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Abstract The current availability of dense sets of marker SNPs for the human
genome is having a large impact on genetic studies and offers new possibilities
for clinical trials. This chapter offers a unified basis for the analysis of marker and
response data, emphasizing the central importance of the correlation, or linkage
disequilibrium, between SNP markers and the genes that affect response. It is
convenient to phrase the development of association mapping in the language of
quantitative genetics, using additive and non-additive components of variance. A
novel feature of dense SNP data is that good estimates can be made of actual
inbreeding and relatedness. These estimates are more relevant than values predicted
from family pedigree, and are all that are available in the absence of family data.

The dimensionality of SNP marker datasets has required the development of
new methods that are appropriate for a large number of statistical comparisons, and
the development of computational methods that allow high-dimensional regression.
These methods are reviewed here, as is the use of biological annotation for both
viewing the relevance of empirical associations, and to structure analysis in order
to focus on those markers with the highest expectation for association with the
outcomes under study.

1 Introduction

This chapter explores the statistical issues surrounding the use of SNPs in clinical
trials and genome-wide association studies, and it contains the material presented
in a short course by the authors. It is based, in part, on their experience with
two NHGRI-funded consortia: GENEVA [3, 12], a collection of genome-wide
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association studies, and GARNET, a collection of randomized clinical trials. It
also reflects our work as a data coordinating center for a number of randomized
clinical trials including evaluation of vertebroplasty for osteoporotic fractures [11]
and surgery for carpal tunnel syndrome [10], performed through the Center for
Biomedical Statistics at the University of Washington.

At the time of the Fourth Seattle Symposium on Biostatistics there were
199 clinical trials listed at www.clinicaltrials.gov that were collecting genetic
information on participants. The entry for trial NCT01106144, for example, states:

The main component in the treatment of acute myeloid leukemia (AML) is consist
of anthracycline (such as daunorubicin or idarubicin) and cytarabine. Inter-individual
variability of transport/ metabolism of the chemotherapeutic agent and several genetic
pathways involved in the drug action might be associated with different response following
the treatment for AML usually consisted of chemotherapy and/or transplantation. One
of potential pathways involved in the drug action is DNA repair pathway, accordingly
single nucleotide polymorphisms (SNPs) in the DNA repair machinery pathway might be a
predictive marker for therapy outcomes in AML.

This chapter focusses on the use of SNPs for clinical trials.

2 Single Nucleotide Polymorphisms

Information about the genetic constitution of an individual in a study is often
provided by technologies that reveal SNP profiles. Each of us receives one genome,
including 23 chromosomes, from each of our parents and the genome can be
described by the base type (A,C,G, or T) at each of the three billion nucleotides
in the genomic DNA sequence. There can be constraints on which bases can be
present at each nucleotide position but there is now documentation of 25 million
or so positions at which there is variation among people (http://www.1000genomes.
org). The low rate of change with which one base may be replaced by another means
that most SNPs have only two possible states in a population, such as A and C. If
the frequency of type A in a population is pA D 0:8, then C is termed the minor
allele and the minor allele frequency (MAF) is 0.2.

Individuals may be typed at specific target regions of the genome but it is
generally cost-effective to type many SNPs with platforms that give whole-genome
data. The OMNI5 chip produced by the Illumina company allows five million SNPs
to be typed (http://www.illumina.com/products), most of them with MAF values
over 0.01 in publicly available data sets such as HapMap or 1000 Genomes (www.
hapmap.org, or www.1000genomes.org). In a recent review, [5] listed sets of studies
where associations of SNPs with drug response had been sought, often resulting in
highly significant results.

www.clinicaltrials.gov
http://www.1000genomes.org
http://www.1000genomes.org
http://www.illumina.com/products
www.hapmap.org
www.hapmap.org
www.1000genomes.org
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3 Associations

The use of genetic markers for mapping disease genes or as biomarkers in clinical
trials depends on associations between genetic variants and observed or measured
traits. We first examine associations between genetic variants before taking up the
association of markers with traits or outcomes.

It is convenient to describe associations between pairs of alleles in terms of
correlations. At one locus, the correlation coefficient is an inbreeding coefficient
and at two loci, the correlation depends upon linkage disequilibrium. For marker
and trait locus pairs, the squared correlation coefficient is the key parameter.

3.1 Allelic Association at One Locus

For a set of n individuals in a sample from one population, it is convenient to replace
every allele by an indicator variable for, say, allele A at locus A. For allele k (k D
1; 2) in individual j (j D 1; 2; : : : ; n), these indicator variables xjk are defined as

xjk D
�

1 allele is of type A

0 otherwise

Taking averages over all samples from the population of these Bernoulli variables
is straightforward:

E.xjk/ D pA

E.x2
jk/ D pA

Var.xjk/ D pA.1 � pA/

where pA is the allele frequency for A.
Now the product of the two x’s for one individual is nonzero only if the individual

is homozygous AA, and this leads to the covariance of indicator variables within
individuals:

E.xjkxjk0/ D PAA; k ¤ k0

Cov.xjk; xjk0/ D PAA � p2
A

where PAA is the genotype frequency for AA.
The (within-population) inbreeding coefficient fA at locus A is defined to allow

the reparameterization of genotype frequencies in terms of allele frequencies:

PAA D p2
A C pA.1 � pA/fA
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PAa D 2pA.1 � pA/ � 2pA.1 � pA/fA

Paa D .1 � pA/2 C pA.1 � pA/fA

This imposes no constraints on genotypic proportions and it preserves the usual
reduction of genotypic frequencies to allele frequencies:

pA D PAA C 1

2
PAa; pa D Paa C 1

2
PAs

The inbreeding coefficient can be seen to be the correlation coefficient of the
indicator variables for the two alleles carried by an individual at a locus. This follows
because

Var.xjk/ D pA.1 � pA/

Cov.xjk; xjk0/ D pA.1 � pA/fA; k ¤ k0

Corr.xjk; xjk0/ D fA

Because genotypic frequencies are bounded by allele frequencies above and zero
below,

0 � PAA D p2
A C pApafA � pA

there are bounds on the inbreeding coefficient

max

�
�pA

pa

; � pa

pA

�
� fA � 1

Sample Values If a sample of n individuals is found to have counts nAA; nAa; naa

for genotypes AA; Aa; aa, the sample allele frequencies, denoted by tildes, are

QpA D 1

2n
.2nAA C nAa/ D QPAA C 1

2
QPAa

and these have means and variances over all samples from the same population of

E. QpA/ D pA

Var. QpA/ D 1

2n
pA.1 � pA/.1 C fA/:

A structured population is shown in Fig. 1, where the subpopulations have
distinct allele frequencies p�. Among samples from the i th subpopulation the allele
counts are binomially distributed : .2n Qpi / � Binomial.2n; p�

i / providing there
is Hardy–Weinberg equilibrium (f D 0) in that subpopulation. We will return to
variation among subpopulations later.



Genetic Markers in Clinical Trials 213

Subpopulation 1

p�

1 : : :

p

Subpopulation r

p�

r

Population

Fig. 1 Allele frequencies in a substructured population

3.2 Allelic Association at Two Loci

A gamete is the set of genetic material, in the egg or sperm, passed from parent
to child and a haplotype is a relatively small region on one chromosome. For the
present purposes the terms are essentially interchangeable, but “gamete” will be
used as it has greater generality.

If data are available for a set of n gametes, indicator variables xA and xB can be
defined for loci A and B in the same way as that above for one locus. For gamete j :

xjA D
�

1 if gamete carries A

0 otherwise

xjB D
�

1 if gamete carries B

0 otherwise

As the product xjAxjB is nonzero only if the gamete is of type AB it has
expectation E.xjAxjB / D PAB , where PAB is frequency of that gamete type.
Therefore

E.xjA/ D pA; Var.xjA/ D pA.1 � pA/

E.xjB / D pB; Var.xjB / D pB.1 � pB/

E.xjAxjB / D PAB; Cov.xjA; xjB / D DAB D PAB � pApB
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The quantity DAB is defined to be the (gametic) linkage disequilibrium between
alleles A and B .

The correlation of indicator variables at two loci is

�AB D Corr.xjA; xjB / D DABp
pA.1 � pA/pB.1 � pB/

and this is the two-locus analog of the inbreeding coefficient f . It is the parameter
that determines the behavior of all genetic association tests. In practice, use is made
of the squared sample value

r2
AB D

QD2
AB

QpA.1 � QpA/ QpB.1 � QpB/

Because gamete frequencies are bounded above by allele frequencies and below
by zero it can be seen that

0 � DAB C pApB � pA ; 0 � �DAB C pApb � pA

0 � �2 � min
�

pApb

papB
;

papB

pApb

�
� 1

The two loci need equal allele frequencies (pA D pB ) for �2
AB to attain the value 1.

Allelic Association at Two Unphased Loci It is generally the case that only
genotypic data, rather than gametic data, are available and this suggests another
measure of linkage disequilibrium. The indicator variables now need two subscripts:
j (j D 1; 2; : : : ; n) for individual and k for gamete (k D 1; 2) within individual.
Summing the indicator values at each locus:

XjA D xj1A C xj 2A

XjB D xj1B C xj 2B

provides indicators XjA having values 2; 1; 0 with probabilities PAA; PAa; Paa and
indicators XjB having values 2; 1; 0 with probabilities PBB; PBb; Pbb .

The means, variances, and covariances of the genotypic indicators are

E.XjA/ D 2pA; Var.XjA/ D 2pA.1 � pA/.1 C fA/

E.XjB / D 2pB; Var.XJB / D 2pB.1 � pB/.1 C fB/

E.XjAXjB / D 4PAABB C 2PAABb C 2PAaBB C PAaBb

Cov.XjA; XjB / D 2Dc
AB
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These equations introduce the “composite” linkage disequilibrium Dc
AB and

Corr.XjA; XjB / D Dc
ABp

pApa.1 C fA/pBpb.1 C fB/

With Hardy–Weinberg equilibrium, fA D fB D 0 and Dc
AB D DAB . In this special

case it is straightforward, although computationally challenging, to recover gamete
frequencies from genotypic frequencies and it is possible to work only with gametic
disequilibria.

3.3 Subgroup Analysis

Before considering association mapping methods that depend on linkage disequi-
librium between marker and trait loci, we consider evaluating treatment effects in
genotype subgroups. In a small modification of previous notation, the genotype
indicator Xlj is the number of copies of the minor allele for the l th SNP in the
j th individual, and we could consider a binary grouping: marker l is positive if
Xlj � 1 and it is negative if Xlj D 0. Subjects can be placed into marker-positive
and marker-negative subgroups.

Subgroup treatment effects �lg are the differences in responses Y between the
two treatment groups T x D 1 and T x D 0, for that subgroup:

�lg D E.Yj jXlj D g; T x D 1/ � E.Yj jXlj D g; T x D 0/ (1)

The first question of interest is whether or not there are subgroups that have strong
treatment effects, or evidence for harm: H0 W �lg D 0. Within a subgroup, a test
statistic for treatment effect is z D O�lg=

p
Vlg , where O�lg is the observed effect for

SNP l in that subgroup and Vjg is an estimate of the variance of the effect.
As an example of a study with which we have had experience, we refer to an

evaluation of compound “X” by GlaxoSmithKline in which the main objective of
the analysis is to identify genetic markers that influence the clinical efficacy of the
compound for the treatment of disease “D.”

A second question is whether or not there are subgroups that have treatment
effects that are larger (or smaller) than the overall treatment effect. In other words,
are there “enhanced” treatment effects? If N� is the treatment effect averaged over
subgroups, or simply the overall marginal treatment effect:

N� D E.Yj jT x D 1/ � E.Yj jT x D 0/

this question is H0 W �lg D N�. This is equivalent to H0 W �lg D N�lgC where g; gC

are the subgroups Xlj D g; Xlj ¤ g.
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4 Association Mapping

Association methods use random samples from a population and are alternatives to
linkage methods based on pedigrees. The associations depend on linkage disequilib-
rium between marker and trait loci instead of depending on linkage between those
loci as in pedigree methods.

Suppose that a quantitative trait locus T contributes to a trait of interest. The
QTL genotype cannot be observed but maybe it can be inferred, and the location
of the QTL estimated, from observations on the trait and the genotype at a genetic
marker M. Individuals have observable marker genotypes and unobservable trait or
response genotypes.

Each marker genotypic class MuMv is composed of a mixture of elements from
each of the QTL classes, TrTs , where the proportion of QTL class TrTs contained
within marker class MuMv is P r.TrTsjMuMv/ D Pr.TrTsMuMv/= Pr.MuMv/.
With random mating, joint TM genotype frequencies are products of gamete
frequencies as shown in Table 1, and gamete frequencies differ from products of
allele frequencies because of linkage disequilibrium as shown in Table 2.

Trait Variables A treatment of association mapping also requires genetic variables
Z and G for loci M and T. The values of Z are assigned for the marker, whereas
the values G represent the genetic contributions to measured trait variables, disease
status, or treatment response. The G’s are not under control of the investigator. In
either case, the Hardy–Weinberg assumption provides the following expressions for
the means and variances:

E.Z/ D �Z D p2
M ZMM C 2pM pmZMm C p2

mZmm

E.G/ D �G D p2
T GT T C 2pT pt GT t C p2

t Gtt

Var.Z/ D �2
AM

C �2
DM

Var.G/ D �2
AT

C �2
DT

Table 1 Two-allele
genotypic frequencies

T T T t t t

MM P 2
M T 2PM T PM t P 2

M t

M m 2PM T PmT 2PM T Pmt C 2PM t PmT 2PM t Pmt

mm P 2
mT 2PmT Pmt P 2

mt

Table 2 Two-allele gametic
frequencies

T t

M PM T D pM pT C DM T PM t D pM pt � DM T

m PmT D pmpT � DM T Pmt D pmpt C DM T
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The “additive” and “dominance” components of variance are

�2
AM

D 2pM pmŒpM .ZMM � ZMm/ C pm.ZMm � Zmm/�2

�2
AT

D 2pT pt ŒpT .GT T � GT t / C pt.GT t � Gtt /�
2

�2
DM

D p2
M p2

m.ZMM � 2ZMm C Zmm/2

�2
DT

D p2
T p2

t .GT T � 2GT t C Gtt /
2

and the covariance of Z and G depends on the linkage disequilibrium �MT between
M and T:

Cov.G; Z/ D �MT �AT �AM C �2
MT �DT �DM

If either Z or G are purely additive, then

Cov.G; Z/ D �MT �AT �AM

whereas if either is purely nonadditive

Cov.G; Z/ D �2
MT �DT �DM

The choice of marker coding, i.e. whether Z has only additive variance, only
nonadditive variance, or a combination of the two, will determine the nature of trait
genetic effects that can be detected by association mapping.

Suppose the measured trait or response variable has value Y where Y D G C E ,
the sum of the genetic effect G of locus T and all other effects E . These other effects
may be supposed to have mean zero and to be independent of both G and the marker
variable Z. Then

E.Y / D E.G/

Cov.Y; Z/ D Cov.G; Z/

Var.Y / D �2
AT

C �2
DT

C VE

4.1 Continuous Traits

Regression Trait values Y may be regressed on marker variables Z. The regression
coefficient has parametric value

ˇYZ D Cov.Y; Z/

Var.Z/
D �MT �AT �AM C �2

MT �DT �DM

�2
AM

C �2
DM
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Marker variable Z is often chosen to be additive, e.g ZMM D 2; ZMm D
1; Zmm D 0, �2

DM
D 0, and then

ˇYZ D �MT

�AT

�AM

Evidence for a nonzero regression slope is therefore evidence for linkage disequilib-
rium between trait and marker loci. This, in turn, is generally regarded as evidence
for genomic proximity of these loci. A cluster of SNPs with nonzero regression
coefficients is likely to delineate the region of a chromosome containing a trait locus.

The marker variable could also be made to have zero additive variance, e.g.
ZMM D pm; ZMn D 0; Zmm D pM , and then

ˇYZ D �2
MT

�DT

�DM

The size of the regression coefficient is lower than in the additive case, partly
because �2

AB � �AB and partly because it is generally the case that �2
DT

� �2
AT

.
For any scoring of the marker genotypes, a significant regression coefficient

implies a significant linkage disequilibrium measure �MT between marker and
disease loci.

Correlation It may be more convenient to work with the correlation of Y and Z.
For an additive marker variable

Corr.Y; Z/ D �YZ D �MT h
.T /
Y

where .h
.T /
Y /2 D �2

AT
=.�2

AT
C �2

DT
C VE/ is the (narrow sense) heritability of trait

Y due to locus T. Sample values rYZ for the correlation �YZ can be transformed to
normal variables with Fisher’s transformation

z D 1

2
ln

�
1 C rYZ

1 � rYZ

�

and then standard theory for correlation coefficients provides that, for ˛% signifi-
cance level and .1 � ˇ/% power, the necessary sample size n is (approximately)

n D
2
42.z˛=2 C zˇ/

ln
�

1C�YZ

1��YZ

�
3
5

2

C 3

For 90 % power, zˇ D 1:28. For 90 % power and 1 % or 0.001 % significance level
and for an SNP with �2

MT D 0:8 to the disease gene and a trait with per-locus

heritability .h
.T /
Y /2 D 0:2 these sizes are about 85 or 185. Although heritabilities of
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0.2 are not uncommon, these are values over all causal loci and the per-locus values
are much smaller.

Analysis of Variance Instead of regressing trait values on marker scores, the trait
means could be compared among marker classes. The expected trait means follow as

E.Y jMuMv/ D
X
r;s

Grs Pr.TrTsjMuMv/

D
X
r;s

Grs Pr.TrMu; TsMv/= Pr.MuMv/

in general. For a trait locus with only two alleles, T; t , for marker homozygote MM

and still assuming Hardy–Weinberg equilibrium

E.Y jMM / D .GT T P 2
MT C 2GT t PMT PMt C Gtt P

2
Mt /=p2

M

The trait means among the three marker genotype classes are

E.Y jMM / D �G C 2�MT A=pM C �2
MT D=p2

M

E.Y jM m/ D �G C �MT A.1=pM � 1=pm/ � �2
MT D=.pM pm/

E.Y jmm/ D �G � 2�MT A=pm C �2
MT D=p2

m

where A D �AT

p
.pM pm/; D D �DT .pM pm/, so that an analysis of variance will

also test that �MT D 0 and the test will be affected by both additive and dominance
effects at the trait locus.

4.2 Dichotomous Traits

Case Only The case–control approach starts with independent samples of indi-
viduals who are either affected or not affected with a disease and compares marker
frequencies between the two groups. The following development also applies to two
arms of a clinical trial. The MM marker frequency among cases is

Pr.MM jCase/ D p2
M C 1

�G

�
pM �MT A C �2

MT �DT D
�

Pr.M mjCase/ D 2pM pm C 1

�G

�
.pm � pM /�MT A � 2�2

MT D
�

Pr.mmjCase/ D p2
m C 1

�G

��pm�MT A C �2
MT D

�
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Combining the genotypic frequencies to give allele frequencies:

Pr.M jCase/ D pM C �MT �AT

2�G

p
2pM pm

Pr.mjCase/ D pm � �MT �AT

2�G

p
2pM pm

Case-only HWE Testing The inbreeding coefficient at the marker locus in the case
population, from the earlier definition of f , now written as f D ŒPr.MM jCase/ �
Pr.M jCase/2�=fPr.M jCase/Œ1 � Pr.M jCase/�g, is

f D �2
MT .2�G�DT � �2

AT
/

.�G

p
2pM =pm C �MT �AT /.�G

p
2pm=pM � �MT �AT /

so that a test for Hardy–Weinberg equilibrium (f D 0) at the marker among cases is
actually a test for linkage disequilibrium between marker and trait loci in the whole
population. The power of this test depends on nf 2 which is proportional to �4

MT so
the power will decrease quickly as �MT decreases.

It is common for investigators to assume a multiplicative trait model (i.e., additive
on a log scale), but that leads to Hardy–Weinberg equilibrium at marker loci among
cases since then 2�G�DT D �2

AT
.

Case–Control An argument similar to that above provides the marker genotype
frequencies among controls:

Pr.MM jControl/ D p2
M � 1

1 � �G

�
pM �MT A C �2

MT D
�

Pr.M mjControl/ D 2pM pm � 1

1 � �G

�
.pm � pM /�MT A � 2�2

MT D
�

Pr.mmjControl/ D p2
m � 1

1 � �G

��pm�MT A C �2
MT D

�

Adding these to give allele frequencies:

Pr.M jControl/ D pM � �MT A

2.1 � �G/

Pr.mjControl/ D pm C �MT A

2.1 � �G/

The simplest case–control test compares marker allele frequencies between the
two samples and it is clearly equivalent to testing that �MT D 0 since

Pr.M jCase/ � Pr.M jControl/ / �MT �AT

p
2pM pm

The test is not affected by nonadditivity at the trait locus.
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Table 3 Notation for trend
test

i D 0 i D 1 i D 2

Marker genotype MM M m mm Total
Marker variable Z0 Z1 Z2

Case counts r0 r1 r2 R

Control counts s0 s1 s2 S

Total counts n0 n1 n2 N

If the allelic counts for M; m in cases and controls are laid out in a 2 � 2 table,
the contingency-table chi-square test statistic has 1 df. An alternative is to work with
the 3 � 2 table of marker genotype counts in cases and controls and calculate a 2 df
chi-square test statistic. This test is affected by both additivity and nonadditivity
at the trait locus but it is sensitive to errors in genotype calls for rare alleles. The
main problem with the allelic case–control test is its sensitivity to departures from
Hardy–Weinberg equilibrium, and for this reason there is preference for trend tests.

Trend Test The Armitage trend test is based on a score statistic U . Using the
notation in Table 3:

U D
2X

iD0

Zi

�
S

N
ri � R

N
si

�

This is also the sample covariance between marker variable Z and disease status
scored as 0 or 1 for case or control.

With random sampling, the case and control counts are multinomially distributed
and the expected value of U is

E.U / D SR

N

X
i

Zi .Ri � Si /

where Ri ; Si are the expected values of ri ; si . This expected value can be written as

E.U / D 1

�G.1 � �G/

�
�MT �AT �AM C �2

MT �DT �DM

�

showing that it is zero when there is linkage equilibrium �MT D 0.
The variance of U is

Var.U / D S2R

N 2

0
@X

i

Z2
i Ri �

 X
i

Zi Ri

!2
1
ACSR2

N 2

0
@X

i

Z2
i Si �

 X
i

Zi Si

!2
1
A

Under the hypothesis of no association, Ri D Si , E.U / D 0 and

Var.U / D SR

N

0
@X

i

Z2
i Ri �

 X
i

Zi Ri

!2
1
A D SR

N

	
�2

AM
C �2

DM
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Assuming normality for U , the score test statistic is

X2 D U 2

cVar.U /
D N.N

P
i riZi � R

P
i ni Zi /

2

SRŒN
P

i ni Z
2
i � .

P
i ni Zi /2�

and this is distributed as �2
.1/ under the hypothesis H0 W �MT D 0.

It is usual to consider a linear trend test, say Z0 D 0; Z1 D 1; Z2 D 2, so that
�2

DM
D 0 and

X2 D N ŒN.r1 C 2r2/ � R.n1 C 2n2/�2

SRŒN.n1 C 4n2/ � .n1 C 2n2/2�

This will provide a test for additive effects at the disease locus. Setting X0 D
pm; X1 D 0; X2 D pM gives �2

AM
D 0 and a test for nonadditive effects.

Effects of Inbreeding From the form of the allelic case–control test statistic

X2
A D 2N ŒN.r1 C 2r2/ � R.n1 C 2n2/�2

SRŒ2N.n1 C 2n2/ � .n1 C 2n2/2�

and the previous form of the genotypic linear trend test statistic it can be shown that

E.X2
A/ � .1 C f /

E.X2
T / � 1

when there is inbreeding to extent f in the population. The trend test is therefore
robust to departures from Hardy–Weinberg equilibrium. The other general concern
about association tests are that they are sensitive to population structure.

Effect of Population Structure The effect of population structure on association
tests can be phrased in terms of the variation in allele frequencies over subpopula-
tions (Fig. 1). This variation reflects the dependence among individuals imposed by
the history of the population. If xjk indicates the allelic state of allele k in individual
j , it is now necessary to consider that these states are dependent among individuals,
as indicated by joint probability PA;A for two individuals each carrying A:

E.xjkxj 0k0/ D PA;A; j ¤ j 0; k ¤ k0

This is no longer p2
A as it was for the analyses within populations.

The expected value of squared sample allele frequency for a single subpopulation
is changed to:

E. Qp2
A/ D PA;A C 1

2n
.pA C PAA � 2PA;A/
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Population

Subpopulation 1

f1 : : :

F

Subpopulation r

fr

Fig. 2 Inbreeding coefficients in a structured population. Within a subpopulation: P �

AA D .p�

A/2C
fp�

A.1 � p�

A/. Over all subpopulations: PAA D p2
A C FpA.1 � pA/

so that the (total) variance is

Var. QpA/ D .PA;A � p2
A/ C 1

n
.PAA � PA;A/ C 1

2n
.pA � PAA/

With this evolutionary perspective there is need for a new parameterization for
joint allele frequencies to reflect the variation over subpopulations as well as over
samples from one subpopulation:

PAA D p2
A C pA.1 � pA/F

PA;A D p2
A C pA.1 � pA/�

The total inbreeding coefficient F still refers to alleles within individuals but is
for all individuals in the collection of subpopulations (see Fig. 2). The coancestry
coefficient �i is for alleles in two individuals in the i th subpopulation. A common
value � is assumed here for all subpopulations and the subpopulations are assumed
to be independent (�i D �; �i i 0 D 0 in Fig. 3). The frequency pA is now the average
over all subpopulations, and the total variance is

Var. QpA/ D pA.1 � pA/

�
� C 1

n
.F � �/ C 1

2n
.1 � F /

�

There are three components of variance: among populations pA.1 � pA/� , among
individuals within populations pA.1 � pA/.F � �/, and among alleles within
individuals pA.1 � pA/.1 � F /, with a total variance of pA.1 � pA/.
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Fig. 3 Coancestry coefficients in a structured population. Within the i th subpopulation: PA;A D
p2

A C �i pA.1 � pA/. Between the i; i 0th subpopulations: PA;A D p2
A C �ii 0 pA.1 � pA/

Within a subpopulation it is still the case that

P �
AA D .p�

A/2 C fp�
A.1 � p�

A/

Taking expectation values over populations, and using f D .F � �/.1 � �/:

E.p�
A/ D pA

E Œ.p�
A/2� D p2

A C �pA.1 � pA/

E.P �
AA/ D Œp2

A C �pA.1 � pA/� C f ŒpA � p2
A � �pA.1 � pA/�

D p2
A C FpA.1 � pA/

If xi ; yi ; zi are the proportions of cases, controls and all samples from the i th
subpopulation, the case–control and trend test statistics have expectations

E.X2
A/ � 2RS�

P
i .xi � yi /

2 C N.F � �/ C N.1 � �/

N.1 � �
P

i z2
i / � .F � �/=2 � .1 � �/=2

E.X2
T / � 2RS�

P
i .xi � yi /

2 C N.F � �/ C N.1 � �/

N Œ.1 C F / � 2�
P

i z2
i �

The behavior of these test statistics is therefore affected by both inbreeding (within
subpopulations) and population structure (the existence of subpopulations).
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If there is random mating within each subpopulation, F D � , and if there
are equal numbers of cases and controls R D S D N=2. If there are many
subpopulations, it is possible to ignore the term F

P
i z2

i in the denominator and
then

E.X2
A/ D E.X2

T / � 1 C RF
P

i .xi � yi /
2 � 2F

1 C F

as was given by Pritchard and Donnelly [14].
If there is only one subpopulation (x1 D y1 D z1 D 1/:

E.X2
A/ � 1 C f

E.X2
T / � 1

as before.

5 Treatment Effects

In the previous section we considered individuals categorized by case/control status
or by either of two treatment arms in a clinical trial. We now generalize this to
allow for continuous treatments and we consider the joint effects of treatment
and genotype on response. We preserve the notation of Y for response and X for
genotype, and introduce S for treatment. For the j th subject and l th SNP we let �lj

be the conditional mean response, recognizing that this depends on both genotype
and treatment:

�lj D E.Yj jXlj ; Sj /

with link function

g.�lj / D ˇ0 C ˇ1Xlj C 	0Sj C 	1Xlj Sj

For linear regression, g.�/ D � and for logistic regression g.�/ D lnŒ�=.1 � �/�.
In the previous section we accommodated a range of genetic models with the

marker variable Z. We now express these models in terms of subgroup treatment
effects as in Eq. (1). For an additive model, such as the genotype variable being the
number of minor alleles, and for linear regression

�l0 D 	0

�l1 D 	0 C 	1

�l2 D 	0 C 2	1
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whereas for logistic regression the �’s are treatment log-odds ratios specific for
each genotype subgroup.

A dominant model regards the effects of one or two major alleles being the same
and Xlj is replaced by 1 if there are one or no minor alleles and 0 if there are two
minor alleles:

g.�lj / D ˇ0 C ˇ11.Xlj � 1/ C 	0Sj C 	11.Xlj � 1/Sj

where the variable 1.a/ is 1 if a is true. This implies

�l0 D 	0

�l1 D 	0 C 	1

�l2 D 	0 C 	1

Conversely, a recessive model regards the effects of one or two minor alleles
being the same and Xlj is replaced by 1 if there are no minor alleles and 0 if there
are one or two minor alleles:

g.�lj / D ˇ0 C ˇ11.Xlj D 2/ C 	0Sj C 	11.Xlj D 2/Sj

This implies

�l0 D 	0

�l1 D 	0

�l2 D 	0 C 	1

A general, or nominal, model assigns different effect levels to each marker
genotype:

g.�lj / D ˇ0 C ˇ11.Xlj D 1/ C ˇ21.Xlj D 2/

C 	0Si C 	11.Xlj D 1/Sj C 	21.Xlj D 2/Sj

This implies

�l0 D 	0

�l1 D 	0 C 	1

�l2 D 	0 C 	2
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Table 4 Likelihoods for
testing gene by treatment
interaction

Number of Maximum
Model Likelihood parameters ln.L/

Full X C S C X � S p C q ln.L1/

Null X C S p ln.L0/

Table 5 Likelihood ratio
tests for specific models

Null
Model parameters LR test

Additive 	1 �2
.1/

Dominant 	1 �2
.1/

Recessive 	1 �2
.1/

Nominal 	1, 	2 �2
.2/

Table 6 Power for gene by
treatment interaction

Test assumes
Truth Additive Nominal Dominant

Additive 0.882 0.800 0.746
Dominant 0.607 0.611 0.746

5.1 Testing for Gene by Treatment Interaction

A general testing procedure uses the likelihood ratio test based on alternative pairs
of models for treatment and genetic effects. To test for no gene by treatment
interaction, the likelihoods are displayed in Table 4. Under the null hypothesis of
no interaction

2Œln.L1/ � ln.L0/� � �2
.q/

In Table 5 we display the interaction test parameters and distributions for each of
the genetic models.

Designing a study to test for gene by treatment interaction is made complicated
by the true genetic model being unknown. There is a body of literature to suggest
that complex traits are additive, reflecting the independent and additive effects of
alleles at the trait loci [8] but also a suggestion that at least some genes act in a
nonadditive fashion [1,20]. In Table 6 we show powers of likelihood ratio tests under
different model assumptions when the true model is either additive or dominant.
For simulations we used data sets consisting of 780 cases and 780 controls. For an
additive structure we assumed additivity on the probability scale with a prevalence
of 0.4 when Xl D 0 and 0.3, 0.2 for Xl D 1; 2, respectively. For a dominant model
we used a prevalence of 0.4 when Xl D 0 and 0.28 when Xl is either 1 or 2. Use
of logistic regression with an additive genetic effect on the log odds scale is only
an approximation to the true data-generating model (e.g., additive on probability
scale).
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5.2 Multiple Comparisons

With millions of SNPs being scored or imputed for each study participant, the issue
of multiple testing needs to be considered. If ˛� is the per-test (per-SNP) false-
positive error rate, then a set of L tests under the null is expected to produce ˛�L

false positives. For L � 106 this number can be large. The family-wise error rate
(FWER) ˛ is the probability of at least one false positive in a set of tests where all
the null hypotheses are true. The Bonferroni approach sets the per-test error to ˛� D
˛=L, or 5 � 10�8 for an FWER of 0.05 and one million tests. The Sidak approach
uses ˛� D 1 � .1 � ˛/1=L, with the very similar value of 5:13 � 10�8 in this case.

These simple multiple comparison corrections are conservative and they may
assume independent tests even though linkage disequilibrium prevents whole-
genome sets of SNPs being independent. Permutation procedures can yield correct
FWER values for dependent tests, at the expense of being computationally intensive
and dataset dependent. These procedures keep the genetic profiles intact and
permute the outcomes Y among individuals: in essence destroying any genotype-
trait association and producing data for which the null hypotheses at each SNP are
true. Repeated permutations lead to reference distributions for the single-SNP test
statistics. Approximations were proposed by Nyholt [13].

5.3 Bayes’ Factors

Genetics research is embracing “evidence” criteria such as likelihood ratios. In
linkage studies, where the transmission of trait values and genotypes are traced
down pedigrees, LOD scores based on likelihood ratios have long been used. The
appeal of an alternative that does not rely on p-values, the probabilities of data
assuming the null hypothesis to be true, is that power (probabilities when the null
is not true) and sample size can be considered when choosing criteria for evaluating
tests.

The Bayes Factor is the ratio of the probability of the data under the null to
the probability under the alternative hypothesis. Wakefield [17] showed that an
Approximate Bayes Factor (ABF) is given by

ABF D
r

V C W

V
exp

�
�Z2

2

W

V C W

�

where the maximum likelihood estimate O� of a parameter of interest is normally
distributed with mean � and variance V . The test statistic Z for the hypothesis
H0 W � D 0 is Z D O�=

p
V . The Bayesian aspect of the analysis is to assign a prior

distribution for parameter � , such as normal with mean 0 and variance W , and to
decide in favor of the alternative hypothesis if

ABF � PO < R (2)
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The prior odds PO is the ratio of the probabilities of the hypotheses before the data
are collected, PO D Pr.H0/= Pr.H1/ and R is the ratio of costs: the cost of a false
non-discovery divided by the cost of a false discovery. For example, R is the cost of
a Type II error divided by that of a Type I error.

In practice, values are assigned to (PO/R) and then the ABF threshold is
determined. It may be that PO is 10,000 and R D 1, so that the threshold is 10�4.
The ABF threshold is translated into a threshold for the test statistic from Eq. (2).

5.4 Bioinformatics Tools

The biological significance of an association found between an SNP and an outcome
can be phrased in terms of the biological function of an SNP or the biological
pathway to which it belongs. There are a variety of tools available to help this
activity:

• UCSC Genome Bioinformatics (http://ucsc.genome.edu).
• Fast SNP (http://fastsnp.ibm.sinica.edu.tw).
• Gene Ontology (GO) (http://www.geneontology.org).

These and other tools were reviewed by Bansal et al. [1].

6 Analyses with Multiple Markers

For a set of individuals j there is information Yj on the outcome of interest, on the
treatment or dose Sj , and on the genetic profile Xj D fXlj ; l D 1; 2; : : : Lg. A
series of questions can be posed:

• How can the genetic markers be used to predict outcome?
• How can the genetic markers be used to score the individuals with respect to

treatment benefit?
• How can the genetic markers be used to create a treatment decision function?

We address these questions in a generalized linear model framework:

E.Yj jXj ; Sj / D �j

g.�j / D ˇ.Xj / C 	.Xj / � Sj

Hastie and Tibshirani [7] introduced a “varying coefficient model.” As a simple
example

g.�j / D .ˇ0 C ˇ1X1j C : : : C ˇLXLj / C .	0 C 	1X1j C : : : C 	LXLj / � Sj

http://ucsc.genome.edu
http://fastsnp.ibm.sinica.edu.tw
http://www.geneontology.org
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Major challenges to this work include

• How do we select SNPs to include in ˇ.Xj / and 	.Xj /?
• Should we also consider epistasis: gene by gene interactions, Xlj � Xl 0j ; l ¤ l 0

or higher-order interaction?
• How can we fit a model when L, the number of SNPs, is much greater than n,

the number of individuals?
• How do the model choice criteria reflect the ultimate clinical goal of the model

(for example, prediction versus treatment selection)?

6.1 Regularization Methods

Tibshirani [16] introduced “lasso” for regression shrinkage and selection. He
discussed maximizing an objective function, such as a likelihood, subject to
constraints or a penalty. More generally, a set of parameters ` is estimated as

O� D argmax

�

0
@X

j

ln Pr.Yj jXj ; Sj ; `/ � 

X

j

j�j jp
1
A

There are three special cases:

• p D 1: Lasso [16] with penalty 

P

j j�j j.
• p D 2: Ridge Regression [9] with penalty 


P
j j�j j2.

• p D 1; 2: Elastic Net [19] with penalty 
1

P
j j�j j C 
2

P
j j�j j2.

Some comments about regularization methods are:

• Lasso tends to “select” variables by keeping Ǒ
l D 0.

• Ridge regression tends to include all variables, but with small coefficients. This
is essentially no selection.

• Lasso will not estimate a model with more nonzero coefficients than there are
individuals.

• Fast algorithms exist for calculating regularization paths.
• Lasso tends to select only one variable from a set of highly correlated predictors.

6.2 Example

Wu et al. [18] presented an analysis of SNP data in a case–control setting, and
conducted simulations to demonstrate the feasibility of allowing for interactions
among SNPs. In their example they analyzed n D 2;200 subjects with 778 having
Coeliac Disease and 1,422 as controls. Using LASSO Wu et al. [18] constructed
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Table 7 Treatment selection
example

Genotype NYj .0/ NYj .1/ A0 A1 A�

0 (30 %) 10 20 0 1 1
1 (50 %) 10 10 0 1 0
2 (20 %) 15 5 0 1 0

Population mean 11 12 14

a multi-marker predictive model using L D 310; 637 SNPs. In order to explore
models of increasing dimension the authors chose the L1 penalty parameter 
 to
obtain a fixed number (e.g., 5, 10, 20, 50) of predictors with nonzero coefficients,
and used cross-validation to evaluate the accuracy of models with increasing
dimension. Using a sequence of models has the attractive property that subsets
of markers can be ordered in terms of their inclusion in the regression models.
Rather than focusing on a specific model selection criterion such as the area under
the ROC curve, or a statistical loss function, Wu et al. [18] evaluate a sequence
of models of a specified dimensionality (such as using 50 SNPs). These authors
clearly demonstrate the ability of modern penalized regression methods to consider
development and evaluation of multi-marker models, and provide guidance for
model development and the potential evaluation of interactions.

6.3 Treatment Selection

How can genetic marker analysis provide a scoring for treatment selection? To
answer this question it is necessary to state the goals in statistical terms. Gunter
et al. [6] formulated an action function and then defined the resulting population
mean outcome that would result when using the specified action function:

Action function: A.Xj / D a

Population result: EaEY ŒYj .a/jA.Xj / D a� D �A

Here Yj .a/ is the potential outcome for subject j if treated with choice a. For
example, a D 1 may be “treat” and a D 0 may be “do not treat.” Alternatively,
a may be a dose level.

As a small example, consider the values shown in Table 7 for a single marker.
There are three genetic marker values (0,1,2) and two treatment values (0,1). The
function A0 always assigns A D 0, while A1 always assigns A D 1. However,
the action function A� is optimal in the sense it maximizes �A over all possible
functions A.

With a vector Xj of genetic values the optimal action rule is

A�.Xj / W argmaxA�A D argmaxAEaEY ŒYj .a/jA.Xj / D a�
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The goal is to determine which components of Xj are prescriptive markers, i.e. those
with qualitative interactions rather than simply having quantitative interactions with
treatment.

The space of functions fA.x/g has high dimension: with each genotype taking
three values, and with L total genotypes there are 3L possible genotypes that the
function A.x/ can evaluate. In addition, there are two possible outcomes for each
genotype evaluated (e.g., treat, or not treat) leading to .3L/2 binary actions a.
Therefore, computation methods are needed to define model search strategies that
can maximize the intended performance metric such as �A in order to identify an
optimal allocation rule, A�.

Gunter et al. [6] suggested that the following marginal characteristics of a marker
are important for that marker to have prescriptive potential:

• Fraction with benefit:

pl1 D E ˚1 	argmaxaE ŒYj .a/jXlj ; A.Xlj / D a� D 1



• Interaction magnitude:

Dl D maxj

˚E ŒYj .a/jXlj ; a D 1� � E ŒYj .a/jXlj ; a D 0�


� minj

˚E ŒYj .a/jXlj ; a D 1� � E ŒYj .a/jXlj ; a D 0�


Since pl1 doesn’t capture the number of subjects who have their treatment
changed because of their genetic profile, Gunter et al. [6] suggest using Pl D
pl1.1�pl1/. The motivation for considering marginal measures for Xlj is to provide
an algorithm that can search among candidate functions A.Xj / using an attractive
subset of Xj .

Gunter et al. [6] then suggest two criteria for ranking markers:

Ul D Scale.Pl / � Scale.Dl/

Scale.xl / D .xl / � minkxk/=.maxkxk � minkxk/

The second criterion measures the impact on the mean outcome using Xlj optimally
to direct treatment:

Tl D EX

˚
maxaE ŒYj .a/jXlj ; A D a�

 � max.�A0 ; �A1/

D �A� � max.�A0; �A1 /
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With all these quantities defined, we can state the selection algorithm of Gunter
et al. [6]:

1. Use lasso with K-fold cross-validation to obtain an additive model estimate of
E ŒYj jXj ; Sl �.

2. Estimate Ul and/or Tl , then rank Xl .
3. For h D 1; 2; : : : ; H :

• Use lasso with top h markers, main effects from step 1, and interactions
between top h markers and treatment.

• Estimate 
1 based on CV with a focus on �h
A� obtained from h markers:

A�.Xh
l /.

4. Choose h that maximizes �h
A� . Done.

Step 1 of this algorithm is suggested in order to stabilize estimates of the mean
function E ŒYj jXj ; Sj � used to estimate Ul and Tl . It may not be needed for genotype
markers. This model selection targets out-of-sample estimation of the optimal
population outcome. The algorithm is limited to a small number of candidate
models. There may be other search procedures but Gunter et al. [6] used simulations
to compare their algorithm to standard lasso and found it performs slightly better.

The work of Gunter et al. [6] offers a focus on model development with the goal
of defining a treatment selection function. These authors target an optimal result at
the population level.

7 Resemblance Between Relatives

Some individuals in a clinical trial may be related to each other, whether or not this
is by design. Here “related” means members of the same family. There is also a low-
level evolutionary relatedness that results in a low level of inbreeding within a study
population. Because relatedness depends on previous generations it is necessary to
work with the coefficients F and � , and extensions of these, rather than the within-
population coefficient f .

To extend the earlier treatment, it may now be supposed there is an arbitrary
number of alleles at a trait/response locus, and the genetic value for genotype TrTs

is written as
Grs D �0 C ˛r C ˛s C ırs

where

�0 D
X

r

X
s

prpsGrs D G��

˛r D
X

s

psGrs � � D Gr � � G��

ırs D Grs � � � ˛r � ˛s D Grs � Gr � � Gs� C G��
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These imply that
P

r pr˛r D 0;
P

r ırs D 0. The variance components are

�2
A D 2

X
r

pr˛
2
r

�2
D D

X
r

X
s

prpsı
2
rs

If several loci contribute to a trait, the effects of all alleles can be summed,
and interactions (epistasis) introduced between loci. For an individual with alleles
Tlr ; r D 1; 2, at locus l :

Y D � C
X

l

"X
r

˛lr C
X

r

X
r 0

ılrr 0

#

C
X
l¤l 0

"X
r

X
r 0

.˛˛/lr;l 0r 0 C
X

r

X
s

X
s0

.˛ı/lr;l 0ss0 C
X

r

X
r 0

X
s

X
s0

.ıı/lrr 0;l 0ss0

#
C : : :

The total genetic variance becomes

Var.G/ D �2
A C �2

D C �2
AA C �2

AD C �2
DD C : : :

where the variance components are

�2
A D 2

X
l

X
r

plr˛
2
lr

�2
D D

X
l

X
r

X
r 0

plrplr 0ı2
lrr 0

�2
AA D 2

X
l¤l 0

X
r

X
r 0

plrpl 0r 0.˛˛/2
lr;l 0r 0

: : :

7.1 Trait Mean in Inbred Populations

Inbreeding, whether due to individuals having related parents or simply a conse-
quence of populations being finite, affects the trait or response mean in a population.
If random members of a population are inbred to an extent F relative to a reference
or founder population, the genotype frequencies are

Prr D p2
r C Fpr .1 � pr/
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Prs D 2prps.1 � F /; r ¤ s

The expected trait value is, therefore,

�F D
X

r

X
s

Prs.�0 C ˛r C ˛s C ırs/

D
X

r

�
Fpr C .1 � F /p2

r

�
.�0 C 2˛r C ırr/

C
X
r¤s

Œprps.1 � F /� .�0 C ˛r C ˛s C ırs/

D F
X

r

pr .�0 C 2˛r C ırr/ C .1 � F /
X

r

X
s

prps.�0 C ˛r C ˛s C ırs/

D F.�0 C
X

r

prırr / C .1 � F /.�0/

D �0 C FH

This result uses the notation H D P
r prırr where the ı’s terms are as defined in

the non-inbreeding case. The mean in an inbred population changes with the degree
of inbreeding and the degree of dominance.

For a trait affected by multiple loci, the mean is also affected by the two-locus
inbreeding coefficient and the degree of dominance by dominance epistasis.

7.2 Genetic Variance in Inbred Populations

For the trait variance, it is necessary to find the expected value of the square of the
linear model for trait values. Using a similar approach as that for the mean:

E.G2
rs/ D F

X
r

pr .�
2
0 C 4˛2

r C ı2
rr C 4�0˛i C 2�0ırr C 4˛rırr /

C .1 � F /
X
r;s

prps.�
2
0 C ˛2

r C ˛2
s C 2˛r˛s C 2�0˛r C 2�0˛s

C 2�0ırs C 2˛rırs C 2˛rırs C ı2
rs/

D F

"
�2

0 C 4
X

r

pr˛
2
r C

X
r

prı
2
rr C 2�0

X
r

prırr C 4
X

r

pr˛rırr

#

C .1 � F /

 
�2

0 C 2
X

r
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2
r C

X
r;s

prpsı
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!
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The genetic variance becomes

�2
G D 2.1 C F /

X
r

pr˛
2
r C .1 � F /

X
r;s

prpsı
2
rs C F

X
r

prı
2
rr

C 4F
X

r

pr˛r ırr � F 2

 X
r

prırr

!2

D .1 C F /�2
A C .1 � F /�2

D C 4FD1 C FD2 C F.1 � F /H 2

to introduce D1 D P
r pr˛rırr and D2 D P

r prı
2
rr . This expression for variance

allows for inbreeding but not for linkage disequilibrium among the trait loci. For two
equally frequent alleles, D1 D 0; D2 D 0. For additive traits, H D D1 D D2 D 0.

For a trait affected by multiple loci, the variance in an inbred population involves
the two-locus inbreeding coefficient F11 as well as the usual one locus coefficient:

�2
G D .1 C F /�2

A C .1 � F /�2
D C .1 C 2F C F11/�2

AA

C .1 � F11/�
2
AD C .1 � 2F C F11/�2

DD C : : :

It is not always the case that F11 D F 2. This expression for variance allows for
inbreeding but not for linkage disequilibrium among the trait loci.

7.3 Genetic Covariance for Two Individuals

If J; J 0, with genotypes TrTs and Tr 0Ts0 , are two members of a population, the
covariance of trait values for the two individuals rests on the covariance of their
genetic values which, in turn, rests on their joint genotypic frequencies:

Cov.GJ ; GJ 0/ D E.GJ GJ 0/ � E.GJ /E.GJ 0/

E.GJ GJ 0/ D
X

r;s;r 0;s0

Prs;r 0s0GrsGr 0s0

For one individual Prs can be written in terms of allele frequencies and the
inbreeding coefficient F . For two individuals Prs;r 0s0 needs an expanded set of
probabilities that alleles are identical by descent (ibd).

A complete description of the ibd status among four alleles a; b; c; d carried
by two individuals J; J 0 with alleles ab and cd requires 15 measures, as opposed
to the two, F and 1 � F , for one individual. If there is no need to distinguish
between the identity status for maternal and paternal alleles, the 15 ibd states can
be collapsed into the nine states shown in Fig. 4. Solid lines in that figure join
alleles that are identical by descent. State S3, shown as identity among alleles a; b; c

also represents identity among alleles a; b; d . Note here that a; b; c; d are labels to
distinguish one allele from another: they do not indicate allelic type.
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Fig. 4 Reduced identity states S for two individuals J.a; b/ and J 0.c; d/
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��

�������������������������

�������������������������

a d

b c
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Fig. 5 IBD coefficients for Sibs J; J 0 from unrelated parents I; I 0

The coancestry coefficient �JJ 0 referred to earlier is the probability that a random
allele from J.ab/ is ibd (�) to a random allele from J 0.cd/:

�JJ 0 D 1

4
ŒPr.a � c/ C Pr.a � d/ C Pr.b � c/ C Pr.b � d/�

D �1 C 1

2
.�3 C �5 C �7/ C 1

4
�8

For non-inbred relatives

� D 1

2
�7 C 1

4
�8

As an example, the pedigree for two non-inbred sibs J; J 0 with parents I; I 0 is
shown in Fig. 5.

Non-inbred Relatives When neither individual is inbred, neither a; b nor c; d are
ibd. There are only three states and the three probabilities are often written as k2 D
�7; k1 D �8 or k0 D �9 to indicate the number of pairs of ibs alleles carried by the
two individuals. Values of these three probabilities for some common relationships
are shown in Table 8.
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Table 8 Identity coefficients
for common non-inbred
relatives

Relationship k2 k1 k0 � D 1
2
k2 C 1

4
k1

Identical twins 1 0 0 1
2

Full sibs 1
4

1
2

1
4

1
4

Parent child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibsa 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
aAlso grandparent grandchild and avuncular (e.g., uncle
niece)

Table 9 SNP genotype probabilities for pairs of relatives

Genotypes General Non-inbred

AA; AA �1pA C .�2 C �3 C �5 C �7/p2
A k0p

4
A C k1p

3
A C k2p2

A

C.�4 C �6 C �8/p
3
A C �9p

4
A

aa; aa �1pa C .�2 C �3 C �5 C �7/p
2
a k0p

4
a C k1p3

a C k2p
2
a

C.�4 C �6 C �8/p
3
a C �9p

4
a

Aa; Aa 2�7pApa C �8pApa C 4�9p2
Ap2

a 4k0p
2
Ap2

a C k1pApa C 2k2pApa

AA; Aa �3pApa C .2�4 C �8/p
2
Apa C 2�9p3

Apa 2k0p
3
Apa C k1p

2
Apa

Aa; AA �5pApa C .2�6 C �8/p
2
Apa C 2�9p3

Apa 2k0p
3
Apa C k1p

2
Apa

aa; Aa �3pApa C .2�4 C �8/pAp2
a C 2�9pAp3

a 2k0pAp3
a C k1pAp2

a

Aa; aa �5pApa C .2�6 C �8/pAp2
a C 2�9pAp3

a 2k0pAp3
a C k1pAp2

a

AA; aa �2pApa C �4pAp2
a C �6p2

Apa C �9p
2
Ap2

a k0p
2
Ap2

a

aa; AA �2pApa C �6pAp2
a C �4p2

Apa C �9p
2
Ap2

a k0p
2
Ap2

a

7.4 Joint Genotypic Probabilities for Relatives

The set of identity measures �i D Pr.Si / for identity states Si allow the joint
genotypic probabilities to be written as in Table 9 for SNPs. These in turn allow for
the covariance in trait values to be found for any pair of relatives.

7.5 Genetic Covariance for Non-inbred Relatives

The general expression for covariance can be shown to be

CJJ 0 D 2�JJ 0�2
A C �7�

2
D C .4�1 C �3 C �5/D1

C �1D2 C .�1 C �2 � FJ FJ 0/H 2
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Table 10 Genetic
covariances of common
non-inbred relatives

Relationship Genetic covariance

Identical twins �2
A C �2

D

Full sibs 1
2
�2

A C 1
4
�2

D

Parent-child 1
2
�2

A

Double first cousins 1
4
�2

A C 1
16

�2
D

Half sibsa 1
4
�2

A

First cousins 1
8
�2

A

Unrelated 0

aAlso grandparent–grandchild and avuncu-
lar (e.g., uncle–niece)

When J and J 0 are the same individual, �JJ 0 D .1 C F /=2, �1 D F and �7 D
.1 � F /. The other seven �’s are zero, so

CJJ D VI D .1 C F /�2
A C .1 � F /�2

D C 4FD1 C FD2 C F.1 � F /H 2

as expected.
For non-inbred relatives

CJJ 0 D
�

k2 C 1

2
k1

�
�2

A C k2�
2
D

and values for common relationships are shown in Table 10.

7.6 Heritability

Trait and response values have both genetic and environmental components. The
simplest model of Y D GCE leads to the variance of trait values among individuals
J in a non-inbred population of unrelated individuals:

VarJ D �2
A C �2

D C �2
E

This is also referred to as the phenotypic variance �2
P .

For an additive trait and for individuals that have no shared environment, the
variance–covariance matrix for a sample of related pairs I; I 0 and inbred individuals
I has elements

VarJ D .1 C FI /�2
A C �2

E

CovJJ 0 D 2�JJ 0�2
A

The narrow-sense heritability h2 is defined as h2 D �2
A=�2

P . The correlation of
additive trait values for pairs of non-inbred individuals related to an extent �JJ 0 is,
therefore,

�JJ 0 D 2�JJ 0h2
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Traditional methods for estimating heritability have used trait values measured
for sets of individuals whose relationship is known from their family membership. It
is common, for example, to take measurements on monozygotic (MZ) and dizygotic
(DZ) twins and make use of the relationships

VarJ D �2
A C �2

D C �2
E

CovMZ D �2
A C �2

D

CovDZ D 1

2
�2

A C 1

4
�2

D

where any environmental correlations have been ignored. It is a simple matter to
estimate the three variance components, and hence heritability, by the method of
moments from these three equations although maximum likelihood methods are
used in practice.

The SNP profiles of individuals in a study can be used to estimate the actual
inbreeding and coancestry coefficients. These, in turn, lead to estimates of the
additive genetic variance and hence the heritability of a complex trait. Although
heritability is a statistical construct, depending on allele frequencies in the study
population, rather than a biological quantity, it is of interest. The heritability
explained by markers found to be associated with a trait or response variable
can be compared to prior values based on family pedigrees in order to check
on the completeness of the genetic study. There has been discussion of “missing
heritability” when the genetic estimates are less than prior values ( [20] and
references therein). This chapter will conclude with a discussion of estimating
inbreeding and relatedness.

7.7 Estimation of Actual Inbreeding

Individual-specific inbreeding coefficients F can be estimated under the assumption
that all loci have the same coefficient, interpreted as the probability of identity by
descent (ibd). Many loci are needed. At locus l , write pl for the frequency of Al and
code the genotypes Al Al ; Al al ; al al as Xl D 2; 1; 0. These coding variables have
the properties E.Xl/ D 2pl ; Var.Xl/ D 2pl.1 � pl/.1 C F /.

Then one moment estimator is formed by summing over loci l; l D 1; 2; : : : L:

OF1 D 1

L

LX
lD1

.Xl � 2pl/
2

2pl.1 � pl/
� 1

Another one is

OF2 D 1

L

LX
lD1

X2
l � .1 C 2pl/Xl C 2p2

l

2pl.1 � pl/

If the pl are known, both these are unbiased. The second one has a smaller variance.
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The variances can be reduced by an alternative weighting over loci:

OF a
1 D

PL
lD1.Xl � 2pl/

2PL
lD1 2pl.1 � pl /

� 1

OF a
2 D

PL
lD1ŒX

2
l � .1 C 2pl/Xl C 2p2

l �PL
lD1 2pl.1 � pl/

To avoid having to choose among different moment estimates, and to reduce
variance, it may be preferable to use maximum likelihood estimation. An iterative
method makes use of Bayes’ theorem. If F represents the probability the individual
in question has two ibd alleles at a locus, i.e. is inbred at that locus,

Pr.AlAl jinbred/ D pl ; Pr.AlAl jNot inbred/ D p2
l

Pr.Al al jinbred/ D 0; Pr.Alal jNot inbred/ D 2pl.1 � pl/

Pr.al al jinbred/ D 1 � pl ; Pr.al al jNot inbred/ D .1 � pl/
2

From Bayes’ theorem then

Pr.inbredjAlAl/ D Pr.Al Al jinbred/ Pr.inbred/

Pr.AlAl /
D F

F C pl.1 � F /

Pr.inbredjAlal / D 0

Pr.inbredjalal / D F

F C .1 � pl/.1 � F /

This suggests an iterative scheme: assign an initial value to F , and then average
the updated values over loci. If Gl is the genotype at locus l , the updated value F 0 is

F 0 D 1

L

LX
lD1

Pr.inbredjGl/

This value is then substituted into the right-hand side and the process continues until
convergence.

7.8 Estimation of Actual Relatedness

A moment estimate makes use of observed identity in state (ibs), as shown in
Table 11. If N0; N1; N2 are the number of loci in ibs state i I i D 0; 1; 2 then

Pr.ibs D 0/ D Pr.ibs D 0jibd D 0/ Pr.ibd D 0/
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Table 11 Identity in state categories for two individuals

ibs state Genotypes Probabilitya

2 .AA; AA/, .aa; aa/, .Aa; Aa/ .p2 C q2/2k0 C k1.p3 C pq C q3/ C k2

1 .AA; Aa/, .Aa; AA/, .aa; Aa/, .Aa; aa/ 4pq.p2 C q2/k0 C 2pqk1

0 .AA; aa/, .aa; AA/ 2p2q2k0

a q D 1 � p

summed over loci to provide

N0 D Pr.ibd D 0/
X

l

2p2
l .1 � pl/

2

leads to a moment estimate

Pr.ibd D 0/ D N0P
l 2p2

l .1 � pl/2

From

Pr.ibd D 1/ D Pr.ibs=1jibd D 0/ Pr.ibd D 0/

C Pr.ibs=1jibd D 1/ Pr.ibd D 1/

summed over loci to provide

N1 D Pr.ibd D 0/
X

l

4pl.1 � pl /Œp
2
l C .1 � pl/

2� C Pr.ibd D 1/
X

l

2pl.1 � pl/

a moment estimate of k1 is obtained. Use is made of the previously estimated k0:

Pr.ibd D 1/ D N1 �P
l 4pl.1 � pl/Œp

2
l C .1 � pl/

2� Pr.ibd D 0/P
l 2pl.1 � pl/

The remaining coefficient k2 is found from the result k0 C k1 C k2 D 1. In
practice, this method is not robust to small allele frequencies and it can return invalid
estimates.

A moment estimator for the coancestry �jj 0 between individuals j and j 0, rather
than the three k’s is:

O�jj 0 D 1

L

LX
lD1

.Xlj � 2pl/.Xlk � 2pl/

2pl.1 � pl/

where Xlj ; Xlj 0 are 2; 1; 0 if j; j 0 are .AA; Aa; aa/, respectively, at locus l . An
alternative way of combining over loci is

O�jj 0a D
PL

lD1Œ.Xlj � 2pl/.Xlj 0 � 2pl/�PL
lD1Œ2pl.1 � pl/�

These are both unbiased but they have different variances.
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An iterative procedure for maximum likelihood estimation of relatedness is
analogous to that for the inbreeding coefficient, and it uses all six distinct pairs of
genotypes shown in Table 9 (combining pairs of rows with the same probabilities)
with probabilities depending on allele frequencies for that SNP and on a set of three
k parameters that are assumed to be the same for all SNPs.

If S is the observed pair of genotypes, Table 9 provides the conditional
probabilities Pr.S jDi / where the Di represent the identity states (the relationship).
The probability of ibd state Di is ki . An iterative algorithm for estimating the k’s
from observed genotypes Sl at SNP l is based on Bayes’ theorem for the probability
of descent state Di ; i D 0; 1; 2:

Pr.Di jSl/ D Pr.Sl jDi / Pr .Di /

Pr.Sl /

The procedure begins with initial estimates of the ki D Pr.Di /. The denominator is
calculated from the law of total probability by adding over the three descent states:

Pr.Sl / D
X

i

Pr.Sl jDi / Pr.Di / D
X

i

Pr.Sl jDi /ki

The updated estimates are obtained by averaging over L loci:

k0
i D 1

L

LX
lD1

 
Pr.Sl jDi /kiP
j Pr.Sl jDj /kj

!
; i D 0; 1; 2

These updated values are then substituted into the right-hand side and the process
continued until the likelihood no longer changes (or changes by less than some
specified small amount) where

Likelihood D
LY

lD1

"X
i

Pr.Sl jDi /ki

#

It will be better to monitor changes in the log-likelihood.

8 Discussion

The current availability of dense sets of marker SNPs for the human genome is
having a large impact on genetic studies and offers new possibilities for clinical
trials. This chapter offers a unified basis for the analysis of marker and response
data, emphasizing the central importance of linkage disequilibrium between marker
locus and the genes that affect response. It is convenient to phrase the development
of association mapping in the language of quantitative genetics, using additive and
nonadditive components of variance.
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A novel feature of dense SNP data is that good estimates can be made of actual
inbreeding and relatedness. These estimates are more relevant than values predicted
from family pedigree, and all that are available in the absence of family data.

In biomedical research genetic markers can be used both to infer causes of
disease and to identify treatments that are tailored to the individual. However, the
dimensionality of genomic markers has challenged us to develop new methods that
are appropriate for a large number of statistical comparisons and to develop com-
putational methods that allow high-dimensional regression. In the broader context,
the use of biological annotation is also essential for both viewing the relevance of
empirical associations and to structure analysis in order to focus on those markers
with the highest expectation for association with the outcomes under study.

The continued expansion of molecular technologies will challenge the biostatisti-
cal community to develop appropriate methodology so that reliable conclusions can
be obtained from new measurements. Ultimately, meaningful collaboration between
quantitative scientists and biomedical investigators will lead to the understanding of
the mechanisms leading to disease onset, progression, and response to treatment.
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