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Abstract The use of group sequential methodology has become widespread in the
conduct of clinic trials. As each clinical trial presents unique scientific, statistical,
and logistical constraints, it is important to carefully evaluate candidate group se-
quential designs to ensure desirable operating characteristics. At the implementation
stage of a clinical trial design it is also essential to account for deviations from
original design specifications in order to control operating characteristics such as
type I and II error rates. These changes might include the number and/or timing of
analyses as well as deviations from the originally assumed variability of outcome
measures. Due to the computational complexity involved in evaluating, monitoring,
and analyzing a group sequential procedure, specialized software is required. In
this manuscript we demonstrate how the RCTdesign package (www.rctdesign.
org) in R can be used to select, implement, and analyze a group sequential stopping
rule. Throughout, we illustrate trial design and monitoring in the context of a group
sequential survival trial of an experimental monoclonal antibody in patients with
relapsed chronic lymphocytic leukemia (CLL).

1 Introduction

The use of group sequential methodology has become widespread in the conduct
of clinic trials. Many authors have addressed the design [6, 22, 25, 32, 36],
implementation [3, 18], and analysis [7, 34] of group sequential trials.
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In the general case, a stopping rule is defined for a schedule of analysis occurring
at times t1, t2, . . . , tJ , which may be random. Often, the analysis times are in turn
defined according to the statistical information available at each analysis. In the case
of a statistical model that has statistical information proportional to the sample size
accrued to the study, such an approach is equivalent to defining the sample sizes
N1, N2, . . . , NJ at which the analysis will be performed. For j D 1; : : : ; J , we
calculate a specified test statistic Tj based on observations available at time tj . The
outcome space for Tj is then partitioned into stopping set Sj and continuation set
Cj . Starting with j D 1, the clinical trial proceeds by computing Tj , and if Tj 2 Sj ,
the trial is stopped. Otherwise, Tj is in the continuation set Cj , and the trial gathers
additional observations until time tj C1. By choosing CJ D ;, the empty set, the
trial must stop at or before the J -th analysis.

All of the most commonly used group sequential stopping rules are included
if we consider continuation sets of the form Cj D .aj ; bj � [ Œcj ; dj / such that
�1 � aj � bj � cj � dj � 1. Quite often, these boundaries are interpreted as
the critical values for a decision rule. For instance, in a clinical trial comparing two
active treatments A and B, test statistics less than aj might correspond to decisions
for the superiority of treatment A, test statistics exceeding dj might correspond
to decisions for the inferiority of treatment A, and test statistics between bj and
cj might correspond to decisions for approximate equivalence between the two
treatments.

As each clinical trial presents unique scientific, statistical, and logistical con-
straints, it is important to carefully evaluate candidate group sequential designs
to ensure desirable operating characteristics. [9] describe a variety of frequentist
design characteristics which might be examined in the most commonly encountered
statistical problems. Among them are

1. The scientific measures of treatment effect which will correspond to early
termination for futility and/or efficacy.

2. The sample size requirements as described by the maximal sample size and
summary measures of the sample size distribution (e.g., mean, 75th percentile)
as a function of the hypothesized treatment effect.

3. The probability that the trial would continue to each analysis as a function of the
hypothesized treatment effect.

4. The frequentist power to reject the null hypothesis as a function of the hypothe-
sized treatment effect, with the type I error corresponding to the power under the
null hypothesis.

5. The frequentist inference (adjusted point estimates, confidence intervals, and P

values), which would be reported were the trial to stop with results corresponding
exactly to a boundary.

At the implementation stage of a clinical trial design it is also essential to account
for deviations from original design specifications in order to control operating
characteristics such as type I and II error rates [3,18]. These changes might include
the number and/or timing of analysis as well as deviations from the originally
assumed variability of outcome measures. Finally, at the completion of a group
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sequential test it is important that point and interval estimates be adjusted to account
for bias that arises through repeated testing, particularly when the implemented
stopping boundaries allow for early stopping under more modest effect sizes [7,34].

Due to the computational complexity involved in evaluating, monitoring, and
analyzing a group sequential procedure, specialized software is required. Multiple
software packages can be used for the design and/or analysis of group sequential
trials [4, 24, 27]. The RCTdesign package (www.rctdesign.org) for R statistical
software is an extension of the SeqTrialmodule for SPlus [28]. RCTdesign is
a comprehensive package that allows users to choose from a full array of previously
proposed group sequential stopping rules, monitor an ongoing trial using standard
constrained boundaries techniques, and report bias-adjusted results at the conclusion
of a clinical trial.

In this manuscript we demonstrate how the RCTdesign package can be used
to select, implement, and analyze a group sequential stopping rule. Throughout,
we illustrate trial design and monitoring in the context of a clinical trial of an
experimental monoclonal antibody in patients with relapsed chronic lymphocytic
leukemia (CLL). Section 2 provides an evaluation of candidate clinical trial
designs based upon commonly considered frequentist operating characteristics.
Section 3 describes previously proposed methods for flexibly monitoring a group
sequential test. An example implementing the constrained boundaries algorithm [3]
is presented, and adjusted inference is discussed. In Sect. 4, we present additional
issues that should be considered when designing and monitoring a clinical trial to
investigate an intervention for which the effect may be hypothesized to vary with
the duration of time since initiation. Section 5 concludes with a discussion of the
importance of thorough evaluation in the selection of a group sequential stopping
rule along with areas of current and future research.

2 Evaluation of a Group Sequential Trial for a Censored
Time-to-Event Endpoint

In this section we illustrate the evaluation of statistical operating statistics in
the context of a randomized, double-blind, placebo-controlled clinical trial of an
experimental monoclonal antibody in patients with relapsed CLL. Treatment of CLL
tends to focus on controlling disease symptoms through the use of chemotherapy,
radiation therapy, biological therapy, or bone marrow transplantation. Recently there
have been multiple trials to assess the efficacy of treating CLL via monoclonal
antibodies that target markers which are heavily expressed by CLL cells. In one
of these trials, patients with relapsed CLL were randomly assigned to receive
an experimental antibody or placebo, in addition to a standard chemotherapeutic
regime. The intervention was administered intravenously once a week for four
weeks and patients were followed for the primary endpoint of overall survival. It was
anticipated that the median survival time among patients treated with placebo would
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be approximately 16 months and that the distribution of survival times among this
group would be approximately exponentially distributed. It was hoped that patients
receiving the antibody would experience a 33% reduction in the hazard for death and
that the effect of treatment on the hazard would remain roughly constant over time.

In the discussion of the operating characteristics which follows, we will use
comparisons similar to (but not exactly the same as) those explored by the
collaborators in the CLL study. In all cases, we consider level 0.025 one-sided
hypothesis tests appropriate for testing a null hypothesis H0 W � � 1 versus the
lesser alternative H1 W � � 0:67, where � represents the hazard ratio comparing
treatment to control. Throughout, a one-to-one randomization scheme is assumed.

To illustrate the evaluation process, we consider candidate designs as derived
from the unified family of group sequential stopping rules [17]. As noted in
Sect. 1, all of the most commonly used group sequential stopping rules are included
if we consider continuation sets of the form Cj D .aj ; bj � [ Œcj ; dj / such
that �1 � aj � bj � cj � dj � 1. Particular families of group
sequential designs correspond to parameterized boundary functions which relate the
stopping boundaries at successive analysis according to the proportion of statistical
information accrued and the hypothesis rejected by the boundary. For instance,
letting …j represent the proportion of the maximal statistical information available
at the j -th analysis (e.g., …j D Nj =NJ for the most commonly used analytic
models), then for some specified parametric function fd ./, the boundary function
for the upper boundary might be given by dj D fd .�d ; …j /, where �d is the
hypothesis rejected when Tj > dj . Furthermore, many of the group sequential
design families previously described can be expressed in a parameterization which
has dj D f .�d ; g.…j I Ad ; Pd ; Rd ; Gd // with boundary shape function

g.…I A; P; R; G/ D .A C …�P .1 � …/R/G

where parameters A, P , and R are typically specified by the user to attain
some desired level of conservative behavior at the earliest analyses, and critical
value G might be found in an iterative search to attain some specified operating
characteristics (e.g., frequentist type I error and power) when the stopping rule is to
be used as the basis of a decision rule. In this parameterization, taking A D R D 0

yields a one-parameter family of stopping boundaries where larger values of P

result in increased conservatism of the stopping rule meaning that it is more difficult
to stop at early analyses for a given treatment effect. In the unified family [17], the
boundaries are expressed on the treatment effect scale and the boundary hypothesis
is merely a shift of the boundary shape function so that

dj D �d C g.…j I Ad ; Pd ; Rd ; Gd /

aj D �a C g.…j I Aa; Pa; Ra; Ga/:

For the remainder of the manuscript we will focus on the following candidate
designs. RCTdesign code to compute each of the above stopping rules is provided
in Appendix A.
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1. Fixed.Sample: A fixed sample study with 263 events providing 90.1% power to
detect the alternative H1.

2. SymmOBF.2, SymmOBF.3, SymmOBF.4: One-sided symmetric stopping rules
that treat the null and alternative hypotheses symmetrically [6] and utilize
O’Brien–Fleming boundary relationships having a total of 2, 3, and 4 equally
spaced analyses, respectively, and a maximal sample size of 263 events.

3. SymmOBF.Power: One-sided symmetric stopping rule with O’Brien–Fleming
boundary relationships, a total of 4 equally spaced analysis and the total sample
size selected to provide 90.1% power to detect the alternative H1.

4. Futility.5, Futility.8, Futility.9: One-sided stopping rules from the unified family
[17] with a total of four equally spaced analyses, with a maximal sample size of
263 events, and having O’Brien–Fleming lower (efficacy) boundary relationships
and upper (futility) boundary relationships corresponding to boundary shape
parameters P D 0:5, 0.8, and 0.9, respectively. In this parameterization of
the boundary shape function, parameter P is a measure of conservatism at the
earliest analysis. P D 0:5 corresponds to Pocock boundary shape functions,
and P D 1:0 corresponds to the more conservative O’Brien–Fleming boundary
relationships.

5. Eff11.Fut8, Eff11.Fut9: One-sided stopping rules from the unified family [17]
with a total of 4 equally spaced analysis, with a maximal sample size of 263
events, and having lower (efficacy) boundary relationships corresponding to
boundary shape parameter P D 1:1 and upper (futility) boundary relationships
corresponding to boundary shape parameters P D 0:8 and 0.9, respectively.

6. Fixed.Power: A fixed sample study which provides the same power to detect H1

as the Eff11.Fut8 trial design.

2.1 Evaluation of Stopping Boundaries

It is important that clinical trialists not be surprised by the conditions under which
a particular stopping rule suggests that a trial might continue or stop early. As such,
we believe that it is of paramount importance that the stopping boundary at each
analysis be considered as the stopping rule is selected. [9] note that there are a
number of scales on which the boundaries can be examined. While there exists a
one-to-one relationship between these scales, the statistical and scientific utility of
the scales varies depending upon one’s background. In the context of the CLL trial,
we may consider any of the following test statistics as the basis for the definition of
the stopping rule at interim analysis j :

1. Partial sum statistic: Sj , the partial likelihood based score function for log.�/ in
a proportional hazards regression model.

2. Crude estimate of treatment effect: O�j , the estimated hazard ratio from a
proportional hazards model.

3. Normalized Z statistic: Zj , the score statistic for testing H0.
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4. Fixed sample P value statistic: Pj D ˆ.Zj /, where ˆ.�/ represents the cumu-
lative distribution function corresponding to the standard normal distribution.

5. Error spending statistic: An error spending statistic can be defined for any
of the four boundaries based on an arbitrary hypothesized value for the true
treatment effect. For instance, if a group sequential stopping rule were defined
for the partial sum statistic and the observed value of the test statistic at the j -th
analysis were Sj D sj , a lower type I error spending statistic defined for the null
hypothesis H0 W � D �0 would have

Eaj D 1

˛L

 
Pr

"
Sj � sj ;

j �1\
kD1

Sk 2 Ck j � D �0

#

C
j �1X
`D1

Pr

"
S` � a`;

`�1\
kD1

Sk 2 Ck j � D �0

#!
;

where ˛L is the lower type I error of the stopping rule defined by

˛L D
JX

`D1

Pr

"
S` � a`;

`�1\
kD1

Sk 2 Ckj� D �0

#
:

6. Bayesian posterior probabilities: Bj .�0/ D Pr.� � �0 j Sj D sj /, the posterior
probability that the null hypothesis H0 W � � �0 is false under a specified prior
distribution.

7. Conditional power statistics: The conditional probability that the test statistic
at the final (J -th) analysis would exceed the threshold for declaring statistical
significance, where we condition on the observed statistic Sj D sj at the j -
th analysis and assume some particular value for the true treatment effect � .
For instance, we might define a conditional power statistic using a threshold
aJ defined for the partial sum statistic. Such a threshold would represent the
critical value for declaring statistical significance at the J -th analysis. Using an
alternative hypothesis H1 W � D �1 conditional power would be computed as

Cj .aJ ; �1/ D Pr.SJ < aJ j Sj D sj I � D �1/

Alternatively, a conditional power statistic might use the current best estimate of
the treatment effect O�j in place of �1.

8. Predictive probability statistics: The Bayesian predictive probability that the test
statistic would exceed some specified threshold at the final analysis. In the case
of a threshold aJ defined for the partial sum statistic, a predictive probability
statistic may be computed as

Hj .aJ ; �; �2/ D
Z

Pr.SJ < aJ j Sj D sj ; �/ p.� j Sj D sj / d�
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Fig. 1 Stopping boundaries on the scale of the crude estimate of treatment effect (estimated hazard
ratio). In the case of the CLL trial, stopping boundaries for level 0.025 one-sided stopping rules for
a maximum of 263 events and various levels of conservatism for the efficacy (lower) and futility
(upper) boundary relationships

Returning to the CLL trial, we find it most useful to consider stopping boundaries
on the scientifically relevant scale of the estimated treatment effect. By graphing
the stopping boundaries versus the number of events (or statistical information)
available at each analysis, we can see both the degree of conservatism employed
at the earliest analysis and the worst case sample size requirements for the study.
In Fig. 1 we display the stopping boundaries for the SymmOBF.4, Eff11.Fut9, and
Eff11.Fut8 stopping rules, all of which use the same level of significance. These
three designs all have a maximal sample size of 263 events but differ in the boundary
shape function used for the efficacy (lower) and futility (upper) boundary, ranging
in conservatism (higher values of P yield a more conservative stopping rule).
By comparing Eff11.Fut9 and Eff11.Fut8, it can be seen that altering the futility
boundary has only minimal effects on the efficacy boundary. We can also see from
Fig. 1 that at the planned first analysis (N D 66 events) the O’Brien–Fleming
boundary shape function would suggest early termination for futility only if the
estimated hazard ratio were 1.639 or larger—a difference that may be deemed too
large. The futility boundary shape function for the Eff11.Fut8 stopping rule, on the
other hand, would allow early termination for futility when the observed hazard
ratio is 1.319. Similar comparisons may be made with respect to the efficacy bound.
It is worth noting that in many cases the extreme conservatism of the Eff11.Fut9
and Eff11.Fut8 efficacy bounds may be desired at early analyses because stopping
a trial early for efficacy would preclude the collection of longer-term safety data
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in a controlled setting. RCTdesign code to generate the resulting boundary plot
and to create a table of the stopping boundaries on different scales is provided
in Appendix A.

2.2 Frequentist Type I Error and Power

The most commonly used definition for statistical evidence against a null hypothesis
is to consider the probability of falsely rejecting the null hypothesis. In fact,
regulatory agencies often use this criterion as a de facto standard for strength of
evidence that will be attained in a clinical trial design. Thus, when specifying a
group sequential stopping rule, clinical trialists most often constrain the type I error
associated with a decision boundary to some prescribed level, typically 0.05 for a
two-sided test and 0.025 for a one-sided test.

Similarly, it is often the case that the sample size to be used in a clinical trial is
determined by computing the sample size that will allow estimation of the treatment
effect with specified precision (often according to the width of a 95% confidence in-
terval) or that will allow a decision to reject the null hypothesis to be made with high
probability (e.g., 80%, 90%, 95%, or 97.5% statistical power) when a specific alter-
native hypothesis is true. This criterion of statistical power is of particular interest
from a scientific standpoint: It describes the probability that the clinical trial will dis-
criminate between the two viable scientific hypotheses represented by the null and
alternative hypotheses. Hence, basic scientists, clinical researchers, epidemiologists,
and biostatisticians often focus on the statistical power of the study to detect a hy-
pothesis representing the minimal treatment effect which is of clinical importance.

Figure 2 displays power curves for some stopping rules considered in the design
of the CLL trial. In this figure we compare the effect of increasing the number
of interim analysis on the statistical power when the maximal sample size is
maintained at 263 events. Rather than displaying the absolute power curve as in
Fig. 2a, we often find it most convenient to display the power relative to some
reference design. In Fig. 2b, we examine the loss of power relative to a fixed sample
clinical trial for several stopping rules which vary in the number of interim analyses.
With the O’Brien–Fleming boundary relationships considered in this figure, we
see relatively little loss of power: A one-sided symmetric design with O’Brien–
Fleming relationships and a total of four equally spaced analyses [6] loses at most
0.019 power (from 68.5 to 66.6%) relative to a fixed sample analysis with the same
maximal sample size.

Table 1 compares the power of the Fixed.Sample, Eff11.Fut9, and Eff11.Fut8
stopping rules under specific hypotheses and provides the alternative hypotheses
for which the various designs have prescribed statistical power. From this table
it is apparent that the introduction of either of these stopping rules has relatively
minimal impact on the statistical power of the study. This in turn means that
the introduction of either of these stopping rules has relatively little effect on the
scientific interpretation of a failure to reject the null hypothesis. More specifically,
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Fig. 2 Power curves and difference in power relative to a fixed sample design for a fixed
sample design and one-sided symmetric tests with O’Brien–Fleming (SymmOBF:J ) boundary
relationships with J D 2; 3, or 4 analysis. All designs have type I error of 0.025 under the null
hypothesis H0 W � � 1 and a maximal sample size of 263 events

using a confidence level of 95% as the statistical criterion for evidence, a failure
to reject the null can be interpreted as a rejection of a hazard ratio corresponding
to the alternative for which the design attains a power of 0.975: equal to 0.617
using the Fixed.Sample design, 0.610 using the Eff11.Fut9 design, and 0.607
using the Eff11.Fut8 design. We note that this difference in rejected alternatives
is due to the fact that the maximal sample size was not increased when a
stopping rule was introduced. With an increase in the maximal sample size, we
can maintain the magnitude of the alternative rejected by a failure to reject the
null hypothesis.
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Table 1 Comparison of operating characteristics of three candidate stopping
rules: (upper panel) detectable alternatives and mean sample size for fixed
power; (lower panel) power and mean sample size for fixed alternative

Fixed.Sample Eff11.Fut9 Eff11.Fut8
Stopping rule Stopping rule Stopping rule

Hazard Average Hazard Average Hazard Average
Power ratio samp size ratio samp size ratio samp size

0.800 0.708 263 0.703 207 0.702 204
0.900 0.670 263 0.665 196 0.663 194
0.950 0.641 263 0.635 185 0.633 184
0.975 0.617 263 0.610 176 0.607 174

Hazard Average Average Average
ratio Power samp size Power samp size Power samp size

1.00 0.025 263 0.025 163 0.025 154
0.75 0.645 263 0.628 214 0.624 211
0.67 0.901 263 0.889 198 0.885 196
0.60 0.985 263 0.981 172 0.980 172

2.3 Sample Size Distribution

In a fixed sample clinical trial, if the sample size is chosen to attain some
prespecified statistical power, one of the first operating characteristics considered
is whether obtaining that sample size is feasible logistically and financially. Clinical
trial collaborators also have to consider whether the sample size would provide
credible scientific evidence. In the presence of data collected using a stopping rule,
the actual sample size obtained during the conduct of a clinical trial is a random
variable with a distribution that depends on the magnitude of the true treatment
effect—a dependence that is, of course, behind the ethical motivation for interim
analyses: We want to use fewer patients when one treatment is markedly inferior
to another or not sufficiently superior to warrant further investigation. Thus, when
examining the sample size requirements of a particular clinical trial design, we will
be interested in summary measures of the probability distribution for the sample
size. The maximal sample size will be of interest for the feasibility of accrual, just
as it is in a fixed sample trial. Examination of the curves for the average sample
size (ASN D average sample number) and various quantiles of the sample size
distribution provides some indication of the values that might reasonably be attained
under various hypotheses. In the case of a survival endpoint, statistical information
is (at least partially) dictated by the number of observed events. In this case it is
natural to consider summary measures of the distribution of the required number
of events.

In Fig. 3 we compare the average and 75th percentile of the distributions of
required events for the group sequential stopping rules considered for the futility
boundary in the CLL trial. From this figure it can be seen that substantially
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Fig. 3 Average and 75th percentile of the distribution of required events as a function of the
hypothesized treatment effect. In the case of the CLL trial, stopping boundaries for level 0.025
one-sided stopping rules for a maximum of 263 events and having O’Brien–Fleming efficacy
(lower) boundary relationships and various levels of conservatism for the futility (upper) boundary
relationships

smaller numbers of events would be accrued on average as the futility (upper)
boundary becomes successively less conservative. Of course, because the maximal
number of events does not differ among these stopping rules, the power curves
will vary. Therefore, the ultimate selection of a stopping rule involved simultaneous
graphical comparisons of the average event curves and the respective power curves
(not shown here, but analogous to those shown in Fig. 2) in order to judge
the acceptability of trade-offs between the loss of power and gains in average
number of events.

2.4 Stopping Probabilities

When more detail about the stopping behavior of the group sequential trial design
is desired, the probability of stopping at each analysis time can be examined as a
function of the hypothesized true treatment effect. Figure 4 displays the cumulative
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Fig. 4 Cumulative stopping probabilities at each analysis as a function of hypothesized treatment
effect. The one-sided level 0.025 stopping rule to test the null hypothesis H0 W � � 0 has
a maximum of four equally spaced analysis with an efficacy (lower) boundary shape function
corresponding to P D 1:1 and a futility (upper) boundary shape function corresponding to
P D 0:8 in the unified family of group sequential designs

stopping probability at each analysis versus the true treatment effect. For any
given hypothesized hazard ratio (x-axis) the vertical distance up to each contour
line represents the cumulative probability that the trial will stop at or before the
corresponding analysis time (as depicted by the number of the contour). In this
figure, the shading indicates the probability with which a decision at stopping will be
made for the alternative hypothesis (i.e., when the test statistic is less than the lower
boundary) or the null hypothesis (i.e., when the test statistic is greater than the upper
boundary). Thus from this figure we can see that under the Eff11.Fut8 stopping
rule, when the true treatment effect corresponds to a hazard ratio of � D 0:70, the
probability of stopping at or before the third analysis is approximately 0.67, and as
the shading below that curve is generally the darker color, the predominant decision
will be one to reject the null hypothesis. Furthermore, by examining the stopping
boundaries on the scale of the crude estimate of treatment effect (Fig. 1), it can be
seen that the stopping rule would only recommend continuing past the third analysis
if the observed hazard ratio comparing treatment to placebo was between 0.717 and
0.838, a situation that may look promising enough to invest in the larger sample size.
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2.5 Frequentist Inference at the Stopping Boundaries

In order to ensure the scientific and statistical credibility of the study results,
it is important to examine the statistical inference that would be reported if the
study were to be terminated early. Of particular interest is whether estimates
of treatment effect would indeed be extreme enough to convince the scientific
community that action should be taken with less precision in the estimates. When
using frequentist inference, we typically consider point estimates of treatment
effect with small bias and mean squared error, and we consider the precision of
such estimates using 95% confidence intervals. Strength of evidence against a
null hypothesis is often quantified by the P value—the probability that results
as or more extreme than those actually obtained would be observed when the
null hypothesis is true. These same frequentist measures are possible in the
setting of group sequential stopping rules, though the calculation of the estimates,
confidence intervals, and P values must use the correct sampling distribution.
Further discussion of inferential procedures that account for group sequential testing
is presented in Sect. 3.2.

In the process of evaluating group sequential designs, it is useful to consider
the inference associated with outcomes which correspond exactly to the stopping
boundaries. Clearly, if such outcomes are scientifically and statistically convincing,
more extreme results would also be acceptable. Figure 5 displays such hypo-
thetical inference for the stopping boundaries of the Eff11.Fut8 stopping rule.
The top and bottom panels display the adjusted point estimates (bias adjusted
mean, BAM, as described by Whitehead [33]) and the sample mean ordering
based 95% confidence intervals and P values for hypothetical results which
correspond to the futility (upper) and efficacy (lower) boundaries, respectively. Also
displayed for reference are horizontal lines corresponding to the null hypothesis
� D 1 and the alternative hypothesis � D 0:67. From this plot we see the
extreme conservatism of the efficacy boundary. At the first analysis, we would
stop the study early with a decision for efficacy only if we could with high
confidence rule out that the treatment effect was less extreme than an alternative
far beyond that which we considered in the design of the trial (i.e., the 95%
confidence interval not only excludes the null hypothesis but also excludes an
alternative corresponding to a hazard ratio of 0.54). On the other hand, the
futility boundary is less conservative as evidenced by the fact that although results
which would cause termination have ruled out a markedly beneficial effect of
treatment, they have not established with high confidence that the treatment might
have some small beneficial effect (i.e., the 95% confidence interval correspond-
ing to results at the futility stopping boundary includes the null hypothesis of
� D 1) (Fig. 5).
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Fig. 5 Display of estimates and confidence intervals for observed trial results which correspond
exactly to the stopping boundaries of a one-sided level 0.025 stopping rule to test the null
hypothesis H0 W � � 1 and having a maximum of four equally spaced analysis, an efficacy (lower)
boundary shape function corresponding to P D 1:1 and a futility (upper) boundary shape function
corresponding to P D 0:8 in the unified family of group sequential designs. Inference for the
futility (upper) boundary is displayed in the upper panel, and inference for the efficacy (lower)
boundary is displayed in the lower panel. All estimates, confidence intervals, and P values are
adjusted for the stopping rule. Horizontal lines correspond to the null hypothesis � = 1 and the
alternative hypothesis � = 0.67

2.6 Assessing the Implications of Varying Patient
Accrual Patterns

The rate at which patients accrue will directly impact the observed censoring
distribution in the trial when testing a time-to-event endpoint. For example, if
accrual to the study were heavy at early times and slowed as the study progressed,
then a majority of patients would tend to have high censoring times relative to the
maximal follow-up of the trial. On the one hand, if the rate of accrual were low at
the initial stages of the trial but increased towards the end of trial, then a majority of
patients would tend to have low censoring times relative to the maximal follow-up.
More rigorously, if TL denotes the total follow-up for the trial and TA denotes the
duration of accrual, the probability that a subject is observed for an event over the
course of the study is given by
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1 �
Z TA

0

ST .TL � u/fA.u/du;

where ST denotes the survival function of the subject and fA denotes the probability
density function of the accrual distribution of the subject. Because of this, changes to
the accrual distribution can have economic (the duration of the study), statistical (the
rate of statistical information growth), and scientific (the length of time treatments
are to be compared) implications on a clinical trial.

Under a proportional hazards treatment effect, the statistical information as
derived from the partial likelihood is directly proportional to the number of events
observed on the trial. This reduces the complexity of planning interim analyses but
one must still translate between the number of observed events and when those
events are to be expected in calendar time so that a Data Monitoring Committee
can be convened for interim analyses. The translation from events to calendar
time requires specification of the accrual rate of patients, the duration of accrual,
the duration of continued follow-up after accrual is closed, the baseline survival
distribution, and the treatment effect. Most, if not all, of these parameters are
unknown to investigators at the design stage of a trial and must be assumed.
Therefore we find it useful to explore the potential impact of varying assumptions
on the timing of analysis and the overall duration of the trial. In RCTdesign
patient accrual patterns can be explored at the time of design specification. To
provide flexibility in the exploration process, accrual rates may be parameterized via
a Beta.a; b/ distribution or simulated from existing pilot data. Similarly, baseline
survival may be parameterized via a Weibull distribution, a piece-wise constant
hazard function, or simulated from existing pilot data.

In the context of the CLL trial, Fig. 6 depicts the event accrual rates and expected
analysis times under fast (a) and slow (b) patient accrual patterns. In both cases, a
total of 400 subjects were assumed to enroll over a period of 3 years and baseline
survival in the placebo group was assumed to follow an exponential distribution with
a median survival of 16 months. In Fig. 6a, a Beta(1,10) accrual distribution was
assumed while in Fig. 6b, a Beta(10,1) distribution was assumed. In each figure,
the solid line represents the cumulative number of subjects accrued to the trial
as a function of calendar time, the small dashed line represents the number of
subjects still at risk in the trial, and the large dashed line represents the cumulative
number of events observed in the trial. Lighter dashed lines depict estimates under
the null hypothesis (� D 1/ and darker dashed lines depict estimates under the
full design alternative (� D 0:67). Entry distributions have been chosen to be
extreme to highlight the impact of the patient accrual patterns. Specifically, under
fast accrual the first interim analysis is estimated to take place between 7 and
8 months after study start. From a clinical perspective, this may be too soon to
begin assessing efficacy because long-term survival effects are generally of primary
interest. Conversely, under slow early accrual the first interim analysis is expected
to take place more than 3 years after recruitment into the trial began. In the context
of the trial, this may be too long of a wait to assess futility, particularly in light
of the fact that by this time all 400 patients will have been recruited to the trial
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Fig. 6 Expected event accrual rates and analysis times under fast (a) and slow (b) patient accrual
patterns. Analysis times are for one-sided level 0.025 stopping rule to test the null hypothesis
H0 W � � 1 and having a maximum of four equally spaced analysis, an efficacy (lower)
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dashed line represents the cumulative number of events observed in the trial
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and treated. Also of note is the total expected duration of the study under each
scenario. Under the full alternative, the total study time could be as little as 2.8
years if early accrual is fast and as long as 5.2 years if early accrual is slow. Beyond
the obvious clinical implications of estimating the treatment effect in a controlled
setting for these different periods of time, the cost of running a trial for longer
periods of time may not be feasible for a sponsor.

3 Implementing a Group Sequential Design

3.1 Flexible Implementation of Stopping Rules
Based on Constrained Boundaries

The stopping rule chosen in the design of a clinical trial serves as a guideline to
a Data Monitoring Committee as it makes the decision to recommend continuing
or stopping a clinical trial. If all aspects of the conduct of the clinical trial adhered
exactly to the conditions stipulated during the design, the stopping rule obtained
during the design phase could be used directly. However there are usually at least
two complicating factors that must be dealt with during the conduct of the clinical
trial. First, the schedule of interim analysis does not follow that used in the design
of the trial. Often, meetings of the Data Monitoring Committee are scheduled
according to calendar time, and thus the sample sizes available for analysis at any
given meeting is a random variable. Similarly, accrual may be slower or faster
than planned, thereby resulting in a different number of interim analyses than was
originally planned. Either of these eventualities will necessitate modifications of
the stopping rule, because the exact stopping boundaries are dependent upon the
number and timing of analysis. Second, the estimate for response variability that
was used at the design phase is typically incorrect. Often very crude estimates
of response variability or baseline event rates are used at the design phase. As
the trial progresses, more accurate estimates are to be used. Clearly the operating
characteristics of particular stopping rules are heavily dependent on the variability
of response measurement. In order to address these issues, flexible methods of
implementing stopping rules have been developed which allow the clinical trialist to
maintain at least some of the operating characteristics of the stopping rule. Typically
such flexible methods always maintain the size (type I error) at the prescribed level.
A choice must then be made as to whether the maximal sample size or the power to
detect the design alternative should be maintained.

The flexible methods of implementing stopping rules in RCTdesign are based
on the idea of computing a stopping boundary for the current interim analysis
in such a way that the desired operating characteristics are satisfied and that the
stopping rule is constrained to agree with the stopping boundaries used at all
previously conducted interim analysis. Algorithmically, the monitoring strategy
proceeds as follows:



194 D.L. Gillen and S.S. Emerson

1. At the first analysis, the stopping boundaries are derived by using the parametric
boundary shape family specified in the design. The exact stopping boundary is
computed by considering the proportion …1 of statistical information available
at that first analysis. The value of …1 depends on which operating characteristics
of the stopping rule the trial designer chooses to preserve:

(a) If the maximal sample size (or number of events), N , is to be maintained,
…1 D N1=N . Here N1 represents the number of subjects (or events) accrued
at the first analysis.

(b) If the power of the test to detect the design alternative is to be maintained, a
schedule of future analysis is assumed and a stopping rule using the design
parametric family (possibly constrained) is found which has the desired
power. This consists of searching for the value of N which has the correct type
I error and power to detect the alternative for the parametric design family for
the assumed schedule of interim analysis. In either case, interpolation of the
exact, minimum, or maximum constraints specified at the design stage is used
to derive any constraints for the interim analysis specified by the assumed
schedule of future analysis (which may differ from the schedule specified at
the design stage). In cases where statistical information is dependent upon
a variance parameter, the current best estimate of the statistical information
contributed by a single sampling unit is used instead of the estimate supplied
at the design stage.

2. At later interim analysis, the exact stopping boundaries used at previously
conducted interim analysis are used as exact constraints at those analysis times,
and the stopping boundaries at the current analysis, and all future analyses
specified by an assumed schedule of future analysis are computed using the
parametric family of designs specified at the design stage. The basic approach
is that described for the first analysis, in which the proportion of statistical
information at the j -th analysis is computed based either on the planned maximal
sample size N if that operating characteristic is to be maintained, or it is
computed based on a recomputation of a sample size which takes into account the
new schedule of interim analysis and the current best estimate of the statistical
information contributed by a single sampling unit. In either case, …j D Nj=N

is used as the proportion of statistical information available at the j -th analysis.

It should be noted that when a variance parameter is reestimated at each analysis,
the stopping boundaries at previously conducted interim analysis depend upon
which boundary scale is used when constraining the stopping rules at those analyses.
That is, if the value of the variance parameter used in computing the stopping rule
is constant over the course of the study, it is irrelevant which boundary scale is
used for the constraints at previously conducted analyses. If, as is usually the case,
the estimate of the variance parameter varies over the study, there will be some
difference between the boundaries obtained. There is no clear advantage for one
such scale over another.
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This approach based on constrained boundaries is a generalization of the error
spending approach of [18, 23]: That approach corresponds to boundary constraints
specified on the error spending scale. More recently, [3] suggested the above
constrained boundaries algorithm to allow a clinical trialist to constrain the stopping
rule on any scale (e.g. the sample mean scale) and for any parametric family of
designs (e.g. the unified family of group sequential designs).

To illustrate the use of the constrained boundaries approach in RCTdesign,
Fig. 7 depicts data simulated in the context of the CLL trial. To demonstrate the
method, suppose that the Eff11.Fut8 design (boundaries depicted in Fig. 1) was the
chosen stopping rule for the trial. Data were simulated under uniform patient accrual
over 3 years assuming exponential survival times, with a median survival of 16
months in the placebo arm and a median survival of 22.9 months in the antibody
arm (corresponding to a hazard ratio of 0.70). Figures (a)–(c) depict the observed
survival curves and estimates of treatment effect at three interim analyses taking
place at 1.5, 2.75, and 3.5 years after the start of trial enrollment. For reference,
subfigure (d) depicts the data that would have been observed if a fixed sample design
were performed after a total of 263 events were observed (occurring at 4.11 years
after the start of trial enrollment).

Table 2 depicts the observed statistics at each of the three interim analyses,
including the total number of observed events, the estimated hazard ratio (not
adjusted for the stopping rule), and the normalized Z statistic (also not adjusted
or the stopping rule). In addition to the observed statistics at each analysis,
Table 2 yields the modified stopping rule obtained from the constrained boundaries
algorithm. Of note, the first analysis took place after 49 events were observed in the
study and not the originally planned 66 events. This earlier analysis time results in a
much wider continuation interval at the first analysis when compared to the original
Eff11.Fut8 stopping boundaries depicted in Fig. 1. Given the observed hazard ratio
of 0.46, the stopping rule suggested continuation of the trial and new stopping
thresholds were derived using the original parametric family under a specified
timing for the future analyses while maintaining an overall type I error rate of
0.025. The algorithm was again implemented at the second analysis occurring after
146 events were observed (differing from the previously assumed 132 events). We
note that the stopping thresholds at the first analysis remained unchanged, while
future stopping boundaries are recomputed. Again, the stopping rule suggested
continuation of the study. The process was repeated at the third interim analysis,
where a hazard ratio of 0.70 was computed (not adjusted for the stopping rule)
after observing 208 events. At this analysis, the stopping rule suggested stopping
the trial in favor of efficacy. Figure 8 provides a visual comparison of the original
Eff11.Fut8 (solid lines), having a maximum of four equally spaced analyses, an
efficacy (lower) boundary shape function corresponding to P D 1:1 and a futility
(upper) boundary shape function corresponding to P D 0:8 in the unified family
of group sequential designs, and the final implemented design (dashed lines) using
constrained boundaries to account for variation in the originally planned timing of
analysis. In the figure, “X” denotes the observed point estimate (hazard ratio) at the
three interim analysis.
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Table 2 Implementation of the original Eff11.Fut8 using constrained boundaries to account for
variation in the originally planned analysis times. Original analysis times were planned at 66, 132,
198, and 263 events Data were simulated in the context of the CLL trial and are depicted in Fig. 7.
Due to deviations from patient and event accrual rates, the first three interim analysis actually took
place at 49, 146, and 208 events

Observed statistics

No. Crude Normalized Modified stopping boundariesa;b Stopping rule

Analysis events HR Z statistic Time Efficacy Futility recommendation

1 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
– – – NEvD132 0.595 0.947
– – – NEvD198 0.718 0.837
– – – NEvD263 0.784 0.784

2 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
146 0.678 �2.342 NEvD146 0.629 0.915 Continue
– – – NEvD198 0.717 0.837
– – – NEvD263 0.784 0.784

3 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
146 0.678 �2.342 NEvD146 0.629 0.915 Continue
208 0.704 �2.522 NEvD208 0.730 0.826 Stop (efficacy)
– – – NEvD263 0.784 0.784

aNEv denotes the observed number of events
bStopping boundaries are displayed on the scale of the estimated hazard ratio

3.2 Adjusted Inference

As previously stated, the use of a group sequential stopping rule generally alters
the sampling distribution of usual fixed sample statistics. Therefore special tech-
niques must be used to compute point estimates, interval estimates and P values.
Commonly reported point estimates include the usual maximum likelihood estimate
(MLE), the median unbiased estimator (MUE; see [35]), the BAM [33], and the
Rao–Blackwell adjusted unbiased estimate (RBUE; [19]).

In order to compute a MUE, P value, or confidence interval which adjusts for
the stopping rule used in a group sequential trial, an ordering of possible clinical
trial outcomes must be chosen. There is no uniformly optimal choice for such an
ordering. In group sequential testing, the issue is how to treat outcomes observed at
different analyses (see [7]). RCTdesign offers two approaches: the sample mean
ordering [7] and the analysis time ordering [31].

The sample mean ordering judges one result more extreme than another ac-
cording to whether the estimate of the treatment effect is more extreme. Thus, a
treatment effect measured by a hazard ratio of 0.6 is lower than a treatment effect
measured by a hazard ratio of 0.7, regardless of the analysis time. In the analysis
time ordering, results that led to earlier termination of the study are judged to be
more extreme than those observed at later analyses. Results that exceed an upper
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Fig. 8 Comparison of the original Eff11.Fut8 (solid lines), having a maximum of four equally
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sequential designs, and the final implemented design (dashed lines) using constrained boundaries
to account for variation in the originally planned timing of analysis. “X” denotes the observed point
estimate (hazard ratio) at the first three analysis. As indicated in the plot, the stopping rule recom-
mended stopping at the third analysis so that no observed estimate is provided at the final analysis

boundary for the treatment effect at a specific analysis are higher than all results
exceeding the upper boundary at later analyses, and also higher than all results less
than the lower boundary at any analysis. Thus, a treatment effect measured by a
hazard ratio of 0.6, which was judged so high as to warrant early termination of the
study, is less extreme than a hazard ratio of 0.7 which was similarly judged high
enough to warrant termination of the study at an earlier analysis.

Emerson and Fleming [7] investigated the relative behavior of the sample mean
and analysis time orderings with respect to the average width of confidence inter-
vals. The sample mean ordering tends to average shorter confidence interval lengths
for the same coverage probabilities. Gillen and Emerson [14] more recently showed
that under a time-varying treatment effect, the sample mean ordering tends to attain
higher power relative to the analysis time ordering in the sense that the probability of
attaining a small P value is higher with the sample mean ordering when compared
to the analysis time ordering. Finally, the analysis time ordering is not defined for
two-sided group sequential tests that allow early stopping under both the null and
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Table 3 Inference adjusted for the Eff11.Fut8 stopping rule. Data were simulated in
the context of the CLL trial and are depicted in Fig. 7. Due to variability in patient and
event accrual rates, the first three interim analysis actually took place at 49, 146, and
208 events. Based upon the sequential boundaries the trial was stopping at the third
interim analysis

Result Analysis time ordering Sample mean ordering

Unadjusted estimate 0.7044
Adjusted estimates
BAM 0.7127
RBadj 0.7167
MUE 0.7074 0.7153
Adjusted inference
95% CI (0.5382, 0.9313) (0.5469, 0.9347)
P value 0.006906 0.007238

alternative analysis. For these reasons, the sample mean ordering is the
recommended method of computing ordering-dependent inference in RCTdesign.
However, the sample mean ordering does depend on the number and timing of future
analysis, but such dependence was found to be fairly slight by Emerson and Fleming
[7].

Table 3 depicts the resulting inference at the conclusion of the simulated CLL
trial. Based upon the implemented Eff11.Fut8 design the trial was stopped at
the third analysis. The observed hazard ratio (unadjusted for the stopping rule)
was 0.7044. As can be seen from Table 3, each of the adjusted estimates are
attenuated towards the null hypothesis. This adjustment for bias is slight in the
example due to the conservativeness of the Eff11.Fut8 stopping rule. Had a less
conservative design been chosen, a larger difference between the unadjusted and
adjusted estimates would have been observed. Also reported in Table 3 are the
corrected 95% confidence intervals and P values based upon the analysis time and
sample mean orderings. Again the two orderings produce similar results. This is
because the trial continued to the penultimate analysis before stopping. Had the
trial stopped earlier, at the first analysis for example, the difference in the inference
obtained from the two orderings would have been more extreme.

4 Consideration of Potential Time-Varying
Treatment Effects

The methods discussed in this manuscript have focused on settings in which the
measure of treatment effect does not vary with time. However, it is often the case
that a given treatment might have a delayed effect within individuals or that the
effect of treatment might dissipate over time. Special issues arise in such settings.
For instance, when using nonparametric statistics to analyze survival data exhibiting
nonproportional hazards one must consider (among other things):
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1. The formulation of alternatives at which operating characteristics are to be
evaluated.

2. The rate of information growth of the test statistic for appropriately timing
interim analysis.

3. The changing censoring distribution across interim analysis and its impact on the
asymptotic distribution of the test statistic under alternatives.

In a further extension to the evaluation paradigm demonstrated here, [16]
describe one general approach to the evaluation of clinical trial designs in the setting
of nonproportional hazards. Gillen and Emerson [16] note that in the presence of
nonproportional hazards survival data, nonparametric methods such as the G�;�

family of weighted logrank statistics [11] are often used and the evaluation of
stopping rules is no longer a trivial task. Specifically, nonparametric test statistics do
not necessarily correspond to a parameter of clinical interest, thus making it difficult
to characterize alternatives at which operating characteristics are to be computed.
It is shown that this sometimes leads to contradictions when reporting clinically
meaningful measures of treatment effect in the event that they do not correspond to
the nonparametric statistic on which testing is based. Gillen and Emerson [16] go
on to describe re-sampling approaches which might be used to construct alternatives
under nonproportional hazards when preexisting pilot data are available. Those
methods can be implemented using the RCTdesign package as a foundation for
generating stopping boundaries.

It was noted in Sect. 2.6 that under a proportional hazards treatment effect,
statistical information is directly proportional to the number of events observed
on the trial. In this case one only needs to estimate the calendar time that a
specified number of events is likely to occur in order to schedule interim analyses.
However, when testing is based upon a weighted statistic, such as the G�;� family of
weighted logrank statistics (perhaps to emphasize particular time intervals where
treatment effects are of greatest clinical importance), the growth of statistical
information is nonlinear with respect to the cumulative number of observed events
(see [13]). Specifically, the amount of information contributed by each event
is dependent upon when the event occurred as well as the accrual distribution.
Building on the work of [2, 3, 13] describe a general constrained boundaries
algorithm that can be used to flexibly monitor a group sequential survival trial
under nonlinear information growth patterns. This procedure modifies the usual
constrained boundaries algorithm described in Sect. 3.1 by using observed survival
and accrual data at each interim analysis to predict the information growth curve,
then mapping information accrual to calendar time. Because the method is an
extension of the constrained boundaries approach implemented in RCTdesign it
can easily be implemented in the current software.

Finally, multiple authors have noted that the parameter consistently estimated by
the Cox proportional hazards model and the logrank statistic are dependent upon
the observed censoring distribution when the proportional hazards assumption does
not hold (cf. [15, 29]). This dependence is not only on the total length of follow-up
observed in the trial, but also on the shape of the underlying censoring distribution.
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Fig. 9 Example illustrating the effect of the censoring distribution on the parameter consistently
estimated by the Cox proportional hazards model under 50 different censoring distributions (shown
in subfigure (b)). Data were generated under the survival configurations presented in subfigure (a)
and the resulting estimand from each censoring scenario is plotted in subfigure (c)

As an illustration, Fig. 9 depicts the effect of the censoring distribution on the
parameter consistently estimated by the Cox proportional hazards model under 50
different censoring distributions (shown in Fig. 9b). In this simulation study, survival
curves were generated under the piecewise constant hazard ratio alternative depicted
in Fig. 9a. With no censoring over 3 years the Cox model consistently estimates a
“marginal” or “weighted” hazard ratio of 0.64. However, as censoring is introduced
Fig. 9c illustrates that the parameter consistently estimated by the Cox model can
vary from 0.67 (no censoring) to 0.87 (heavy early censoring as depicted in scenario
50). To remove this dependence, [37] suggested an inverse probability of censoring
estimator that assumes a common censoring pattern across all comparison groups.
Boyd et al. [1] later extended the weighted estimator to allow for group-dependent
censoring in the case of a two-sample comparison and derived a consistent variance
estimator in this case. Most recently Nguyen and Gillen developed a censoring
robust reweighted estimator for discrete survival outcomes in the two sample setting
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[21] and proposed a method to provide robust estimation of survival effects under
covariate-dependent censoring in observational studies [20]. Because it is necessary
to a priori specify the estimation and testing procedure to be used in a clinical
trial, the above estimators are attractive in that they limit the influence of study
accrual/dropout patterns on trial results under a misspecified model. In addition,
although these estimators are not directly implemented in RCTdesign at the
present time, the ability to monitor a normalized Z statistic using RCTdesign
provides clinical trialists with a software tool that can be adapted to monitor any
statistic that can be suitably normalized.

5 Discussion

In this manuscript we have demonstrated how the RCTdesign package can be
used to select, implement, and analyze a group sequential stopping rule. The
RCTdesign package aids in the complete evaluation of a clinical trial design by
easily allowing clinical trialists to compare a broad range of candidate designs with
respect to:

1. The scientific measures of treatment effect which will correspond to early
termination for futility and/or efficacy.

2. The sample size requirements as described by the maximal sample size and
summary measures of the sample size distribution (e.g., mean, 75th percentile)
as a function of the hypothesized treatment effect.

3. The probability that the trial would continue to each analysis as a function of the
hypothesized treatment effect.

4. The frequentist power to reject the null hypothesis as a function of the hypothe-
sized treatment effect, with the type I error corresponding to the power under the
null hypothesis.

5. The frequentist inference (adjusted point estimates, confidence intervals, and P

values) which would be reported were the trial to stop with results corresponding
exactly to a boundary.

6. The frequentist power to obtain a point estimate above some relevant threshold.
7. The expected timing of interim analysis as a function of patient accrual patterns.

After the selection of a group sequential stopping rule, flexible implementation
of the sequential boundaries using a constrained boundaries approach was demon-
strated. This method easily accounts for deviations in planned variance, timing, and
number of analysis in order to maintain some of those operating characteristics
specified at the design stage. With careful evaluation of stopping rules and methods
for flexibly implementing those rules under changing circumstances, there seems
little reason to resort to less efficient adaptive designs such as those based on using
conditional power to re-design a study [26] or Fisher’s “self-designing clinical
trial” [10]. The most frequently cited motivation for using such adaptive designs
include the possibility that at an interim analysis a clinical trialist might observe
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treatment effects that were promising, but not statistically significant, and thus want
to continue the clinical trial to obtain a larger sample size. Of course, as noted in
this manuscript, by examining the stopping boundary on the scale of the estimated
treatment effect, all such possibilities can truly be considered at the design stage, and
there is no real need to accommodate adaptive designs based solely on the estimate
of the primary measure of treatment effect. Additionally, if conditions external
to the trial suggest a change in the clinical or economic importance of particular
alternative hypotheses or estimates of treatment effect, redesign of the clinical trial
can proceed without materially affecting the type I error, because in that setting the
factors affecting the redesign of the trial are not based on the trial results. This then
argues that there is no real need for using adaptive designs. Furthermore, there are
distinct disadvantages to the adaptive methods, most notably those related to the
loss of statistical efficiency [5, 30].

The CLL case study used throughout this manuscript considered a survival
endpoint and the design approach relied on a semi-parametric (proportional hazards)
model. Robust methods for the analysis of survival data under a time-varying
treatment effect remain an active area of research. Section 4 discusses multiple
approaches to modify common survival statistics in order to limit the impact the
censoring distribution in these settings. While these methods are effective for
removing the dependence of the resulting estimand on the censoring distribution
under fixed support, they do not address the dependence of these estimators on
the underlying length of trial follow-up. This is a particular problem in the case of
sequential testing where interim analysis inherently truncate the observed support
of the survival distribution. Gillen [12] proposes one method for quantifying
uncertainty in future treatment effects by utilizing a random walk approach to
generate future alternatives which might reasonably be observed conditional upon
data collected up to the time of an interim analysis. Similar methods could also
be used in the design, evaluation, and monitoring of longitudinal studies, since the
potential for time-varying treatment effects in these settings forces one to consider
future alternative which might arise following an interim analysis.

Finally, the current manuscript has focused on the evaluation of frequentist
operating characteristics. Increasingly, however, there has been much interest
in the design and analysis of clinical trials under a Bayesian paradigm. While
not demonstrated here, the RCTdesign package also allows for the Bayesian
evaluation of group sequential designs. For further reading on this topic, the reader
should see [8].

Appendix A RCTdesign Code to Recreate the CLL
Examples in Sects. 2 and 3 Using R

##
##### Definition of candidate designs for the CLL trial
##
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Fixed.Sample <- seqDesign( prob.model = "hazard", arms = 2,
null.hypothesis = 1.,
alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 1,
test.type = "less",
sample.size=263,
power = "calculate",
alpha = 0.025 )

SymmOBF.2 <- update( Fixed.Sample, nbr.analysis=2, P=c(1,1),
sample.size=263,
power="calculate" )

SymmOBF.3 <- update( SymmOBF.2, nbr.analysis = 3 )
SymmOBF.4 <- update( SymmOBF.2, nbr.analysis = 4 )
SymmOBF.Power <- update( SymmOBF.4, power = 0.901 )
Futility.5 <- update( SymmOBF.4, P=c(1,.5) )
Futility.8 <- update( SymmOBF.4, P=c(1,.8) )
Futility.9 <- update( SymmOBF.4, P=c(1,.9) )
Eff11.Fut8 <- update( SymmOBF.4, P=c(1.1,.8) )
Eff11.Fut9 <- update( SymmOBF.4, P=c(1.1,.9) )
Fixed.Power <- update( Fixed.Sample, nbr.analysis=1,

power=0.8853 )

##
##### Figure 1 : Comparison of stopping boundaries on crude

estimate of treatment effect
scale

##
seqPlotBoundary( SymmOBF.4, Eff11.Fut8, Eff11.Fut9,

lty=c(1,3,4), col=1,
stagger=0, fixed=FALSE )

seqBoundary( Eff11.Fut8, scale="X" )
seqBoundary( Eff11.Fut8, scale="Z" )
1-seqBoundary( Eff11.Fut8, scale="P" )

##
##### Figure 2 : Comparison of statistical power curves
##
seqPlotPower(SymmOBF.4,SymmOBF.3,SymmOBF.2, lty=1:4, col=1,

lwd=2 )
seqPlotPower(SymmOBF.4,SymmOBF.3,SymmOBF.2, reference=TRUE,

lty=1:4, col=1, lwd=2 )

##
##### Table 1 : Computation of power and alternative tables

for the Eff11.Fut8 design
##
seqOC( Eff11.Fut8, power=c(.8,.9,.95,.975) )
seqOC( Eff11.Fut8, theta=c(1,.75,.67,.60) )

##
##### Figure 3 : Comparison of sample size distributions
##
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seqPlotASN(SymmOBF.4,Futility.9,Futility.8,Futility.5,
fixed=FALSE, lty=c(2,1,3,4),
col=1, lwd=2)

##
##### Figure 4 : Depiction of stopping probabilities
##
seqPlotStopProb(Eff11.Fut8)

##
##### Figure 5 : Statistical inference on the boundaries
##
plot(seqInference(Eff11.Fut8))

##
##### Figure 6a : Patient accrual patterns (early accrual)
##
Eff11.Fut8Extd.early <- seqDesignExtd(prob.model = "hazard",

arms = 2, null.hypothesis
= 1., alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 4,
test.type = "less",
alpha = 0.025,
sample.size=263,
power="calculate",
P=c(1.1,.8),
accrualSize=400,
accrualTime=3, bShapeAccr=10,
eventQuantiles=16/12,
nPtsSim=10000, seed=0)

seqPlotPHNSubjects(Eff11.Fut8Extd.early)

##
##### Figure 6b : Patient accrual patterns (late accrual)
##
Eff11.Fut8Extd.late <- seqDesignExtd(prob.model = "hazard",

arms = 2,
null.hypothesis
= 1., alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 4,
test.type = "less",
alpha = 0.025,
sample.size=263,
power="calculate",
P=c(1.1,.8),
accrualSize=400,
accrualTime=3, aShapeAccr=10,
eventQuantiles=16/12,
nPtsSim=10000, seed=0)

seqPlotPHNSubjects(Eff11.Fut8Extd.late)
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##
##### Simulation of CLL data
##
set.seed( 123456 )
n <- 200
grp1 <- rexp( n, rate=.75*log(2) )
grp2 <- rexp( n, rate=(.75*log(2))*.70 )
trueSurv <- c( grp1, grp2 )
entry <- runif( 2*n, 0, 3 )
grp <- rep( 0:1, each=n )

## First analysis at 1.5 years after study start
analysisTime <- 1.5
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim1 <- seqMonitor( Eff11.Fut8, response=resp,

treatment=cllData$grp,
future.analysis=c(132,198,263) )

## Second analysis at 2.75 years after study start
analysisTime <- 2.75
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim2 <- seqMonitor( interim1, response=resp,

treatment=cllData$grp,
future.analysis=c(198,263) )

## Third analysis at 3.5 years after study start
analysisTime <- 3.5
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim3 <- seqMonitor( interim2, response=resp,

treatment=cllData$grp,
future.analysis=c(263) )

##
##### Figure 8 : Comparison of implemented and original

design
##
plot( interim3, dsnLbls=c("Implemented Design", "Original

Design") )
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##
##### Table 3 : Inference adjusted for the stopping rule
##
print( interim3 )
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