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          6.1   Introduction    

 Since Steinman and Cohn  [  1  ] ’s initial report on dendritic cells (DC) with a distinc-
tive stellate morphology, DC have been extensively studied by many other investi-
gators for their major role as antigen-presenting cells (APC) to stimulate T 
lymphocytes and induce the disease-speci fi c cytotoxic T lymphocytes (CTL). As 
major regulators of the adaptive immune response, DC have been known as the 
most potent APC for initiating cellular immune responses through the stimulation 
of naive T cells and to mediate antitumor responses in both preclinical studies and 
clinical trials     [  2–  4  ] . The unique ability of DC to induce and sustain primary immune 
responses makes them prime candidates in vaccination protocols as a cancer therapy 
 [  5–  8  ] . Therefore, translating the accumulating knowledge on DC subsets and their 
unique functional specializations into designs for novel vaccines is emerging as a 
key topic in the  fi eld of immunotherapy. More than 200 clinical trials have been 
performed using DC as cellular adjuvants in cancer  [  9  ] .    The  fi rst US Food and Drug 
Administration approval in history for a therapeutic cancer vaccine was sipuleucel-
T (Provenge; Dendreon, Inc.) that is an autologous DC-based vaccine loaded with a 
prostatic acid phosphatase (PAP)-GM-CSF fusion protein for treatment of men with 
advanced castrate-resistant prostate cancer. These ongoing studies have been accom-
panied by the development of a wide range of therapies using DC in other types of 
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cancer, and we will speci fi cally focus on the development of current DC therapies 
to treat multiple myeloma. 

 Multiple myeloma (MM) is a B-cell malignancy characterized by the clonal pro-
liferation of malignant plasma cells in the bone marrow and the development of 
osteolytic bone lesions. Despite recent advances in treatment using new drugs, the 
disease still remains incurable; thus, novel approaches are required to improve ther-
apeutic outcome [ 10–  12   ]. In the post-allograft relapse setting, in which myeloma 
patients are chemotherapy refractory, long-lasting disease remission has been 
achieved after donor lymphocyte infusion (DLI)  [  13,   14  ] . Based on the success of 
allogeneic transplantation as well as graft-versus-myeloma responses following 
DLI, other types of immunotherapeutic approaches are being evaluated to treat the 
disease. The current focus has been on augmenting and directing autologous anti-
MM immune responses as allogeneic immune manipulations put patients at risk of 
developing graft-versus-host disease with associated signi fi cant morbidity and mor-
tality  [  15,   16  ] . It has been reported that the ef fi cient generation of mature DC from 
peripheral blood CD14 +  monocytes in the majority of myeloma patients by cultur-
ing them with GM-CSF and IL-4 followed by TNF- a  and/or other DC maturation 
factors can be utilized for immunotherapeutic purposes  [  17–  22  ] . A number of 
approaches have been investigated including use of patient-speci fi c idiotype, MM 
cell lysates, or MM cell-dendritic cell fusions.  

    6.2   Idiotype-Based DC Vaccine 

 Among the antigens identi fi ed on myeloma cells as potential targets, idiotype pro-
tein (Id) which is the immunoglobulin produced by myeloma cells has been inves-
tigated extensively  [  23–  28  ] . The idiotypic determinants of the immunoglobulin 
are generated by rearrangement between the variable (V), diversity (D), and join-
ing (J) regions in the heavy chain and between the V and J regions in the light 
chain. During maturation, a B cell may accumulate further diversity by somatic 
hypermutation  [  29,   30  ] . Tumor-speci fi c Id secreted by MM cells can be easily 
detected in the blood of patients at concentrations which correlate to disease 
status  [  31  ] . Thus, the Id protein provides a clear tumor-speci fi c antigen for B-cell 
tumors including MM and serves as a target antigen in various immunotherapeu-
tic strategies. Several investigators have demonstrated that MM patients’ T cells 
stimulated in vitro with Id-pulsed DC can kill autologous tumor cells in a MHC-
restricted fashion and induce Th1-speci fi c cytokines in vitro, thus demonstrating 
that MM cells process and present idiotypic peptides in the context of their MHC 
molecules and thereby can serve as targets of Id-speci fi c T-cell-mediated antitu-
mor responses  [  32–  35  ] . 

 Past and current clinical immunotherpies for MM patients have mainly been 
performed using Id as the antigen to boost patients’ immune responses (Table  6.1 ). 
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In a pilot study by Lim and coworkers  [  36  ] , six patients with IgG MM were vacci-
nated with intravenous infusions of DC derived from peripheral blood mononuclear 
cells (PBMC) pulsed with autologous Id protein. Although both a B-cell and a T-cell 
immune response were found, tumor-speci fi c responses were only minor. In order to 
boost the Id-speci fi c response, Reichardt and colleagues  [  37  ]  conjugated myeloma-
speci fi c Id with keyhole limpet hemocyanin (KLH) and used the fusion protein to 
pulse autologous DC in vitro. They reported on 12 patients who had undergone 
autologous peripheral stem cell transplantation followed by a series of monthly 
immunizations of two intravenous infusions of Id-pulsed autologous DC and by 
booster immunizations with subcutaneous Id-KLH. This strategy was well tolerated 
as patients had only minor side effects. Furthermore, 2 of 12 patients developed 
Id-speci fi c cellular proliferation, while 1 of 3 patients developed an Id-speci fi c CTL 
response. In other studies, DC pulsed with Id-KLH have elicited potentially useful 
immunologic responses such as Id-speci fi c T-cell proliferation detected from 15% 
 [  38  ]  to as many as 83% of the patients  [  39  ]  in clinical trials. In the latter study, the 
response was associated with production of IFN- g  in 2 out of 6 patients and an 
increase in CTL precursor frequency in these patients. In a study from Cull et al. 
 [  40  ] , two patients with advanced refractory MM were vaccinated with Id-pulsed 
DC combined with GM-CSF. An anti-Id T-cell proliferative response was detected 
in both patients, which was also associated with IFN- g  production by the T cells. 
Titzer et al.  [  41  ]  treated 11 patients with advanced MM with Id-pulsed, CD34 +  
stem cell-derived DC and GM-CSF. Three of ten vaccinated patients showed an 
increased anti-Id antibody titer, and four of the ten patients had Id-speci fi c T-cell 
responses.  

 Overall, meaningful immunologic responses and antitumor effects have been 
reported in lymphoma patients using different formulations of Id vaccine  [  42,   43  ] . 
However, the Id vaccination in B-cell cancers other than lymphoma is less advanced, 
and the vigorous Id-speci fi c immune responses reported in lymphoma have not 
been detected yet in MM although DC-based Id vaccination can elicit Id-speci fi c 
T-cell responses in patients with MM. This may be explained by the following 
aspects: (1) Id protein can induce humoral immunity; however, in contrast to lym-
phoma, myeloma cells do not express the IgG Id on the cell surface, and hence, the 
contribution of anti-Id antibodies to any vaccine-induced clinical response in 
myeloma is unclear  [  44  ] . (2) Early stage I myeloma patients with competent immune 
systems upon receiving DC-based Id vaccination displayed speci fi c T-cell responses, 
and 89% of these patients demonstrated speci fi c T-cell-mediated cytokine release 
after Id stimulation  [  26,   27  ] . In contrast, immune system suppression such as a 
functional defect in peripheral blood DC was observed in advanced myeloma 
patients when treated with Id-DC therapy  [  45  ] . In advanced myeloma, T-cell 
responses may be shifted to a type 2 in fl ammatory cellular response, and the func-
tional activity of these T cells is a matter of debate  [  46,   47  ] . (3) Route of administra-
tion should be considered to help overcome the limitation of Id-pulsed DC 
vaccination. Most Id-pulsed DC vaccination trials have been administered 
 intravenously  [  36,   37,   40,   41,   48  ] . However, several investigators report that 
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intravenous injection of DC led to accumulation of the cells in the lung, liver, and 
spleen during the  fi rst 24–48 h  [  49,   50  ] , whereas DC injected subcutaneously 
migrated to the T-cell regions of draining lymph nodes and induced a strong protec-
tive immune response or a Th1-speci fi c response  [  51  ] . In addition, Curti et al.  [  52  ]  
reported in a phase I/II clinical trial comparing subcutaneous and intravenous deliv-
ery of DC pulsed with Id that a more robust T-cell response was observed after 
subcutaneous DC injections along with increased Id-speci fi c T-cell proliferation up 
to 1 year after vaccination in the myeloma patients. (4) Quality of DC should be 
explored in the clinical setting. Although monocyte-derived immature DC are both 
ef fi cient in uptaking and processing antigens, the administration of these immature 
DC showed a limitation in triggering T-cell responses due to a lower expression of 
costimulatory and MHC molecules on their cell surfaces. In addition, monocyte-
derived immature DC are not stable and may differentiate back to macrophages 
when IL-4 and GM-CSF are withdrawn  [  53  ] . In a study of functional differences 
between mature and immature DC, Yi et al.  [  54  ]  concluded that mature DC derived 
from peripheral blood monocytes would better serve as APC than immature DC. 
Their clinical study using subcutaneous DC vaccination of Id-pulsed mature DC in 
MM patients with stable partial remissions following high-dose chemotherapy 
showed promising results, whereby Id-speci fi c T-cell responses were observed in 
80% of these myeloma patients. In a recent study, Yi et al.  [  25,   28  ]  showed that 
intranodal administration of Id-pulsed CD40 ligand-matured DC induced Id-speci fi c 
T-cell and B-cell responses in patients. (5) Several studies suggest that Id vaccina-
tion may have a therapeutic effect in the setting of autologous or allogeneic trans-
plantation. Lacy et al.  [  55  ]  showed that idiotype-pulsed DC following autologous 
stem cell transplantation for MM might be associated with prolonged survival. They 
demonstrated that 96% of the patients in the vaccine trial had achieved an objective 
response following autologous transplantation and suggested that Id vaccines are 
attractive as a consolidation therapy after autologous transplantation for MM. 
Exploitation of the potential antitumor effect of stem cell grafts in the allogeneic 
setting relies on strategies for enhancing graft-versus-tumor effects without aggra-
vating graft-versus-host disease. In a study by Kwak et al.  [  56  ] , donor-Id-speci fi c 
T-cell immunity was detected at the time of allografting of Id-immune marrow. In 
another study, Li et al.  [  32,   35  ]  showed release of high levels of Th1-type cytokines 
in an MHC-restricted fashion in response to stimulation with recipients’ myeloma 
cells in two donors immunized with Id proteins obtained from their transplant recip-
ients. These results set the stage for an ongoing phase I/II clinical trial at the National 
Cancer Institute of donor immunization prior to allogeneic stem cell transplantation 
followed by a nonmyeloablative conditioning regimen for MM. In the same clinical 
setting, to avoid any potential complications associated with immunization of 
healthy donors with tumor-derived products, in vitro priming of donor T cells using 
Id-pulsed DC may provide an alternative to in vivo donor immunization and allow 
the transfer of highly enriched populations of Id-speci fi c T cells from donor to 
recipient  [  57  ]  (Table  6.2 ).   
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    6.3   DNA-Based DC Vaccine 

 Although proven effective in experimental models and in clinical trials, the tradi-
tional Id vaccine approach based on the culture of heterohybridomas is complicated 
in view of its clinical application by the need for large amounts of custom-made and 
individually tailored proteins that must be prepared and certi fi ed for each case 
within an appropriate time scale. The DNA vaccination technique provides ease of 

   Table 6.2    Clinical trials using DCs pulsed with myeloma patient idiotype   

 Vaccine  Patients  Clinical outcome  Reference 

 Id + KLH+ 
 DCs 
 7 shots 
 2-iv Id + DC 
 5-Id + KLH 

 12 autoSCT 
 hdose Chemo 

 Stable  Reichardt et al. 

   Id + DCs
3 shots 

 6  Progressed  Lim et al. 

  Id+
4 shots 
 GMCSF+ 
 DCs 

 2 
 Adv refrat 

 1 progressed 
 1 stable 

 Cull et al. 

  2-Id + Dcs
7 shots 
 5-Id + KLH 

 26 
 hdose chemo 
 autoSCT 

 17 live/stable  Liso et al. 

  1-Id + DC
4 shots 
 3-Id + GMCSF 

 11 
 III stage 

 Progressed  Titzer et al. 

  Id + DCs
3 shots 
 IL2/5d 

 5 
 hdose chemo 
 stable PR 

 4 stable 
 1 relapsed 

 Yi et al. 

  2-Id + DCs
7 shots 
 5-Id + KLH+ 
 GMCSF 

 12 
 hdose chemo 
 autoSCT 
 at remission 

 10 progressed 
 2-PR 

 Reichardt et al. 

 alloDCs + Id 
 Id + KLH+ 
 GMCSF 
 4-7shots 

 4 RIC alloSCT  3 progressed  Bendandi et al. . 

 Id + DCs+ 
 KLH 
 4 shots 

 9  All idiotype abs 
 5/9 CTL responses 
 3 progressed 
 4 stable 

 Yi et al. 

 Id + DCs 
 5 shots 

 9 
 stage I 

 5/9 anti-Idiotype abs 
 8/9 cytokine responses 
 3/9 dropped slightly 

 Rolliq et al. 
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vaccine generation and the speci fi c protein production by host cells following 
immunization. The  fi rst requirement to make Id DNA vaccines is the identi fi cation 
of Id-encoding variable region genes (V 

H
  and V 

L
 ) from tumor biopsies or blood. 

To construct Id DNA vaccines, the Id-encoding regions are isolated from malignant 
B cells using PCR-based techniques and formatted into a re fi ned tumor-speci fi c 
single-chain immunoglobulin (sFv) that retains the conformation of the native 
immunoglobulin. The weakly immunogenic, self-sFv is genetically fused to carri-
ers, thus avoiding the need for puri fi ed Id protein, carriers, and adjuvants  [  58,   59  ] . 
For Id DNA vaccines, scFv    alone was unable to reproducibly induce anti-Id anti-
body responses, even in the presence of the “immune stimulatory sequence” in the 
plasmid DNA backbone  [  60  ] . To improve the potency of Id DNA vaccines, investi-
gators have constructed DNA fusion vaccines with scFv genetically linked to FrC, 
which is the nontoxic C fragment of tetanus toxin as an adjuvant to deliver a “danger 
signal” to the immune system  [  61,   62  ] . All of the fusion constructs were able to 
induce an antibody response against FrC in mice, and more importantly the linkage 
to FrC dramatically improved antibody responses against the patients’ tumor IgM 
 [  63  ] . King and colleagues  [  64  ]  further investigated a fusion DNA vaccine for induc-
tion of anti-Id responses and protection against challenge in syngenic mouse mod-
els, a surface Ig-positive lymphoma (A31) and a surface Ig-negative myeloma 
(5 T33). Their study showed that fusion of FrC enhanced anti-Id antibody responses, 
and the immunized mice were protected against tumor challenge in both cases. 
Lauritzsen and colleagues  [  65  ]  have demonstrated that CD4 +  T cells are capable of 
protecting mice against challenge with a surface Ig-negative myeloma using anti-Id 
CD4 +  transgenic mice. The ability of scFv–FrC DNA fusion vaccines to induce an 
FrC-speci fi c Th response suggests that the antitumor immunity observed by the 
fusion of FrC in the 5 T33 myeloma model may operate through the Th cooperation 
pathway  [  64  ] . 

 A variety of different approaches have been explored using DNA fusion vaccines 
incorporating various immune-enhancing molecules or tumor-associated antigens 
(TAA) that can be used to promote immunity against attached tumor antigens. 
Different designs of these molecules can be used to circumvent tolerance and acti-
vate speci fi c pathways of attack. Several investigators have developed a DNA vac-
cine approach using mediators of innate immunity such as proin fl ammatory 
chemokines or cytokines  [  66–  68  ]  and defensins  [  69  ]  as genetic carriers, which 
deliver Id or a potential TAA to DC in vivo  [  70  ] . In two different mouse B-cell 
tumor models, this strategy converted Id into a potent immunogen with generation 
of both humoral and cellular antitumor immunity  [  69,   71  ] . Testing in pilot clinical 
trials showed insigni fi cant toxicity, opening the way for the assessment of ef fi cacy. 
Trudel et al.  [  72  ]  in a phase I study evaluated the feasibility and safety of vaccinat-
ing MM patients after high-dose chemotherapy with adenovector-engineered, IL-2-
expressing autologous plasma cells. These vaccines were well tolerated and induced 
a local in fl ammatory response consisting predominantly of CD8 +  T cells. However, 
no speci fi c antitumor immunity or clinical responses were noted, and this indicates 
that further studies are needed to examine this clinical approach for treatment of 
patients.  
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    6.4   Cell-Based DC Vaccine 

 A major drawback of an antigen-speci fi c vaccine approach is that immune responses 
will be restricted to the single TAA with the subsequent risk of relapsing when 
tumors no longer express the antigens against which they were vaccinated, a phe-
nomenon known as “antigen escape variants.” An alternative to overcome this poten-
tial limitation is represented by whole tumor cell immunization (polyvalent 
vaccination), which may present to the host immune system a whole array of both 
known and as yet unidenti fi ed tumor antigens. This approach relies on the ability of 
the individuals’ immune system to induce stronger immunity against tumor-selective 
antigens than against normal tissue antigens present on the tumor cells’ surface. 

 Critical to this type of vaccine development is the ability to modify the tumor 
cell with genes encoding immunologically relevant molecules that produce a sus-
tained, local release of its product, leading to a local in fl ammation at the vaccine 
site without systemic toxicity. Because of advances over the past decade in gene-
transfer techniques, various tumor cells have been genetically modi fi ed to either 
secrete cytokines (e.g., IL-2, GM-CSF) or to express components of the cell mem-
brane such as adhesion molecules or costimulatory molecules  [  73–  77  ]  that can 
enhance T-cell responsiveness. The means of active speci fi c immunization using 
autologous tumor cells has been tested in trials for MM following their uptake and 
processing by DC in vivo. Trudel et al.  [  72  ]  evaluated eight MM patients after vac-
cination with IL-2 expressing adenovirus engineered autologous plasma cells. Two 
months after high-dose therapy, six patients received from one to  fi ve injections of 
3.5−9.0 × 10 7  of the engineered plasma cells. A phase I assessment found that the 
vaccine was effective in seven of eight patients with MM. Injection with tumor cells 
induced a local in fl ammatory response, and the clinical response, manifested as a 
decrease in serum paraprotein, was not observed in the one patient who had measur-
able disease at the time of vaccination. However, the limitation of this type of vac-
cine is that development of using cytokine-producing autologous tumor cells is 
hindered by the time needed for labor-intensive preparation of the vaccine and by 
the variability in the cytokine production of each patient’s vaccine formulation. To 
overcome such drawbacks, investigators have developed an allogeneic bystander 
cell line (called K562) that secretes large and stable amounts of GM-CSF  [  78  ] . This 
cell line can be grown easily in suspension and has no detectable expression of 
HLA class I or class II molecules, and thus minimizes the likelihood of antiby-
stander allogeneic responses with multiple vaccinations. This strategy of a univer-
sal bystander vaccine obviates the need for gene modi fi cation for each individual 
tumor source and ensures uniform cytokine production, thereby eliminating intra-
patient and interpatient variability. In addition, GM-CSF produced at the vaccine 
site promotes the recruitment and activation of the host’s APC, which ef fi ciently 
uptake, process, and present tumor antigens to antigen-speci fi c T cell, leading to 
strong antitumor responses. 
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 In another effort to stimulate a broader antitumor immunologic response, 
investigators have explored the use of tumor lysate as a source of multiple antigens 
for vaccination. Wen et al.  [  79  ]  demonstrated that patient-derived DC loaded with 
autologous tumor lysate induced antitumor immunity after repetitive stimulation 
in vitro. The T cells recognized and lysed autologous myeloma protein-pulsed DC 
and killed autologous primary myeloma cells. Another study also demonstrated the 
potent cytotoxic activities of CTL lines generated by DC pulsed with myeloma 
lysate against autologous target cells and showed the importance in the optimization 
of concentration of myeloma lysates utilized in pulsing of the DC  [  80  ] . Their results 
suggested that the DC pulsed with puri fi ed and optimized myeloma lysates could 
generate potent myeloma-speci fi c CTL. 

 DC vaccines can also be made by fusing with myeloma cells. Several investiga-
tors have shown some ef fi cacy using this vaccine approach in MM. Zhang et al.  [  81  ]  
showed that a DC-based tumor vaccine created by the formation of hybrid-engineered 
J558 tumor cells after fusion with DC induced an ef fi cient tumor-speci fi c CTL 
cytotoxicity against wild-type tumor cells in vitro and an ef fi cient antitumor immu-
nity in vivo. In other studies, investigators demonstrated that engineered J558 
myeloma cells secreting IL-4, IL-12, or CD40 ligand, respectively, helped eradicate 
the established tumors  [  82–  84  ] . They demonstrated that immunization of mice with 
the engineered fusion hybrid elicited stronger J558 tumor-speci fi c CTL responses 
in vitro as well as more potent protective immunity against J558 tumor challenge 
in vivo than immunization with the conventional fusion hybrid DC/J558 created 
from the fusion of DC and unmanipulated J558 tumor cells alone. In addition, 
Grossman et al.,  [  85  ]  performed a DC fusion study using either primary myeloma 
cells from patients or a myeloma cell line (U266) and demonstrated that fusions 
with mature DC, as compared to immature DC, induced higher levels of T-cell pro-
liferation and activation, as assessed by IFN- g  production and higher CTL activity 
against the myeloma cells. Tumor cell fusion has been known to induce maturation 
and the development of an activated DC phenotype necessary for their effectiveness 
as cancer vaccines  [  86  ] . Based on these results, a clinical trial was designed to 
evaluate the ef fi cacy of vaccination of myeloma patients using fusion cells with 
myeloma cells and autologous mature DC. Rosenblatt et al.  [  87  ]  have completed a 
phase 1 study in which patients with MM underwent serial vaccination with the DC/
MM fusion product in conjunction with GM-CSF. Their study of vaccination was 
well tolerated, without evidence of toxicity and resulted in the expansion of circu-
lating CD4 +  and CD8 +  T lymphocytes reactive with autologous myeloma cells in 11 
of 15 evaluable patients. The vaccination with DC/MM fusions resulted in antitu-
mor immune responses and disease stabilization in a majority of patients. In a sepa-
rate report, they demonstrated that increased PD-1 expression was observed on T 
cells of patients with active myeloma compared with a control population of normal 
volunteers. However, it was returned to levels seen in normal controls, and anti-PD1 
antibody enhances activated T-cell responses after DC/tumor fusion stimulation; 
thus, they suggested the potential enhanced vaccine ef fi cacy in combination with 
the anti-PD1 antibody  [  88  ] .  
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    6.5   Peptide-Based Vaccines in Multiple Myeloma 

    6.5.1   Introduction 

 Active-speci fi c immunotherapy has the distinct advantage of inducing highly effective 
T lymphocytes with antitumor activities  [  89,   90  ] . Long-term stabilization of dis-
ease with good quality of life has been demonstrated as a characteristic of cancer 
immunotherapy. To avoid a patient-speci fi c immunotherapy requires individual-
ized patient-speci fi c products, which are labor intensive and costly, peptide vac-
cines can be used as an attractive therapeutic option for a broader applicability, low 
toxicity, and easy production  [  91  ] . Although there is MHC restriction in this thera-
peutic approach, use of cocktails of immunogenic peptides to different HLA mol-
ecules would broaden the induction of CTL speci fi c to tumor cells of multiple MHC 
classi fi cations. Based on the recent progress on the discovery of tumor-associated 
antigens (TAA), epitopes have been identi fi ed from multiple potential antigens and 
evaluated for the development of vaccines by eliciting the antigen-speci fi c CD8 +  
T-cell responses against MM cells. Strategies for further improvement in the 
ef fi cacy of therapy, including combined use of chemotherapy drugs and molecular 
target-based drugs, are being proposed. Peptide vaccination in an “adjuvant set-
ting” should be considered a promising treatment to protect against progression or 
relapse of malignancies in cases with minimal residual disease.    The following are 
the types of TAA utilized and progress made for the development of peptide-based 
vaccines in MM.  

    6.5.2   Receptor for Hyaluronic acid Mediated Motility 

 Receptor for hyaluronic acid mediated motility (RHAMM) is an immunogenic anti-
gen that is strongly expressed in several hematological malignancies including MM 
and induces humoral and cellular immune responses  [  92      –  94  ] . Schmitt et al.  [  95  ]  
and Greiner et al.  [  96  ]  have investigated both immunological and therapeutic clini-
cal responses to a RHAMM-R3 peptide vaccine in patients with MM. In their phase 
I trial, the RHAMM-R3 peptide (ILSLELMKL) was administered four times 
(300  m g or 1 mg/vaccination) subcutaneously at a biweekly interval to HLA-A2 +  
MM patients who were in partial remission or near complete remission after high-
dose chemotherapy with melphalan and autologous stem cell transplantation and 
had detectable free light chains in serum and/or urine and expression of RHAMM-
mRNA in bone marrow or peripheral blood. Immune monitoring during or after 
vaccination for positive immune responses was performed on patient cells using the 
following criteria: (1) ELISpot analyses as an increase (>50%) in IFN- g  +  and gran-
zyme +  spots, (2) tetramer analyses as an increase (>50%) in HLA-A2/R3-tetramer + /
CD8 +  T lymphocytes and with an increase (> 25%) in RHAMM-R3-tetramer + /CD8 +  
T lymphocytes, and (3) CD8 +  T-cell responsiveness demonstrated by a response 2/3 
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or 1/2 of the monitoring assays (tetramer staining, IFN- g , and granzyme B ELISpot). 
Those patients having a positive immunological response showed an increase of 
CD8 +  tetramer + /CD45RA + /CCR7 - /CD27 - /CD28 -  effector T cells and an increase of 
RHAMM-R3-speci fi c CD8 +  T cells. In addition, high-dose RHAMM-R3 peptide 
vaccination induced positive clinical effects. Two of four patients with MM showed 
a reduction of free light-chain serum levels.  

    6.5.3   Wilms’ Tumor Gene 

 Wilms’ tumor gene (WT1), which possesses oncogenic functions, is expressed in 
various kinds of malignancies. A series of investigations indicated that WT1 is a 
highly immunogenic antigen in patients with MM  [  97–  99  ] . CTL epitopes were 
identi fi ed from WT1 speci fi c to HLA-A2 and HLA-A-24, and evaluated in clinical 
trials. Vaccination of cancer patients with the WT1 CTL peptides induced immuno-
logical responses, which were assessed by ex vivo immunomonitoring, such as the 
tetramer assay, and in vivo immunomonitoring, such as the peptide-speci fi c delayed 
type hypersensitivity reaction. The induced immunological responses then led to 
clinical responses as reduction of M-protein  [  100,   101  ] . The vaccination with a 
single WT1 peptide elicited an immunological response strong enough to induce a 
clinical response, suggesting that the WT1 peptide vaccine has therapeutic poten-
tial. The number of reports of the successful treatment of cancer patients with WT1 
vaccination is increasing.  

    6.5.4   Dickkopf-1 (DKK1) 

 The DKK1 protein, a secreted protein and Wnt signaling pathway inhibitor, is pro-
duced by myeloma cells and overexpressed in myeloma microenvironment of 
patients with extensive bone disease  [  102,   103  ] . In addition to its direct inhibitory 
effect of DKK1 on osteoblasts, DKK1 disrupts the Wnt3a-regulated osteoprote-
gerin and receptor activator of NF-kappaB ligand (RANKL) expression in osteo-
blasts, and thus, it indirectly enhances osteoclast function in MM  [  104–  107  ] . It is 
highly expressed by the tumor cells of almost all myeloma patients, and therefore, 
it has been suggested as an ideal target for immunotherapy in MM. However, 
DKK1 mRNA is detected in some normal tissues such as testis, prostate, placenta, 
and uterus, in addition to myeloma cells; thus, DKK1 resembles cancer–testis anti-
gens because the most commonly used cancer–testis antigens NY-ESO-1 and 
MAGE are also found in the uterus, placenta, ovary, and even brain, in addition to 
tumors and testis  [  108,   109  ] . Qian et al.  [  110  ]  identi fi ed an HLA-A2-speci fi c pep-
tide derived from DKK1 that was capable of inducing DKK1-speci fi c T-cell lines 
and clones from HLA-A2 +  normal donors and MM patients. These CTL showed 
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peptide-speci fi c and MM-speci fi c responses in vitro and showed the therapeutic 
ef fi cacy in vivo against established tumor cells in a HLA-A2 transgenic mouse 
model. These data show that DKK1 is a novel target for the management of 
myeloma patients with lytic bone disease.  

    6.5.5   Telomerase 

 Telomerase plays a critical role in cellular immortality and tumorigenesis. Its 
activity is normally not detectable in most somatic cells, while it is reactivated in 
the vast majority of cancer cells resulting in a tight correlation between telomerase 
activity and malignant potential of tumor cells  [  111–  113  ] . Thus, inhibition of 
telomerase has been considered as a promising anticancer approach. Telomerase 
includes three major components: the telomerase reverse transcriptase (TERT) 
protein subunit that catalyzes the enzymatic reaction of DNA synthesis, the telom-
erase RNA (TR) component that serves as a template for TERT, and a protein 
termed dyskerin which binds to hTR. These three components are known to be 
essential for telomerase activity and telomere lengthening  [  114,   115  ] . Telomerase 
activity in a cell is associated with the expression of hTERT-related peptides on its 
surface and is present in more than 85% of human tumors  [  116,   117  ] . Recently, a 
multipeptide vaccine derived from the human telomerase reverse transcriptase 
(hTERT I540 (ILAKFLHWL), hTERT D988Y (YLQVNSLQTV), hTERT D988Y 
(YLQVNSLQTV)) and the antiapoptotic protein surviving (Sur1M2 peptide 
(LMLGEFLKL)) have been evaluated in a phase 1/2 two-arm trial  [  118,   119  ] . 
A total of 54 patients with myeloma received autografts followed by ex vivo anti-
CD3/anti-CD28 costimulated autologous T cells at day 2 after transplantation. 
Study patients positive for HLA-A2 ( n  = 28) also received pneumococcal conju-
gate vaccine immunizations before and after transplantation and the multipeptide 
vaccine. A subset of patients vaccinated (36%) developed immune responses to the 
tumor antigen vaccine by tetramer assays, but this cohort did not exhibit better 
median event-free survival (EFS). Adoptive transfer of tumor antigen vaccine-
primed and costimulated T cells leads to augmented and accelerated cellular and 
humoral immune reconstitution, including antitumor immunity, after autologous 
stem cell transplantation for myeloma.  

    6.5.6   Cancer Testis Antigen 

 Cancer testis antigen (CTA) has been extensively studied in MM by many investiga-
tors. It exhibits physiological expression within germ cells and is frequently 
expressed in malignant tissue. Interestingly, immunological tolerance to CTA does 
not appear to be established, and the expression of CTA within malignant cells can 
therefore lead to induction of cellular and humoral immunity  [  120  ] . Antigen expres-
sion is detected most commonly in MM patients with advanced disease  [  121,   122  ] , 
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but is also found in a signi fi cant proportion of patients with MGUS  [  123  ] . Recently, 
van Duin et al.  [  124  ]  evaluated CTA expression in newly diagnosed MM patients 
( n  = 320) and in relapse cases ( n  = 264) using Affymetrix GeneChips. They reported 
that relapse MM reveals extensive CTA expression and con fi rmed that the antigens 
are as useful prognostic markers in newly diagnosed MM patients and in relapse 
MM patients. The mechanisms that underlie this expression are unclear but are at 
least partially related to demethylation of gene promoter sequences  [  125  ] . DNA 
microarray analysis of gene expression of >95% pure myeloma cells from more than 
300 patients showed that the genes of MAGE-3 and NY-ESO-1 were expressed in 
the tumor cells from patients with relapsed disease or abnormal cytogenetics  [  126  ] . 
The HLA-A1-restricted or HLA-A2-restricted MAGE-3- or NY-ESO-1-speci fi c 
peptide have been identi fi ed and the tumor-speci fi c CTL generated by the peptide 
were demonstrated against myeloma cells  [  127,   128  ] . In addition, MUC-1, HM1.24, 
and survivin are expressed on MM cells and have been shown to induce T-cell reac-
tivity against the antigen in patients with MM  [  129–  132  ] . Antigen-speci fi c peptides 
have been identi fi ed from these potential target proteins  [  133–  136  ]  and have shown 
immunogenicity both in vitro and in vivo against myeloma cells. In a phase 1/2 two-
arm trial, a combination of survivin and hTERT peptides was evaluated for their 
ef fi cacy  [  118,   119  ] . The investigators showed that adoptive transfer of tumor antigen 
vaccine-primed and costimulated T cells leads to augmented and accelerated antitu-
mor immunity after autologous stem cell transplantation for MM. In another study, 
MUC-1 and hTERT peptides were evaluated in vitro for their immunogenicity  [  137  ] . 
Following repeated stimulation of T lymphocytes with DC loaded with hTERT- and 
MUC1-derived nonapeptides, the resulting CTLs were identi fi ed by their high IFN- g  
production. Next, these activated CTL were separated immunomagnetically, 
expanded in vitro,  and  tested for their cytolytic activity against a myeloma cell line. 
There were no statistically signi fi cant differences in the cytotoxic activities between 
the different antigen-speci fi c CTL and their speci fi c antigens expressed on MM 
cells. Christensen et al.  [  138  ]  explored the possibility in vitro of using Melan-A pep-
tide (aa26-35, EAAGIGILTV) with the hypothesis that Melan-A and Melan-A ana-
log (ELAGIGILTV, aa26-35*A27L) peptide-speci fi c T cells can be expanded 
reliably for immunotherapeutic application. They showed the ability of Melan-A 
analog (ELAGIGILTV, Melan-A (aa26-35*A27L))-speci fi c T cells to recognize the 
HM1.24 (aa22-30: LLLGIGILV) peptide within the HM1.24 antigen presented by 
normal and malignant plasma cells. In addition, they found that Melan-A analog-
speci fi c T cells from HLA-A2 +  healthy donors and HLA-A2 +  MM patients secrete 
IFN- g  in response to HM1.24 (aa22-30) peptide-pulsed T2 cells. These peptide-
speci fi c CTL also lysed HLA-A2 +  HM1.24 +  U266 and XG-1 human MM-derived 
cell lines as well as the IM-9 B-lymphoblastoid cell line, and demonstrate that 
Melan-A analog-speci fi c T cells cross-react with the HM1.24 peptide. Anderson 
et al.  [  139  ]  discovered peptides derived from MAGE-C1 (CT-7), which is the most 
commonly expressed CTA found in MM. The CT-7-speci fi c CTL recognizing two 
peptides targeted both MM cells as well as CT-7 gene-transduced tumor cells. They 
demonstrated that these epitopes are promising targets for developing an immuno-
therapy against myeloma or other CT-7 +  malignancies. In another study, Goodyear 
et al.  [  140  ]  identi fi ed CTA-speci fi c immune responses in patients with MM    and 
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reported that recognition of HLA-B*0702-speci fi c MAGE-A1 (289–298) peptide 
was the most dominant response seen with the their peptide panel. CD8 +  T-cell 
clones speci fi c for the MAGE-A1 (289–298) peptide were isolated from three MM 
patients and demonstrated cytotoxic activity against MM cell lines. Interestingly, 
three clones from a HLA-B*0702-negative patient recognized the MAGE-A1 
(289–298) peptide on a lymphoblastoid cell line expressing HLA-Cw7. The T-cell 
receptor gene usage was determined in  fi ve clones and showed conserved features 
in both  a  and the  b  chain genes indicating correlation between T-cell receptor usage 
and peptide speci fi city of CTA-speci fi c T-cell clones. Clinical applicability of the 
peptides derived from the cancer–testis antigens is under evaluation.  

    6.5.7   XBP1 

 Besides CTA, other MM-associated antigens have been identi fi ed and evaluated as 
potential immunogenic epitopes for development of a vaccine therapy to treat MM. 
XBP1 is a basic leucine zipper-containing transcription factor, which is required for 
the terminal differentiation of B lymphocytes to plasma cells. To date, XBP1 is the 
only transcription factor found to be essential for plasma cell differentiation and 
immunoglobulin secretion. The expression of XBP1 is uniformly found in primary 
MM cells and cell lines, selectively induced by exposure to IL-6, and has been 
implicated in the proliferation of malignant plasma cells  [  141–  144  ] . A splice variant 
of XBP1 has known to have a crucial role in normal plasma cell differentiation 
 [  145  ] , and XBP1 splicing has been recognized to occur in terminal B-cell differen-
tiation and correlates with plasma cell differentiation. Based on these observations, 
Bae et al.  [  146  ]  proposed the XBP1 as a unique therapeutic target antigen and 
identi fi ed two heteroclitic peptides,  Y ISPWILAV and  Y LFPQLISV, with improved 
HLA-A2-binding and stability from their respective native peptides, XBP1 

184−192
  

(NISPWILAV) and XBP1 SP 
367−375

  (ELFPQLISV). CTL generated by stimulation 
of CD3 +  T cells with each HLA-A2-speci fi c heteroclitic peptide showed an increased 
percentage of CD8 +  (cytotoxic) and CD69 + /CD45RO +  (activated memory) T cells 
and a lower percentage of CD4 +  (helper) and CD45RA + /CCR7 +  (naïve) T cells, 
which were distinct from the control unstimulated T cells. The CTLs showed func-
tional activities and demonstrated MM-speci fi c and HLA-A2-restricted prolifera-
tion, IFN- g  secretion, and/or cytotoxic activity in response to MM cell lines and 
primary MM cells. These data demonstrate the distinct immunogenic characteristics 
of unique heteroclitic XBP1 peptides, which induce MM-speci fi c CTL.  

    6.5.8   CD138, CS1 

 Furthermore, Bae et al. ( [  147  ] , 2012) introduced immunogenic peptides speci fi c 
to CD138 and CS1 antigens, which offer additional targets to develop an 
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 immunotherapy targeting MM. The CD138, also known as syndecan-1, is a 
 transmembrane heparan sulfate-bearing proteoglycan expressed by most MM cells. 
It has cytoplasmic domain which is linked to cytoskeletal elements to potentiate 
anchorage of the cells and stabilize cell morphology, while their extracellular 
domain has up to three heparan sulfate chains that bind to numerous soluble and 
insoluble molecules. These associations include interactions with heparan-binding 
molecules on adjacent cells to mediate cell–cell adhesion, binding to molecules to 
mediate cell adhesion to the extracellular matrix, as well as binding to growth fac-
tors and cytokines; thus, CD138 is known to be critical for the growth of tumor cells 
 [  148,   149  ] . In patients with MM, shed syndecan-1 accumulates in the bone marrow, 
and soluble syndecan-1 is known to facilitate MM tumor progression, angiogenesis, 
and metastasis in vivo .  Therefore, preventing or reducing high levels of syndecan-1 
in the serum, an indicator of poor prognosis in MM  [  150–  152  ] , would have a direct 
clinical bene fi t by targeting CD138 on malignant plasma cells. A novel immuno-
genic HLA-A2-speci fi c peptide, CD138 

260-268
  (GLVGLIFAV), identi fi ed by Bae 

et al.  [  147  ]  induces antigen-speci fi c CTL, and the CD138 peptide-speci fi c CTL dis-
played a unique immunological phenotype, and HLA-A2-restricted responses and 
functional activities against both primary MM cells and MM cell lines expressing 
CD138 antigen. Additionally, CS1 (CD2 subset 1, CRACC, SLAMF7, CD319) has 
been utilized as a target antigen to potentially develop immunotherapy against MM. 
CS1 is a member of the signaling lymphocyte activating-molecule-related receptor 
family, which is highly expressed on MM cells and is absent in the vast majority of 
acute leukemia, B-cell lymphoma, and Hodgkin lymphomas  [  153  ] . In addition, CS1 
antigen is not expressed by normal tissues or stem cells, but is expressed at low 
levels on NK cells and a subset of T lymphocytes compared with malignant plasma 
cells  [  153  ] . CS1 expression was observed on MM cells from all patients, including 
MM with high-risk and low-risk molecular pro fi les and those with and without 
cytogenetic abnormalities, suggesting that this antigen is not restricted to any par-
ticular MM subgroup  [  154  ] . Equally important for the development of immuno-
therapy, CS1 expression is maintained on patients’ MM cells even after relapse of 
disease. Based on these  fi ndings, Bae et al.  [  155  ]  identi fi ed a novel immunogenic 
HLA-A2-speci fi c epitope, CS1 

239–247
  peptide (SLFVLGLFL), which is derived from 

the CS1 antigen and has the ability to evoke MM-speci fi c CTL. The CS1 peptide-
speci fi c CTL demonstrated HLA-A2-restricted antitumor cytotoxicity and degranu-
lation against HLA-A2 +  primary MM cells and MM cell lines. In addition, the 
speci fi c CTL demonstrated cell proliferation and IFN- g  secretion in response to 
antigen restimulation, which is also HLA-A2 restricted and the antigen speci fi c. 
They also observed distinct immunologic activities speci fi c to MM cells within the 
CD8 effector memory (CD45RO - CCR7 − /CD3 + CD8 + ) T-cell subset, and proposed an 
immunotherapeutic approach using the CS1 

239–247
  peptide to effectively target MM 

cells and improve treatment outcome in patients with MM. These results highlight 
their potential application for immunotherapy to treat the patients with MM or its 
premalignant condition. Clinical applicability of the peptides derived from the anti-
gens is under evaluation.   
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    6.6   Future Directions 

 Active cancer immunotherapy has been proven to be an effective approach to induce 
T-cell immune responses and overcome a number of issues by passive cancer immu-
notherapy including the requirement for repeated dosing and its high cost, the devel-
opment of resistance through loss of immunodominant epitopes and undesired 
immunogenicity of humanized or chimerized antibodies. Dendritic cell-based or 
peptide-based treatments have been proposed as promising candidates for develop-
ment of active cancer immunotherapy by generation of TAA-speci fi c CTL. Clinical 
trials with dendritic cell-based or peptide-based therapy in patients with MM show 
that the vaccinations were well tolerated and induced clinical bene fi t in the patients. 
However, the effectiveness of active cancer immunotherapy to induce the speci fi c 
immune response and clinical bene fi t depends on several factors. Besides element 
of antigens, it is becoming critical to optimize various conditions of the immune 
system to generate a clinically effective antitumor response. Generally, vaccine 
alone is not suf fi cient to evoke a potent immune response. Future challenge for suc-
cessful immunotherapy is to skew the immune response towards a Th1 and to 
increase the antigen-induced T cells that bear high-avidity T-cell receptor to the 
speci fi c TAA by using optimal adjuvant. Adjuvant should be important to enhance 
the immune response through a wide range of mechanisms including a depot action 
causing slow release of antigen to local in fl ammation causing enhanced recruitment 
of antigen-presenting cells to the injection site and facilitation of cross priming and 
mimic a danger signal. Furthermore, administration of optimal cytokine would be 
supportive, not only for the activation and expansion of tumor-associated T cells, 
but also for potential induction of the migration of vaccine-induced circulating T 
cells to the tumor site. Importantly, it would be highly potential to reverse the toler-
ance to tumor by blocking the CTLA-4 or by depleting regulatory T cells. 
Additionally, type of antigen-presenting cell and its activation status in the subjects 
vaccinated should be considered for successful therapeutic outcomes by cancer vac-
cines. Clinical responses of active cancer immunotherapy have been shown as 
promising in patients with minimal residual disease; thus, the combination of tumor 
debulking treatment and vaccination has been considered as a potential strategy to 
lead a successful therapeutic outcome in patients. Lastly, the complexity of the 
immune network and of the interactions between the tumor and the immune system 
makes the task to optimize the regimen including vaccine dose and route and sched-
ule of immunization.      
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