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Abstract Biomarkers provide opportunities to maximize the knowledge gained
from randomized controlled trials. Applications may include the identification of
subpopulations that experience differential treatment effects; the assessment of
adherence to treatment or intervention goals; and the elucidation of key biological
pathways through which the treatments affect clinical outcomes. This last biomarker
role also has implications for the development and initial testing of potential
treatments. These types of applications are illustrated using biomarker studies
in the Women’s Health Initiative postmenopausal hormone therapy and low-fat
dietary pattern trials. Related topics are also described where further methodology
developments would be helpful.

1 Introduction

The Women’s Health Initiative (WHI) is a large-scale epidemiologic research
program focused on the prevention of chronic disease among postmenopausal
women. A total of 161,808 postmenopausal women, in the age range 50–79, were
enrolled at 40 U.S. Clinical Centers during 1993–1998. The centerpiece of the WHI
is a multifaceted clinical trial of four preventive interventions, in a partial factorial
design [1]. A total of 10,739 post-hysterectomy women were randomized to the E-
alone trial of 0.625 mg/day of conjugated equine estrogens (Premarin) or placebo;
16,608 women with uterus were randomized to the E C P trial of this same estrogen
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Table 1 Clinical outcomes in the WHI postmenopausal hormone therapy trials

E C P trial E-alone trial

Outcomes Hazard ratio 95% CI a Hazard ratio 95% CI a

Coronary heart disease 1.29 1.02–1.63 0.91 0.75–1.12
Stroke 1.41 1.07–1.85 1.39 1.10–1.77
Venous thromboembolism 2.11 1.58–2.82 1.33 0.99–1.79
Invasive breast cancer 1.26 1.00–1.59 0.77 0.59–1.01
Colorectal cancer 0.63 0.43–0.92 1.08 0.75–1.55
Endometrial cancer 0.83 0.47–1.47
Hip fracture 0.66 0.45–0.98 0.61 0.41–0.91
Death due to other causes 0.92 0.74–1.14 1.08 0.88–1.32
Global index 1.15 1.03–1.28 1.01 0.91–1.12
Number of women 8,506 8,102 5,310 5,429
Follow-up time, mean (SD), mo 62.2 (16.1) 61.2 (15.0) 81.6 (19.3) 81.9 (19.7)
a CI confidence interval, from a proportional hazards model stratified by age (5-year
categories), and randomization status in the DM trial

preparation plus 2.5 mg/day medroxyprogesterone acetate (Prempro) or placebo;
and 48,835 women were randomized to a low-fat dietary pattern (40%) or usual diet
(60%). At their one-year anniversary following randomization into either or both of
the hormone therapy (HT) or dietary modification (DM) components, participating
women were given the opportunity for further randomization to a dietary supple-
mentation trial of 1,000 mg/day calcium carbonate plus 400 international units of
vitamin D3 or placebo, and 36,282 women did so. The WHI program is strengthened
by the inclusion of a companion cohort study among 93,676 postmenopausal women
in the same age range, recruited from essentially the same catchment populations,
with much commonality with the clinical trial in methodology, and in data and
biospecimen collection.

Table 1 shows key findings from the hormone therapy trials [2, 3] with findings
for the designated primary CHD outcome, and the designated primary adverse
outcome highlighted. The E C P trial was stopped early in 2002 when health risks
were judged to exceed benefits over a 5.6-year average intervention period. The
risks included an early elevation in coronary heart disease incidence, the primary
trial outcome for which an important risk reduction had been hypothesized, and
elevations in stroke and venous thromboembolism incidence. An elevation in breast
cancer incidence and a reduction in fracture incidence were also observed, as was
hypothesized in trial design [1]. A global index, defined as the time to the earliest
of the outcomes listed above it in Table 1 was in the unfavorable direction, and
contributed to early stopping considerations. The E-alone trial also stopped early, in
2004, after an intervention period that averaged 7.1 years, substantially because of a
stroke elevation of similar magnitude as that observed for E C P, though health risks
and benefits and the global index were rather balanced in this trial.

Analyses beyond the summary hazard ratios (HRs) shown in Table 1 took place
for each clinical outcome, as well as for some additional important outcomes (e.g.,
cognition and dementia). These included analyses of HR form as a function of time,
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Table 2 Comparison of cancer incidence rates between intervention and comparison groups in
the Women’s Health Initiative (WHI) dietary modification trial

Incidence per 1,000 person-years (number of cases)

Cancer site Intervention Comparison p a HR (95% CI) b

Breast 4:15.655/ 4:52.1; 072/ 0.09 0.91 (0.83–1.01)
Colorectal 1:27.201/ 1:18.279/ 0.29 1.08 (0.90–1.29)
Ovary 0:36.57/ 0:43.103/ 0.03 0.83 (0.60–1.14)
Endometrium 0:79.125/ 0:71.170/ 0.18 1.11 (0.88–1.40)
All other sites 4:56.720/ 4:81.1; 140/ 0.30 0.95 (0.86–1.04)
Total cancer 10:69.1; 687/ 11:22.2; 661/ 0.10 0.95 (0.89–1.01)

Trial includes 19,541 women in the intervention group and 29,294 women in the comparison group
a Weighted log-rank test (two-sided) stratified by age (5-year categories) and randomization status
in the WHI hormone therapy trial. Weights increase linearly from zero at random assignment to a
maximum of 1.0 at 10 years
b HR hazard ratio, CI confidence interval, from a proportional hazards model stratified by age
(5-year categories), and randomization status in the WHI hormone therapy trial

analyses of HRs among women adherent to their assigned intervention, and various
subgroup analyses (with appropriate caveats). Participating women were actively
followed beyond the cessation of intervention, giving rise to a range of additional
analyses of public health importance [4, 5].

To cite but one example, the more detailed studies of breast cancer incidence
in the E C P trial showed an HR that increased unfavorably and approximately
linearly to about 1.6 following 5 years of use, and dropped back to basal levels
by 2–3 years following trial stoppage. When analyses focused on adherent women,
a more dramatic increase to an HR of about 2.5 after 5 years of use was estimated,
again with dissipation by 2–3 years following cessation of use [6]. These patterns,
in conjunction with the approximately six million women using this estrogen plus
progestin preparation in the USA, about 70% of whom stopped shortly after initial
trial results [1] were announced, projected a national reduction in breast cancer
incidence of about 15,000 women per year as a result of this change in usage
patterns, as agrees with subsequent U.S. breast cancer incidence rates [7].

The WHI low-fat dietary pattern trial had dietary intervention goals of equal or
less than 20% of energy from fat; five or more fruit and vegetable servings/day,
and six or more grain servings/day, with breast and colorectal cancer as primary
outcomes, and with ovary and endometrial cancer as additional diet-related cancers
that may benefit from this intervention. Table 2 shows principal cancer incidence
results from this trial, which proceeded to its planned termination with an 8.1-
year average intervention period. The trial design projected a reduction in breast
cancer risk with an overall HR of 0.87. The principal targeted dietary change was
a reduction in percent of energy from fat, but only about 70% of the hypothesized
change was achieved. In correspondence the estimated breast cancer HR of 0.91 [8]
differed from unity by about 70% of that projected, but was not significantly differ-
ent from one (weighted logrank p D 0.09). The corresponding contrast for ovarian
cancer incidence [9] was nominally significant (p D 0.03), providing an important
lead for a disease having few known modifiable risk factors. For both breast [8] and
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ovarian cancer [9], there was a significant interaction between baseline percent of
energy from fat and HR, with stronger evidence for an intervention effect among
women having a high fat content in their customary diet. These women made a
comparatively larger reduction in percent of energy from fat, if assigned to the
dietary intervention group.

The calcium and vitamin trial did not provide significant evidence of a treatment
effect, either for its primary hip fracture outcome [10], or secondary outcomes
(colorectal cancer, other fractures).

2 Biomarkers and Variations in Clinical Trial
Intervention Effects

Even though it is good clinical trial practice to focus primarily on overall treatment
effects as opposed to those in subsets of a study population, it needs to be recognized
that hazard ratios may, and often do, vary according to specific characteristics
of the study population. Notably, HRs provide but one way of summarizing a
treatment effect over time, and lack of variation on an HR scale may differ from
corresponding lack of variation on other assessment scales. That said, however,
HR or other ratio measures (e.g., odds ratios) seem particularly useful in leading
to simple models, wherein the joint association of treatment and study subject
characteristics or exposures on clinical outcomes often seems to depart little from a
multiplicative model.

For example, for breast cancer incidence, no interacting demographic or clinical
variables were found for E C P [11], whereas for E-alone a suggested reduction in
risk seemed to be largely confined to lower risk women, specifically those without
benign breast disease or a family history of breast cancer [12].

Several nested case–control studies within the HT trial cohorts were conducted
in an attempt to identify biomarkers that may interact with hormone therapy
HRs, or that may mediate the observed intervention effects on clinical outcomes.
These studies primarily focused on biochemical and genetic markers that were
recognized risk indicators for the clinical outcomes under study. For example,
a Cardiovascular Disease Biomarker Study focused on markers of inflammation,
coagulation/thrombosis, lipids and lipoproteins, and related genetic variants, for
each of coronary heart disease, stroke, and venous thromboembolism. These studies
[13, 14] generally confirmed associations with disease risk, but there were few
interacting factors identified and none of the observed biomarker changes following
intervention activities appeared to meaningfully mediate the observed treatment
effects, a topic that will be discussed further below. As an example of an interacting
variable, women having a relatively high baseline low-density lipoprotein (LDL)
cholesterol who were assigned to active hormone therapy evidently experienced a
comparatively larger early elevation in coronary heart disease risk [13].

Some high-dimensional genotype biomarker studies were also conducted, in an
attempt to understand more of the biology related to observed clinical effects in
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the WHI trials. For example, a breast cancer nested case–control study involved
the genotyping of 9,039 single nucleotide polymorphisms (SNPs) for 2,166 women
who developed breast cancer during the trial intervention period. A randomized trial
context is well suited to genotype by treatment interaction testing in that “case-
only” analyses, which require genotype data only on study subjects developing
disease, have efficiency about the same as if genotyping had been conducted on
the full cohort.

More specifically, let V D 1 and V D 0 denote active and control randomization
assignments, and z D 0, 1, or 2 denote the number of minor alleles of an SNP.
A simple Cox model that stratifies on SNP genotype, and allows a separate HR
parameter for treatment at each value of z, can be written

œ .tI V; z/ D œ0z .t/ expf“0I .z D 0/ C “1I .z D 1/ C “2I .z D 2/g;

where I(�) denotes an indicator variable, and e“z is the HR for women having SNP
genotype z, for z D 0, 1, or 2. From this expression,

logit .VjX D t; z/ D logit .VjX > t; z/ C
2X

iD0

“iI .z D zi/ ;

where X D t denotes disease occurrence at time t following randomization. The
important feature here is that V is orthogonal to z by virtue of randomization so
that if the disease is rare one has, to a good approximation

logit .VjT > t; z/ D log fq= .1 � q/g ;

where q D pr(V D 1) is the randomization fraction for the active treatment group. It
follows that one can estimate intervention HRs at each SNP genotype by ordinary
logistic regression of the randomization indicator V on indicator variables for the
number of minor SNP alleles, with log fq/(1 � q)g as an “offset.” Breast cancer
analyses of this type yielded nominally significant variations in the intervention HR
with a SNP (rs3750817) in intron 2 of the fibroblast growth factor receptor gene on
chromosome 10 for both E C P and E-alone [15] and for the dietary modification
intervention in the subset of women (denoted DMQ) who were in the upper
quartile of percent of energy from fat in their baseline diet [16]. These analyses
also drew attention (nominal p < 0.05) to a SNP (rs7705343) in the mitochondrial
ribosomal protein S30 region of chromosome five [17] for each of E-alone, DMQ,
and for the calcium and vitamin D intervention (for which there was no breast
cancer “main” effect). For either SNP the more favorable intervention effects were
evidently localized among women who were homozygous for the SNP minor allele
(TT genotype for rs3750817; AA for rs7705343). A challenge with these types
of suggestive findings is the identification of a research strategy for replication.
Observational studies pertinent to these intervention topics may be limited in their
assessment of related exposures (e.g., hormonal or dietary exposures), and may be
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subject to important confounding or measurement biases. In general, the methods
for identification of genotype by environmental factor interaction evaluation are at
an early stage of development, and large-scale clinical trial settings have much to
offer in this arena.

3 Biomarkers of Intervention Adherence and Exposure

As mentioned above, the Dietary Modification trial evidently achieved only about
70% of its projected intervention versus control group difference for the principal
dietary intervention target, percent of energy from fat. Even this 70% assessment
relies on self-reported dietary information from participating women. Specifically,
based on food frequency questionnaire (FFQ) assessments, intervention group
women reported a 10.7% average lower percent of energy from fat compared
to the control group at 1-year following randomization; 9.5% at 3 years after
randomization; and 8.1% at 6 years after randomization. However, the FFQ data
also indicate a differential total energy consumption by about 100 kilocalories/day,
which is not consistent with the weight changes experienced by trial participants
(2–3 kg greater weight loss in intervention group compared to usual diet control
group at 1-year, which mostly dissipated over the subsequent 5 years). If the greater
underreporting of energy by intervention group women pertained disproportionately
to fat calories, then percent of energy from fat would also be differentially reported
and the power of the DM trial accordingly affected.

In fact, the dietary assessment measurement issue is even more acute in observa-
tional nutritional epidemiology studies, where systematic and random assessment
errors could well distort the very associations under study, rather than simply
reducing study power as in the intervention trial setting. In either context, however,
biomarkers provide important avenues for strengthening the research agenda.

Two nutritional biomarker substudies have been conducted in WHI cohorts, and
a controlled human feeding study that aims to develop biomarkers for additional
nutrients and foods is currently underway. The first, the Nutrient Biomarker Study
(NBS) included energy [18] and protein [19] biomarkers and a concurrent FFQ,
among a representative 544 weight-stable women in the DM trial. The second, the
Nutrition and Physical Activity Assessment Study included these biomarkers and
self-reports of dietary frequencies, records and recalls, along with a biomarker of
activity-related energy expenditure and three types of physical activity self-report,
among 450 representative women from the WHI Observational (cohort) Study. By
simple linear regression of log-biomarker assessments on corresponding log self-
reports and on readily available study subject characteristic data (body mass index,
age, and ethnicity), calibrated consumption estimates were developed for energy,
protein, and percent of energy from protein. For example, for energy, even though
the log self-report data explained only a few percent (e.g., 3–4% for the FFQ) of
the variation in log-biomarker values, the inclusion of these other factors in the
regression equation raised this percentage to the 40–45% range. Upon extracting the
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temporal variation in the biomarker, this increased to about 70% of the average daily
energy consumption variation over a 1-year study period [20]. The NBS equations
were used to develop calibrated-energy, protein, and percent of energy from protein
estimates throughout the WHI cohorts, and positive associations between energy
and several major cancers [21] as well as coronary disease [22] and diabetes [23]
were found that were not apparent without calibration. The role of body mass
index in these analyses is complex [24], and the associations just mentioned seemed
substantially, if not entirely, explained by body fat accumulation over time.

This nutritional epidemiology research area and the similarly important physical
activity epidemiology area are ripe for further development, with a substantial use
of biomarkers providing a logical next step in the overall research agenda.

The energy biomarker data indicates severe underreporting using the FFQ, by
about 30% overall, and with much greater underreporting among overweight and
obese women, along with greater underreporting by younger compared to older
postmenopausal women. These analyses also suggest some energy underreporting
by intervention compared to control group women also, by about 100 kcal/day,
allowing the weight change data mentioned above to align with corresponding
calibrated energy consumption in the DM trial.

4 Biomarkers as Mediators of Clinical Trial
Intervention Effects

Again let V D 1 or 0 denote active and control randomization assignments in a
clinical trial, but now let z denote a biomarker change following some period
of intervention activities. Analyses may aim to understand the extent to which
intervention effects on the clinical outcome are mediated by z. A traditional
mediation analysis would compare the coefficient of V in a regression analysis
that doesn’t include z with a corresponding analysis including z, with evidence for
mediation if the coefficient for V moves substantially toward the null when z is
added to the regression model.

A key statistical difference is evident between the type of interaction analysis
discussed in Sect. 2, where V and z are independent by study design, and mediation
analyses where V and z may be highly correlated. This is a critical point. In the
extreme, for example, if the biomarker doesn’t change in the control group (z D 0)
and changes by exactly the same amount (z D c, for some c ¤ 0) among all study
subjects in the intervention group, then z and V will be perfectly correlated, and
it will not be possible to carry out an analysis that simultaneously models V and
z. As a plausible departure from this scenario, suppose that z is constant in both
groups, but that z is assessed with some technical measurement error. As amplified
below, the regression analyses will then be possible, but z may then appear not to
mediate, even though the biomarker change in question may be central to explaining
the intervention effects on clinical outcomes.
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To elaborate just a little, consider baseline, x0, and post-intervention, x1,
biomarker values, and suppose that the biomarker fully mediates an intervention
effect in a linear model for a quantitative response Y. Hence, E(Y; x0, x1,
V) D a C a0x0 C a1x1, with a1 ¤ 0. Under a bivariate normal model for (x0, x1) with
mean (�0, �1 C dV), common variance ¢2 and correlation ¡, one can derive

E .YI x0; V/ D a0 C a0
0x0 C .a1d/ V;

where a0 and a0
0 are simple functions of the response and biomarker parameters, so

that a mediation analysis would compare an estimate of a1d to an estimate of the
coefficient of V (zero) when x1 is added to the regression model.

Now suppose that x0 and x1 incorporate classical normal measurement error, so
that one measures w0 D x0 C e0 and w1 D x1 C e1 where e0 and e1 are independent
mean zero normal variates having variance ¢2

e . It is straightforward to show that
the coefficient of V in E(Y; w0, V) is again a1d, unaffected by measurement error
owing to the independence between x0 and V, but that for V in E(Y j w0, w1, V) is
a complicated function of model parameters that approaches (a0 C a1)d/(2 C •2) as
¡ ! 1, where •2 D ¢2

e =¢2. This limiting coefficient can be very far from zero even
if •2 is small! This rather counter-intuitive result arises because of the diminishing
ability to distinguish the biomarker effect from the overall treatment effect on Y,
as ¡ ! 1. It follows that careful modeling of the biomarker and its measurement
process may be needed to reliably assess mediation, or more generally, to assess
treatment effects after allowing for certain biomarker changes.

As noted above, none of the candidate biomarkers studied appeared to mediate
HT effects on cardiovascular diseases in the WHI hormone therapy trials. We
undertook additional “discovery” research to identify blood biomarkers that are
risk markers for these diseases, and that are affected by hormone therapy. This
work focused on protein expression, using an Intact Protein Analysis System [25]
having the capability of quantitatively comparing concentrations between pairs
of specimens for about 350–400 proteins across a substantial dynamic range.
Specifically, concentrations based on blood collected 1-year after randomization
were compared to corresponding baseline concentrations for 50 women adherent
to active E-alone, and 50 women adherent to active E C P, over the first year of
HT trial participation. For throughput reasons IPAS analyses were based on pools
formed from equal volumes of serum from 10 women. A total of 378 proteins were
quantified for change. Of these, a remarkable 44.7% (169/378) had evidence of
change (p < 0.05) following intervention with E-alone or E C P [26, 27]. The protein
changes were mostly quite similar for E-alone and E C P, and included proteins
in multiple biological pathways relevant to observed clinical effects, including
inflammation, coagulation, immune function, cell adhesion, growth factors, and
osteogenesis, among others.

Corresponding analyses were then conducted, using the same proteomic plat-
form, to compare baseline blood protein concentrations between women who went
on to develop CHD or stroke and corresponding matched controls, with cases and
controls drawn from the WHI Observational Study. This time larger pools of size
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100 were employed. There were eight such pool pairs for each of these diseases,
as well as for breast cancer. From the resulting data [28] there were 37 proteins
having nominal p < 0.05 for a CHD case versus control difference compared to 17.3
expected by chance; and 47 for stroke compared to 18.3 expected by chance. Several
of these had estimated false discovery rates <0.05 and most of these were among the
proteins evidently affected by E-alone and/or E C P. These provide novel candidates
for mechanistic effects of HT on these cardiovascular diseases.

We are still at an early stage of evaluating these candidates for mediation in
the HT trials. An initial evaluation involving beta-2 microglobulin, a highly ranked
protein for CHD association, and insulin-like growth factor binding protein 4
(IGFBP4), a highly ranked protein for stroke association, confirmed the association
of these proteins with disease incidence in the WHI trials but, once again, change
in protein concentration following hormone therapy treatment did not seem to
mediate intervention effects on these diseases, at least not without explicit account
of the biomarker measurement error process. Further, analyses with these analytes
revealed that HT hazard ratios, in the presence of baseline and 1-year biomarker
measurements were quite sensitive to the ratio (•2) of the measurement error
variance to the underlying biomarker variance for both E-alone and E C P, with
larger •2 values consistent with full mediation.

These preliminary analyses reinforce the need for enhanced statistical methods
for identifying the important biological intermediaries of intervention effects in
clinical trials. Adequate modeling of the underlying biomarker process, and of the
departure of such models from corresponding measured biomarker values, may
typically require biomarker assessments at more than two time points in conjunction
with large case and control sample sizes. This topic, and methods for correcting
treatment hazard ratio estimates for the biomarker measurement process, will be
discussed in more detail elsewhere.

5 Biomarkers for Intervention Development

In recent years biomarkers have come to play a rather central role in treatment
development, particularly in the therapeutics area. For example, the molecular
characteristics of patient tumors may identify key therapeutic targets for disruption
by potential treatments. High-dimensional data, including gene expression profiles,
may help to focus developmental efforts toward therapeutic benefit or toward the
avoidance of certain adverse effects.

The development and initial testing of preventive interventions is a rather under-
developed aspect of the chronic disease prevention research agenda. Sometimes it is
attractive to move interventions from therapeutics to primary prevention. Examples
include statins for heart disease prevention; tamoxifen, SERMS, or aromatase
inhibitors for breast cancer prevention; or biphosphonates for fracture prevention.
However, this approach seems unlikely to lead to the behavioral changes, for
example, in the diet and physical activity area, that arguably provide the ultimate
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preventive approaches needed. Observational epidemiology has much to offer for
identifying preventive approaches, but findings may lack the needed specificity and
force to fuel needed behavioral, regulatory, or policy changes. For example, one
can contrast the influence of the rather extensive body of observational research on
postmenopausal hormones, with that of the comparatively few clinical trials that
eventually were able to be conducted.

Intermediate outcome trials, which have outcomes on putative pathways between
treatments and clinical outcomes of interest, have considerable potential to add to
these other data sources for preventive intervention development. For example, a
trial of moderate size, called the Postmenopausal Estrogen Progestin Intervention
(PEPI) trial was initiated in advance of the WHI trials to compare various hormone
regimens in respect to cardiovascular disease risk factors, uterine hyperplasia, and
other intermediate outcomes [29, 30]. This trial had an influence on the choice of
regimens studied in the WHI trials, but it did not warn, for example, concerning the
observed early elevation in CHD, or the sustained elevation in stroke that emerged
in the WHI hormone therapy trials.

Intermediate outcome trials that combine changes in major risk factors for clin-
ical outcomes of interest with more agnostic, possibly high-dimensional, changes
in blood or other biospecimens, may offer a more comprehensive approach to
the selection and initial evaluation of preventive interventions. For example, the
agnostic aspect could entail study of potential intervention effects on the plasma
proteome and metabolome. These data, whether for a few emergent candidates or
for a high-dimensional set of changes, could then be merged with observational
analyses relating the entire set of intermediate variables to clinical outcomes of
interest, to develop projections of intervention effects on each such outcome.
This approach could be considered for behavioral as well as chemopreventive
interventions. The two data sources to be combined would each involve studies
having a small fraction of the cost of a full-scale prevention trial. While not sufficient
in itself, such an approach could augment the value of intermediate outcome trials
and, in particular, may help to filter intervention options arising from the traditional
data sources mentioned above, thereby permitting a focus on the more strongly
justified concepts for full-scale trial consideration with clinical outcomes.

6 Discussion and Summary

Biomarkers have potential to play several important roles in the development,
conduct, analysis, and reporting of clinical trials. Specifically, biomarkers may
permit stratification of study subjects according to the magnitude of beneficial or
adverse treatment effects, possibly leading to the identification of persons for whom
the treatment can be particularly recommended or should be avoided.

Though not much emphasized here, biomarkers typically play a key role in the
assessment of adherence to intervention goals, and in the assessment of adherence-
adjusted treatment effects. Biomarkers also provide the principal approach to
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identifying the important biological pathways whereby a treatment may influence
a clinical outcome of interest. The utility of biomarkers for each of these purposes,
but especially for the elucidation of disease mechanisms can be expected to depend
strongly on the properties of the biomarker measurement process, and on the ability
to adequately model and correct for measurement error in data analyses.

The adherence-adjustment and mediation applications of biomarkers are some-
times posed using a potential outcomes, and a principal stratification formulation
[31]. The principal stratification “framework,” however, seems too restrictive to be
very useful in this type of biomedical research context [32, 33], and the important
measurement error issue discussed here does not seem to have been addressed in the
potential outcomes context.

Finally, high-dimensional biomarkers from discovery platforms evidently have
an important role to play in intervention development, though this concept has yet
to be much explored to date for preventive intervention development.
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