal activity. During

this same time period, 16 cases involved weapons grade material, i.e., highly-

enriched uranium (HEU) or plutonium. Some of these seizures involved kilograms

of material, and some represented small samples from a larger unsecured stockpile.

The IAEA reports that when such information is available, the majority of the cases

concerned traffickers seeking financial gain by attempting to sell illicit material.

That said, the motives of transporters of illicit nuclear material may change as the

material changes hands following its theft and moves along the “supply chain”

required to form a weapon. Many of these cases involve perpetrators characterized

as being amateurs, but the IAEA reports that some incidents involve organized,

professional groups with a history of illicit trafficking in nuclear material. The cases

involving HEU and plutonium appear to have originated in Russia or neighboring

states, where material was not adequately secured after the fall of the Soviet Union.
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The US Department of Homeland Security’s Domestic Nuclear Detection Office

(DNDO) is charged with developing the global nuclear detection architecture

(GNDA). This involves coordination with multiple federal agencies, including the

Department of Energy (DOE), the Department of Defense, the Department of State,

the Nuclear Regulatory Commission, and coordination with foreign partners. For

example, the DOE’s National Nuclear Security Administration (NNSA) works with

foreign governments to

deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials

across international borders and through the global maritime shipping system. The goal is

to reduce the probability of these materials being fashioned into a weapon of mass

destruction or a radiological dispersal device (“dirty bomb”) to be used against the USA

or its key allies and international partners (NNSA, 2012).

There is a strong need for developing better radiation detectors that can

sense material like HEU, which can be difficult to detect. At the same time,

these detectors should be able to differentiate threats from naturally occurring

radioactive material. There is much research in developing effective detectors of

radioactive material. That said, there is also important research in how to best

deploy and operate these detectors on a large-scale transportation network. Much of

the GNDA deployment effort to date, both domestically and abroad, has involved

NNSA and DNDO installing radiation portal monitors (RPMs) at seaports, airports,

and rail and road border crossings. DNDO also equips Customs and Border

Protection officers with mobile detectors and has proposed development of addi-

tional mobile detection units, which could be deployed in a surge operation,

informed by shorter time-scale intelligence. There are initiatives that seek to secure

cities and to deal with difficult challenges such as detecting nuclear smuggling

between authorized ports of entry, with small maritime craft, and via general

aviation (GAO, 2011).

4.4.1 Locating Radiation Detectors

DNDO has indicated an effort to incorporate increased analytical rigor in its devel-

opment and analysis of the GNDA (Domestic Nuclear Detection Office, 2012-02).

There is a small but growing literature in operations research concerning rigorous

analytical models for detecting nuclear material. Wein et al. (2007) propose

improvements to an existing spatial deployment of RPMs at a foreign port to increase

effectiveness of the system without increasing congestion. Gaukler et al. (2011) and

Wein et al. (2006) both employ queueing networkmodels to characterize congestion

in a multilayered security system at a seaport, and they seek to optimize the inspec-

tion strategy, understanding the tradeoff between detection probability and

congestion. For further work on inspection strategies at a single port, see Boros

et al. (2009), Madigan et al. (2007), McLay et al. (2011), and Stroud and

Saeger (2003).Atkinson et al. (2008) develop amodel of a radiation detection system
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in and around a city, wherein an adversary attempts to get as close as possible to a

target in a city center before detonating a nuclear weapon. Cheng et al. (2009) and

Hochbaum and Fishbain (2011) analyze mobile distributed detection systems, in

which nuclear detectors are mounted on a fleet of many cars—e.g., taxi cabs and/or

police cars.

In the remainder of this section, we review a strategic-level model that places

RPM detectors at seaports, airports, and rail and road border crossings. The

development of this model began as part of the DOE’s Second Line of Defense

Program (Morton et al., 2007; Pan et al., 2003) and later was coupled with physics-

based estimates of detection probabilities and adapted for US ports of entry

(Dimitrov et al., 2011). The model we review here is the simplest of a family of

models that has been developed. The simple model addresses securing the border of

a single country, for example that of Russia or the USA; deals with only stationary

detectors; and assumes that both the interdictor and the nuclear smuggler have the

same perception of the detection probabilities. Models that relax all of these

assumptions have also been developed (Morton et al., 2007; Nehme, 2009; Pan

and Morton, 2008; Sullivan et al., 2012).

A key aspect of our model is the transportation network used by the smuggler to

move the nuclear material. A smuggler starts at some origin in the network and

would like to move to some destination. The transportation network may involve

multiple modes of transport; however, our assumption of securing a single country

ensures that the smuggler crosses at most one border crossing on his way from the

origin to the destination. We restrict attention to installing radiation detectors on the

country’s legitimate border crossings.

A smuggler may be detected both by indigenous law enforcement, without

radiation detectors, and by detectors at border crossings. An intelligent smuggler

chooses an origin–destination path to maximize the probability he evades detection,

and we assume that he does so knowing the location of radiation detectors. The

interdictor does not know the type of smuggler he might face, or the smuggler’s

origin or destination. We model this lack of complete information as a probability

distribution over a range of possible threat scenarios, each specifying a possible

smuggler adversary. A threat scenario specifies the smuggler’s origin–destination

pair; the type of material he smuggles, including its mass, isotopic composition, and

geometry; the manner in which that material is shielded, for example by lead of a

specified thickness; and the fashion in which the material is transported. Each of

these has further detail. For example, the manner in which it is transported can

include its position in a rail car or a tractor-trailer container, whether it is a single

mass or distributed in the container, and the nature of the accompanying material in

the container. All these factors—and more, concerning the type of detector, the

algorithm by which it alarms, background radiation from pavement, and whether it

has recently rained—contribute to the probability an RPM will detect smuggled

material. Subject to resource limits, the interdictor selects sites to install detectors to

minimize the system-wide evasion probability.

Following the structure of the models in the three previous sections, the timing

of the interdictor’s and smuggler’s decisions, along with the realization of the threat
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scenario, is as follows: First, the interdictor installs detectors at a subset of border

crossings, subject to a budget constraint. Then, a threat scenario unfolds and the

smuggler selects an origin–destination path. The manner in which the smuggler

chooses a path is important in determining the best placement of detectors. The

model we describe is conservative in that it assumes the smuggler has full knowl-

edge of detector locations and detection probabilities. It is possible to develop

models with limited information or different strategies governing the smuggler’s

behavior. Solutions derived from the conservative model we present have a

guaranteed level of performance against more limited adversaries; however,

solutions from models from limited adversaries typically do not guarantee perfor-

mance against an intelligent and informed adversary. While the model we describe

specifies a smuggler origin and destination, mathematically, this includes as an

important special case a smuggler who optimizes over origin, destination, or both.

4.4.2 Formulation and Tractability

We formulate the model just sketched using the following notation:

Set

k ∈ K Border checkpoints

Data

b Budget for installing detectors

ck Cost of installing detector at k

Random Elements

o ∈ O Threat scenarios

fo Probability mass function on threat scenarios

pk
o Evasion probability at k, under o, when no detector is installed

qk
o Evasion probability at k, under o, when a detector is installed

gk
o Evasion probability on origin–destination path through k, excluding checkpoint k

Decision Variables

xk Binary variable indicating whether (1) or not (0) a detector is installed at k

yo Evasion probability under threat scenario o

The formulation of the one-country smuggler interdiction model is then:

minx;y
X

o2O
foyo (4.9a)

s.t.
X

k2K
ckxk � b (4.9b)

yo � gok p
o
k ð1� xkÞ; k 2 K;o 2 O (4.9c)
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yo � gok q
o
k xk; k 2 K;o 2 O (4.9d)

xk 2 f0; 1g; k 2 K: (4.9e)

Constraints (4.9b) and (4.9e) ensure yes–no detector installation decisions,

which satisfy the budget constraint. Constraints (4.9c) and (4.9d), coupled with

minimization of the objective function, define the evasion probability for a smug-

gler, conditional on threat scenario o, as

yo¼ max
k2K

gok p
o
k ð1� xkÞ ; gok qok xk

� �
;

which encodes the assumption that the smuggler chooses a border crossing to

maximize his evasion probability. If the smuggler chooses checkpoint k, then his

evasion probability is the product of: (a) his evasion probability from his origin to

the checkpoint, (b) his evasion probability from just past the checkpoint to his

destination, and (c) his evasion probability through the checkpoint itself. The

evasion probability (c) depends on whether a detector is installed at k, and hence

is either pk
o if xk ¼ 0 or qk

o if xk ¼ 1. The product of the probabilities in (a) and (b)

is gk
o. The value of gk

o can be precomputed by finding maximum evasion

probabilities from the origin to each checkpoint, k, and from each checkpoint to

the destination, using maximum-reliability-path calculations.

While there are an enormous number of factors that affect the detection proba-

bility of an RPM, under mild assumptions, we can aggregate many of these and

achieve an equivalent model (Dimitrov et al., 2011). This significantly reduces

model complexity. We can further simplify model (??) by replacing constraints

(4.33) and (4.34) with

yo � rok ð1� xkÞ; k 2 K;o 2 O; (4.10)

where rk
o ¼ max(gk

opk
o � qomax , 0) and qomax ¼ maxk ∈ Kgk

oqk
o. The resulting

model is equivalent, with its optimal value differing from that of model (4.9) by the

constant ∑o ∈ Of
oqomax.

Still, the linear-programming relaxation of model (4.9) is so weak that the

required computational effort to solve realistically sized instances is prohibitive.

We can gain computational traction in model (4.9) by observing that constraints

(4.10) have the form of the so-called mixing inequalities (see Miller and

Wolsey 2003 and references therein). This opens two computationally promising

avenues. One is rooted in using an exponentially sized class of valid inequalities

(Günlük and Pochet, 2001; Pochet and Wolsey, 1994), which can be separated in

polynomial time by solving an appropriately defined shortest-path problem. This

avenue has been pursued for model (4.9) (Morton et al., 2007) and for variants of

model (4.9) where the smuggler and interdictor have differing perceptions of

evasion probabilities, respectively (Pan and Morton, 2008; Sullivan et al., 2012).

The second avenue is to use a so-called extended formulation for the mixing
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inequalities (Miller and Wolsey, 2003; Pochet and Wolsey, 1994) to tighten the

formulation. This has been developed for model (4.9), and we describe this

extended formulation next (Nehme and Morton, 2009).

Thinking from smuggler o’s perspective, we sort the transformed evasion

probabilities: rok(1, o) � rok(2, o) � � � � � rok( j K j , o). Here, k(i, o) denotes smuggler

o’s i-th best checkpoint. We define Dk(i, o)
o ¼ rok(i, o) � rok(i + 1, o), i ¼ 1, . . ., j K

j , as the reward the interdictor collects by forcing smuggler o from his i-th to his

(i + 1)-st best checkpoint. And, we introduce decision variable uk
o, which takes

value 1 if smuggler o is forced to a checkpoint lower than k on this sorted list. With

boundary conditions rok( j K j + 1, o) ¼ 0 and uok(0, o) ¼ 1 we have:

yo ¼
XjKj

i¼1

rokði;oÞðuokði�1;oÞ � uokði;oÞÞ ¼ rokð1;oÞ þ
XjKj

i¼1

ðrokðiþ1;oÞ � rokði;oÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Do

kði;oÞ

uokði;oÞ:

(4.11)

Upon substituting (4.11) we have the following reformulation of model (4.9):

max
x;u

X

o2O

X

k2K
foDo

k u
o
k (4.12a)

s.t.
X

k2K
ckxk � b (4.12b)

uok � xk; k 2 K;o 2 O (4.12c)

uokði;oÞ � uokði�1;oÞ; i ¼ 2; . . . ; jKj;o 2 O (4.12d)

0 � uok � 1; k 2 K;o 2 O (4.12e)

xk 2 f0; 1g; k 2 K: (4.12f)

The constraints of model (4.12) capture those of model (4.9) with the addition of

constraints (4.12c)–(4.12e) to define uok; i.e., they allow reward Do
k to be collected

only if a detector is installed at checkpoint k and at all the checkpoints that smuggler

o ranks above k. The variable uok is naturally binary, given that we require xk to be

binary. Model (4.12) has a much tighter linear-programming relaxation than that of

model (4.9), allowing us to solve large instances.

4.4.3 Practical Implications and Insights

Rather than viewing constraint (4.12b) as a hard budget constraint, it typically

makes sense to study the trade-off between system performance—in this case,
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the probability we detect a smuggler—and the cost of the associated system design.

To do so, we can solve model (4.12) parametrically in the budget b to obtain the set
of Pareto efficient solutions. If we modify model (4.12) by removing constraint

(4.12b) and instead maximizing the objective function

X

o2O

X

k2K
foDo

k u
o
k � l

X

k2K
ckxk;

where l parametrically ranges over positive values, we can obtain a subset of Pareto

efficient solutions. Specifically, we obtain those that are extreme points of the

concave envelope of the efficient frontier (Kuhn and Tucker, 1951; Nehme and

Morton, 2010). Note that when relaxing the model in this way, so that we have a

soft budget constraint, model (4.12)’s constraint set has a dual-network structure.

The constraint matrix is totally unimodular, as each structural constraint has

one + 1 and � 1.

The relaxed model, with the soft budget constraint, has the form of the selection
problemofBalinski (1970) andRhys (1970). This leads to a very special structure of the

extreme point solutions of the concave envelope of the efficient frontier. In particular,

these solutions are nested (Hochbaum, 2009; Nehme and Morton, 2010; Witzgall and

Saunders, 1988); i.e., if x∗ (b) denotes checkpoints which receive detectors under
budget b for one such extreme point and x∗ (b0) for an extreme point under a larger

budget, then x∗ (b) � x∗ (b0) in the vector sense. In words, this notion of

nestedness means that the optimal set of checkpoints to receive detectors at budget

b is a subset of those at a larger budget b0. This has important practical implications

because usually the border, or another system we seek to protect, is incrementally

hardened over time as additional funds become available. It is typically impossible,

or too expensive, to completely redesign the system as the budget grows. This result

yields budget increments at which optimal solutions are naturally nested.

Additional, geographic structure of optimal solutions to model (4.12) exists as

we parametrically range the budget, b (Dimitrov et al., 2011). In particular, as the

budget grows, the checkpoints that receive detectors fall in geographic clusters.

In model instances for installing detectors on the land border crossings of the

contiguous US, four geographic clusters emerge: crossings east of Big Bend in

Texas, the remaining crossings on the US–Mexico border, crossings in the Great

Lakes region and the rest of the northeast, and crossings west of the Great Lakes.

The reason for this structure in optimal solutions is as follows: If we are dealing

with an intelligent and well-informed smuggler, then installing detectors at only a

subset of nearly identical border crossings does not improve our ability to detect

the smuggler. Instead, we must equip all checkpoints in a geographic cluster in

order to force the smugger to select an alternate path with lower evasion

probability.
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4.5 Discussion and Conclusions

The four applications discussed above—delaying a nuclear weapons project,

assessing vulnerabilities in the electric power grid, detecting contaminants in

drinking water, and securing our border against nuclear smugglers—exemplify

the utility and the development of interdiction modeling. Analyses using interdic-

tion models have made important contributions at multiple levels of government.

They can be used to analyze and harden our critical infrastructure systems as well as

to look for vulnerabilities in an adversary’s system. Standard pathways for devel-

oping interdiction models are a useful first step in analysis, often delivering key

insights. In addition, thoughtful, problem-specific interdiction models and optimi-

zation methods can elevate the interdiction approach to directly applicable, large-

scale settings.

Sometimes, as is the situation for some of the case studies we present, it may take

a decade of research and a sequence of insights into a problem to develop the

special-purpose methods required to deliver specific and timely guidance on large-

scale interdiction problems. Building on initial, stylized models, such an effort can

have a marked operational impact. Success can also depend on persistence in

delivering the insights from analyzing interdiction models.

Having an impact in practice can further hinge on putting forward compelling

arguments, perhaps even based on detailed analysis, showing that less principled

approaches to interdiction can yield inferior results, to potentially devastating

effect. The two foremost approaches that we categorize as being less principled

involve: (a) ignoring the distinction between an intentional attack and a random

disruption and (b) ignoring the underlying system. As we discuss above, there is a

rich literature on assessing the reliability of a system to random component

failure. However, in making a modeling error of type (a), we presume our

adversaries will behave similarly. There is ample evidence that this is simply

not the case, particularly when our adversaries have the will and means to become

well informed as to our system’s design, and defenses, and when they seek to

inflict maximum damage.

Modeling errors of type (b) are all too pervasive in practice, and even in our

literature. In a typical such setting, an analyst develops a measure of an individual

component’s value. The analyst then “scores” each of the components in the system

and sorts to obtain a priority list for components that should be interdicted, or

hardened against interdiction. In interdicting a maximum-flow network or in

interdicting a shortest-path network, this amounts to forming a sorted list of arcs

based on their capacities or lengths. This ignores the fact that a system’s perfor-

mance can depend in subtle, and sometimes surprising, ways on the manner in

which the components interact and on key subsets of components, as opposed to

individual components. That such subtleties and surprises emerge from our models

with regularity is well recognized in operations research. We should not forget this

raison d’être when seeking to understand the vulnerability of our systems to

intentional attack.
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Because of their utility, interdiction models have already become a standard

element of educational curricula in many operations research programs. Some-

times, interdiction modeling is a part of advanced courses on optimization, and

sometimes it is simply included in basic, required courses on network modeling.

Giving future operations researchers a good understanding of the principles of

interdiction modeling, contrasting interdiction with less suitable approaches, and

teaching the basic modeling techniques and computational tools for interdiction,

ensures our ability to effectively detect vulnerabilities in the systems we build and

uncover such vulnerabilities in our adversaries’ systems.
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Chapter 5

Time Discrepant Shipments in Manifest Data

James Abello, Mikey Chen, and Neel Parikh

Abstract Manifest data is a log of container shipments from foreign lading ports to

U.S. unlading ports.We provide several time varying network-based representations

of this data in order to extract its most “discrepant” port pairs and contents patterns.

We treat this time varying network representation as a combinatorial set system and

use its discrepancy and firing rate (Abello et al. (2010) Detecting Novel

Discrepancies in Communications Networks, International Conference on Data

Mining, ICDM2010: 8–17, Sydney, Australia and Chazelle (2000) The Discrepancy

Method: Randomness and Complexity, Cambridge University Press) as the main

statistics to track the most “salient” network elements. The output of the entire

process is a “fossil” sub-network that encodes those port pairs and contents that

exhibit unusual time varying patterns. It is expected that substantial deviations from

these patterns will be useful triggers for further content inspections. The applicabil-

ity of the proposed techniques is not limited to manifest data.

5.1 Introduction

We obtained manifest data of foreign shipments to U.S. ports from the U.S.

Customs and Border Protection Agency (ASFOI.txt 2009). A manifest shipment
is a logical structure containing information regarding containers shipped between

an associated unique pair of ports. Each manifest shipment includes information

about one or more containers. Containers may have a free textual description of

their contents which usually consist of several packages (see Appendix 1). Each
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manifest shipment consists of a consecutive collection of fixed format manifest data

lines (each with 278 characters). The number and layout of data lines per shipment

vary. Each line has a beginning indicator character that corresponds to different

layout record types. The different layouts include information about general billing,

container type and contents, shipper, consignee, party to notify, hazardous

materials, and universal standard international symbols representing contents

marks (mrks-nbrs). We parse each line according to its layout type and use meta

field length definitions to obtain 114 variables, among which 8 are numerical, 20 are

categorical, and 76 are verbiage (see Appendix 1 for a sample of the original data).

In the sample that we use for our experimentation, we were provided shipment data

among 308 ports. There were 19,038 shipment content descriptions of 32,337

containers that used 17,199 keywords.

The goal of this work was to identify the main underlying time varying

characteristics of shipment content patterns. The expectation is that substantial

deviations from these patterns can be used as triggers for further content

inspections. We adapt the data model proposed by Abello et al. (2010) to transform

the raw manifest data into a sequence of time stamps, each with a corresponding set

of events that occur between related data entities. We explain in Sect. 5.2 how the

raw manifest data is transformed and combined into a collection of time varying

graphs. The central idea is to associate to each port pair a weighted and time ordered

contents multi-set. In this way, each triple <port, port, contents_descriptor> gets

assigned a time varying firing rate.1 In Sect. 5.3, we describe how combinatorial

discrepancy (Chazelle 2000) can be applied to “extract” the most “salient” <port,

port, contents> triples. Section 5.4 describes how these triples can be visualized

and analyzed in order to extract the most time varying atypical <port, port,

contents> triples. For a given time window, the union of these time varying

“salient” triples constitutes a historical sketch of the manifest data. This historical

sketch is, to an extent, an analog of what archeologists call a fossil. We call this

specially extracted triple collection a “data fossil” discussed in Sect. 5.5. Section 5.6

reports some of our findings and conclusions and points out some other potential

applications of our techniques.

5.2 Similarity Coupling of Shipments via Contents Vectors

5.2.1 Associating a Content Vector to Each Active Port Pair

For a particular collection of manifest data records, stamped with the same U.S.

unlading date, we associate to each pair of ports u0 ¼ (origination, destination) a

contents vector Cu0 . Cu0 encodes information about the contents shipped from an

1 See Sect. 5.3.
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originating foreign port to a U.S. destination port in all shipments present in the data.

Next, we couple two port pairs u0 ¼ (origin 1, destination 1) and v0 ¼ (origin 2,

destination 2) via a modified dot product between their content vectorsCu0 andCv0 :

wðu0; v0Þ ¼ Cu0 � Cv0

C2
u0 þ C2

v0 � Cu0 � Cv0
:

This provides us with a global weighted graph where the vertices are port pairs

and the similarity between two pairs is defined as a function of the dot product of

their corresponding content vectors. We call this global weighted virtual topology

Daily_PortPairs_Coupling. It is specified by two files. One describes the virtual

topology and the other associates to each port pair a vector label. This vector label

not only disambiguates the port pairs, but it also associates with each port pair a

multi-set of contents. The overall shipment contents are organized in a hierarchy of

Contents_Descriptors (CD for short). This hierarchy is obtained by an iterative

process that enlarges a “current” set of key words (minus stop words) depending on

their matching with the textual description of the overall container contents. By

clustering this representation according to a variety of similarity measures, we

obtain typical patterns of port pairs traffic with respect to their shipment contents.

The great majority of patterns consist of a peripheral independent subset of vertices
IP connected to a disjoint “central” subset of vertices C of high edge density.
Figures 5.1 and 5.2 illustrate some of these typical manifest data patterns where the

central set C is a clique.

A variety of other cliques were detected when clustering port pairs according to

the contents they shipped between them. The largest of such clique corresponded to

15 port pairs shipping products in the arts-crafts category originating from ports in

Panama, Brazil, Argentina, Spain, Italy, France, and Australia.

Motivated by the previous findings we extended the notion of contents vector to

an entire day of manifest data. Surprisingly, all vectors corresponding to the same

day of the week during a month of manifest data were grouped together by the

Hellinger distance.

5.2.2 Daily Manifest Shipment Content Vectors
and Hellinger Distance

Given a date x of Manifest Data, consider a vector Cx with entries labeled by the

content descriptors appearing as leaves in the Content_Descriptors hierarchy.

Each entry Cx(d) of this vector encodes the number of “items” of contents of type

d shipped on x from all foreign ports to all U.S. ports. This collection of vectors for a

consecutive interval T of days is a very high level aggregate description of the

contents shipments from all foreign ports to all US ports. It can be viewed as a matrix

M with |T| rows and |Content_Descriptors| columns. We normalize each column by
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its column sum and then normalize the resulting row by its row sum. We compute

next the Hellinger distance h(P,Q) between every pair of row vectors P andQ, which
is the 2-norm of the square roots (entry-wise) of P and Q (Lin 1991):

hðP;QÞ ¼ 1ffiffiffi
2

p ffiffiffi
P

p
�

ffiffiffiffi
Q

p���
���
2
:

The matrix formed by this collection of pair-wise Hellinger distances is used to

compute aminimumspanning tree thatwe call theHellingerTree. It is a remarkable fact

that all the vectors corresponding to the same day of different weeks are grouped

together in the Hellinger Tree. Figure 5.3 illustrates this finding for one month of

manifest data.

Up to this point we have discussed useful global aggregates that allow us to

compare port pairs shipments and even entire days of manifest data with respect

to their contents descriptors. In the next section, we discuss how we compared port

Fig. 5.1 The depicted clique is automatically extracted from the Daily_PortPairs_Coupling

graph. Each vertex corresponds to a port pair. The vertex color encodes the overall number of

pieces shipped between the two ports. The edges encode the contents similarity between the

corresponding two port pairs. Five nodes represent shipments originating from Rotterdam

(Netherlands) and Anvers (Belgium). The remaining two nodes correspond to shipments from

Veracruz (Mexico) and Port Bustamante (Jamaica). In the month of data used for our experimen-

tation, home and gardening products were the most common dominant goods being shipped

among all these port pairs
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pairs at the lowest level of granularity, i.e., for a given content descriptor cd, how
can we encode the traffic patterns of all the cd shipments between a port pair (u, v)
and another pair (u0, v0) during a given time interval T. The fundamental idea is to

identify each triple u; v; cdh i with a weighted set of time stamps and to treat the

entire manifest data as a combinatorial weighted time system. This encoding will

allow us to extract the most “discrepant” time varying patterns.

5.3 Shipments Traffic and Time Set Systems

To encode time varying shipment patterns, we view the entire manifest data as a

weighted multi-set system: one multi-setMu,v per port pair (u, v). Each multi-setMu,v

is represented as a matrix with dimensions time and contents descriptors. Each entry

Mu,v(t, cd) records the percentage of goods in category cd shipped from port u to

port v at time t. Alternatively, each column t encodes the weighted set of “items”

shipped at time t from foreign port u to U.S. port v. With these conventions, a

Fig. 5.2 The central set in this pattern consists of just two vertices connected by an edge. They

correspond to the two port pairs (Salalah: Oman, Newark: NJ) and (Port Sweeten: Malaysia,

Savanna: Georgia). Their shipment patterns dominate all the other port pairs in the peripheral set

even though the port pairs in the peripheral set are not similar among each other. An alternative

view is that the multi-set of good shipped among the central two vertices is approximately equal to

the disjoint union of the multi-sets shipped by the peripheral vertices
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row labeled cd is nothing but a time series keeping track of the shipment activity

from port u to port v of contents labeled cd. Dually, for any fixed type of contents

cd the set of all quadruples u; v; t; cdh i such that Mu,v(t, cd) is nonzero defines a

time varying bipartite graph encoding all of the shipments of contents of type cd
from foreign ports to U.S. ports for t varying in a particular time interval. This

bipartite graph can be viewed as a matrix of port pairs and time where each entry

encodes the cd shipments “volume” from one port to another at a particular time

t. Notice that we use percentages rather than absolute volume counts because

different content types have quite different volume units (e.g., cars vs. paper

rolls). A natural question is: which port pairs may be considered “salient” with

Fig. 5.3 The Hellinger Minimum Spanning Tree of one month of Manifest Data. Every vertex

represents one day from January 30, 2009, up to February 28, 2009. The number next to the vertex

corresponds to the actual date. The weight of an edge (u, v) is equal to the Hellinger distance

between the two corresponding content vectors Cu and Cv
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respect to their time varying shipments of contents labeled cd? Certainly those

pairs whose shipment activity is above the average should be considered “salient.”

A more refined answer is that “salient” port pairs are those whose shipment
activity patterns deviate substantially from the overall activity pattern of

shipments with respect to a particular type of contents. As an illustration consider

the following not so hypothetical statement: “During the last decade, it has been

observed that most shipments of electronics to the U.S. originated in certain

subset of foreign ports during a particular month. However, quite recently a

substantial shipment volume is originating from a different port set.” At a very

high level of granularity, this type of question can be answered by using a well-

designed set of queries formulated in standard query languages applied to appro-

priate historical data. However, in a variety of streaming settings, we want to be

able to provide summaries of “salient” pairs of entities that exchange commodities

at different time varying rates. For this setting, combinatorial discrepancy (Abello

et al. 2010) has been proposed as a complementary tool to more traditional

analysis of discrete time varying “traffic.” We next introduce combinatorial

discrepancy and its adaptation to the analysis of time varying graphs.

5.3.1 Weighted Time Subsets

Assume that a time interval T of interest is given. A stream of T time-stamped and

cd-labeled triplets e ¼ u; v; cdh i (that is, a shipment stream of contents labeled cd)
can be viewed as a collection of weighted subsets of T, one for each e.

By considering only those nonzero entries in Mu,v(ti, cd) and letting Vol(e, ti) ¼
Mu,v(ti, cd) > 0, we associated each pairing e with the multi-set {Vol(e, ti)} that

encodes both the times and nonzero shipment volumes of cd contents from a foreign

port u to a U.S. port v. Alternatively, each time t is weighted by the volume

of cd units shipped at that time. We refer to the unweighted active times by

Tðe; tÞ ¼ ti:Volðe; tiÞ>0f g.
This view of a shipment stream (as a collection of weighted subsets of T, one per

edge) enables the study of manifest data shipments as combinatorial set-systems.

The discrepancy of such a system provides us with a novel mechanism to spot those

port pairs (u, v) whose shipment traffic exhibits a pattern that is certainly out of the

ordinary. Before we adapt the formulation of combinatorial discrepancy to the

context of manifest data, we use the introduced notions to define a Time Varying
Manifest Shipment Graph and its associated Firing Rate Sequences.

5.3.2 Manifest Data as a Time Varying Graph

The Manifest Shipment Graph MSG(T) is a time varying bipartite graph. One set of

vertices consists of all port pairs u; vh i shipping contents during a time interval T,
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and the other set of vertices consists of all the content types appearing in

the corresponding Contents Descriptors records. A pair u; vh i; cdð Þ is an edge

e in the MSG(T) if at some time t in T, the foreign port u shipped contents of

type cd to the U.S. port v. Each such edge e has associated the volume weighted

sequence of time stamps Volðe; tiÞ ¼ Mu;vðti; cdÞ>0
� �

. Each such weighted subset

of T keeps track of the fact that at time t a shipment of type cd was sent between the
pair of ports u; vh i with volume Volðe; tiÞ ¼ Mu;vðti; cdÞ>0.

5.3.3 Cumulative Frequencies

For each edge e, we use the symbol Ve; tk k to refer to the cumulative sum of

Vol(e, ti) for ti � t and we let Te,t denote the corresponding unweighted set of time

stamps ti:Volðe; tiÞ>0f g . The cardinality of Te,t is then just the unweighted

frequency of activity up to time t of the edge e.

5.3.4 Firing Rate Sequences

At each time t, each edge e ¼ ((u, v), cd) has a “natural” weighted firing

rate (velocity) equal to Vðe; tÞk k=t. In the unweighted case, the firing rate becomes

Te; tj j=t . For a time interval T, the firing rate sequence f(e) of the edge

e ¼ u; vh i; cdð Þ is f ðeÞ ¼ Vðe; tÞk k=t for t in Tf g. This can be naturally extended

to any subset of edges, port pairs, or cd contents by summation.

Firing rate sequences provide a mechanism to pulse the traffic “behavior” of port

pairs vs. contents, or subsets of port pairs (i.e., subgraphs). The central idea is to

compare the firing rate sequences of subsets of (port pairs, contents) with the firing

rate sequence of the overall shipment traffic in which they reside. This comparison

is facilitated by the use of combinatorial discrepancy, which is introduced next.

5.4 Combinatorial Set System Discrepancy

The notation in this section follows that used in Abello et al. (2010). Given a

collection of subsets St ¼ {Te, t: e is an edge of MSG(T)} and a two-coloring

function Chi:T ! �1; 1f g, the discrepancy of the edge e at time t with respect to

the coloring Chi is denoted by Chi(e, t) and is given by

112 J. Abello et al.



ChiðTe; tÞ ¼
X

ChiðtiÞ : ti 2 Te; tf g:

The discrepancy of a vertex with respect to a coloring function Chi is the sum of

the discrepancies of the edges incident to it (similarly for any arbitrary but fixed

subgraph Z). This Chi function keeps track through time of the “sign balance” of a

time-ordered subsequence of elements of T with respect to the two-coloring Chi.

The Chi_discrepancy of St is equal to the max{Chi(Te,t): Te,t in St}. DISC(St), the
discrepancy of St, equals the minimum of the Chi_discrepancy(St) over all

colorings Chi.

From basic results in combinatorial discrepancy (Chazelle 2000), it follows if t0

is the maximum time when any edge is active, and mt0 is the total number of edges

active up to time t0, the maximum discrepancy of our defined set systems is less than

or equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� t0 � lnð2mt0 Þ

p
. We use this result to give to every edge e (and

vertex x) at time t, a discrepancy-based weight Chi Weightas follows:

Chi Weightðe; tÞ ¼ Chiðe; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�t0� lnð2mt0 Þ

p���
���

Chi Weightðx; tÞ ¼ Chiðx; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�t0� lnð2mt0 Þ

p���
���:

This Chi Weight measures the difference between the Chi-value of an edge

(or vertex) and the discrepancy upper bound.

5.4.1 Discrepant Edges and Vertices

An edge e ¼ u; vh i; cdð Þ or vertex x is called i-discrepant if its discrepancy weight

Chi Weight(e, t) is i-standard deviations away from the mean of the distribution of

the Chi-Weights of all the edges present up to time t of the form u0; v0h i; cdð Þ. Notice
that this definition is for a fixed type of cd contents. It provides us with a mechanism

to identify those port pairs u0; v0h i whose behavior is “salient” with respect to

shipments of a particular type. High absolute discrepancy is a good indicator for

activity patterns substantially different from the activity pattern of the entire

manifest data for a particular type of contents. Edges with quite different overall

activities may have close Chi Weight. This can be interpreted as a strong indicator

that their activity patterns are “similar” even though one edge may be vastly more

active than another. Those edges (vertices) with discrepancy weight close to zero

tend to have activity patterns that are more difficult to spot, i.e., they are not very

“salient” from the discrepancy point of view.
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5.4.2 Coloring Function

Besides a random coloring, we used in our experiments a coloring that implicitly

keeps track of long increasing or decreasing sequences of firing rates. This is done

by comparing, at each time t > 1 of interest, the firing rate of the entire manifest

shipment graph (a.k.a. the system) with the firing rate of an edge or vertex that is

active at that time t. If both firing rates increase or decrease, we assign to that

particular t the color value +1. If they disagree, we assign to that particular t the
color value �1. We refer to this coloring as the ascend descend coloring. It encodes

the level of firing rate agreement or disagreement that a particular edge or vertex

has with respect to the firing rate of the entire system.

5.5 Fossil Visualization: Static Versus Dynamic Views

5.5.1 Static Views

Figures 5.4 and 5.5 are static views of the Manifest Shipment Graph. We use node

link diagrams to depict the bipartite Manifest Shipment Graph described in

Sect. 5.3. The two node types are differentiated by color. Green nodes represent

port pairs and blue nodes represent contents. Edge attributes are encoded with edge

color and edge thickness. The edge color encodes discrepancy weight with respect

to ascend descend coloring or random coloring and it is modeled as a heat map,

while the thickness of an edge encodes the firing rate.

High degree nodes represent highly active shipments. For instance, a blue node

b with a high degree indicates that the content represented by b is being shipped by

a high number of different port pairs. Similarly, a green node g with a high degree

indicates that the port pair represented by g carries shipments with a large variety of

different contents. As an example, in Fig. 5.4, node 030 representing the content

<Business Industrial> and node 583092704 representing the port pair

<Kaohsiung, China to Los Angeles, CA> are nodes with high shipment activity.

“Salient” edges (i.e., edges with maximum firing rate and maximum discrepancy

weight) are represented as the thickest and reddest edges of the graph. This

representation distinctly separates the “salient” edges from the remaining edges.

“Salient” edges are those that have been highly active up to time t and are currently
those edges that deviate the most from the overall behavior of the entire system.

5.5.2 Dynamic Views

Even though color and thickness convey useful static information, about vertices

and edges, they are limited in capturing time varying behavior. In order to encode

time varying patterns, we need a mechanism that keeps track of “salient” nodes or
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Fig. 5.4 A visualization of the cumulative maximum spanning forest with ascend descend

coloring of manifest data from January 30, 2009, up to February 28, 2009. Neighborhoods

containing port pair and content nodes with high degree are labeled
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Fig. 5.5 A visualization of the cumulative maximum spanning forest with random coloring of

manifest data from January 30, 2009, up to February 28, 2009. Neighborhoods containing the same

nodes from Fig. 5.4 are labeled
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edges as they occur in the input stream. Such a mechanism must maintain a global

sketch of the entire graph together with a “few” local markers of temporal notoriety.

Temporal notoriety is maintained by the discrepancy weight with respect to the

random coloring and ascend descend coloring. Discrepancy with respect to random

coloring targets those edges whose activity sequence exhibits some clearly discern-

ible pattern (i.e., they are not random). On the other hand, discrepancy with respect

to the ascend descend coloring detects those edges with substantial time periods of

bursty behavior. Their combination marks at each time t those few edges whose

time series activity is “peculiar” in the context in which they occur in the data

stream. Collecting these “peculiar” edges through time provides an automatic

summary (i.e., a small subgraph) of the evolving input stream. We call this

automated summary a fossil. To maintain a global mental image of the evolving

edge stream, we maintained a maximum discrepancy spanning forest (MDSF) into

which the inclusion of an edge is governed by its discrepancy weight with respect to

an a priori chosen coloring scheme (Abello et al. 2010). The MDSF provides a

mental map of the data, and by restricting the fossil edges to be part of the MDSF,

we obtained a fossil subgraph that records the most temporal “salient” edges.

In summary, by computing a time varying maximum discrepant spanning forest

of the manifest shipment graph, we extracted those triples <foreign port, U.S. port,

ContentsDescriptor> whose shipment activity exhibits unusual patterns of bursty

behavior. Notice that what we call a “fossil” is more than just a selection of those

edges with high discrepancy at a particular time t. That is, an edge becomes part of

the fossil only if it is selected as a highly discrepant edge a “high” number of times.

It is truly a record of time varying shipment activity patterns. That is why we refer

to it as a “fossil.” As seen in Figs. 5.6 and 5.7, a subset of all edges in the fossils

are highlighted and marked according to the respective coloring schemes (See

Appendix 2 for sample edges included in the fossil and Appendix 3 for a complete

list of “salient” edges selected by both coloring schemes through time.).

5.6 Conclusions and Future Work

This chapter presented several novel techniques to extract from manifest data

“unusual” time varying shipment patterns. The proposed techniques are based on

content vector representations of each port pair. From this collection of vectors,

a variety of weighted similarity graphswere derived. The edgeweights were functions

of either the dot product of the associated content vectors or their Hellinger distance

(after suitable normalization). Clustering the port pair’s content vectors, according to

their similarity, produced a small collection of shipment patterns that can be succinctly

described. Classifying different days of shipment patterns via their Hellinger distances

agreed with the popular belief that “Same weekdays have similar traffic patterns” or

equivalently “AllMondays are the same, all Tuesdays are the same, etc.” On the other

hand, at a quite refined level of granularity, we are able to extract those triples<u, v,
contents> that exhibited “unusual” or “salient” time varying shipment patterns.
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This was achieved by using an adaptation of combinatorial set system discrepancy to

the context of time varying graphs (Abello et al. 2010). The central idea is to associate

with each triple a weighted time sequence and to track the weighted cumulative

behavior of its associated firing rate and discrepancy sequences. Those triples whose

Fig. 5.6 Neighborhoods bordered by boxes indicate that at least one edge appeared in the fossil.

Colors of the bordering boxes correspond to the selected edge frequency in the fossil with red
being highest, blue being lowest. Labeled boxes marked by a red dot indicate neighborhoods that
contain an edge that was selected by both coloring schemes
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Fig. 5.7 Neighborhoods bordered by circles indicate that at least one edge appeared in the fossil.
Colors of the bordering circles correspond to the selected edge frequency in the fossil with red
being highest and blue being lowest. Labeled circles marked by a red dot indicate neighborhoods
that contain at least one edge that was selected by both coloring schemes
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discrepancy and firing rate were above a certain number of standard deviations from

the mean discrepancy weight of the entire collection of shipments were selected as the

most “salient” triples, i.e., the selected triples were highly discrepant and exhibited

relatively long intervals of bursting behavior. This collection of selected triples (a

fossil) constituted a succinct time varying representation of the most salient port pairs

for particular content types. To keep track of the context in which fossil triples occur,

we maintained a time varying MDSF in which the fossil triples were embedded. The

proposed techniques are applicable to a variety of time varying and edge-labeled

social network graphs such as those extracted from Twitter data.

In general, it will be interesting to elucidate the complexity of computing the

MDSF of a time varying graph when different edge instances occur in a completely

distributed setting. From the graph drawing arena, the central problem is how to

compute dynamically the coordinates of the vertices of a time evolving maximum

spanning forest so that a mental map of the forest evolution is minimally disrupted.

At the user interface level, what are the fundamental interaction mechanisms that

are useful aids for the navigation, exploration, and summarization of time varying

data? Systems like Gephi (Bastion et al. 2009) and GraphView (Abello et al. 2010)

have been very useful to us in some respect, but useful interaction for clear

productive exploration of this type of time varying data is certainly in its infancy.
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Appendix 1: Sample Records of Original Data

Human Readable version
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Corresponding Original Text Data
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Appendix 2: Sample Fossil Information as Seen

in Figs. 5.6 and 5.7

Recall that an edge is selected to be in the i-fossil at time t if its weight is at least
i-standard deviations away from the overall data discrepancy at that time.

The following are samples of edges in the i-fossil, where i is the maximum number

of standard deviations at time t. Our fossil frequency calculations ignore timestamp

1 (denoted as FOS_FREQ in the tables below).

Ascend Descend Coloring Fossil
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Random Coloring Fossil

Appendix 3: Salient Edges Selected by Both Coloring Schemes

The following are examples of edges that are included in the fossil with respect to

both random coloring and ascend descend coloring.
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Chapter 6

Achieving Realistic Levels of Defensive Hedging

Based on Non-monotonic and Multi-attribute

Terrorist Utility Functions

Vicki Marion Bier, Jaime Marie Bonorato, and Chen Wang

Abstract This chapter addresses the problem of allocating limited resources to

defend a set of targets. When there is uncertainty about which targets the terrorists

are most likely to attack, decision makers are likely to insist on some degree of

“hedging” (defending targets with only moderate value). The work discussed in this

chapter uses game theory to find the optimal strategy for the defender and shows

that non-monotonic attacker objective functions do typically yield greater hedging.

6.1 Introduction

In the years following September 11, 2001, funding for homeland security grew

dramatically. For example, in the first 3 years following September 11, 2001,

federal expenditures allocated to terrorism prevention and response increased

nearly 1,000% (from $1.2 billion to $13.1 billion) (Ripley 2004).

Prior to the terrorist attacks of September 11, 2001, the criteria for deciding how to

allocate defensive resources depended mostly on population statistics (Davis 1998).

After September 11, 2001, in response to an increased awareness of terrorism, more

complex decision methodologies were developed to meet the need for more robust

strategies for resource allocation (Walker 2002). In particular, allocations based on

risk began to appear, and population statistics were no longer the only deciding factor.

However, many funds (e.g., funding under the State Homeland Security Program and

the Citizen Corps Program) were initially distributed based on an approximate 60/40

split, with only about 60% of funds distributed according to risk methodologies;
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the remaining 40% were statutorily disbursed, such that each state received an equal

share. By contrast, other grant programs, such as the Urban Areas Security Initiative

and the Metropolitan Medical Response System, were available only to regions

determined to be eligible based on specific criteria (http://www.ojp.usdoj.gov/odp/

grants_program.htm). Moreover, risk-assessment methodologies themselves were

still based primarily on population measures (Brunet 2006).

Decision methodologies continued to evolve in fiscal years (FY) 2003 and 2004,

when risk estimation began to include factors other than population measures alone.

The factors considered at this time included threat (both credible threats identified

by the intelligence community and the results of field investigations by the Federal

Bureau of Investigation and Immigration and Customs Enforcement), the presence

of critical infrastructure, and population density. However, these factors were still

aggregated in an additive rather than a multiplicative manner, and probabilities

were not included (Masse et al. 2007).

A dramatic reform was first seen in FY 2006, due in part to the influence of

Michael Chertoff as the new Secretary of DHS. Chertoff had promised to adopt a

risk-based decision-making approach (Asaba 2006), so, for the first time, funding

formulas included estimates of the probabilities of certain events. In particular, risk

was now calculated by multiplying threat (the likelihood of an attack occurring),

vulnerability, and consequence (where the product of vulnerability and conse-

quence reflected both relative exposure and the expected impact of an attack). In

addition, threat estimates from the intelligence community and inherent risks

associated with different geographic areas (such as international borders) were

now considered (Reese 2006). DHS also began to include an effectiveness assess-

ment, requiring urban areas applying for grants under the Urban Areas Security

Initiative to submit information on the anticipated effectiveness of their proposed

solutions to homeland security needs.

In FY 2007 and 2008, DHS’s methodologies continued to improve—in particu-

lar, by integrating geographic and asset-based assessments (as opposed to consid-

ering them separately), basing threat on assessments by the intelligence community

(with each urban area assigned to one of four tiers), and better defining the

consequences of attacks. However, DHS still considered all areas equally vulnera-

ble to attack, because of the ease of mobility throughout the country; therefore, each

area was assigned a vulnerability score of one (GAO 2008).

Although the allocation process has advanced since 2001, further improvement is

still needed to take into account two fundamental factors—the strategic nature of

terrorist actions and defender uncertainty about terrorist motivations and goals. For

example, the National Research Council (2008) recommended that “to assess the

probabilities of terrorist decisions, DHS should use elicitation techniques and

decision-oriented models that explicitly recognize terrorists as intelligent

adversaries who observe U.S. defensive preparations and seek to maximize achieve-

ment of their own objectives.” Parnell et al. (2008), likewise, argued that terrorists

are “goal-oriented, resourceful adversaries, who will, given the constraints they

perceive, select the best agent and target to achieve their objectives.” With respect

to uncertainty, a variety of game-theoretic models in the face of defender uncertainty
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have been studied and applied; see, for example, the reviews by Sandler and Siqueira

(2009) and Guikema (2009). However, these models have not yet been widely used

in applications.

Bier et al. (2007) proposed a game-theoretic method for identifying attacker and

defender equilibrium strategies in a sequential game, where the defender plays first

by allocating defensive resources among possible terrorist targets, followed by the

attacker deciding on which target to attack, in light of any defensive investments.

Their model assumes that the defender does not have full knowledge about the

attacker’s preferences; thus, the defender’s objective is to minimize the expected

loss from any successful (or attempted) attack(s), in light of defender uncertainty.

This model should, in principle, provide a more rational and rigorous basis for

defenses against uncertain and adaptive adversaries than earlier game-theoretic

models that do not consider defender uncertainty. However, applications of

this model (e.g., Bier et al. 2008) still yield relatively little defensive “hedging”

(i.e., little investment in targets of only moderate value to the defender), even when

the defender is assumed to be quite uncertain about attacker preferences.

Therefore, in this chapter, we consider additional applications and modifications

of the model by Bier et al. (2007) to increase its usefulness for optimization of

defensive allocations against terrorism. We are especially interested in examining

the model’s ability to yield realistic levels of defensive hedging in resource alloca-

tion. In particular, in the real world, some level of hedging will typically be

desirable, since defenders generally won’t know an attacker’s goals perfectly.

However, most game-theoretic models to date (even ones that explicitly consider

defender uncertainty) often yield defensive allocations in which only the top few

targets are protected, regardless of the extent of defender uncertainty (at least when

defensive investments are not highly cost-effective), which seems unrealistic. At

the same time, in order to allocate funds efficiently, we would still like to avoid

spending too much money on targets that are relatively unlikely to be attacked

(excessive hedging). If game-theoretic models are to become sufficiently mature for

use in practice, models that result in realistic levels of hedging will be needed.

In an attempt to achieve more realistic levels of defensive hedging, we extend

the model developed by Bier et al. (2007) to allow for both non-monotonic terrorist

objective functions and multi-attribute terrorist objective functions. First, we con-

sider a simple case study involving allocation of a limited defensive budget to ten

major US cities. We assume that both the defender and the attacker care about

fatalities, but allow the attacker to have a non-monotonic utility function over

fatalities, assuming that moderate numbers of fatalities resulting from an attack

would be preferred by the attacker over either too many or too few fatalities. This

might be the case, for example, if large numbers of fatalities would lead to reduced

support for the terrorist’s cause, or massive US retaliation.

Then, we consider a more complex case study (also with a constrained budget),

based on the balanced-scorecard model of target attractiveness developed by Beitel

et al. (2004). They consider multiple attacker attributes (such as the logistical

difficulty and resource requirements of particular attack strategies) in addition to

the consequences of attacks to the defender and provide estimates reflecting
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assumed Al-Qaeda valuations of those attributes for targets such as US buildings,

US corporate interests, and various transportation assets. We use these estimates

from Beitel et al. as attribute values in the attacker’s hypothesized multi-attribute

utility function and treat the weights on those attributes as random variables (to

reflect defender uncertainty about attacker preferences). We then explore the extent

to which each of these extensions helps to achieve reasonable levels of hedging in

recommended defensive investments.

6.2 Basic Game-Theoretic Model

The basic model of Bier et al. (2007) assumes that the defender’s objective is to

minimize the total expected loss from terrorist attacks, as given by

min
c1;...;cn

Xn

i¼1

hiðc1; . . . ; cnÞpðciÞvi:

Subject to the budget constraint:

Xn

i¼1

ci � B

where:

n ¼ number of targets

ci ¼ defender’s resource allocation to target i
B ¼ defender’s total budget

vi = defender’s valuation of target i
hiðc1; . . . ; cnÞ ¼ probability of an attack on target i
pðciÞ ¼ success probability of an attack on target i, as a function of the resources

allocated to protection of target i
The attacker observes the defender’s resource allocations ci and then chooses the

target with the highest payoff in light of any defensive investments,

max
i

pðciÞUi

whereUi is the attacker’s utility of target i. This determines hiðc1; . . . ; cnÞ. Note that
since the defender is assumed to be uncertain about the attacker’s preferences, the

attacker target valuations Ui are modeled as random variables.

As in Bier et al. (2008), the success probability of an attack on target i is assumed

to be given by pðciÞ ¼ e�lci , so that l is a measure of the cost-effectiveness of

defensive investment. Cost-effectiveness in this model can be thought of as a

measure of risk reduction per dollar spent. For example, at a value of l ¼ 0.02, if

the ci are measured in millions of dollars, then every million dollars of defensive

investment would reduce the success probability of an attack by about 2%.
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In the following sections, we apply this model with two different assumptions

regarding the attacker’s target valuations Ui . In the first case, we assume that the

utilities Ui are non-monotonic functions of the target attribute values; next, we

model the utilities Ui by a multi-attribute utility function with uncertain attribute

weights. Sensitivity analysis is conducted for both cases to see how the extent of

hedging depends on parameters such as the cost-effectiveness of defensive invest-

ment and the extent of defender uncertainty.

6.3 Non-monotonic Terrorist Utility

Here, we examine the effects of a non-monotonic attacker objective function on

optimal defender resource allocations in an attempt to increase the realism and

flexibility of themodel outlined above and explore whether suchmodel formulations

give rise to significantly greater defender hedging at optimality. In this case, the

attacker objective is still to impose damage on the defender; however, the model

recognizes that attackers may not want to inflict as much damage as possible. For

example, attackers may not want to “set the bar too high” such that they cannot

follow up with an equal or greater impact in future attacks. Likewise, extremely

damaging attacksmay yield reduced benefits to the attacker due to adverse outcomes

such as negative publicity, retaliation by the defender, or revulsion among those who

had previously supported the attacker’s cause.

The data used in this section come fromWillis (2005), who provide estimates for

three types of damage (property losses, fatalities, and total injuries) from attacks on

different urban areas in the USA. For simplicity, we restrict our analysis to the case

where the defender and the attacker both care only about fatalities. In particular, the

defender’s disutility is assumed to be proportional to (and thus strictly increasing

in) the number of fatalities. By contrast, the attacker is assumed to have a non-

monotonic utility function over fatalities, preferring a moderate number of fatalities

over either extremely small numbers of fatalities (which may not have the desired

impact) or extremely large numbers of fatalities (which may lead to reduced

support or massive US retaliation).

For reasons of computational tractability, we restrict our attention to the ten

urban areas of the USA that are estimated to have the highest expected terrorism

fatalities in Willis (2005): New York City (NYC); Chicago; the Washington, D.C.,

area (including parts of Maryland, Virginia, andWest Virginia); San Francisco; Los

Angeles and Long Beach; the Boston area (including parts of New Hampshire);

Houston; the Philadelphia area (including parts of New Jersey); Newark; and the

Seattle area (including Bellevue and Everett). The expected annual fatalities from

terrorist attacks for the top ten US urban areas are shown in Table 6.1.

The non-monotonic attacker utility Ui for target i is described below as a

piecewise function of the expected fatalities yi, and graphed in Fig. 6.1:

Ui ¼ 110� 300

yi
for yi<30 and Ui ¼ 110� yi

3
for yi � 30:
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As shown in Fig. 6.1, Washington, D.C., is assumed to be the most attractive city

to the attacker, even though it is only the third highest in terms of expected fatalities

(an order of magnitude less than NYC). By contrast, NYC becomes one of the least

attractive targets, due to the extremely large number of expected fatalities

associated with an attack there.

Figure 6.2 shows the optimal budget allocation as a function of the cost-

effectiveness of defensive investments, for both a monotonic attacker utility

function (assumed to be proportional to the number of fatalities) and the above

non-monotonic attacker utility function. As expected, the non-monotonic attacker

objective function (Fig. 6.2b) does lead to dramatically greater defensive invest-

ment in cities of only moderate value to the defender than the monotonic objective

function (Fig. 6.2a), especially at low levels of cost-effectiveness. Since mid-level

Fig. 6.1 Non-monotonic attacker preferences over expected terrorism fatalities

Table 6.1 Expected annual

terrorism fatalities (taken

from Willis 2005)

Urban area Expected fatalities

NYC 304

Chicago 54

Washington, D.C. 29

San Francisco 24

Los Angeles 17

Boston 12

Houston 9

Philadelphia 9

Newark 4

Seattle 4
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cities such as Washington, D.C., San Francisco, and Los Angeles are assumed to be

more attractive to the attacker in the non-monotonic case, those targets receive the

most funding in that case, as opposed to high-valued cities such as NYC in the

monotonic case. In fact, in the non-monotonic case, NYC gets no defensive

investment at all when the cost-effectiveness of defensive investment is low. This

is because NYC is believed to be unlikely to be attacked for this particular choice of

non-monotonic attacker objective function, and thus does not rise to a level of risk

that would justify funding when defensive investment is not highly cost-effective.

Of course, in reality, even if the attacker prefers a medium-sized attack to a

larger attack, the attacker could still choose to attack a high-value target such as

NYC, and just launch a smaller attack there. Therefore, the fact that our

optimal resource allocation does not allocate any money to NYC at low levels of

Fig. 6.2 Optimal defensive resource allocations to the ten major US urban areas, monotonic

versus non-monotonic attacker preferences. (a) Monotonic attacker utility function. (b) Piecewise

non-monotonic attacker utility function
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cost-effectiveness in the non-monotonic case is an unrealistic feature of our model.

The results of the model should thus not be taken to suggest that, at low cost-

effectiveness, we should not defend NYC or other high-valued cities. However, the

results are sufficient to indicate that, if we believe the attacker has a non-monotonic

objective function, we may want to spend more on medium-sized cities than in the

monotonic case even at low cost-effectiveness.

6.4 Multi-attribute Terrorist Utility

In this section, we allow factors besides fatalities to affect how “attractive” a target

is to terrorists. For example, in addition to evoking terror, terrorists may be

interested in generating additional publicity, exacting revenge, achieving specific

concessions, causing disorder, or provoking repression (Richardson 2007). The

propaganda value of a target may also be considered: “Terrorists seek to attract

attention to their cause by employing, or threatening, dramatic acts of violence that

capture the attention of the media and terrorize large populations” (Dershowitz

2002). Furthermore, terrorists may be interested in the symbolic value of particular

targets; for example, Bin Laden described the Twin Towers as icons of USA

“military and economic power” (Rubin and Rubin 2002).

Moreover, Woo (2002) recognized that terrorists consider not only psychological

impact (e.g., evoking fear) but also execution difficulty (planning time, required

personnel, technical difficulty, and consumption of financial and material resources)

when choosing an attack strategy. Similarly, Rosoff and John (2009) found that

terrorists consider not only numbers of fatalities and injuries, terror, economic impact,

and the symbolic value of their attacks but also the time required to plan an attack,

human resources required, and the cost of the attacks. Beitel et al. (2004) likewise

consider multiple attacker attributes, including both the resources required for attacks

on particular targets, as well as the “return” on those investments, for attacks against

targets such as US buildings, US corporate interests, and transportation assets.

Here, we adopt the balanced-scorecard model of Beitel et al. (2004). The “invest-

ment” measures considered by Beitel et al. (2004) are human resources (A1); terrorist

resources, such as funding, weapons, explosives, and knowledge (A2); and terrorist

schedule (A3), or the time required for planning, deployment, and implementation of

an attack. The return or “damage” measures include loss of life (A4), direct economic

loss (A5); national economic stress and inconvenience (A6), reflecting “impacts on

Western lifestyles”; decreased Western presence (A7); increased “Islamic presence”

(A8 ); and the opportunity to leverage with other terrorists (A9 ). Another measure

included in a spreadsheet provided by coauthor Plum (personal communication

2007) accounts for the symbolic values of particular targets (A10).

Beitel et al. (2004) also consider the likelihood of attack success, but we omit

this as an attribute, since in the model of Bier et al. (2008), the likelihood of attack

success,pðciÞ, is dependent on the defensive resources allocated to a given target (ci)
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and the cost-effectiveness of that investment (l), and is not a fixed constant as

assumed by Beitel et al.

Beitel et al. used a multiplicative model of target attractiveness, where the

exponent wj of attribute Aj in the balanced-scorecard model reflects the importance

of that attribute. Thus, the overall target ratings are of the form

A ¼ investment score ¼
Y3

j¼1

A
wj

j ;

B ¼ return score ¼
Y10

j¼4

A
wj

j ;

C ¼ total score ¼ AB ¼
Y10

j¼1

A
wj

j :

In our analysis, we normalize the exponents assumed by Beitel et al. as shown in

Table 6.2. (Note that the exponents wj are not strictly speaking weights in the

multiplicative model of target attractiveness, but are equivalent to weights in a

corresponding additive model for the logarithm of the attractiveness score).

To highlight the fact that the defender is uncertain about attacker preferences,

the values of the exponents are assumed to be random. In particular, we assume that

the attribute weights wj for score C follow a Dirichlet distribution, as given by

ðw1; . . . ;w10Þ � Dirichletða1; . . . ; a10Þ;

f ðw1; . . . ;w10Þ ¼ Gða0Þ
Y10

j¼1

ðwjÞaj�1

GðajÞ ;

Table 6.2 Mean values for the normalized exponents wj

Attribute

Exponent in balanced-

scorecard model

Mean normalized

exponent for A
Mean normalized

exponent for B
Mean normalized

exponent for C

w1 2 0.381 0.073

w2 2 0.381 0.073

w3 1.25 0.238 0.046

w4 2 0.091 0.073

w5 3 0.136 0.11

w6 3 0.136 0.11

w7 6 0.273 0.22

w8 6 0.273 0.22

w9 1 0.045 0.037

w10 1 0.045 0.037

Sum 1 1 1
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where GðzÞ ¼ R1

0

tz�1e�tdt; aj>0 for j ¼ 1; . . . ; 10; a0 ¼
P10

j¼1

aj;wj � 0 for j ¼ 1; . . . ;

10 andw10 ¼ 1�P9

j¼1

wj . (The calculations for the investment score A and return

score B are similar, but use only subsets of the attacker attributes.) The choice of the

Dirichlet distribution ensures that the attribute weights will sum to one, and makes

it possible to vary the extent of defender uncertainty about the attacker attribute

weights by changing a single parameter, while leaving the mean attribute weights

unchanged. In particular, larger values of the parameter a0 correspond to lower

levels of defender uncertainty.

We now apply the model of Bier et al. (2007) to the attribute values and weights

provided by Beitel et al. (2004). Table 6.3 shows the numerical values of the

attributes A1; . . . ;A10 for ten different types of assets, including US buildings, US

corporate interests, and various types of transportation assets. Finally, Table 6.4

shows the values for the scores A, B, andC, based on the attribute values in Table 6.3
and the mean normalized attribute weights in Table 6.2.

Figure 6.3 provides optimal resource allocations for varying levels of cost-

effectiveness of the defender’s investments, both for low defender uncertainty

Table 6.3 Numerical values of the attributes Aj for different terrorist targets

Asset A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

US embassies in foreign lands 2.0 0.33 0.50 0.33 0.58 0.50 1.0 0.10 1.1 1.0

US cultural entities in foreign lands 1.0 0.50 0.50 0.42 0.50 0.50 0.90 0.90 1.5 1.0

US corporate in foreign lands 0.67 0.50 0.50 0.33 0.58 0.70 0.90 0.70 1.2 1.2

US corporate in USA 0.67 0.50 0.50 0.33 0.58 0.70 0.90 0.70 1.2 1.2

Foreign corporate in USA 0.67 0.50 0.50 0.50 0.50 0.30 0.90 0.90 1.5 1.0

Military bases in foreign lands 1.0 0.17 0.25 0.33 0.67 0.70 0.90 0.90 1.0 1.0

Military bases in USA 1.0 0.17 0.25 0.33 0.67 0.70 0.80 0.80 1.0 1.0

US roads and bridges 0.67 0.33 0.50 0.50 0.58 0.70 0.30 0.30 1.0 1.0

US air 0.67 0.50 0.20 0.50 0.67 0.70 0.90 0.30 1.0 1.0

US shipping 0.67 0.50 0.33 0.33 0.67 0.70 0.30 0.30 1.0 1.0

Table 6.4 Asset scores based on normalized exponents (rankings are given in parentheses)

Asset Investment A Return B Total C

US embassies in foreign lands 0.7238 (1) 0.4092 (10) 0.4573 (8)

US cultural entities in foreign lands 0.6511 (2) 0.7358 (2) 0.7192 (1)

US corporate in foreign lands 0.5590 (3) 0.7166 (4) 0.6793 (2)

US corporate in USA 0.5590 (3) 0.7166 (4) 0.6793 (2)

Foreign corporate in USA 0.5590 (3) 0.6974 (6) 0.6687 (4)

Military bases in foreign lands 0.3660 (9) 0.7700 (1) 0.6678 (5)

Military bases in USA 0.3660 (9) 0.7220 (3) 0.6341 (6)

US roads and bridges 0.4771 (7) 0.4304 (8) 0.4397 (9)

US air 0.4495 (8) 0.5924 (7) 0.5623 (7)

US shipping 0.5063 (6) 0.4226 (9) 0.4383 (10)
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ða0¼ 100; Fig. 6.3a) and for high defender uncertainty (a0 ¼ 10; Fig. 6.3b). In this

figure, we assume that the attacker values targets according to C (taking into

account both investment and return measures), while the defender values targets

according to B (taking into account only return measures).

Figure 6.3 shows more hedging (i.e., more funding of mid-level targets) at high

uncertainty (Fig. 6.3b) than at lower levels of uncertainty (Fig. 6.3a) when defen-

sive investments are not highly cost-effective. By contrast, at high levels of cost-

effectiveness, we do not observe significantly more hedging with high defender

uncertainty. However, the defensive allocations more closely resemble the

defender’s target valuations at high levels of defender uncertainty. For example,

Fig. 6.3 Optimal defensive resource allocations (attacker values targets according to both invest-

ment and return measures; defender values targets according to return measures only). (a) Low

defender uncertainty about attacker preferences; a0 ¼ 100. (b) High defender uncertainty about

attacker preferences; a0 ¼ 10
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US military bases in foreign lands (ranked first by the defender) get more protection

at high levels of defender uncertainty (Fig. 6.3b) than at low level of defender

uncertainty (Fig. 6.3a).

However, this model still sometimes yields little or no defensive hedging. For

example, consider the case where the attacker is assumed to care about only

investment measures (instead of both investment and return measures, as in the

previous case), but the defender still cares about only return measures (Fig. 6.4). In

this case, two targets (US embassies in foreign lands and US cultural entities in

foreign lands) dominate all others in terms of the attacker attributes; see the values

for human resourcesA1, terrorist resourcesA2, and terrorist scheduleA3 in Table 6.3.

Therefore, when the cost-effectiveness of defensive investment is low, we see little

Fig. 6.4 Optimal defensive resource allocations (attacker values targets according to investment

measures only; defender values targets according to return measures only). (a) Low defender

uncertainty about attacker preferences; a0 ¼ 100. (b) High defender uncertainty about attacker

preferences; a0 ¼ 10
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or no hedging. When the cost-effectiveness of defensive investments is higher,

more targets are protected, but there is still no investment in either military bases in

foreign lands or military bases in the USA (which are strictly dominated along most

attacker attributes), even though both are highly valuable to the defender (ranked

first and third by the defender, respectively).

The lack of substantial hedging in this case is not necessarily a problem, since it

may not be reasonable to expect high levels of hedging when some targets are

strictly dominated on most or all attacker attributes. However, if greater hedging is

desired in practice, it may be necessary to find other ways of representing the

defender’s uncertainty about the attacker’s preferences. For example, Wang and

Bier (2011) explicitly account for the possibility of unobserved attributes that are

important to the attacker but not known to the defender. In this approach, if the

defender believes that the attacker puts significant weight on the unobserved

attributes, the optimal defensive resource allocation is influenced more heavily by

the defender’s target valuations, and less heavily by the defender’s estimates of the

attacker’s preferences. Achieving realistic levels of hedging may also require

considering uncertainty about more than just the attribute weights—as is done,

for example, in the random-utility model by Rosoff and John (2009), where the

attribute values Aj are also allowed to be uncertain.

Still another way of incorporating uncertainty into multi-attribute attacker

objective functions may be to assess probability distributions directly over the

target utilities. However, when the attractiveness of particular targets is inherently

correlated, it may be extremely difficult to assess a suitable joint probability

distribution over their utilities. Incorporating uncertainty in the attribute weights

would thus seem to capture such correlations more naturally.

6.5 Conclusions and Directions for Future Research

Past funding allocations have been criticized as being driven too much by “pork-

barrel politics” and too little by risk. The results of simple game-theoretic models

with little or no consideration of uncertainty tend to support this view, since these

models generally yield protection of only the top few targets, and therefore result in

low levels of hedging in defensive investments (i.e., little or no protection of mid-

level targets). However, in the real world, decision makers are likely to insist on at

least some degree of hedging even at low levels of cost-effectiveness, in order to

reflect the fact that they do not know attacker goals perfectly.

Therefore, the main purpose of this chapter was to extend existing game-

theoretic models for determining optimal defensive resource allocations in the

face of uncertain terrorist preferences and to achieve more realistic levels of

defensive hedging. Interestingly, the results of our model suggest that levels of

hedging similar to those observed in DHS’ actual funding allocations may not be

the result of pork-barrel politics alone but may also reflect prudent risk manage-

ment, especially if there is significant uncertainty about terrorist preferences.
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We considered two extensions to previous game-theoretic models: non-

monotonic attacker objective functions and multi-attribute attacker objective

functions. Non-monotonic attacker objective functions do typically yield greater

hedging, in the form of greater protection of mid-level cities even at low levels of

cost-effectiveness. Multi-attribute models with uncertain attribute weights also

yield hedging in some cases, but this is not always true, especially when some

targets are strictly dominated along most or all attacker attributes. This suggests that

allowing for uncertain attribute weights in multi-attribute attacker objective

functions may not always be sufficient to yield significant hedging at optimality.

Of course, better methods for quantifying key parameters in these models are

still needed before the models are ready for application. For example, formal

methods of expert elicitation, especially ranking-based methods such as probabilis-

tic inversion (Cooke and Misiewicz 2007; Neslo et al. 2008) or SMARTER

(Edwards and Barron 1994), could lead to more justifiable parameter estimates,

while overcoming the reluctance of some intelligence experts to express their

knowledge quantitatively.

Additionally, we currently lack good metrics for the cost-effectiveness of defen-

sive investments. In recent research, Jamshidi and Bier (2009) attempt to estimate

the cost-effectiveness of security expenditures using regression analysis and exam-

ine how the reduction in estimated risk depends on the extent of defensive invest-

ment. However, further research to better quantify the cost-effectiveness of

defensive investments would be extremely useful, especially since cost-

effectiveness clearly has a large effect on optimal resource allocations.
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Chapter 7

Mitigating the Risk of an Anthrax

Attack with Medical Countermeasures

Jeffrey W. Herrmann

Abstract This chapter presents a simulation model that can be used to prepare for a

bioterrorism attack that releases anthrax spores and exposes thousands of persons to

this deadly disease. The model predicts the expected number of deaths using

information about the size of the population, the number exposed, the progress of

the disease, the resources available for distributing medication and treating the ill,

and the size of local medication stockpiles. The chapter also presents a risk

management approach for allocating a limited medication stockpile to multiple

cities to minimize the expected number of deaths. The results show that the optimal

allocation can be quite different from allocations that are proportional to population

size.

7.1 Introduction

This chapter presents the combined use of two different operations research (OR)

models to address a risk management problem in the context of preparing for a

bioterrorism attack. The first model is a predictive model that estimates the number

of deaths based on information about the attack scenario. The second model is an

optimization model that can determine the optimal allocation of limited resources.

The deliberate release of aerosolized anthrax spores in a large city will expose

many thousands of residents to this deadly disease. Promptly distributing medical

countermeasures (antibiotics) to those exposed is a key step in preventing illness and

deaths. Avoiding delays in this distribution is critical, but such a response will

require enormous resources. State and local health departments have developed

contingency plans for points of dispensing (PODs), the primary distribution channel,

and other countermeasures and strategies have been proposed and tested, such as
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employing the U.S. Postal Service to deliver antibiotics directly to residences (cf.

Executive Order 13527), and prepositioning (CDC 2011). Prepositioned medic-

ations include forward-deployed (local) stockpiles, workplace and hospital caches,

and predispensed medical countermeasures that are stored by heads of households

(IOM 2012).

In this chapter, the term “medical countermeasure” (MCM) is used to refer to a

regimen of antibiotics that will be stored in a local stockpile, a hospital or work-

place cache, or predispensed. After an attack, MCMs in a local stockpile or a

hospital or workplace cache will be distributed in PODs to those who believe that

they were exposed. A community’s prepositioning strategy includes its local

stockpile and predispensed MCMs.

In 2006 the Centers for Disease Control and Prevention (CDC) and the Missouri

Department of Health and Senior Services distributed prototype MedKits (a pro-

posed type of predispensed MCM) to over 4,000 households, and 97% of the

households returned their kits after 2–8 months. A majority of the participants

stated that they would like to have a MedKit to keep in their home, and most would

be willing to pay for the MedKit (CDC 2007).

Although Richter and Khan (2009) and Zaric et al. (2008) described studies

comparing some of the various strategies, these studies did not consider the impact

of predispensing MCMs, and we are unaware of any available models that can show

how predispensing MCMs would mitigate the consequences of an anthrax attack.

Models that can predict this benefit for particular scenarios should be valuable to

public health officials who are considering whether and to what extent to

predispense MCMs.

Of course, the usefulness of any model depends upon the availability of good

data. Because data can provide only estimates of important values, it is important to

conduct some sensitivity analysis to determine how the results could vary.

This chapter considers this issue. First, it discusses a model that estimates the

expected number of deaths that result from an anthrax attack in a community that

has adopted a specific prepositioning strategy (both predispensed MCMs and local

stockpiles to be distributed at PODs). This model could be used by public health

officials in a particular urban area (city) for understanding how prepositioning

MCMs could reduce the expected number of deaths in that city. Then this chapter

presents an approach that uses this model in order to determine the optimal

allocation of a limited store of MCMs to multiple cities. In other words, first we

consider the problem of defending one city, and then we consider the problem of

defending multiple cities.

Predispensing MCMs has been advocated because it could reduce the number of

persons who would go to PODs and reduce the time needed to distribute medication

(Bicknell 2003; IOM 2008). Moreover, individuals are interested in preparing for

emergencies and being able to take care of themselves in an emergency (National

Biodefense Science Board 2008). Nevertheless, there are concerns about the inap-

propriate use of MCMs, which might further the antibiotic resistance of more

common bacterial infections, the risks of overdoses, adverse effects, and using

expired drugs, the liability of any agency that promotes off-label use of medication,
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and the challenge of satisfying Food and Drug Administration (FDA) regulations

(National Biodefense Science Board 2008; Troy 2010).

The decision to preposition MCMs must therefore consider a variety of issues.

Those who must pay for the MCMs will consider their cost. Others will consider the

cost of treating those who become ill, the cost of maintaining local stockpiles, and

other costs (Zaric et al. 2008). Health officials will consider the risks of misuse. In

general, if many thousands of people begin taking antibiotics (from predispensed

MCMs and from PODs), there will be adverse impacts (Shepard et al. 2002).

Ideally, analysis like that described here would be combined with deliberation

about the legal, regulatory, safety, ethical, and cost considerations (which are

beyond the scope of this chapter) in a risk-informed decision-making process

(Stern and Fineberg 1996). This chapter focuses on the problem of predicting

how predispensing MCMs will reduce the expected number of deaths.

The IOM emphasized that jurisdictions should evaluate which prepositioning

strategies are appropriate for the community, proposed a decision-making framework,

and recommended additional research in this area (IOM 2012). Centralized stockpiles

(like the Strategic National Stockpile) cost less, have more flexibility, and eliminate the

potential for misuse; but forward-deployed (local) stockpiles, workplace and hospital

caches, and predispensed MCMs (personal stockpiles and MedKits) reduce the time

needed to distribute prophylaxis, which could reduce the number of deaths in an

anthrax attack. There are also legal, regulatory, and ethical aspects to consider.

Within this framework, estimating the health benefits (e.g., the reduction in the

expected number of deaths from an attack) is a key attribute, but this is difficult to

assess (IOM 2012); this chapter presents a model for estimating this attribute.

Although exercises are important tools for training and assessment (and valuable

sources of data), full-scale exercises are expensive and disruptive, so models that

can predict the impact of an MCM strategy are essential for evaluating

prepositioning strategies.

This study considers only predispensing MCMs to the general population. It may

be desirable to predispense MCMs to first responders and other personnel who are

essential to continuity of operations. In general, the allocation of scarce resources to

groups within an urban area must be considered within a framework of ethical

guidelines that emphasize the relevant moral principles (Kinlaw et al. 2009).

The approach described in this chapter uses a compartmental model that predicts

the deaths and hospitalizations from an anthrax attack. The model is based on a

model described by Zaric et al. (2008), which focused on PODs and did not

consider the impact of predispensing MCMs. The disease progression model used

here is based upon a review of all of the cases of inhalational anthrax that have been

published since 1900 (Holty et al. 2006).

The objective of the work described in this chapter was to develop a model that

could estimate the impact of predispensing MCMs in a community and to use that

model to consider some possible scenarios to get some insight into the effectiveness

of predispensing MCMs. This chapter will briefly describe the model and the

results. A complete description of the mathematical model was provided by

Houck and Herrmann (2011). After discussing this model, the chapter will present
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an approach that uses the model to determine the optimal allocation of a limited

store of MCMs to multiple cities.

7.2 MCM Modeling Approach

For this study, we developed a compartmental model that includes both the pro-

gression of the disease and the logistics of treatment. A compartmental model

represents the flows of individuals between compartments. Each compartment

represents a number of homogeneous individuals (that is, they are identical with

respect to their condition and treatment status). The compartments are mutually

exclusive and collectively exhaustive. Compartmental models can be analyzed

using differential equations (which can be solved exactly in some situations) or

difference equations (which we will use here). Compartmental models have been

used in studies of biology, medicine, ecosystems, populations, and economics

(Jacquez 1996; Walter and Contreras 1999).

The model used here (the “MCM model”) extends the model presented by Zaric

et al. (2008) (the “POD model”) by adding additional compartments for the

population that has predispensed MCMs and revising the transition equations

used to predict the flow between compartments. These revisions include

improvements to the published equations and a scheme for prioritizing the

transitions.

The MCM model has 28 compartments to represent distinct groups within a

population. The primary distinctions between the compartments are the exposure of

the individuals, the progression of the disease (including the definitive conditions of

death or recovery), the treatment status, and the possession of MCMs. The model

includes the 21 compartments of the POD model and adds seven more: one for

death, two for potential exposures who possess predispensed MCMs, three for

exposed individuals who possess predispensed MCMs, and one for those who

adhere to prophylaxis (and cannot become ill). Table 7.1 lists all 28 compartments.

Figure 7.1 is a schematic that shows the possible flows in the MCM model.

The model includes two types of flows. The first type of flow corresponds to

changes in the disease in those who were exposed. The transition path is from the

incubation stage to the prodromal stage, to the fulminant stage, and then to death.

The second type of flow corresponds to changes in awareness and treatment.

Exposed persons and potential exposures are first unaware of their exposure or

the need for prophylaxis. When they become aware, they seek prophylaxis (essen-

tially, they are in a queue for prophylaxis). Exposed persons who become sick then

seek treatment and receive treatment. Those who are treated may recover.

Because many of the compartments have multiple outflows (corresponding to

different transitions), it is important to define the relative priority of the transitions.

In the MCM model, the highest priority transitions are those that correspond to the

progression of the disease, recovery, and death. The second priority transitions are

those that correspond to awareness, prophylaxis, and treatment. The number who
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Table 7.1 The compartments in the MCM model

Compartment

Exposure, treatment

status

Progression

of disease Treatment began MCMs?

1 Exposed, unaware

of exposure

Incubation n.a. No

2 Exposed, unaware

of exposure

Prodromal n.a. No

3 Exposed, unaware

of exposure

Fulminant n.a. No

4 Aware of exposure Incubation n.a. No

5 Aware of exposure Prodromal n.a. No

6 Aware of exposure Fulminant n.a. No

7 Not adhering Incubation Prophylaxis begun in incubation

stage

Both

8 Not adhering Prodromal Prophylaxis begun in incubation

stage

Both

9 In prophylaxis Prodromal Prophylaxis begun in prodromal

stage

Both

10 Not adhering Fulminant Prophylaxis begun in incubation

stage

Both

11 In prophylaxis Fulminant Prophylaxis begun in prodromal

stage

Both

12 In prophylaxis Fulminant Prophylaxis begun in fulminant

stage

Both

13 In treatment Prodromal Treatment begun in prodromal

stage

Both

14 In treatment Fulminant Prophylaxis or treatment begun in

prodromal stage

Both

15 In treatment Fulminant Prophylaxis begun in incubation

stage, treatment begun in

fulminant stage

Both

16 In treatment Fulminant No prophylaxis or prophylaxis

begun in fulminant stage

Both

17 Exposed Recovered n.a. Both

18 Not exposed n.a. n.a. Both

19 Potential exposure,

not seeking

prophylaxis

n.a. n.a. No

20 Potential exposure,

seeking

prophylaxis

n.a. n.a. No

21 Potential exposure,

in prophylaxis

n.a. n.a. No

22 Exposed Dead n.a. Both

23 Potential exposure,

not seeking

prophylaxis

n.a. n.a. Yes

24 Potential exposure,

in prophylaxis

n.a. n.a. Yes

25 Exposed, unaware

of exposure

Incubation n.a. Yes

(continued)
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can be given prophylaxis is limited by the prophylaxis dispensing capacity, which is

spread proportionally across all of the compartments with persons waiting for

prophylaxis. Likewise, the number who can be treated is limited by treatment

capacity, which is spread proportionally across all of the compartments with

persons waiting for treatment.

Like the POD model, the MCM model is a deterministic, discrete-time model.

The time period is 1 h. Let XiðtÞ be the expected number of individuals in

compartment i at time t. The model calculates these values for a 2400-hour (100-

day) time horizon. At each point in time, we calculate the transitions, wherefijðtÞ is
the expected number of individuals who move from compartment i to compartment

j due to illness, recovery, or death, andCijðtÞ is the expected number of individuals

who move from compartment i to compartment j due to awareness, prophylaxis, or
treatment. YiðtÞ is the expected number of individuals in compartment i at time

t after the transitions due to illness, recovery, and death, and these values are used to

Table 7.1 (continued)

Compartment

Exposure, treatment

status

Progression

of disease Treatment began MCMs?

26 Exposed, unaware

of exposure

Prodromal n.a. Yes

27 Exposed, unaware

of exposure

Fulminant n.a. Yes

28 Adhering to

prophylaxis

Prophylaxed Prophylaxis begun in

incubation stage

Both

1 2 3

4 5 6

7 8 109 1211

13 14

17

1615

22

18 19

20

21

23

24

25 26 27

28

Fig. 7.1 Schematic of the flows between compartments in the MCM model
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determine the values of CijðtÞ , as described in detail by Houck and Herrmann

(2011). Note that many of the transitions are always zero; the notation used here

allows a compact expression of the transition equations, which can be written as

follows:

YjðtÞ ¼ XjðtÞ þ
X28

i¼1

fijðtÞ �
X28

i¼1

fjiðtÞ;

Xjðtþ 1Þ ¼ YjðtÞ þ
X28

i¼1

CijðtÞ �
X28

i¼1

CjiðtÞ: (7.1)

In general, during each time period, a certain fraction of the individuals in a

compartment will move to another compartment. This flow is governed by the

values of parameters describing the disease progression (the rates at which

individuals become ill, recover, or die) and the prophylaxis and treatment capacity.

For a given flow, the fraction may be time-invariant (like a death rate) or may

change over time as available treatment capacity changes. Many of the parameters

given below and used in the MCM model are the same as those used in the POD

model, but the model can be changed easily to consider scenarios with other

parameters. A spreadsheet version of the model has been constructed and is

available from the author.

7.2.1 Attack and Response Timeline

The consequences of an anthrax attack depend upon the attack scenario, including the

amount and characteristics of the anthrax spores that are released, the time and

location of the attack, the weather, the number and condition of people who come

into contact with the spores, and the speed of detecting, investigating, and responding

to the attack (Graham et al. 2008; Oren 2009). The MCM model can be used for a

wide range of scenarios, but those considered in this study were based on the

following timeline. The attack occurs at t ¼ 0 h. The attack is detected at t ¼ 48 h.

Local stockpiles of both intravenous antibiotics (IVs) for treatment and antibiotics for

dispensing will become available 5 h later at t ¼ 53 h. Intravenous antibiotics (IVs)

for treatment, antibiotics for dispensing, and additional ventilators from the push pack

will become available 16 or 28 h after attack detection at t ¼ 64 or 76 h. (This is due

to a 12- or 24-h delay in receiving the push pack and another 4-h delay in getting the

material from the push pack ready.) Intravenous antibiotics (IVs) for treatment and

antibiotics for dispensing from vendor-managed inventory (VMI) will become avail-

able 36 h after attack detection at t ¼ 84 h. At t ¼ 96 h (48 h after attack detection),

complete POD capacity will be available. In the MCM model, these times are all

parameters that can be changed to consider other scenarios.
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7.2.2 Exposure

The population consists of three large subpopulations: those who were exposed to

the anthrax attack, those who were not exposed to the anthrax attack (or inhaled too

few anthrax spores to become ill), and those who believe that they may have been

exposed (because of their proximity to the attack or for other reasons). The persons

in this last group, called “potential exposures,” will undergo prophylaxis (by going

to PODs and taking their MCMs) but cannot become ill. Like the POD model, the

MCM model does not divide the population by age because we assume that the

progression of anthrax does not depend upon age. We assume that exposure to the

attack is independent of MCM possession. Therefore, the proportion who possesses

predispensed MCMs is the same in all three subpopulations. Because those who

were not exposed cannot become ill and do not seek prophylaxis whether they have

MCMs or not, the model treats all of these persons in one compartment. Those who

are exposed are initially unaware of their exposure. Some become aware during

incubation, some when they are prodromal, and some when they are fulminant.

7.2.3 Disease Progression

Inhalational anthrax begins after aerosolized anthrax spores pass into the lungs,

germinate, and begin replication (Oren 2009). The disease progresses from the

incubation stage to the prodromal stage, to the fulminant stage, and then to death.

An exposed person in the incubation stage is infected with anthrax but is asymp-

tomatic. A person in the prodromal stage has nonheadache neurological symptoms

(e.g., fever, muscle aches, and fatigue) that are similar to flu. A person in the

fulminant stage is severely ill, has respiratory distress, and may die within days. We

assume that only persons in the fulminant stage can die. Because it considers a short

period of time, this model does not consider any other causes of death. Those in the

prodromal and fulminant stages who start treatment may recover. The rates at

which persons become ill, recover, or die vary based on their status. The times to

become ill, recover, or die are modeled as geometric distributions (thus, they are

memoryless), and the probability of this event per time unit is the reciprocal of the

mean time. Table 7.2 gives these probabilities, which are based on the expected

times in Zaric et al. (2008) and Holty et al. (2006). For example, when the expected

time to become fulminant is 122.4 h, the probability (each hour) of becoming

prodromal is 1/122.4. As in the POD model, in the MCM model some who begin

prophylaxis may recover from the prodromal stage without treatment in an ICU.

7.2.4 Awareness and Prophylaxis

Those who become ill can become aware at any time: for those who are in the

prodromal stage, the probability, each hour, of becoming aware equals 1/72; for
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those who are in the fulminant stage, the probability equals 1/48. After the attack is

detected, for those who are in the incubation stage and for potential exposures, the

probability, each hour, of becoming aware equals 1/72. This awareness process is a

special case of the Bass diffusion process, and the rates are the same as those in the

POD model (Zaric et al. 2008).

Because they do not need to go to PODs, those who have MCMs and were

exposed (and potential exposures who have MCMs) can start prophylaxis as soon as

they become aware. However, some of those who had MCMs may be unable to use

them, so we assume that 5% of those given MCMs do not have them at the time of

the attack.

Those who do not haveMCMs will go to PODs, where the prophylaxis dispensing

consists of an oral antibiotic, either ciprofloxacin or doxycycline. Prophylaxis dis-

pensing capacity is limited. It depends upon the facilities and staff available. In the

scenarios considered in this chapter, we assume that there is a fixed maximum

prophylaxis dispensing capacity, which is 5,833.33 persons per hour. Prophylaxis

dispensing is also limited by the availability of medication. Although a complete

regimen has 60 days of medication, we assume that only 14-day abbreviated regimens

are dispensed until the VMI becomes available.We assume that the local stockpile has

50,000 doses (3,571 abbreviated regimens), the push pack provides 2,718,000 doses

(194,143 abbreviated regimens), and the VMI provides sufficient doses for everyone

to receive a complete regimen and enough IV antibiotics for everyone who

needs them.

Table 7.2 Fraction of each compartment that becomes ill, recovers, or dies each hour

Compartment Become prodromal Become fulminant Die Recover

1 p(t)

2 y2ðtÞgþ ð1� y2ðtÞÞ�
3 1/26.4

4 p(t)

5 y5ðtÞgþ ð1� y5ðtÞÞ�
6 1/26.4

7 p(t)

8 1/122.4 1/21.7

9 1/122.4 1/21.7

10 1/26.4

11 1/26.4

12 1/38.4

13 1/122.4 1/21.7

14 1/24 1/720

15 1/24 1/720

16 1/38.4 1/720

25 p(t)

26 y26ðtÞgþ ð1� y26ðtÞÞ�
27 1/26.4
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Those who adhere to their prophylaxis will not become ill, but some who begin

prophylaxis during the incubation stage will not adhere and may become ill.

(We assume that those who begin prophylaxis in the prodromal and fulminant

stages will always adhere.) We considered two different adherence rates: 65% and

90%. During the 2001 anthrax attack in Washington, D.C., only 64% of those who

received prophylaxis adhered fully to prophylaxis (Shepard et al. 2002). Other

studies assumed that 90% of those who receive prophylaxis will adhere (Wein

et al. 2003). If the regimens in the MCMs and those dispensed at the PODs are not

complete regimens, then these persons will need to obtain the remainder. We

assume that the process of dispensing the remainder will be done on a less urgent

basis and will not interfere with primary dispensing capacity.

7.2.5 Treatment

Persons who become ill need treatment, which consists of three antibiotics

administered intravenously in an intensive care unit (ICU). All who begin treatment

adhere to it. Treatment capacity is limited by the availability of IV antibiotics,

ventilators, respiratory technicians, and ICU beds. We assume that the local stock-

pile has 500 days of IV antibiotics, the push pack provides 21,492 days of IV

antibiotics, and the VMI provides sufficient IV antibiotics for everyone who is

being treated. We assume that 100 ventilators are available when the attack occurs,

and the push pack provides 100 more. We assume that each respiratory technician

can monitor 10 patients, 200 respiratory technicians are available when the attack

occurs, and 2,000 ICU beds are available when the attack occurs. There must be at

least one day’s worth of IV antibiotics to begin treatment of one patient.

7.2.6 Antibiotic Inventory

The model also keeps track of the inventory of antibiotics available for prophylaxis

and the IVs available for treatment. Each hour, the inventory of antibiotics (days of

medication) is reduced by the number of days of medication dispensed (the product

of the number who receive prophylaxis and the number of days in the dispensed

regimen at that time). In addition, the inventory of IVs (days of IVs) is reduced by

the number of those being treated divided by 24. The inventory for antibiotics and

IVs increases when the local inventory becomes available (at t ¼ 53 h), when the

push pack inventory is available and ready, and when the VMI becomes available

(at t ¼ 84 h). The number of ventilators also increases when the push pack

inventory is available and ready.
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7.2.7 Model Output

The model determines, for a particular scenario and a given number of predispensed

MCMs, the expected number of persons who die from anthrax within 2,400 hours of

the attack. From this, we calculate the mortality rate by dividing the expected

number of deaths by the number exposed in that scenario.

7.3 MCM Model Results

To illustrate the use of the model to evaluate how predispensing MCMs reduces

the risk of an anthrax attack (by reducing the expected number of deaths), we

considered a set of 36 scenarios like those considered by Zaric et al. (2008).

The population was five million people in all scenarios (this is approximately the

population of metropolitan Philadelphia). To create the scenarios, we varied

the number of people exposed, the fraction of unexposed people who believe they

were exposed (and thus use medication that could be reserved for exposed people),

the time until the push pack becomes available, and the prophylaxis adherence rate.

We considered attack scenarios with 50,000 exposed, 500,000 exposed, and

1,250,000 exposed. Rates of 0.01, 0.1, and 0.5 were used for the fraction of the

unexposed population seeking prophylaxis. We used prophylaxis adherence rates of

65% and 90%. Values of 12 h and 24 h were used for push pack availability.

Table 7.3 lists the characteristics of the 36 scenarios.

For each scenario, we varied the number of predispensed MCMs from 0 to 5

million and used the MCM model to estimate the expected number of deaths.

Figure 7.2 shows the mortality rates as a function of the number of predispensed

MCMs for six scenarios (14, 28, 22, 26, 30, and 34).

Predispensing MCMs significantly reduces the expected number of deaths and

the expected mortality rate. A key factor that affected the size of the decrease was

the rate at which those who were not exposed believed that they were (which

determined the number of potential exposures). When the number of potential

exposures was large, then medication was not immediately available for those

who truly needed it, which delayed their prophylaxis. In these scenarios,

predispensing more MCMs saved many lives. For example, in scenario 36,

1,250,000 people were exposed and another 1,875,000 were potential exposures,

the adherence rate was 65%, and the push pack availability was 24 h. In this

scenario, predispensing five million MCMs reduced the expected number of deaths

from 621,907 to 140,368. When the number of potential exposures was small, the

antibiotics were going to those who needed it with minimal delay, and

predispensing more MCMs had minimal impact on the number of deaths.

Regardless of the number of predispensed MCMs, it appears that some number

of deaths is unavoidable. For example, in scenario 1, which had the smallest attack

(50,000 persons exposed), the smallest number of potential exposures (1% of those
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not exposed, which is 49,500 in this case), a 90% adherence rate, and a 12-h push

pack availability, the estimated number of deaths was 4,102 (a mortality rate of

8.2%) even when MCMs were predispensed to the entire population. The unavoid-

able deaths result from the delays in detecting the attack and starting prophylaxis

(during which time some exposed persons become very ill), the loss of MCMs

among those who received them, and the imperfect adherence rate.

Table 7.3 Characteristics of each scenario

Scenario Number exposed

Number of potential

exposures

Adherence rate

(%)

Push pack availability

(hours)

1 50,000 49,500 90 12

2 50,000 49,500 90 24

3 50,000 49,500 65 12

4 50,000 49,500 65 24

5 50,000 495,000 90 12

6 50,000 495,000 90 24

7 50,000 495,000 65 12

8 50,000 495,000 65 24

9 50,000 2,475,000 90 12

10 50,000 2,475,000 90 24

11 50,000 2,475,000 65 12

12 50,000 2,475,000 65 24

13 500,000 45,000 90 12

14 500,000 45,000 90 24

15 500,000 45,000 65 12

16 500,000 45,000 65 24

17 500,000 450,000 90 12

18 500,000 450,000 90 24

19 500,000 450,000 65 12

20 500,000 450,000 65 24

21 500,000 2,250,000 90 12

22 500,000 2,250,000 90 24

23 500,000 2,250,000 65 12

24 500,000 2,250,000 65 24

25 1,250,000 37,500 90 12

26 1,250,000 37,500 90 24

27 1,250,000 37,500 65 12

28 1,250,000 37,500 65 24

29 1,250,000 375,000 90 12

30 1,250,000 375,000 90 24

31 1,250,000 375,000 65 12

32 1,250,000 375,000 65 24

33 1,250,000 1,875,000 90 12

34 1,250,000 1,875,000 90 24

35 1,250,000 1,875,000 65 12

36 1,250,000 1,875,000 65 24
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Given a quantity of MCMs, a jurisdiction could decide to keep the MCMs in its

local stockpile instead of predispensing them. Which would affect mortality rates

more?We compared, for the scenarios in Table 7.3, the following possibilities (1) no

additional MCMs beyond the local stockpile of 50,000 regimens, (2) predispensing

1,000,000 MCMs, and (3) adding 1,000,000 MCMs to the local stockpile (with no

predispensing). We then compared the mortality rates in these three cases. The

results showed that, in these scenarios, adding MCMs to the local stockpile did not

reduce the expected number of deaths as much as predispensing MCMs. Indeed, the

average reduction in themortality rate when addingMCMs to the local stockpile was

0.004. The average reduction in the mortality rate when predispensing MCMs was

less than 0.117. Figure 7.3 shows the mortality rates for nine of the 36 scenarios. As

the number of people exposed and the number of potential exposures increase,

predispensing MCMs causes a larger reduction in the mortality rate, but adding

MCMs to the local stockpile hardly changes the mortality rate.

To estimate the sensitivity of the MCM model to the input parameters, these

were grouped into the following sets: awareness, local, times, push pack, disease,

and recovery. Instead of adjusting each value individually, all of the values in the

group were modified simultaneously and by the same amount.

In particular, the “awareness” group included all of the average times that

uninformed persons become aware of the attack. These were first increased by

50% and then reduced by 50%.

The “local” group included all of the local capabilities, including the local

stockpiles of antibiotics, the number of technicians, ventilators and ICU beds, and

the maximum POD capacity. These were increased by 50% and reduced by 50%.
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Fig. 7.2 The mortality rate decreases when more MCMs are distributed before an attack. The

results shown are for scenarios in which the prophylaxis adherence rate is 90 % and the push pack

delay is 24 h. N is the number exposed. b is the fraction of nonexposed persons who will seek

prophylaxis (potential exposures)
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The “times” group included all of the times involved in detecting the attack and

responding to it. These were increased by 50% and reduced by 50%. Note that the

default value for the time until the push pack arrived was set to 24 h.

The “push pack” group included the parameters describing the size of the push

pack, including the number of regimens, the number of IV antibiotics, and the

number of ventilators. These were increased by 50% and reduced by 50%.

The “disease” group included all of the rates and times associated with the

progression of the disease. We first considered the “worst case” by reducing the

expected incubation time, the expected time to become fulminant, and the expected

time to die by 50%. We then considered the “best case” by doubling the expected

incubation time, the expected time to become fulminant, and the expected time to die.

The “recovery” group included all of the average times associated with

recovering from the disease. These were increased by 50% and reduced by 50%.

Finally, we changed to 50% (from 95%) the parameter pM the probability that

someone with a regimen of predispensed MCMs would still have the MCMs when

told to take them after an attack.

We evaluated a set of six baseline scenarios, all with 500,000 exposed, with the

number of predispensed MCMs varying from 0 to 5 million (in increments of

500,000) and used the MCM model to estimate the expected number of deaths

for these 66 cases. We then changed one group (either lower or higher) or lowered

pM. After changing the parameter values, we evaluated the same 66 cases and used
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Fig. 7.3 Mortality rate for the scenarios in which the prophylaxis adherence rate is 90 % and the

push pack delay is 24 h. For each scenario, three rates are shown: when no MCMs are

prepositioned, when 1,000,000 MCMs are predispensed (“predispensing”), and when 1,000,000

MCMs are added to the local stockpile (“stockpiling”). N is the number of people exposed, and b is
the fraction of nonexposed persons who will seek prophylaxis (potential exposures)
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the MCM model to estimate the expected number of deaths and then divided the

result by the expected number of deaths from the corresponding baseline scenario.

Summarizing by averaging the relative values over the 66 cases will provide an

initial view of the results. The “worst case” disease progression increased the

expected number of deaths by approximately 77%. The “best case” disease progres-

sion reduced the expected number of deaths by approximately 19%. Increasing the

expected awareness times increased the expected number of deaths by approximately

19%. Decreasing the expected awareness times reduced the expected number of

deaths by approximately 9%. Increasing the expected recovery times increased the

expected number of deaths by approximately 7%. Decreasing the expected recovery

times reduced the expected number of deaths by approximately 9%.

Reducing the local capabilities increased the expected number of deaths by

approximately 18%. Increasing the local capabilities reduced the expected number

of deaths by approximately 6%. Increasing the delays in response increased the

expected number of deaths by approximately 12%. Reducing the delays in response

reduced the expected number of deaths by approximately 7%. Reducing pM to 50%

increased the expected number of deaths by approximately 10%. Reducing the size of

the push pack increased the expected number of deaths by approximately 1%.

Increasing the size of the push pack reduced the expected number of deaths by

approximately 1%.

Because the values of the disease progression parameters had the most impact on

the expected number of deaths, we also estimated the sensitivity of the MCMmodel

to these parameters, which were grouped into the following subsets: incubation

time, progression time, and time to die. We increased and decreased the average

times by 50%. For the time to die, we achieved this by multiplying the death rates

by 2 (which reduced the average time to die by 50%) and by 2/3 (which increased

the average time to die by 50%). We evaluated the same scenarios with the same

number of predispensed MCMs.

The average relative values over the 66 cases are as follows: The shorter

expected time to incubation increased the expected number of deaths by approxi-

mately 37%. The longer expected time to incubation decreased the expected

number of deaths by approximately 14%.

The shorter expected time to become fulminant increased the expected number

of deaths by approximately 21%. The longer average time to become fulminant

decreased the expected number of deaths by approximately 11%.

The shorter expected time to die reduced the expected number of deaths by

approximately 1%. The longer average time to die increased the expected number

of deaths by approximately 1%. These small but counterintuitive results may result

from the increased availability of resources such as ICU beds for treating others

who are fulminant.

The impact of predispensingMCMs (the change inmortality due to predispensing)

was affected by the parameter values. The “best case” disease progression most

reduced the impact of predispensingMCMs across all six scenarios. Larger awareness

rates, longer delays in response, fewer local capabilities, and the “worst case” disease

progression increased the impact of predispensing MCMs. Figure 7.4 shows the
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percent reduction in the number of expected deaths (as the number of predispensed

MCMs increases) for the various settings of the parameter values. The label

“pm1 ¼ 0.5” refers to reducing the parameter pM to 50%. The label “awareness

¼ 0.5” refers to reducing the “awareness” parameters by 50%; “awareness ¼ 1.5”

refers to increasing the “awareness” parameters by 50%. The labels for “local,”

“times,” “disease,” and “recovery” are used in the same way. (Note that, because

theymade a small change in the expected number of deaths, the changes to the settings

of the size of the push pack are not included in this chart).

7.4 Discussion of MCM Model Results

The MCM model can estimate the number of deaths that result from an anthrax

attack when a community predispenses MCMs and uses PODs to dispense prophy-

laxis to those without MCMs. The results show that, as more MCMs are

predispensed, the expected number of deaths and the mortality rate decrease. The

reduction in mortality rate is greater when the number of potential exposures is

large. Essentially, predispensing MCMs counteracts the problems caused by the

large number of potential exposures delaying the prophylaxis of those who were

truly exposed. Thus, MCMs help both those who have them and those who don’t. In

addition, the MCM model can estimate the relative impact of increasing the local

stockpile (instead of predispensing MCMs), but the results show that, in the
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scenarios considered, predispensing MCMs are much more effective when the

mortality rate is high.

As more MCMs are predispensed, the adherence rate affects the mortality rate

more significantly than the number exposed, the number of potential exposures, and

the push pack delay. This indicates that predispensingMCMs should be accompanied

bymessages about the importance of adherence and techniques to avoid or reduce side

effects that would discourage adherence (Werner and Deasy 2009).

The results also highlight the impact of the potential exposures. Public health

officials should strive to reduce the number of persons not exposed who believe that

they were exposed by determining the time and location of the attack as precisely as

possible and by widely disseminating information about precisely who should

receive prophylaxis (Brandeau et al. 2008).

The sensitivity results show that the disease progression has the largest impact on

the expected number of deaths, especially if the disease progression is “worse” than

the baseline. In that case, it is important to begin treatment as quickly as possible, so

predispensing MCMs has more impact. Smaller awareness rates also have a large

impact on the expected number of deaths because slowing awareness delays the

administration of predispensed MCMs, so that predispensing MCMs has less impact.

When awareness rates are larger, however, predispensing MCMs has more impact

because they will be taken promptly after an attack. Changes in the local capabilities

and the delays in response also affect the expected number of deaths. When local

capabilities are fewer or the delays in response are longer, the effectiveness of the

PODs is reduced, so predispensing MCMs has more impact. If pM is reduced to 50%,

the expected number of deaths increases because it essentially reduces the number of

predispensed MCMs available. The impact is greatest in those cases when there are a

larger number of potential exposures; in these cases predispensing MCMs can greatly

reduce the expected number of deaths.

The numerical results discussed here are for some particular scenarios. The

MCM model is capable of modeling many different scenarios by changing the

parameters used in the model. While not discussed here, the MCM model can

estimate the number of persons hospitalized and the total number of patient-days.

Because the MCM model is based on the POD model, it has many of the same

limitations. Both models take the number exposed as an input (without modeling

the release and dispersion of the anthrax spores). Both models make certain

assumptions about the progression of anthrax, most particularly the assumption

that the progression is not affected by age. Neither considers the impact of the

disease on prophylaxis and treatment capacity. Both models assume that becoming

aware of the attack is a simple diffusion process. In real communities, however, the

spread of information may be quite different, which could affect the rate at which

exposed persons and potential exposures seek and begin prophylaxis. Both models

are deterministic compartmental models that estimate the expected outcome but

give no insight into the distribution of possible outcomes for a given scenario.

Houck (2011) considered a stochastic version of this model and found that the

predictions of the models were very close and that the standard deviation of

the number of deaths was small (about 1% of the mean).
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The MCM model assumes that those who possess predispensed MCMs have the

same chance to be exposed or to be potential exposures as those who do not have

MCMs. Moreover, the model assumes that the progression of anthrax in exposed

persons who take the antibiotics in the MCMs is the same as in exposed persons

who receive prophylaxis from a POD. The compartments and flows in the model

could be modified to represent scenarios in which these assumptions and others are

replaced by other conditions.

7.5 Multiple City Resource Allocation Problem

Now we consider the problem of allocating a store of MCMs to multiple urban

areas. Prepositioning MCMs in a city reduces the expected number of deaths from

an anthrax attack in that city. The defender allocates MCMs before knowing which

city the terrorist will attack. The terrorist (attacker) wishes to maximize expected

number of deaths and will exploit any weaknesses in the defender’s strategy. Thus,

the defender, to minimize expected fatalities, must consider the attacker’s decision.

The approach presented here finds the optimal allocation.

The approach taken utilizes game theory, which can improve our understand-

ing of “the nature of the key decisions that intelligent attackers and defenders

must make” and emphasizes “that vulnerability and consequence are usually

functions of the allocation decisions made by the players” (Cox 2009).

In particular, the problem is one of analyzing a leader–follower (or

Stackelberg) game. The defender is the leader who must first allocate the

MCMs, and the attacker is the follower who observes the defender’s allocation

before deciding which city to attack.

The mathematical model used to analyze the MCMs allocation problem has the

following notation. There is a set of n potential targets (urban areas, or cities). The
defender has a total budget of B MCMs available and will allocate these to the

cities. Let Li(ci) be the expected number of deaths in city i when ci MCMs are

prepositioned in that city. We assume that Li(ci) is a continuous, monotonically

decreasing function. Let Pi be the population of city i. This is the upper limit on ci,
and Li(ci) reaches its minimum at this value. Because the Li(ci) are monotonically

decreasing, they can be inverted: ci ¼ L�1
i ðyÞ.

After observing the defender’s allocation, the attacker wishes to maximize his

expected utility, so he will attack the target that has the greatest value of Li(ci). Let
hi c1; . . . ; cnð Þ ¼ 1 if the terrorist will attack target i (that is, Li(ci) is the maximum)

and 0 otherwise.

The defender’s objective is to minimize the total expected loss from the terrorist

attacks:

min
c1;...;cn

Xn

i¼1

hi c1; . . . ; cnð ÞLi cið Þ
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subject to the budget constraint

Xn

i¼1

ci �B:

Note that hiðc1; . . . ; cnÞLiðciÞ ¼ max
j

LjðcjÞ for the target i that will be attacked

and is 0 otherwise. Thus,

Xn

i¼1

hiðc1; . . . ; cnÞLiðciÞ ¼ max
j¼1;...;n

LjðcjÞ:

In an optimal solution, the defender should invest resources in (allocate MCMs

to) the cities in such a way that equalizes the expected number of deaths in the cities

that receive MCMs (while the expected number of deaths in any cities without

MCMs is even lower).

The range of expected number of deaths can be determined as follows:

Lmax ¼ max
i¼1;...;n

Lið0Þ;
Lmin ¼ max

i¼1;...;n
Li Pið Þ:

It is not possible to reduce the expected number of deaths beyond Lmin, so there

is an upper limit on the number of MCMs that should be allocated, and, in some

cases, there is no benefit to distributing any MCMs to cities that will have a low

expected number of deaths (because they are otherwise well-prepared to respond to

an anthrax attack).

Without loss of generality, renumber the cities so that L1ð0Þ�L2ð0Þ� �� � �Lnð0Þ.
For each city i, ifLið0Þ� Lmin, let c

max
i be the value of ci such thatLi c

max
i

� � ¼ Lmin

(such a value must exist because Lið0Þ� Lmin � Li Pið Þ); otherwise, set cmax
i ¼ 0.

Then, the upper limit on the MCM allocation equals

Bmax ¼
Xn

i¼1

cmax
i

When B ¼ Bmax, the optimal allocation to city i is cmax
i .

If B (the total number of MCMs) is small, then the optimal solution allocates

MCMs to only the cities with the most expected fatalities. As B (the total number of

MCMs) increases, more cities will receive MCMs. Thus, it is valuable to determine

the values of B at which additional cities are added to the set of those that receive

MCMs. Let h be the number of citieswithcmax
i >0. (Note that thesewill be cities 1 to h).
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Then, let c�ij be the value of ci such that Li c�ij
� �

¼ Ljð0Þ for i<j� h. Let B1 ¼ 0.

Then, for j ¼ 2, . . ., h, define the breakpoints

Bj ¼
Xj�1

i¼1

c�ij

If B ¼ Bj, the optimal allocation is ci ¼ c�ij for i < j and ci ¼ 0 for i � j. The
number of expected number of deaths equals Ljð0Þ . If B�Bj , no MCMs are

allocated to cities j to n. If B>Bh , then, in the optimal allocation, ci>0 for i� h
and ci ¼ 0 for i>h.

Given a value of B in the range [0, Bmax], the optimal allocation can be found as

follows (1) let j* be the largest value of j such that B > Bj; (2) find the value of y

such that
Pj�

i¼1

L�1
i ðyÞ ¼ B (because this sum is a monotonically decreasing function

of y, a bisection search or other similar technique can be used) and then set ci ¼ L�1
i

ðyÞ for i ¼ 1; . . . ; j� and ci ¼ 0 for all other cities.

7.6 Resource Allocation Results

To illustrate this technique, we will consider the following scenario in which a store

of MCMs will be prepositioned to the ten urban areas (in the USA) that have the

highest expected annual terrorism losses (Willis et al. 2005). Table 7.4 lists the

urban areas and their populations from the 2000 U.S. Census. In this example, all

prepositioned MCMs are predispensed to the public.

We assume that the terrorist has enough anthrax to expose 500,000 individuals in

any one of the cities. (We will also consider scenarios in which the number of

exposures is 250,000 and 750,000, but we do not consider scenarios in which the

terrorist simultaneously attacks more than one city because our results indicate that

Table 7.4 Ten urban areas

and their populations
Urban area Population (2000)

Los Angeles-Long Beach 9,519,338

New York 9,314,235

Chicago 8,272,768

Philadelphia, PA-NJ 5,100,931

Washington, DC-MD-VA-WV 4,923,153

Houston 4,177,646

Boston, MA-NH 3,406,829

Seattle–Bellevue–Everett 2,414,616

Newark 2,032,989

San Francisco 1,731,183
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splitting the same total number of exposures among multiple cities is suboptimal for

the attacker).

The scenario considered here is similar to the scenarios considered in Section 7.2

except for the following parameters. The number of potential exposures equals 25%

of the number not exposed. The adherence rate is 90%. Intravenous antibiotics

(IVs) for treatment, antibiotics for dispensing, and additional ventilators from the

push pack will become available 16 hours after attack detection at t = 64 hours.

A city’s maximum prophylaxis dispensing capacity, which depends upon the

population Pi, equals Pi/1000 persons per hour. The local stockpile has a one day

dose of medication for every 100 persons and one day of IV antibiotics for every

10,000 persons. There is one ICU bed available for every 2,500 persons, and there is

one respiratory technician available for every 25,000 persons.

The expected number of deaths in city i from an anthrax attack (when MCMs are

predeployed and PODs are used after an attack) was estimated using the MCM

model. In this scenario, each urban area was considered as one population, the

number of predispensed MCMs was set to 0, 1%, 2%, . . ., 100% of the urban area’s

population, and the MCM model was used to estimate Li(ci). For values of ci other
than those 101 values evaluated, we use a linear interpolation to approximate Li(ci).

For this scenario (which we call Scenario 1), the expected number of deaths in

each city can vary within the ranges shown in Table 7.5, which also shows the cmax
i

for each city. Note that Bmax ¼ 50,510,771 MCMs. With no MCMs, San Francisco

has the greatest number of expected number of deaths because, in the scenario

considered here, it has fewer resources than the other urban areas. Therefore, it will

be the first city to receive MCMs. Los Angeles will be the last.

Regardless of the number of MCMs distributed, some number of deaths is

unavoidable. The unavoidable deaths result from the delays in detecting the attack

and starting prophylaxis (during which time some exposed persons become very

ill), the loss of MCMs among those who received them, and the imperfect adher-

ence rate.

For any given value of B between 0 and 50,510,771, we can determine the

optimal allocation to minimize the expected number of deaths using the procedure

presented earlier. We also evaluated a simple allocation rule in which the number of

Table 7.5 Range of expected

number of deaths for each

urban areawhen 500,000

persons are exposed

Urban area Li Pið Þ Lið0Þ cmax
i

Los Angeles-Long Beach 41,396 130,375 9,427,066

New York 41,396 130,823 9,224,588

Chicago 41,397 133,423 8,196,345

Philadelphia, PA-NJ 41,400 147,310 5,063,803

Washington, DC-MD-VA-WV 41,401 148,567 4,888,162

Houston 41,402 154,859 4,151,522

Boston, MA-NH 41,405 163,825 3,389,652

Seattle–Bellevue–Everett 41,410 181,999 2,408,157

Newark 41,414 192,509 2,030,292

San Francisco 41,418 203,125 1,731,183

Bmax 50,510,771
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MCMs allocated to each city is proportional to that city’s population. Of course,

when B is very large (approaching the total population of all ten urban areas), the

optimal and proportional allocations are nearly the same and yield the same

expected number of fatalities. When B is low, however, the allocations are very

different, and the proportional allocation yields a higher expected number of

fatalities, as shown in Fig. 7.5. Notice, in particular, how the expected number of

deaths drops quickly as B increases when the optimal allocation is used.

We also considered the uncertainty in the attack scenario. This study

investigated the uncertainty in the number of exposed, which could vary if the

terrorist has more (or less) anthrax or if the conditions during the attack increase (or

decrease) the number exposed. We let the number of exposed equal 750,000

(Scenario 2) and 250,000 (Scenario 3) and found, for various values of B, the
optimal allocations for these new scenarios.

For any value of B, the allocation of MCMs that is optimal for Scenario 1

(500,000 exposed) is not optimal in Scenarios 2 and 3. We evaluated Scenario 1’s

optimal allocation and the proportional allocation in these new scenarios and

compared the expected number of deaths to those that result from the optimal

allocations for these scenarios, also shown in Fig. 7.5.

In these scenarios, the proportional allocation yields an expected number of

deaths that is greater than the minimal expected number of deaths. The difference

between the expected number of deaths with original optimal allocation and the

scenario-specific optimal allocation is not as great. For instance, when
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B ¼ 20,000,000 MCMs and the number exposed equals 750,000, the optimal

policy allocates more MCMs to San Francisco than the proportional policy does

(see Table 7.6). The expected number of deaths is 106,809 if the optimal allocation

is selected, 116,150 (which is 9% greater) if Scenario 1’s optimal allocation is

selected, and 169,296 (58% greater) if the proportional allocation is selected. Thus,

it appears that the original optimal allocation is robust with respect to the uncer-

tainty in the number exposed.

7.7 Discussion of Resource Allocation Results

Clearly, if the defender has enough MCMs for everyone in every city, the allocation

decision is trivial. When the number of MCMs is low, however, the allocation

decision has a significant impact on the expected number of fatalities. Optimally

allocating the MCMs is much better than a proportional allocation. Moreover, the

optimal allocation for one scenario can be a very good allocation even if the

scenario changes, which indicates that it is a robust solution.

These results also show that hedging (allocating resources to targets that are

initially less attractive to the attacker) is optimal when there are sufficient resources.

Previous work has shown that, in the optimal resource allocation, the most valuable

target receives most of the resources when cost-effectiveness (the rate at which

investments reduce the probability of a successful attack) is low, but, as cost-

effectiveness increases, hedging becomes optimal, and more targets receive some

resources for defense (Bier et al. 2008). In the context of MCMs allocation, cost-

effectiveness is not directly relevant, but the total number of MCMs available for

allocation does affect how many cities receive MCMs.

This study does not address the question of how many MCMs should be

obtained, but the results seem to indicate that the marginal benefit of additional

Table 7.6 Allocations of MCMs to each urban area under three different policies when

B ¼ 20,000,000

Urban area

Optimal for 750,000

exposed

Optimal for 500,000

exposed

Proportional

allocation

Los Angeles-Long Beach 3,177,574 3,307,654 3,740,872

New York 3,128,173 3,249,777 3,660,271

Chicago 2,874,805 2,955,753 3,251,000

Philadelphia, PA-NJ 2,062,797 2,038,265 2,004,544

Washington, DC-MD-VA-WV 2,014,199 1,985,396 1,934,681

Houston 1,805,264 1,759,649 1,641,715

Boston, MA-NH 1,576,456 1,518,868 1,338,802

Seattle–Bellevue–Everett 1,251,882 1,189,857 948,886

Newark 1,113,225 1,053,957 798,916

San Francisco 995,625 940,824 680,313
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MCMs is large if they are allocated optimally. As the number of MCMs available

increases, the marginal benefit of additional MCMs decreases (this was seen also in

the results shown earlier). A complete analysis of the appropriate investment in

MCMs should also consider the financial, legal, regulatory, safety, and ethical

considerations.

7.8 Conclusions

Public health officials who are considering whether and to what extent to preposi-

tion MCMs should consider how this option reduces the consequences of an anthrax

attack. The MCM model described here enables that evaluation and should be

valuable to these decision-makers.

In addition, the MCM model can be used as part of an approach for determining

the allocation of a store of MCMs to multiple cities.

The decision to preposition MCMs depends upon many factors besides the

expected impact on deaths. The cost of purchasing, predispensing, and replacing

the MCMs may be substantial. The distribution should be fair, but issues of equity

will appear if the number of MCMs available is not enough for everyone who wants

them. The risks of individuals using the MCMs for unauthorized, possibly danger-

ous, uses must be assessed as well. Legal and regulatory issues must also be

considered. A complete analysis of this decision is the focus of future work.

This chapter discussed the problem of allocating a store of MCMs to multiple

cities. A game theory-based approach is adopted, and the attacker’s objective is

used to define the objective function that the defender needs to optimize. In

particular, the objective is to minimize the maximum expected number of deaths.

When the total number of MCMs is low, the optimal solution allocates MCMs to

a small number of cities that have the highest expected number of deaths. When

more MCMs are available, all of the cities receive some, but the optimal allocation

is not proportional to the cities’ populations. Based on this analysis, finding the

optimal solution is not difficult. An illustrative example was used to demonstrate

the essential characteristics of the problem.

This study considered only the allocation of MCMs that will be predispensed to

the general population. Predispensing MCMs to first responders and other person-

nel who are essential to continuity of operations will reduce the number of MCMs

available to the general population. In general, the allocation of scarce resources to

different urban areas and to groups within an urban area must be considered within

a framework of ethical guidelines that emphasize the relevant moral principles

(Kinlaw et al. 2009).
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Abstract A catastrophic health event, such as a terrorist attack with a biological

agent, a naturally occurring pandemic, or a calamitous meteorological or geological

event, could cause tens or hundreds of thousands of casualties, weaken the economy,

damage public morale and confidence, create panic and civil unrest, and threaten

national security. It is therefore critical to establish a strategic vision that will enable a

level of public health and medical preparedness sufficient to address a range of

possible disasters. Planning for a catastrophe involving a disease outbreak or mass

casualties is an ongoing challenge for first responders and emergency managers. They

must make critical decisions on treatment distribution points, staffing levels, impacted

populations and potential impact in a compressedwindowof timewhen seconds could

mean life or death. Some of the key areas of public health and medical preparedness

include medical surge, population protection, communication infrastructure, and

emergency evacuation. This chapter highlights our own experience on projects with

the Centers for Disease Control and Prevention and various public health jurisdictions
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8.1 Introduction

A catastrophic health event, such as a terrorist attack with a biological agent, a

naturally occurring pandemic, or a calamitous meteorological or geological event,

could cause tens or hundreds of thousands of casualties or more, weaken the

economy, damage public morale and confidence, create panic and civil unrest,

and threaten national security. It is therefore critical to establish a strategic vision

that will enable a level of public health and medical preparedness sufficient to

address a range of possible disasters. Although present public health and medical

preparedness plans incorporate the concept of “surging” existing medical and

public health capabilities in response to an event that threatens a large number of

lives, the assumption that conventional public health and medical systems can

function effectively in catastrophic health events has proven to be incorrect in

real-world situations. Therefore, it is necessary to transform the approach to health

care in the context of a catastrophic health event in order to enable public health and

medical systems to respond effectively to a broad range of incidents.

According to the Homeland Security Presidential Directive 21, public health and

medical preparedness refers to “the existence of plans, procedures, policies, training,

and equipment necessary to maximize the ability to prevent, respond to, and recover

from major events, including efforts that result in the capability to render an appro-

priate public health and medical response that will mitigate the effects of illness and

injury, limit morbidity and mortality to the maximum extent possible, and sustain

societal, economic, and political infrastructure.”

Planning for a catastrophe involving a disease outbreak or mass casualties is an

ongoing challenge for first responders and emergency managers. They must make

critical decisions on treatment distribution points, staffing levels, impacted

populations and potential impact in a compressed window of time when seconds

could mean life or death. Although extensive resources have been devoted to

planning for a worse-case scenario on the local, regional, and national scale, the

US Government Accountability Office (GAO) found that gaps still exist. While

many states have made progress in planning for mass casualty events, many noted

continued concerns related to maintaining adequate staffing levels and accessing

other resources necessary to effectively respond.

This chapter highlights our own experience on projectswith theCenters forDisease

Control and Prevention (CDC) and various public health jurisdictions in emergency

response and medical preparedness for mass dispensing for disease prevention and

treatment and large-scale disaster relief efforts. Specifically, Section 8.2 provides a

brief introduction and motivation for medical countermeasure dispensing. Section 8.3

offers a systems view of mass dispensing operations.

In Section 8.3.1, we describe various modes of dispensing and POD placement.

This is followed by resource allocation and POD layout design in Sect. 8.3.2.

Section 8.3.3 highlights the importance of disease propagation analysis and design

of mitigation strategies. Section 8.3.4 describes supply chain management that

includes demand, supply, fulfillment, and partnership. In particular, we briefly
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explain the mission and responsibility of CDC’s Strategic National Stockpile.

Section 8.3.5 discusses communication and public information. This entails the

communication infrastructure (hardware tools and software programs) that supports

emergency operations, as well as public information and risk communication.

Section 8.3.6 offers insights on lessons learned from flu mass vaccination and

anthrax drill exercises, and shares our knowledge on continued challenges and

the need for multi-layer protection.

Section 8.4 summarizes large-scale disaster relief efforts, including the estab-

lishment of a network of service constructs for food, medical needs, and shelters;

staffing and resource constraints; susceptibility of displaced population to infec-

tious disease outbreaks; and supply chain management. Coordination among dif-

ferent stakeholders; risk and uncertainty that are faced by on-the-ground rescue and

relief workers; and media exposure are also discussed.

In Sect. 8.5, we summarize some methodologies that are commonly employed in

emergency responses. These techniques include optimization, stochastic processes,

information technology, and an integrated framework of decision systems.

The chapter concludes with some challenges for future research.

8.2 Population Protection: Medical Countermeasures

Dispensing and Large-scale Disaster Relief Efforts

Public health emergencies, such as bioterrorist attacks or pandemics, demand fast,

efficient, large-scale dispensing of critical medical countermeasures (i.e., vaccines,

drugs, and therapeutics). Such dispensing is complex and requires careful planning

and coordination from multiple federal, state, and local agencies and the potential

involvement of the private sector. Dispensing medications quickly (within 48 h for

anthrax prophylaxis) to large population centers (with tens of thousands or even

millions of people) is urgent; moreover, the multi-faceted nature of dispensing (e.g.,

sending federal stockpiles to local points-of-dispensing (PODs), coordination at the

local level to manage the transportation of citizens to PODs, and the POD

operations) makes the process highly unpredictable. Thus, emergency managers

and public health administrators must be able to quickly investigate alternative

response strategies as an emergency unfolds.

The focus of this chapter is on mass dispensing of medical countermeasures for

protection of the general population. Other issues pertinent to large-scale disaster

relief efforts will also be highlighted. Much of the writing below are excerpts from

our recent work with the Centers for Disease Control and Prevention on modeling

and optimizing public health emergency response infrastructure and the develop-

ment of a large-scale simulation-optimization decision support system, RealOpt

(Lee et al. 2006a, b, 2009a, b); (Lee 2008).

Large-scale public health emergencies may involve thousands of sick or injured

people who will require various levels of medical care, ranging from patient

evacuation (Lee et al. 2011c), hospital care, and sustainable and potentially
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long-term health-recovery procedures. Thus, such emergencies present a daunting

set of challenges, including the surge capacity and flexibility of our existing

medical systems (Lee et al. 2011a, c), federal and state emergency capacity for

rapid medical dispatching, and the resolve and resilience of health-care workers and

emergency responders to perform under critical timelines and exceedingly stressful

conditions.

In the wake of the 2001 anthrax attacks, the Department of Health and Human

Services (HHS) increased its order for smallpox vaccine, accelerated production,

and began working to develop a detailed plan for the public health response to an

outbreak of smallpox. By January 2003, the USA had sufficient quantities of the

vaccine for every person in the country in an emergency situation (Gerberding

2003). Subsequently, HHS required each state to submit a mass vaccination plan for

administering smallpox vaccine. Further, states are charged with developing city-

readiness programs that deal with establishing regional treatment and dispensing

centers, and developing procedures, policies, and a planning framework for effi-

cient allocation of staff and resources in response to these events.

The importance of such population protection has been carefully studied for

human, social, and economic benefits. Kaplan et al. (2002) argued that immediate

mass vaccination after a smallpox bioterrorist attack would result in fewer deaths

and faster eradication of the potential epidemic; Wein et al. (2003) concluded that

immediate and aggressive dispersion of oral antibiotics and the full use of available

resources (local nonemergency care workers, federal and military resources, and

nationwide medical volunteers) are extremely important.

8.3 A Systems View of Mass Dispensing Operations:

Integrating all the Elements

Public health and medical preparedness involves three phases: (1) preparedness and

prevention, (2) detection and response, and (3) recovery and mitigation.

Modeling and optimizing public health infrastructure involve elements of

resource allocation under risk, uncertainty, and time pressure; large-scale supply

chain management; transportation and operational logistics; and medical treatment

and population protection. The operations must be supported by an effective

communication infrastructure (Lee et al. 2011b). There is a necessity for vertical

and horizontal integration and communication, where federal, state, local, tribal,

territorial, private, and business stakeholders work toward a common goal of a

resilient public health system. The infrastructure must be flexible, scalable, sustain-
able, and elastic to support an effective and timely response, and to mount rapid

recovery and mitigation operations (Lee 2009; Lee et al. 2009a, b).

The global integration plan for population protection in the event of medical and

emergency response includes multiple interconnected components: strategic

planning; management command and control with key leaders working cohesively

170 E.K. Lee et al.



together as a team; requesting supplies and equipment from Strategic National

Stockpiles; tactical communication and information technology; public information

and risk communication; security; regional and local distribution sites (for receiv-

ing, staging, and storing of supplies, as well as transportation and routing); inven-

tory control and management; distribution—supply and re-supply; dispensing;

treatment centers; and planning, training and evaluation (Lee 2009). The ultimate

goal is to dispense the medical countermeasures to the affected regional population

in a timely manner.

8.3.1 Mode of Dispensing and POD Placement

Mass dispensing requires the rapid establishment of a network of dispensing sites

and health facilities that are flexible, scalable, and sustainable for medical prophy-

laxis and treatment of the general population. Moreover, each PODmust be capable

of serving the affected local population within a specified short time frame. Clearly,

for very large-scale dispensing, the sophisticated logistical expertise needed to deal

with the complexities of selecting an adequate number of strategically well-placed

POD locations, and of designing and staffing each POD, is beyond the capability

of any human planner or public health administrator. The limited availability of

trained critical staff, such as public health professionals, further compounds the

inherent complexities.

The CDC and public health administrators work closely with one another to

prepare for and document the steps required to administer medication in the event

that mass dispensing is needed. The goal and objectives of a dispensing facility,

point-of-dispensing (POD), are to deliver appropriate emergency services (e.g.,

vaccine, medical service, and education/training) to high-risk populations in an

orderly, expeditious and safe manner. Within the POD facility, the potential tasks

and objectives may include

1. Assess health status of clients.

2. Assess eligibility of clients to receive service.

3. Assess implications of each case and refer case for further investigation if

necessary.

4. Counsel clients regarding service and associated risks.

5. Administer service.

6. Educate regarding adverse events.

7. Document services.

8. Monitor vaccine take rates.

9. Monitor adverse reactions.

10. Monitor development of disease.
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8.3.1.1 Mode of Dispensing

The key to mass dispensing is to protect the general population efficiently and

effectively under time pressure. For example, in an anthrax attack, the goal is for

citizens to receive antibiotic prophylaxis within 48 h of the determination that an

attack has occurred, as the mortality rate for persons demonstrating symptoms of

inhalation anthrax is extremely high (Lawler and Mecher 2007). Thus, it is

recognized that multiple dispensing modalities often must be employed in order to

serve (cover) the entire regional population. For example, special dispensing

services will be utilized to serve homebound, disabled, and special need populations.

In some instances, it is unreasonable to expect residents to travel to a designated

POD facility. For example, nursing homes, assisted living facilities, homeless

shelters, hospitals, and prisons house many residents for whom it would be

inconvenient or inadvisable to travel to a public dispensing facility. Moreover,

in many of these instances, there are already medical personnel on site who can

assist in the dispensing process. In such cases, it would be more efficient to set up

a closed POD inside these locations for dispensing, or to have medication dis-

pensed by a mobile POD facility near the site. In this case, the POD is closed as it

provides services only to the residents on-site, and is not open to walk-ins from the

general public. Corporate offices that staff a large number of employees could be

served in a similar manner. Once these sites receive prophylactic supplies, they

could set up a closed POD within their building, with their own health-care staff

Fig. 8.1 The flowchart shows a POD that was set up in a national drill exercise to dispense anthrax

antibiotics
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and volunteers, or with public health staff supplemented by the state. Several

factors suggest that such closed PODs will have fewer security concerns and will

be easier to manage than public PODs. These factors include familiarity with the

environment and people (e.g., fellow residents/employees), existing security

measures including established checkpoints and previously authenticated identifi-

cation badges with photo and/or biometric markers, and less stress than having to

commute to a public POD.

Airports and hotels, where a large number of nonresident travelers can be found,

are also candidates for setting up PODs to service specific vulnerable populations.

Universities can use their own health facilities (and if necessary, additional mobile

on-campus PODs provided by the state) to provide prophylaxis to on-campus

students, staff and faculty. Clearly, if large employers and medical facilities provide

prophylaxis to their own employees, families, and patients, it will eliminate a high

percentage of the population (may be as high as 40% in some large cities) from

visiting public PODs, thus reducing the load on those facilities.

Public PODs are open facilities that are setup to serve the general public.

In our work with CDC (Lee et al. 2006a, b, 2009a, b), public PODs have

generally been described as being setup inside existing facilities, or in outdoor

tents, with areas set aside for various activities in the dispensing process, including

assembly/intake, triage, orientation, registration, screening, service, education and

discharge. Public PODs can be mobile or stationary, and in the latter case, they can

be setup as facility-based or drive-through.
A facility-based POD operates within physical locations, such as buildings,

warehouses, open fields, or large parking lots. Citizens are asked to arrive at the

POD location and then walk through the POD to receive their medication or other

treatment. Facility-based PODS may be scaled to operate within a setting as large as

a professional sports stadium or as small as a volunteer fire house within a rural

community.

These walk-through PODs are suitable for relatively large capacity facilities,

where the possibility of traffic jams preclude the use of the drive-throughs. Because

parking is typically limited, individuals may be directed to arrive at designated

points, and they are bused to the POD. Examples of pickup points include bus

stations, subway stations, and parking lots of large shopping malls, where sufficient

parking is available.

High schools are often selected as potential POD locations. The fact that they are

government-owned makes logistics easier. Other considerations include existence

of offices, computer communications, cafeterias, storage, etc. Shopping malls,

churches, and stadiums are also suitable, and in some cases, PODs are set up

outdoors using tents and temporary constructs.

Drive-through PODs are suitable to serve a spread-out population. Ideally,

government-owned properties are preferred over privately owned ones for logistics

reasons. Locations for setting up drive-through facilities should have enough space

for multiple dispensing lanes; surrounding access roads; and room for command

tent, employee rest area, and medication storage.
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8.3.1.2 POD (Facility) Placement

Facility location problems are classic optimization problems and have been a

critical element in strategic planning for a wide range of private and public

organizations. The earliest facility location problems incorporating emergency

response relate to location of emergency facilities (Swain et al. 1971; Larson

1975; Aly and White 1978). Chaiken and Larson (1972) provide a survey on urban

emergency unit allocation. Some researchers (Hogan and Revelle 1986; Pirkul and

Schilling 1988; Narasimhan et al. 1992) explicitly take the need for backup facilities

(in case the main facility is overloaded) into account. More recently, Jia et al. (2002)

provides a modeling framework for location of medical services for large-scale

emergencies. Berman and Gavious (2007) take a game theoretic approach toward

location of terror response facilities. Church et al. (2004) study the problem of

identifying and protecting critical infrastructure. A comprehensive review of facility

location research can be found in Brandeau and Chiu (1989), where the authors

present a survey of over 50 representative problems in location research. Most of the

problems reviewed have been formulated as optimization problems. Owen and

Daskin (1998) provide another review of the strategic facility location problem.

They consider a wide range of model formulations across numerous industries,

including stochastic formulations, and discuss solution approaches.

While many of the facility location problems involve permanent construction

and establishment of service facilities, facility location problem for mass dispens-

ing concerns the placement of PODs (mobile or stationary) in existing facilities

(e.g., high schools, stadiums, shopping malls, open parking lots) in a region to

provide the necessary services to the population within a designated period of time.

Various objectives can be incorporated within the models. In the event of

catastrophic incidents, it is critical that PODs are strategically located so as to

allow easy access by the affected public. Hence, minimizing transportation time can

be one critical objective. Further, the setup and operating costs of PODs cannot be

neglected. A POD must be accessible by service workers, it should include a good

communication infrastructure, it must be easily protected by law-enforcement

personnel, and the facility must be capable of handling a large flow of people.

Physical constraints on the facility must be modeled properly, e.g., capacity of a

facility cannot be violated (e.g., POD parking capacity is limited, and fire codes

limit the number of individuals who can be inside a facility simultaneously).

For operational purposes, there is also a desire to ensure that the number of PODs

in each jurisdiction is at least two. This is due to the concern that if a catastrophic

event at one site necessitates shutting down of a POD, emergency dispensing can

still be carried out in the remaining location. In this case, the response manager can

re-route populations to the remaining site, while re-establishing a new POD, if

deemed necessary.

The problem of modeling POD placement involves the traditional facility

location issues, as well as the incorporation of spatial, geographical, and demo-

graphic information. In our work with CDC, the problem is modeled using a
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two-stage integer programming approach. For a large metropolitan area with a

population over five million, such a POD placement problem can result in optimi-

zation (integer programming) instances involving millions of variables and

constraints for each jurisdiction that consists of hundreds of thousands of people

in the region. The challenge is to determine the tradeoffs between the quality of

solution, the practicality of planning, and real-time optimization. Exact algorithms

and heuristics must be developed and advanced to address such computational

challenges (Lee et al. 2009a, b, 2013).

8.3.2 Resource Allocation and POD Layout Design

8.3.2.1 Resource Allocation

Mason and Washington (2003) at CDC investigated optimal staffing arrangements

for dispensing sites in the face of limited resources via a simulation/optimization

system “Maxi-Vac” that they developed. Their study offered insight on the practi-

cality of such a system as a planning tool for emergency situations, but revealed

critical bottlenecks between the commercial simulation software and the optimiza-

tion software: over 10 h were needed to obtain a usable feasible solution in each

scenario with about 25–30 staff. This initiated our collaboration with CDC and the

development of RealOpt, a large-scale real-time simulation-optimization decision

support system (Lee et al. 2006a, b, 2009a, b, c, 2013).

Given a staff assignment (obtained from an initial optimization step), and input

of service distributions at each station, we can model and simulate the movement of

individuals inside a POD. The simulation output is a set of parameters (including

statistics of average flow time, queue length, wait time, utilization rate, etc.) that

enable evaluation of the objective function being optimized (e.g., the resulting

throughput).

The optimization of labor resources involves placement of staff at various

stations in the POD to maximize throughput or minimize the staffing needs to

satisfy a preset throughput population. The cost at each station depends on the type

and number of workers who are assigned to that station and have the required skills

and on the average wait time, queue length, and utilization rate of the station. The

total system cost depends on the cost at each station, and on system parameters

such as cycle time and throughput. These cost functions are not necessarily

expressible in closed form.

Constraints in the model include maximum limits on average wait time and

queue length, range of utilization desired at each station, and upper and lower

bounds on the number of workers with the required skills who are needed to

perform various tasks at the POD. Constraining the average cycle time to be less

than a prespecified upper bound is critical for emergency response, because

individuals must move through the system as quickly as possible to facilitate

crowd control, reduce sources of human frustration and potential disorderly
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outbursts, and reduce the potential spread of disease or contamination. The

resulting nonlinear mixed-integer program poses unique challenges for existing

optimization engines (Lee et al. 2006a, b, 2009a, b, c, 2013).

8.3.2.2 POD Layout Design

Designing the appropriate POD for various medical dispensing is critical. Further,

POD layout will affect the overall staffing and efficiency of the dispensing

operations.

Figure 8.2 contrasts two POD designs that were employed in a Hepatitis A

booster shot event for 10,000 citizens (The Buffalo News 2008). The left shows the

drive-through POD design used in the morning, and the right shows the re-design in

the afternoon after real-time reconfiguration (based on service times collected on

site) was performed. The re-design offers 10% improved throughput, 18%

improved utilization, and a range of 10–85% reduction in wait time and queue

length at various stations. This illustrates the paramount importance of POD design
to any emergency operation where resources are scare, time is precious, and there
is a large affected population to serve.

8.3.3 Disease-Propagation Analysis: Mitigation Strategies
and Choice of Dispensing Modalities

Large-scale dispensing clinics could facilitate the spread of disease because of their

high-volume population flow. The field of dynamical systems (mostly differential

equation systems) provides the principle methods of modeling in classical mathe-

matical epidemiology (Anderson et al. 1992; Diekmann and Heesterbeek 2000).

Despite their simplicity when compared to recent complex simulation studies

(Ferguson et al. 2005, 2006; Longini et al. 2005; Germann et al. 2006), these

methods have helped generate functional insights, such as the transmission

Fig. 8.2 Two POD layouts used during an actual 2008 Hepatitis vaccination event
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threshold for the start of an epidemic and the vaccination threshold for containment

of an outbreak. As modelers attempt to incorporate more realistic dynamics into

their models (such as stochasticity, nonexponential waiting times, sample-path-

dependent events, and demographical and geographical data), more flexible tools,

such as individual-based stochastic simulations, are preferable. Although simula-

tion is a powerful approach, it is less mathematically tractable (i.e., it requires

intensive computing time) than the classical methods.

The rapid and large-scale simulator in RealOpt opens up an opportunity to

explore disease-propagation studies in which stochasticity of systems can be

incorporated readily. It includes a disease-propagation module that aids users in

understanding facility design and flow strategies that mitigate the spread of disease.

The module incorporates the standard four-stage SEIR (susceptible, exposed, infec-

tious, and recovered) model (Kermack andMcKendrick 1991), and a novel six-stage

SEPAIRmodel to capture the disease development (i.e., asymptomatic or symptom-

atic). By distinguishing the symptomatic stage from the asymptomatic stage, this

model allows one to examine the effect of triage accuracy in POD facility design.

Lee et al. (2009b, 2010a) give a detailed theoretical and computational analysis

of disease propagation and strategies for mitigation during biological or pandemic

outbreaks and mass dispensing. In addition to the incorporation of stochasticity of

client arrival and service distribution into the model, it also accommodates the

following factors.

• The clinic model can be represented as an n-server system with queuing;

transmission can occur between clients or between clients and staff. (In a real

emergency, staff members will be given medical countermeasures to protect

them from the disease prior to their assignment to POD services. However, a

medical countermeasure does not provide 100% protection; each staff member

still has a small probability of being infected by clients).

• The intra-clinic infectivity between clients and staff can vary.

• If symptomatic individuals are not triaged out properly during the initial screen-

ing, they could infect other people inside the POD. The system allows users to

observe the effect of triage and screening errors, determine improved strategies

for triage and screening, and establish guidelines for mitigating the spread of

disease because of such errors.

• Inhomogeneous mixing within the community is possible.

• The infectious, asymptomatic, and symptomatic individuals can infect at

various rates.

Figure 8.3 contrasts the triage accuracy with respect to the symptomatic

proportion, when simple mass-action incidence infection is considered (Lee et al.

2009b, 2010a). This analysis assesses errors in triage and their infection

consequences. It provides estimates for POD planners and epidemiologists to help

determine the level and expertise of triage that should be in place with respect to the

transmission coefficient. It also allows for scenario-based comparison of effective

POD design.
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Such analyses may influence the selection of dispensing modalities. Specifically,

over the past few years, we have observed more use of drive-through PODs

for infectious disease prophylaxis dispensing (e.g., seasonal flu vaccination for

communities and the H1N1 mass vaccination in 2009 and early 2010). In January

2008, a Hepatitis A confirmation of a grocery worker triggered the prophylactic

vaccination of 10,000 residents in Erie County in New York who were potentially

exposed to the disease, costing the county’s public health agency at least $500,000.

The health department dispensed the first vaccination in February when it set up

a stationary clinic (walk-through POD). Because of the medical logistics and

infectious nature of the disease, some people had to wait for hours in frigid

temperatures. In September 2008, the health department used a Hepatitis

A follow-up drive-through POD to provide the required second shot of vaccination.

The POD was also the first test of the county’s “drive-through” plan. The drive-

through process is quick, efficient, and convenient, and minimizes the potential of

intra-infectivity (The Buffalo News 2008).

Fig. 8.3 The graph shows the triage accuracy versus symptomatic proportion and the importance

of using the SEPAIR six-stage propagation model, because it allows us to examine the effect of

implementing triage accuracy. The graph shows the number of intra-POD infections (vertical axis)
under different triage accuracy and symptomatic proportions (horizontal axes). The throughput is
36,000 over a period of 36 h. The contact number is 193 (for outer-POD disease propagation), and

the transmission coefficient is 0.18E�5/min. The incoming percentage for susceptible is 95 %, and

for infectious is 5 %. The mean dwell time is 1 day for both exposed and infectious and 3 days for

asymptomatic and symptomatic
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8.3.4 Supply Chain Management: Demand, Supply,
Fulfillment, and Partnership

Although supply chain management during a disaster response mirrors that of

business supply chain management, damaged or destroyed infrastructure forces the

use of ad hoc solutions that limit the effectiveness and efficiency of the operation.

Demand management can be extremely difficult due to the fluidity of the

population and the potential collapse of the supporting infrastructure. Problems

vary depending on the nature of the disaster. In the event of an infectious disease

outbreak, as in the 2009 H1N1 event, when there is not a sufficient supply of

medical countermeasures for the affected populations, predicting and allocating the

proper distribution across the nation becomes critical, but demand is highly sto-

chastic and uncertain (Lee et al. 2010b). Decisions can have a major impact on

overall infectivity and mortality rates. In the same manner, demand within an

earthquake zone fluctuates rapidly due to the movement of people fleeing from

one site to another. And the time it takes to implement an effective response can be

critical to the survivors of the affected population.

Within the USA, an act of terrorism (or a large-scale natural disaster) targeting

the US civilian population will require rapid access to large quantities of

pharmaceuticals and medical supplies. Such quantities may not be readily available

unless special stockpiles are created. No one can anticipate exactly where a terrorist

will strike and few state or local governments have the resources to create sufficient

stockpiles on their own. Therefore, a national stockpile has been created as a

resource for all.

The CDC’s Strategic National Stockpile (SNS) is a national repository of

antibiotics, chemical antidotes, antitoxins, life-support medications, IV administra-

tion, airway maintenance supplies, and medical/surgical items to protect the Ameri-

can public if there is a public health emergency (terrorist attack, flu outbreak,

earthquake) severe enough to cause local supplies to run out. Once Federal and

local authorities agree that the SNS is needed, the SNS will supplement and

re-supply state and local public health agencies anywhere and at anytime within

the USA or its territories.

The SNS is organized for flexible response. The first line of support lies within

the immediate response 12-h Push Packages. These are caches of pharmaceuticals,

antidotes, and medical supplies designed to provide rapid delivery of a broad

spectrum of assets for an ill defined threat in the early hours of an event. These

Push Packages are positioned in strategically located, secure warehouses ready for

immediate deployment to a designated site within 12 h of the federal decision to

deploy SNS assets. These 12-h Push Packages have been configured to be immedi-

ately loaded onto either trucks or commercial cargo aircraft for the most rapid

transportation. Concurrent to SNS transport, the SNS Program will deploy its

Stockpile Service Advance Group (SSAG). The SSAG staff will coordinate with

state and local officials so that the SNS assets can be efficiently received and

distributed upon arrival at the site.
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If the incident requires additional pharmaceuticals and/or medical supplies,

follow-on vendor managed inventory (VMI) supplies will be shipped to arrive

within 24–36 h. If the agent is well defined, VMI can be tailored to provide

pharmaceuticals, supplies and/or products specific to the suspected or confirmed

agent(s). In this case, the VMI could act as the first option for immediate response

from the SNS Program.

The SNS Program works with governmental and nongovernmental partners to

upgrade the nation’s public health capacity to respond to a national emergency.

Critical to the success of this initiative is ensuring capacity is developed at federal,

state, and local levels to receive, stage, and dispense SNS assets.

In our work on modeling and optimization of public health infrastructure and

mass dispensing strategies (Lee et al. 2009a, b), we describe the importance of

collaboration among federal, state, local, and private sectors for successful response

to large-scale emergency scenarios, and report public/private solutions for meeting

the Strategic National Stockpile dispensing requirements as prescribed within the

Cities Readiness Initiative program.

8.3.5 Communication and Public Information

8.3.5.1 Communication and Information Technology

Communication programs and infrastructure for emergency response are critical for

successful operations (Lee et al. 2009c, 2011b). Communication efforts should be

coordinated, planned, and tested. Regular training on usage should be performed.

Briefly, multi-faceted communication infrastructures are needed for effective

medical and emergency response. Two-way communication lines must be kept

open between emergency/medical responders and commanders for coordination

and facilitation of the response effort; broadcast communication lines must be

available to inform the general public about medical precautions and available

services; and phone service and call answering stations must be maintained to allow

the public to report critical emergency situations. Further, communication infra-

structure of hospitals and related medical care entities are critical for any emer-

gency response.

Developing and maintaining a robust communication infrastructure among

hospitals, emergency medical services and other health-care facilities, as well as

private medical transport companies and medical supplies vendors, is vital to

providing relief operations and services during emergency situations. Such infra-

structure provides the core foundation for basic knowledge sharing such as patient

volume and severity, emergency room capacity, hospital bed availability; special

wards availability; medical personnel specialties; transport vehicle availability; and

blood, medicine, and medical supplies inventories. During an emergency situation,

such critical information can be communicated to a regional coordinating control

center which can assess available resources, identify surpluses and shortages, and
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coordinate distribution efforts. In fact, building capacity for an interoperable

communication system for emergency response is identified as one of the areas

that must be prioritized according to The Hospital Preparedness Program

established by the US Department of Health and Human Services.

Previous instances of emergency situations such as the September 11, 2001,

terrorist attack and the Rhode Island night club fire incident have brought forth the

challenges and necessity in establishing and sustaining a redundant emergency

communication network. Kapucu 2006 has examined the importance and

challenges in establishing a coordinated inter-agency communication network

and the role information technology serves to enhance such communication and

decision-making as in the context of the September 11, 2001, terrorist attack.

Challenges include interoperability among the various communication tools, reli-

ability of the tools during emergency situations, technical limitations, barriers in

inter-agency communication and related aspects.

8.3.5.2 Public Information and Risk Communication

Risk communication plays a crucial role to any successful emergency response.

The social challenges that arise as a result of human behavioral patterns cannot be

over-emphasized. During the high concern and high stress situation, the messages

to the public must be concise, unified, and coordinated. Getting correct and credible

information out quickly assures the public that they can trust the authority in

protecting themselves and their families. The public needs to know in timely

manner that there is a problem and the nature of the problem. Appropriate measures

must be performed to curtail rumors that may cause unnecessary panic and fear, and

potential unrest. Multi-media hotlines should be established to share factual infor-

mation and timely updates. Educational information pertinent to the medical

countermeasures and dispensing sites should be clearly stated. Finally, care must

be taken to ensure that vulnerable and special need populations are served

appropriately.

8.3.6 Lessons Learnt and Continued Challenges

8.3.6.1 Our Experience Through Anthrax Drills and Actual

Vaccination Events

Our experience illustrates that by combining mathematical modeling, large-scale

simulation, and powerful optimization engines, and coupling these with automatic

graph-drawing tools and a user-friendly interface, we can design and implement a

fast and practical emergency response decision support tool that can run on a wide

range of computing platforms, including PDAs for real-time usage. The system,
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developed in collaboration with CDC SNS investigators, offers public health

emergency coordinators the capabilities to

1. Determine strategically most effective locations for POD facilities to best serve

the affected population.

2. Design customized and efficient POD floor plans via an automatic graph-

drawing tool. Users can design and compare various floor plans to determine

the tradeoffs in personnel usage as well as operations efficiency.

3. Determine optimal labor resources required and provide the most-efficient

placement of staff at individual stations within the POD. The resulting staffing

plans maximize the number of individuals who can be treated, minimize the

average time patients spend in the clinic, and equalize utilization across clinic

stations.

4. Perform disease propagation analysis, understand and monitor the intra-POD

disease dilemma, and help to derive dynamic response strategies to mitigate

casualties. The what-if analysis and worst-case scenarios can also equip

epidemiologists with knowledge that may assist emergency planners in testing

alternative POD facility layouts, assess batch size for patient orientation, and

analyze the tradeoffs between POD throughput operations and degree of

infectiousness.

5. Assess current resources and determine minimum needs to prepare for readiness

in emergency situations for their regional population.

6. Carry out large-scale virtual drills and performance analyses, and investigate

alternative strategies.

7. Train personnel, and design emergency exercises with a variety of dispensing

scenarios. Such training exercises could be used to quickly get new emergency

preparedness planners up to speed and to keep existing planners sharp.

The computational advances also provide flexibility to quickly analyze design

strategies and decisions, and can generate a feasible regional dispensing plan (with

a network of cost-effective PODs, each operating at various throughput rates and

utilizing various dispensing modalities) based on the best estimates and analyses

available, and then allow for reconfiguration of various PODs as the event unfolds.

Some of the regional planning and operational analysis reveal that

1. Sharing labor resources across counties and districts within the same jurisdiction

is important.

2. The most cost-effective dispensing plan across a region consists of a combina-

tion of drive-through, walk-through, and closed PODs, each operating at a

throughput rate that depends on the surrounding population density, facility

type, and labor availability.

3. The optimal combination of PODmodalities changes according to various facility

capacity restrictions, and the availability of critical public health personnel.

4. An increase in the number of PODs in operation does not necessarily increase

the total number of core public health personnel needed.
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5. Optimal staffing is nonlinear with respect to throughput; thus we cannot estimate

the optimal staffing and throughput by simply using an average estimate.

6. Depending on the population, an “optimal” capacity that provides the most

effective staffing exists for each POD location. If a POD is operating above its

optimal capacity, reduction in capacity (and thus hourly throughput) eases the

crowd-control tasks of law-enforcement personnel and helps to minimize poten-

tial operational problems inside the POD.

RealOpt has been used successfully by over 4,000 public health and emergency

directors and coordinators in planning for biodefense drills (e.g., anthrax, smallpox)

and pandemic response events in various locations in the USA since 2005. It has

also been used for dispensing clinic design and staff allocation for the 2009 H1N1

mass vaccination campaign. Users have tested various POD layouts, including

drive-through, walk-through, and closed PODs. Because of the system’s rapid

speed, it facilitates analysis of “what-if” scenarios, and serves not only as a decision

tool for strategic and operational planning, actual drill preparation, and personnel

training, but also allows dynamic reconfigurations as an emergency event unfolds.

In addition, it supports performing “virtual field exercises,” offering insight into

operation flows and bottlenecks when mass dispensing is required.

8.3.6.2 Continued Challenges and the Need for Multi-layer Protection

The ability to analyze planning strategies, compare the various options, and

determine the most cost-effective combination dispensing strategy are critical to

the ultimate success of mass dispensing.

The federal government continues to seek advances in this challenging area.

In the 2009 Executive Order, signed on December 30, 2009 by the President of the

USA, a policy was setup to plan and prepare for the timely provision of medical

countermeasures to the American people in the event of a biological attack in the

USA through a rapid federal response in coordination with state, local, territorial,

and tribal governments. The policy seeks to (1) mitigate illness and prevent death;

(2) sustain critical infrastructure; and (3) complement and supplement state, local,

territorial, and tribal government medical countermeasure distribution capacity.

Specifically, the executive order stipulates that the federal government shall

pursue the establishment of a national US Postal Service medical countermeasures

dispensing model to respond to a large-scale biological attack with anthrax as the

primary threat consideration. Further the federal government must develop

the capacity to anticipate and immediately supplement the capabilities of affected

jurisdictions to rapidly distribute medical countermeasures following a biological

attack by establishment of a federal rapid response capability. The executive order

also asks for Continuity of Operations where the federal government must establish

mechanisms for the provision of medical countermeasures to personnel performing

mission-essential functions to ensure that mission-essential functions of federal

agencies continue to be performed following a biological attack.
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Postal delivery of medical countermeasures has been discussed in detail in Wein

2008. Because postal workers deliver mail service to all households on a regular

basis, the possibility of their usage for the first 12-h initial dispensing is appealing.

This will allow time for the establishment of PODs for continued dispensing

service. The availability of personnel during crisis can be volatile, as articulated

in our medical surge discussion (Lee et al. 2011a). However, such a multi-layer

dispensing plan allows flexibility in response as well as leveraging and integration

of heterogeneous resources for maximum coverage and outcome. Postal and

POD distribution strategies require different levels of security; their tradeoffs

and complimentary characteristics should be carefully analyzed.

8.4 Large-Scale Disaster Relief Efforts

Large-scale disaster (humanitarian) relief efforts (e.g., in response to earthquakes,

hurricanes, forest fires) where homes are destroyed, critical infrastructures

are damaged, and tens of thousands or millions of people’s lives are affected,

require rapid establishment of “service constructs.” These service constructs

serve as home shelters for the population being displaced; as distribution nodes

for receiving supplies for on-the-ground responders; as dispensing sites for handing

out food and water to the affected population; and as hospital tents for medical care

of the sick. In the aftermath of such an event, the medical surge requirement is acute

(Lee et al. 2011a), evacuation orders are highly probable (Lee et al. 2011c), and the

need for effective communication and coordination for humanitarian relief effort is

crucial (Lee et al. 2009c, 2011b).

We highlight below various issues that are prominent within disaster relief

efforts.

8.4.1 Network of Service Constructs, Staffing and Resource
Constraints, Opportunistic Disease Spread, and Supply
Chain Management

The scope and complexity of establishing service constructs (for food and water,

shelters, and medical care, etc.) are very similar to those for large-scale mass

dispensing efforts. Past disaster relief efforts such as in the aftermath of the 2010

earthquake in Haiti highlight the daunting challenges as the regional response must

rapidly establish (in an ad hoc manner) dispensing and distribution networks. Many

elements relevant to mass dispensing and population protection come into play.

Further, the lack of water, electricity, shelters, poor sanitation, and the existence of

at most a barebones critical infrastructure present enormous challenges.
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Staffing and resources are often under severe shortage where ad hoc skills and

just-in-time training are provided. Skilled workers such as those with medical

background, logistics and operational, and security experiences may often be

deployed from other countries and nonprofit organizations to help with rapid

response, relief, and rebuild mission.

Crowded, unsanitary conditions in improvised refugee shelters could spread

illnesses such as typhoid and measles. Thus, mass prophylaxis treatments are

often needed to prevent disease spread, even though illness and infections can

still be a threat to survivors. Puddles of filthy water accumulated near service

constructs may become a breeding ground for mosquitoes. That, in turn, may lead

to the spread of deadly diseases and epidemics such as dengue, malaria, and

cholera. Disease mitigation and facility layout strategies are absolute critical

tasks to the livelihood of these survivors.

In disasters, suppliers and stakeholders can be very diverse, and there is usually

no unifying business and operating theme to manage them. Further, unsolicited and

unwanted donations can burden the management team, causing overload of arrivals

at sea or airports, or congesting the warehouses (Chomilier et al. 2003; Cassidy

2003; Murray 2005).

Routing available and necessary goods from entry ports (sea or air) to affected

sites can pose daunting challenges. Efficient usage of potentially limited sea/air

space and landing sites, available roads, vehicles, fuels, drivers, and material

handling equipment at the receiving ends are all uncertain and unreliable. Food

safety, sanitation hygiene, and opportunistic looting further complicate the process.

Effective coordination of multiple humanitarian agencies, in addition to

military, government, and private entities, is of great importance in response

to disasters. This is both a challenge and an opportunity given the differing

missions, histories, and expertise of these institutions.

8.4.2 Coordination Among Different Stakeholders

Humanitarian operations often have a large number and variety of stakeholders

and multiple organizations operating in the same place simultaneously but with-

out (formal) coordination. A loosely coupled coordination of different aid

agencies, suppliers, and local and regional actors, each has their own way of

operating and own organizational structures, can work charmingly, yet it can also

pose discord (Long and Wood 1995). The different political agendas, ideologies

and religious beliefs, and the need for appeal to public for donations and media

attention complicate the work. Perhaps, the greatest challenge here lies in aligning

these organizations properly without compromising their mandates and beliefs.

Further, people from different cultural background may have different traditions

that may hinder the communication and coordination between organizations

(Van Wassenhove 2006). As seen in the recent Haiti event, operational and
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organizational differences can also create frictions and misunderstanding among

various responding nations, thus masking the effectiveness of the operations.

Sometimes, the affected areas may not be reachable due to political reasons.

For example, after the 2005 South Asian Tsunami, the Indonesian government

felt compelled to allow free entry in a region that had been very restricted for

a long time. This caused a huge influx of personnel from humanitarian

organizations, ad hoc organizations, and volunteers on sites, overcrowding

the sites.

8.4.3 Risk and Uncertainty

Personnel working within a disaster response environment are often exposed to

destabilized infrastructure (Cassidy 2003; Murray 2005). Not only do they need

to work in facilities or areas that are physically damaged, the social effect taking

place after a disaster could often become overwhelming. Many disasters such as

tsunamis and earthquakes have after-effects that could further cause panic or

disruption to response operations. Uncertainty in risk, in when the suppliers will

arrive and where, in the amount of supplies that are available, in the overwhelming

demand needed by the affected population, add layers of anxiety and stress to

these on-the-ground workers. “Disaster relief supply chain” shows the extremes of

a trend toward more uncertainty and risk prevalent in today’s global business

supply chain.

8.4.4 Media Exposure

Disaster events often have high exposure to the media. However their relationship

is described by some as a love–hate one (Van Wassenhove 2006). On the positive

side, high exposure to the media means more public attention on the affected areas.

This often translates into more donations and general support. However, mass

media is short-sighted and tends to be more interested in catastrophic events

while putting less focus on long-term humanitarian and relief effort. There is a

need to educate and collaborate with news media personnel on disseminating long-

term challenges and efforts to the general public. In recent years, some improve-

ment has been seen as news media and public have been made aware of response

failures in the emergency responses related to Katrina and other natural disasters,

and the high-profile public scrutiny of the federal and local response effort.

In general, appropriate media usage can educate the public and help spread word

of the situation so as to garner financial donations that are much needed in any

disaster response scenario.
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8.5 Summary

8.5.1 Optimization, Simulation, and Dynamical
Systems Methodologies

Operations research, with its roots in defense and military operations, has a natural

place in emergency response planning and execution. Optimization, stochastic,

simulation, systems modeling, and decision analysis approaches are routinely

used to plan for and aid in analyzing a broad spectrum of emergency responses as

a result of natural or man-made disaster (Larson 1975; Larson et al. 2006; Green

and Kolesar 2004; Lee et al. 2006a, 2009b). Specifically, Green and Kolesar (2004)

trace the history of operations research and management science applications in

emergency response, with a particular focus on the work done in New York City

between 1969 and 1989. Many projects were undertaken by a group of researchers

as part of the New York City-RAND Institute (NYCRI) initiative. These included

applications to ambulance, fire, and police car location and deployment.

Resource allocation, scheduling, facility location, vehicle routing, inventory

control, and transportation logistics in emergency response have all been

formulated into optimization models. Among the resource allocation models,

Fiedrich et al. (2000) uses dynamic optimization model for the initial search-and-

rescue period after a strong earthquake. Branas et al. (2000) used a trauma resource

allocation model for ambulances and hospitals. Tzeng et al. (2007) present a multi-

objective optimal planning model for designing relief delivery systems. The three

goals are minimizing the total cost, minimizing the total travel time, and

maximizing the minimal satisfaction during the planning period. Yan and Shih

(2007) use a time-space network model (based on an integer network flow problem

with side constraints) to minimize the length of time needed for emergency repair,

with related operating constraints for emergency repair work team scheduling.

Lee et al. (2006a, 2009a) investigate resource allocation, staffing, facility loca-

tion, and multi-modality mass dispensing strategies and emergency response for

biodefense and infectious disease outbreaks. Some of the integer programming

instances include on the order of ten million variables, and the authors provide rapid

solution engines to arrive within 5% to optimality under 3 min. Zhang and Yang

(2007) present an optimization model and algorithm of a facility location problem

in a perishable commodities emergency system. Doerner et al. (2009) present a

model for multi-objective decision analysis with respect to the location of public

facilities such as schools in areas near coasts, taking risk of inundation by tsunamis

into account. Coskun and Erol (2010) use an integer optimization model to decide

locations and types of service stations, and regions covered by these stations under

service constraints in order to minimize the total cost of the overall system. The

model can produce optimal solutions within a reasonable time for large cities

having up to 130 districts or regions.
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Many authors present routing and transportation studies. Harewood (2002) uses a

multi-objective version of the maximum availability location problem to determine

emergency ambulance deployment. Wang et al. (2009) analyze and propose the

concept of post-earthquake road safety, dividing emergency vehicle routing choice

and optimization problem into two decision-making stages: pre-trip and en-route.

Sheu (2007) uses a hybrid fuzzy clustering-optimization approach to study the

operation of emergency logistics co-distribution when responding to urgent relief

demands in the crucial rescue period. Yi and Kumar (2007) present a meta-heuristic

of ant colony optimization for solving a logistics problem arising in disaster relief

activities. Yuan and Wang (2009) present two mathematical models for path selec-

tion in emergency logistics management. The models include actual factors in time

of disaster. Liu and Zhao (2009)model an emergency materials distribution problem

in an anti-bioterrorism system as a multiple traveling salesman problem.

Simulation has been used in numerous public health and medical preparedness

topics, including evacuation, resource allocation and patient flow, routing in emer-

gency medical services and surge planning, and disease propagation analysis.

Simulation has also been used in resource allocation and patient flow (Hupert

et al. 2002, 2003; Lee et al. 2006a, b; Mason and Washington 2003; Wang et al.

2008; Rossetti et al. 1999; Saleh and Othman 2008); and in the area of pandemic

response strategies and mitigation (Aaby et al. 2006; Barnes et al. 2009; Das et al.

2007; Hupert et al. 2002; Lee et al. 2006a, b, 2009a, b, c, 2010a; Meltzer et al. 2001;

Wang et al. 2008; Wu et al. 2009). It has found many applications in routing in

emergency medical services and surge planning (Barnes et al. 2009; Goldberg and

Paz 1991; Haghani et al. 2004; Su and Shih 2003).

As modelers attempt to incorporate more realistic dynamics into epidemiology

and disease propagation models (such as stochasticity, nonexponential waiting

times, sample-path-dependent events, and demographical and geographical data),

more flexible tools, such as individual-based stochastic simulations, are prefera-

ble. Although simulation is a powerful approach, the resulting models are often

mathematically intractable and require advances in computational strategies

(Eubank 2002; Gani and Leach 2001; Epstein et al. 2004; Ferguson et al. 2005,

2006; Longini et al. 2005; Germann et al. 2006; Lee et al. 2009b, 2010a).

The discipline of dynamical systems, mostly differential equation systems,

provides the principal methods of modeling in classical mathematical epidemiology

(Anderson et al. 1992; Diekmann and Heesterbeek 2000). It has also been used to

analyze strategies and policies. Wein et al. (2003) use a system of differential

equations tomodel the effects of different policies in response to an anthrax bioterror

attack. The system includes an atmospheric dispersion model for the spread of the

bacterium causing anthrax, an age-dependent dose–responsemodel for the impact of

treatment on an individual, a disease progressionmodel to capture the stages through

which an infected individual goes, and a set of two-stage queuing systems for

antibiotic distribution and hospital care. Kaplan et al. (2002) imbeds the evaluation

of vaccination logistics policy within a disease propagation model and compares

strategies of traced vaccination, mass vaccination, and the mixed response

advocated by the Centers for Disease Control. Eichner et al. (2007) developed a
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deterministic model for evaluating impact of different intervention strategies during

pandemic influenza. The model is based on over 1,000 differential equations which

extend the classic SEIR model by clinical and demographic parameters relevant for

pandemic preparedness planning. The model aims to operate with an optimal

combination of precision, realism, and generality. Wu et al. (2007) develops models

to demonstrate that a pre-pandemic vaccine allocation policy that allocates vaccine

to each state in proportion to the population size is not the most efficient. In fact, an

inequitable strategy that allows no allocation to some regions while the sufficient

vaccines being allocated to other regions demonstrates larger benefit. However, if

considering other strategy selection criteria such as simplicity, robustness, and

equity, the current pro-rata policy is a good compromise.

8.5.2 Integrated Approaches, and Information
and Decision Support Systems

The burden of responding to a public health or medical disaster is multi-faceted and

a genuine test to the sustainability of critical infrastructure. Negotiating emergency

operations is especially difficult due to inter-agency goal conflicts, differences in

organizational culture and bureaucratic constraints, discrepancies in situation

assessment, scarcity of resources, and organizational complexity. Nevertheless,

interplay among many agencies is critical, and consequently, integrated

approaches, and information and decision support systems prove to be very benefi-

cial as part of the solution strategies (Kananen et al. 1990; Kwan and Lee 2005;

Nguyen et al. 2005; Raghu et al. 2005; Rotz and Hughes 2004; Subramaniam and

Kerpedjiev 1998).

Iakovou andDouligeris (2001) present the development of IMASH, an Information

Management System for Hurricane disasters. IMASH is an intelligent integrated

dynamic information management tool, capable of providing comprehensive data

pertaining to emergency planning and response for hurricane disasters. Popp et al.

(2004) developed information-analysis tools for an effective multi-agency

information-sharing effort.

Zografos et al. (1998) describes an integrated framework consisting of a data

management module, a vehicle monitoring and communication module, and a

modeling module, for managing emergency response of the electric utility

companies. The framework integrates a GIS system with a decision-making

modeling module to deliver solutions in real time that optimize deployment of

the available emergency resources. El-Anwar et al. (2009) present the development

of an automated system to support decision-makers in optimizing post-disaster

temporary housing arrangements. The system has been integrated in MAEviz and

provides the capability of optimizing a number of important objectives, including

minimizing negative socio-economic impacts, maximizing housing safety,

minimizing negative environmental impacts, and minimizing public expenditures.
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Bui et al. (2000) proposes a framework for developing a global information

network (GIN). The application would incorporate four factors that affect the

design of a GIN: nature of disaster relief operations, negotiation styles of

participants, social, cultural, and organizational characteristics of participants and

resource availability. Such a framework could provide a set of basic metrics and

factors to characterize any disaster situation. GIN would use high speed internet as

backbone, it includes a command center where the disaster management team

would be, and telecommunication channels that connect to expert advice groups

from around the world. The GIN would also be linked to an array of data and

knowledge base warehouses.

NYU’s PLAN C is an innovative tool for emergency managers, urban planners

and public health officials to prepare and evaluate Pareto-optimal plans to respond

to urban catastrophic situations. Doheny and Fraser (1996) describe a software tool

for modeling the decisions that people make in emergency situations in offshore

environments. It can be used to predict the likely behaviors of a population in

hazardous situations and help evaluate the effectiveness of emergency procedures

and training.

Mondschein (1994) reviews the use of spatial data by environmental managers

and emergency responders who are charged with the responsibility to perform

hazard assessments, identify the location of toxic and hazardous materials, deploy

emergency resources, and review demographic data to ensure the safety of the

public and the surrounding communities.

In our own work, the decision support system RealOpt combines OR modeling

techniques, novel and large-scale computational engines, sophisticated graph-

drawing tools, 3D geographical spatial information with federal census data, and

demographic and socio-economic data for operational and strategic planning, and

policy analysis. RealOpt allows public health emergency coordinators to (1) deter-

mine locations for service facilities setup; (2) design customized, efficient floor

plans for each facility via an automatic graph-drawing tool; (3) determine (in real-

time) optimal resource allocation through advanced computational techniques in

simulation and optimization; (4) monitor intra-facility disease propagation through a

novel disease propagation model, and derive dynamic response strategies to reduce

the spread of disease and mitigate the risk of casualties; (5) assess resources and

determine minimum needs to prepare for treating regional populations; (6) carry out

large-scale virtual drills and performance analyses, and investigate alternative

dispensing strategies; and (7) design a variety of dispensing scenarios and

emergency-event exercises to train personnel (Lee 2009; Lee et al. 2006a, b,

2009a, b, 2010a).

8.5.3 Challenges

Modeling and optimizing public health infrastructure involve elements of resource

allocation under risk, uncertainty, and time pressure; large-scale supply chain
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management; transportation and operational logistics; and medical treatment and

population protection. The operations must be supported by an effective communi-

cation infrastructure. There is a necessity for vertical and horizontal integration and

communication, where federal, state, local, tribal, territorial, private, and business

stakeholders work toward a common goal of a resilient public health system. The

infrastructure must be flexible, scalable, sustainable, and elastic to support an

effective and timely response, and to mount rapid recovery and mitigation

operations.

The 2007 Homeland Security Presidential Directive-21 (The White House 2007)

establishes a National Strategy for Public Health and Medical Preparedness, which

builds upon a four pillar framework—Threat Awareness, Prevention and Protec-

tion, Surveillance and Detection, and Response and Recovery. It aims to transform

our national approach to protecting the health of the citizens against all disasters.

Although the four pillars were developed initially to guide the efforts to defend

against a bioterrorist attack, they are applicable to a broad array of natural and man-

made public health and medical challenges, and are appropriate to serve as the core

functions of the strategy for public health and medical preparedness.

Public health and medical preparedness continue to shower challenges to the

scientific community. Some critical issues include (a) realistic systems modeling,

(b) intractability of large-scale instances, (c) inter-dependencies among multiple

critical components/agencies, and (d) the importance and necessity for end-to-end

systems modeling and design. Technological advances are needed to allow for

complex realistic modeling while providing users with affordable computational

power that result in decision systems that are practical for actual scenario-based

analysis. The effective integration and alignment of care personnel, facilities, and

equipment and supply for optimal outcome remains essential. Capability to solve

large-scale resource allocation and location problems is a must. Tracking of disease

and designing and implementing dynamic mitigation strategies will have a tremen-

dous impact on population protection. Supply chain management needs to be

dynamic, and multi-agency partnership models should be developed. Information

sharing and management, and risk and communication strategies continue to

evolve. Multi-modality integration of technologies and reliable platforms for com-

munication and public dissemination are critical. Policy and coordination among

different stakeholders across country borders need to be studied and potentially

streamlined. While many issues relate to operational and strategic planning, many

others involve policies, risk management, security, public communication, and

cultural and human behavior.

The key to success is flexibility and adaptability—in staffing, in operations
strategies, in coordinating and communications strategies, and in the willingness
(for multiple agencies) to collaborate. Initial plans must be put in place and
executed rapidly and yet allow reconfiguration on the fly as an event unfolds.
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Chapter 9

Disaster Response Planning in the Private

Sector and the Role of Operations Research

Özlem Ergun, Gonca Karakus, Paul Kerl, Pinar Keskinocak,

Julie L. Swann, Monica Villarreal, and Matthew J. Drake

Abstract Organizations in the private sector such as The Home Depot (THD),

Lowe’s, Wal-Mart, andWaffle House have become actively involved in the disaster

response operations in their communities. With the objective of becoming effective

first responders, these companies have integrated a disaster response planning

process to their business operations. We introduce the disaster response planning

process implemented by THD after their experience with Hurricane Andrew.

We describe in detail the components of this process, each of which requires

different decisions to be made at different levels of the organization. We discuss

how operations research methodologies could be used to assist decision makers in

the disaster response setting, and we propose an optimization model for each of two

of the decisions commonly found in a disaster response planning process: advance

purchasing and inventory allocation. In addition to these exact methods, we suggest

a scenario-based approach, which is more intuitive and allows to incorporate

objectives that are harder to model, such as the relative value of the supplies.

9.1 Introduction

No one benefits from a closed store after a disaster hits a community. Organizations

in the private sector have recognized that and have joined local, regional, national,

and international governments and nongovernmental organizations (NGOs) as

disaster first responders. These organizations use their expertise in supply chain

management as well as their local knowledge to reopen stores and provide access to
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supplies and services even before Federal Emergency Management Agency

(FEMA) begins its response operations (Huffman 2008). It is a win–win situation,

since residents of the affected communities might not have access to basic products

otherwise, and companies build good relations with their customers and help to

restore the market.

In this chapter, we study how the private sector prepares for disaster response.

The chapter is organized as follows: the first section provides a short summary on

how companies have successfully implemented their disaster response strategies;

the next section presents a case study where we discuss in detail the hurricane

season planning process of The Home Depot (THD), and where we recognize

some of the complexities of a supply chain management under a disaster setting,

with its various decisions at different organizational levels; finally, the last section

discusses how operations research (OR) methodologies can be used to improve

this decision-making process and consequently improve the performance of

the disaster response operations. In this last section, we study in detail the advance

purchasing and inventory allocation problems. We develop exact solutions

through optimization models and describe a game we developed where we tackle

these problems through a scenario-based approach. Appendix includes informa-

tion on how to obtain the case and game files as well as supporting teaching

materials.

9.2 Disaster Response Planning in the Private Sector

Waffle House, Wal-Mart, Lowe’s, and THD are examples of organizations that

have been widely recognized for effectively aligning their business processes to

operate when a disaster affects their communities. A company’s success in disaster

response is measured to a great extent in terms of how long it takes to reach the area,

to put people back to work, and to return stores back to operation. This is the case

of Waffle House, which has developed, and continuously improved over decades of

experience, hurricane response processes where each functional area has clear

responsibilities and roles in enabling the stores to a quick recovery in case of a

major disaster event (Ergun et al. 2010a). In fact, FEMA has developed an index to

assess the situation after a disaster based on the local Waffle House restaurant

response. If the local Waffle House is open and serving food from a full menu, it is

green. If the Waffle House is open but has a limited menu, it is yellow. If the Waffle

House is not open, it is red (King 2011).

After Hurricane Katrina, Wal-Mart was set as an example of what should be

done in disaster response operations. They were on site, providing food and

supplies even before FEMA was (Barbaro 2005). In order to effectively respond

to disasters, Wal-Mart puts its nationwide response center to work, which includes a

sophisticated communications system as well as a world-class logistics network.

Also after the devastating Hurricane Rita, Wal-Mart even reopened stores in places

with no electricity. Requiring its top managers to sit together while coordinating the
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response operations was crucial for Wal-Mart’s success. This level of coordination

has been cited as one of the lessons to be learned from the private sector by the

government agencies (Hayes 2005).

Home improvement supplies are in high demand before and after a disaster

event, such as a hurricane or a tornado, hits a community. People in the affected

areas will rely on having access to these products to protect and rebuild their homes

and business. This is why the retailers of two biggest home improvement supplies,

Lowe’s and THD, have both incorporated disaster response planning into their

business processes. In the following section we discuss in detail how THD prepares

for the hurricane season. We focus on the shortcomings and the lessons learned and

the relevance of the coordination among the different functional areas as well as the

multiple and often complex decisions that have to be made.

9.3 Case Study: Disaster Response Planning at THD

Founded in Atlanta, Georgia, THD is one of the world’s largest home improvement

retailers. In 2010, the company ranked as 29th on the Fortune 500 list of US

companies, positioning THD as the fourth-largest retailer in the USA and fifth

worldwide, with more than 40,000 different SKUs and 1,900 stores. In addition,

THD operates 83 warehouses and distribution centers (DCs), 16 import DCs, 9

carton goods facilities, 30 lumber DCs, 10 transit facilities, and 7 global sourcing

offices (The Home Depot 2011). Because of its leadership position in the home

repair supply market, THD is naturally motivated to be a strong first responder to

both natural and man-made disasters. Moreover, hurricane season predominantly

affects the southeastern region of the USA, which comprises the home territory of

THD. One of the core values of THD is the commitment to being an active

contributor to its community; hence, THD strives to provide its customers with

products required for home and business repairs following a disaster, such as

tarpaulins and construction and cleaning materials.

A home improvement and repair supplier such as THD is able to provide

assistance through its established network of local retail stores. However, these

stores are usually located within the affected area, so it is highly likely that they will

have sustained similar types of damage as the homes and businesses in the region.

If THD is going to attain its highest priority of preparing customers for the event

and providing adequate supply levels for the post-event cleanup and repair

operations, the company must have a detailed operational plan for stocking the

stores with inventory and bringing them back on-line as soon as possible after

the disaster. In this section we describe THD’s operation plan for disaster response.

The material in this section was extracted from the Humanitarian Response

Planning at THD case study (Ergun et al. 2010b).
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9.3.1 The Genesis of a Disaster Response Planning

When Hurricane Andrew devastated the Florida coast in August 1992, THD was a

much different company than it is today. The firm operated approximately one-

tenth of the stores that it currently has. THD had never experienced a major disaster

event in its 13 years of existence, so it was understandable that the company did not

have a detailed plan to prepare for and react to an event the magnitude of Hurricane

Andrew. An insufficient tactical plan and lack of experience operating under a

disaster setting led THD to several operational challenges in the aftermath of

Hurricane Andrew:

• The prediction of phases of customer demand during the hurricane season.

• The procurement of products required in the pre-strike and post-strike phases to

the affected stores in an accurate and timely manner.

• The establishment of appropriate and ethical prices for pre-strike preparatory

items and post-strike repair items.

• The support of adequate workforce levels before and after the event.

THD did not have an accurate forecast of the kind of products that would be in

high demand before or after landfall of a hurricane as strong as Andrew or the

magnitude of the demand. THD headquarters identified the products and

quantities of these products to send to the stores, but much of this hurricane-

positioned inventory went unsold because of a poor forecasting ability of THD.

The company disposed its unsold inventory through various salvage companies at

a significant loss. The logistical challenges that THD faced emphasized the need

of an effective tactical plan in place for future disaster events. Management

established a policy whereby product demand and damage reports are consistently

communicated to THD headquarters. Also, in accordance with its corporate values

of “giving back to (its community)” and “doing the right thing,” THD established

a “no-profit” pricing policy on specific building materials during Hurricane

Andrew (Lohr 1992). This no-profit policy consisted of freezing consumer prices

on these items even though the wholesale and distribution costs had increased in

the short term. THD also limited consumers’ purchase quantities for these items to

prevent buyers from acquiring large quantities of these items with the purpose of

reselling them. THD made this no-profit policy a permanent part of its operational

plan during subsequent disaster events (The Home Depot 1992). Along with the

product demand and pricing issues, THD faced several human resources

challenges commonly present after any severe disaster. Staffing levels are very

difficult to maintain after a disaster event when communications are difficult.

Therefore, THD set up various teams of personnel to locate all of the store

associates after Andrew’s landfall. The first priority of these teams was to confirm

that the associates and their families were safe. Once this was confirmed, the

teams compiled lists of associates that were willing and able to work in the days

immediately following the event.
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Hurricane Andrew unfortunately destroyed one of the newest stores of THD in

Cutler Ridge, Florida, which had opened 1 week prior to Andrew’s landfall. THD

set up a circus tent in the parking lot of the Cutler Ridge store and brought in

truckloads of products. Several other stores in the area also sustained severe

damage, including extensive roof damage and wind/water damage. Much of this

damage motivated future efforts of THD on store “hardening” before a hurricane

arrives to prepare the store structure.

9.3.2 Disaster Response Planning Process of THD

In response to the catastrophic effects of Hurricane Andrew, THD instituted a

detailed planning process for the next hurricane season. Over the past years this

program has become one of the best-in-class disaster response processes among all

types of organizations. In fact, FEMA turned to THD for assistance in re-evaluating

its own disaster response process in the wake of the widely publicized difficulties

that the organization faced during Hurricane Katrina in September, 2005.

The hurricane season planning cycle, depicted in Fig. 9.1, is centered on the

hurricane season in the USA, which is defined to be June 1 through November 30.

The planning cycle consists of a thorough discussion and review of the disaster

management plans of each of the functional areas of THD, improvement of these

plans from year-to-year, and coordination agendas between each of the functional

areas for the upcoming hurricane season.

Immediately after the season ends, planning for the next hurricane season begins

in December. The functional areas of THD that are largely involved with disaster

response operations have post-hurricane season reviews. The first meeting includes

each of the key captains of these functional areas: logistics, merchandising, and

store operations. In this meeting, actions that worked well and challenges that the

company faced during the past season are discussed at a high level. Attendees also

June 1st– November 
30th 

Review and lessons 
learned after actions 

December
Season reviews 
and 
observations 

January-February
Vendor reviews and on-
boarding, general maintenance 

March – April 
Plan review and 
revisions 

April –
May 

Training  

Mid-May
Final training, hurricane 
forecasting, making major 
changes from previous season 

Fig. 9.1 Hurricane season planning schedule (Ergun et al. 2010b)
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identify potential improvements that could be instituted into the plan for the

next year. Later in December, individual area meetings for each of the functional

areas occur.

In January and February, THD conducts general maintenance and vendor partner

reviews. Third-party contractors and merchandise vendors play a crucial role in the

success of the disaster response operations of THD. Many of these organizations

directly supply stores with products during a disaster situation. Other vendors

provide store generators and general store maintenance. THD also works with

suppliers of new products to ensure that these vendors can comply with the

requirements of the response plan. During March and April, the Manager of Safety

Operations/Crisis Management (MSO/CM) examines the revised disaster plans of

each of the functional areas. This person ensures the interoperability of these plans

and communicates the key linkages and responsibilities among the different areas.

During April andMay, training sessions occur, both for the corporate and the field

operation teams. The training, which is provided by a third-party organization,

includes emergency site assessment, first aid, triage, and emergency management

principles. At this time, the emergency call center is supplied with a revised script to

use during calls from stores and district managers at the affected areas, during the

upcoming hurricane season. Finally, on May 15, the MSO/CM conducts a final

meeting with representatives from all the functional areas. This presentation includes

a forecast of the events for the upcoming hurricane season and a review of any

substantial changes in the disaster response plan from the previous year’s plan.

The implementation of the complete hurricane season plan begins as soon as the

hurricane season starts on June 1. However, one stage of the plan occurs during

the whole hurricane season, when after-action reviews and lessons-learned sessions

are held. These sessions can result in a dynamic change of the entire response plan if

THD identifies that the current plan is deficient in some way. When changes in the

current plan are deemed necessary, THD organizes meetings to communicate any

new policies and procedures to the functional areas that are affected.

9.3.3 Coordination of Disaster Response Operations

World-class disaster response operations are impossible to implement without a

significant commitment of financial, human, and physical capital from the senior

management of an organization. THD has made several investments of resources to

improve the effectiveness of its response planning process.

9.3.3.1 Storm Forecasting Operations of THD

Accurate predictions of storm frequencies and trajectories are essential for THD to

prepare stores to supply their communities with the required products in advance of

and after a storm. Before a hurricane season begins, researchers at Colorado State
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University produce estimates of seasonal strength. THD uses these high-level

forecasts to plan its overall level of relief inventory and transportation service

requirements for the coming season. The company also utilizes a third-party

weather reporting service called EarlyAlert to forecast and track the strength, the

trajectory, and projected landfall of every storm. These reports are called “wind

field reports.” The MSO/CM uses these data to determine when to close stores in

advance of a storm and when to open stores after the strike. The wind field reports

also form the basis for planning the number of associates that will be required to

work in the area during the immediate post-storm period.

9.3.3.2 Disaster Command Center Operations

THD sets up a disaster command center at its corporate headquarters in Atlanta,

Georgia, during any Level 3 or higher hurricane situation or in other disaster

situations requiring centralized discussion between functional areas. The purpose

of the command center is to establish a central coordination point during

the disaster event. This command center consists of a central command center, a

merchandising and logistics command center, a vendor command center, and

a human resources command center. The command centers are equipped with

television news feeds from major networks, telephone lines with conference call

capabilities, computer workstations with internet access, desks for associates, and

other operational requirements. THD also has contingency plans to relocate the

command center to an alternate facility in the event of a major disaster at its

headquarters.

9.3.3.3 Preparing Regional Facilities for a Disaster Event

As soon as a potential storm is identified, crisis management personnel establish

pre-storm communication with stores and other facilities in the affected region

through an electronic workload management software application that functions

like an e-mail. A package of materials and documents is re-sent to stores in regions

most likely to be affected. This package of materials includes pre-strike documents

such as IT backup and shutdown procedures, policies for handling claims after the

strike, associate financial grant forms, and general operating documents required

during the hurricane time frame.

Post-stormconference calls,which are led by the regional vice president (RVP), are

held twice daily in storm-affected regional areas. The merchandising team and the

RVP review each product category and identify the exact requirements for that parti-

cular category during a disaster event. Themerchandising representatives then apprise

the RVP of any unresolved issues related to product demand and inventory levels.

THD also commits a significant number of resources to care for and support its

associates who live in affected areas. In the case they experience any problems or

have any questions during a storm, a 24-h emergency line is available for them to
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call. THD crisis management personnel also handle the post-storm needs of

associates in affected areas and schedules blocks of hotel rooms in the event of a

disaster for associates that have opted to work at post-strike areas.

9.3.4 Responsibilities of the Functional Areas of THD

Each functional area has a specific role in the disaster response plan of THD. As in

the case of its core business, the effectiveness of the relief operations during a

disaster event is contingent upon the ability of each functional area to execute its

assigned tasks successfully. This section details the core responsibilities of the

major functional areas involved in the execution of the disaster response plan.

9.3.4.1 Regional Store Operations

Regional store operations in a disaster situation are executed by a variety of THD

personnel. Hourly associates work in stores affected by a disaster, store managers

implement the store closing and reopening plans and monitor the procedure

checklists, district managers ensure that pre- and post-storm demand information

is being communicated accurately to the merchandising personnel, and the RVP

makes decisions about closing and opening stores based on local managers’

recommendations and wind field reports. As a whole, regional operations perform

the following tasks during an emergency event: closing before a storm, opening

stores after a storm, preparing stores to withstand storm damage, operating and

repairing stores, communicating needs to corporate headquarters, and interacting

with local government and community organizations.

9.3.4.2 Distribution and Logistics Operations

When the hurricane season arrives, THD logistics personnel have to ensure busi-

ness continuity and disaster preparedness of the distribution operations. Items that

are in high demand before a storm such as flashlights, batteries, bottled water, and

plywood must be delivered effectively from the distribution center to the stores in

the storm’s path. The logistics department must ensure that these goods are avail-

able at the distribution center and can be sent to the stores quickly once it

is requested, even when the capacity of the regional transportation network is

constrained, for instance, by the local residents’ evacuation.

THD utilizes hundreds of different third-party trucking companies to move

freight in support of its disaster relief operations and develops special transportation

contracts for this purpose. The disaster route contract bidding process at THD

occurs separately from that of the normal transportation contracts. These routes

are identified as urgent routes, which require carriers to provide a faster delivery
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and a shorter response time. This bidding process reduces the risk of not finding an

available carrier post-storm, and it results in a lower total cost; moreover, this

process provides the carriers with better asset planning and utilization.

THD logistics group pre-loads trailers of the products expected to be required

both before and after the hurricane strikes, based on the historical usage during

similar disaster events. The goods on these pre-loaded trailers are primarily com-

posed of small, low-cost, high-usage, long-shelf-life items such as bottled water

instead of large, expensive items such as generators. THD logistics group

dispatches these pre-loaded trailers immediately, and then the logistics team

works with the RVP and the merchandising team to dynamically plan subsequent

loads based on the impact of the storm. Unfortunately, THD distribution centers

(DCs) are just as vulnerable to disaster events as the retail stores. For this reason,

closing procedures and checklists are also available at each distribution center, and

associates at the DCs have the same resources and support services available to

retail associates.

9.3.4.3 Merchandising Operations

THDmerchandising group is responsible for filling the storage and the transportation

space that the logistics group secures with the most critical products for supporting

pre- and post-disaster-event operations. Since Hurricane Andrew highlighted the

importance of disaster planning, THD has progressively improved its ability to

manage the inventory of essential disaster relief products. This expertise, however,

has developed slowly over time. After Hurricane Katrina struck New Orleans in

2005, the merchandising group sent large quantities of canned precooked meat,

diapers, sunscreen, and mattresses into the affected region. These products turned

out to be unnecessary, but on the other hand, the group under-forecasted demand for

many other products, and they spent the entire season trying to catch up with the

demand. As a result, THD redesigned its merchandising processes within the disaster

response plan.

The RVP in the affected region now has control over the particular product mix

of the region. This decentralized decision structure assigns product decisions to

employees closest to customers, which allows stocking decisions to be made with

the most up-to-date, localized demand information. This structure transforms the

disaster-relief inventory control system to a pull-based system (as opposed to a

push-based system), which allows THD to satisfy demand with a reduced inven-

tory. However, one of the main obstacles to effective disaster response inventory

management is the long lead times of some products. THD merchandising group

must be able to provide the long-lead-time suppliers with accurate forecasts.

A forecast-based order policy hinders THD from using a pull-based strategy with

these suppliers.

With the allocation of inventory replenishment decisions to the individual RVPs,

the merchandising group now focuses on stocking the four hurricane DCs (located

in Puerto Rico, Texas, Florida, and Georgia) and on working with vendors to ensure
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supply availability. After Hurricane Andrew struck, THD brought supplies into the

affected areas on consignment in order to absorb demand shocks as well as to limit

demand risk if consumer behavior did not match expectations. The merchandising

group now utilizes consignment on 60–70% of the dollar value of its products that

support disaster relief operations. Consignment arrangements are especially attrac-

tive for products that have a high monetary value, such as chainsaws and

generators. Vendors whose products are incorporated into the disaster-relief

merchandising plan must be trained in proper packaging methods to support THD

operations. These methods include, for instance, shipping products to stores in

cartons with lift-off tops to enable store personnel to make the items available for

sale immediately, and shipping large items directly on carts to enable customers to

wheel them out of the store without employee assistance. The merchandising group

has also tried to rationalize the number of SKUs. For example, it is not necessary for

THD to provide four or five different brands of AA batteries; it is more important,

however, to have enough AA batteries (of any brand) available. Moreover,

merchandising personnel work with a smaller number of key vendors instead of

ensuring that all of the traditional vendors have a part to play in the plan.

A critical issue for ensuring that internal and external stakeholders focus on the

task of serving customers centers on which party should be held responsible for

inventory overruns due to disaster relief operations. All of these stakeholders have

an interest in helping the affected communities prepare themselves for and rebuild

after a disaster event, but none of them want their performance evaluation to

be unduly impacted by the merchandising risk that accompanies this operation.

The Inventory Planning and Replenishment (IPR) team within the merchandising

group establishes a maximum stocking level for each item at each store, and the

corporate office will take back any excess supply above this maximum amount. IPR

personnel will then redeploy these excess units to other regions in which these items

are not currently overstocked.

Availability, timeliness, and accuracy of field information are major

determinants of the effectiveness of the THD disaster response plan. Field person-

nel (e.g., district managers, store managers, and store associates) are in the best

position to provide the centralized merchandising group with this up-to-date infor-

mation because they are working directly in the affected area. THD continuously

seeks to improve the accessibility of information from its field operations in order to

improve on its already world-class disaster relief operations, for instance, by the use

of adequate IT systems.

9.4 The Role of Operations Research in Disaster Planning

OR methodologies have been broadly used to improve supply chain operations.

More recently, OR literature on disaster supply chains has grown and caught the

attention of both academics and practitioners (The Home Depot 2011). Demand

forecasting, inventory planning and allocation, and vehicle routing are just few
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examples of the problems that need to be analyzed in both traditional and disaster

supply chains. However, the highly uncertain setting of a disaster response plus

factors such as fairness add complexity to the decision-making process, which

makes OR a crucial tool for problem solving in this application area (Altay and

Green 2006).

In this section, we present an optimization approach to solve two common

problems in disaster response planning faced by first responders such as THD:

inventory advance purchasing and allocation.

9.4.1 The Newsvendor Model for Advance Purchasing Decisions

Right before and after a disaster strikes, product prices may increase considerably

as a result of an increase of demand or a decrease in the supply. Also, transportation

infrastructure might be severely damaged, affecting lead times of the delivery of the

products. As in THD, a common strategy followed in the public and private sectors

is to build inventory in advance. In the case of hurricane season preparedness,

public and private organizations use storm forecasts and historical data to predict

what and how much is going to be in demand during the coming season.

For instance, in the case of hurricanes, the products listed below are in high demand:

• Cover: Blue tarpaulins, plastic sheeting, etc.

• Lighting set: Batteries, spotlight, flashlights, etc.

• Generators

• Bottled water

• Recovery: Rope, ladder, extension cords, rakes, shovels, scoops, etc.

• Cleanup: Cleanup products, sponges, brushes, towels, mops, brooms, buckets,

trash cans, trash bags, etc.

Since the pre-storm purchasing decisions occur before the demand is observed,

the built inventory can either be insufficient to satisfy the demand or surpass the

demand. When deciding on the advance purchasing decisions different trade-offs

should be considered. If the inventory is insufficient, there are direct costs related to

loss of profit and indirect costs related to loss of customers. On the other hand,

products might be purchased at a potential higher cost, which will likely affect

profit since policies such as maintaining the customer’s regular price are common in

companies such as THD. However, if demand is overestimated, inventory will be

carried over, and this inventory will incur additional costs, be sold at a lower cost, or

be wasted.

We analyze the following setting: there is a single hurricane season which

associated demand is uncertain; however, there are historic demand and forecast

data that can be used to estimate the probabilistic distribution of the demand. Before

the season starts, prices are negotiated with vendors through contracts at discounted

prices. After the season starts, products are available at expedited prices.

For simplicity, items are grouped in six main categories: cover, lighting, generators,
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bottled water, recovery, and cleanup. Discounted prices are known for each item

group, and they are lower than the expedited prices (also known). Additionally,

there is a budget constraint for the pre-season advance orders. This setting can be

associated with the Newsvendor problem with a budget constraint.

Newsvendor model is used to decide the optimal inventory level (how much to

buy in advance) when the demand during a single time period is uncertain, in order

to minimize costs. The intuition behind this model is to balance the overage cost,

which is the cost incurred when the demand is less than the inventory, and

the underage cost, which is the cost incurred when the demand is greater than the

inventory. In this setting, we consider the discounted price as the overage cost

because we suppose that the unsold items are wasted (salvage value is zero), and the

difference between the expedited and discounted prices as the underage cost

because we assume that all unfulfilled demand will be satisfied at the expedited

price. Also, we assume that both prices cover the product costs and shipment costs

from the vendors to the DCs.

The problem is formulated as a multi-product Newsvendor problem with a

budget constraint.

9.4.1.1 Parameters

ci: Discounted price of item group i, i ¼ 1, 2, 3, 4, 5, 6.

pi: Expedited price of item group i.
ui ¼ pi �ci: Unit underage cost of item group i.
oi ¼ ci: Unit overage cost for item group i.
xi: Demand of item group i.
gi(xi): Probability density function of the demand xi.
Gi(xi): Cumulative distribution function of the demand xi.
B: Budget for advance purchasing.

9.4.1.2 Variables

qi: Advance purchasing quantity for item group i.

9.4.1.3 Optimization Model

The cost minimization model becomes:

Minimize:

X6

i¼1

oi

ðqi

0

ðqi � xiÞgiðxiÞdxi þ ui

ð1

qi

ðxi � qiÞgiðxiÞdxi
" #

: (9.1)
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Subject to:

X6

i¼1

qici � B: (9.2)

This model can be transformed into the unconstrained optimization problem of

minimizing the following Lagrangian function:

Minimize:

Lðqi; tÞ ¼
X6

i¼1

oi

ðqi

0

ðqi � xiÞgiðxiÞdxi þ ui

ð1

qi

ðxi � qiÞgiðxiÞdxi
2
4

3
5þ t

X6

i¼1

qici � B

" #
:

(9.3)

To solve this problem, we compute the partial derivatives of (9.3):

@L

@qi
¼ @

@qi
oi

ðqi

0

ðqi � xiÞgiðxiÞdxi þ ui

ð1

qi

ðxi � qiÞgiðxiÞdxi
" #

þ tci ¼ 0

8i ¼ 1; 2; . . . ; 6

(9.4)

@L

@t
¼

X6

i¼1

qici � B ¼ 0 (9.5)

Using Leibniz rule, (9.4) can be reduced to:

@L

@qi
¼ oi

ðqi

0

giðxiÞdxi þ ui

ð1

qi

giðxiÞdxi þ tci ¼ 0 8i ¼ 1; 2; . . . ; 6: (9.6)

Next, (9.6) reduces to:

@L

@qi
¼ oiGiðxiÞ þ uið1� GiðxiÞÞ þ tci ¼ 0 8i ¼ 1; 2; . . . ; 6: (9.7)

Hence, (9.5) and (9.8) should hold for the optimal advance purchasing quantity

for each item group q�i :

Giðq�i Þ ¼
ui � tci
oi þ ui

: (9.8)

The algorithm to find optimal quantities is as follows:

• Compute qi for each item group, given a value of t. Start with the classic

Newsvendor model solution without the budget constraint, where t ¼ 0.
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• If the obtained quantities qi do not violate the budget constrain, i.e.,
P6

i¼1

qici � B,

then the solution is feasible and optimal for the original constrained problem.

• If the budget constraint is violated, then the optimal solution is found by iterating

on the value of t:

– If
P6

i¼1

qici>B, increase t and recalculate qi using (9.8).

– If
P6

i¼1

qici<B, decrease t and recalculate qi using (9.8).

The values of t can be found by bisection over the interval between the initial

lower and upper bounds for t. After each iteration, update the lower bound (in case
t should be increased) or upper bound (in case t should be decreased), and set t to
be the mid-point between the current upper and lower bounds. Repeat until t
converges given an acceptable error margin. Since Gi(qi) in (9.8) is a cumulative

distribution function, any chosen t has to satisfy 0 � ui � tci
oi þ ui

� 1 , which is

equivalent to � oi
ci

� t � ui
ci
, for each item group. Therefore, zero and min ui

ci

� �

are the initial lower and upper bounds for t.
In Table 9.1 we show an example of pricing and demand data for each group of

items. We assume all demands follow a normal distribution, and there is an

available budget of $1,000,000. Note that since we are assuming a normal distribu-

tion to approximate each demand, the resulting value of q�i from (9.8) could be

negative. However, in the derivation from (9.1) we assumed that each demand only

takes positive values (the integral vanishes otherwise). For a demand distribution

that can be negative valued, we assume that Gi(0) � gi(0), i.e., the probability of a

negative demand is negligible (approximately zero). For the distributions in

Table 9.1, this probability is less than 0.1% for each item group. Nevertheless,

for the implementation of the solution search algorithm described above, we rewrite

q�i from (9.8) as q�i ¼ max G�1
i

ui � tci
oi þ ui

� �
; 0

� �
, that is, we constrain the solution

space to non-negative values of qi. Then, the upper bound of t is recomputed as the

minimum ratio of the underage cost and discounted price among the items for

Table 9.1 Newsvendor model parametersa

Cover

set

Lighting

set Generators

Bottled

water

Recovery

set

Cleanup

set

Discounted price, ci $50.00 $20.00 $120.00 $10.00 $30.00 $15.00

Expedited price, pi $150.00 $70.00 $480.00 $35.00 $90.00 $45.00

Mean (units) 6,000 15,000 3,500 45,000 6,000 7,000

Standard deviation

(units)

1,500 4,800 1,000 13,000 1,800 2,175

aThe data shown do not belong to THD nor any company or organization. Data are entirely

hypothetical and were defined only for illustrative purposes
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which the purchase quantity was not set to zero (a looser upper bound is of course

given by max ui
ci

� �
.

After applying (9.8) and the proposed algorithm on data shown in Table 9.1,

we obtain the solutions shown in Table 9.2 for the unconstrained (t ¼ 0) and

constrained Newsvendor problem.

9.4.2 Inventory Allocation Optimization

Once the advance purchase quantities are determined, the next step is allocating the

reserved inventory. As in the advance purchasing decisions, there are different

trade-offs to consider. For instance, different regions are affected in different

degrees. Forecasts might help to determine the potential paths and strength of the

expected storms. It sounds reasonable to allocate inventory among regional DCs

according to the demand expectations. However, inventory might be needed to be

relocated to other DCs if demand deviates from the original allocation. In this case,

holding inventory more centrally might be better.

We analyze the following problem. Inventory purchased in advance can be

allocated among the regional DCs (which are assumed to be four). The vendors’

prices include shipping costs; however, the company incurs additional shipping

costs if the product needs to be re-allocated from one DC to another. A couple of

days before a hurricane hits, there is more information about its particular path and

the regions it is going to affect the most, and therefore about the demand location;

also, there is some inventory of the hurricane seasonal products already allocated in

the regional DCs, i.e., the products purchased in advance shipped from vendors to

DCs. It is a company’s policy that these products should be allocated proportionally

to the expected demand; therefore, once the hurricane path is revealed and the

estimated number of affected people is better known, inventory might be

re-allocated to another DC to match the latest information about the demand

location.

Table 9.2 Newsvendor

model results for advance

purchasing quantities

Unconstrained

newsvendor

Constrained

newsvendor

Cover set 6,646 1,948

Lighting set 17,716 9,938

Generators 4,174 2,833

Bottled water 52,357 31,291

Recovery set 6,775 1,137

Cleanup set 7,936 1,124

Expected

advance

purchasing

cost

$2,033,360 $1,000,000
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Table 9.3 shows the (hypothetical) average unit transportation cost among every

pair of DCs. For simplicity, an average transportation cost is used instead of a unit

cost per item type. This is a reasonable assumption if the mix of products in the

re-allocation flows does not change. Given this assumption, we can group all

the group items in one product flow. Table 9.4 shows the proposed potential

scenarios for demand location.

Given that the demand location scenarios are the same for all the item groups the

optimal percentage of the total reserved inventory allocated in each DC does not

change along the items groups. Also, this percentage does not vary with the advance

purchased quantities, since it is assumed that there are not capacity constraints in

the DCs. Therefore, the inventory allocation problem consists only on deciding the

percentage of the inventory to allocate to each DC. A two-stage linear program (LP)

is used to find the optimal inventory allocation for each regional DC.

9.4.2.1 Parameters

aw: Probability of scenario w, w ¼ 1, 2, 3, 4.

tij: Transportation cost between DCi and DCj, i ¼ 1, 2, 3, 4; j ¼ 1, 2, 3, 4.

(if i ¼ j, tij ¼ 0).

pwj: Percentage of total demand of DCj, given scenario w.

9.4.2.2 Variables

yi: Percentage of reserved quantity allocated to DCi.

xw,ij: (Percentage) flow from DCi to DCj for scenario w.

Table 9.4 Scenarios

for demand location
Hurricane

path

Probability

(%)

DC1

(%)

DC2

(%)

DC3

(%)

DC4

(%)

1 30 30 40 30 0

2 20 10 25 60 5

3 10 30 0 10 60

4 40 10 10 30 50

Table 9.3 Average unit

transportation cost among

DCs

DC/region DC1 DC2 DC3 DC4

DC1 $0.00 $0.64 $1.46 $2.23

DC2 $0.64 $0.00 $1.03 $1.62

DC3 $1.46 $1.03 $0.00 $1.74

DC4 $2.23 $1.62 $1.74 $0.00
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9.4.2.3 Optimization Model

The cost minimization model becomes:

Minimize:

X

w

X

i;j

awti;jxi;jw : (9.9)

Subject to:

X

i

yi ¼ 1; (9.10)

X

j

xi;jw � yi 8i ¼ 1; 2; 3; 4 8w ¼ 1; 2; 3; 4; (9.11)

X

j

xi;jw � pw;j 8j ¼ 1; 2; 3; 4 8w ¼ 1; 2; 3; 4; (9.12)

yi; xi;jw � 0 8i ¼ 1; 2; 3; 4 8j ¼ 1; 2; 3; 4 8w ¼ 1; 2; 3; 4: (9.13)

During the first stage of the problem, the allocation percentages yi have to

be specified for each DC. Then, during the second stage, inventory might be

re-allocated such that the final inventory distribution is proportional to the demand

of the regional DCs. Since this demand location is uncertain, and we are given only

a probability aw for each hurricane path scenario, there would be different

re-allocation flows xi;jw among DCs for each scenario. Nevertheless, the first stage

allocation decision will affect the re-allocation transportation costs given the reali-

zation of the demand distribution scenario pwj. The objective is to find the inventory
allocation such that the expected re-allocation transportation cost among regional

DCs is minimized. The optimization model above was programmed and run using

the General Algebraic Modeling System (GAMS) (http://www.gams.com/).

The optimal allocation solution resulting from the data in Tables 9.3 and 9.4 and

the given constrained Newsvendor solution quantities has a re-allocation cost of

$22,398. Details of the solution are shown in Table 9.5.

Table 9.5 Advance purchased (rounded) quantities allocated to DCi for each item group

% Allocated Cover set

Lighting

set Generators

Bottled

water

Recovery

set

Cleanup

set

Total 100 1,948 9,938 2,833 31,291 1,137 1,124

DC1 10 195 994 283 3,129 114 112

DC2 20 390 1,988 567 6,258 227 225

DC3 30 584 2,981 850 9,387 341 337

DC4 40 779 3,975 1,133 12,516 455 450
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9.4.3 A Scenario-Based Approach

We developed a game (Ergun et al. 2008) directed to students and professionals, the

users, interested in supply chain management as well as in disaster preparedness

and response operations. The game setting takes place around a fictitious retailer of

appliances, furniture, and general home improvement products: Big Depot. Similar

to THD during the hurricane season, Big Depot aims to efficiently provide products

required by the stores during the pre-strike and post-strike phases, in an accurate

and timely manner. Users make recommendations about the advance purchase

quantities for each group of items and the allocation of this inventory among Big

Depot DCs, to minimize costs. First, users come with an approach and solutions of

their own. Second, access to decision support tools is provided, and users are able to

evaluate and improve their proposed solutions. There are two decision support

tools: the Procurement Decision Tool (PDT) and the Allocation Decision Tool

(ADT). The tools give the expected procurement and re-allocation costs given a set

of decisions on the inventory advance purchasing and allocation, as well as the total

procurement and re-allocation costs of scenarios of given demand size and distri-

bution, respectively.

In the PDT, users can adjust the advance purchasing quantities while meeting the

budget using rules of thumb or heuristics considering different factors related to

demand variability, gaps between discounted and expedited prices, and other

factors such as an item’s importance. Then, users evaluate their decisions by

observing their expected procurement cost and their performance under different

scenarios. The expected procurement cost for the constrained Newsvendor model is

the sum of the total cost of the units purchased in advance, plus the expected cost of

the expedited units. Since the demand is uncertain, the number of shortage units is

unknown, so we compute an expected value for these shortage units. Since the

demand is assumed to have a normal distribution, the expected shortage is

computed using the Standard Normal Loss Function which is commonly reported

in tables or can be calculated as follows:

Let:

ki ¼ qi � mi
si

: (9.14)

Then, the expected number of shortage units is given by:

LiðkiÞ ¼ giðkiÞ � kið1� GiðkiÞÞð Þsi (9.15)

where gi is the probability density function of item group i, Gi is the cumulative

distribution function, and mi and si are the mean and standard deviation, respec-

tively. There are several heuristics that the users might try. For example, users

might propose ordering the average demand of the products, but in this case the

budget is violated and the quantities should be adjusted. One option is to adjust
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these quantities by a percentage until the budget constraint is met. However, this

heuristic does not consider variability or the price gap between discount and

expedited units. Another simple heuristic could be to adjust the 95th percentile

quantity until the budget is met, so that the worst-case scenario of a particular

product is someway captured. Users familiar with the Newsvendor Model might

derive the unconstrained Newsvendor quantities first, and then adjust these

quantities to meet the budget. By using a scenario-based analysis with the aid of

a tool like PDT, the user can also consider objectives other than minimizing cost,

can observe different trade-offs, and can evaluate the robustness of the proposed

solutions.

In the ADT, users enter the percentage of the inventory purchased in advance to

allocate in each of the DCs. Once the initial allocation of the advanced purchased

quantities is defined, a simple heuristic could be used to find the optimal

re-allocation flows once a given demand distribution scenario is given. The

heuristic works as follows:

For each scenario w:

• Sort the unit transportation costs from cheapest to most expensive.

• Compute the product demand surplus or deficit for each regional DC according

to the demand scenario.

• Select the cheapest route DCi to DCj such that there is a demand surplus in DCi

and a demand deficit in DCj.

• Take xi;jw ¼ min (surplus, deficit).

• Adjust the demand surplus or deficit of DCi and DCj subtracting xi;jw .
• Select the next cheapest route DCi to DCj such that there is a demand surplus in

DCi and a demand deficit in DCj.

• Repeat steps 4–6 until there is no demand surplus or deficit left in any DC.

The only decision required is the initial allocation of inventory, and the optimal

re-allocation decisions can be obtained by applying the algorithm above. Similarly

to the PDT, the expected re-allocation transportation cost is obtained with the cost

of the different scenarios (storm trajectories) by computing a pondered average cost

using the probability of each of them. While the two-stage LP above solves for the

minimum re-allocation cost, using a scenario-based approach allows the user to

incorporate various objectives, such as to minimize the cost of the worst-case

scenario. Heuristics can include, for example, allocating the inventory according

to the most likely path or allocating the inventory according to a weighted average,

i.e., the percentage of inventory allocated to each DC is the result of weighting the

percentage of demand assigned to each DC on each storm path, using the probabil-

ity of such scenario. This heuristic would be the optimal if all transportation costs

among the DCs were the same. To take into account the different transportation

costs between DCs, another heuristic could be used to consolidate inventory at the

most centrally located DCs.
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9.5 Conclusions

Many organizations in the private sector are now taking an active role in the disaster

response operations of their communities. There are many lessons that other

disaster responders, such as government agencies and NGOs, can learn from the

private sector, including, for instance, the empowerment of local management and

the emphasis on coordination among the different functional areas and management

levels. Moreover, in order to succeed as first responders, organizations need a

responsive supply chain. Procurement and inventory allocation under uncertainty

are just two examples of the decisions that a supply chain planner has to make in a

disaster response setting. These decisions are not unique to the disaster setting, and

most of the traditional OR approaches and techniques (optimization, simulation,

etc.) applied in traditional supply chain management are applicable with the

appropriate modifications to account for the specific disaster setting. For example,

the objective function of a traditional logistics model may change when a company

might be more interested in delivering an adequate response than being profitable.

Also, decisions must take into account the very uncertain setting of a disaster and be

adequately robust to different potential outcomes. For example, while deciding the

best transportation mode or the best transportation route, the decision maker should

consider potentially damaged road infrastructure, airport conditions, etc. Disaster

response poses additional challenges beyond traditional supply chain planning,

which means additional opportunities on how operations researchers and supply

chain management professionals could apply their knowledge and skills to posi-

tively impact lives.
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Appendix

The Big Depot Hurricane Planning Game (Ergun et al. 2010c), including the

decision support tools described above, as well as the Humanitarian Response

Planning at The Home Depot case study (Ergun et al. 2010b) as a stand-alone

document are both available at http://humanitarian.gatech.edu. Teaching notes,

which include recommendations of the use of the case and game in the classroom,

can be requested through the Web site or by emailing the authors. The case and the

game could be used together or separately. However, it is recommended that the

users discuss the case before working on the game. This would help them to form a

better background and understand the complexities behind a disaster response
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planning process, characterized by the several interactions of the different functional

areas, and the many decisions faced before, during, and after a disaster strikes. Then,

the game would help the users to experience firsthand the uncertainty faced when

dealing with supply chain decisions in situations such as disaster response.
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