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Abstract Developments in genomics are providing a biological basis for the
heterogeneity of clinical course and response to treatment that have long been
apparent to clinicians. The ability to molecularly characterize human diseases
presents new opportunities to develop more effective treatments and new challenges
for the design and analysis of clinical trials.

In oncology, treatment of broad populations with regimens that benefit a minority
of patients is less economically sustainable with expensive molecularly targeted
therapeutics. The established molecular heterogeneity of human diseases requires
the development of new paradigms for the design and analysis of randomized
clinical trials as a reliable basis for predictive medicine.

We review prospective designs for the development of new therapeutics and
predictive biomarkers to inform their use. We cover designs for a wide range
of settings. At one extreme is the development of a new drug with a single
candidate biomarker and strong biological evidence that marker negative patients
are unlikely to benefit from the new drug. At the other extreme are phase III
clinical trials involving both genome-wide discovery of a predictive classifier and
internal validation of that classifier. We have outlined a prediction-based approach
to the analysis of randomized clinical trials that both preserves the type I error and
provides a reliable internally validated basis for predicting which patients are most
likely or unlikely to benefit from a new regimen.
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1 Introduction

This dominant paradigm for major clinical trials today involves using broad
eligibility criteria and to randomly assign an experimental treatment or control to
test a single null hypothesis that a single clinical outcome measure is on average
unimproved by the experimental treatment. Although it is recognized that no two
patients are identical, it is implicitly assumed that all have the same disease and that
treatment benefit, if it exists, differs only in magnitude among subsets of patients.
In this paradigm, subset analysis is viewed with suspicion and is considered only
exploratory for purpose of hypothesis generation for future studies. All aspects of
multiplicity are accounted for in the test of a single primary null hypothesis. Large
sample sizes and multicenter participation are the rule in order to be able to detect
small average absolute treatment effects.

The emphasis on broad eligibility criteria has been based on a concern that
drugs found effective in clinical trials might subsequently be used in broader patient
populations [1, 2]. Some clinical trials even abandoned formal eligibility criteria
in favor of the “uncertainty principle” which stated that if the individual physician
was uncertain about which treatment might be better for a patient, then that patient
was eligible [3]. The focus on ignoring subset analysis unless the overall null
hypothesis can be rejected is based on concern about data dredging, the assumption
that qualitative interactions are unlikely [3, 4] and that drugs are inexpensive and
without serious side effects. For oncology today, none of those assumptions are
appropriate. Treating the majority for the benefit of the minority is no longer an
effective public health strategy.

Randomized clinical trials have made important contributions to modern
medicine and public health, but they have also led to the overtreatment of broad
populations of patients, most of whom don’t benefit from the increasingly expensive
drugs and procedures shown to have statistically significant average treatment
effects in increasingly large clinical trials. Fortunately the tools of biotechnology
and genomics are providing the tools to identify the subsets of patients who benefit
from treatments.

Developments in our understanding of the genomic basis of cancer have indicated
that cancers of most primary sites (e.g., lung and breast) represent a heterogeneous
collection of diseases that differ in pathophysiology, natural history, and sensitivity
to treatment. Recent results have demonstrated that these diseases differ with regard
to the mutations that cause them and drive their invasion. The new understanding of
heterogeneous nature of tumors of the same primary site leads to new challenges
with regard to clinical trial design. Today we are challenged to develop a new
paradigm of clinical trial design and analysis that enables development of a
predictive medicine that is science based and reliable. Physicians have always
known that cancers of the same primary site were heterogeneous with regard to
natural history and response to treatment. This understanding led to conflicts with
statisticians over the use of subset analysis in the analysis of clinical trials. Although
most statisticians expressed little interest in subset analysis methods [5], many
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practitioners rejected the results of clinical trials whose conclusions were based
on average effects. Today we have powerful tools for characterizing the tumors
biologically and using this characterization as a basis for the design and analysis
of clinical trials.

Most oncology drugs are being developed for defined molecular targets but the
traditional diagnostic classification schemes that are the basis for clinical trial eligi-
bility criteria include patients whose tumors are and are not driven by deregulation
of those targets. For many drugs, the targets are well understood and there is a
compelling biological basis for restricting development to the subset of patients
whose tumors are characterized by deregulation of the drug target. For other drugs
there is more uncertainty about the target, and how to measure whether the target is
driving tumor invasion in an individual patient [6]. It is clear that the primary anal-
ysis of the new generation of oncology clinical trials must consist of more than just
treating the traditionally broad patient populations and testing the null hypothesis
of no average effect. But it is also clear that the tradition of post-hoc data dredging
subset analysis is not an adequate basis for predictive oncology. We need prospective
analysis plans that provide for both preservation of the type I experiment-wise error
rate and for focused predictive analyses that can be used to reliably select patients
in clinical practice for use of the new regimen [7]. These two primary objectives are
not inconsistent, and clinical trials should be sized for both purposes.

The following sections summarize some of the designs that have been developed
for the new generation of cancer clinical trials. Developing new treatments with
companion diagnostics or predictive biomarkers for identifying the patients who
benefit does not make drug development simpler, quicker, or cheaper as is some-
times claimed. Actually it makes drug development more complex and probably
more expensive. But for many new oncology drugs it is the only science-based
approach and should increase the chance of success. It may also lead to more
consistency in results among trials and has obvious benefits for reducing the number
of patients who ultimately receive expensive drugs which expose them risks of
adverse events but no benefit. This approach also has great potential value for
controlling societal expenditures on health care.

The ideal approach is prospective drug development with a companion diagnostic
[7]. This approach, which is being used extensively today in oncology involves
(1) Development of a completely specified predictive classifier using preclinical and
early phase clinical studies. The classifier may be based on a single gene or protein
or a composite score incorporating the levels of expression of multiple genes.
(2) Development of an analytically validated test for measurement of that classifier.
Analytically validated means that the test accurately measures what it is supposed
to measure, or if there is no gold-standard measurement, that the test is reproducible
and robust. (3) Use of that completely specified classifier and analytically validated
test to design and analyze a new clinical trial to evaluate the effectiveness of that
drug and how the effectiveness relates to the classifier. The guiding principle is that
the data used to develop the classifier should be distinct from the Phase III data used
to test hypotheses about treatment effects in subsets determined by the classifier.
This is in contrast to the typical paradigm in which multiple variables are measured
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using non-analytically validated tests and then performing an exploratory analysis
that requires confirmation in a subsequent study. In the enrichment and stratified
designs described below, biomarker discovery is performed prior to the phase III
trial and a single completely specified classifier is used in the trial. We will also
discuss designs and prospective analysis plans that incorporate multiple candidate
classifiers or even broader classifier development and evaluation in the same clinical
trial. But in all of these designs, the analysis plans are carefully pre-specified to
ensure that treatment effects in classifier-based subsets are unbiasedly estimated
and that overall type I error is preserved.

2 Targeted (Enrichment) Designs

Designs in which the eligibility criteria restrict the clinical trial to those patients
considered most likely to benefit from the experimental drug are called “targeted de-
signs” or “enrichment designs.” With an enrichment design a diagnostic test is used
to restrict eligibility for a randomized clinical trial comparing a regimen containing
a new drug to a control regimen. This approach, was used for the development of
trastuzumab in which patients with metastatic breast cancer whose tumors expressed
HER2 in an immunohistochemistry test were eligible for randomization. Simon and
Maitournam [8–10] studied the efficiency of this approach relative to the standard
approach of randomizing all patients without using the test at all. They found that
the efficiency of the enrichment design depended on the prevalence of test-positive
patients and on the effectiveness of the new treatment in test-negative patients. When
fewer than half of the patients are test positive and the new treatment is relatively
ineffective in test-negative patients, the number of randomized patients required
for an enrichment design is dramatically smaller than the number of randomized
patients required for a standard design. For example, if the treatment is completely
ineffective in test-negative patients, then the ratio of number of patients required
for randomization in the enrichment design relative to the number required for the
standard design is approximately 1/”2 where ” denotes the proportion of patients
who are test positive [10]. The treatment may have some effectiveness for test-
negative patients either because the assay is imperfect for measuring deregulation
of the putative molecular target or because the drug has off-target antitumor effects.
Even if the new treatment is half as effective in test-negative patients as in test-
positive patients, however, the randomization ratio is approximately 4=.� C 1/2.
This equals about 2.56 when ” D 0.25, i.e., 25% of the patients are test positive,
indicating that the enrichment design reduces the number of required patients to
randomize by a factor of 2.56.

The enrichment design was used for the development of trastuzumab and led
to the approval of the drug for metastatic and primary breast cancer even though
the test was imperfect and has subsequently been improved. The enrichment design
enabled the drug to be evaluated in the patients for whom there was a biological
rationale for expecting a benefit and to avoid exposing the others to a drug with
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serious toxicities. Simon and Maitournam also compared the enrichment design to
the standard design with regard to the number of screened patients. Zhao and Simon
have made the methods of sample size planning for the design of enrichment trials
available on line at http://brb.nci.nih.gov. The web-based programs are available for
binary and survival/disease-free survival endpoints. The planning takes into account
the performance characteristics of the tests and specificity of the treatment effects.
The programs provide comparisons to standard non-enrichment designs based on
the number of randomized patients required and the number of patients needed for
screening to obtain the required number of randomized patients.

The enrichment design is appropriate for contexts where there is a strong
biological basis for believing that test-negative patients will not benefit from the
new drug. In such cases, including test-negative patients may raise ethical concerns
and may confuse the interpretation of the clinical trial. As described in the section on
“stratification designs,” if test-negative patients are to be included, then they must
be included in sufficient numbers and the number of test-positive patients must be
designed to provide adequate separate analysis of the two groups. Often this is not
done and instead one sees a mixed population of patients in an inadequately sized
trial leading to ambiguous conclusions.

3 Biomarker Stratified Design

When a predictive classifier has been developed but there is not compelling biologi-
cal or phase II data that test-negative patients do not benefit from the new treatment,
it is generally best to include both classifier positive and classifier negative in the
phase III clinical trials comparing the new treatment to the control regimen. In this
case it is essential that an analysis plan be predefined in the protocol for how the
predictive classifier will be used in the analysis. The analysis plan will generally
define the testing strategy for evaluating the new treatment in the test-positive
patients, the test-negative patients and overall. The testing strategy must preserve
the overall type I error of the trial and the trial must be sized to provide adequate
statistical power for these tests. It is not sufficient to just stratify, i.e., balance, the
randomization with regard to the classifier without specifying a complete analysis
plan. The main value of “stratifying” (i.e., balancing) the randomization is that
it assures that only patients with completed test results will enter the trial. Pre-
stratification of the randomization is not necessary for the validity of inferences
to be made about treatment effects within the test-positive or test-negative subsets.
The test used in the pivotal clinical trial should be analytically validated; that is,
previously demonstrated to be accurate, reproducible, and robust to sources of
laboratory variation. If an analytically validated test is not available at the start of
the trial but will be available by the time of analysis, then it may be preferable not
to pre-stratify the randomization process but to perform the analytically validated
assay later on tumor specimens collected prior to randomization.

http://brb.nci.nih.gov
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The purpose of the pivotal trial is to evaluate the new treatment overall and in
the subsets determined by the prespecified classifier. The purpose is not to modify
or optimize the classifier. If the classifier is a composite gene expression-based
classifier, the purpose of the design is not to reexamine the contributions of each
gene. If one does any of this, then an additional phase III trial may be needed
to evaluate treatment benefit in subsets determined by the new classifier. Several
primary analysis plans have been described by Simon [7, 11, 12], and a web-based
tool for sample size planning with these analysis plans is available at http://brb.nci.
nih.gov. For example, if one does not expect the treatment to be effective in the
test-negative patients unless it is effective in the test-positive patients, one might
first compare treatment versus control in test-positive patients using a threshold of
significance of 5%. Only if the treatment versus control comparison is significant
at the 5% level in test-positive patients, the new treatment will be compared to
the control among test-negative patients, again using a threshold of statistical
significance of 5%. This sequential approach controls the overall type I error at
5% since a treatment ineffective in both test-negative and test-positive patients has
a 5% chance of being found significant for test positives, and if that comparison is
not significant, the comparison for the test negatives is not performed. To have 90%
power in the test-positive patients for detecting a 50% reduction in hazard for the
new treatment versus control at a two-sided 5% significance level requires about
88 events of test-positive patients, the same as for an enrichment design limited to
test-positive patients. If at the time of analysis the event rates in the test-positive and
test-negative strata are about equal, then when there are 88 events in the test-positive
patients, there will be about 88(1 � ”)/” events in the test-negative patients where
” denotes the proportion of test-positive patients. If 25% of the patients are test
positive, then there will be approximately 264 events in test-negative patients. This
will provide approximately 90% power for detecting a 33% reduction in hazard
at a two-sided significance level of 5%. In this case, the trial will not be delayed
compared to the enrichment design, but a large number of test-negative patients will
be randomized, treated, and followed on the study rather than excluded as for the
enrichment design. This will be problematic if one does not, a-priori, expect the new
treatment to be effective for test-negative patients. In this case it will be important
to establish an interim monitoring plan to terminate accrual of test-negative patients
when interim results and prior evidence of lack of effectiveness makes it no longer
viable to enter them. Most frequentist interim monitoring plans provide insufficient
protection for test-negative patients in this circumstance and Karuri and Simon have
recently developed a Bayesian design based on an informative prior that reflects the
a-priori degree of confidence in the test [13]. The Karuri and Simon Bayesian design
protects the chance of false positive conclusions for the study overall, and for the
test-positive and test-negative patients separately.

In the situation where one has limited confidence in the predictive marker it can
be effectively used for a “fall-back” analysis. Simon and Wang [14] proposed an
analysis plan in which the new treatment group is first compared to the control
group overall. If that difference is not significant at a reduced significance level such
as 0.03, then the new treatment is compared to the control group just for test-positive

http://brb.nci.nih.gov
http://brb.nci.nih.gov
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patients. The latter comparison uses a threshold of significance of 0.02, or whatever
portion of the traditional 0.05 not used by the initial test. If the trial is planned for
having 90% power for detecting a uniform 33% reduction in overall hazard using a
two-sided significance level of 0.03, then the overall analysis will take place when
there are 297 events. If the test is positive in 25% of patients and the event rates in
test-positive and test-negative patients are about equal at the time of analysis, then
when there are 297 overall events there will be approximately 75 events among the
test-positive patients. If the overall test of treatment effect is not significant, then
the subset test will have power 0.75 for detecting a 50% reduction in hazard at a
two-sided 0.02 significance level. By delaying the treatment evaluation in the test-
positive patients power 0.80 can be achieved when there are 84 events and power
0.90 can be achieved when there are 109 events in the test-positive subset.

Wang et al. have shown that the power of this approach can be improved by taking
into account the correlation between the overall significance test and the significance
test comparing treatment groups in the subset of test-positive patients [15]. So if,
for example, a significance threshold of 0.03 has been used for the overall test, the
significance threshold for used for the subset can be somewhat greater than 0.02
and still have the overall chance of a false positive claim of any type limited to 5%.
In the following descriptions of biomarker designs that use the fall-back analysis
plan, we use the partition 0.03 overall analysis and 0.02 for subset analysis only for
concreteness. Any partition that adds to 0.05 will preserve the type I error but sample
size and power may vary substantially depending on the partition used. In many
cases allocating most of the 5% to the subset analysis will be advantageous because
having adequate sample size to achieve adequate power for the subset analysis is
more constraining than obtaining adequate power for the overall analysis.

4 Designs That Evaluate a Small Number of Classifiers

The prospective drug and companion diagnostic test approach is being used today
in the development of many new cancer drugs where the biology of the drug target
is well understood. Because of the complexity of cancer biology, however, there are
many cases in which the biology of the target is not well understood at the time that
the phase III trials are initiated. We have been developing adaptive designs for these
settings. The designs are adaptive, not with regard to sample size or randomization
ratio, but rather with regard to the subset in which the new treatment is evaluated
relative to the control.

For example with the adaptive threshold design [16] we assumed that a predictive
biomarker score was prospectively defined in a randomized clinical trial comparing
a new treatment T to a control C. The score is not used for restricting eligibility
and no cut-point for the score is prospectively indicated. A fall-back analysis
begins as described above by comparing T to C for all randomized patients using
a significance threshold ’1, say 0.03, less than the traditional 0.05. If the treatment
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effect is not significant at that level, then one finds the cut-point s* for the biomarker
score which leads to the largest treatment effect in comparing T to C restricted
to patients with score greater than s*. Jiang et al. [16] employed a log-likelihood
ratio measure of treatment effect and let L* denote the log-likelihood ratio of
treatment versus control effect when restricted to patients with biomarker level
above s*. The null distribution of L* was determined by repeating the analysis
after permuting the treatment and control labels a thousand or more times. If the
permutation statistical significance of L* is less than 0.05-’1 (e.g., 0.02), then
treatment T is considered superior to C for the subset of the patients with biomarker
level above s*. Jiang et al. provided bootstrap confidence intervals for s*. They
provided an approach to sample size planning for a trial based on this fallback
strategy and also upon a more powerful strategy that does not utilize a portion of
the total type I error for a test of the overall null hypothesis of average treatment
effect.

The analysis plan used in the adaptive threshold design is based on computing
a global test based on a maximum test statistic. For the adaptive threshold design,
the maximum is taken over the set of cut-points of a biomarker score. The idea of
using a global maximum test statistic is much more broadly applicable, however.
For example, suppose multiple candidate binary tests, B1, : : : , BK are available
at the start of the trial. These tests may or may not be correlated with each other.
Let Lk denote the log-likelihood of treatment effect for comparing T to C when
restricted to patients positive for biomarker k. Let L* denote the largest of these
values and let k* denote the test for which the maximum is achieved. As for the
adaptive threshold design, the null distribution of L* can be determined by repeating
the analysis after permuting the treatment and control labels a thousand or more
times. If the permutation statistical significance of L* is less than 0.05-’1 (e.g.,
0.02), then treatment T is considered superior to C for the subset of the patients
positive for biomarker test k*. The stability of the indicated set of patients who
benefit from T (i.e., k*) can be evaluated by repeating the computation of k* for
bootstrap samples of patients.

5 Predictive Analysis of Clinical Trials

Freidlin and Simon [17] also published an adaptive signature design for settings
where a single or small number of candidate classifiers are not available at the
start of the phase III clinical trial. At the time of final analysis, one starts by
comparing outcomes for the treatment group T to the control group C for all
randomized patients. If this overall treatment effect is not significant at a reduced
level ’1, the full set P of patients in the clinical trial is partitioned into training
set Tr and validation set V. A prespecified algorithmic analysis plan is applied to
the training set to generate a “predictive classifier” F(x;Tr) where x denotes the
vector of variables available. This vector may include only candidate classifiers
or may include variables with no a-priori credentials for predictive classification.
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The design was originally proposed for settings where the x vector included gene
expression values from a genome-wide expression measurement. A predictive
classifier is a function that identifies the patients who appear to benefit from the
new treatment T compared to the control C; F(x;Tr) D 1 means that a patient with
covariate vector x is predicted to benefit from T whereas F(x;Tr) D 0 indicates that
patient is not predicted to benefit from T. This is a predictive classifier based on
comparing two treatment groups, not the more familiar kind of prognostic classifier
for a single group. This classifier is developed based on analyzing outcome and
covariates for the two treatment groups in the training set. Freidlin and Simon
developed a weighted voting predictive classifier based on genes whose expression
levels indicate an interaction with treatment in predicting outcome. Many other
types of classifier development algorithms are possible and the design can be used
broadly, not just when the covariates represent gene expression measurements. For
example with survival data one could use a proportional hazards model

log
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where z is a treatment indicator z D 0 for C and z D 1 for T and x denotes the vector
of covariates. This model can be fit on the training set by maximizing the penalized
log partial likelihood with an L1 penalty on the components of the main effect
vector ˇ and the treatment by interaction vector �. The difference in log hazard
for a patient with covariate vector x receiving treatment T compared to that same
patient receiving treatment C is estimated by ı.x/ D Ǫ C O�0x. This function can be
used to classify or rank patients in the validation set. Patients with the most negative
values of ı.x/ are predicted to be the most likely to benefit from T relative to C.
In order to classify patients in the validation set, a cut-point must be defined. This
can either be a predetermined value such as zero, or a predetermined quantile of the
distribution of ı.x/ in the training set or used as an additional tuning parameter. All
tuning parameters should be optimized by cross-validation within the training set.

An alternative classifier can be based on a generalization of the compound
covariate method of Radmacher et al. [18]. The compound covariates are defined
based on fitting single variable proportional hazards models

log
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for each variable i D 1,2, : : : ,p where z denotes a treatment indicator z D 0 for C
and z D 1 for T. One obtains estimates Ǒ

i and Õ i. The two compound covariates are
defined as

v1 D
X Ǒ

i xi and v2 D
X

Õ i xi

where the summations are over the variables for which the treatment by covariate
interactions are nominally significant at level � in the corresponding univariate
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models. � is used as a tuning parameter. Prediction is based on the proportional
hazards model involving only treatment and the two compound covariates:

log
h.t I v1; v2; z/

h0.t/
D ˛z C ˇ�v1 C z��v2 (1)

For predicting treatment the difference in log hazard for a patient with compound
covariate values (v1,v2) receiving treatment T compared to that same patient
receiving treatment C is estimated as Ǫ C O��v2. This function can be used to classify
or rank patients in the validation set. Patients with the most negative values of
Ǫ C O��v2 are predicted to be the most likely to benefit from T relative to C. For
evaluating prediction accuracy one would classify patients in the validation set into
quantiles based on their values of Ǫ C O��v2 and examine the actual treatment effect
within those quantiles.

A similar approach to that described above is to use a model like [1] for
prediction but where v1 is defined as the first supervised principal component
of expression levels for the variables that are prognostic at nominal univariate
significance level � and v2 being the first principal component of expression levels
of the variables that have nominal � level significant interactions. The level � is a
tuning parameter [19].

Once a single completely specified classifier is defined on the training set, it is
used to classify the patients in the validation set. These patients are classified as
either “sensitive” to the new treatment, i.e., predicted likely to benefit from the new
treatment T relative to C or not sensitive. Let S denote the set of sensitive patients
in the validation set; i.e., S D fj"VjF(xj,Tr) D 1g. One then compares outcomes for
sensitive patients in the validation set who received T versus sensitive patients in
the validation set who received C. Let L denote the log-rank statistic (if outcomes
are time-to-event) for this comparison of T vs C of sensitive patients in the
validation set. The null distribution of L is determined by repeating the entire
analysis after permuting the treatment and control labels a thousand or more times.
If the permutation statistical significance of L is less than 0.05-’1 (e.g., 0.02), then
treatment T is considered superior to C for the subset of the patients predicted to be
sensitive using the classifier developed in the training set.

Freidlin et al. [20] demonstrated that the statistical power of this approach can
be substantially increased by embedding the classifier development and validation
process in a K fold cross-validation. This idea is very powerful and much more
broadly applicable than in the context described by Freidlin et al. [17] The concept
is to prospectively define an algorithm A for classifying patients as likely or not
likely to have better outcome on the new treatment T compared to the control
C. This algorithm constitutes the entire preplanned subset analysis. In contrast to
the usual subset analysis which results in a bunch of statements about statistical
significance of treatment effects within multiple subsets, this algorithm results
in a single completely determined predictive classifier. The predictive classifier
partitions the space of covariate vectors into a region for patients who are predicted
to benefit from the new treatment T and the complementary region for patients who
are not predicted to benefit from T. This algorithm might, for example, be defined
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as indicated above by fitting a proportional hazards model involving treatment,
main covariate effects and treatment by covariate interactions to the data and then
defining the predictive classifier based on imposing a cut-point on the difference
in log-likelihood for the predictive index computed if the new treatment is used
minus if the control is used. With this approach the model could be fit to the high-
dimensional data using penalized likelihood methods or univariate screening to find
covariates with apparent interactions with treatment. Many other kinds of algorithms
are possible. The algorithm A when applied to a dataset D defines a completely
specified predictive classifier F(xjD, A). The classifier that will potentially be used
in the future is the one obtained by applying the algorithm to the full dataset (P), i.e.,
F(xjP,A). But first it is necessary to evaluate the algorithm using cross-validation.
It should be emphasized that the cross-validation procedure does not provide some
abstract characteristic of the algorithm A, it provides an almost unbiased estimate
of the predictive accuracy of the classifier F(xjP, A) obtained by applying A to the
full set of data D.

The cross-validation is performed in the following way. The full set (P) of
patients in the clinical trial is partitioned into K disjoint subsets P1, : : : , PK. The ith
training set Ti consist of the full set of patients except for the ith subset; i.e., Ti D P-
Pi. Let F(xjTI, A) denote the binary classifier developed by applying the algorithm
A to training set Ti. Use this classifier to classify the patients in the omitted subset
Pi. Let vj D F(xjjTi, A) denote the predictive classification for patients j in Pi. vj D 1
if the patient is predicted to be sensitive to the new treatment T relative to control C,
and zero otherwise. Since the patients in Pi were not included in the training set Ti

used to train F(xjTi, A), this classification is predictive, not just evaluating goodness
of fit to the same data used to develop the classifier. Since each patient appears in
exactly one Pi, each patient is classified exactly once and that classification is done
with a classifier developed using a training set not containing that patient.

Let S denote the set of patients j for whom vj D 1, i.e., who are predicted to be
sensitive to the new treatment. We can evaluate the predictive value of our algorithm
by comparing outcomes of the patients in S who received treatment T to the
outcomes for the patients in S who received the control C. Let L(S) denote a measure
of difference in outcomes for that comparison; e.g., a log-rank statistic if outcomes
are time-to-event. We can generate an approximation to the null distribution of L by
repeating the entire analysis for thousands of random permutations of the treatment
labels. This test can be used as the primary significance test of the clinical trial to
test the strong null hypothesis that the new treatment and control are equivalent for
all patients on the primary endpoint of the trial. Alternatively, it can be used as a
fall-back test as described in the previous sections.

Having rejected the null hypothesis described above, the application of the
algorithm A to the full dataset P provides a decision tool F(xjP, A) that can be
used by physicians for informing future treatment decisions for their patients. The
classifier recommended for future use is the one obtained by applying the algorithm
to the full dataset, i.e., F(x;P,A). The K-fold cross-validation provides a proper
statistical significance test and provides important information about this full sample
classifier. Freidlin et al. showed that the hazard ratio for T vs C in the cross-validated
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set S is a conservative estimate of the hazard ratio for the sensitive set of the full
sample classifier, i.e., for the set of future patients with covariate vectors for which
F(xjP, A) D 1.

The effectiveness of the decision tool based on F(xjP, A) depends on the algo-
rithm used. Algorithms that over-fit the data will provide classifiers that make poor
predictions. Algorithms based on Bayesian models with many parameters and non-
informative priors may be as prone to over-fitting as frequentist models with many
parameters. The effectiveness of an algorithm will also depend on the dataset, i.e.,
the unknown truth about how treatment effect varies among patient subsets. A strong
advantage of the proposed approach, however, is that an almost unbiased estimate of
the performance of a defined algorithm can be obtained from the dataset of a clinical
trial itself. This can be compared to treating all patients or no patients based on the
results of the conventional overall null hypothesis test. This is clearly preferable to
performing exploratory analysis on the full dataset without any cross-validation, re-
porting the very misleading goodness of fit of the model to the same data used to de-
velop the model, and cautioning that the results need testing in future clinical trials.

The approach described above can also be used in a clinical trial for which the
overall treatment effect is significant. The approach permits one to identify, based
on covariate profiles, the patients who do and do not benefit from the new treatment.
Rather than just focusing on the patients predicted to be sensitive to the new
treatment, one also compares treatment effects for the complementary subset defined
by the cross-validated classifications. To illustrate this approach we have applied
it to data from the gene expression profiling study conducted on pretreatment
biopsy specimens from 181 patients with diffuse large-B-cell lymphoma (DLBCL)
who received a standard chemotherapy combination called CHOP and 233 patients
with this disease who received R-CHOP (CHOP plus the antibody Rituximab) was
analyzed [19]. Unfortunately, this was not a randomized clinical trial, but the data
will serve to illustrate the method of analysis.

The only clinical covariate considered for this analysis was the international
prognostic index (IPI). For the purpose of this analysis the IPI was categorized into
two groups—subjects with IPI scores of 0, 1, or 2 were categorized as “low” and
subjects with IPI scores 3, 4, or 5 were called “high.” For some of the subjects one
or more of the variables that make up the IPI were missing. If for a given subject the
value for the missing variable would not change the IPI group call (e.g., depending
on the value of the missing variable the IPI value would be either 1 or 2), then the
subject would be included as a member of that IPI group. However if the missing
value could make a difference (e.g., between 2 and 3), then that subject was excluded
from our analysis. Thirty-nine subjects were excluded because the IPI group could
not be determined. Of the resulting 375 subjects 262 fell in IPI class “low” and 113
subjects were in IPI class “high.” The end-point was overall survival (death from
any cause). Prior to the start of analysis one subject who had a survival time of zero
was removed, resulting in 374 subjects for this analysis.

Gene expression and clinical data were obtained from the Gene Expression
Omnibus (acc. no. GSE10846). To account for the differences in microarray
preprocessing between R-CHOP and CHOP samples, the expression values for each
gene in the R-CHOP group was adjusted so that its median matched the median of
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Fig. 1 Overall analysis. The value of the log-rank statistic is 14.1 and the corresponding p-value
is 0.0002. The new treatment thus shows an overall benefit

the CHOP group [21]. For the predictive analysis the data were log2 transformed
and the 1,000 genes with the highest variance were used.

A Cox proportional hazards (ph) regression model was developed using patients
in both CHOP (standard treatment acronym of four chemotherapy drugs, C) and
R-CHOP (new treatment consisting of standard CHOP plus antitumor antibody
rituximab, E) groups. A 10-fold cross-validation was applied to estimate predictive
accuracy. Univariate gene selection was used as the feature selection method. For
each gene, a Cox ph model was developed in the training set using treatment,
covariate (IPI), gene, and treatment by covariate and treatment by gene interactions.
Ten genes with the lowest p-values for the treatment by gene interactions were
selected for inclusion in the multivariate Cox ph model. The multivariate Cox ph
model was again developed using treatment, IPI, 10 best genes, treatment by IPI and
treatment by gene interactions. Gene selection and multivariate model development
were all done within each cross-validation loop. In the multivariate Cox ph model,
let • D main effect of treatment, ” D vector of interaction coefficients. Then, for a
patient in the test set with covariate vector Xtest F(Xtest) D 1 if • C ”’Xtest < c where
c was fixed to be the median of the F(X) values in the corresponding training set.

Figure 1 shows the results of the overall analysis. The results of applying the
predictive algorithm in a ten-fold cross-validation loop are shown in Figs. 2 and 3.
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Fig. 2 Predictive analysis. Cross-validation was used to predict patients who would benefit or not
from the new treatment. This figure shows the survival curves for patients predicted to benefit from
the new treatment. The value of the log-rank statistic for the separation of the survival curves is
19.67 and the permutation p-value is 0.005 (200 permutations). The hazard ratio is �1.12 and the
bootstrap-based 95% CI for the HR is (�1.40, �0.125) (200 bootstrap samples)

For the sensitive subset of patients who appear to benefit from R-CHOP, the value of
the log-rank statistic for the separation of the cross-validated survival curves is 19.67
and the permutation p-value is 0.005 (200 permutations). For this sensitive subset,
the log hazard ratio is �1.12 and the bootstrap based 95% CI for the log HR is
(�1.40, �0.125) (200 bootstrap samples). For the complementary subset of patients
who do not appear to benefit from R-CHOP, the value of the log-rank statistic for
the cross-validated survival curves is 0.81 and the permutation p-value is 0.49 (200
permutations). The predictive analysis has thus identified a group of patients who are
unlikely to benefit from the new treatment. Table 1 provides some information about
the proportional hazards model developed on the full dataset. The p values listed are
nominal p values conditional on including the 10 gene expression variables with the
most nominally significant univariate interactions with treatment. Table 2 lists the
genes that have more than 50% cross-validation support. The “%cv support” column
indicates the proportion of the 10 loops of the cross-validation that the variable was
selected for inclusion in the model.
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Fig. 3 Survival curves for cases predicted no benefit from new treatment. The value of the log-
rank statistic in this case is 0.81 and the permutation p-value is 0.49 (200 permutations)

Table 1 The coxph model on applying the algorithm to the full dataset (for classify-
ing future patients)

Variable Coefficient p-Value Variable Coefficient p-Value

T �1:69 0:27

1552531 a at 0:07 0:21 T*1552531 a at �0:15 0:06

210313 at 0:12 0:03 T*210313 at �0:21 0:03

242334 at �0:05 0:20 T*242334 at �0:07 0:42

242107 x at �0:13 0:06 T*242107 x at 0:35 0:002

231391 at 0:05 0:28 T*231391 at �0:26 0:004

1565026 a at 0:15 0:01 T*1565026 a at �0:34 0:0006

206413 s at �0:03 0:39 T*206413 s at 0:11 0:08

203641 s at �0:18 0:008 T*203641 s at 0:23 0:02

231898 x at �0:06 0:20 T*231898 x at 0:20 0:007

243905 at �0:06 0:28 T*243905 at 0:31 0:003

IPI �1:6 <0:0001 T*IPI 0:29 0:43

T denotes treatment indicator. Variables with “at” suffix represent gene expression
levels for Affymetrix probe sets. p-values are nominal values which ignore the effect
of variable selection
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Table 2 Genes with more than 50% cross-validation support (i.e., chosen as one of the 10 best
genes in more than 5 CV loops)

Gene % CV support Name (symbol) Molecular function

210313 at 100 Leukocyte immunoglobulin
receptor, subfamily A,
member 4 (LILRA4)

Receptor activity

1552531 a at 100 NLR family, pyrin domain
containing 11 (NLRP11)

Nucleotide binding, protein
binding, ATP binding

242334 at 80 NLR family, pyrin domain
containing 4 (NLRP4)

Nucleotide binding, protein
binding, ATP binding

231391 at 80 Cortexin 3 (CTXN3) Unknown
1565026 a at 70 Orofacial cleft 1 candidate 1

(OFCC1)
Unknown

242107 x at 70 Unknown Unknown
206413 s at 70 Unknown Protein binding

6 Conclusion

Developments in genomics have increased the focus of biostatisticians on prediction
problems. This has led to many useful developments for predictive modeling where
the number of variables is larger than the number of cases. Heterogeneity of
human diseases and new technology for characterizing diseased tissue presents
new opportunities and challenges for the design and analysis of clinical trials.
In oncology, treatment of broad populations with regimens that do not benefit
most patients is less economically sustainable with expensive molecularly targeted
therapeutics. The established molecular heterogeneity of human diseases requires
the development of new paradigms for the use of randomized clinical trials as a
reliable basis predictive medicine [1, 2]. We have presented here prospective designs
for the development of new therapeutics with candidate predictive biomarkers.
An approach to the Predictive Analysis of Clinical Trials (PACT) has also been
presented. This approach preserves the type I error of the study and uses re-sampling
to develop and validate a predictive classifier that can be used to inform treatment
selection for future patients. This approach provides a statistically sound framework
for bridging the gap between clinical trials and clinical practice that has long existed
and may serve as a basis for clinical trials in the era of predictive medicine.
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