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Preface

Continuing the tradition, once every half decade, of hosting a major biostatistical
meeting, where thought leaders can gather to address scientific issues of current
and compelling importance, the organizing committee and sponsors held the Fourth
Seattle Symposium on Biostatistics on November 22 and 23, 2010. The topic
area for this successful meeting was clinical trials, with focus on the use of
biomarkers, issues in multi-regional clinical trials, and identifying and addressing
safety signals. The event was sponsored by Axio Research, Bristol-Myers Squibb,
Genentech, Novartis and Onyx and was co-sponsored by the UW School of Public
Health and the Division of Public Health Sciences at the Fred Hutchinson Cancer
Research Center (FHCRC). The symposium featured keynote lectures by Robert
O’Neill, Ross Prentice and Robert Temple, as well as invited talks by Jesse Berlin,
Christy Chuang-Stein, David DeMets, Bill DuMouchel, Susan Ellenberg, Thomas
Fleming, Laurence Freedman, Margaret Pepe, Steve Self, Richard Simon, Bruce
Weir, John Whittaker and Janet Wittes. Invited panelists included Jesse Berlin,
Bruce Binkowitz, Christy Chuang-Stein, Bill DuMouchel, Susan Ellenberg, Thomas
Fleming, Henry Fuchs, Dominic Labriola, Robert O’Neill, Robert Temple and Janet
Wittes. There were 200 attendees at the symposium. In addition, more than 100
people attended short courses delivered on November 20 and 21, 2010. At these
short courses, “Statistical Design of Sequential Clinical Trials in R” was taught by
Scott Emerson and Dan Gillen, “The Use of Genetic Marker Data in Clinical Trials”
was taught by Bruce Weir and Patrick Heagerty, “Data Monitoring Committees: A
Practical Approach” was taught by Susan Ellenberg, Thomas Fleming and David
DeMets, “Statistical Evaluation of Markers for Classification and Prediction” was
taught by Margaret Pepe and “Practice Issues in the Conduct and Reporting of
Large-Scale Clinical Trials: The Women’s Health Initiative Experience” was taught
by Garnet Anderson and Andrea LeCroix.

When the UW School of Public Health was formed in 1970, biostatistics as a
discipline was very young. In the subsequent 40 years, both the field and the UW
Department of Biostatistics have evolved in many exciting ways. The department
had only seven faculty when it moved from the School of Medicine to the new
School of Public Health and Community Medicine in 1970. The faculty roster
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vi Preface

currently lists 49 regular and research faculty and 34 adjunct and affiliate faculty.
Ed Perrin was the Department Chair in 1970, succeeded by Donovan Thompson,
Norman Breslow, Thomas Fleming and presently Bruce Weir. The faculty have
been actively involved in methodological and collaborative research in addition to
graduate teaching. The choice of Clinical Trials as the theme for the Fourth Seattle
Symposium in Biostatistics was a tribute to the significant contributions made by the
UW and FHCRC faculty to this important area of statistical science.

The Symposium Organizing Committee consisted of Susan Ellenberg, Scott
Emerson, Nathalie Ezzet, Thomas Fleming (Chair), Henry Fuchs, Lee Hooks,
Dominic Labriola, Michael Ostland, Ross Prentice and Bruce Weir. The staff of the
Department of Biostatistics, especially Sandra Coke, provided great administrative
support to the symposium. The UW School of Public Health Dean Howard Frumkin,
the Department Chair Bruce Weir and the Organizing Committee Chair Thomas
Fleming delivered the opening remarks. The scientific sessions were chaired by
Bruce Weir, Scott Emerson, Thomas Fleming, Lee Hooks, Henry Fuchs, Michael
Ostland, Susan Ellenberg, Nathalie Ezzet and Dominic Labriola. We are grateful to
the aforementioned people as well as all the speakers and participants for making
the symposium a great success.

This volume contains most of the papers presented at the symposium, as well as
some of the science presented at the short courses. These papers encompass recent
methodological advances on several important topics, summaries of the state of the
art of methodology in key areas of clinical trials, as well as innovative applications
of the existing theory and methods. This collection serves as a reference for those
working in several key areas of clinical trials.

Each of the 12 papers in this volume was referred by two or three peer reviewers,
and their comments were incorporated by the authors into the final versions of the
papers. The referees are listed at the end of this book. We are indebted to them
for their time and efforts. We also appreciate the guidance and assistance by Marc
Springer of Springer-Verlag.
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Part I
Biomarkers: Role in the Design

and Interpretation of Clinical Trials



The Role and Potential of Surrogate Outcomes
in Clinical Trials: Have We Made Any Progress
in the Past Decade?

David L. DeMets

Abstract Randomized clinical trials are the standard method for evaluating new
interventions or comparing existing ones. Trials which use clinical outcomes as the
primary outcome can be large, require lengthy follow-up, and can be expensive.
For these reasons, researchers have sought to use intermediate outcomes such as
biomarkers as a substitute or surrogate for the clinical outcome. Over a decade ago,
this practice had become common. Fleming and DeMets (Ann Intern Med 125:605–
613, 1996) reported many cases where the use of a biomarker as a surrogate outcome
failed to reliably assess the effect of the intervention, in some cases missing harmful
effects including mortality. Recently, the Institute of Medicine (IOM) reviewed the
state of the art and came to similar conclusions that biomarkers have often proved
to be unreliable as a surrogate [Committee on Qualifications of Biomarkers and
Surrogate Endpoints in Chronic Disease, Michael C, Ball J (eds) (2010) Evaluation
of biomarkers and surrogate endpoints in chronic disease. National Academies
Press, Washington]. They proposed that biomarkers must meet certain criteria
including analytic validity, strong correlation with the clinical outcome and the
ability to capture the full effects of the intervention. The use of a biomarker as
a surrogate must be done so in the context of its intended use, and done so with
great caution. While the IOM report further clarifies the necessary requirements of
a potential biomarker as a surrogate, the report still recommends caution in using
surrogate outcomes in final phases of intervention evaluation as did Fleming and
DeMets (Ann Intern Med 125:605–613, 2004).

D.L. DeMets (�)
Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison,
610 Walnut Street, Madison, WI, 53726 USA
e-mail: demets@biostat.wisc.edu

T.R. Fleming and B.S. Weir (eds.), Proceedings of the Fourth Seattle Symposium
in Biostatistics: Clinical Trials, Lecture Notes in Statistics 1205,
DOI 10.1007/978-1-4614-5245-4 1, © Springer ScienceCBusiness Media New York 2013
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4 D.L. DeMets

1 Introduction

Clinical trials have been the primary method for evaluating new interventions
or strategies for disease diagnosis, prevention, and treatment over the past four
decades. These interventions may be drugs, biologics, devices, procedures, and
dietary or behavioral modifications. While the ultimate test of a new intervention
would be the modification of a clinically important outcome, trials with such a
design can be large, lengthy, and costly. Attempts to improve trial efficiency have
included a substitute outcome for the clinically important outcome that may be
easier, cheaper, or quicker to measure and may also result in a smaller trial. The
intermediate outcomes or biomarkers used for this purpose are often referred to as
surrogate outcomes, defined as a biomarker that is intended to be used as a substitute
for a clinical outcome in evaluating a new intervention [1].

Examples of such intermediate markers that have been used previously in the
evaluation of new interventions are blood pressure and cholesterol levels as a
substitute for cardiovascular events such as death or nonfatal myocardial infarction.
While the use of surrogate outcomes has become common in recent years, in 1996
Fleming and DeMets reviewed the experience at that point as to whether or not
the use of biomarkers as surrogates in clinical trials had proven to be reliable [1].
Their conclusion was that there were many examples in several disciplines where
the use of biomarkers as surrogate outcomes had been misleading with regard to
benefit and risk for new interventions. Recently, the Institute of Medicine (IOM)
reviewed the same subject in the context of use of biomarkers as surrogates for
nutritional intervention claims and came to similar conclusions [2]. In addition, the
IOM report presents a structure for the evaluation of a biomarker for potential use as
a surrogate outcome. This paper will provide a brief overview of the requirements
for a biomarker to be a valid surrogate with some early and more recent examples
of biomarkers not being reliable as surrogates.

2 Basic Requirements for a Potential Surrogate

In 2010, the Institute of Medicine (IOM) of the National Academies issued a report
“Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease” which
reviewed the requirements for a potential biomarker to be used as a surrogate end
point [2]. While the initial stimulus for this evaluation was for nutritional biomarkers
as a surrogate for health claims, the IOM report provided a general structure for
evaluation of any biomarker for such use. Biomarkers measure some biological
process and include, for example, not only physiological and blood measurements
but also genetic or genomic signatures. Biomarkers can be used to describe risk, risk
exposure, or intermediate response to an intervention or as surrogates or substitutes
for clinical outcomes in evaluating a new intervention. The report argues that the
Food and Drug Administration (FDA) and other regulatory agencies should use the
same degree of scientific rigor across all categories of products including drugs,
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Fig. 1 The steps of the evaluation framework are interdependent. While a validated test is required
before qualification and utilization can be completed, biomarker uses inform test development, and
the evidence suggests possible biomarker uses. In addition, the circle in the center signifies ongoing
processes that should continually inform each step in the biomarker evaluation process

biologics, devices, foods, and supplements. The evaluation process for a biomarker
to be a surrogate should have three steps (1) analytical validation, (2) qualification,
and (3) utilization (Fig. 1).

For analytic validation, the IOM report defined this as an assessment of the
measurement assay and performance [2]. They recommended that a biomarker
must be evaluated for its limit of detection, limit of quantification, reliability, and
reproducibility across different laboratories. In addition, to be a surrogate outcome,
a biomarker must have adequate sensitivity and specificity. Sources of variability in
the biomarker measurement must be understood and controlled to the extent possible
through good clinical laboratory and quality control practices. While similar to
routine laboratory validation, according to the IOM report, there is still no uniform
set of criterion for biomarker assay validation [2].

The second step of qualification of a biomarker as a surrogate has two parts (1)
demonstrating a correlation between the biomarker and the true clinical outcome
and (2) demonstrating that the total clinical impact of the intervention is captured
by the biomarker. Prentice [3] described in detail these statistical criteria. The
first requirement is easy to understand but a common misconception is that if a
biomarker is highly correlated with a true clinical outcome, it can be used as a
surrogate. However, as stated by Fleming and DeMets, “a correlate does not make
a surrogate” [1]. The second criterion is a necessary and much stronger condition
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than just correlation. Figure 2 illustrates the simple conception of a biomarker as
a surrogate. The disease process can be measured by a biomarker which is in the
causal pathway to the true clinical outcome. Correlation between the biomarker and
the clinical outcome would be very high in this scenario. If this were the case, then
any intervention on the disease process which modified the biomarker would capture
the clinical effect. However, biology is almost surely more complicated than this
simple pathway. Figure 3 depicts three alternative and more complicated pathways.
These are only a sample of potential pathways. In Fig. 3, the biomarker would be
correlated to some degree with the clinical outcome in all cases. However, there is
not a single or direct pathway between the biomarker and the clinical outcome. For
example, in case A, the biomarker is not at all in the causal pathway but affected
simultaneously with the clinical outcome by the disease process, thus producing
a high correlation that has no associated causation. Any intervention could have
a profound effect on the biomarker but have absolutely no impact on the clinical
outcome. In case B, the biomarker is in the causal pathway but there is at least one
other pathway where the biomarker plays no role. An intervention might affect the
biomarker and have some degree of impact on the clinical outcome, but it could
be overwhelmed by the other pathway. For example, the intervention might have the
desired effect on the biomarker but have a negative or harmful effect through the
other pathway that would not be identified if only the biomarker was measured.
In case C, an intervention might have no effect on the biomarker but still have
a direct effect through another pathway on the clinical outcome. In this case, a
partially effective intervention might be totally missed. A great deal of statistical
research has been focused on this issue of what criteria is adequate for a biomarker to
be a clinical surrogate but the criteria set forth by Prentice captures the essence of the
challenge [4–17]. That is, the biomarker must be highly correlated with the clinically
relevant outcome and must capture all, or nearly all, of the effect of the intervention
on the clinical outcome. While these criteria are challenging to meet, failure to meet
those requirements can lead to interventions becoming part of clinical practice and
yet have no or even harmful effects as illustrated by examples described below.

Even if Fig. 2 were the correct pathway, the effect of the intervention seen in
the biomarker could be misleading. The effect could be underestimated if there is
considerable noise or measurement error in the biomarker. Alternatively, the effect
could be overestimated if the effect on the biomarker is of sufficient size to produce
a meaningful clinical effect.

The third step in the IOM recommendation is to take into consideration the
intended use of the biomarker as a surrogate. For example, a biomarker might be
suitable for identifying disease risk without any reference to intervention effect.
That is, the correlation of the biomarker with the clinical outcome might be
sufficiently high to have utility in describing risk. A biomarker might also be a
useful intermediate or surrogate in the drug or device development process. For
example, in developing a new drug, device, or intervention to reduce cardiovascular
risk, assessing the impact on reducing blood pressure might be useful to rule out
interventions which do not have this intended effect. However, as indicated above,
other non-intended affects might not be captured by total reliance on this biomarker.
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Fig. 2 Common misconception of a causal pathway and a biomarker. The setting that provides
the greatest potential for the surrogate endpoint to be valid. Reprinted from Ann Intern Med 1996;
125:605–613

Fig. 3 Possible causal pathways relative to a biomarker. Reasons for failure of biomarker end
points: (A) The biomarker is not in the causal pathway of the disease process; (B) Of several causal
pathways of disease, the intervention affects only the pathway mediated through the biomarker;
(C) The biomarker is not the pathway of the intervention’s effect or is insensitive to its effect
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3 Some Earlier Examples

While there are examples of a biomarker being successful in risk assessment or
intervention development, there are many examples of failures when a biomarker
was relied on as a valid surrogate. Unfortunately, we may not always have the
complete clinical outcome data to assess whether the biomarker was indeed a valid
surrogate. In addition, an example where the biomarker captures the effect for
one specific intervention does not guarantee that it will be reliable for the next
intervention of a different class or type, or even a variation within the same class. We
shall briefly summarize a few of the examples described by Fleming and DeMets [1]
and by the IOM report [2]. What is so remarkable is that these cases of biomarker
failure can be found across a wide variety of disease areas, across a wide variety of
interventions and even within a class of interventions where one biomarker success
did not translate into other interventions even of the same class.

Perhaps one of the most dramatic and important examples of a biomarker failure
as a surrogate outcome comes from the field of cardiology and the use of arrhythmia
suppressing drugs to reduce death from cardiovascular complications. Observational
data had shown that ventricular arrhythmias were shown to have as much as a four-
fold increase in cardiovascular death [18, 19]. This observation led to the arrhythmia
suppression hypothesis that reducing cardiac arrhythmias would reduce sudden
death. Drugs were developed to suppress these arrhythmias and approved by the
FDA for use in high-risk patients. The assumption was that, in general, suppressing
these arrhythmias would result in a reduction of cardiovascular death and in fact
some drugs with this arrhythmia suppressing effect began to be used beyond just the
highest risk patients. That is, many clinicians practiced as if biomarker arrhythmia
suppression would be an adequate surrogate for survival. The Cardiac Arrhythmia
Suppression Trial (CAST) was a double-blind placebo-controlled trial of three such
drugs (encainide, flecainide, and moricizine) to test the hypothesis that these drugs
would reduce the risk of cardiovascular death in patients with a recent myocardial
infarction and at least 10 premature ventricular beats per minute [18]. Each drug
had a matching placebo. In order to be eligible, a patient had to have a suppressible
arrhythmia as determined in a run-in phase. Initially, the data monitoring committee
was blinded to drug assignment. The moricizine arm got a late start so the data for
the other two arms were monitored initially by a data monitoring committee blinded
to treatment assignment. Early trends in mortality were assumed to be beneficial, as
expected, based on clinical practice and a belief that arrhythmia suppression was
a valid surrogate. When these early trends became stronger, the data monitoring
committee was unblinded and startled to learn that the trends were contrary to expec-
tation. At the time the data monitoring committee recommended trial termination,
as 56 deaths were observed on the two drug arms compared to 22 in the matching
placebo arm. When the follow-up data for these randomized patients was completed,
there were 63 deaths on the two drug arms compared to 26 in the placebo arm [19].
Similarly, there were 43 sudden deaths on drugs and 16 on placebo. Later, when
the results for the moricizine arm became available, this arm was terminated as well
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with an increased risk [20]. In this third arm, the brief run-in period was modified
after the results of the other two drugs arms became available to be randomized
to either moricizine or placebo. If patient’s arrhythmias were suppressed during
the short run-in period, they were randomized to drug or placebo as before. Even
exposure to moricizine during the run-in period demonstrated a strong trend for
increased risk compared to the placebo. This case has several important lessons.
First, the observational data was convincing about arrhythmia suppression as a
surrogate and the biology seemed plausible. Assumptions were made about the
clinical effect. A large number of patients were exposed to these very harmful drugs.
Furthermore, the second half of CAST demonstrated that even a short exposure to
moricizine was risky. This suggests that clinicians in their normal practice could not
detect this increased risk in a group of patients who were already at risk due to a
prior heart attack. Before these drugs were used routinely in clinical practice, the
definitive test using clinical outcomes, in retrospect, should have been done.

While the lessons from CAST are dramatic, this is not a unique example in
cardiology for this particular patient diagnosis. Other drugs such as quinidine and
lidocaine with known arrhythmia controlling activity were shown to have increased
mortality risk [21–23].

4 Lipid-Lowering Interventions

The Framingham Heart Study identified that high cholesterol levels including low
density lipids (LDL) were associated with increased cardiovascular mortality [24].
Strategies to lower lipid values were identified including drug interventions such
as niacin and clofibrate. The Coronary Drug Project (CDP) was a multi-armed
randomized placebo-controlled trial of these two drugs as well as high and low
doses of estrogen, also known to reduce cholesterol levels, to test the lipid lowering
hypothesis [25]. The CDP was a trial with a planned 7 years of follow-up with
death and death from coronary heart disease as the primary outcomes. The two
estrogen arms were terminated early with increased cardiovascular risk probably
due to increased clotting risk. Neither the niacin or clofibrate arm reduced total
mortality although there was a favorable trend for niacin [25]. Several other lipid-
lowering trials combined in a meta-analysis did not show a reduction in total
mortality but actually had an increase in noncardiovascular death which offset a
reduction in cardiovascular death [26]. Despite the consistent correlation between
high cholesterol levels and increased risk, this reduction of serum lipid values was
not an adequate biomarker to be used as a valid surrogate.

While several interventions existed which reduce cholesterol, the clinical benefit
was not demonstrated until the Scandinavian Simvastatin Survival Study (4S)
was done [27]. The multicenter randomized double-blind placebo-controlled trial
evaluated one of the statins and observed a 25% reduction in cholesterol with a
30% reduction in total mortality. This trial has had a major impact on clinical
practice. However, just because one statin had a beneficial effect does not mean
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that cholesterol lowering with a statin qualifies that as a surrogate. One statin trial
(Baycol) was terminated early with an increase in mortality [28]. In another study,
the trial ILLUMINATE evaluated a member of a new class of drugs, torcetrapib,
that decreased LDL cholesterol (the bad cholesterol) and increased HDL cholesterol
(the good cholesterol) but was terminated early because of an increase in death and
cardiac events [29].

Several large epidemiological studies demonstrated a strong correlation between
hormone replacement treatment (HRT) usage, either estrogen or estrogen-progestin
supplementation, and a decreased risk in cardiovascular risk [30, 31]. HRT is
known to reduce cholesterol levels and reduce bone density loss in post-menopausal
women. Estrogen alone is used for women with a hysterectomy and an estrogen–
progestin combination for women with an intact uterus. HRT supplementation
became one of the most widely prescribed medicines, assuming that cholesterol
reduction was a surrogate for cardiovascular risk. The Women’s Health Initiative
(WHI) was a factorial trial evaluating the impact of low-fat diets, hormone replace-
ment therapy (HRT), and calcium supplementation [32, 33]. The HRT component
was actually two trials, one comparing estrogen and placebo in women without a
uterus and the other comparing estrogen–progestin with placebo in women with
an intact uterus, with clinical outcomes of cardiovascular death or cardiovascular
events such as nonfatal heart attack or nonfatal stroke. As expected, HRT lowered
LDL cholesterol and reduced bone density loss with an accompanying reduction
in major fractures. However, both trials were terminated early with increased
cardiovascular risk, with clotting problems being the major issue. For the estrogen–
progestin arms, there was also an increase in cases of uterine cancer. These
results clearly refuted the assumption that cholesterol reduction with HRT was an
adequate surrogate for cardiovascular risk. Unfortunately, millions of women were
treated with HRT under the false assumption of cardiovascular benefit. Interestingly,
three decades earlier, men given low and high doses of estrogen also experienced
increased risk due to clotting problems even though LDL was lowered [34]. This
early CDP lesson on the failure of cholesterol reduction as a surrogate was missed
in later research such as in design of the WHI. While the intervention effect of
lowering LDL was observed, the clotting problem was not anticipated for women
taking HRT (Fig. 4).

As described by Fleming and DeMets [1], there are many other examples in
cardiology involving biomarkers which failed to be reliable surrogates for cardio-
vascular risk. These include blood pressure lowering [35–39] for cardiovascular
morbidity and exercise tolerance for congestive heart failure [40–42]. Cardiology
has several classic examples of biomarker failure to be a surrogate but other
disciplines have such examples as well.

Cancer is the second leading cause of mortality with an associate morbidity.
Cancer treatment trials have often used the biomarker tumor shrinkage as a surrogate
for clinical response in drug development, for example, in breast cancer, colon
cancer, and lung cancer [43]. Responses are often categorized as a complete
response (no remaining tumor visible), partial response (a 50% reduction in tumor
volume), no change or progression. Tumor volume has an initial challenge of
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Fig. 4 (a) Outcomes in the Women’s Health Initiative (WHI) trial (32) WHI Kaplan–Meier
estimates of cumulative hazards for selected clinical outcomes
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Fig. 4 (b)WHI Kaplan–Meier estimates of cumulative hazards for Global Index and Death.
HR D hazard ratio; nCI D nominal confidence interval; aCI D adjusted confidence interval. JAMA
2002; 288(3):321–333

validation since measurement of tumor volume is highly variable depending on
methodology. Tumor response has been widely used for drug development and early
phase trials in cancer [44]. In addition, tumor volume reduction has not always
been a reliable biomarker for survival [6, 45, 46]. Tumor response was also used
as a surrogate for approval of cancer therapy drugs in the 1970s but later the FDA
requested that a clinical survival benefit or quality of life benefit be demonstrated
as well. However, with the urgency of new and effective cancer treatments, in 1996
the FDA utilized the accelerated approval process using surrogate outcomes such as
progression-free survival, meaning survival with no tumor recurrence or progression
[46, 47]. The assumption was that post-approval trials demonstrating a survival
benefit would follow but this has not happened consistently.

A specific cancer example is the use of 5-fluorouracil plus leucovorin compared
to 5-fluorouracil alone in colon cancer. The combination showed a complete plus
partial response rate of 23% compared to 5-fluorouracil alone of 11%. Yet, this
difference in tumor response biomarker provided no improvement in survival. These
results came from a meta-analysis of over 1400 patients [48]. These disappointing
results could be due to the poor effect of the combination or that the combination
has other unintended adverse effects.

Other important diseases such as AIDS, osteoporosis, and infectious diseases
also provide excellent examples of the failure of biomarkers [1]. Given that Fleming
and DeMets discussed these problems in 1996, it is natural to ask if any progress in
successful use of biomarkers as valid surrogates has been observed since. The IOM
report [2] is a more recent review of this question.
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5 Other Recent Examples

As discussed above, cancer is the second leading cause of mortality. Nutritional
researchers observed that individuals with low levels of beta-carotene intake had
a higher risk for lung cancer [49]. Beta-carotene is a plant carotenoid which
is partially converted into vitamin A which is an important nutrient for many
functions, including vision, gene expression, growth, and immune function. These
observations were based on measures of dietary intake but were confirmed by blood
level measurements. On the basis of the epidemiologic observations, the notion of
increasing intake levels of beta-carotene emerged. Qualification of the biomarker,
serum beta-carotene, as a surrogate outcome is itself a challenge and not given much
attention[2]. Three large prevention trials were launched to test the hypothesis that
increasing levels of serum beta-carotene would result in reduced risk of cancer, lung
cancer in particular. [50–52].

The Alpha Tocopherol Beta-Carotene (ATBC) trial began in 1985, randomized
over 29,000 Finnish smokers in a factorial trial, alpha tocopherol vs. placebo
and bet-carotene vs. placebo [50]. Subjects were followed for 5–8 years using
the Finnish cancer registry. Results for the beta-carotene vs. placebo component
demonstrated a statistically significant increase in lung cancer incidence and lung
cancer mortality for those patients receiving a beta-carotene containing study drug.
While this result was unexpected, it was essentially replicated by a trial conducted in
the USA, referred to as CARET [51]. CARET was a randomized placebo controlled
trial of over 18,000 smokers or workers exposed to asbestos. Lung cancer mortality
and coronary heart disease mortality were significantly higher for those participants
on beta-carotene compared to the control arm. The relative risk for developing lung
cancer was 1.28 (1.04–1.57) and 1.46 (1.07–2.0) for lung cancer death. Given that
these results paralleled the ATBC results, CARET was terminated early. A third trial,
the Physicians Health Study-I (PHS-I) was a randomized double-blind factorial trial
of beta-carotene and aspirin compared to a matching placebo [52]. Participants were
US male physicians who were largely nonsmokers. Contrary to the two other trials
of smokers or workers exposed to asbestos, the PHS-I trial showed neither a benefit
nor a harm with a relative risk of 0.98. In addition, there were no trends for benefit
or harm in total mortality or cardiovascular events. More recently, a Women’s
Antioxidant Cardiovascular Study (WACS) also used a randomized factorial trial
to evaluate beta-carotene, vitamin C, or vitamin E compared to a placebo [53]. The
results indicated no benefit or harm for beta-carotene with a relative risk of 1.02.
Another trial in women, the Women’s Health Study (WHS) found no beneficial
or harmful effects of beta-carotene supplementation for cancer or cardiovascular
disease [54]. The first two trials involve participants who were at higher risk for
lung cancer while the latter three trials involved participants at lower risk. For three
of the trials [50–52], the placebo arm confirmed the observation that low serum
beta-carotene was associated with higher risk of lung cancer, despite either harmful
or no effects from increasing those levels when compared to a placebo arm. Clearly,
serum beta-carotene as a useful biomarker for risk failed as a surrogate for clinically
meaningful outcomes.
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Cardiology provides two more recent examples of biomarkers, C-reactive protein
(CRP) and troponin, neither of which qualified as a surrogate [2] for cardiovascular
outcomes. Although mortality from heart disease has fallen, it remains the leading
cause of death in the USA so research for more prevention and intervention
continues. Beyond the known risk factors of lipids, blood pressure, diabetes and
obesity, inflammation is now considered to have an impact on the progression of
cardiovascular disease [55]. One inflammation biomarker is CRP which is low in
normal individuals but increases with acute episodes such as a heart attack. CRP
has some predictive ability for future coronary events. There are now standardized
low-cost assays for CRP that meet criteria for analytical validation.

While CRP is correlated with cardiovascular events and thus can be used as a
predictor of risk, it is not known whether it is in the causal pathway. That is, even
if CRP is just tracking along with other unknown biomarkers that are on the causal
pathway, it will still correlate with the clinical outcome and thus be useful for risk
assessment. However, it will not be useful to monitor change in CRP since it is
not on the causal pathway. Thus this biomarker of inflammation does not qualify
as a surrogate outcome without further studies. One major randomized placebo-
controlled trial, JUPITER, evaluated the effect of a statin, rosuvastatin, in preventing
cardiovascular events in individuals with high CRP but lower or moderate values of
LDL cholesterol. JUPITER showed a reduction in new cardiovascular events using
this particular statin [56]. However, further analyses showed that LDL reductions
and CRP reductions were weakly correlated. Thus, JUPITER was not able to
demonstrate that CRP is in the causal pathway and thus not a validated surrogate.
However, it may have utility as a predictor of cardiovascular risk and be used in that
manner [2].

Troponin is another biomarker of interest. In fact, troponin is used as a biomarker
in the current definition of a myocardial infarction or heart attack but in combination
with other factors such as changes in electrocardiograms and myocardial enzyme
measurements [57–59]. It is a protein that is involved with the function of both
cardiac and skeletal muscle function. Subunits of troponin can be defined which
are cardiac muscle specific. High levels of troponin do not automatically suggest an
acute myocardial event, so it is not in the primary causal pathway. However, it is the
preferred biomarker included in the definition of a heart attack and has met accepted
standards of good clinical laboratory measurement. Still, the analytic validation is
not complete [2]. Clinical data indicate that high levels of troponin indicate a higher
risk of mortality. Thus, it passes the first requirement for surrogate qualification.
However, to date there is limited evidence that suggests reducing troponin levels
would improve mortality risk.

Finally, we examine the use of epogen in kidney failure patients to maintain
hematocrit levels. Clinicians believe that it is important to treat anemia to maintain
an adequate hematocrit level. A class of erythropoietin-stimulating agents was
developed to increase hematocrit levels. One such drug, epogen, was evaluated in
a randomized placebo clinical trial called TREAT (Trial to Reduce cardiovascular
Events with Aranesp Therapy), which was a randomized placebo-controlled clinical
trial, epogen vs. placebo plus standard of care, in type 2 diabetes patients with
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kidney failure [60]. This drug was known to significantly improve hematocrit levels,
considered to be a biomarker for type 2 diabetes risk and a surrogate for clinical
outcome. Many investigators believed that TREAT was even unethical to start since
the evidence that epogen increased hematocrit was established, and thus presumed
to produce a resulting clinical benefit, breaking their equipoise between epogen
and placebo[60]. Slightly over two thousand patients were randomized to each
intervention. Compliance to the study medication was excellent and the resulting
hemoglobin levels were statistically and clinically higher on the epogen-treated
patients compared to placebo treated. Nevertheless, the composite endpoint of death,
nonfatal heart attack, nonfatal stroke, heart failure, and myocardial ischemia had a
hazard ratio of 1.05 (0.94–1.17), in favor of placebo. The outcome of end-stage renal
disease or death had a hazard ratio of 1.06 (0.95–1.19), similar to the composite
outcome. There was a significant difference in fatal and nonfatal stroke frequency,
with a hazard ratio of 1.92 (1.38–2.68, P < 0.001) in favor of placebo. Thus, the
biomarker of hemoglobin levels would not qualify as a surrogate since this trial
demonstrated a dramatic effect on hemoglobin level increase with no effect on
clinical outcomes, but with a significant adverse effect in fatal and nonfatal stroke.
Obviously, not all of the clinical effect of epogen was captured by simply measuring
hematocrit.

In early AIDS research, measures of immune response such as CD4 cell counts
were used as biomarkers with the hope of being a valid surrogate. AIDS is a disease
that compromises the body’s immune system. One therapeutic strategy is to help
the immune system recover as measured by CD4 cell counts. Low CD4 cell count
was considered a predictor of mortality and morbidity in AIDS patients. Fleming
and DeMets [1] report several examples where improved or positive changes in
CD4 cell count did not convey clinical benefit in either mortality or morbidity.
Recently, another study group has reported similar results [61]. Two separate trials
evaluating two cohorts defined by their baseline CD4 counts compared interleukin-
2 plus antiretroviral therapy with antiretroviral therapy alone. Despite substantial
and sustained elevations of CD4 count over several years, there was no significant
clinical benefit in either study.

6 Summary

The need for randomized clinical trials to evaluate new interventions will continue
to be the best and primary methodology. As a result, interest in efficient trial
designs will include the potential use of biomarkers as a surrogate for clinical
outcomes. As described, besides being able to measure the biomarker adequately,
there are two critical requirements before it can be relied on completely. Those
requirements are that a reasonably strong correlation exists between the biomarker
and the clinical outcome, and reasonable certainty that the biomarker is capturing all
of the effects of the intervention including harmful effects. Ideally, there should be
perfect correlation and 100% certainty. These stringent conditions are rarely met.
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How strong the correlation must be and how certain we are about capturing all
of the effects will depend on the context of the intended use. That is the point of
the IOM’s third criterion [2]. Thus, no specific correlation and level of certainty
can be specified without considering the context of intended use. With alarming
frequency, reliance on a biomarker as a surrogate for clinical outcomes has resulted
in numerous interventions being utilized without appreciation of other effects,
especially harmful effects. Only later, when subsequent trials were conducted were
the harmful effects discovered. Biomarkers will, however, continue to play a critical
role in the development of new drugs, devices, and other interventions. Some
biomarkers may also be useful in identifying patient risk. However, for now the
recent IOM report [2] is consistent with the recommendations of Fleming and
DeMets [1] made a decade earlier that biomarkers should not be relied upon as a
surrogate for clinically relevant outcomes in Phase III clinical trials.
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On the Use of Biomarkers to Elucidate Clinical
Trial Results: Examples from the Women’s
Health Initiative

Ross L. Prentice and Shanshan Zhao

Abstract Biomarkers provide opportunities to maximize the knowledge gained
from randomized controlled trials. Applications may include the identification of
subpopulations that experience differential treatment effects; the assessment of
adherence to treatment or intervention goals; and the elucidation of key biological
pathways through which the treatments affect clinical outcomes. This last biomarker
role also has implications for the development and initial testing of potential
treatments. These types of applications are illustrated using biomarker studies
in the Women’s Health Initiative postmenopausal hormone therapy and low-fat
dietary pattern trials. Related topics are also described where further methodology
developments would be helpful.

1 Introduction

The Women’s Health Initiative (WHI) is a large-scale epidemiologic research
program focused on the prevention of chronic disease among postmenopausal
women. A total of 161,808 postmenopausal women, in the age range 50–79, were
enrolled at 40 U.S. Clinical Centers during 1993–1998. The centerpiece of the WHI
is a multifaceted clinical trial of four preventive interventions, in a partial factorial
design [1]. A total of 10,739 post-hysterectomy women were randomized to the E-
alone trial of 0.625 mg/day of conjugated equine estrogens (Premarin) or placebo;
16,608 women with uterus were randomized to the E C P trial of this same estrogen
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Table 1 Clinical outcomes in the WHI postmenopausal hormone therapy trials

E C P trial E-alone trial

Outcomes Hazard ratio 95% CI a Hazard ratio 95% CI a

Coronary heart disease 1.29 1.02–1.63 0.91 0.75–1.12
Stroke 1.41 1.07–1.85 1.39 1.10–1.77
Venous thromboembolism 2.11 1.58–2.82 1.33 0.99–1.79
Invasive breast cancer 1.26 1.00–1.59 0.77 0.59–1.01
Colorectal cancer 0.63 0.43–0.92 1.08 0.75–1.55
Endometrial cancer 0.83 0.47–1.47
Hip fracture 0.66 0.45–0.98 0.61 0.41–0.91
Death due to other causes 0.92 0.74–1.14 1.08 0.88–1.32
Global index 1.15 1.03–1.28 1.01 0.91–1.12
Number of women 8,506 8,102 5,310 5,429
Follow-up time, mean (SD), mo 62.2 (16.1) 61.2 (15.0) 81.6 (19.3) 81.9 (19.7)
a CI confidence interval, from a proportional hazards model stratified by age (5-year
categories), and randomization status in the DM trial

preparation plus 2.5 mg/day medroxyprogesterone acetate (Prempro) or placebo;
and 48,835 women were randomized to a low-fat dietary pattern (40%) or usual diet
(60%). At their one-year anniversary following randomization into either or both of
the hormone therapy (HT) or dietary modification (DM) components, participating
women were given the opportunity for further randomization to a dietary supple-
mentation trial of 1,000 mg/day calcium carbonate plus 400 international units of
vitamin D3 or placebo, and 36,282 women did so. The WHI program is strengthened
by the inclusion of a companion cohort study among 93,676 postmenopausal women
in the same age range, recruited from essentially the same catchment populations,
with much commonality with the clinical trial in methodology, and in data and
biospecimen collection.

Table 1 shows key findings from the hormone therapy trials [2, 3] with findings
for the designated primary CHD outcome, and the designated primary adverse
outcome highlighted. The E C P trial was stopped early in 2002 when health risks
were judged to exceed benefits over a 5.6-year average intervention period. The
risks included an early elevation in coronary heart disease incidence, the primary
trial outcome for which an important risk reduction had been hypothesized, and
elevations in stroke and venous thromboembolism incidence. An elevation in breast
cancer incidence and a reduction in fracture incidence were also observed, as was
hypothesized in trial design [1]. A global index, defined as the time to the earliest
of the outcomes listed above it in Table 1 was in the unfavorable direction, and
contributed to early stopping considerations. The E-alone trial also stopped early, in
2004, after an intervention period that averaged 7.1 years, substantially because of a
stroke elevation of similar magnitude as that observed for E C P, though health risks
and benefits and the global index were rather balanced in this trial.

Analyses beyond the summary hazard ratios (HRs) shown in Table 1 took place
for each clinical outcome, as well as for some additional important outcomes (e.g.,
cognition and dementia). These included analyses of HR form as a function of time,
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Table 2 Comparison of cancer incidence rates between intervention and comparison groups in
the Women’s Health Initiative (WHI) dietary modification trial

Incidence per 1,000 person-years (number of cases)

Cancer site Intervention Comparison p a HR (95% CI) b

Breast 4:15.655/ 4:52.1; 072/ 0.09 0.91 (0.83–1.01)
Colorectal 1:27.201/ 1:18.279/ 0.29 1.08 (0.90–1.29)
Ovary 0:36.57/ 0:43.103/ 0.03 0.83 (0.60–1.14)
Endometrium 0:79.125/ 0:71.170/ 0.18 1.11 (0.88–1.40)
All other sites 4:56.720/ 4:81.1; 140/ 0.30 0.95 (0.86–1.04)
Total cancer 10:69.1; 687/ 11:22.2; 661/ 0.10 0.95 (0.89–1.01)

Trial includes 19,541 women in the intervention group and 29,294 women in the comparison group
a Weighted log-rank test (two-sided) stratified by age (5-year categories) and randomization status
in the WHI hormone therapy trial. Weights increase linearly from zero at random assignment to a
maximum of 1.0 at 10 years
b HR hazard ratio, CI confidence interval, from a proportional hazards model stratified by age
(5-year categories), and randomization status in the WHI hormone therapy trial

analyses of HRs among women adherent to their assigned intervention, and various
subgroup analyses (with appropriate caveats). Participating women were actively
followed beyond the cessation of intervention, giving rise to a range of additional
analyses of public health importance [4, 5].

To cite but one example, the more detailed studies of breast cancer incidence
in the E C P trial showed an HR that increased unfavorably and approximately
linearly to about 1.6 following 5 years of use, and dropped back to basal levels
by 2–3 years following trial stoppage. When analyses focused on adherent women,
a more dramatic increase to an HR of about 2.5 after 5 years of use was estimated,
again with dissipation by 2–3 years following cessation of use [6]. These patterns,
in conjunction with the approximately six million women using this estrogen plus
progestin preparation in the USA, about 70% of whom stopped shortly after initial
trial results [1] were announced, projected a national reduction in breast cancer
incidence of about 15,000 women per year as a result of this change in usage
patterns, as agrees with subsequent U.S. breast cancer incidence rates [7].

The WHI low-fat dietary pattern trial had dietary intervention goals of equal or
less than 20% of energy from fat; five or more fruit and vegetable servings/day,
and six or more grain servings/day, with breast and colorectal cancer as primary
outcomes, and with ovary and endometrial cancer as additional diet-related cancers
that may benefit from this intervention. Table 2 shows principal cancer incidence
results from this trial, which proceeded to its planned termination with an 8.1-
year average intervention period. The trial design projected a reduction in breast
cancer risk with an overall HR of 0.87. The principal targeted dietary change was
a reduction in percent of energy from fat, but only about 70% of the hypothesized
change was achieved. In correspondence the estimated breast cancer HR of 0.91 [8]
differed from unity by about 70% of that projected, but was not significantly differ-
ent from one (weighted logrank p D 0.09). The corresponding contrast for ovarian
cancer incidence [9] was nominally significant (p D 0.03), providing an important
lead for a disease having few known modifiable risk factors. For both breast [8] and
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ovarian cancer [9], there was a significant interaction between baseline percent of
energy from fat and HR, with stronger evidence for an intervention effect among
women having a high fat content in their customary diet. These women made a
comparatively larger reduction in percent of energy from fat, if assigned to the
dietary intervention group.

The calcium and vitamin trial did not provide significant evidence of a treatment
effect, either for its primary hip fracture outcome [10], or secondary outcomes
(colorectal cancer, other fractures).

2 Biomarkers and Variations in Clinical Trial
Intervention Effects

Even though it is good clinical trial practice to focus primarily on overall treatment
effects as opposed to those in subsets of a study population, it needs to be recognized
that hazard ratios may, and often do, vary according to specific characteristics
of the study population. Notably, HRs provide but one way of summarizing a
treatment effect over time, and lack of variation on an HR scale may differ from
corresponding lack of variation on other assessment scales. That said, however,
HR or other ratio measures (e.g., odds ratios) seem particularly useful in leading
to simple models, wherein the joint association of treatment and study subject
characteristics or exposures on clinical outcomes often seems to depart little from a
multiplicative model.

For example, for breast cancer incidence, no interacting demographic or clinical
variables were found for E C P [11], whereas for E-alone a suggested reduction in
risk seemed to be largely confined to lower risk women, specifically those without
benign breast disease or a family history of breast cancer [12].

Several nested case–control studies within the HT trial cohorts were conducted
in an attempt to identify biomarkers that may interact with hormone therapy
HRs, or that may mediate the observed intervention effects on clinical outcomes.
These studies primarily focused on biochemical and genetic markers that were
recognized risk indicators for the clinical outcomes under study. For example,
a Cardiovascular Disease Biomarker Study focused on markers of inflammation,
coagulation/thrombosis, lipids and lipoproteins, and related genetic variants, for
each of coronary heart disease, stroke, and venous thromboembolism. These studies
[13, 14] generally confirmed associations with disease risk, but there were few
interacting factors identified and none of the observed biomarker changes following
intervention activities appeared to meaningfully mediate the observed treatment
effects, a topic that will be discussed further below. As an example of an interacting
variable, women having a relatively high baseline low-density lipoprotein (LDL)
cholesterol who were assigned to active hormone therapy evidently experienced a
comparatively larger early elevation in coronary heart disease risk [13].

Some high-dimensional genotype biomarker studies were also conducted, in an
attempt to understand more of the biology related to observed clinical effects in
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the WHI trials. For example, a breast cancer nested case–control study involved
the genotyping of 9,039 single nucleotide polymorphisms (SNPs) for 2,166 women
who developed breast cancer during the trial intervention period. A randomized trial
context is well suited to genotype by treatment interaction testing in that “case-
only” analyses, which require genotype data only on study subjects developing
disease, have efficiency about the same as if genotyping had been conducted on
the full cohort.

More specifically, let V D 1 and V D 0 denote active and control randomization
assignments, and z D 0, 1, or 2 denote the number of minor alleles of an SNP.
A simple Cox model that stratifies on SNP genotype, and allows a separate HR
parameter for treatment at each value of z, can be written

œ .tI V; z/ D œ0z .t/ expf“0I .z D 0/ C “1I .z D 1/ C “2I .z D 2/g;

where I(�) denotes an indicator variable, and e“z is the HR for women having SNP
genotype z, for z D 0, 1, or 2. From this expression,

logit .VjX D t; z/ D logit .VjX > t; z/ C
2X

iD0

“iI .z D zi/ ;

where X D t denotes disease occurrence at time t following randomization. The
important feature here is that V is orthogonal to z by virtue of randomization so
that if the disease is rare one has, to a good approximation

logit .VjT > t; z/ D log fq= .1 � q/g ;

where q D pr(V D 1) is the randomization fraction for the active treatment group. It
follows that one can estimate intervention HRs at each SNP genotype by ordinary
logistic regression of the randomization indicator V on indicator variables for the
number of minor SNP alleles, with log fq/(1 � q)g as an “offset.” Breast cancer
analyses of this type yielded nominally significant variations in the intervention HR
with a SNP (rs3750817) in intron 2 of the fibroblast growth factor receptor gene on
chromosome 10 for both E C P and E-alone [15] and for the dietary modification
intervention in the subset of women (denoted DMQ) who were in the upper
quartile of percent of energy from fat in their baseline diet [16]. These analyses
also drew attention (nominal p < 0.05) to a SNP (rs7705343) in the mitochondrial
ribosomal protein S30 region of chromosome five [17] for each of E-alone, DMQ,
and for the calcium and vitamin D intervention (for which there was no breast
cancer “main” effect). For either SNP the more favorable intervention effects were
evidently localized among women who were homozygous for the SNP minor allele
(TT genotype for rs3750817; AA for rs7705343). A challenge with these types
of suggestive findings is the identification of a research strategy for replication.
Observational studies pertinent to these intervention topics may be limited in their
assessment of related exposures (e.g., hormonal or dietary exposures), and may be
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subject to important confounding or measurement biases. In general, the methods
for identification of genotype by environmental factor interaction evaluation are at
an early stage of development, and large-scale clinical trial settings have much to
offer in this arena.

3 Biomarkers of Intervention Adherence and Exposure

As mentioned above, the Dietary Modification trial evidently achieved only about
70% of its projected intervention versus control group difference for the principal
dietary intervention target, percent of energy from fat. Even this 70% assessment
relies on self-reported dietary information from participating women. Specifically,
based on food frequency questionnaire (FFQ) assessments, intervention group
women reported a 10.7% average lower percent of energy from fat compared
to the control group at 1-year following randomization; 9.5% at 3 years after
randomization; and 8.1% at 6 years after randomization. However, the FFQ data
also indicate a differential total energy consumption by about 100 kilocalories/day,
which is not consistent with the weight changes experienced by trial participants
(2–3 kg greater weight loss in intervention group compared to usual diet control
group at 1-year, which mostly dissipated over the subsequent 5 years). If the greater
underreporting of energy by intervention group women pertained disproportionately
to fat calories, then percent of energy from fat would also be differentially reported
and the power of the DM trial accordingly affected.

In fact, the dietary assessment measurement issue is even more acute in observa-
tional nutritional epidemiology studies, where systematic and random assessment
errors could well distort the very associations under study, rather than simply
reducing study power as in the intervention trial setting. In either context, however,
biomarkers provide important avenues for strengthening the research agenda.

Two nutritional biomarker substudies have been conducted in WHI cohorts, and
a controlled human feeding study that aims to develop biomarkers for additional
nutrients and foods is currently underway. The first, the Nutrient Biomarker Study
(NBS) included energy [18] and protein [19] biomarkers and a concurrent FFQ,
among a representative 544 weight-stable women in the DM trial. The second, the
Nutrition and Physical Activity Assessment Study included these biomarkers and
self-reports of dietary frequencies, records and recalls, along with a biomarker of
activity-related energy expenditure and three types of physical activity self-report,
among 450 representative women from the WHI Observational (cohort) Study. By
simple linear regression of log-biomarker assessments on corresponding log self-
reports and on readily available study subject characteristic data (body mass index,
age, and ethnicity), calibrated consumption estimates were developed for energy,
protein, and percent of energy from protein. For example, for energy, even though
the log self-report data explained only a few percent (e.g., 3–4% for the FFQ) of
the variation in log-biomarker values, the inclusion of these other factors in the
regression equation raised this percentage to the 40–45% range. Upon extracting the
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temporal variation in the biomarker, this increased to about 70% of the average daily
energy consumption variation over a 1-year study period [20]. The NBS equations
were used to develop calibrated-energy, protein, and percent of energy from protein
estimates throughout the WHI cohorts, and positive associations between energy
and several major cancers [21] as well as coronary disease [22] and diabetes [23]
were found that were not apparent without calibration. The role of body mass
index in these analyses is complex [24], and the associations just mentioned seemed
substantially, if not entirely, explained by body fat accumulation over time.

This nutritional epidemiology research area and the similarly important physical
activity epidemiology area are ripe for further development, with a substantial use
of biomarkers providing a logical next step in the overall research agenda.

The energy biomarker data indicates severe underreporting using the FFQ, by
about 30% overall, and with much greater underreporting among overweight and
obese women, along with greater underreporting by younger compared to older
postmenopausal women. These analyses also suggest some energy underreporting
by intervention compared to control group women also, by about 100 kcal/day,
allowing the weight change data mentioned above to align with corresponding
calibrated energy consumption in the DM trial.

4 Biomarkers as Mediators of Clinical Trial
Intervention Effects

Again let V D 1 or 0 denote active and control randomization assignments in a
clinical trial, but now let z denote a biomarker change following some period
of intervention activities. Analyses may aim to understand the extent to which
intervention effects on the clinical outcome are mediated by z. A traditional
mediation analysis would compare the coefficient of V in a regression analysis
that doesn’t include z with a corresponding analysis including z, with evidence for
mediation if the coefficient for V moves substantially toward the null when z is
added to the regression model.

A key statistical difference is evident between the type of interaction analysis
discussed in Sect. 2, where V and z are independent by study design, and mediation
analyses where V and z may be highly correlated. This is a critical point. In the
extreme, for example, if the biomarker doesn’t change in the control group (z D 0)
and changes by exactly the same amount (z D c, for some c ¤ 0) among all study
subjects in the intervention group, then z and V will be perfectly correlated, and
it will not be possible to carry out an analysis that simultaneously models V and
z. As a plausible departure from this scenario, suppose that z is constant in both
groups, but that z is assessed with some technical measurement error. As amplified
below, the regression analyses will then be possible, but z may then appear not to
mediate, even though the biomarker change in question may be central to explaining
the intervention effects on clinical outcomes.
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To elaborate just a little, consider baseline, x0, and post-intervention, x1,
biomarker values, and suppose that the biomarker fully mediates an intervention
effect in a linear model for a quantitative response Y. Hence, E(Y; x0, x1,
V) D a C a0x0 C a1x1, with a1 ¤ 0. Under a bivariate normal model for (x0, x1) with
mean (�0, �1 C dV), common variance ¢2 and correlation ¡, one can derive

E .YI x0; V/ D a0 C a0
0x0 C .a1d/ V;

where a0 and a0
0 are simple functions of the response and biomarker parameters, so

that a mediation analysis would compare an estimate of a1d to an estimate of the
coefficient of V (zero) when x1 is added to the regression model.

Now suppose that x0 and x1 incorporate classical normal measurement error, so
that one measures w0 D x0 C e0 and w1 D x1 C e1 where e0 and e1 are independent
mean zero normal variates having variance ¢2

e . It is straightforward to show that
the coefficient of V in E(Y; w0, V) is again a1d, unaffected by measurement error
owing to the independence between x0 and V, but that for V in E(Y j w0, w1, V) is
a complicated function of model parameters that approaches (a0 C a1)d/(2 C •2) as
¡ ! 1, where •2 D ¢2

e =¢2. This limiting coefficient can be very far from zero even
if •2 is small! This rather counter-intuitive result arises because of the diminishing
ability to distinguish the biomarker effect from the overall treatment effect on Y,
as ¡ ! 1. It follows that careful modeling of the biomarker and its measurement
process may be needed to reliably assess mediation, or more generally, to assess
treatment effects after allowing for certain biomarker changes.

As noted above, none of the candidate biomarkers studied appeared to mediate
HT effects on cardiovascular diseases in the WHI hormone therapy trials. We
undertook additional “discovery” research to identify blood biomarkers that are
risk markers for these diseases, and that are affected by hormone therapy. This
work focused on protein expression, using an Intact Protein Analysis System [25]
having the capability of quantitatively comparing concentrations between pairs
of specimens for about 350–400 proteins across a substantial dynamic range.
Specifically, concentrations based on blood collected 1-year after randomization
were compared to corresponding baseline concentrations for 50 women adherent
to active E-alone, and 50 women adherent to active E C P, over the first year of
HT trial participation. For throughput reasons IPAS analyses were based on pools
formed from equal volumes of serum from 10 women. A total of 378 proteins were
quantified for change. Of these, a remarkable 44.7% (169/378) had evidence of
change (p < 0.05) following intervention with E-alone or E C P [26, 27]. The protein
changes were mostly quite similar for E-alone and E C P, and included proteins
in multiple biological pathways relevant to observed clinical effects, including
inflammation, coagulation, immune function, cell adhesion, growth factors, and
osteogenesis, among others.

Corresponding analyses were then conducted, using the same proteomic plat-
form, to compare baseline blood protein concentrations between women who went
on to develop CHD or stroke and corresponding matched controls, with cases and
controls drawn from the WHI Observational Study. This time larger pools of size
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100 were employed. There were eight such pool pairs for each of these diseases,
as well as for breast cancer. From the resulting data [28] there were 37 proteins
having nominal p < 0.05 for a CHD case versus control difference compared to 17.3
expected by chance; and 47 for stroke compared to 18.3 expected by chance. Several
of these had estimated false discovery rates <0.05 and most of these were among the
proteins evidently affected by E-alone and/or E C P. These provide novel candidates
for mechanistic effects of HT on these cardiovascular diseases.

We are still at an early stage of evaluating these candidates for mediation in
the HT trials. An initial evaluation involving beta-2 microglobulin, a highly ranked
protein for CHD association, and insulin-like growth factor binding protein 4
(IGFBP4), a highly ranked protein for stroke association, confirmed the association
of these proteins with disease incidence in the WHI trials but, once again, change
in protein concentration following hormone therapy treatment did not seem to
mediate intervention effects on these diseases, at least not without explicit account
of the biomarker measurement error process. Further, analyses with these analytes
revealed that HT hazard ratios, in the presence of baseline and 1-year biomarker
measurements were quite sensitive to the ratio (•2) of the measurement error
variance to the underlying biomarker variance for both E-alone and E C P, with
larger •2 values consistent with full mediation.

These preliminary analyses reinforce the need for enhanced statistical methods
for identifying the important biological intermediaries of intervention effects in
clinical trials. Adequate modeling of the underlying biomarker process, and of the
departure of such models from corresponding measured biomarker values, may
typically require biomarker assessments at more than two time points in conjunction
with large case and control sample sizes. This topic, and methods for correcting
treatment hazard ratio estimates for the biomarker measurement process, will be
discussed in more detail elsewhere.

5 Biomarkers for Intervention Development

In recent years biomarkers have come to play a rather central role in treatment
development, particularly in the therapeutics area. For example, the molecular
characteristics of patient tumors may identify key therapeutic targets for disruption
by potential treatments. High-dimensional data, including gene expression profiles,
may help to focus developmental efforts toward therapeutic benefit or toward the
avoidance of certain adverse effects.

The development and initial testing of preventive interventions is a rather under-
developed aspect of the chronic disease prevention research agenda. Sometimes it is
attractive to move interventions from therapeutics to primary prevention. Examples
include statins for heart disease prevention; tamoxifen, SERMS, or aromatase
inhibitors for breast cancer prevention; or biphosphonates for fracture prevention.
However, this approach seems unlikely to lead to the behavioral changes, for
example, in the diet and physical activity area, that arguably provide the ultimate



30 R.L. Prentice and S. Zhao

preventive approaches needed. Observational epidemiology has much to offer for
identifying preventive approaches, but findings may lack the needed specificity and
force to fuel needed behavioral, regulatory, or policy changes. For example, one
can contrast the influence of the rather extensive body of observational research on
postmenopausal hormones, with that of the comparatively few clinical trials that
eventually were able to be conducted.

Intermediate outcome trials, which have outcomes on putative pathways between
treatments and clinical outcomes of interest, have considerable potential to add to
these other data sources for preventive intervention development. For example, a
trial of moderate size, called the Postmenopausal Estrogen Progestin Intervention
(PEPI) trial was initiated in advance of the WHI trials to compare various hormone
regimens in respect to cardiovascular disease risk factors, uterine hyperplasia, and
other intermediate outcomes [29, 30]. This trial had an influence on the choice of
regimens studied in the WHI trials, but it did not warn, for example, concerning the
observed early elevation in CHD, or the sustained elevation in stroke that emerged
in the WHI hormone therapy trials.

Intermediate outcome trials that combine changes in major risk factors for clin-
ical outcomes of interest with more agnostic, possibly high-dimensional, changes
in blood or other biospecimens, may offer a more comprehensive approach to
the selection and initial evaluation of preventive interventions. For example, the
agnostic aspect could entail study of potential intervention effects on the plasma
proteome and metabolome. These data, whether for a few emergent candidates or
for a high-dimensional set of changes, could then be merged with observational
analyses relating the entire set of intermediate variables to clinical outcomes of
interest, to develop projections of intervention effects on each such outcome.
This approach could be considered for behavioral as well as chemopreventive
interventions. The two data sources to be combined would each involve studies
having a small fraction of the cost of a full-scale prevention trial. While not sufficient
in itself, such an approach could augment the value of intermediate outcome trials
and, in particular, may help to filter intervention options arising from the traditional
data sources mentioned above, thereby permitting a focus on the more strongly
justified concepts for full-scale trial consideration with clinical outcomes.

6 Discussion and Summary

Biomarkers have potential to play several important roles in the development,
conduct, analysis, and reporting of clinical trials. Specifically, biomarkers may
permit stratification of study subjects according to the magnitude of beneficial or
adverse treatment effects, possibly leading to the identification of persons for whom
the treatment can be particularly recommended or should be avoided.

Though not much emphasized here, biomarkers typically play a key role in the
assessment of adherence to intervention goals, and in the assessment of adherence-
adjusted treatment effects. Biomarkers also provide the principal approach to
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identifying the important biological pathways whereby a treatment may influence
a clinical outcome of interest. The utility of biomarkers for each of these purposes,
but especially for the elucidation of disease mechanisms can be expected to depend
strongly on the properties of the biomarker measurement process, and on the ability
to adequately model and correct for measurement error in data analyses.

The adherence-adjustment and mediation applications of biomarkers are some-
times posed using a potential outcomes, and a principal stratification formulation
[31]. The principal stratification “framework,” however, seems too restrictive to be
very useful in this type of biomedical research context [32, 33], and the important
measurement error issue discussed here does not seem to have been addressed in the
potential outcomes context.

Finally, high-dimensional biomarkers from discovery platforms evidently have
an important role to play in intervention development, though this concept has yet
to be much explored to date for preventive intervention development.
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On the Use of Biomarkers in Vaccine Research
and Development

Steven G. Self

Abstract Biomarkers are characteristics that are objectively measured and evalu-
ated as indicators of normal or pathogenic biologic processes. There are a multitude
of ways that biomarkers are used including diagnosis of disease, prognosis of
clinical outcomes, patient staging and treatment selection, indication of response
to a prior natural exposure, and characterization of response to a biomedical
intervention. In the general setting of vaccine trials for infectious diseases, the
identification of biomarkers ultimately depends on the specifics of the vaccine and
the pathogen and typically focuses on aspects of the immune response to vaccine
and/or detection and typing of the pathogen. A central use of immune response
biomarkers in vaccine research is as primary endpoints for early phase vaccine
trials. At one end of the spectrum, these biomarkers define the extent to which the
vaccine is biologically active while at the other end they characterize the nature of
the response with sufficient detail to provide some sense of the plausibility that the
responses would be clinically protective.

This general theme of identification and validation of immune response biomark-
ers as surrogate endpoints is a specific area of interest in vaccine trials. In contrast,
pathogen-based biomarkers are often used as components of clinical endpoints
in situations where clinical outcomes may be attributed to causes other than the
pathogen targeted by vaccination. Such biomarkers can lend specificity to trial
endpoints that increases sensitivity to detect meaningful vaccine effects. A final
important use of both immune response and pathogen-based biomarkers in vaccine
trials is the identification of clues that can help to guide the iterative development of
vaccines.
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1 Introduction

Biomarkers are characteristics that are objectively measured and evaluated as
indicators of normal or pathogenic biologic processes. There are a multitude of
ways that biomarkers are used including diagnosis of disease, prognosis of clinical
outcomes, patient staging and treatment selection, indication of response to a prior
natural exposure, and characterization of response to a biomedical intervention.

The use of biomarkers is ubiquitous in the clinical evaluation of biomedical
interventions. In this application, biomarkers are typically used as endpoints in
early phase clinical trials as a means for quickly and efficiently assessing the
plausibility for clinical efficacy. Biomarkers are also sometimes used in later phase
clinical trials as either a component of primary clinical endpoints to increase the
sensitivity to detect intervention effects or as replacements for primary clinical
endpoints to increase the efficiency with which efficacy evaluations are performed.
Finally, in some circumstances, biomarkers are used in pivotal efficacy trials as
secondary endpoints for analyses aimed at elucidating a deeper understanding of the
biological basis for efficacy that can then be used to guide development of improved
intervention strategies.

In the general setting of vaccine trials for infectious diseases, the identification
of biomarkers ultimately depends on the specifics of the vaccine and the pathogen.
However, there are a couple elements of commonality that make it possible to
discuss biomarkers quite generally for vaccine trials and each of these elements
maps directly to a specific class of biomarkers.

The first element of commonality is simply the collection of interventions defined
as vaccines and the associated class of biomarkers is comprised of the measured
immune responses to vaccines. Prophylactic vaccines for infectious pathogens all
exploit the concept of immunologic memory in that they use some part of the
pathogen (or something produced by the pathogen such as a toxin) as a design
prototype, delivered to the immune system to prime it in a way to produce a
protective response upon subsequent exposure to the pathogen. Although complex
and not completely understood, the immune response to natural infection can
provide a blueprint for protection and parts of the pathogen itself provide a blueprint
for vaccine design. There is an impressive catalog of protective immune responses
against a variety of pathogens that are induced by natural exposure (and recovery)
to the pathogen or by receipt of an FDA-approved efficacious vaccine. A systematic
characterization of these protective immune responses has not been performed.
Even though there are undoubtedly pathogen-specific aspects to these vaccines, it
is reasonable to believe there are common aspects as well and the latter provides
the potential for a knowledge base that will help solve current vaccine development
problems.

The second element of commonality is the target infectious pathogen, which in
this work could refer to a virus, a bacterium or a parasite, and the associated class
of biomarkers is comprised of measures of the invading pathogen with respect to its
presence, abundance, locality, and specificity. For our purposes, the pathogen can
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be characterized without reference to a human host. This makes infectious diseases
conceptually distinct compared to cancer, for example. With cancer, the “pathogen”
is a transformed cell but it is not a foreign invader of our body per se. It is a cell
that was originally part of “us” and through a series of subtle genetic changes,
joined the other team. It is quite difficult to pin down the precise event or set of
events that make a cell a cancerous turncoat. Even when this is possible, the events
are usually in reference to a specific individual host because of the unique genetic
background within which these events occur. It is even more difficult to define the
triggering causal event for metabolic diseases such as diabetes. Compare that to an
infectious pathogen which is clearly “the other” from the start and engages the host
in a relatively well-defined event called infection that then initiates the pathogenic
process leading to disease. There is also the clear causal role that the pathogen plays.
This easy grasp of causality is something that is hard to come by in other areas of
biomedicine. But having said this, it is also true that the infection event is very early
on in pathogenesis and any grasp on causal pathways easily slips away in getting
from infection to the disease outcome.

A central use of immune response biomarkers in vaccine research is as primary
endpoints for early phase vaccine trials. At one end of the spectrum, these
biomarkers define the extent to which the vaccine is biologically active while at
the other end they characterize the nature of the response with sufficient detail
to provide some sense of the plausibility that the responses would be clinically
protective.

This general theme of identification and validation of immune response biomark-
ers as surrogate endpoints is a specific area of interest in vaccine trials. The prospect
for use of such biomarkers as surrogate endpoints in vaccine trials is particularly
intriguing because the causal pathway to an infectious disease goes through a well-
defined pathogen and that measurements of specific immune effector mechanisms
can be made that are responsible at least in part for protection. However, there
is a limit to the specificity with which pathogenesis and mechanisms of vaccine-
induced protective immune responses are understood which rightfully tempers the
enthusiasm for the use of surrogate endpoints in vaccine trials.

Pathogen-based biomarkers are often used as components of clinical endpoints
in situations where clinical outcomes may be attributed to causes other than the
pathogen targeted by vaccination. Such biomarkers can lend specificity to trial
endpoints that increases sensitivity to detect meaningful vaccine effects.

A final important use of immune response and pathogen-based biomarkers in
vaccine trials is the identification of clues that can help to guide the iterative
development of vaccines. Modern vaccines are constructed as molecular machines
that can potentially be reengineered to tailor the immune response in a way that
can improve upon immune responses and increase protective efficacy. Analyses
of immune response biomarkers to identify the quality and/or quantity of specific
immune responses that are predictive of vaccine-induced protection and pathogen-
based biomarkers to identify differential vaccine efficacy across a landscape of
antigenic variation can provide exactly such guidance for improved vaccine design.
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2 Immune Response to Vaccines

Measurements of immune response, together with safety, are the standard primary
endpoints for early phase vaccine trials. There is a basic logic that connects
these measurements of immune response to vaccine to subsequent vaccine-induced
protection, which is simply that immune responses to the vaccine will be generally
recapitulated upon subsequent exposure to a pathogen. The technical aspects of
these assays may vary but they generally expose a biological specimen to an antigen
preparation and then measure a response relative to that without such exposure. For
example, antibody responses in serum may be measured for their ability to bind
to antigen or to functionally interfere with the pathogen life-cycle (neutralization)
in vitro; cellular responses in peripheral blood may be measured for the ability of
CD4C and/or CD8C T-lymphocytes to produce cytokine and chemokine molecules
involved in their protective responses to infection in response to exposure to peptide
or protein antigens. The collection of these assays has the potential to ascertain
basic reactivity (“take”), type of response (e.g., humoral, cellular, innate), specificity
of response (e.g., to level of pathogen, strain, protein, epitope), and magnitude
of response. They can provide a remarkably detailed (albeit biologically quite
incomplete) profile of immune response.

A primary use of these immune response measurements is to assess the plau-
sibility for efficacy of a vaccine candidate either in absolute terms or relative to
that for another candidate in a setting where clinical efficacy has not yet been
directly established. The reliability and interpretability of these immunogenicity
studies is critical as important decisions are based on them. Decisions to drop a
candidate vaccine from continued development might be made if immune responses
to the vaccine do not meet criteria to make clinically significant efficacy plausible;
decisions to drop one of two candidate vaccines and advance the other in clinical
development might be made based on comparison of their immune response
profiles. Although the immediate clinical consequences of such decisions are not
high, the long-term consequences of making erroneous choices can be significant.

A specific cautionary tale in this regard is the direct comparison of immune
responses and clinical efficacy of a 2-component and a 5-component acellular per-
tussis vaccines [1], which found a clear ordering of the vaccines in binding antibody
responses to two key antigens (pertussis toxin, filamentous hemagglutinin) and a
clear but opposite ordering of the vaccines in directly measured clinical efficacy.
A somewhat extreme example of the use of immune responses to assess plausibility
of clinical efficacy is the accelerated approval process for vaccines used by the US
FDA. In this case, plausibility for clinical efficacy may be deemed so high based
on demonstrated immune responses as to grant a provisional license for the vaccine
subject to completion of a future trial to directly characterize clinical efficacy.

A second important use of these measurements occurs when vaccine efficacy has
been established in one setting and prediction of vaccine efficacy in another setting
is needed. This “bridging” function of immune responses to vaccines is used in
support of a variety of different types of decisions. For example, comparability of
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immune responses across different production lots of vaccine or from a current to
a new method of vaccine production is used to predict comparability of clinical
efficacy across lots [2] or from old to new production methods [3]. Another
example of bridging is the use of demonstrated non-inferiority in immune responses
and safety to a currently licensed vaccine as the basis for licensure under the
US accelerated approval regulations. Comparability of antibody responses in the
serum hemagglutination-inhibition assay (HA) to the licensed influenza vaccine for
seasonal flu was the basis for the recent licensure of Fluarix [4].

Immune responses are also used to bridge vaccine efficacy across populations.
For example, clinical efficacy of the two currently licensed HPV vaccines was
established in randomized controlled trials performed in young adult women (age
15–25 for Cervarix, age 16–26 for Guardasil). Equivalence in immune responses
to vaccines specific for each of the serotypes in the vaccine formulations was the
basis for bridging efficacy observed in young women to adolescent girls [5, 6].
An important cautionary tale for bridging across populations may be found in the
development of vaccines for genital herpes where comparable immune responses to
a glycoprotein-D-adjuvant vaccine were found for men and women while clinical
outcomes differed with substantial vaccine efficacy observed in women (estimated
to be 73%) but no efficacy observed among men.

Probably the most extreme example of using immune responses to bridge clinical
efficacy is the “animal rule” developed by the US FDA for licensure of vaccines for
highly lethal pathogens for which human efficacy trials are impossible. Under this
regulation, vaccines may be licensed based on clinical efficacy and immunogenicity
data obtained in animal models combined with human safety and immunogenicity
data (as described in the US FDA Code of Federal Regulations CFR 21 314.600).
A strong and quite interesting case has been made for licensure of a vaccine for
Ebola virus under the animal rule [7], but no vaccine has been licensed as yet due
to lack of market incentives. Efforts to develop of a new generation anthrax vaccine
via the animal rule are in a similar state.

A third important use of immune response biomarkers is for guiding new
vaccine designs that will improve upon designs that are only partly efficacious.
In this iterative model of vaccine development, specific immune responses to a
partly efficacious vaccine are empirically related to vaccine-induced protection.
These associations generate hypotheses that higher levels of clinical efficacy would
obtain for a new vaccine design that amplifies those specific responses. The new
recombinant genomic and other molecular techniques that can be used to design and
construct novel immunogens provide the ability to deliver new vaccine constructs
targeting different immune response profiles in a way that was impossible for
previous generation vaccine developers [8]. Thus, vaccinologists are increasingly
able to execute this program when suitable leads are provided from analyses relating
immune responses to vaccine efficacy. Even though this use of immune response
biomarkers is quite different than their use as surrogate endpoints for bridging
vaccine efficacy, the analytic program to evaluate immune responses as surrogates
is essentially the same as would be used for this hypothesis generation.
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A framework for the empirical assessment of immune responses as surrogates
or predictors of vaccine efficacy [9] distinguished correlates of risk (CoR) from
surrogates of protection (SoP). In this framework, a CoR is defined as an immune
response to vaccine that is related to the rate or level of a study endpoint used to
measure efficacy in a defined population (established using statistical regression
modeling). An SoP is defined as an immune response that is a CoR within a defined
population of vaccinees that is also predictive of vaccine efficacy in specific analyses
that contrast patterns of risk and its relationship to immune response between
vaccines and placebo recipients. Two general approaches for evaluating an SoP in
the setting of a single efficacy trial have been described. First is the direct application
of the Prentice Criterion for surrogacy [10]. A second more recent approach is based
on the causal inference framework of principal stratification [11].

Specific statistical designs and analytic methods for the causal inference
approach involve collection of additional information to augment the basic data
obtained in the efficacy trial [12]. This additional information includes baseline
measurements from the entire study cohort that is predictive of immune responses
to vaccine and immune responses to vaccine delivered to the control group subjects
at the end of the trial follow-up period. The causal estimand in these methods is the
vaccine efficacy conditional on the (counterfactual) immune response if a subject
were to be vaccinated. Conceptually, this is the degree of protection conferred by
the vaccine to an individual with a given measured immune response to vaccination.

Neither the Prentice Criterion nor the causal inference approach formally
addresses the problem of bridging efficacy to a different setting. For this problem,
a meta-analytic approach is proposed [9] based on earlier more general work
[13–15] that requires data from multiple vaccine efficacy trials selected to reflect
the variation over which efficacy is to be bridged.

Example: Herpes zoster (shingles) is characterized by a vesicular rash and associated
pain caused by reactivation of latent varicella-zoster virus (VZV) within sensory
ganglia. The original VZV infection typically occurs during childhood and causes
the well-known condition called “chicken pox.” The incidence and severity of
shingles, along with the rate of debilitating long-term complications (postherpetic
neuralgia), increase with advancing age. The pain and discomfort associated with
shingles can be prolonged and disabling with impact on quality of life and ability
to function to a degree comparable to that of congestive heart failure, myocardial
infarction, type 2 diabetes, and major depression. The age-related increase in inci-
dence and severity of disease was observed to be correlated with the corresponding
age-related decline in VZV-specific T-cell responses while VZV-specific antibody
responses, which do not decline with age, appeared to not play a significant role.
Moreover, shingles was observed to more frequently occur in circumstances with
VZV-specific cellular responses were depressed such as cancer patients undergoing
bone marrow transplantation. These observations led to the hypothesis that a vaccine
which induced a strong VZV-specific cellular immune response could prevent the
occurrence and severity of shingles.
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A live, attenuated VZV vaccine was developed that induced a strong cellu-
lar and antibody responses to VZV as measured by interferon-” enzyme-linked
immunospot (ELISPOT) assay and enzyme-linked immunosorbent assay against
VZV glycoproteins (gpELISA), respectively. In an evaluation of immune responses
to VZV conducted as a substudy of a shingles vaccine efficacy trial, the age-
dependence of VZV-specific cellular responses but not VZV-specific antibody
responses was confirmed using pre-vaccination samples and the vaccine induced
both cellular and antibody responses measured 6 weeks post-vaccination that were
significantly greater in magnitude than those observed among placebo recipients
[16]. These observations strongly supported the plausibility for efficacy of the
vaccine. However, the absolute magnitude of cellular responses to vaccine was
seen to decline with increasing age of the vaccinee raising the prospect that vaccine
efficacy may itself be age-dependent. The estimated vaccine efficacy from the parent
efficacy trial [17] was 61% for a burden-of-illness endpoint, 66% for postherpetic
neuralgia endpoint and 51% for shingles endpoint. Interestingly, the vaccine efficacy
for shingles among subjects 70 years or older was only 38% compared to 64%
among subjects younger than 70 years. Thus, the prospect for age-dependent vaccine
efficacy suggested from trends in VZV-specific cellular immune responses was
realized in this direct evaluation of efficacy.

Cellular and antibody immune responses to vaccine measured 6 weeks post-
vaccination were assessed as correlates of risk using a case–control study design
nested within the vaccine efficacy trial. Both types VZV-specific immune responses
to vaccination were found to be significantly associated with subsequent risk for
shingles [16]. Although statistically significant, the strength of association was not
strong enough to provide a good predictor of the potential protective effect of
vaccination. A similar analysis was performed using samples obtained at the last
study visit before the diagnosis of shingles and at comparable times for controls
matched to each shingles case [18]. In this analysis, the status of VZV-specific
cellular immune response was associated with risk for shingles while VZV-specific
antibody responses were not.

Subsequent to demonstration of vaccine efficacy, VZV-specific immune
responses were used in a bridging study to demonstrate comparable immunogenicity
of a frozen formulation and a refrigerator-stable formulation of the vaccine [19]
Interestingly, VZV-specific antibody responses were used as the basis for this
bridging study even though VZV-specific cellular responses are thought to be the
key to protective efficacy of the vaccine.

3 Presence and Specificity of the Target Pathogen

The link between the clinical outcome of interest in a vaccine trial and a pathogen
that is targeted by a vaccine is not always one to one. Multiple pathogens may cause
the same clinical syndrome while only a single pathogen may be targeted by the
vaccine; a single pathogen may exhibit antigenic variability and only a subset of
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antigenic types may be targeted by the vaccine; the pathogen may exhibit genetic
variability that is not obviously reflected in a discrete set of antigenic types so that it
is unclear what pathogen types might be “covered” by the vaccine. In these cases, a
clinical efficacy endpoint is typically augmented with a biomarker-based assessment
of whether the endpoint is associated with (or attributable to) a specific variant
(genetic, antigenic) of the pathogen. The pathogen identity associated with a clinical
endpoint may be called a “mark.”

The mark that annotates a clinical endpoint might be binary, simply encoding
whether the pathogen is of the “vaccine type” (VT) or “non-vaccine-type” (NVT),
and vaccine efficacy is reported in primary analyses of vaccine trials as the degree of
protection against VT pathogens. The mark may also be complex including multiple
antigenic and/or genetic types of the pathogen; in the extreme, the mark might
include the entire genomic sequence of the pathogen. The addition of a biomarker-
based mark to the clinical endpoint provides specificity of vaccine effects on the
pathogens explicitly targeted by the vaccine. However if multiple pathogens or non-
vaccine types of the target pathogen are also associated with clinical outcomes, then
the true clinical impact the vaccine at the population level can be obfuscated by
primary reporting of type-specific outcomes. Variable vaccine efficacy across types,
shifts in the prevalence of types over time and interference amongst types can all
contribute to complexity that may be the subject of secondary explanatory analyses
of type-specific outcomes.

Biomarkers specifying pathogen type associated with clinical endpoints can form
the basis for exploratory analyses to generate specific hypotheses for improving
the design of vaccines with partial efficacy just as the aforementioned analyses of
immune responses as surrogates of protection. In this approach, the antigenic and/or
genetic variation of pathogens that is captured in the endpoint marks is explored for
gradients in mark-specific vaccine efficacy. Generally, pathogen types that are more
likely to be immunologically cross-reactive with the vaccine antigens are expected
to have high mark-specific vaccine efficacy; those pathogen types less likely to
be cross-reactive with vaccine antigens are expected to have lower mark-specific
vaccine efficacy. This notion gives rise to the concept of immunologically relevant
distance and the methods of sieve analysis [20–24], which aim to characterize
gradients in vaccine efficacy along distances computed from pathogen-specific
marks and vaccine antigens using data from vaccine efficacy trials.

Although the basic statistical framework for sieve analysis has changed little
from its inception, there have been considerable increases in the sophistication
of immunologically relevant distances used. Advances in the informatics of im-
munology [25] have delivered predictors of vaccine-responsive CD4C and CD8C
T-cell epitopes conditional on the HLA genotype of the vaccine that are being used
to construct distances for exploring vaccine targets of protective cellular immune
responses. Advances in structural biology and associated computational modeling
have provided predictions for loci of interactions between vaccine-induced antibod-
ies and the surface of target pathogen proteins and structures (scaffolds) that can
be used to test these predictions [26]. These advances are being used to focus sieve
analyses on highly specific regions of a pathogen’s proteome to explore vaccine tar-
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gets of protective antibody responses. These and other methods such as the peptide
microarray [27] have also been used to add specificity to immune response assays
so that sieve analyses can be further focused on specific regions of the pathogen
proteome to which specific vaccine responses are directed. Suppose an immune
response to vaccine directed at a specific locus in the pathogen proteome is shown to
be a correlate of risk. Then additional evidence that the immune response may also
be a surrogate of protection can be provided by a sieve analyses focused on the same
site that show gradients in vaccine efficacy are associated with variation at that site.

The following examples serve to illustrate some of the aforementioned ideas.

Example 1: Rotavirus-associated acute gastroenteritis (rAGE) is a significant burden
of mortality in children worldwide accounting for nearly two million deaths
annually. Nearly all of these deaths occur in developing countries where life-saving
rehydration therapy for severe diarrhea is not readily available. There are multiple
causes of acute gastroenteritis (AGE) and, in the course of regular annual epidemics,
rotavirus accounts for about 1/3 of all such deaths. There are two rotavirus vaccines,
each containing multiple antigens that cover the major rotavirus serotypes that are
highly efficacious in preventing severe rAGE in the developed world. However these
vaccines are only 30–40% efficacious in the developing world where the disease
burden is so high. Thus, even though there are two licensed vaccines, rotavirus
vaccine research is still an important and active field.

In rotavirus vaccine trials, endpoints are defined as clinical diagnosis of severe
AGE together with presence/absence of rotavirus in the stool and, if present, the
viral serotype and genotype. Primary efficacy outcomes are stated in terms of
vaccine-related reduction in rates of rAGE, serotype-specific rAGE and overall
AGE. The vaccines contain multiple antigens that cover the major rotavirus
serotypes.

Results on incidence of rAGE reported in 2008 from a Phase III vaccine trial
of GSK’s vaccine Rotarix conducted in Latin America [28] demonstrate relatively
high levels of efficacy (around 80%), which are greater than those observed in trials
conducted in developing countries throughout Africa and Asia but less than those
in the developed world. Vaccine efficacy to prevent serotype-specific rAGE ranges
from below 40% to over 80%. Moreover, the frequency distribution of serotypes was
observed to shift considerably over the two-year follow-up period of the trial. These
shifts from year to year may be due to natural variation in circulating strains of virus,
may be by differential efficacy of the vaccine across serotypes and may be due to
interactions amongst the different serotypes and their relation to vaccine-induced
immune responses. Thus, the specificity provided by the biomarker annotation of
clinical endpoints allows more precise focus on the specific vaccine effects on
clinical outcomes and also raises questions about how to define endpoints and design
trials that will deal with heterogeneity in efficacy across types, temporal variation in
the distribution of types and the potential interaction between the two.

Example 2: There are 30–40 different types of human papilloma virus (HPV)
that are sexually transmitted and infect epithelial cells in the cervix. Most (90%)
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infections in young females are naturally cleared within 2–3 years but when
persistent infection occurs with any one of about 14 “oncogenic” types, there is
a high risk for development of precancerous lesions that can then progress to
cervical cancer over a 10- to 20-year time period. There are two licensed HPV
vaccines containing antigens from HPV 16 and 18 which are two of the oncogenic
types and are associated with approximately 70% of all cervical cancers. Because
the time course is so long to observe cervical cancer outcomes, the surrogate
endpoint of precancerous lesions has been used as the primary endpoint in vaccine
efficacy trials. Specifically, the clinical endpoint used in vaccine efficacy trials was
a histological diagnosis of cervical intra-epithelial neoplasia of grade 2 or higher
(CIN2C) annotated with presence/absence and type of HPV DNA in the cervical
lesion.

Women were enrolled in an efficacy trial of the GSK vaccine Cervarix regardless
of their HPV DNA status, HPV serostatus and cytology at baseline. The trial was
conducted in 14 countries, the trial outcomes were reported in a subset of women
who were HPV16/18 negative at baseline and vaccine efficacy was assessed relative
to rates of HPV16/18-associated CIN2C, any CIN2C and non-vaccine HPV type-
specific CIN2C. Estimates of overall vaccine efficacy for types 16 and/or 18 were
87–92% depending on the specific combination of VT HPV in the lesion [29]. When
considering all oncogenic HPV types (both VT and NVT), the efficacy ranges from
37 to 62% depending on the pattern of co-infection. As you might expect, the lower
levels of efficacy are associated with lesions that contain any oncogenic HPV type
except for HPV16/18. Vaccine efficacy also depends on baseline patterns of co-
infection across the various HPV types.

In addition to age and the complexity of type-specific infection, absolute risk
of CIN2C depends strongly on the duration of persistence of HPV infection.
The vaccine is highly efficacious in reducing rates of persistent HPV 16/18
infection (over 6 and 12 months) and has variable efficacy (from 0% to 60%) for
non-16/18 oncogenic types [30]. Given the vagaries of histological diagnosis of
CIN2, questions have been posed (but not yet answered) about whether persistent
infection with oncogenic-type HPV is a better prognostic biomarker than a diagnosis
of CIN2 for cervical cancer risk and maybe a better surrogate endpoint than CIN2
for vaccine trials.

4 Summary

Biomarkers are an integral component of clinical vaccine research and develop-
ment. Two central classes of biomarkers are immune response to vaccine and
presence/identity of pathogens associated with clinical endpoints. They are used as
endpoints in Phase I/II trials to guide early clinical development and as components
of clinical endpoints to increase sensitivity to detect vaccine effects. They are also
used as the basis for explanatory analyses when there are multiple etiologies of the
clinical outcome, and/or there is important antigenic variation in the pathogen. Both
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biomarkers are used in more controversial ways involving surrogate biomarker-
based endpoints to predict efficacy in settings where no direct evaluation of vaccine
efficacy is available. The most promising use of these biomarkers is in the generation
of hypotheses for improving designs of partly protective vaccines in a program of
iterative vaccine development. Concepts of causal inference and analytic methods
for the evaluation of surrogate endpoints are directly applicable to this work and
are active areas of methodologic research. The integration of multiple scientific
disciplines (immunology, structural biology, genomics, microbiology, statistics) is
resulting in novel approaches to sieve analyses that lend additional power and
specificity especially when directly linked with analyses of immune correlates of
risk and surrogates of protection.
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Recent Developments in the Use of Clinical
Trials to Support Individualizing Therapies:
A Regulatory Perspective

Robert T. O’Neill

Abstract This chapter covers a broad range of issues centered around the topic
of optimizing therapies for individuals and the role of the clinical trial in reaching
that goal. We describe how the clinical trial has been increasingly relied upon to
provide the evidence for the patient level or patient marker level differential benefit
or risk of therapies and how the study design choices can change depending upon
the various study objectives. We consider the definition and role of prognostic
and predictive classifiers or markers in the different clinical trial designs used for
selecting and evaluating enriched study populations, and the difference between the
retrospective and prospective approaches to evaluating differential treatment effects
among marker subgroups. Some examples are given to illustrate the issues. Two
of the most challenging aspects of identifying and validating a predictive marker
are the simultaneous need to quantify the performance characteristics (sensitivity
and specificity) of the classifier and the choice of whether the study design should
include all comers or selection of the marker positive only subgroup. The motivation
for these clinical trial approaches to individualizing therapy is to maximize the
benefits and minimize the safety risks of therapies for patients.

1 Introduction

The interest in development of new therapies, particularly new drugs tailored to
address an individual patient’s needs and characteristics, sometimes expressed as
personalized medicine, is increasing the expectations for a clinical trial to fulfill
that evidentiary standard. We have seen growth in targeted therapies in oncology
and a renewed interest in the use of biomarkers not so much as surrogate markers,
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but as classifiers of a patient’s potential response to a treatment. The regulatory
interest in this area is focused on the development of evidence of efficacy and
safety of medical products, primarily through controlled clinical trials, so that these
products can be labeled with indications for use that optimizes the benefit and risk
profile of a product. This emerging interest in optimization of product exposure may
involve differential recommendations or warnings that depend upon the individual
characteristics of a subpopulation or of an individual in the subpopulation exposed
to the product.

As advances in genomics and cell biology increase, so have the opportunities for
the rational design of targeted therapies to inhibit or enhance the function of specific
molecules with the result that targeted therapies may offer a patient improved
efficacy or, as selectivity increases, less toxicity. The randomized controlled clinical
trial is the primary experimental vehicle to establish the efficacy and safety of new
medical products; so it is necessary that the clinical trial be designed to provide the
necessary evidence to support individualization of medical product use.

This article covers a broad range of issues centered around the topic of optimizing
therapies for individuals and the role of the clinical trial in reaching that goal.
The article is organized into ten sections, the second section dealing with a
conceptual definition of individualized therapy. Sections 3 and 4 cover the distinc-
tion between prognostic and predictive markers; Sect. 6 provides several current
examples of clinical trials whose results bear on individualizing therapy. Section 5
points out the relationship of individual therapy optimization to the generalizability
of clinical trial results conducted globally. Sections 7 and 8 are about individual
treatment response as a subgroup type problem with issues like replication of
evidence in subgroups and imbalances in prognostic factors in subgroups. Section 9
briefly addresses a trial design challenge when time-dependent genetic changes may
occur, and finally in Sect. 10 there is a brief summary of current targeted therapy
clinical trial designs that have been proposed in the literature.

2 A Definition of Individualized Therapy

We will focus on new drugs and pharmaceutical agents in this article. Every
pharmaceutical compound whether it be a biological or a chemical compound has
a structure and makeup that contributes to the intended and unintended effects on a
patient exposed to that compound. There are properties of the compound itself, and
characteristics of the patients, each of which can interact and contribute to a variety
of different patient responses observed or experienced. For example, if a patient
cannot metabolize a drug taken through a route of administration, then generally the
drug will not have its intended pharmacological effect(s) and such a patient may not
be able to benefit from the drug, yet may share any risks or side effects associated
with the exposure. Depending upon a patient’s genetic makeup, he/she may be a
slow, intermediate, or fast metabolizer of a drug, in which case, some individuals
may or may not respond to the drug at the assigned dose. Depending upon the
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patient’s individual ability to metabolize a drug, the same dosage level administered
to three patients with differential metabolizer characteristics may provide three
different blood levels thereby yielding three different clinical responses simply
because patients are on different parts of the dose response curve. If the target for the
drug is resistant or nonresponsive to the therapy, then the intended therapeutic effect
is neutralized or minimized, such as is the case with some tumors in oncology. If a
patient possesses a genomic marker that has been identified as predictive of clinical
response to the drug, then a patient with the marker, now called a predictive marker,
may have a better response to the drug than a patient without the marker. These are
simply a few examples to help define the concept of individualized therapy targeted
to an individual’s characteristics or to the characteristics of a subgroup to which
that person belongs or is classified. Thus, the concept of individualized therapy
as it is being used in clinical trials is about the relationship of relative treatment
response or treatment effect to a patient’s covariates, and not as much about the
prognostic relationship of patient outcomes related to covariates in a nontreated
cohort.

3 A Rich Statistical History of Modeling and Identifying
Risk Factors Associated with Differential Outcomes:
Response Or Risk

Over the years there has been an extensive statistical literature developed on
the methods for modeling and identifying factors associated with an individual’s
probability of having an outcome. This literature has been developed within the
context of long-term single cohort follow-up studies and within the context of
randomized clinical trials evaluating differential subgroup responses. Armitage and
Gehan [1] in 1974 proposed statistical methods for the identification and use of
prognostic factors; in 1980 Byar and Green [2] and Byar and Corle [3] proposed
methods to choose treatment for cancer patients based on covariate information.
In 1989, Gail et al. [4] proposed a model for projecting individualized probabilities
of developing breast cancer for white females who are being examined annually,
an approach that was eventually used as entrance criteria for clinical trials and
eligibility for treatment. In 2003, Pepe et al. [5] considered the limitations of
the odds ratio metric in gauging the performance of a diagnostic, prognostic, or
screening marker. In 2006, Ware [6] reinforced this concept by discussing the
limitations of risk factors as prognostic tools in a comment on Wang et al. [7], who
considered whether multiple biomarkers for the prediction (note: term prognostic
should have been used) of first major cardiovascular events and death might be
an improvement over single biomarkers. All of these approaches and strategies are
about relating a patient’s outcomes to a function of that patient’s covariates, usually
considered as prognostic markers or factors. However, the problem we are facing
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today with the use of clinical trials to establish differential efficacy or safety in
prespecified marker populations is somewhat different, as discussed below.

4 Prediction and Predictive Factors in Randomized
Clinical Trials

Prediction of a patient’s response to a particular treatment, as it is considered in
the design and analysis of controlled clinical trials, requires that we distinguish
between which markers associated with a subject are prognostic of disease outcome
and which are predictive of treatment effect. Generally, the term prognostic has
been used to imply an association with an outcome in a single cohort, as, for
example, elevated blood pressure or cholesterol levels being prognostic of 5-year
cardiovascular events. The term predictiveness is associated with the treatment
effect, a relative concept, requiring a comparison of the treatment group with a
control group with the same covariates or in the same subgroup. So one way
to think about the distinction between prognostic and predictive biomarkers is to
characterize the former as a single sample non-comparative problem, and the latter
as a two-sample comparative problem where the prediction is with regard to a
relative treatment effect, not just an outcome event or a response.

Considered in this way, a biomarker or classifying factor could be both prog-
nostic and predictive at the same time. With regard to the impact of these concepts
on the design, analysis, and inferences from clinical trials, proposals for clinical
trial enrichment designs are emerging where the clinical trial is being enriched
with subjects who are classified as having a marker expected to be predictive of
enhanced treatment effect or benefit. This concept introduces a variety of eligible
study designs. In addition, adaptive designs, which can prospectively adapt the mix
of patient types selected into the trial depending upon patients’ treatment response
during the trial and thereby to change the sample size of the trial accordingly,
are also being considered. Within these two frameworks, the emphasis seems to
focus on type 1 error control in a controlled trial to account for the multiple
subgroup hypotheses and the different strategies for declaring a trial successful. The
genomic revolution has also contributed to using the clinical trial to search for and
identify biomarkers which are predictive of treatment response so that the identified
marker can be used to classify subjects into subgroups which the form the basis
for the multiple subgroup hypotheses for treatment effects that are then considered.
Biomarkers are not always well defined in advance of conducting a study; or, their
sensitivity and specificity characteristics are not well known or studied prior to the
conduct of a clinical trial. So the additional task of validation or qualification of the
biomarker may be a new important feature of the design of a clinical trial, especially
when this information is not known or well characterized prior to the trial being
conducted. This issue raises a very interesting dialogue regarding retrospective vs.
prospective study designs and validation strategies.
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For the newer targeted therapy designs, the statistical framework seems to have
changed from using covariates as prognostic factors for outcomes where the design
and analysis of the trial incorporates a plan to adjust for them and where subgroups
identified by these covariates are evaluated for heterogeneity of treatment effects
using statistical tests of interactions that are known to have very low statistical power
to detect differential treatment effects. Rather the statistical framework seems to
have moved towards planning for differential treatment effects as functions of
predictive factors and towards the trial including multiple hypotheses associated
with each subgroup wherein each of these subgroup hypotheses has an acceptable
“win” criteria achieved by allocation of the overall study type 1 error to these
multiple hypotheses in a prospective statistical analysis plan in the protocol. For
example, the acceptable win criteria might be for a demonstration of treatment effect
in the enriched subset of patients only, or in the overall all comers (i.e., an unselected
population) population, in a nested subset of a super enriched population or some
other combinations. These potential inferences raise interesting considerations for
the study design for sample sizing the trial, for planned detection of treatment effect
sizes overall and in the enriched subset, and for the minimum sample size in the
marker negative groups to rule out that a treatment effect does not exist in that
subgroup.

5 A Related Topic: Dealing with Differential Treatment
Response Associated with Ethnic Factors: The Role
of the ICH E5 Guidance on Acceptance of Foreign
Clinical Data

While not well known outside of the regulatory environment, since 1991 regulators
and the pharmaceutical industry representatives from the European Union, Japan,
and the USA have been working to harmonize procedures worldwide to make global
drug development more efficient and predictable. One aspect of this effort relates to
the acceptability as well as generalizability of clinical trial data and results of effi-
cacy evaluations of therapies studied in these clinical trials when they are submitted
to regulators in different regions of the world. Of particular relevance to the question
of generalizability or extrapolation of treatment effects to different subpopulations
is the concept of intrinsic and extrinsic ethnic factors and their impact on differential
treatment responses and treatment effects, as discussed in depth in the Guidance on
Ethnic Factors in the Acceptability of Foreign Clinical Data [8].

The ICH E5 guidance discusses the exploration of treatment effect differences as
a function of both intrinsic factors and extrinsic factors. Intrinsic factors could be
genetically based, gender based, or individual person level covariate based. Extrinsic
factors could be the medical environment in which the trial was conducted or other
geographically related behavioral practices or diet differences among countries or
regions that would impact observed treatment effects. In a Questions and Answers
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addendum to the Guidance, the concept of a multiregional clinical trial to support
evidence of efficacy and safety in different regulatory regions was introduced as a
mechanism to support bridging data from one ethnic or regional location to another.
A multiregional clinical trial is a multicenter clinical trial that is conducted in
several regulatory regions of the world using a common study design and protocol
(e.g. outcomes and entrance criteria) that is followed by all investigators and
study participants. The multiregional clinical trial is intended to provide evidence
of efficacy of a treatment that would satisfy the requirements of each regional
regulatory body. Thus, it is reasonable to ask how much heterogeneity in regional
treatment effects may be considered acceptable.

The objectives for a multiregional clinical trial, as described in ICH E5 impact
the clinical trial design and its analysis in ways that have yet to be fully appreciated,
discussed, or implemented. For example, as stated in ICH E5 the objectives of such
a study are to (1) show that a treatment is effective in the region where the trial
was conducted and (2) compare the results of the study between regions with the
intent of establishing that the treatment is not sensitive to ethnic factors so that the
data could be extrapolated or bridged to the new region. The primary endpoints of
the study are to be defined and acceptable to the individual regions and data on all
primary endpoints are to be collected in all regions under a common protocol.

Advice in the guidance on the analysis of such a trial is minimal but it focuses on
providing efficacy and safety results by region, and seeks to examine consistency of
results across regions. Advice on the evaluation of the results of the study is not as
simple. The guidance recognizes that it would be difficult to generalize what study
results would be judged persuasive. Instead, the guidance provides a “hierarchy
of persuasiveness” of evidence ranging from statistically significant standalone
results of efficacy demonstrated in each region to no statistically significant regional
efficacy results yet similar results across all regions that contribute to an overall
positive study result. These evaluation criteria have implications for study sample
sizes, stratification strategies within regions, metrics of acceptable heterogeneity or
similarity of effects, etc.

With the increasing use of the multiregional clinical trial and the increase in
foreign clinical trial data in global regulatory submissions, it would seem that there
is now a need to place more emphasis at the study design stage of multiregional trials
to prospectively anticipate acceptable levels of heterogeneity. Additionally, it would
seem appropriate to anticipate when intrinsic or extrinsic factors contribute suffi-
cient systematic variability that the individual or personal treatment effect decisions
cannot be ignored. Therefore, for those study endpoints or outcomes that are likely
to be systematically related to region, country, or investigator training, or might be
ethnically sensitive such as patient reported outcomes, it would be advisable to plan
for such anticipated differences and to design the multiregional trial accordingly.
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6 Some Recent Examples of Treatment Effects
Related to Individual Or Patient Level Covariates

The drug clopidogrel (Plavix) is a platelet inhibitor with several cardiovascular uses
and benefits. Recently, there have been three clinical trials of this drug which serve
to illustrate how individual patient considerations play a role in whether to take the
drug or how to take the drug and whether there is evidence of its effectiveness under
certain individual circumstances. These examples also illustrate the need for caution
in drawing causality conclusions.

The first example is about whether there is a genetic interaction between a
patient’s genetic profile and the response to the drug. Shuldiner [9] et al. report
that they found an association between the cytochrome P450 2C19 genotype
with diminished platelet response to clopidogrel treatment as well as poorer
cardiovascular outcomes in such patients. These investigators examined only the
clopidogrel arm of the randomized trial for this conclusion. Mega et al. [10] report
on their study of patients treated with clopidogrel who, if carriers of a reduced
function cytochrome P450 polymorphism (CYP2C19 allele), had significantly lower
levels of the active metabolite of clopidogrel, diminished platelet inhibition, and a
higher rate of major adverse cardiovascular events, including stent thrombosis, than
did noncarriers of the allele. Both of these examples are essentially uncontrolled
single cohort studies of exposed patients where the association has been observed.
In contrast, Pare et al. [11] report the results of a randomized controlled clinical
trial of clopidogrel and placebo in patients with acute coronary syndromes or
arterial fibrillation, in which the effect of clopidogrel as compared with placebo is
consistent, irrespective of the CYP2C19 loss of function carrier status, illustrating
perhaps that inferences on subgroup treatment effects associated with a marker
should not be made from noncomparative randomized studies, or from the treatment
only arm of a randomized trial.

The second example concerns the results of clinical studies on the effect
of clopidogrel when taken with the drug omeprazole (Prilosec, Prilosec OTC).
The FDA, in an information alert [12] to health-care professionals, alerted the
public to new safety information concerning an interaction between clopidogrel,
an anti-clotting medication, and omeprazole, a proton pump inhibitor used to
reduce stomach acid. The data showed that the effectiveness of clopidogrel is
reduced when taken with omeprazole. Patients at risk for heart attacks or strokes
who used clopidogrel to prevent blood clots will not get the full effect of this
medicine if they also are taking omeprazole. Thus, this example illustrates the
interaction between two drugs and the patient level choice that needs to be made
to avoid differential benefit or perhaps risk from taking these drugs alone or in
combination. This finding was not identified in the initial randomized clinical
studies of clopidogrel that supported marketing. Rather, randomized clinical studies
performed post-approval demonstrated the individual differences in response as a
function of exposure to a concomitant therapy, but the exposure to omeprazole was
not randomized.
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The third example concerns clopidogrel’s use as a control in a randomized
multiregional trial of the investigational drug ticagrelor in patients with acute
coronary syndromes [13]. In this study called PLATO, the effect of ticagrelor was
observed to be better than clopidogrel overall, in the randomized study population,
but the treatment effect was not seen in the US population studied. The results
for the primary endpoint were actually reversed in the US subpopulation, raising
the question as to the reasons why and to whether the reversed effect was real or
due to chance. The study results were brought to an FDA advisory committee for
advice and to consider whether differential use of aspirin doses in different regions
of the study might be a plausible explanation [14]. At the time of this manuscript
preparation, no regulatory decision has been made on the results of this study; but
this example illustrates the difficulties in drawing conclusions with regard to subject
or subpopulation specific effects from a randomized clinical trial when the trial was
not prospectively designed for the goal, and also illustrates the role of intrinsic
and extrinsic factors as addressed in the ICH E5 Guidance discussed above, as
they impact on the evaluation of individual treatment effect differences in different
regulatory regions.

It is of interest to consider some of the questions about the PLATO study results
posed by FDA to its Cardiovascular Advisory Committee at a publically held
meeting during its evaluation of the evidence.

(http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeeting
Materials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221380.
pdf)

Question 4 to the Committee was “Do you believe that the difference in clinical
outcomes between the US and the rest of the world is attributable to:”

(a) The play of chance? There is only one country out of 43 whose results fall
outside the 95% confidence limits for a region having the observed number
of events. If you think that chance is the most likely explanation, are you
sufficiently sure of that to take the overall results to be applicable to the USA?

(b) A difference in dosing of aspirin, which is generally higher in the USA?
(c) How do you explain the apparently different effect of aspirin dose on ticagrelor

and clopidogrel?

7 Replication of Results of Differential Treatment Effects
in Enriched and Non-Enriched Subpopulations: Why?

Given the different clinical study designs and strategies that have been proposed
to evaluate marker (enriched)-based differential treatment effects, it is important to
recognize that much of our current experience deals with retrospective strategies
and to a lesser extent with prospective study designs which have specific subset
differences as the objective. Moreover, those issues related to the performance
characteristics of the classifier used to create or identify the enriched subpopulation

http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeeting
Materials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221380.pdf
Materials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221380.pdf
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have not yet been fully explored in these study design proposals, and it is important
to assure that any results of enhanced treatment effects associated with marker status
are truly reflective of truth, and can be replicated in other independent studies.
The history of observing differential subgroup findings in clinical studies that
subsequently are determined to be false is well known. Replication of subgroup
findings in independent studies is an important scientific principle and is especially
relevant to the situation where the performance characteristics of the patient level
classifier are poorly known or quantified from prior experience or prior to the
conduct of the current clinical trial. Sometimes, the approach has been to collect
baseline marker data on a subset of the randomized population so that one is
not certain that the benefits of randomization still apply. Lack of demonstrated
appropriately high sensitivity and specificity of a classifier can lead to observed
attenuation of real marker treatment effect differences between marker positive and
negative subgroups. Moreover, the ability to replicate a marker-specific treatment
effect in a follow-on study may be impaired when doing so is a function both of the
patient marker prevalence in the follow-on study and the markers’ poor sensitivity
and specificity performance, all of which prevents true replication of a treatment
effect in an independent study. For multivariate markers whose algorithms often
search for optimal cutoffs, this can lead to many false positive findings that are not
able to be replicated.

Moye and Deswal [15] discussed how fragile some cardiovascular clinical trial
results are because the findings are often not associated with pre-specified hypothe-
ses for which such findings would be considered confirmatory. Specifically, they
discuss examples of clinical trials whose findings were reversed upon completion of
second study planned to specifically test the hypothesis generated in the first study.
Some of the explanations for the unexpected findings in the initial study are that the
analysis plan changed after observing the data or the investigator, after observing
the study results, placed a new emphasis on a non-planned subgroup finding or on a
secondary endpoint not initially intended to be primary. These practices led to false
discovery claims that were not replicated in follow-up independent clinical trials.
Three examples dealing with the drugs, vesnarinone, amolodipine, and losartan
illustrate the issue. Ioannedes [16] as well as others [17, 18] have also put forth the
provocative hypothesis that most published research findings are false and cannot
be replicated, particularly discussing circumstances surrounding genomic screening
studies and microarray findings that may be overstatements of the truth.

8 Potential Impact of Prognostic Factor Imbalances
in Retrospectively Identified Treatment/Marker Subgroups

Current practice in many clinical trials is to routinely collect blood samples of
clinical trial participants for future genotyping in order to test associations that
may later be suggested by emerging data. Usually the clinical trial subject has to
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separately consent to this sample collection, and sometimes the sample is collected
on only a subset of subjects in the trial, either because those subjects consent or
because of other convenience or compliance considerations. When these samples
are collected only on a subset of patients randomized to each treatment groups,
this becomes a non-randomized subset of patients whose baseline prognostic profile
may differ either between the consenters and the non-consenters, and/or between
the treatment groups within each marker classifier category, as these patient profiles
are determined by a combination of the prevalence of the marker in the trial
population, the distribution of prognostic baseline factors and the proportion of
subjects consenting for testing in each treatment group. The issue for analysis
and predictive treatment effect inference is whether the comparison groups are
balanced with regard to potential prognostic factors, as an imbalance of these
alone between treatment groups could explain any observed treatment effects if
the prognostic factors are strong indicators of outcome, regardless of treatment
assignment. The concern for the impact of prognostic factor imbalance seems to
be most for small sample sizes and for when there is a small percentage of subjects
in the entire clinical trial population who have consented for blood samples. The
combinations of both can impact inferences. Wang, O’Neill and Hung [19] explored
this problem for four case studies and proposed a range of minimal sample sizes to
minimize the probability of baseline imbalance in one or more prognostic factors.
For example, for 20 subjects per treatment arm in a consented subsample, were
the true prevalence of an important strong prognostic factor between 30% and 50%
in each treatment group, there would be close to a 25% chance that one would
observe an absolute 20% difference in the prevalence among the two treatment arms,
possibly sufficient to explain an apparent treatment effect that could be observed.
Once the sample sizes in each treatment arm and marker subgroup approach 100, it
appears unlikely that such imbalance would be observed were there in fact no true
differences in these baseline factors among the subsets. More research on this topic
is needed.

9 Genetic Changes Over the Course of Treatment Or Disease
Progression: Impact on Inferences and Design

The idea that one can classify a subject into some predefined response category at a
particular point in time in a clinical trial, say at pretreatment baseline status, and that
that classification category remains constant throughout the course of the clinical
trial, especially at the molecular level is receiving some attention and exploration. In
the area of oncology, the assumption that a tumor can be classified based on a single
biopsy taken at a point in time, usually at the time of diagnosis may be questionable.
If tumors respond to treatment exposure, even different therapies, then these changes
over time may need to be taken into account especially if treatment resistance may
begin to occur. It is beginning to be appreciated that both the patient and the disease
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(e.g., virus) may have separate genetic profiles, and it may be the interaction of both,
and the time course of any changes that determines clinical outcomes. The potential
need for repeat biopsies to evaluate molecular changes throughout the course of a
disease or treatment has important implications for the clinical study design and
analysis.

10 Study Designs to Evaluate Targeted Therapy

Clinical trial designs for targeted therapy have been receiving considerable attention
in the last few years. Several authors have compiled a variety of study designs
or strategies, the majority of which seem to be motivated by drug or biological
development in oncology. These clinical trial designs can generally be categorized
as exploratory or confirmatory, the latter category being considered for evidence in
registration trials. Mandrekar and Sargent [20] discuss and evaluate various clinical
trial designs and strategies for the validation of biomarker-guided therapy, covering
predictive marker validation in retrospective RCTs and in prospective RCT designs.
The prospective designs fall into the categories of all comers (include all disease
patients unselected for marker), enrichment designs (select for marker only), hybrid
designs (randomize only some subjects selected), or adaptive designs (modify
design during study conduct). Friedlin, McShane and Korn [21] describe a range of
study designs for biomarker evaluation, concluding that in most settings randomized
biomarker stratified designs should be used to obtain rigorous assessment of the
biomarker clinical utility.

Several novel designs have been proposed which intend both to identify the
marker during the course of the study and to evaluate the predictiveness of the
marker to make targeted personalized therapy decisions. Friedlin and Simon [22],
and Friedlin, Jiang and Simon [23] have particularly been leading these efforts
with a design called the adaptive signature design and the cross-validated adaptive
signature design. The experience with such designs is limited but the intent is to
accomplish in a single study the identification of the marker and the confirmation
of the treatment effect in the marker subgroup. When one is also searching in
those designs for the optimal cutoff point that will serve as the binary indicator
of the marker subgroup to which a subject is classified, this design has been
called a signature “threshold” design (Jiang [24]). Wang, O’Neill and Hung [25]
have expanded this exploration of designs for genomic subjects into the adaptive
design areas, where sample sizes may be modified, either in a marker subset or
in the entire study population, but under the condition that prospective plans be
in place. Some of these designs are being considered in various drug development
programs.

Exploratory trials are more flexible inferentially in that often the goal is to
explore many design combinations and outcome possibilities so as to choose
regimens matched to patient’s profile or responses that can be further evaluated
in subsequent confirmatory clinical studies whose design parameters are then more
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focused and limited. These designs would be used in early discovery and proof-of-
concept trials. The focus may be on selection of design parameters or estimation
of response probabilities. Such an example is provided by I-SPY 2 [26], which is
an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy.
This trial is an adaptive phase II clinical trial design to target rapid, focused clinical
development of paired oncologic therapies and biomarkers.

A subset of these trials that is of particular regulatory interest involves the co-
development of a drug and a device, usually a diagnostic, that is used to classify
or select the subjects into the study who are more likely to benefit or respond to
treatment. The challenge to these trials, in addition to demonstrating efficacy of
the drug in the study for the planned marker type population or subpopulation,
is the additional need to characterize the performance of the diagnostic that
classifies subjects in the preferred target category. The metrics of interest for the
diagnostics are the sensitivity and specificity of the classifier that place subjects into
subgroups likely to be responders or super responders, and the positive and negative
predictive value of the classifier. Whether fully characterizing the performance of
the classifier can be accomplished in a single study or rather in a sequence of studies
is a topic under discussion but this is an important practical consideration for the
level of evidence needed to both support evidence for biomarker classifiers used
in clinical trials and their use in stratify patients into potential treatment responder
groups, and finally use in clinical practice to select patients for targeted treatment.
As Simon and Maitournam [27, 28] have discussed, the sensitivity and specificity
of the classifier are critical measures that drive the efficiency of a classifier enriched
design (sample size) as well as the choice of which design is optimal. Diagnostic
products often have an additional prediction objective at the level of an individual
patient’s outcome in contrast to the population risk set or subset that an individual
is classified into.

Some examples of the use of diagnostic tests in clinical studies are the Her 2
IHC and Her2FISH/CISH tests which appear in the product label because they
were used to select the patients into the clinical trials. The indication for the Her
2 test does not state that it is a predictive marker (i.e., that it predicts differential
treatment response). MammaPrint is an approved test as a “prognostic” marker for
breast cancer patients for risk of distant metastases.

The example of K-ras, a marker identified as potentially predictive of treatment
response of two products in patients with metastatic colorectal cancer (mCRS),
illustrates how retrospective use of markers identified pre-randomization was used
to infer lack of treatment response to two currently marketed cancer treatments,
cetuximab and panitumamab. The strength of the predictiveness with regard to
positive treatment response was less than the strength of the predictiveness with
regard to lack of treatment response. In this example, the results of six clinical trials
were used to make the case for the predictiveness of K-ras of treatment effect. The
strength of the predictiveness was not the same for survival as for progression-free
survival, and the lack of 100% ascertainment of the K-ras status of each subject in
each of the trials limited the ability to make stronger statements with regard to the
predictiveness of the K-ras marker as it was obtained on subsets of patients in each
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of the six trials with different proportions of ascertainment as well as balance of
other baseline factors that would lend to comparable baseline factors allowing an
unbiased comparison of response treatment.

11 Summary

The goal of this article is to describe how the clinical trial has been increasingly
relied upon to provide the evidence for the patient level or patient marker level
differential benefit or risk of therapies and how the study design choices can change
depending upon the various study objectives. Two of the most challenging aspects of
identifying and validating a predictive marker are the simultaneous need to quantify
the performance characteristics (sensitivity and specificity) of the classifier and the
choice of whether the study design should include all comers or selection of the
marker positive only subgroup. For those studies that select all comers, i.e. Marker
positive and negative subjects, an unsettled issue is how large the marker negative
subgroup should be in order to conclude that there is a lack of effect in that marker
negative subgroup so that one does not rule out a modest treatment effect but perhaps
not the desired larger treatment effect in the marker positive subgroup.
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Abstract Developments in genomics are providing a biological basis for the
heterogeneity of clinical course and response to treatment that have long been
apparent to clinicians. The ability to molecularly characterize human diseases
presents new opportunities to develop more effective treatments and new challenges
for the design and analysis of clinical trials.

In oncology, treatment of broad populations with regimens that benefit a minority
of patients is less economically sustainable with expensive molecularly targeted
therapeutics. The established molecular heterogeneity of human diseases requires
the development of new paradigms for the design and analysis of randomized
clinical trials as a reliable basis for predictive medicine.

We review prospective designs for the development of new therapeutics and
predictive biomarkers to inform their use. We cover designs for a wide range
of settings. At one extreme is the development of a new drug with a single
candidate biomarker and strong biological evidence that marker negative patients
are unlikely to benefit from the new drug. At the other extreme are phase III
clinical trials involving both genome-wide discovery of a predictive classifier and
internal validation of that classifier. We have outlined a prediction-based approach
to the analysis of randomized clinical trials that both preserves the type I error and
provides a reliable internally validated basis for predicting which patients are most
likely or unlikely to benefit from a new regimen.
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1 Introduction

This dominant paradigm for major clinical trials today involves using broad
eligibility criteria and to randomly assign an experimental treatment or control to
test a single null hypothesis that a single clinical outcome measure is on average
unimproved by the experimental treatment. Although it is recognized that no two
patients are identical, it is implicitly assumed that all have the same disease and that
treatment benefit, if it exists, differs only in magnitude among subsets of patients.
In this paradigm, subset analysis is viewed with suspicion and is considered only
exploratory for purpose of hypothesis generation for future studies. All aspects of
multiplicity are accounted for in the test of a single primary null hypothesis. Large
sample sizes and multicenter participation are the rule in order to be able to detect
small average absolute treatment effects.

The emphasis on broad eligibility criteria has been based on a concern that
drugs found effective in clinical trials might subsequently be used in broader patient
populations [1, 2]. Some clinical trials even abandoned formal eligibility criteria
in favor of the “uncertainty principle” which stated that if the individual physician
was uncertain about which treatment might be better for a patient, then that patient
was eligible [3]. The focus on ignoring subset analysis unless the overall null
hypothesis can be rejected is based on concern about data dredging, the assumption
that qualitative interactions are unlikely [3, 4] and that drugs are inexpensive and
without serious side effects. For oncology today, none of those assumptions are
appropriate. Treating the majority for the benefit of the minority is no longer an
effective public health strategy.

Randomized clinical trials have made important contributions to modern
medicine and public health, but they have also led to the overtreatment of broad
populations of patients, most of whom don’t benefit from the increasingly expensive
drugs and procedures shown to have statistically significant average treatment
effects in increasingly large clinical trials. Fortunately the tools of biotechnology
and genomics are providing the tools to identify the subsets of patients who benefit
from treatments.

Developments in our understanding of the genomic basis of cancer have indicated
that cancers of most primary sites (e.g., lung and breast) represent a heterogeneous
collection of diseases that differ in pathophysiology, natural history, and sensitivity
to treatment. Recent results have demonstrated that these diseases differ with regard
to the mutations that cause them and drive their invasion. The new understanding of
heterogeneous nature of tumors of the same primary site leads to new challenges
with regard to clinical trial design. Today we are challenged to develop a new
paradigm of clinical trial design and analysis that enables development of a
predictive medicine that is science based and reliable. Physicians have always
known that cancers of the same primary site were heterogeneous with regard to
natural history and response to treatment. This understanding led to conflicts with
statisticians over the use of subset analysis in the analysis of clinical trials. Although
most statisticians expressed little interest in subset analysis methods [5], many
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practitioners rejected the results of clinical trials whose conclusions were based
on average effects. Today we have powerful tools for characterizing the tumors
biologically and using this characterization as a basis for the design and analysis
of clinical trials.

Most oncology drugs are being developed for defined molecular targets but the
traditional diagnostic classification schemes that are the basis for clinical trial eligi-
bility criteria include patients whose tumors are and are not driven by deregulation
of those targets. For many drugs, the targets are well understood and there is a
compelling biological basis for restricting development to the subset of patients
whose tumors are characterized by deregulation of the drug target. For other drugs
there is more uncertainty about the target, and how to measure whether the target is
driving tumor invasion in an individual patient [6]. It is clear that the primary anal-
ysis of the new generation of oncology clinical trials must consist of more than just
treating the traditionally broad patient populations and testing the null hypothesis
of no average effect. But it is also clear that the tradition of post-hoc data dredging
subset analysis is not an adequate basis for predictive oncology. We need prospective
analysis plans that provide for both preservation of the type I experiment-wise error
rate and for focused predictive analyses that can be used to reliably select patients
in clinical practice for use of the new regimen [7]. These two primary objectives are
not inconsistent, and clinical trials should be sized for both purposes.

The following sections summarize some of the designs that have been developed
for the new generation of cancer clinical trials. Developing new treatments with
companion diagnostics or predictive biomarkers for identifying the patients who
benefit does not make drug development simpler, quicker, or cheaper as is some-
times claimed. Actually it makes drug development more complex and probably
more expensive. But for many new oncology drugs it is the only science-based
approach and should increase the chance of success. It may also lead to more
consistency in results among trials and has obvious benefits for reducing the number
of patients who ultimately receive expensive drugs which expose them risks of
adverse events but no benefit. This approach also has great potential value for
controlling societal expenditures on health care.

The ideal approach is prospective drug development with a companion diagnostic
[7]. This approach, which is being used extensively today in oncology involves
(1) Development of a completely specified predictive classifier using preclinical and
early phase clinical studies. The classifier may be based on a single gene or protein
or a composite score incorporating the levels of expression of multiple genes.
(2) Development of an analytically validated test for measurement of that classifier.
Analytically validated means that the test accurately measures what it is supposed
to measure, or if there is no gold-standard measurement, that the test is reproducible
and robust. (3) Use of that completely specified classifier and analytically validated
test to design and analyze a new clinical trial to evaluate the effectiveness of that
drug and how the effectiveness relates to the classifier. The guiding principle is that
the data used to develop the classifier should be distinct from the Phase III data used
to test hypotheses about treatment effects in subsets determined by the classifier.
This is in contrast to the typical paradigm in which multiple variables are measured
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using non-analytically validated tests and then performing an exploratory analysis
that requires confirmation in a subsequent study. In the enrichment and stratified
designs described below, biomarker discovery is performed prior to the phase III
trial and a single completely specified classifier is used in the trial. We will also
discuss designs and prospective analysis plans that incorporate multiple candidate
classifiers or even broader classifier development and evaluation in the same clinical
trial. But in all of these designs, the analysis plans are carefully pre-specified to
ensure that treatment effects in classifier-based subsets are unbiasedly estimated
and that overall type I error is preserved.

2 Targeted (Enrichment) Designs

Designs in which the eligibility criteria restrict the clinical trial to those patients
considered most likely to benefit from the experimental drug are called “targeted de-
signs” or “enrichment designs.” With an enrichment design a diagnostic test is used
to restrict eligibility for a randomized clinical trial comparing a regimen containing
a new drug to a control regimen. This approach, was used for the development of
trastuzumab in which patients with metastatic breast cancer whose tumors expressed
HER2 in an immunohistochemistry test were eligible for randomization. Simon and
Maitournam [8–10] studied the efficiency of this approach relative to the standard
approach of randomizing all patients without using the test at all. They found that
the efficiency of the enrichment design depended on the prevalence of test-positive
patients and on the effectiveness of the new treatment in test-negative patients. When
fewer than half of the patients are test positive and the new treatment is relatively
ineffective in test-negative patients, the number of randomized patients required
for an enrichment design is dramatically smaller than the number of randomized
patients required for a standard design. For example, if the treatment is completely
ineffective in test-negative patients, then the ratio of number of patients required
for randomization in the enrichment design relative to the number required for the
standard design is approximately 1/”2 where ” denotes the proportion of patients
who are test positive [10]. The treatment may have some effectiveness for test-
negative patients either because the assay is imperfect for measuring deregulation
of the putative molecular target or because the drug has off-target antitumor effects.
Even if the new treatment is half as effective in test-negative patients as in test-
positive patients, however, the randomization ratio is approximately 4=.� C 1/2.
This equals about 2.56 when ” D 0.25, i.e., 25% of the patients are test positive,
indicating that the enrichment design reduces the number of required patients to
randomize by a factor of 2.56.

The enrichment design was used for the development of trastuzumab and led
to the approval of the drug for metastatic and primary breast cancer even though
the test was imperfect and has subsequently been improved. The enrichment design
enabled the drug to be evaluated in the patients for whom there was a biological
rationale for expecting a benefit and to avoid exposing the others to a drug with
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serious toxicities. Simon and Maitournam also compared the enrichment design to
the standard design with regard to the number of screened patients. Zhao and Simon
have made the methods of sample size planning for the design of enrichment trials
available on line at http://brb.nci.nih.gov. The web-based programs are available for
binary and survival/disease-free survival endpoints. The planning takes into account
the performance characteristics of the tests and specificity of the treatment effects.
The programs provide comparisons to standard non-enrichment designs based on
the number of randomized patients required and the number of patients needed for
screening to obtain the required number of randomized patients.

The enrichment design is appropriate for contexts where there is a strong
biological basis for believing that test-negative patients will not benefit from the
new drug. In such cases, including test-negative patients may raise ethical concerns
and may confuse the interpretation of the clinical trial. As described in the section on
“stratification designs,” if test-negative patients are to be included, then they must
be included in sufficient numbers and the number of test-positive patients must be
designed to provide adequate separate analysis of the two groups. Often this is not
done and instead one sees a mixed population of patients in an inadequately sized
trial leading to ambiguous conclusions.

3 Biomarker Stratified Design

When a predictive classifier has been developed but there is not compelling biologi-
cal or phase II data that test-negative patients do not benefit from the new treatment,
it is generally best to include both classifier positive and classifier negative in the
phase III clinical trials comparing the new treatment to the control regimen. In this
case it is essential that an analysis plan be predefined in the protocol for how the
predictive classifier will be used in the analysis. The analysis plan will generally
define the testing strategy for evaluating the new treatment in the test-positive
patients, the test-negative patients and overall. The testing strategy must preserve
the overall type I error of the trial and the trial must be sized to provide adequate
statistical power for these tests. It is not sufficient to just stratify, i.e., balance, the
randomization with regard to the classifier without specifying a complete analysis
plan. The main value of “stratifying” (i.e., balancing) the randomization is that
it assures that only patients with completed test results will enter the trial. Pre-
stratification of the randomization is not necessary for the validity of inferences
to be made about treatment effects within the test-positive or test-negative subsets.
The test used in the pivotal clinical trial should be analytically validated; that is,
previously demonstrated to be accurate, reproducible, and robust to sources of
laboratory variation. If an analytically validated test is not available at the start of
the trial but will be available by the time of analysis, then it may be preferable not
to pre-stratify the randomization process but to perform the analytically validated
assay later on tumor specimens collected prior to randomization.

http://brb.nci.nih.gov
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The purpose of the pivotal trial is to evaluate the new treatment overall and in
the subsets determined by the prespecified classifier. The purpose is not to modify
or optimize the classifier. If the classifier is a composite gene expression-based
classifier, the purpose of the design is not to reexamine the contributions of each
gene. If one does any of this, then an additional phase III trial may be needed
to evaluate treatment benefit in subsets determined by the new classifier. Several
primary analysis plans have been described by Simon [7, 11, 12], and a web-based
tool for sample size planning with these analysis plans is available at http://brb.nci.
nih.gov. For example, if one does not expect the treatment to be effective in the
test-negative patients unless it is effective in the test-positive patients, one might
first compare treatment versus control in test-positive patients using a threshold of
significance of 5%. Only if the treatment versus control comparison is significant
at the 5% level in test-positive patients, the new treatment will be compared to
the control among test-negative patients, again using a threshold of statistical
significance of 5%. This sequential approach controls the overall type I error at
5% since a treatment ineffective in both test-negative and test-positive patients has
a 5% chance of being found significant for test positives, and if that comparison is
not significant, the comparison for the test negatives is not performed. To have 90%
power in the test-positive patients for detecting a 50% reduction in hazard for the
new treatment versus control at a two-sided 5% significance level requires about
88 events of test-positive patients, the same as for an enrichment design limited to
test-positive patients. If at the time of analysis the event rates in the test-positive and
test-negative strata are about equal, then when there are 88 events in the test-positive
patients, there will be about 88(1 � ”)/” events in the test-negative patients where
” denotes the proportion of test-positive patients. If 25% of the patients are test
positive, then there will be approximately 264 events in test-negative patients. This
will provide approximately 90% power for detecting a 33% reduction in hazard
at a two-sided significance level of 5%. In this case, the trial will not be delayed
compared to the enrichment design, but a large number of test-negative patients will
be randomized, treated, and followed on the study rather than excluded as for the
enrichment design. This will be problematic if one does not, a-priori, expect the new
treatment to be effective for test-negative patients. In this case it will be important
to establish an interim monitoring plan to terminate accrual of test-negative patients
when interim results and prior evidence of lack of effectiveness makes it no longer
viable to enter them. Most frequentist interim monitoring plans provide insufficient
protection for test-negative patients in this circumstance and Karuri and Simon have
recently developed a Bayesian design based on an informative prior that reflects the
a-priori degree of confidence in the test [13]. The Karuri and Simon Bayesian design
protects the chance of false positive conclusions for the study overall, and for the
test-positive and test-negative patients separately.

In the situation where one has limited confidence in the predictive marker it can
be effectively used for a “fall-back” analysis. Simon and Wang [14] proposed an
analysis plan in which the new treatment group is first compared to the control
group overall. If that difference is not significant at a reduced significance level such
as 0.03, then the new treatment is compared to the control group just for test-positive

http://brb.nci.nih.gov
http://brb.nci.nih.gov
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patients. The latter comparison uses a threshold of significance of 0.02, or whatever
portion of the traditional 0.05 not used by the initial test. If the trial is planned for
having 90% power for detecting a uniform 33% reduction in overall hazard using a
two-sided significance level of 0.03, then the overall analysis will take place when
there are 297 events. If the test is positive in 25% of patients and the event rates in
test-positive and test-negative patients are about equal at the time of analysis, then
when there are 297 overall events there will be approximately 75 events among the
test-positive patients. If the overall test of treatment effect is not significant, then
the subset test will have power 0.75 for detecting a 50% reduction in hazard at a
two-sided 0.02 significance level. By delaying the treatment evaluation in the test-
positive patients power 0.80 can be achieved when there are 84 events and power
0.90 can be achieved when there are 109 events in the test-positive subset.

Wang et al. have shown that the power of this approach can be improved by taking
into account the correlation between the overall significance test and the significance
test comparing treatment groups in the subset of test-positive patients [15]. So if,
for example, a significance threshold of 0.03 has been used for the overall test, the
significance threshold for used for the subset can be somewhat greater than 0.02
and still have the overall chance of a false positive claim of any type limited to 5%.
In the following descriptions of biomarker designs that use the fall-back analysis
plan, we use the partition 0.03 overall analysis and 0.02 for subset analysis only for
concreteness. Any partition that adds to 0.05 will preserve the type I error but sample
size and power may vary substantially depending on the partition used. In many
cases allocating most of the 5% to the subset analysis will be advantageous because
having adequate sample size to achieve adequate power for the subset analysis is
more constraining than obtaining adequate power for the overall analysis.

4 Designs That Evaluate a Small Number of Classifiers

The prospective drug and companion diagnostic test approach is being used today
in the development of many new cancer drugs where the biology of the drug target
is well understood. Because of the complexity of cancer biology, however, there are
many cases in which the biology of the target is not well understood at the time that
the phase III trials are initiated. We have been developing adaptive designs for these
settings. The designs are adaptive, not with regard to sample size or randomization
ratio, but rather with regard to the subset in which the new treatment is evaluated
relative to the control.

For example with the adaptive threshold design [16] we assumed that a predictive
biomarker score was prospectively defined in a randomized clinical trial comparing
a new treatment T to a control C. The score is not used for restricting eligibility
and no cut-point for the score is prospectively indicated. A fall-back analysis
begins as described above by comparing T to C for all randomized patients using
a significance threshold ’1, say 0.03, less than the traditional 0.05. If the treatment
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effect is not significant at that level, then one finds the cut-point s* for the biomarker
score which leads to the largest treatment effect in comparing T to C restricted
to patients with score greater than s*. Jiang et al. [16] employed a log-likelihood
ratio measure of treatment effect and let L* denote the log-likelihood ratio of
treatment versus control effect when restricted to patients with biomarker level
above s*. The null distribution of L* was determined by repeating the analysis
after permuting the treatment and control labels a thousand or more times. If the
permutation statistical significance of L* is less than 0.05-’1 (e.g., 0.02), then
treatment T is considered superior to C for the subset of the patients with biomarker
level above s*. Jiang et al. provided bootstrap confidence intervals for s*. They
provided an approach to sample size planning for a trial based on this fallback
strategy and also upon a more powerful strategy that does not utilize a portion of
the total type I error for a test of the overall null hypothesis of average treatment
effect.

The analysis plan used in the adaptive threshold design is based on computing
a global test based on a maximum test statistic. For the adaptive threshold design,
the maximum is taken over the set of cut-points of a biomarker score. The idea of
using a global maximum test statistic is much more broadly applicable, however.
For example, suppose multiple candidate binary tests, B1, : : : , BK are available
at the start of the trial. These tests may or may not be correlated with each other.
Let Lk denote the log-likelihood of treatment effect for comparing T to C when
restricted to patients positive for biomarker k. Let L* denote the largest of these
values and let k* denote the test for which the maximum is achieved. As for the
adaptive threshold design, the null distribution of L* can be determined by repeating
the analysis after permuting the treatment and control labels a thousand or more
times. If the permutation statistical significance of L* is less than 0.05-’1 (e.g.,
0.02), then treatment T is considered superior to C for the subset of the patients
positive for biomarker test k*. The stability of the indicated set of patients who
benefit from T (i.e., k*) can be evaluated by repeating the computation of k* for
bootstrap samples of patients.

5 Predictive Analysis of Clinical Trials

Freidlin and Simon [17] also published an adaptive signature design for settings
where a single or small number of candidate classifiers are not available at the
start of the phase III clinical trial. At the time of final analysis, one starts by
comparing outcomes for the treatment group T to the control group C for all
randomized patients. If this overall treatment effect is not significant at a reduced
level ’1, the full set P of patients in the clinical trial is partitioned into training
set Tr and validation set V. A prespecified algorithmic analysis plan is applied to
the training set to generate a “predictive classifier” F(x;Tr) where x denotes the
vector of variables available. This vector may include only candidate classifiers
or may include variables with no a-priori credentials for predictive classification.
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The design was originally proposed for settings where the x vector included gene
expression values from a genome-wide expression measurement. A predictive
classifier is a function that identifies the patients who appear to benefit from the
new treatment T compared to the control C; F(x;Tr) D 1 means that a patient with
covariate vector x is predicted to benefit from T whereas F(x;Tr) D 0 indicates that
patient is not predicted to benefit from T. This is a predictive classifier based on
comparing two treatment groups, not the more familiar kind of prognostic classifier
for a single group. This classifier is developed based on analyzing outcome and
covariates for the two treatment groups in the training set. Freidlin and Simon
developed a weighted voting predictive classifier based on genes whose expression
levels indicate an interaction with treatment in predicting outcome. Many other
types of classifier development algorithms are possible and the design can be used
broadly, not just when the covariates represent gene expression measurements. For
example with survival data one could use a proportional hazards model
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where z is a treatment indicator z D 0 for C and z D 1 for T and x denotes the vector
of covariates. This model can be fit on the training set by maximizing the penalized
log partial likelihood with an L1 penalty on the components of the main effect
vector ˇ and the treatment by interaction vector �. The difference in log hazard
for a patient with covariate vector x receiving treatment T compared to that same
patient receiving treatment C is estimated by ı.x/ D Ǫ C O�0x. This function can be
used to classify or rank patients in the validation set. Patients with the most negative
values of ı.x/ are predicted to be the most likely to benefit from T relative to C.
In order to classify patients in the validation set, a cut-point must be defined. This
can either be a predetermined value such as zero, or a predetermined quantile of the
distribution of ı.x/ in the training set or used as an additional tuning parameter. All
tuning parameters should be optimized by cross-validation within the training set.

An alternative classifier can be based on a generalization of the compound
covariate method of Radmacher et al. [18]. The compound covariates are defined
based on fitting single variable proportional hazards models
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for each variable i D 1,2, : : : ,p where z denotes a treatment indicator z D 0 for C
and z D 1 for T. One obtains estimates Ǒ

i and Õ i. The two compound covariates are
defined as
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where the summations are over the variables for which the treatment by covariate
interactions are nominally significant at level � in the corresponding univariate
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models. � is used as a tuning parameter. Prediction is based on the proportional
hazards model involving only treatment and the two compound covariates:

log
h.t I v1; v2; z/

h0.t/
D ˛z C ˇ�v1 C z��v2 (1)

For predicting treatment the difference in log hazard for a patient with compound
covariate values (v1,v2) receiving treatment T compared to that same patient
receiving treatment C is estimated as Ǫ C O��v2. This function can be used to classify
or rank patients in the validation set. Patients with the most negative values of
Ǫ C O��v2 are predicted to be the most likely to benefit from T relative to C. For
evaluating prediction accuracy one would classify patients in the validation set into
quantiles based on their values of Ǫ C O��v2 and examine the actual treatment effect
within those quantiles.

A similar approach to that described above is to use a model like [1] for
prediction but where v1 is defined as the first supervised principal component
of expression levels for the variables that are prognostic at nominal univariate
significance level � and v2 being the first principal component of expression levels
of the variables that have nominal � level significant interactions. The level � is a
tuning parameter [19].

Once a single completely specified classifier is defined on the training set, it is
used to classify the patients in the validation set. These patients are classified as
either “sensitive” to the new treatment, i.e., predicted likely to benefit from the new
treatment T relative to C or not sensitive. Let S denote the set of sensitive patients
in the validation set; i.e., S D fj"VjF(xj,Tr) D 1g. One then compares outcomes for
sensitive patients in the validation set who received T versus sensitive patients in
the validation set who received C. Let L denote the log-rank statistic (if outcomes
are time-to-event) for this comparison of T vs C of sensitive patients in the
validation set. The null distribution of L is determined by repeating the entire
analysis after permuting the treatment and control labels a thousand or more times.
If the permutation statistical significance of L is less than 0.05-’1 (e.g., 0.02), then
treatment T is considered superior to C for the subset of the patients predicted to be
sensitive using the classifier developed in the training set.

Freidlin et al. [20] demonstrated that the statistical power of this approach can
be substantially increased by embedding the classifier development and validation
process in a K fold cross-validation. This idea is very powerful and much more
broadly applicable than in the context described by Freidlin et al. [17] The concept
is to prospectively define an algorithm A for classifying patients as likely or not
likely to have better outcome on the new treatment T compared to the control
C. This algorithm constitutes the entire preplanned subset analysis. In contrast to
the usual subset analysis which results in a bunch of statements about statistical
significance of treatment effects within multiple subsets, this algorithm results
in a single completely determined predictive classifier. The predictive classifier
partitions the space of covariate vectors into a region for patients who are predicted
to benefit from the new treatment T and the complementary region for patients who
are not predicted to benefit from T. This algorithm might, for example, be defined
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as indicated above by fitting a proportional hazards model involving treatment,
main covariate effects and treatment by covariate interactions to the data and then
defining the predictive classifier based on imposing a cut-point on the difference
in log-likelihood for the predictive index computed if the new treatment is used
minus if the control is used. With this approach the model could be fit to the high-
dimensional data using penalized likelihood methods or univariate screening to find
covariates with apparent interactions with treatment. Many other kinds of algorithms
are possible. The algorithm A when applied to a dataset D defines a completely
specified predictive classifier F(xjD, A). The classifier that will potentially be used
in the future is the one obtained by applying the algorithm to the full dataset (P), i.e.,
F(xjP,A). But first it is necessary to evaluate the algorithm using cross-validation.
It should be emphasized that the cross-validation procedure does not provide some
abstract characteristic of the algorithm A, it provides an almost unbiased estimate
of the predictive accuracy of the classifier F(xjP, A) obtained by applying A to the
full set of data D.

The cross-validation is performed in the following way. The full set (P) of
patients in the clinical trial is partitioned into K disjoint subsets P1, : : : , PK. The ith
training set Ti consist of the full set of patients except for the ith subset; i.e., Ti D P-
Pi. Let F(xjTI, A) denote the binary classifier developed by applying the algorithm
A to training set Ti. Use this classifier to classify the patients in the omitted subset
Pi. Let vj D F(xjjTi, A) denote the predictive classification for patients j in Pi. vj D 1
if the patient is predicted to be sensitive to the new treatment T relative to control C,
and zero otherwise. Since the patients in Pi were not included in the training set Ti

used to train F(xjTi, A), this classification is predictive, not just evaluating goodness
of fit to the same data used to develop the classifier. Since each patient appears in
exactly one Pi, each patient is classified exactly once and that classification is done
with a classifier developed using a training set not containing that patient.

Let S denote the set of patients j for whom vj D 1, i.e., who are predicted to be
sensitive to the new treatment. We can evaluate the predictive value of our algorithm
by comparing outcomes of the patients in S who received treatment T to the
outcomes for the patients in S who received the control C. Let L(S) denote a measure
of difference in outcomes for that comparison; e.g., a log-rank statistic if outcomes
are time-to-event. We can generate an approximation to the null distribution of L by
repeating the entire analysis for thousands of random permutations of the treatment
labels. This test can be used as the primary significance test of the clinical trial to
test the strong null hypothesis that the new treatment and control are equivalent for
all patients on the primary endpoint of the trial. Alternatively, it can be used as a
fall-back test as described in the previous sections.

Having rejected the null hypothesis described above, the application of the
algorithm A to the full dataset P provides a decision tool F(xjP, A) that can be
used by physicians for informing future treatment decisions for their patients. The
classifier recommended for future use is the one obtained by applying the algorithm
to the full dataset, i.e., F(x;P,A). The K-fold cross-validation provides a proper
statistical significance test and provides important information about this full sample
classifier. Freidlin et al. showed that the hazard ratio for T vs C in the cross-validated
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set S is a conservative estimate of the hazard ratio for the sensitive set of the full
sample classifier, i.e., for the set of future patients with covariate vectors for which
F(xjP, A) D 1.

The effectiveness of the decision tool based on F(xjP, A) depends on the algo-
rithm used. Algorithms that over-fit the data will provide classifiers that make poor
predictions. Algorithms based on Bayesian models with many parameters and non-
informative priors may be as prone to over-fitting as frequentist models with many
parameters. The effectiveness of an algorithm will also depend on the dataset, i.e.,
the unknown truth about how treatment effect varies among patient subsets. A strong
advantage of the proposed approach, however, is that an almost unbiased estimate of
the performance of a defined algorithm can be obtained from the dataset of a clinical
trial itself. This can be compared to treating all patients or no patients based on the
results of the conventional overall null hypothesis test. This is clearly preferable to
performing exploratory analysis on the full dataset without any cross-validation, re-
porting the very misleading goodness of fit of the model to the same data used to de-
velop the model, and cautioning that the results need testing in future clinical trials.

The approach described above can also be used in a clinical trial for which the
overall treatment effect is significant. The approach permits one to identify, based
on covariate profiles, the patients who do and do not benefit from the new treatment.
Rather than just focusing on the patients predicted to be sensitive to the new
treatment, one also compares treatment effects for the complementary subset defined
by the cross-validated classifications. To illustrate this approach we have applied
it to data from the gene expression profiling study conducted on pretreatment
biopsy specimens from 181 patients with diffuse large-B-cell lymphoma (DLBCL)
who received a standard chemotherapy combination called CHOP and 233 patients
with this disease who received R-CHOP (CHOP plus the antibody Rituximab) was
analyzed [19]. Unfortunately, this was not a randomized clinical trial, but the data
will serve to illustrate the method of analysis.

The only clinical covariate considered for this analysis was the international
prognostic index (IPI). For the purpose of this analysis the IPI was categorized into
two groups—subjects with IPI scores of 0, 1, or 2 were categorized as “low” and
subjects with IPI scores 3, 4, or 5 were called “high.” For some of the subjects one
or more of the variables that make up the IPI were missing. If for a given subject the
value for the missing variable would not change the IPI group call (e.g., depending
on the value of the missing variable the IPI value would be either 1 or 2), then the
subject would be included as a member of that IPI group. However if the missing
value could make a difference (e.g., between 2 and 3), then that subject was excluded
from our analysis. Thirty-nine subjects were excluded because the IPI group could
not be determined. Of the resulting 375 subjects 262 fell in IPI class “low” and 113
subjects were in IPI class “high.” The end-point was overall survival (death from
any cause). Prior to the start of analysis one subject who had a survival time of zero
was removed, resulting in 374 subjects for this analysis.

Gene expression and clinical data were obtained from the Gene Expression
Omnibus (acc. no. GSE10846). To account for the differences in microarray
preprocessing between R-CHOP and CHOP samples, the expression values for each
gene in the R-CHOP group was adjusted so that its median matched the median of



Oncology Clinical Trials in the Genomic Era 75

Fig. 1 Overall analysis. The value of the log-rank statistic is 14.1 and the corresponding p-value
is 0.0002. The new treatment thus shows an overall benefit

the CHOP group [21]. For the predictive analysis the data were log2 transformed
and the 1,000 genes with the highest variance were used.

A Cox proportional hazards (ph) regression model was developed using patients
in both CHOP (standard treatment acronym of four chemotherapy drugs, C) and
R-CHOP (new treatment consisting of standard CHOP plus antitumor antibody
rituximab, E) groups. A 10-fold cross-validation was applied to estimate predictive
accuracy. Univariate gene selection was used as the feature selection method. For
each gene, a Cox ph model was developed in the training set using treatment,
covariate (IPI), gene, and treatment by covariate and treatment by gene interactions.
Ten genes with the lowest p-values for the treatment by gene interactions were
selected for inclusion in the multivariate Cox ph model. The multivariate Cox ph
model was again developed using treatment, IPI, 10 best genes, treatment by IPI and
treatment by gene interactions. Gene selection and multivariate model development
were all done within each cross-validation loop. In the multivariate Cox ph model,
let • D main effect of treatment, ” D vector of interaction coefficients. Then, for a
patient in the test set with covariate vector Xtest F(Xtest) D 1 if • C ”’Xtest < c where
c was fixed to be the median of the F(X) values in the corresponding training set.

Figure 1 shows the results of the overall analysis. The results of applying the
predictive algorithm in a ten-fold cross-validation loop are shown in Figs. 2 and 3.
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Fig. 2 Predictive analysis. Cross-validation was used to predict patients who would benefit or not
from the new treatment. This figure shows the survival curves for patients predicted to benefit from
the new treatment. The value of the log-rank statistic for the separation of the survival curves is
19.67 and the permutation p-value is 0.005 (200 permutations). The hazard ratio is �1.12 and the
bootstrap-based 95% CI for the HR is (�1.40, �0.125) (200 bootstrap samples)

For the sensitive subset of patients who appear to benefit from R-CHOP, the value of
the log-rank statistic for the separation of the cross-validated survival curves is 19.67
and the permutation p-value is 0.005 (200 permutations). For this sensitive subset,
the log hazard ratio is �1.12 and the bootstrap based 95% CI for the log HR is
(�1.40, �0.125) (200 bootstrap samples). For the complementary subset of patients
who do not appear to benefit from R-CHOP, the value of the log-rank statistic for
the cross-validated survival curves is 0.81 and the permutation p-value is 0.49 (200
permutations). The predictive analysis has thus identified a group of patients who are
unlikely to benefit from the new treatment. Table 1 provides some information about
the proportional hazards model developed on the full dataset. The p values listed are
nominal p values conditional on including the 10 gene expression variables with the
most nominally significant univariate interactions with treatment. Table 2 lists the
genes that have more than 50% cross-validation support. The “%cv support” column
indicates the proportion of the 10 loops of the cross-validation that the variable was
selected for inclusion in the model.
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Fig. 3 Survival curves for cases predicted no benefit from new treatment. The value of the log-
rank statistic in this case is 0.81 and the permutation p-value is 0.49 (200 permutations)

Table 1 The coxph model on applying the algorithm to the full dataset (for classify-
ing future patients)

Variable Coefficient p-Value Variable Coefficient p-Value

T �1:69 0:27

1552531 a at 0:07 0:21 T*1552531 a at �0:15 0:06

210313 at 0:12 0:03 T*210313 at �0:21 0:03

242334 at �0:05 0:20 T*242334 at �0:07 0:42

242107 x at �0:13 0:06 T*242107 x at 0:35 0:002

231391 at 0:05 0:28 T*231391 at �0:26 0:004

1565026 a at 0:15 0:01 T*1565026 a at �0:34 0:0006

206413 s at �0:03 0:39 T*206413 s at 0:11 0:08

203641 s at �0:18 0:008 T*203641 s at 0:23 0:02

231898 x at �0:06 0:20 T*231898 x at 0:20 0:007

243905 at �0:06 0:28 T*243905 at 0:31 0:003

IPI �1:6 <0:0001 T*IPI 0:29 0:43

T denotes treatment indicator. Variables with “at” suffix represent gene expression
levels for Affymetrix probe sets. p-values are nominal values which ignore the effect
of variable selection
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Table 2 Genes with more than 50% cross-validation support (i.e., chosen as one of the 10 best
genes in more than 5 CV loops)

Gene % CV support Name (symbol) Molecular function

210313 at 100 Leukocyte immunoglobulin
receptor, subfamily A,
member 4 (LILRA4)

Receptor activity

1552531 a at 100 NLR family, pyrin domain
containing 11 (NLRP11)

Nucleotide binding, protein
binding, ATP binding

242334 at 80 NLR family, pyrin domain
containing 4 (NLRP4)

Nucleotide binding, protein
binding, ATP binding

231391 at 80 Cortexin 3 (CTXN3) Unknown
1565026 a at 70 Orofacial cleft 1 candidate 1

(OFCC1)
Unknown

242107 x at 70 Unknown Unknown
206413 s at 70 Unknown Protein binding

6 Conclusion

Developments in genomics have increased the focus of biostatisticians on prediction
problems. This has led to many useful developments for predictive modeling where
the number of variables is larger than the number of cases. Heterogeneity of
human diseases and new technology for characterizing diseased tissue presents
new opportunities and challenges for the design and analysis of clinical trials.
In oncology, treatment of broad populations with regimens that do not benefit
most patients is less economically sustainable with expensive molecularly targeted
therapeutics. The established molecular heterogeneity of human diseases requires
the development of new paradigms for the use of randomized clinical trials as a
reliable basis predictive medicine [1, 2]. We have presented here prospective designs
for the development of new therapeutics with candidate predictive biomarkers.
An approach to the Predictive Analysis of Clinical Trials (PACT) has also been
presented. This approach preserves the type I error of the study and uses re-sampling
to develop and validate a predictive classifier that can be used to inform treatment
selection for future patients. This approach provides a statistically sound framework
for bridging the gap between clinical trials and clinical practice that has long existed
and may serve as a basis for clinical trials in the era of predictive medicine.
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Using SNPs to Characterize Genetic Effects
in Clinical Trials

B.S. Weir

Abstract Characterizing the genetic basis of responses in clinical trials has been
made substantially easier and more powerful through the use of single nucleotide
polymorphism data. A million of more of these markers can now be scored cheaply
with commercial SNP-chips and ten million or more additional SNPs can be inferred
by imputation. These rich datasets offer a deep look at the human genome and they
are likely to tag many of the response causal genes. It has already become common
for SNP types to be included in drug box labels.

The ease and low cost of obtaining SNP profiles in clinical trials comes with
the price of noisy data: it is common to have to reject data at 10% of the assayed
SNPs. However, those SNPs that pass rigorous data cleaning protocols not only
offer the chance of identifying the genes that affect response variables but also
may reveal information about the genetic architectures of the trial participants
and the populations to which they belong, as well as the relationships among the
participants. Among novel applications of SNP profiles is the ability to determine
HLA type without expensive sequencing.

1 Introduction

There is now clear evidence that at least some of the variation in individual response
to pharmaceutical drugs has a genetic basis. Some of this evidence comes from
genome-wide association studies (GWASs), [10] and a growing number of clinical
trials (e.g., [7]). As a result of this activity, the FDA had, by October of 2011, added
pharmacogenomic information to the labels of 111 drugs (see URL 3 below).
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One of the best-documented cases for a genetic contribution to drug response
concerns the anticoagulant warfarin (Roden et al. [20]). Dosing algorithms were
originally based on clinical information and now use both clinical and genetic
information. Initial GWAS showed an association of the gene VKORC1 (vitamin K
epoxide reductase complex 1) with warfarin maintenance dose (Cooper et al. [8]),
and subsequent studies [4, 22] found the effects of the cytochrome P450 genes
CYP2C9 and CYP4F2. There have been mixed results from randomized clinical
trials to determine if pharmacogenomic-based dosing will, in fact, improve antico-
agulation control and clinical outcomes [1, 5] and other trials are in progress (see
URL 2 below). The FDA 2011 drug label for warfarin provides genotype-specific
dose ranges based on joint VKORC1–CYP2C9 genotypes (URL 3 below). There
is good evidence for genotype-based dosing effects for the cardiovascular drug
clopidogrel (sold as Plavix) and the CYP2C19 genotype for the cytochrome P450
gene [16].

Single nucleotide polymorphism (SNP) imformation in various genes is used
in various genes that are used in warfarin or clopidogrel dosing algorithms, and
other pharmacogenomic applications, and this chapter considers some aspects of
the analysis and interpretation of SNPs. The chapter is informed by the author’s
involvement with SNP data in two consortia funded by the National Human
Genome Research Institute: GENEVA ([9]; URL 5 below) is a collection of GWAS
for several major human diseases, including atherosclerosis, cancers, and type II
diabetes; GARNET is a series of GWAS of treatment response in randomized
clinical trials that looks to identify genetic variants associated with response to
treatments for conditions of clinical or public health significance (see URL 4 below).
GARNET aims to utilize existing clinical trial data and sample resources to:

1. Identify genetic variants that influence an individual’s response to treatment.
2. Determine whether specific treatments are more or less effective in groups

defined by genotype.
3. Develop and disseminate innovative methods for adding genome-wide technolo-

gies to randomized clinical trials and interpreting the results in the context of a
randomized treatment assignment.

The chapter will also point to the increased knowledge being gained about human
genetic architectures, at both the individual and the population level, as a result
of the recent explosion in the quantity of SNP data. These data may be collected
from assays in targeted regions of the genome, or they may result from micro-array
technology that allows up to five million SNPs across the genome to be studied with
a “SNP-chip,” or they may result from complete DNA sequencing of the genes in the
genome, i.e. exome sequencing, or from whole genome sequencing. Each position
in the complete human genomic sequence could, in theory, be occupied by one of the
four nucleotide types. In practice, only a fraction of the sites show variation and then
with only two different types, bases, segregating in the population. With individuals
receiving one copy of the genome from each parent, there are three genotypes at
each SNP and it is the frequencies of these three types that provide the building
blocks for the genetic analysis of clinical trial data.
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2 SNP Data

The amount of genetic information now available for use in clinical trials is vast,
and the costs of generating these data have been steadily decreasing. The first large-
scale survey of frequencies of SNP variants, alleles, in several populations was the
International HapMap Project (see URL 6 below). The current version, HapMapIII,
contains the genotypes of 1,396 individuals sampled from 11 populations, as shown
in Table 1. Each individual is typed on at least 1.4 million SNPs. The geographic
and ethnic diversity among the HapMap individuals allows a range of analyses to
be conducted on SNP data collected in clinical trials, including the checking of self-
reported ethnicity and relationship with other study members as described below.

A comprehensive search for SNPs is being undertaken by the 1000 Genomes
Project (see URL 1 below). In a tutorial presented by Gabor Marth (see URL 1
below) in October 2011, it was reported that whole-genome sequencing with 20–
50-fold coverage has been completed on 697 individuals from the CEU, CHB,
CHD, JPT, LWK, TSI, and TRI populations of Table 1. The goal is to sequence
2,500 individuals from around the world and to locate 95% of all SNPs that have
a minor allele frequency greater than 1% (and greater than 0.1% for SNPs in gene
coding regions). This will avoid the ascertainment biases that characterized early
SNP studies where SNPs were discovered by looking for variation among people of
European ancestry. By October 2011, over 25 million SNPs had been discovered—
over 17 million of them from the 1000 Genomes project. The locations of these 25
million are spread over the three billion nucleotide positions in the human genome.

An advantage of the large projects such as HapMapIII or 1000 Genomes is
that they provide reference panels for genotype imputation (see GENEVA URL 5
below). Participants in a clinical trial could have SNP genotypes determined with a
commercial platform that yields one million SNP genotypes and then have another
ten million genotypes found by imputation. Genotype imputation is the process of

Table 1 HapMap III data

Father, Mother, Father,
Total child child mother

Population SNPs indivs. pairs pairs child trios

ASW: African ancestry in Southwest USA 1,543,731 86 5 17 10
CEU: Utah residents of European ancestry 4,031,093 164 2 3 48
CHB: Han Chinese in Beijing, China 4,056,784 136
CHD: Chinese in Metropolitan Denver, CO 1,312,343 108
GIH: Gujarati Indians in Houston, Texas 1,409,510 100
JPT: Japanese in Tokyo, Japan 4,055,077 112
LWK: Luhya in Webuye, Kenya 1,527,403 109
MEX: Mexican ancestry in Los Angeles, CA 1,453,659 85 30
MKK: Maasai in Kinyawa, Kenya 1,532,587 183 28
TSI: Tuscan in Italy 1,420,526 101
YRI: Yoruban in Ibadan, Nigeria 3,985,822 203 2 54
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inferring unobserved genotypes in a study sample based on the haplotypes (a region
of one chromosome) observed in a more densely genotyped reference sample of
similar genetic background. The GENEVA and GARNET consortia use imputation
software in the BEAGLE package (Browning and Browning [2]). Imputed results
are provided in two formats: (1) the expected allele dosage and (2) the probability
of each of the three genotype states, reflecting the level of certainty in the genotype
prediction. It is recommended that these probabilities be incorporated into any
subsequent analyses, rather than taking the most likely imputed genotypes. Quality
metrics are provided for each imputed SNP that can be used for filtering imputation
results on a per-SNP level.

3 Cleaning SNP Data

3.1 SNP-Level Cleaning

High-throughput SNP genotyping is becoming low-cost, fast, and reliable but the
inherent uncertainties in the current microarray technologies mean that 10% or more
of the SNP genotypes may need to be discarded because of poor quality [13]. Apart
from the difficulty sometimes in “calling” the SNP type from the signals provided by
the typing systems, the sheer scope of the data can reveal low-frequency problems
that used not to be an issue in genetic studies. The GENEVA and GARNET
consortia examine SNP data with the criteria shown in Table 2. This table refers
to results from a total of 4,936 female subjects selected from the Women’s health
initiative (WHI) hormone therapy (HT) trial (a trial of estrogen plus progesterone
versus placebo) and genotyped on the Illumina HumanOmni1-Quad v1-0 B SNP
array as part of the GARNET project. Complete details of the data cleaning are
given at the URL 4 listed below, but the table summarizes the reasons SNPs may be
excluded from a study. Over the eight data-cleaning steps, a total of 22.4% of the
SNPs has to be excluded from further analyses because of data quality issues. The
reason that excluded most SNPs was the requirement that minor allele frequencies
exceed 0.02: this admittedly arbitrary threshold was to preserve the validity of
subsequent association tests. Some of this loss may be avoided by refinement of
the tests.

3.2 Individual-Level Cleaning

The genetic nature of SNP data offers several possibilities of detecting quality
issues at the sample (individual) level as opposed to the SNP level. For example,
indications of the presence of Y-chromosome SNPs in individuals annotated as
female may indicate sample mix-up, incorrect annotation, or gender anomalies.
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Table 2 FDA information about clopidogrel (see URL 3 below)

FDA drug safety communication: Reduced effectiveness of Plavix (clopidogrel) in patients who
are poor metabolizers of the drug.

Data Summary

The liver enzyme CYP2C19 is primarily responsible for the formation of the active metabolite
of Plavix. Pharmacokinetic and antiplatelet tests of the active metabolite of Plavix show that the
drug levels and antiplatelet effects differ depending on the genotype of the CYP2C19 enzyme.
The following represent the different alleles of CYP2C19 that make up a patient’s genotype:

• The CYP2C19*1 allele has fully functional metabolism of Plavix.
• The CYP2C19*2 and *3 alleles have no functional metabolism of Plavix. These two alleles

account for most of the reduced function alleles in patients of Caucasian (85%) and Asian
(99%) descent classified as poor metabolizers.

• The CYP2C19*4, *5, *6, *7, and *8 and other alleles may be associated with absent or reduced
metabolism of Plavix, but are less frequent than the CYP2C19*2 and *3 alleles.

• A patient with two loss-of-function alleles (as defined above) will have poor metabolizer status.

The pharmacokinetic and antiplatelet responses to Plavix were evaluated in a crossover trial in
40 healthy subjects. Ten subjects in each of the four CYP2C19 metabolizer groups (ultrarapid,
extensive, intermediate and poor) were randomized to two treatment regimens: a 300 mg loading
dose followed by 75 mg/day, or a 600 mg loading dose followed by 150 mg/day, each for a
total of 5 days. After a washout period, subjects were crossed over to the alternate treatment.
Decreased active metabolite exposure and increased platelet aggregation were observed in the
poor metabolizers compared to the other groups. When poor metabolizers received the 600 mg
loading dose followed by 150 mg daily, active metabolite exposure and antiplatelet response
were greater than with the 300 mg/75 mg regimen. Health-care professionals should note that
an appropriate dose regimen for patients who are poor metabolizers has not been established in
clinical outcome trials.

Even randomly chosen individuals for a clinical trial may include some relatives
and these should either be removed prior to subsequent analyses or those analyses
modified to accommodate relatives. The usual procedure for identifying relatives
with SNP data [18] has been to estimate a set of three probabilities, k0; k1; k2, of
two individuals sharing 0, 1, 2 pairs of alleles identical by descent. Unrelated pairs
of people have k0 D 1, parent–offspring have k1 D 1, and identical twins have
k2 D 1. It is not unusual to find instances of full-sibs (k0 D 0:25; k1 D 0:5; k2 D
0:25) or half-sibs (k0 D k1 D 0:5) in a clinical trial. It is sometimes convenient to
summarize relatedness with the kinship or coancestry coefficient � D k2=2 C k1=4.
This coefficient can be regarded as the probability that two alleles, one taken from
each individual, are identical by descent, ibd. The analogous quantity for a single
individual is termed the inbreeding coefficient.

There have been recent extensions (e.g., [12]) of relatedness estimation that
distinguish among different classes of relatives with equal k values or that detect
quite distant classes of relative. Individuals related as half-sibs or as uncle–nephew,
for example, both have probability k1 D 0:5 of receiving identical copies of an
allele at any SNP from their most recent common ancestor. However, they have
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different probabilities of receiving the identical copies of the region between two
SNPs because there has been no recombination between those SNPs in the paths of
descent from the recent common ancestor: if c is the recombination fraction between
two SNPs these probabilities are .1 � c/2=2 for half-sibs and .1 � c/3=2 for uncle–
nephew. If identity by descent can be detected, then half-sibs will tend to have longer
ibd regions than do uncle and nephew.

There are substantial computational challenges in determining the relatedness
of all pairs of individuals in a study of 1,000 or more individuals, and even more
challenges in determining ibd regions. Purcell et al. [18] use the method of moments
which are fast but prone to large variances and problems when there are low minor
allele frequencies. Maximum likelihood methods are preferred but the need for
iterative solutions can make them prohibitively slow. All methods make use of
allele frequencies, generally estimated from the data under study and any population
structure or ethnic diversity in the study can make estimating the appropriate allele
frequencies for a particular pair of individuals quite difficult.

Ethnicity can also be inferred from SNP profiles by reducing the high dimen-
sionality of the number of SNPs to a small number of principal components.
These components are for the matrix with dimensions equal to the total number of
individuals in the study and with elements being estimates of one plus the inbreeding
coefficient of the individuals on the diagonal and the coancestry coefficients of pairs
of individuals off the diagonal. When individuals are plotted in two dimensions
for pairs of the first few principal components they tend to cluster in populations
(Novembre et al. [17]) in ways that often bear striking resemblances to geographic
maps of population locations. Principal component analysis (PCA) can quickly
identify individuals with outlier ethnicities in a study that may need to be removed
from association analysis. Principal components can also be used as covariates when
outcome variables are regressed on SNP genotype scores.

A novel finding of PCA is that chromosomal features such as inversions are
revealed in samples from the same population. Tian et al. [23] reported the clustering
into three groups of a sample of European-ancestry individuals corresponding to the
genotypes of a cluster of highly correlated SNPs in chromosomal region 8p23, a
region that contains a polymorphic inversion. SNPs in such structural elements may
need to be removed from association analyses.

Another individual-level finding from whole-genome SNP studies is that of
chromosomal aberrations whereby whole or parts of chromosomes may appear
in other than two copies. Instead of an individual receiving one copy of each
chromosome, other than X or Y, from each parent he or she may receive a copy
from only one parent (a deletion), two copies from one parent and none from the
other (uniparental disomy) or more than one copy from one parent and at least
one from the other (duplication). These anomalies may be constitutive, having been
present since conception, or they may be mosaic, having arisen during the lifetime
of the individual by processes such as mitotic recombination. The anomalies are
detected by examining features of the raw intensity data, rather than from called
genotypes and details from the GENEVA consortium have been given by Laurie
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et al. [14]. Constitutive anomalies appear to be present in almost everyone, while
mosaic anomalies occur in about 0.5% of the population up to age about 50, after
which they increase to about 3%.

4 Association Testing

The search for SNPs M associated with outcomes in a clinical trial supposes
that there are genetic loci T that affect that outcome, such as an adverse drug
reaction or an elevated platelet reactivity. The evidence for a genetic basis may
simply be that variation in response is found among individuals in a population,
or there are differences in response rates among different ethnicities, or there is
similarity of responses among relatives. There may be direct knowledge of the
genes responsible for response to a drug, based on the known mechanism of drug
action, in which case a candidate-gene approach can be used to identify SNPs that
may be used to screen patients. If there is no prior knowledge, a GWAS may
be used. The difference is mainly one of scale: in each case the observed SNP
genotypes are coded as a marker variable X and evidence is sought for association
between this and a response variable Y, both measured on each individual in
a clinical trial.

A simple model supposed that a measured response variable has a genetic
component G and a nongenetic component E, with Y D G C E. Although
sophisticated analyses are used in practice, the essence of association testing can be
seen by supposing that a test is made of the hypothesis that the observed variables
X and Y are uncorrelated. If the mode of action for the response gene is additive,
then it can be shown [24] that the square of the correlation coefficient between
the two variables can be written as �2

XY D �2
MT h2

T , where �2
MT (sample value r2)

is the linkage disequilibrium between marker and trait alleles M; T , and h2
T is the

heritability of response from locus T. Heritability is the additive genetic portion of
the variance in response values. The SNP M with the highest correlation is likely to
be the one closest to T in the genome, but that is less important in dose determination
than in the utility of the M genotype to predict response. Shuldiner et al. [21]
conducted a GWAS for clopidogrel response and found a cluster of 13 SNPs
on chromosome 10 in the CYP2C18–CYP2C19–CYP2C9–CYP2C8 gene cluster
with strong evidence for association with response. They showed that a guanine
to adenine substitution in exon 5 of CYP2C19 (SNP rs 4244285, also known as
CYP2C19�2) accounts for most or all of the association signal on chromosome 10.
This G ! A base substitution produces a nonfunctional truncated protein, and
people with two copies of this allele are poor metabolizers of clopidogrel. Such
findings are reflected in the FDA Drug Safety Communication about clopidogrel
shown in Table 2.
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5 HLA Typing

The discussion so far has centered on using SNP data for quality control measures,
and then as biomarkers for outcomes in clinical trials. There are other uses of
these markers. The human leukocyte antigen (HLA) region, located on human
chromosome 6p21.3, is known to be highly polymorphic, and typing at classical
HLA loci has been an essential tool for transplantation matching and detailed
analyses of disease associations. Particular HLA types have also been shown to
be associated with drug response: [6] noted that carbamazepine, an anticonvulsant
and mood-stabilizing drug, is the main cause of the Stevens–Johnson syndrome
(SJS) and its related disease, toxic epidermal necrolysis (TEN), in Southeast Asian
countries. These authors found an association of SYS-TEN with the HLA B*1502
allele, and they used allele-specific assays in their study.

High-resolution HLA typing is expensive, especially in the context of clinical
trials where the appropriate HLA type is to be determined, and there is interest in
being able to predict HLA type from relatively inexpensive SNP types. The problem
is complicated by the very large number of possible HLA types: the HLA-B locus,
for example, has 2,069 alleles listed in the January 2011 release of the IMGT-HLA
Database (see URL 7 below). To impute HLA types from multiple SNP markers,
[15] used a hidden Markov model (HMM) based on coalescent theory to develop
their LDMhc algorithm, and they used a leave-one-out cross-validation scheme for
SNP selection. These authors [11] subsequently developed an integrated software
“HLA*IMP” for imputing classical HLA alleles from SNP genotypes based on
LDMhc, with a modification of SNP selection function that leads to pronounced
increases in call rate. An alternative strategy, using an Attribute Bagging method
[3] has been proposed by Zheng et al. [25]. This alternative method makes use of
published haplotype frequencies from a training dataset, rather than requiring access
to that dataset. A user does not have to provide a query SNP profile to a third party
imputation provider. Imputed HLA types have been used in an association study by
Raychaudhuri et al. [19].

6 Discussion

Characterizing the genetic basis of responses in clinical trials has been made
substantially easier and more powerful through the use of single nucleotide poly-
morphism data. A million of more of these markers can now be scored cheaply with
commercial SNP-chips and ten million or more additional SNPs can be inferred by
imputation. These rich datasets offer a deep look at the human genome and they are
likely to tag many of the response causal genes. It has already become common for
SNP types to be included in drug box labels.

SNP typing in clinical trials offers much more than a source of potential
biomarkers for response, however. By virtue of their genetic nature, they provide
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information about cryptic relatedness, an alternative to self-reported ethnicity or
gender, and information about the detailed genetic structure of trial participants.
Although whole-genome DNA sequencing is fast becoming practicable, even those
complete datasets are likely to be reduced to SNP sets in the forseeable future.
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Part III
Issues in Multi-Regional Clinical Trials



Why Is This Subgroup Different from All Other
Subgroups? Thoughts on Regional Differences
in Randomized Clinical Trials

Janet Wittes

Abstract Many Phase 3 randomized clinical trials are currently being conducted
multinationally with too few participants from any individual country to allow
reliable inference about the beneficial or harmful effects of the tested product using
data from that country alone. Instead, the conclusions for a given country will
come from the totality of the data. Insofar as “country” is just another subgroup
defined by baseline variables, this strategy is defensible. On the other hand, in
cases where “country” stands as a surrogate for country-specific variables that
importantly influence the benefits and harms of an intervention, inferring from
the study population at large to specific countries may be less appropriate. Such
variables may include the nature of the disease being studied, the country-specific
standard of care, the patterns of safety reporting, and the extent of adherence to study
protocol. This paper presents four examples of studies where the observed treatment
effect in the USA differed considerably from the effect observed elsewhere. It argues
that the problem is in some sense intractable because a study large enough to provide
precise estimates of effect sizes within specific countries would likely be infeasible.
Instead, although the paper recommends generally applying the overall result to
the participating countries, it provides suggestions for strategies in the design and
analysis phase to mitigate potential inferential ambiguities.

1 Introduction

A subgroup in a clinical trial is a group of participants characterized by at least one
common baseline characteristic. Subgroups may be defined by any baseline variable
or set of variables, for example, demographic variables (e.g., males, females over
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65), physiologic variables (e.g., ejection fraction over 30%), use of medications
(e.g., prior use of chemotherapy, or current use of an antihypertensive agent),
or, in the case this paper discusses, country or geographic region in which the
participant lives. Anyone who has been involved extensively in randomized clinical
trials has probably struggled with interpretation of subgroups. Many papers have
warned of the treacherousness of taking seriously an effect in a subgroup that
differs from effects in the totality of the trial [1–6]. The problem is most serious
when the subgroup is defined after looking at the data because that smacks of
betting on the horse after the race is over [7], but inference even from subgroups
defined a priori can be incorrect because subgroups are often small and therefore
estimates from them are subject to large variability. This is, of course, not to say
that individual people all respond the same way to an intervention; it is simply
a warning that relying on a surprising discordance in magnitude or direction of
effect among subgroups in a randomized clinical trial has a high probability of
leading the credulous observer down the primrose path. Instead, the seasoned trialist
discounts apparent discrepancies among subgroups and argues, as Yusuf et al. [7]
have commented, “We believe the prudent stance is to rely more on the overall
results to indicate the likely ‘true’ effect in a particular subgroup, rather than on
the actual observations, unless the trial was specifically designed to have sufficient
power within subgroups of interest.” Sometimes the argument against taking an
observed subgroup effect seriously is purely statistical: given a true effect � that
is constant across all elements in a population, the effect observed in a subgroup
of size n will have an expectation of � but a standard error proportional to 1/n1/2.
Therefore, relative to the effect size b� observed in the trial as a whole, the effect
size observed in a small subgroup has a high probability of being much less than,
or much greater than, �. Lighting on a surprisingly modest, or surprisingly large,
effect size in a small subgroup and declaring that the treatment does not work in
some people or works marvelously well in others may reflect not a true finding, but
an exaggerated effect due to the play of chance. The smaller the subgroup, the more
likely the observed effect will fall far from the true value (even though on average
the observed effect will be equal to the true value).

When b� is the observed effect in a trial, one can expect that the observed
effect in subgroups will likely hover around b�, but for very small subgroups the
observed effect size may be considerably larger or considerably smaller than b�.
An illustration of this phenomenon comes from the Systolic Hypertension in the
Elderly Program (SHEP), which was a randomized clinical trial that studied the
effect of reducing blood pressure in elderly people with systolic blood pressure at
least 160 mm Hg but diastolic pressure less than 90 mm Hg. SHEP showed that
reducing blood pressure led to a sizeable decrease in the rate of stroke, the primary
outcome, and of cardiovascular events. For the latter, the relative risk was 0.68 with
nominal 95% confidence interval (0.58, 0.79) [8]. If, however, one dichotomizes
each baseline variable and looks at the effect size for cardiovascular events in the
resulting pairs of subgroups (see Fig. 1; Byington R, private communication), one
sees that among the smallest subgroups, while most of the estimated effect sizes
fall close to 0.68, some are considerably larger than 0.68 and some considerably
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Fig. 1 Relative risk for fatal and nonfatal cardiovascular disease events by subgroup size. Overall,
the relative risk of a cardiovascular event in SHEP was 0.68, which is indicated by the vertical
dotted line. Two hundred eighty-nine (289) of the 2,365 treated and 414 of the 2,371 placebo
participants experienced at least one cardiovascular event defined as fatal and nonfatal myocardial
infarction, sudden cardiac death, rapid cardiac death, coronary artery bypass graft, angioplasty,
fatal or nonfatal stroke, transient ischemic attack, aneurysm, or endarterectomy. Analysis and figure
courtesy of Robert Byington

smaller. A few subgroups even show an observed adverse effect of reduction in
systolic blood pressure. A researcher not familiar with the intrinsic variability in
effect size might interpret these observed differences as reflecting true differences
in the effect of reduction in systolic blood pressure; however, I would interpret these
differences as the inevitable consequence of variability as a function of sample size,
and I believe most experienced trialists would agree.

This paper deals with a specific type of subgroup, one defined by a country or
geographic region in which the trial is conducted. In particular, it deals with the USA
as a region of interest; however, readers more concerned with inference from another
region can replace the words “United States” with the name of the region of interest.
The general concerns expressed above about subgroups are relevant to interpretation
of differences in effect size observed in such geographic regions. If we consider a
geographic subgroup to act like any other subgroup, then investigators, sponsors,
regulators, or treating clinicians who are interested in the effect of a treatment in
a specific region should not be surprised with a study that overall shows a strong
beneficial effect but that reports a point estimate in the region of interest with much
smaller benefit or, worse yet, an estimate that sits in the direction of harm. Several
trials have shown such a pattern, which is illustrated by the schematic forest plot in
Fig. 2. Many people would view the discordance as most likely having arisen by the
play of chance; however, for reasons amplified later in this paper, others consider
geographic subgroups to hold a special place in the panoply of subgroups, a place
that requires special consideration.
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Fig. 2 Schematic forest plot showing treatment effect by geographic region. Each horizontal line
in the plot shows the mean (square for each country-specific mean and diamond for the overall
mean) and the 95% confidence limits for the estimated effect size. The area of the square or
diamond is proportional to the information (the inverse of the variance) contained in the estimate

The statistical literature, the medical literature, and even the popular press have
noted discordances in estimated treatment effects by geographic regions and have
addressed the problem of making inference from trials conducted outside the USA
to treatment of patients in the USA. One example from each type of paper shows
the general concern. A 2010 paper written by a group of statisticians proposes a
series of methods useful for assessing whether treatment effects are consistent across
regions [9]. A paper in the medical literature published in 2011 by Kim et al. [10]
warns, “Cardiovascular [randomized controlled trials] sponsored by the National
Heart, Lung, and Blood Institute have substantial rates of international enrollment,
particularly coronary artery disease trials. Given questions of applicability and
ethical and financial considerations, [international participation] in U.S. clinical
trials deserves further scrutiny.” A 2011 article in Vanity Fair decries the enrollment
of patients from developing countries in clinical trials that study treatments for use
in the USA if the data from those trials are to form the basis of approval by the
United States Food and Drug Administration [11].

The next section addresses why trials are often multinational. Focus then moves
to the USA, first with a general discussion of interpreting observed differences
between the USA and other countries. Four examples show how the FDA responded
to trials when the observed effect in the USA was much smaller than in other
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countries. Subsequent sections briefly touch on how to classify countries when one
is interested in the effect in the USA, issues regarding safety in multinational trials,
and how data monitoring committees should look at interim data in light of the
FDA’s understandable regulatory discomfort approving products that have shown
little or no effect in the USA. A short section distinguishes the inferential problems
stemming from discordance between the results in the USA and other countries
of the medically developed world from those when the results in the USA differ
markedly from those in the developing world.

In some sense, the problem is intractable—to learn precisely the effect of a
treatment in several specific geographic regions would require unfeasibly large sam-
ple sizes. In light of the likelihood that most observed country-specific differences
result from the play of chance and the infeasibility of gaining a high degree of
precision for country-specific estimates, the final section concludes with tentative
answers to the question posed in the title. The section presents an argument that
although countries, or geographic regions, or more specifically, the USA, is in some
sense just another subgroup in a clinical trial, geographic classification serves as
a surrogate for important factors that may in fact impinge upon the true balance of
benefit and harms of a therapy. Therefore, the prudent trialist will consider strategies
to increase the likelihood of being able to make reasonably accurate inference in
specific countries.

2 Why Involve Participants from Many Countries?

Thus far, I have been deliberately coy about the phrase “treatment effect,” for I have
not defined the metric to be used. An appropriate metric will of course depend on the
question the particular trial is asking. If the outcome is a mean, then the treatment
effect is the difference in means divided by the standard deviation. Most of the trials
discussed below, however, compare interventions either with respect to proportion
of events or with respect to rates of events and use odds ratios, relative risks, or
relative hazards as the metric of comparison.

If one believes—as I usually do—in near homogeneity of effect (if measured by
a metric assessing relative risks or odds) across subgroups of patients who have
no contraindications precluding them from taking the intervention under study,
then recruiting participants from many countries will help fight the all-too-frequent
problem of slow recruitment. Thus, the first reason to enter participants from more
than one country is practicality—a multinational trial can recruit much more quickly
than a trial that takes place in only one country. If the organization running the
trial has the facilities to recruit participants in more than one country and the
infrastructure to support high quality research in each participating country, so
much the better. Another justification for multinational trials comes from appeal
to distributive justice: “The principle of distributive justice requires that the trials be
conducted with all groups to whom the treatment may apply” [12]. If an intervention
is to be used in Country C, this argument implies that the trial should include
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residents of Country C. From a regulatory perspective, some countries will not
approve a drug unless it has been studied in that country; holding separate trials
in each country with such a requirement can satisfy these regulations, but it is often
more efficient to conduct one or two large multinational trials rather than many
smaller (or perhaps just as large if considerations of statistical power require large
trials) country-specific trials. See Luo et al. [13] for an interesting proposal to ensure
enough participants in countries that require representation of their residents before
approving a drug.

These three reasons—a belief in homogeneity of effect, a commitment to
distributive justice, and a desire to have a product approved in many countries—
all lead naturally to multinational trials. Moreover, they allow hedging one’s bet
about the assumption of homogeneity: the absence of data from different countries
or geographic regions precludes testing the assumption of homogeneity. Having
different countries represented in a trial allows, at least theoretically, the possibility
of testing for heterogeneity of effect. I say “theoretically” because the sample size
within a country or region is likely to be too small to identify true differences in
effect size, or, if a difference is seen, it may well have emerged by chance.

While the previous paragraphs in this section have provided reasons for multina-
tional trials when the treatment effect is expected to be the same in many countries,
some biologic or medical reasons argue strongly for multinational trials that limit
recruitment to specific countries. For example, the distribution of the affected
population in many genetic diseases reflects specific patterns of development of
the genetic mutations and of patterns of migration. Thus, “�thalassemia, a blood
disorder that reduces the production of hemoglobin, has a higher prevalence in
countries bordering on the Mediterranean than elsewhere. A trial studying that
disease would likely try to recruit patients from Italy, Greece, Northern Africa,
and places—like the USA or Argentina—to which populations from these countries
emigrated. If one is interested in learning about treating the disease, it makes sense
to look for cases in the ethnic groups where it is found and to generalize across
countries where those groups live. Another example is infectious disease. Just as
Willie Sutton is purported to have said that he robbed banks because “that’s where
the money is,” it makes sense to follow organisms if one is trying to cure or prevent
infectious disease. For that reason, studies of influenza vaccine take place in the
Southern Hemisphere—especially Latin America and South Africa—during their
fall and winter and in the Northern Hemisphere during our fall and winter. There is
no reason to believe that a vaccine effective against a specific strain of influenza
in the Southern Hemisphere would not be effective against that same strain the
following season in the Northern Hemisphere and thus in the USA.

Some practical considerations may lead to carrying out trials in specific coun-
tries. The cost of doing trials varies by orders of magnitude from country to country,
leading to an incentive to carry out trials in countries where recruitment and services
are inexpensive. Recruitment may be easier in countries where the benefits of
participating in a trial and receiving care may be much more attractive than in
wealthy countries, or wealthier parts of countries, where the population can afford
high quality medical care. Adherence to therapies and willingness to attend clinic
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visits may also vary from country to country. Because low adherence and high loss
to follow-up rates can wreak havoc on interpretation of data from clinical trials,
designers of trials often try to select populations likely to adhere to the protocol.
Still another important variable is access to concomitant medication. If investigators
are studying a new drug for heart failure, for example, the effect of the experimental
drug may be blunted if it is given on top of many other drugs for heart failure.
Consider a design that compares a new drug to placebo on top of “local standard of
care.” If the local standard of care consists of no other drug, then the trial compares
the new drug to placebo, both on top of no other treatment. If, on the other hand,
the local standard of care includes several effective drugs, the new drug may show
no benefit, or the benefit it does show may be much smaller than observed when it
is the only drug prescribed. A drug company may want to test its drug in the setting
most likely to show benefit, and therefore may choose to study it in a country whose
population has limited access to other drugs. If such a study shows benefit of the
tested drug, one can conclude that the drug is effective when used without other
interventions. Applying the results without further testing to settings with a more
aggressive standard of care assumes that the treatment will be effective in these
settings as well.

3 Why Do Participants from Outside the USA Differ
from Those in the USA?

The remainder of this paper deals with making inferences from multinational trials
to patients in the USA. In addition to the reasons discussed in the previous section,
participants from outside the US have some medically relevant characteristics that
differ importantly from participants in the USA. The differences may be related
to the characteristics of the participants themselves, the distribution and severity
of the disease in the countries involved in the trial, or patterns of medical care. In
chronic disease, what is called disease D in one country may be quite different from
disease D in another. For example, wide access to Pap smears in the USA may
translate to different relative frequency of stages of prevalent disease compared to
countries like India where women have much less access to screening [14]. Thus,
if one wants to study treatments for Stage IV cervical cancer, recruiting from India
allows easier access to the disease than searching for late-stage disease in the USA.
Similarly, early detection of breast cancer in the USA has led to a lower ratio of
early stage to invasive disease in the USA than in some other countries. Another
example comes from heart failure. Perhaps because of the generally more aggressive
treatment of heart failure in the USA and Western Europe than in Russia and much
of Eastern Europe, the mortality rates for heart failure, corrected for stage of disease,
are generally lower in the former countries than in the latter.

For outcomes that assess prevention of invasive interventions (for example,
time to dialysis or transplantation in trials of advanced kidney disease, or time
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to revascularization in trials of coronary disease), the threshold for intervention
may vary considerably from country to country, and even from institution to
institution within a country. These variations may results in variable event rates
in the participating countries, leading to the need for a larger sample size to have
enough events for adequate power. If, however, the outcome is a relative measure
(e.g., hazard ratio, odds ratio, or relative risk) and the analysis is stratified by country
or region, then the relative effects will often remain nearly constant. On the other
hand, if the outcome is a difference in the proportion failing (e.g., the proportion of
people who are dialyzed or receive a transplant within two years of randomization),
the attributable risk will vary as a function of the underlying proportion and thus
composition of the population may affect not only the underlying rate but also the
effect size. The relationship of effect size to underlying risk is an argument for use
of relative measures, rather than absolute measures, in multinational trials.

4 Some Examples: Are the Apparent Differences Real
or Illusory?

This section describes four examples of Phase 3 trials where participants from
the USA, or North America, showed less effect than did participants from the
rest of the world: a trial of zanamivir (trade name Relenza) for the treatment of
symptomatic influenza, MERIT-HF in heart failure, PLATO in patients with acute
coronary syndromes, and the BLISS trials in lupus. In each case, the patients in the
USA showed a smaller beneficial effect than did patients in the rest of the world, but
in each case the Food and Drug Agency (FDA) granted approval for use in the USA.
Because the four stories differ somewhat, it is interesting to review their results and
describe the FDA’s decisions. These examples are not meant to typify results from
clinical trials; rather they are presented to illustrate how the FDA thought through
decisions concerning approval in the face of discordant results between the USA
and other countries.

Relenza. The case of zanamivir (Relenza), an antiviral drug for patients with
influenza, highlights limitations in looking only at data from the USA. In February
1999, the FDA presented data to its Antiviral Advisory Panel showing that the drug
had a very small observed effect in the USA but a statistically significant effect
overall in reducing the number of days of illness. The Advisory Panel voted 13
to 4 against approving the drug without further study. The majority of the Panel
contended that the trial showed very little evidence of an effect in the USA. The
Panel members hypothesized that people in the USA were already taking over-
the-counter medicines for symptomatic relief and most Panel members were not
convinced that the small benefit observed was worth the potential harms of the drug.
In spite of the lopsided vote of the Advisory Panel, the FDA approved the drug. Two
quotations from the label are relevant:
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The efficacy of RELENZA 10 mg inhaled twice daily for 5 days in the treatment of
influenza has been evaluated in placebo-controlled studies conducted in North America, the
Southern Hemisphere, and Europe during their respective influenza seasons. The magnitude
of treatment effect varied between studies, with possible relationships to population-related
factors including amount of symptomatic relief medication used : : : .

Principal Results: The definition of time to improvement in major symptoms of influenza
included no fever and self-assessment of “none” or “mild” for headache, myalgia, cough,
and sore throat. A Phase II and a Phase III study conducted in North America (total of
over 600 influenza-positive patients) suggested up to 1 day of shortening of median time
to this defined improvement in symptoms in patients receiving zanamivir compared with
placebo, although statistical significance was not reached in either of these studies. In a
study conducted in the Southern Hemisphere (321 influenza-positive patients), a 1.5-day
difference in median time to symptom improvement was observed. Additional evidence of
efficacy was provided by the European study [15].

MERIT-HF. The Metoprolol CR/XL (Controlled Release/Extended Release)
Randomized Intervention Trial in Chronic Heart Failure, or MERIT-HF, was a ran-
domized, double-blind, placebo-controlled trial studying patients with symptomatic
heart failure. The dose of metoprolol used for those randomized to active drug
depended on their New York Heart Association (NYHA) class. The trial randomized
3,991 participants, with roughly 2,000 per group. Participants came from the USA
and 13 European countries, all of which can be considered developed in terms
of access to, and sophistication of, medical treatments (Belgium, Czech Republic,
Denmark, Finland, Germany, Hungary, Iceland, The Netherlands, Norway, Poland,
Sweden, Switzerland, and the United Kingdom). The study had two co-primary
outcomes: (1) time to death or (2) time to death or any hospitalization. A statistically
significant improvement relative to placebo on either of these outcomes would lead
the conclusion that metoprolol was beneficial in this patient population. The p-value
was partitioned between the two outcomes in a way that protected the overall Type
I error rate of the trial. Randomization began in February 1997 and ended on April
14, 1998. The study stopped at the second interim analysis (October 31, 1998)
on a recommendation from the Independent Safety Committee. At that time, all
participants had been randomized and half of the expected events had occurred (i.e.,
the information time was 50%); the mean follow-up time was one year; and the
observed p-values for both primary outcomes were less than 0.001. When the study
stopped, 145 participants in the metoprolol group and 217 in the placebo group had
died. The estimated relative risk was 0.66 with a nominal 95% confidence interval
of (0.53, 0.81). (The word “nominal” here reflects that the confidence interval is
not corrected for the fact that the estimates came from an interim analysis.) The
MERIT-HF Study Group has described the design of the study [16] and the primary
results [17].

The large benefit seen, however, was limited to Europe where the observed
relative risk was 0.55. In the USA, which randomized roughly one-quarter of the
study cohort, the relative risk was 1.05; that is, in the USA slightly more deaths
occurred in the metoprolol group than in the placebo group (see Table 1).
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Table 1 Results from the MERIT-HF study: total mortality

Region Relative risk Nominal 95% confidence interval

Overall (n D 3,991) 0.66 (0.53, 0.81)
USA (n D 1,071) 1.05 (0.71, 1.56)
Europe (n D 2,920) 0.55 (0.43, 0.70)

Interaction p-value: 0.003. Data from descriptions of the MERIT-HF
study [17–19]

In its review of the MERIT-HF study, the FDA addressed the discordance
between the findings in the USA and elsewhere:

If the mortality endpoint is the most important among all endpoints, the US sub-population
should be the most important subgroup in a multinational trial because the goal of the [New
Drug Application] submission is to gain approval for marketing the drug in the US. The
efficacy outcome in this population must be examined carefully as part of the evaluation of
the totality of the evidence and possible extrapolation of the efficacy evidence from foreign
population[s] to [the] US population [18].

An memorandum written at the FDA says,

Because of demographic differences or differences in concomitant care, a treatment might
be beneficial overall but neutral or detrimental in some subpopulations. In particular, even
though studies in the United States were not required for approval, evidence that a treatment
is non-beneficial in United States patients (or even in some subpopulation among United
States patients) must not be ignored. The observed mortality among United States patients
receiving metoprolol was 105% of that seen in those receiving placebo.

How should this finding be interpreted? The finding of adverse United States mortality
could of course be attributable to chance, but it could alternatively be a genuine finding,
the result of US-differences in demographics or concomitant therapy (from an FDA
memorandum [20]).

(Before proceeding, I cannot resist making a side comment. Although the
memorandum speaks of patients “receiving” metoprolol and placebo, the data
actually show results for patient randomized to metoprolol and placebo.)

The FDA handled the discordant finding by approving the drug but including
in the label a forest plot showing the effects in various subgroups, including the
discordant effect in the USA. See FDA [18] and Wedel et al. [21] for discussions
of the differences between the observed effect of the drug in the USA and other
countries.

PLATO (PLATelet inhibition and patient Outcomes trial) was a double-blind
randomized controlled trial comparing ticagrelor (n D 9,333) against clopidogrel
(n D 9,291) in patients with an acute coronary syndrome, with or without ST-
segment elevation, with an onset of symptoms within the previous 24 hours. About
10% of the participants (n D 1,814) came from North America (the USA and
Canada). Overall, the trial showed a 16% reduction in its primary outcome: time
to the first occurrence of cardiovascular death, myocardial infarction, or stroke. The
paper describing the results stated:
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Table 2 PLATO: results for the primary outcome in the USA vs. other countries

Region Ticagrelor (n/N) Clopidogrel (n/N)
Hazard ratio (95%
confidence interval)

Overall(n D 18,624) 9.8%(864/9,333) 11.7%(1,014/9,291) 0.84(0.77, 0.93)
Non-US(n D 17,211) 9.6%(780/8,626) 11.8%(947/8,585) 0.81(0.74, 0.90)
US(n D 1,413) 12.6%(84/707) 10.1%(67/706) 1.27(0.92, 1.75)

Nominal p-value for interaction: US vs. non-US: 0.0095
Source: Fiorentino and Zhang [24]

The results regarding the primary end point did not show significant heterogeneity in
analyses of the 33 subgroups, with three exceptions: The benefit of ticagrelor appeared
to be attenuated in patients weighing less than the median weight for their sex (P D 0.04 for
the interaction), those not taking lipid-lowering drugs at randomization (P D 0.04 for the
interaction), and those enrolled in North America (P D 0.045 for the interaction) [22].

In fact, the results in North America were not merely “attenuated”; they were in
the opposite direction from the results elsewhere: a primary outcome occurred in
11.9% of those randomized to ticagrelor compared to 9.6% of those randomized
to clopidogrel. The observed adverse effect, like the observed adverse effect in
MERIT-HF, was not statistically significant. The difference might have been due
to chance—a p-value of 0.045 for an interaction is hardly compelling evidence that
a difference is real, especially given the post hoc nature of the test and the fact that
many statistical tests were performed. It may, however, reflect a real phenomenon.
The difference may have been due, at least in part, to a different approach in the
USA to treatment with aspirin [23].

In its presentation to the Cardio-Renal Advisory Panel on June 28, 2010, the
FDA reported on the United States cohort, which comprised about 80% of the
North American cohort, and showed an even larger difference than reported in the
published paper. The p-value for the interaction between North America and the rest
of the world was 0.045, but the interaction p-value for the USA compared to the rest
of the world was smaller, 0.0095, reflecting the observation that although the hazard
ratio for Canada was 1.17, which was unfavorable to ticagrelor, lumping Canada
into the non-US category and then testing the USA against all non-US countries
decreased the p-value for the interaction from 0.045 to 0.0095 (see Table 2).

The FDA eventually approved ticagrelor in the USA, but the package insert
includes the following language:

Results in the rest of the world compared to effects in North American (US and Canada)
show a smaller effect in North America, numerically unfavorable to the control and
driven by the US subset. The statistical test for the US/non-US comparison is statistically
significant (p D 0.009) and the same trend is present for both CV death and non-fatal
MI. The individual results and nominal p-values, like all subset analyses, need cautious
interpretation, and they could represent chance findings. The consistency of the differences
in both the CV and non-fatal MI comparisons, however, supports the possibility that the
finding is reliable.

A wide variety of baseline and procedural differences between the US and non-
US : : : were examined to see if they could account for regional differences, but with one
exception, aspirin maintenance dose, these differences did not appear to lead to differences
in outcome [25].
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Table 3 Subgroup analyses of the primary efficacy endpoint for the BLISS trials

BLISS-76 BLISS-52

Belimumab Belimumab

Placebo 10 mg/kg Placebo 10 mg/kg
(N D 275) (N D 273) (N D 287) (N D 290)

Overall response: 93 (34%) 118 (43%) 125 (44%) 167 (58%)

Region
USA/Canada 46/145 (32%) 47/136 (35%) – –
Western

Europe/Israel
15/64 (23%) 38/75 (51%) – –

Eastern Europe 15/36 (42%) 16/30 (53%) 12/33 (36%) 23/31 (74%)
Americas

(excluding
USA/Canada)

17/30 (57%) 17/32 (53%) 71/145 (49%) 85/140 (61%)

Asia – – 40/103 (39%) 56/115 (49%)
Australia – – 2/6 (33%) 3/4 (75%)
Interaction P-valuea – 0.073 – 0.18
Interaction P-valueb 0.15
aFor treatment by subgroup interaction effect from logistic regression as reported by the FDA.
bUS/Canada vs. other, two sided calculated using StatXact [26]Source. FDA briefing document,
10-Oct-2010

So, as the FDA had done for the metoprolol, it approved ticagrelor for use in the
USA, but it required that the label discuss the discordance between results in the
USA and elsewhere. Moreover, the label expresses ambivalence about whether or
not the findings reflect a true difference or a chance finding.

The BLISS trials. Two randomized double-blind trials compared belimumab
(trade name Benlysta) to placebo in patients with systemic lupus erythematosus
(SLE). In both trials, the primary outcome was a binary outcome measured at
52 weeks with success defined by an SLE Responder Index (SRI). BLISS-52
randomized patients from Asia, South America, and Eastern Europe; patients were
to be treated for 52 weeks. Patients in BLISS-76 were treated for 76 weeks;
participating centers came from North American and Europe. In its presentation
to its advisory panel, the FDA pointed to a difference in the results from the USA
and Canada and the remainder of the population: while the overall effect showed
benefit, only a very small benefit was seen in the population from the USA and
Canada. See Table 3 for some of the data the FDA presented. For simplicity, this
table shows only the placebo and the high dose (10 mg/kg) group; the actual trials
had included a 1 mg/kg arm.

While the briefing document showed a numerical difference between the effect
in the four prespecified regions, the p-value cited by the FDA, derived from a
logistic regression model (which I assume had three degrees of freedom), was 0.073,
suggestive of, but not conclusive of, a difference among the regions. A one degree
of freedom statistic comparing the USA and Canada to the rest of the world has
an interaction p-value of 0.16, which is consistent with the effect in the USA and
Canada being not different from the effect elsewhere. The FDA’s analysis, however,
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went further; it examined the effect by race and required a label pointing out not the
difference between the USA/Canada and the rest of the world, but to the difference
between blacks and non-blacks.

Effect in Black/African-American Patients
Exploratory sub-group analyses of [the SLE Responder Index] response rate in patients of
black race were performed. In [BLISS-52 and BLISS-76] combined, the [SLE Responder
Index] response rate in black patients (N D 148) in the BENLYSTA groups was less than
that in the placebo group (22/50 or 44% for placebo, 15/48 or 31% for BENLYSTA
1 mg/kg, and 18/50 or 36% for BENLYSTA 10 mg/kg). In [the Phase 2 trial], black patients
(N D 106) in the BENLYSTA groups did not appear to have a different response than the
rest of the study population. Although no definitive conclusions can be drawn from these
subgroup analyses, caution should be used when considering BENLYSTA treatment in
black/African-American SLE patients [27].

All four of these examples reflect common themes—a statistically significant
benefit observed overall, a much smaller benefit—or, in MERIT-HF and PLATO,
a point estimate in the direction of harm—in the USA (or the USA and Canada),
an intellectual struggle with how to deal with the apparent discrepancies, but a
resolution that led to approval of each drug with presentation of data in the package
insert acknowledging the lack of consistency in the results and the uncertainty of
whether to attribute the observed disparities to chance or to a true difference.

In MERIT-HF and PLATO, tests for interaction comparing the effect in the
USA with other countries showed nominal statistical significance (again, the word
“nominal” reflects that fact that these tests were not prespecified); in the BLISS
trials, the nominal p-values for interaction were above 0.05. Tests for interaction,
however, are notoriously hard to interpret. Tests performed after looking at the
data, as the examples here were, lack clear probabilistic interpretation. Prespecified
tests of interaction generally have low power. Thus, “statistically significant”
unprespecified interaction has a high probability of being a false finding. On the
other hand, failure to find a prespecified interaction may not be strong evidence of no
interaction; it may simply be the result of low power. Moreover, the interaction tests
usually performed ask the question, “Is the effect size constant over the subgroups
investigated?” But that is not really the question of interest when we are looking
at the difference between the USA and elsewhere—we do expect some variation in
effect size so if the sample size is huge, the interaction test is highly likely to be
statistically significant. The real question is whether in the USA the effect is in the
direction of harm or if the effect size is so small that the product is not useful in
the USA. Ultimately, the interpretation must come from a combination of statistical
arguments and from consideration of the biological, medical, and regulatory milieu.

5 Against Whom Should We Compare the USA?

The four examples above suggest a taxonomic dilemma: how should one define
geographic regions? In asking questions about the USA, should one compare the
USA to the rest of world? That stance is consistent with the discussion about
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region in PLATO where the FDA disaggregated North America into the USA and
Canada post hoc and in the FDA’s discussion of the interpretation from MERIT-
HF. Perhaps analysis should include only two categories—the USA compared to all
other countries or the USA and other medically advanced countries in one category
and other countries as the second. What about the USA and Canada compared to all
others as in BLISS-76? Perhaps having three categories makes more sense: the USA,
other medically advanced countries, and others. Or perhaps just a geographical split
is desirable. In that case, should we lump Western Europe together and all Eastern
Europe together? Should we gerrymander Eastern Europe so that Poland and the
Czech Republic join Western Europe and other former Eastern Bloc countries join
Russia? What about Israel? Australia? South Africa? Does Mexico belong with
North America or should it be considered part of Central and South America? What
constitutes Asia? Should it include only China, Japan, and Korea (and Taiwan and
Hong Kong)? Does it include India? Where does Turkey go? Does Africa include
the Mahgreb? Or should sub-Saharan Africa be split from Mediterranean Africa?
And, who makes the decision? And is the decision made before or after looking at
the data?

Perhaps this whole discussion is rather silly. After all, the USA itself is not
homogeneous—our very motto, E pluribus unum, attests to our diversity. Moreover,
the study population of a clinical trial is not representative of the population that
will actually be treated, so fastidious classification of countries does not address the
real question of interest to the FDA in deciding whether to approve a product or
to treating physicians in the USA: is there convincing evidence that the benefit of
the treatment under study outweighs the harm for patients in the USA? If this is the
real question underlying a regional categorization (and I think it should be), then the
choice of how to classify countries should depend on the particular study and the
particular disease and chosen a priori.

6 Safety

The previous sections have addressed efficacy by asking how to interpret discordant
conclusions regarding efficacy between the USA and other countries. The answer
has been “it depends,” for in the absence of adequate power, trials are unlikely
to allow distinguishing a chance finding from a true one. But efficacy is only
one face of the clinical trial die—another face is safety. Ultimately, the decision
about whether to approve a medical product requires a judgment that the likely
benefits exceed the likely harms. Most trials attempt to measure benefit carefully and
precisely, with definitions that are constant across the trial and therefore constant
across regions. The assessment of safety, on the other hand, is usually performed
by unstructured reporting of adverse events, which then are coded into categories
defined by a medical dictionary, the most common of which for regulatory reporting
is currently the Medical Dictionary for Regulatory Activities, or MedDRA. The
proportion of people experiencing each type of event is then reported across the
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entire clinical trial. This proportion is often called a “rate” though the estimates
usually do not incorporate time. Typically the reporting is performed without
stratification and rarely by geographic region. While efficacy is often measured in
terms of relative benefit, most adverse event reporting compares treatments with
respect to the difference between absolute risks in the treated and control groups.
Therefore, if the reporting of adverse events differs considerably from region to
region, the estimated difference in proportions may not reflect the actual risk of
harm in the USA. I am not aware of published evidence for differences in reported
risks by country; however, I have a strong belief, buttressed by a considerable
amount of confidential data (trust me, dear reader) from many trials performed by
many different public and private sponsors in a variety of therapeutic areas, that
the reported proportions of adverse experiences differ dramatically from region to
region. I suspect, but cannot prove, that depending on the event and the quality of
the clinical center involved, the proportions of people experiencing many events are
grossly underreported in certain cultures, and hence certain countries. Therefore,
the estimated proportions of people experiencing specific adverse effects overall
may or may not be relevant to the true proportions in the USA. Much as I am
reluctant to recommend more data collection in Phase 3 trials, a few additional case
report forms might alleviate the most serious aspects of this problem. For specific
adverse events of special interest in a trial, either identified prior to the beginning
of the trial or noted during the course of the trial, adding a structured case report
form eliciting information about that event would be more likely to identify the
occurrence of the event than the current method of passive reporting. Such active
collection would remove the onus of categorizing reported events that are coded
similarly, but not identically (e.g., when is a reported “myocardial infarction” not
the same as a reported “acute myocardial infarction”?). The form would include
relevant information to characterize the event. In addition, designers of large trials
should consider including structured forms for collecting data on incident cancers
and incident major cardiovascular events. I point to these events because the angst
caused by seeing at the end of a trial even a small excess in cancers or major
cardiovascular events can lead to failure to approve an otherwise promising drug.
For a drug that is likely to affect immune function, a structured form to collect
data on infections would be useful because classifying types of passively reported
infections is a daunting task. Collecting accurate incidence of adverse events can
help assess risks and benefits in a way that is very difficult if the data are reported at
wildly different rates in different countries.

7 Hedging Bets in Design and Analysis

Realistically, studies will, and I believe should, continue to be performed globally.
The questions sponsors and other designers must face is how best to design and
analyze studies in a way that allows generalization to the country of interest, which
here we assume is the USA. Thinking about how to generalize is best done prior to
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initiation of the trial. One approach, which is not likely to be used in large Phase
3 trials, is to minimize reliance on data from outside the USA; another is to write
careful entry criteria to assure that patients outside the USA have a condition that is
similar to the experience in the USA and treatments that would reflect what would
happen in the USA. An alternative that I prefer is rather than limit the population
by adopting extensive entry criteria, collect data that allow characterization of the
population. Obviously, all studies should be conducted in way that provides reliable
evidence regarding efficacy and safety.

Marschner [28] shows a graph depicting the expected magnitude of effect sizes
when all regions have the same number of participants and when the true effect
size in all regions is equal (Fig. 3). He recommends describing in the protocol or
analysis plan the expected distribution of these order statistics. While his paper deals
with equal size groups, his approach can easily be adapted to different sizes. His
striking graph shows the wide variability in expected treatment sizes as the number
of regions increases. This theoretical demonstration of the data shown in Fig. 1 can
be applied not only to regional differences, but to other types of subgroups as well.
Including such a graph in an analysis plan or a design paper, where the calculations
are based on the actual sample sizes expected by region, would provide a warning to
those designing the trial and those interpreting the data to expect variation in effect
size.

The problem is more difficult if the treatment is likely truly to have different
effects in different regions of the world, or if the treatment is less effective in
the USA than it is elsewhere. The designers of a trial should think carefully, and
honestly, about why the trial is global. They should think about the likely sources of
variability and how that would affect the estimated efficacy and the reported safety.
If, prior to designing the trial, the investigators believe or suspect or fear that the
results in the USA may truly be substantially different from that in other regions,
or if the investigators want to hedge their bets, a reasonable strategy is to select a
sample size large enough in the USA alone that would give high power to see that
the treatment effect is at least in the same direction as it is in the rest of the world.
Such a calculation will likely increase the sample size.

More conservative approaches, which would lead to even larger sample sizes,
would control the variability even more. One possible method would be to assume
that the effect size • is the same in all regions and to select a sample size such that
the overall power is ” (e.g., 80% or 90%), but that the sample size in the USA is
large enough to give a power of ”US to show that the observed effect in the USA is
above some value •US. An even more conservative approach, but one that is likely
unfeasible, would be to select sample sizes in each region of interest large enough
so that if the true difference were • in all regions, the probability of finding a result
in the opposite direction is controlled. Or, to be even more cautious (and even less
feasible), to set the sample size in each region large enough to provide a bound
for the probability of finding a result that is unacceptably smaller than the overall
observedbı. All of these strategies will necessarily increase the sample size, and,
depending on the stringency of the control, the increase can be substantial. For trials
that are unlikely to be replicated, a cautious approach to prespecification of likely
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Fig. 3 Expected range of regional treatment effects in a trial with 80% power for a treatment
difference of • and a two-sided Type 1 error rate of 0.05. For each range, the jth tick mark from
the left denotes the expected value of the jth largest regional treatment effect. (Figure from Ian C.
Marschner [28]; Clinical Trials (Vol. 7, issue 2), page 150, copyright © 2010 by Sage Publishing.
Reproduced by permission of SAGE)

variation in observed effect size should inform the design of the trial, even if it leads
to a larger sample size (as long, of course, as the increase is feasible). Whatever
decision is made, the trial designers would be wise to consider their options in the
design phase of the trial, and do calculations that show the consequences of their
choices.

8 Data Monitoring Committees

Thus far the discussion has dealt with thinking about studies during their design
phase in a way that accounts for regional differences and then interpreting the data
at the end of the trial. But of course trials have not only a beginning and an end; they
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also have a middle. An independent data monitoring committee (DMC) reviews data
during the course of many trials. Each of the four trials discussed above did in fact
have a DMC. As far as I am aware, there is no standard approach for DMCs to
look at country-specific data on either efficacy or safety. Because of the frequent
finding of disparate results on efficacy by region and my personal experience with
even greater differences in safety, I routinely urge DMCs involved in multinational
trials to look at region-specific analyses before recommending protocol changes
or early termination either for efficacy or safety. For trials that will be used for
regulatory submission to the USA, a prudent DMC will look at tables of the major
efficacy variables and important safety variables from the USA alone and from other
regions defined in a way that is sensible for the particular trial. Extra caution in
recommending early stopping of a study when important subgroups are showing
discordant results may prevent intellectual angst later. Once a trial stops, restarting
is very difficult. I realize that this recommendation can lead a DMC to wring its
hands when faced with a dramatic effect overall but a disturbing lack of consistency
by region. Nonetheless, when a DMC observes large differences in effect size
by region, it should examine whether the differences can clearly be explained by
regional differences in concomitant medications, surgical therapies, demographic
variables, and the degree of adherence to the protocol. Often the reasons for the
differences in effect size will not be clear; after all, if the total sample size at the end
of the trial is too small to allow reliable inference about subgroups, such inference
is even more difficult during the trial when the sample size is smaller.

9 Topics Not Covered

Most of the previous discussion has dealt with Phase 3 trials and with countries
that, like the United States, have populations with access to high quality medical
care. Of course, in most countries, the USA included, some populations are grossly
medically underserved. I have totally avoided one important issue and skirted a
second. This brief section introduces those two topics. The topic avoided has to
do with inference from Phase 2 trials. Many drugs have shown great promise in
Phase 2 but disappointing results in Phase 3. Sometimes this lesser effect in Phase
3 may be due to regression toward the mean, sometimes it may be due to failure to
recognize the variability in estimates from Phase 2 [29], but sometimes it may be due
to studying a drug in a country where the patients and the therapies are so different
from those in the USA that the conclusions from the Phase 2 studies are indeed not
applicable to the USA. Articles in the financial press, for example Morrison [30],
warn against using Phase 2 data from some foreign countries to provide estimates
for results in Phase 3.

The skirted issue relates to use of data from developing countries where the data
are of low quality, the patients are very different from those in the USA, and the drug
company sponsor has no intention of marketing the drug in these countries. I have
assumed throughout that the centers being used are of high quality. The Vanity Fair
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article referred to previously [11] addresses these problems; the authors cited many
of the issues described earlier in this paper, and in addition stressed the huge gap
in medical care in indigent populations of the developing world. The authors also
questioned the ethics of conducting clinical trials of drugs that will be too expensive
to be used in the countries in which they are being tested. This latter concern is the
flip side of distributive justice—failure to include participants who would be eligible
for the treatment is the topic addressed earlier in this paper, but inclusion of those
who would not is the opposite problem.

10 Conclusion and Recommendations

Given my personal skepticism about interpreting effects from subgroups, I have
entered the “region as subgroup” fray with reluctance convinced at the start that
nearly all apparent regional differences in treatment effect are due to the play of
chance. To my surprise I find myself suspecting that for many interventions the
treatment effect may truly vary by country and may, in fact, often be smaller in the
USA than in other countries. Am I being fooled by randomness? As my son says, “I
used to be uncertain, but now I’m not so sure.” The problem, of course, is that when
one sees a difference between countries or regions, it is nearly impossible to know
whether the difference reflects reality or simply the play of chance.

One answer to the question posed in the title is that region differs from other
subgroups because it often serves as a surrogate for disease incidence, prevalence,
and severity as well as a surrogate for standard of care. Another answer is that
regulatory bodies are obligated by their legal mandates to make inferences about
the effect of treatment for the country (or countries) for which they are responsible.
Thus, they must look at country-specific data; how they interpret those data when
estimate vary from country to country is part of regulatory art.

A few steps when the study is being designed may alleviate potential ambiguity
when the study is over. First, the designers should carefully consider variables that
are likely to affect the true treatment effect. If some characteristic of the patient
population, the local standard of care, the quality of the centers in the various
countries, or the projected country-specific adherence to protocol is likely to have
a major influence on the true treatment effect, then the designers might consider
recruiting from a more homogeneous group of countries. Sometimes, sponsors
design two studies—one in more medically developed and one in less medically
developed nations.

If, on the other hand, the effect size is assumed to be nearly constant across
regions or countries, then the designers should prepare a document, perhaps as part
of the statistical analysis plan, describing the expected country-to-country statistical
variability. In any particular trial, if the proportion of participants from a given
country is small, the data from that trial are unlikely to provide reliable insight
into either the effect of treatment or the proportion experiencing harms within
that country. For example, as seen in Table 4, if a trial has power of 80%, then a
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Table 4 Power for a
geographic region as a
function of the region size

Power for the study as a wholePercent of participants in the
country of interest 0.80 0.90

100 0.80 0.90
90 0.76 0.87
75 0.68 0.80
50 0.51 0.63
25 0.29 0.37
10 0.14 0.17

country that has randomized 25% of the study cohort will have only 29% power to
show a statistically significant benefit if the true benefit is the hypothesized effect
size. Therefore, a prudent stance for trial designers interested in learning about a
particular country is to calculate, prior to initiating the trial, what the power would
be for the expected sample size along with the barely detectable difference for that
size (i.e., the difference that can be detected with 50% power). If these values are
unacceptable, then the sponsor might consider increasing the sample size in the
countries of particular interest to maintain more desirable power [31].

In any case, the regions to be considered should be specified before looking at
the data and the reasons for the classification described. The categorizations should
be study-specific, taking into account the anticipated sources of variability that are
likely to affect the magnitude of effect.

Metrics chosen should be those that are nearly invariant to country-specific rates;
in general, relative measures of effect are more likely to be constant across countries
than are attributable risks.

No matter what is done before the trial, the possibility of observing large
differences by region or country is high in a multinational trial with many countries;
ultimately, the interpretation will rest on balancing the likely contribution of chance
and reality. Perhaps the best solution when reporting data is to assume that most of
the variation is due to chance, but to report the data in the prespecified regions and
to make the most scientific interpretation one can.
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Quantitative Risk/Benefit Assessment:
Where Are We?

Christy Chuang-Stein

Abstract Pharmaceutical sponsors use a variety of approaches to make important
benefit/risk decisions about their products internally. Benefit/risk assessment is
equally important when regulators evaluate a product for marketing approval and
payers evaluate it for reimbursement decision. Once a product receives marketing
authorization, it is critical to communicate pertinent benefit and risk information
to patients and health-care providers. All of the above can be made easier by the
use of a common framework. In this paper, we review where we are in benefit/risk
assessment. This includes endeavors by academic institutions, regulators, and the
pharmaceutical industry. Despite concerns about quantitative benefit/risk assess-
ment expressed by some, we argue that without a way to quantitatively incorporate
the relative importance of factors impacting benefit/risk assessment, it will be hard
to bring transparent decisions to questions such as “does the benefit of this product
outweigh the risk.”

1 Introduction

I saw a cartoon in the summer of 2010. The cartoon is a metaphor for a pharmaceu-
tical developer who, like a hurdler, needs to cross a set of hurdles. The first hurdle
is labeled quality, the second safety and the third efficacy. The fourth one is un-
labeled, but looks menacing. The hurdle takes the form of a solid wall. There are
sharp spikes coming out of the wall, facing the hurdler. The caption reads—There
was general agreement that the fourth hurdle was the one to look out for.

I asked myself—Is the cartoon an exaggeration of the environment a product
developer is in? If there is some truth to the cartoon, then what is this fourth hurdle?
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Is it benefit/risk? Is it relative effectiveness, a term frequently used in Europe? Is
it comparative effectiveness, a term gaining momentum in the USA? Is it Health
Technology Assessment, a cost-effectiveness evaluation pharmaceutical developers
have to go through to have their products reimbursed in socialized health-care
systems in Europe, Canada, and Australia? Or, is it all of the above plus other
emerging value propositions?

I was told by a friend who was familiar with the origin of the cartoon that the
cartoonist used the fourth hurdle as a symbol for health technology assessment. In an
editorial in Clin Pharmacology and Therapeutics, Honig [1] described comparative
effectiveness as the fourth hurdle in drug development. I cannot but feel that
the cartoon could easily apply to benefit/risk evaluation because of the lack of a
common approach for articulating the trade-off between benefit and risk to reach a
transparent decision.

When preparing my presentation for the fourth Seattle Symposium, I checked the
FDA Advisory Committee (AC) meetings from September to early November 2010
to see how the benefit/risk question was presented to the AC members. There were
six AC meetings altogether. Among the six meetings, three were to decide whether
approved products should remain on the market. One was to review a supplemental
application of an approved product. Two were to review new molecular entities,
one of which was lorcaserin hydrochloride (with diet and exercise) for weight
management for obese patients on September 16th. The public meeting on lorcaserin
attracted a lot of attention. The interest level for weight management is generally
high. In this case, the interest was elevated by the diet drug subutramine that
was reviewed the day before for possible regulatory actions including product
withdrawal. On September 16th, the Endocrinologic and Metabolic Drugs AC was
asked to vote on only one question. The question was whether available data
demonstrated that the potential benefits of lorcaserin outweighed the potential risks
to allow marketing approval.

There was a general agreement that lorcaserin’s efficacy data met FDA’s
requirement, albeit marginally. Concerns were raised about lorcaserin’s safety.
These included the fact that lorcaserin is chemically similar to two weight-loss
drugs that were withdrawn in 1997 due to their links to the valvular heart disease. In
addition, two-year studies in rats reported an excess number of malignant mammary
tumors in female rats. The cancer concerns were not confirmed in clinical trials.
Nevertheless, it was felt that the duration of the trials might be too short and
the study populations not diverse enough to allow a potential cancer risk to be
detected.

When it was time to vote, the votes were five (36%) for approval and nine
(64%) against approval. On October 22, 2010, FDA rejected lorcaserin for the
proposed indication, signaling that, in the eyes of the agency, the safety concerns
outweighed what the agency called lorcaserin’s marginal effectiveness. Had the
efficacy of lorcaserin been much better than what had been observed, would FDA
approve lorcaserin for the indication sought? On August 2 2011, the Bloomberg
news reported that lorcaserin’s manufacturers announced that a newly completed
study showed the concentrations of lorcaserin to be lower in human brains than in
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rat models. This finding helped ease concerns that lorcaserin may be linked to brain
tumors. On July 22 2012 FDA granted marketing authorization to lorcaserin.

In general, how do we make decisions with opposing needs? A sensible approach
is to adopt a framework where all relevant factors are first collected. This first step
is then followed by articulating the relative importance of these factors, identifying
a sensible way to combine factors with weights that reflect the relative importance
of the factors, checking out the properties of the combination algorithms, settling
on a decision rule and identifying conditions where the rule would lead to clear and
unequivocal decision. Finally, make a decision and communicate the decision to
individuals who have an interest in the outcome.

The rest of the paper is organized as follows. In Sect. 2, we discuss selected
approaches to examine benefit and risk simultaneously. Some of these approaches
combine benefit and risk into one measure for easy interpretation, while others
consider benefit and risk jointly. Section 3 describes a benefit/risk framework
developed by the Benefit Risk Action Team (BRAT) of the Pharmaceutical Research
and Manufacturers of America (PhRMA). In Sect. 4, we discuss communicating
benefit/risk to the public. Section 5 describes a report on current tools and processes
for regulatory benefit–risk assessment issued by the Benefit–Risk Methodology
Project of the European Medicines Agency. Section 6 describes briefly a recent FDA
draft guidance on factors to consider when making benefit–risk determinations in
medical device premarket review. We end this paper by acknowledging challenges
of benefit/risk assessment of pharmaceutical products in general and offer some
additional comments in Sect. 7.

2 Measures or Approaches to Assess Benefit and Risk
Simultaneously

2.1 Quality-Adjusted Life Without Toxicity Q-TWiST

One of the earlier attempts to discount benefit by risk of cancer drugs was to
calculate time without symptoms of disease and toxic effects (TWiST) [2]. This
concept was further developed to form quality-adjusted TWiST (Q-TWiST) [3]. Q-
TWiST was obtained by discounting survival by a utility weighting that reflected
quality of life in different physical conditions. For example, the utility weighting
could be different for days with toxic effects and days after disease progression.
More recently, Hughes et al. [4] used quality-adjusted life-years within a decision-
analytical framework.

While discounting survival by treatment-related toxicity and/or poor quality of
life was intuitive, the discounting process could be subjective. As such, Irish et al. [5]
suggested conducting a threshold utility analysis as a form of sensitivity analysis by
comparing treatments across all combinations of the utility weightings for days with
toxic effects and days after disease progression. Such sensitivity analysis allows
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researchers to observe how the comparison varies with different utility weightings.
Variations of the threshold utility analysis are possible. For example, if data are
available, one can incorporate patients’ experiences or functions on days after
disease progression instead of relying on utility weighting solely on such days.

The idea of discounting benefit by risk was also adopted by Chuang-Stein
[6] who proposed a benefit-less-risk analysis. Under this analysis, benefit was
discounted linearly by a risk measure via the use of a conversion factor. The
conversion factor serves to convert benefit and risk to a similar scale to allow their
integration into a single measure.

2.2 Clinical Utility Index

Pharmaceutical manufacturers regularly assess the benefit/risk profiles of their
products. This applies to selecting a dose and making go/no go decisions. Regarding
dose selection, some sponsors try to maximize benefit while keeping the risk at an
(pre-specified) acceptable level. Alternatively, a pharmaceutical manufacturer can
apply the concept of a clinical utility index (CUI) to facilitate dose selection. A
clinical utility index is a composite measure that combines several measures (some
of which may be desirable while others are not) into one to facilitate decision
making.

Ouellet et al. [7] constructed a CUI when investigating the potential value of
a new treatment for insomnia. Five efficacy endpoints had been used previously
to evaluate benefit from an insomnia drug. They were latency to persistent sleep,
wake after sleep onset, quality of sleep, and sleep architecture measured by the
percentages of stage 1 and stages 3–4 sleep. An undesirable consequence of using
an insomnia drug is the residual drug effect, which could make a user feel lethargic
on the morning after taking the medication. Residual drug effect could be assessed
by two measures from a commonly used Leeds questionnaire for insomnia research.
If a withdrawal effect is a potential concern for an insomnia drug, it should be
appropriately measured and included as a risk endpoint.

Faced with these seven endpoints recorded on different scales, Ouellet et al. first
normalized the scales so that the endpoints were combinable. For example, a change
of 25 min for wake after sleep onset was considered to be approximately equivalent
to 15 min change in time to persistent sleep (see Table 1 in Ouellet et al. [7]).
Next, they surveyed 581 physicians engaged in insomnia research and developed
a weighting scheme to combine the seven endpoints into a CUI.

Using the CUI in a dose–response study, Ouellet et al. concluded that it would not
be worthwhile to continue the development of the new compound for an insomnia
indication.
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2.3 Incremental Benefit/Risk Ratio

Assume that both benefit and risk could be described by a binary endpoint. We
use peN and peC to denote the probability of experiencing the benefit in the new
treatment and the control groups, respectively. We use prN and prC to denote the
corresponding probabilities of experiencing risk. We will assume that the new
treatment delivers more benefit, at the expense of more risk. If the new treatment
delivers more benefit and less risk, then there is no need to discuss the benefit/risk
tradeoff between these two treatments.

A measure frequently used in cost-effectiveness analysis is the incremental cost-
effectiveness ratio, which looks at the increase in cost relative to every unit of
increase in effectiveness. This concept could be used to form the incremental
benefit/risk ratio (IBRR) in (1). As with any ratio-based measure, it is important
to interpret (1) in conjunction with the magnitude of the numerator and the
denominator that form the ratio. The construction of the ratio in (1) does not imply
that the benefit and the risk are of equal clinical relevance.

IBRR D peN � peC

prN � prC

(1)

The IBRR in (1) could be re-expressed as in (2).

IBRR D
�

1
prN �prC

�

�
1

peN �peC

� (2)

The numerator in (2) is often interpreted as the number needed to treat to harm
(NNTH) and the denominator is the number needed to treat to benefit (NNTB).
So, if NNTH D 10 and NNTB D 5, then IBRR D 2. This ratio has the interpretation
that, on the average, for each additional individual experiencing the adverse event
under the new treatment, two more individuals will benefit from the new treatment
compared to the control. Obviously, large IBRR values will make the new treatment
more attractive. The question is—for the target patient population—is there an
IBRR threshold beyond which the new treatment will be considered to have a
more favorable benefit/risk profile (compared to the control)? If this threshold is not
achieved in the entire target population, is there a clinically meaningful subgroup in
which the new treatment is likely to have a more favorable IBRR?

The concept of IBRR was used in an FDA Cardiovascular and Renal Drugs
Advisory Committee meeting on February 3, 2009. The committee was to evaluate
prasugrel (an antiplatelet agent) for reducing cardiovascular events in patients
with acute coronary syndrome (ACS) undergoing primary or delayed percutaneous
coronary intervention. Data came from a single large trial TRITOM of 13,608
patients [23]. The primary endpoint was a composite endpoint of cardiovascular
death, nonfatal myocardial infarction, and nonfatal stroke. Results from the study
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showed prasugrel to be more efficacious than the comparator clopidogrel, but at
the expense of more bleeding. While some concerns were raised about a possible
increase in malignancy risk associated with prasugrel, we will focus on bleeding
here since bleeding is a common (and major) side effect of antiplatelet (and
anticoagulant) agents.

By TIMI (Thrombolysis in Myocardial Infarction Trial) convention, bleeding
was broadly classified as major, minor, or minimal. Figure 1 was extracted from
an FDA presentation by Dr. Ellis Unger at the Advisory Committee meeting. In
his presentation, Dr. Ellis Unger applied the ratio concept and showed the number
of composite events prevented for each additional bleeding event with prasugrel.
This ratio is represented on the y-axis. The x-axis notes number of days after the
intervention. The bleeding events plotted in Fig. 1 correspond to serious events (the
blue curve at the bottom), TIMI major bleeding events (the red curve on the top) or
TIMI major and minor bleeding events combined (the black curve in the middle).
The ratio was done in a cumulative fashion in that once an individual experienced
an endpoint (a composite efficacy endpoint or a bleeding event), the individual was
said to have experienced that endpoint at all subsequent time points. In other words,
at a given number of days x after the intervention, peN and peC in (1) represent
the probabilities that patients on prasugrel and control have not yet experienced the
composite efficacy endpoint up to days x. As for prN and prC, they correspond to the
probabilities that patients in these two groups have experienced a bleeding event by
days x.

Figure 1 was used in an exploratory manner to help interpret the results from
TRITON at the AC meeting. It is quite likely that the February 2009 meeting was
the first time many AC members (as well as others in the audience) saw the use of
IBRR. We will focus on the curve corresponding to major bleeding (the red curve
on the top) in Fig. 1. The curve was high at the beginning. It gradually came down
over time and eventually settled around a value of 3. Was 3 a good IBRR value in
this case? There was no discussion of a minimum IBRR for prasugrel in order to
receive marketing approval.

Prasugrel was approved on July 10, 2009 with a black box warning on bleeding
risk. The black box warning also includes patient subpopulations for which prasug-
rel is contraindicated.

2.4 Graphic Display

Chuang-Stein et al. [8] proposed to use a multinomial random variable to capture
efficacy (benefit) and safety (risk) outcomes simultaneously. The multinomial
random variable Chuang-Stein et al. proposed has five outcome categories. They
are benefit and no serious adverse events, benefit and serious adverse events, no
benefit and no serious adverse events, no benefit and serious adverse events, and
side effects leading to withdrawal. Here the term “serious adverse events” should
be interpreted in the context of the patient population. They may not necessarily
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Fig. 1 Incremental benefit/risk ratio over time for comparing prasugrel with clopidogrel. The
graph was taken from an FDA presentation at the February 3, 2009 Cardiovascular and Renal
Drugs Advisory Committee Meeting

mean serious adverse events by the official regulatory definition. Chuang-Stein
et al. proposed to use observed proportions of these categories, along with weights
reflecting the desirability of these outcomes, to construct linear or ratio scores to
compare treatments. Since weights reflect the clinical relevance of the categories,
there is no need to assume that the categories are of equal relevance clinically.
This idea was later extended by Entsuah and Gorman [9], Entsuah and Gao [10]
and Pritchett and Tamura [11] to include more outcome categories in real-case
applications. Entsuah et al. also discussed a simple case of sensitivity analysis to
see how the comparison between two treatment groups could vary as a function of
the chosen weights.

Norton [12, 13] used graphics to display the distribution of the five categories
over time. Labeling the five outcomes as “Benefit Only,” “Benefit C AE,” “Neither,”
“AE only,” and Withdraw”, he plotted each individual’s outcome category at each of
the six post-randomization assessment points in a 12-week trial (Fig. 2). Individuals
in Fig. 2 were arranged in such a way that dropouts were grouped together for easy
visualization of the dropout pattern. Except for withdrawal, an individual could
stay in or move to another response category from one assessment period to the
next. In this sense, the graphic displays a snapshot in time on the response (i.e.,
not cumulative experience up to that point). Displaying response in this manner
requires one to have access to observations on all patients at all assessment periods
or until patients dropout of the study. Consequently, one needs to prespecify a
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Fig. 2 Display of 5 (benefit, risk) outcomes over time. The left panel pertains to the control group
while the right panel pertains to the investigational treatment group (Display is a courtesy from
Norton [12].)

method to handle the situation where a patient missed a clinical visit between two
completed ones. Possible approaches include carrying the last available response
category forward or creating an extra category to represent the missing intermediate
response.

The left panel in Fig. 2 corresponds to the control arm while the right panel corre-
sponds to the investigational treatment group. There were no missing intermediate
data in this example. Visual inspections of the figure reveal that compared to the
investigational arm, the control group exhibited a higher and early dropout pattern.
The graph shows clearly how the distribution of these five outcome categories
changes over time and how the pattern differs between the two groups. One could
compute the % of different colors (e.g., green) over a period of interest (e.g., weeks
8–12) to make a simple qualitative comparison between the groups. For both groups,
Fig. 2 shows that some individuals derived benefit early and continued to do so
without experiencing the adverse events.

The display in Fig. 2 could be extended to include more categories or multiple
outcomes. For example, if positive outcomes on two equally important efficacy
endpoints are twice as good as a single positive outcome on only one endpoint and
that experiencing two distinct types of adverse events is twice as bad as experiencing
only one, then one can form a net benefit/risk outcome by calculating (# of beneficial
outcomes—# of untoward adverse events) for each individual. There are possible
five values for the net outcome (i.e., 2, 1, 0, �1, and �2). One could plot the
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distribution of these five net outcomes over time. Implicit in this calculation is the
assumption that one good outcome can offset one bad outcome, an assumption that
may not be valid in many situations.

3 Benefit Risk Framework Developed by PhRMA

The Pharmaceutical Research and Manufactures of America (PhRMA) have long
recognized the importance of and the need for a transparent benefit/risk assessment
process. In 2006, PhRMA sponsored a Benefit Risk Action Team (BRAT). The
objectives were to formulate a framework for the ideal benefit–risk approach and
to provide greater structure to assist sponsor-regulator discussions. BRAT partnered
with epidemiologists at the Research Triangle Institute Health Solutions on the task.

Before developing the framework, members of BRAT agreed that the framework
should be considered as a set of processes and tools to guide decision makers.
In addition, the framework should be flexible to handle different contexts. The
proposed framework was required to go through three rounds of development and
testing, using mock products in the statin, tumor necrosis factor, and triptan classes.
Early experience with the BRAT framework has been published in Coplan et al.
[14] and Levitan et al. [15]. In early 2011, the testing was completed and BRAT
developed a software application to assist graphic displays of the framework as well
as its output. BRAT offered the software tool to PhRMA member companies for
internal pilots, hoping to receive additional comments on the framework and gain
support for broad implementation.

The framework could be described as a series of six steps [14, 15]. They are:
define decision context (step 1), identify outcomes (step 2), identify and extract
source data (step 3), customize framework (step 4), assess outcome importance
(step 5) and display and interpret key B-R metrics (step 6). These steps can be
slightly modified to better fit a particular situation. Ideally, the six steps should
be completed before a new drug application (or biologics license application) and
that the first four steps should be completed before conducting the pivotal trials. In
theory, the framework can be applied at any stage during product development or
post-approval. One difficulty in establishing the framework after the outcome data
are known is that the process could be influenced by the outcome, thus creating
potential bias. This is usually not a problem for a mature field with well-articulated
efficacy endpoints and classes of products with well-characterized side effects. For
a product of novel mechanism, it might actually be necessary to rely on safety data
from late-stage trials to help characterize product risk.

Steps 3 and 4 above involve identifying data sources (randomized clinical trials
or observational studies) and assessing the relevance of the information. Step 6
discusses the display of benefit and risk summary. BRAT strongly encouraged
displaying the summary graphically such as in a forest plot. The latter is illustrated
in Coplan et al. [14] and Levitan et al. [15]. Fig. 3 shows a forest plot presented
by the manufacturer of rivaroxaban at an FDA Cardiovascular and Renal Drugs
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Fig. 3 Forest plot of eight benefit endpoints along with six risk endpoints for comparing
rivaroxaban with warfarin, presented at the September 8 2011 Cardiovascular and Renal Drugs
Advisory Committee meeting by the manufacturer of rivaroxaban

Advisory Committee meeting on September 8 2011. The meeting was to assess the
benefit and risk of rivaroxaban against warfarin in preventing stroke and systemic
embolism in patients with non-vascular arterial fibrillation. Details for the AC
meeting could be found at the FDA website.

Fig. 3 displays results related to eight benefit and six risk endpoints. Some of
the endpoints (e.g., all cause mortality, vascular death, stroke, MI) are components
of a composite endpoint. For each endpoint, Fig. 3 shows the difference in the
observed number of individuals/10,000 patient years who reported experiencing that
endpoint. The difference is noted by a diamond in the plot with a companion 95%
confidence interval. For all endpoints, the difference was calculated by subtracting
the response in the warfarin group from that in the rivaroxaban group. Since all
endpoints are undesirable, a difference that is greater than 0 will signal a better
outcome for the warfarin group.

In general, point estimates and confidence intervals should be based on meta-
analyses of relevant data sources. It is important that the data sources be systemat-
ically searched and critically appraised for inclusion so that the statistics in Fig. 3
are defendable.
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In its initial work, PhRMA BRAT did not recommend any particular benefit/risk
measure and did not promote the use of weights either. BRAT pointed out that data
behind the forest plot in Fig. 3 could be used to support any chosen benefit/risk
measure with weights chosen before seeing the data. In addition, getting into
debates on weight selection early on could distract the team from focusing on the
development of the framework. The decision probably also reflected a common
concern that any effort to reduce multiple endpoints into a signal measure could
result in information loss. In my opinion, without a mechanism to appropriately
debate the roles the various benefit and risk endpoints play, without a way to
quantitatively reflect the relative importance of these endpoints and how conclusion
vary with the relative importance, answers to question such as “does the benefit of
this product outweigh its risk” will continue to lack the transparency and structured
deliberations we desire.

PhRMA transferred all work related to the BRAT framework to the Center for
Innovation in Regulatory Science Ltd. for further development in January 2012.

4 Communication on Benefit/Risk to the Public

One major challenge in modern medicine is our ability to effectively communicate
essential information about medicines to users. Surveys have repeatedly shown that
many Americans don’t understand the drugs they are taking. Lack of understanding
often leads to noncompliance, contributing to medication errors, ineffective disease
management, and considerable risks. The US FDA has a Risk Communication
Advisory Committee. According to the information posted at the FDA web site,
this Committee is to advise the Commissioner of the FDA or designee on methods
to effectively communicate risk associated with products regulated by the FDA. The
Committee reviews and evaluates strategies and programs designed to communicate
with the public about the risks and benefits of FDA-regulated products. It also
reviews and evaluates research relevant to such communication.

During a Committee meeting on February 26–27 in 2009, Steven Woloshin and
Lisa Schwarz proposed to use a drug facts box to communicate the benefits and
side effects of prescription drugs. The idea of the drug facts box was based on the
successful implementation of a standardized nutrition facts box that is required of all
packaged food sold publicly in the USA. Under Woloshin and Schwarz’s proposal,
the top panel of a drug facts box (Fig. 4) contains critical information on benefit
while the bottom panel contains critical information on risk. The drug facts box can
be viewed as a simplified tabular version of the forest plot display in Fig. 3 where
data should come from all relevant sources and summarized in meta analyses.

Interestingly enough, the Patient Protection and Affordable Care Act H.R. 3590
(also known as the Health Care Bill) mentions a drug facts box. Specifically, it states
that “The Secretary of Health and Human Services : : : shall determine whether the
addition of quantitative summaries of the benefits and risks of prescription drugs in
a standardized format (such as a table or drug facts box) to the promotional labeling
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Fig. 4 An example of a drug facts box shown by Woloshin and Schwartz at the Feb 26–27 2009
FDA Risk Communication Advisory Committee meeting

or print advertising of such drugs would improve health care decision making by
clinicians and patients and consumers..”

One cannot underestimate the power of a standardized format to assist public
understanding of the facts about a drug. Because drug facts are typically more
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complicated than food, a drug facts box, if it becomes standardized, should have
a drill-down option to offer additional summaries for individuals who desire more
detailed information.

5 Report from EMA Benefit–Risk Methodology Project

On August 31, 2010, the Benefit–Risk Methodology Project sponsored by the
European Medicines Agency (EMA) issued a report on current tools and processes
for regulatory benefit–risk assessment (EMA/549682/2010). The report describes
qualitative and quantitative approaches. It mentions ongoing work by PhRMA, the
Center for Medical Research and the FDA. The latter are all classified as qualitative
approaches by the report.

The report also describes 18 quantitative approaches and the view of the authors
on each approach. Among the 18 quantitative approaches, the report comments
that only three (Bayesian statistics, decision trees & influence/relevance diagrams,
and multi-criteria decision analysis) incorporate the value or utilities of benefit
and risk, along with probabilities representing the uncertainties of those effects, to
numerically represent the benefit–risk balance.

The Bayesian statistics approach uses Bayes’ Theorem to update the degree of
prior belief as new information becomes available for incorporation. Prior belief
may come from information related to similar products in the same class or
opinions of key opinion leaders. In the latter case, it is important to ensure that
the solicited prior belief is free of bias arising from the involvement of individuals
with real or potential conflict of interest. The Bayesian approach calculates decision-
relevant posterior probabilities. The decision trees & influence/relevance diagrams
approach is derived from decision theory. It is based on three basic assumptions:
(1) probabilities exist; (2) utilities exist; and (3) the action associated with the
highest expected utility will be the most preferred. The multi-criteria decision
analysis (MDCA) was developed by Mussen et al. [16, 17]. It was the prototype for
the PhRMA BRAT framework. MDCA goes beyond the qualitative framework. It
includes scoring and weighting. MDCA defines scoring as the process of measuring
the value of options and uses weighting to ensure that the units of value on all
the criteria are comparable to be combinable. The development of the clinical
utility index (CUI) discussed in Sect. 2.1 is a simple case of applying these
concepts.

The report acknowledges that any quantitative method requires a qualitative
framework. On many occasions, utilizing qualitative and quantitative approaches
in tandem can be useful. Since efforts to improve benefit/risk assessment are con-
tinuing at regulatory agencies, academic institutions and within the pharmaceutical
industry, we can expect additional summary reports on this topic in the future.
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6 FDA Draft Guidance on Factors to Consider When
Making Benefit–Risk Determinations in Medical Device
Premarket Review

On August 15, 2011, FDA issued a draft guidance, for public comment, on factors to
consider when making a benefit–risk determination in medical device premarketing
review. The agency hopes that a guidance on this topic can provide greater clarity
for both the reviewers at the agency and the device industry. The document
discusses three hypothetical examples in detail with likely assessment outcomes.
The document also briefly describes six real cases and how the decision was made
in each case.

The draft document contains a worksheet in the appendix. The worksheet offers
users a systematic way to articulate factors that should be considered when making
benefit–risk assessment. Major factor headings for the worksheet are: type of
benefit, magnitude of the benefit, probability of the patient experiencing a benefit,
duration of effect, severity and types of harmful events, probability and duration of
a harmful event, risk of false-positive or false-negative for diagnostics, uncertainty,
patient tolerance for risk, availability of alternative treatments or diagnostics, risk
mitigation and novelty of technology.

The above factors reflect the core principles for benefit/risk assessment. They are
(1) the risk of a product should be evaluated with respect to its potential benefit; (2)
benefit/risk assessment should be conducted with respect to the target population
and in view of available alternative therapies; (3) the strength of the supporting data
(benefit and risk) is crucial to the evaluation.

In the draft guidance, FDA is hesitant to consider quantitatively weighting
the factors because the appropriate weighting could change over time. We feel
that this concern alone does not justify not using a quantitative approach if it
can help make a better decision based on the available evidence at a particular
point in time. Circumstances can indeed change and our priorities may shift
over time. Temple [18] explained FDA’s decision to remove terfenadine (a non-
sedating antihistamine approved in the USA in 1985) from the market in 1998
when terfenadine’s active metabolite fexofenadine became available. Terfenadine
was linked to fatal ventricular arrhythmia torsade de pointes while fexofenadine
was not. FDA’s decision underscored a continuous benefit/risk assessment process
that began in 1992 when torsade de pointes was first reported in patients taking
terfenadine. When a new drug with a pharmacologically identical effect but without
a major serious adverse reaction becomes available, the benefit/risk profile of the
older product may no longer be considered favorable.

7 Discussion

It is well accepted that benefit/risk assessment is necessary for a new treatment. Over
the past ten years, several workshops have been dedicated to this topic including the
one sponsored by the Institute of Medicine entitled “Understanding the Benefits
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and Risks of Pharmaceuticals” on May 30, 2006. Our coverage on benefit/risk
assessment in this paper was purposely kept simple. We did so to help readers gain
some overall perspective on the benefit/risk assessment movement and not to get
bogged down by technical details. In addition, we feel that any systematic approach
for benefit/risk assessment needs to be intuitive, logical, and easy to understand to
have a chance for broad uptake.

Many have pointed out the challenges of benefit/risk assessment [19, 20]. For
one thing, while benefit might be realized shortly after initiating a treatment,
serious risk might take a long time to surface. Randomized trials conducted during
the premarketing phase are usually too short to observe long-term risk. As such,
benefit/risk assessment needs to occur regularly after a product is available to the
public. A product’s benefit/risk profile could change over time with emerging post-
marketing data and the availability of newer products. In the USA, the Drug Safety
and Risk Management Advisory Committee plays an important advisory role to the
FDA on this question.

Equally important is the need to quantify uncertainty in our estimates of benefit
and of risk and therefore the chosen benefit/risk measures. Uncertainty affects
the strength of the data. Figure 1 does not include any information concerning
the variability around the reported incremental benefit risk ratio. One could apply
the bootstrap methodology to construct confidence intervals and include them in the
figure.

How can statisticians help? At a recent Joint Statistical Meetings, Hoerl and
Snee [21] discussed the concept of “statistical engineering.” They defined statistical
engineering as the study of how best to utilize statistical concepts, methods, and
tools and integrate them with other relevant sciences to generate improved results.
The idea behind statistical engineering is that we have a list of statistical science
parts. As statisticians, we need to assemble these statistical science parts to improve
our systems and our processes. Hoerl and Snee claimed that statistical engineering
could be applied to improve anything. I believe statistical engineering could help us
develop a better process to conduct risk/benefit assessment also. To do this, we need
to collaborate with other disciplines and bring alive the relevant statistical science
parts on our list.

So, where are we now in terms of quantitative benefit/risk assessment? The
good news is that we have started to see some concerted attention dedicated to this
topic, both by the regulatory agencies and by the pharmaceutical industry. Several
pharmaceutical companies piloted the BRAT framework within their organizations
in 2011. Several references included in this paper describe the applications of
benefit/risk assessment approaches to actual cases. Despite these, advancements
are being made in small steps. There is no doubt that benefit/risk assessment is
complicated and situation dependent. Many questions remain, some of which will
not have easy solutions. For example, how do we address conflicting findings from
different meta-analyses (or between observational studies and randomized trials) on
the safety of a marketed product? How do we resolve conflicting recommendations
from different branches within the same regulatory agency?
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The last question in the above paragraph came into full focus during a joint
meeting among three FDA Advisory Committees (Pediatric, Pulmonary-Allergy
Drugs, Drug Safety and Risk Management) on December 11 2008. The three ACs
along with FDA’s Office of Surveillance and Epidemiology (OSE) and Division
of Pulmonary and Allergy Products (DPAP) were to weigh the public health
implications of real and serious but relatively infrequent occurrences of severe
asthma exacerbations and asthma-related death against the asymptomatic benefits of
bronchodilation and asthma control of long-acting beta-agonists (LABAs). During
the FDA presentation, the Director of DPAP acknowledged differing views on how
to manage LABA risk within the agency. While OSE preferred withdrawing asthma
indication for all LABAs for the pediatric patients and removing asthma indication
and contraindicating the use of single ingredient LABAs for all ages, DPAP
preferred continued marketing of products containing LABAs and managing safety
risk through labeling. Readers interested in this debate are referred to Kramer [22].

While we should continue to strive for the best approach possible, we should
be mindful not to let the perfect become the enemy of the good. In my opinion,
we should start experimenting with quantitative benefit/risk assessment using a
common framework, sharing experience from these efforts collectively and deciding
the next step among partnerships with academia, regulatory agencies, and the
pharmaceutical industry.
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Identifying and Addressing Safety Signals
in Clinical Trials: Some Issues and Challenges

Thomas R. Fleming

Abstract Reliable evidence is needed from clinical research about whether the
interventions used in clinical practice are safe as well as effective. Regarding
risk, safety is not established by failure to establish excess risk, such as obtaining
confidence intervals for the relative risk of safety events that include unity. Absence
of evidence is not evidence of absence. Rather, safety is established if available
data about safety are sufficiently favorable and reliable to rule out the threshold for
unacceptable risk, where this threshold should be determined by considering the
strength of the evidence for efficacy.

Important insights about safety usually will be provided before marketing
through Phase 1, 2, and 3 clinical trials. These insights, especially regarding risks
associated with long-term use of the intervention and risks of rare but clinically
compelling events, are enhanced by post-marketing active and passive surveillance,
and especially by large, long-term randomized trials that provide the most reliable
approach for identifying and addressing safety signals. The integrity of these
randomized trials is enhanced by preventing irregularities in the quality of trial
conduct that would reduce their sensitivity to detecting clinically meaningful safety
risks caused by the experimental regimen.

After considering approaches to identifying and addressing safety risks and
discussing performance standards to improve the quality of conduct of safety trials,
we will consider further the vulnerability to undetected safety risks when evidence
for efficacy has been limited to documentation of effects on surrogate endpoints such
as biomarkers, and then discuss important considerations regarding cardiovascular
safety trials conducted in the setting of type 2 diabetes mellitus.
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1 Introduction

When interventions are sufficiently potent to provide clinically significant benefits,
it is plausible they have unintended effects that could meaningfully alter their
benefit-to-risk profile. Hence, it is important to have reliable evidence about whether
these interventions are safe as well as effective.

There are many examples where unintended effects would be problematic.
Potent immunosuppressive treatments given to rheumatoid arthritis patients to treat
symptoms and prevent the progression of disease may provide a clinically important
increase in the risk of malignancy or opportunistic infections. Cox-2 inhibitors
that provide analgesic relief to osteoarthritis and rheumatoid arthritis patients
without inducing risk of gastrointestinal ulceration may have off-target effects such
as increasing blood pressure that could induce increased risk of macrovascular
complications, including cardiovascular death, myocardial infarction, or stroke.
Agents that provide important antipsychotic symptomatic benefits may adversely
impact cardiovascular markers, such as increasing weight or low density lipoprotein
cholesterol, or decreasing high density lipoprotein cholesterol, where these effects
could lead to increased risk of diabetes or major cardiovascular complications.

Figure 1 presents several settings where the benefit-to-risk profile of an inter-
vention could be or in fact has been established to be meaningfully altered by
harmful effects on measures of irreversible morbidity or mortality. One key setting
arises where agents have been established to provide symptomatic benefits, such
as analgesic, anti-asthmatic, or antipsychotic treatments. These benefits could be
offset by harmful effects on the risk of major cardiovascular events, asthma-related
death, torsade de pointes, or sudden death [1–3]. A second key setting arises where
agents have been established to have favorable effects on a biomarker thought to
be a surrogate for (and hence to provide indirect evidence of favorable effects
on) measures of major morbidity or mortality. Examples include erythropoietin-
stimulating agents that were accepted for use in renal disease or oncology patients
based on normalization of hematocrit, or many therapeutic agents accepted for use
in patients with type 2 diabetes mellitus based on reductions in levels of HbA1c,
or selective estrogen receptor modulators considered for long-term use to prevent
or treat osteoporosis based on their short-term effects on radiologic fractures or
bone mineral density [4–13]. When evidence about clinical efficacy is available only
indirectly though evidence about effects on biomarkers, judgment about whether the
intervention’s benefit-to-risk profile is favorable is strongly influenced when even
just a signal for adverse effects on major morbidity/mortality emerges. For example,
evidence that some selective estrogen receptor modulators have been associated
with increased risk of venous thromboembolism or stroke, and evidence providing a
signal that rosiglitazone increases the risk of fatal or non-fatal myocardial infarction
in type 2 diabetes mellitus, as shown in Fig. 2, then raised concerns about their
continued use [14].

In the remainder of this article, we will provide an overview of observational
and clinical trial-based approaches to identifying and addressing safety risks
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Fig. 1 Illustrations where safety events meaningfully alter the benefit-to-risk profile of an
intervention that has established effects on symptom endpoints or on biomarkers as replacement
endpoints for direct measures of patient benefit. r is relative risk, PY is person years
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Fig. 2 Cardiovascular safety of thiazolidinediones in patients with type 2 diabetes mellitus. MI is
myocardial infarction, N is sample size per arm. With unity as the upper limit of the confidence
interval, the PROactive trial rules out pioglitazone has adverse effects on MI
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during both pre- and post-marketing phases. We then will discuss in greater detail
how randomized clinical trials can be designed to reliably determine whether an
intervention provides an unacceptable increase in safety risks, and will discuss
performance standards that should be in place to improve the quality of conduct of
such trials. We will consider the vulnerability to undetected safety risks that arises
when evidence for efficacy has been limited to documentation of effects on surrogate
endpoints such as biomarkers, and then discuss important considerations regarding
cardiovascular safety trials conducted in the setting of type 2 diabetes mellitus.

2 Approaches to Pre- and Post-Marketing Evaluation
of Safety

2.1 Pre-marketing Safety Evaluation

Enhanced insights about safety of interventions are provided by each phase of the
clinical development plan. Phase 1 clinical trials often give insights about dose-
limiting toxicities in addition to information about metabolism, bioavailability or
acceptability of the experimental regimens. Often, in a Phase 1 trial, after a dose
escalation stage, approximately 15–25 patients are given what is thought to be the
“maximum tolerated dose” of the regimen in order to determine whether we can
rule out that the true rate of important toxicities is at least 15–20%. To be specific,
suppose 17 (respectively, 23) patients receive the experimental regimen at a targeted
dose and schedule, and no events of a specified category are seen. Then with this
preliminary evidence about that safety risk, based on the upper 97.5% one-sided
confidence interval, one could rule out that the true probability of events of that
specified category is 20% (retrospectively, 15%).

Phase 2 trials usually are designed to provide enhanced insights about safety, in
addition to “proof of concept” information regarding efficacy. If 35 (respectively,
72) patients receive the intervention at a targeted dose and schedule and no events
of a specific category would be seen, then one could rule out (at a 2.5% false positive
error rate) that the true rate of that event is at least 10% (respectively, 5%).

While Phase 1 and 2 trials provide useful insights about safety and efficacy,
much more reliable evidence usually is needed before a product could be used in
non-research clinical settings. Such information typically is provided by prospective
randomized Phase 3 trials. However, even when these Phase 3 trials yield sufficient
evidence to justify marketing a product, there may be safety signals or inadequate
insights about rare but clinically important events, or about safety in the (usually)
broader population of people who will eventually receive the drug once its marketed,
or there may be a need for an adequate understanding about the long-term safety
profile, especially when there could be long-term use of an intervention in a chronic
disease setting. These considerations motivate the need for evidence about safety
from a Phase 4 post-marketing extended evaluation.
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2.2 Post-marketing Safety Evaluation

There are several approaches for “post-marketing” evaluation of safety that may be
implemented to pursue existing signals or as surveillance for new safety signals:
passive surveillance systems, active surveillance systems, and larger or longer term
randomized clinical trials. We will consider the strengths and weaknesses of these
approaches.

Passive surveillance for safety risks is provided by an adverse event reporting
system based on caregivers’ voluntary submission of MedWatch forms for serious
adverse events they believe might be related to a drug or biologic. Advantages
of this approach include obtaining timely information from a reporting procedure
that is uniformly implemented by caregivers. However, this information often is
difficult to interpret due to (1) lack of a comparator group that usually would be
needed to assess whether events are occurring more frequently than expected based
on the patient’s clinical condition, (2) lack of a “denominator” (i.e., the number
of patients who has received the treatment), (3) inaccurate information about the
“numerator” (i.e., the number with the safety event) due to underreporting caused
by the voluntary nature of data submission, and (4) lack of information on important
confounders.

Active surveillance systems, based on use of large prospective cohorts and linked
databases, can provide better insights about the numerator and denominator. This
system could be prospective, created by a sponsor’s pharmaco-vigilance program
or by linking automated databases from health maintenance organizations that
provide access to data from hundreds of thousands of patients [15, 16]. This
creates the possibility of having sensitivity to safety events that occur at a rate
of less than 1 per 1,000 person years of exposure. Even with these improved
features, active surveillance systems still have important shortcomings, including
lack of randomization, inadequate information about important confounders, and
inconsistent levels of sensitivity (i.e., whether all targeted events are being captured)
and specificity (i.e., whether reported events truly are targeted events). Additional
weaknesses of active surveillance systems include lack of a stable population (e.g.,
due to enroll/disenrollment), exposure misclassification (e.g., databases measure
“prescriptions filled” not actual “drug taken”), and often constraints around com-
bining data across multiple HMO sites due to privacy concerns (which can limit
analytic possibilities).

The strengths of randomized trials when seeking a reliable assessment of efficacy
also apply when evaluating safety. Caregivers and patients usually do not start or
stop interventions “at random” in clinical practice. Therefore, when comparing a
cohort of patients receiving an intervention with a non-randomized control group,
estimates of the effect of treatment on either efficacy or safety measures will
be confounded by imbalances between these two groups in important prognostic
variables. Statistical procedures used to adjust for these imbalances have limited
usefulness, since known and recorded covariates are only the “tip of the iceberg” of
the factors that are confounding the estimates of treatment effect.
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This confounding may not meaningfully compromise sensitivity to safety risks
when the safety assessment is focused on the detection of very large effects on
the risk of events, such as when treatment induces a tenfold or larger increase in
important safety events. Examples of such large increases in Fig. 1 include the
greater than tenfold increase in intussusception induced by the rotavirus vaccine, and
the 1,000-fold increase in progressive multifocal leukoencephalopathy induced by
natalizumab in patients with Crohn’s disease or multiple sclerosis [17, 18]. In spite
of their vulnerability to confounding, active and passive surveillance approaches
might be sufficient in these settings because these approaches are able to detect such
large increases in risk, and because these are settings where it might not be necessary
to detect small to moderate increases in risk. To be specific, for the rotovirus vaccine,
a doubling of an endpoint of moderate clinical relevance such as intussusception
would be offset by the benefits of an effective vaccine and, for the setting of
natalizumab, inducing a doubling of progressive multifocal leukoencephalopathy
would correspond to an absolute increase of only one case per million person years
of treatment, due to the extremely low risk of this event in patients who do not
receive natalizumab.

The value of having safety data from randomized trials is high when interventions
would have unacceptable safety profiles even if they induce only 1.1- to 2-fold
increases in the relative risk of clinically important safety outcomes. This is true
in several of the examples in Fig. 1. In these settings, passive and active surveillance
could not reliably discern between interventions having no increase in risk and those
inducing these small yet unacceptable increases in the risk of clinically important
safety outcomes. One approach to reliably address this issue is to conduct large
randomized clinical trials designed to evaluate effects on important prespecified
safety measures. Through randomization, we can eliminate confounding due to
systematically occurring imbalances between treatment and control groups in im-
portant prognostic factors. In these trials, to preserve the integrity of randomization,
all patients in the treatment and control groups should be uniformly followed until
a fixed time post-randomization or until a prespecified calendar time. Stopping
follow-up after a patient stops randomized treatment or changes supportive care
will lead to risk of substantial bias due to informative missingness.

The duration of follow-up in randomized safety trials should be influenced by the
anticipated duration of use of the intervention in clinical care and by the likelihood
that adverse effects of the treatment would be seen immediately or on a delayed
basis. These safety trials often should be designed to follow patients for duration
sufficient to provide sensitivity to safety risks that depend on cumulative exposure,
such as cardiovascular risks arising with Adriamycin. Uniform long-term follow-
up also is necessary to have sensitivity to safety risks that would be seen only
after longer follow-up, such as risks for induction of malignancy. In clinical trials
that have group sequential boundaries for monitoring efficacy data, such efficacy
boundaries should be adequately conservative regarding early termination in settings
where sensitivity to long-term safety risks is important [19].

One of the important advantages of having prospective cohorts for assessing
safety risks, such as those arising in randomized clinical trials, is that procedures
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can be put in place to ensure sensitivity and specificity, by ensuring systematic and
reliable capture of all targeted safety events, and by ensuring timely adjudication
of these events, a process that would be particularly important in open label safety
trials.

While the reliability of evidence is greatly enhanced when randomized trials
are conducted to address safety risks, whether conducted in pre- or post-marketing
settings, such trials typically will require large sample sizes and long timeframes
to be completed. Suppose it is intended to have 90% power to rule out a threefold
increase in safety risks when the intervention truly provides no increase in risk,
using a statistical test having a (one-sided) 2.5% false positive risk of declaring
safety when the intervention truly does induce the threefold increase in risk. When
ruling out a difference of 1 vs. 3 events per 1,000 person years, as in the setting
of evaluating the effect of long acting beta-agonists on asthma-related death or
intubation, or evaluating the effect of type 2 diabetes mellitus drugs on pancreatitis, a
randomized trial would need 20,000 person years follow-up. When the background
rate of targeted safety events is 10 events per 1,000 person years, as in the adult
setting when evaluating the effect of Cox-2 inhibitors or ADHD drugs on the risk
of the composite endpoint, “cardio-vascular death, stroke or myocardial infarction,”
then assessing a threefold increase of 10 vs. 30 events per 1,000 person years would
require a randomized trial with follow-up of only 2,000 person years. However, it
likely would not be adequate to simply rule out 20 excess events per 1,000 person
years when these events are major morbidity/mortality outcomes, especially when
efficacy relates to symptom benefit or effects that have only been established on a
biomarker. When the background rate is 10 events per 1,000 person years, to rule
out an increase of 5 events, the randomized trial again would require 20,000 person
years of follow-up. In the setting of type 2 diabetes mellitus where the background
rate is 20 events per 1,000 person years, ruling out an increase of 5 events would
require a randomized trial having 40,000 person years follow-up.

2.3 Interpreting and Addressing Safety Signals

The SEAS trial evaluating the efficacy of ezetimibe/simvastatin on slowing progres-
sion of aortic-valve stenosis illustrates the challenges in interpreting and addressing
safety signals discovered in exploratory analyses [20]. While the SEAS trial was
not designed to provide confirmatory evidence about malignancy, Fig. 3 presents
evidence from exploratory analyses in SEAS suggesting ezetimibe/simvastatin
provides an estimated 55% increase in cancer incidence, and a 78% increase cancer-
related deaths, where 95% confidence intervals for relative risk exclude unity.
While this meets a traditional standard for “statistical significance,” the exploratory
nature of this result should lead to caution about making inferential statements.
Furthermore, the increase in risk likely is overestimated due to random high bias
[21]. Such bias occurs because there are both true signal and random noise in every
estimate of treatment effect, and when many analyses are conducted, the results that
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SEAS Trial N CA. Incidence CA. Deaths
Vytorin
Placebo 929

944 101 37
65 20

Relative Risk:               1.55 1.78
95%C.I.: (1.13,2.12) (1.03.3.11)

IMPROVE-IT
& SHARP Trials N CA. Incidence CA. Deaths

Vytorin
Control 10,298

10,391 313 97
326 72

Relative Risk:                0.96 1.34
95%C.I.: (0.82,1.12) (0.98, 1.84) 

•

•

Fig. 3 Cancer risk with ezetimibe/simvastatin (vytorin) in SEAS trial evaluating effect in slowing
progression of aortic-valve stenosis, and in the confirmatory IMPROVE-IT and SHARP trials

appear to be most extreme tend to be at least partially due to random overestimates
of the true effect.

Usually, conducting analyses such as these would be regarded as hypothesis
generation rather than hypothesis confirmation. For efficacy or safety signals
discovered in exploratory analyses to be viewed to be reliable, several important
criteria may need to be simultaneously satisfied. First, the likelihood this safety
signal could be explained by chance should be low, even when taking into account
the sampling context of the exploratory analysis. For example, when three cases of
progressive multifocal leukoencephalopathy occurred in several thousand patients
receiving natalizumab, this event rate that is 1,000-fold higher rate than would
be expected in natural history almost surely could not be attributed to chance,
even when taking into account the exploratory context for this discovery. Second,
there should be a biologically plausible linkage between the safety event and the
intervention, based on its known mechanisms of action. For example, ezetimibe
blocks the absorption of phytosterols and other phytonutrients linked to protection
against cancer, which provides some biologic plausibility that the drug could have
an effect on the growth of cancer cells [22–24]. Third, there should be independent
evidence to confirm the observed association. While additional evidence regarding
a safety signal could be provided within the trial generating that signal, such as
obtaining data about whether there are increases seen not only in cancer mortality
but also in cancer incidence, the ideal independent evidence would be provided by
separate prospective trials.

After the discovery of cancer risks in the SEAS trial, the ongoing IMPROVE-IT
and SHARP trials were used as an independent source of confirmatory evidence to
better understand this finding [25, 26]. Figure 3 gives the data from these two trials
and provides evidence that the findings of excess cancer risks from the exploratory
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analysis of SEAS data were overestimates, consistent with random high bias that
results from such exploration of data. The estimates of the ezetimibe/simvastatin
to placebo relative risk for cancer incidence from IMPROVE-IT and SHARP were
0.96 for cancer incidence and 1.34 for cancer death, where the 95% confidence
intervals included unity in both instances. Peto et al. [27] stated, “The available
results from these 3 trials do not provide credible evidence of any adverse effect
of Ezetimibe on rates of cancer.” However, safety is not established by obtaining
confidence intervals for relative risk that include unity. That is, failure to establish
excess risk is not sufficient to justify safety. Rather, safety is established by ruling
out any level of excess risk that would be unacceptable [28]. The IMPROVE-IT
and SHARP trials yield an estimated 34% increase in risk of cancer death, where
the upper limit of the 95% confidence interval is 1.84. Since the data are consistent
with ezetimibe/simvastatin causing as much as an 84% increase in cancer incidence,
further study of the effect of this agent on cancer risk is needed.

3 Safety Trials Assessing Whether Unacceptable Excess
Risk Can Be Ruled Out

Suppose there is an important signal from either pre- or post-marketing studies that
an intervention induces unacceptable safety risks. This may arise when a therapy
has been proven to have beneficial effects on direct outcomes of how a patient feels
or functions, or on biomarkers that are surrogates for major morbidity/mortality
outcomes, and yet a signal exists for adverse effects on measures of major
morbidity/mortality. Examples of such measures are fulminant hepatic failure,
asthma-related death, cardiovascular death, stroke, myocardial infarction, or risk
of malignancy. If only small to moderate relative increases (such as relative risks
in the range of 1.1–4.0) in the risk of these major safety events would result
in an unfavorable benefit-to-risk profile of the intervention, then a prospective
randomized safety trial may be needed. In this section, we will provide insights
into the design of such a trial, with an illustration provided from the setting of use
of cox-2 inhibitors in patients with osteoarthritis or rheumatoid arthritis.

Cox-2 inhibitors, such as celecoxib, provide analgesic benefit and, relative to
NSAIDS, have reduced risk of inducing gastrointestinal ulceration. However, data
from at least 50,000 patients who participated in randomized trials conducted
across multiple disease settings have suggested that the class of cox-2 inhibitors
meaningfully increases the risk of macrovascular complications [1]. This resulted
in withdrawal of the drugs rofecoxib and valdecoxib from the market. Celecoxib
remained on the market under agreement that a large prospective randomized safety
trial would be conducted in a timely manner.

In the PRECISION trial, patients with osteoarthritis or rheumatoid arthritis were
randomized to receive either celecoxib, or one of two control regimens, ibuprofen or
naproxen [28, 29]. The size of the trial was based on the need to reliably estimate the
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relative risk for the composite endpoint, “cardiovascular death, stroke or myocardial
infarction,” for each pairwise comparison of celecoxib with a control regimen. Even
though celecoxib provides important analgesic benefit and, relative to nonselective
NSAIDS, an important reduction in the risk of gastrointestinal ulceration, it was
judged it would be clinically unacceptable for the agent to induce more than 3
or 4 excess “cardiovascular deaths, stroke or myocardial infarction” events per
1,000 person years. Since the rate of this composite endpoint is approximately
10 events per 1,000 person years on the control arm, the PRECISION trial then
was designed to determine whether a 1.333 relative increase in the rate of this
composite could be ruled out. For each pairwise comparison of celecoxib with a
control regimen, 508 patients would need to experience the composite endpoint for
the trial to have 90% power to rule out a 1.333 relative risk when celecoxib truly
provides no increase in the risk of the composite endpoint, when using a statistical
test having a (one-sided) 2.5% false positive risk of declaring safety when celecoxib
truly does induce a 33.3% increase in relative risk. Given the annual event rate of 10
composite endpoints per 1,000 person years follow-up, it follows that approximately
20,000 patients would need to be randomized for each pairwise comparison in the
PRECISION trial and be followed for approximately 30 months in order to yield
508 events.

Figure 4 provides the interpretations for some of the possible results from the
PRECISION safety trial. Focus is on the relative risk of the “CV death/MI/stroke”
composite endpoint for the comparison of celecoxib to the naproxen control arm.
The least favorable result that successfully rules out that celecoxib truly induces
a 33% increase in the composite endpoint is given in scenario B, where the
estimated relative risk is 1.12, corresponding approximately to celecoxib inducing
an estimated increase of 1.2 “CV death/MI/stroke” events per 1,000 person years. In
contrast, in scenario D, celecoxib has “inferior” cardiovascular safety to naproxen
since the data with an estimated 1.9 additional “CV death/MI/stroke” events per
1,000 person years provide statistically significant evidence that rules out a 1.0
relative risk.

Scenario E presents an informative situation of a statistically overpowered trial
having more than 1,000 (rather than 508) patients who have primary endpoint
events. In such a trial, if the data yield an estimated 15% increase in the relative
risk of primary endpoints, then that trial simultaneously would establish inferiority
(by ruling out the 1.0 relative risk, corresponding to no increase) while establishing
noninferiority of safety risk (by ruling out the 1.33 relative increase). This paradox
is explained by recognizing that cardiovascular safety can be worse on celecoxib
than on naproxen (i.e., corresponding to ruling out the relative risk of unity) while
not being unacceptably worse (i.e., corresponding to ruling out the relative risk is
greater than 1.33). Importantly, ruling out the 1.33 margin in scenario B does not
allow one to conclude that celecoxib is at least as safe as naproxen with respect to
cardiovascular risk; scenario A is the only one in Fig. 4 where such a conclusion
holds. Rather, the conclusion justified by the data in scenario B is that the data rule
out that the safety profile of celecoxib is unacceptably worse than that of naproxen.
To justify that “positive” conclusion in scenario B, it is necessary that any increase
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0.84           1.00   1.12 1.19    1.333

Celecoxib better

Celecoxib  compared with Naproxen

Naproxen better

Hazard Ratio  (Celecoxib / Naproxen) 
Based on analysis at  L=508 Events

A

B

C

D

CEL: superior 

CEL: ruling out 
unacceptably inferior 

CEL: neither  ruling out to be 
unacceptably inferior,

nor establishing as inferior

CEL:  inferior

E

Fig. 4 Possible outcomes in the PRECISION trial for the celecoxib to naproxen hazard ratio for
the safety endpoint, “cardio-vascular death/myocardial infarction/stroke.” Black circles are point
estimates, and the horizontal lines are the 95% confidence intervals CEL is celecoxib

in cardiovascular safety that is less than a 33% relative increase must be clinically
acceptable in the context of the relative safety, acceptability, convenience, and cost
of these two regimens.

4 Study Performance Standards for Safety Trials

For safety trials such as PRECISION that are designed to provide interpretable and
reliable evidence regarding harm, irregularities in the quality of trial conduct can
reduce the sensitivity to detecting clinically meaningful true differences in safety
risks between the experimental and control regimens. These irregularities include
failure to achieve timely enrollment of the targeted population in which excess risk
from the experimental regimen is most plausible, failure to enroll patients who are at
sufficiently high risk for the targeted number of primary safety events to be achieved,
violations in eligibility criteria, lack of adherence to the experimental and control
regimen at a level that matches best achievable in a real-world setting, cross-ins
from one regimen to the other, and lack of achieving long-term retention in nearly
all patients who undergo randomization [28, 30, 31]. These irregularities could lead
to an increased likelihood of falsely ruling out unacceptable thresholds of risk in
settings where the experimental regimen truly provides increased risks of clinically
important harmful effects. As stated in [32]: “Many flaws on the design or conduct
of the trial will tend to bias the results toward a conclusion of equivalence.”
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To address the concerns about these risks to trial integrity, performance standards
regarding quality of trial conduct should be established. These should be specified
either in the study protocol or in a separate performance standards document that is
developed before the initiation of the clinical trial. For each of these performance
standards, there should be specification of both targeted levels and minimally
acceptable levels of performance, and specification of creative strategies that are
being developed to maximize the ability to achieve these targeted levels. For
illustration, consider the performance standard regarding retention. The targeted
level of performance might be that no more than 2% of the randomized patients
have incomplete capture of the primary endpoint information for reasons related
to informative missingness, while the minimally acceptable level of performance
might be an upper limit of 10% of patients with this irregularity. The creative
approaches to achieve the targeted levels of retention might be similar to those
specified in Fleming [30]. Finally, monitoring procedures should be in place during
the trial to evaluate whether these performance standards are being met, with a plan
for correction actions or even for trial termination if minimally acceptable levels of
performance are not met.

5 Vulnerability to Undetected Safety Risks When Relying
on Biomarkers as Surrogate Endpoints

In order to reduce the size and duration of Phase 3 clinical trials, it often is proposed
to use biomarkers as replacement endpoints for measures that directly assess how
a patient feels, functions, or survives [33–37]. For example, in type 2 diabetes
mellitus, agents given to improve long-term microvascular or macrovascular disease
endpoints might be assessed simply by evaluating their effect on changes in HbA1c

at 6 months post randomization or, in end-stage renal disease, erythropoiesis-
stimulating agents (ESAs) given to reduce the risk of myocardial infarction or death
may be assessed simply by evaluating their effect on hematocrit [4–9].

Many agents have received regulatory approval for marketing based on small
trials having short-term follow-up, where only the effects on a replacement endpoint
such as a short-term intermediate endpoint or a biomarker have been assessed. For
example, natalizumab received accelerated approval based on its effects on 1-year
relapse rate in multiple sclerosis patients [18], while full regulatory approval was
given to ESAs in chemotherapy-induced anemia and in hemodialysis in end stage
renal disease based on effects on hematocrit, and full regulatory approval has been
given to new agents in type 2 diabetes mellitus based on effects on HbA1c at
6 months post-randomization.

Strategies to use replacement endpoints such as biomarkers to reduce the size
and duration of clinical trials lead to widespread marketing of interventions not
only when efficacy data are limited, but also when safety data are limited. Hence,
it should not be surprising in such settings when important off-target effects are
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discovered only after the product has already been widely used in clinical practice.
In post-marketing settings, it was discovered that natalizumab induces progres-
sive multi-focal leukoencephalopathy, ESAs induce thrombosis, and rosiglitazone
appears to negatively impact the risk of macrovascular events in type 2 diabetes
mellitus [37].

The hazards of reliance on replacement endpoints for regulatory approval are
even worse when one recognizes that interventions are assessed based on their
benefit-to-risk profile. The stronger the efficacy evidence, the greater the resilience
regarding uncertainties about safety. Therefore, when post-marketing safety risks
are detected in settings where efficacy has been established only on short-term
replacement measures, there have been significant controversies about whether
the product should continue to be used in the clinical practice. Natalizumab was
removed from the market for some time, and the indications for use of ESAs and
rosiglitazone have been substantially reduced. These controversial circumstances
could have been avoided had trials been conducted pre- or post-marketing that
provided reliable evidence about efficacy and safety. For example, the uncertainty
about the clinical utility of natalizumab could have been addressed had long-term
trials been conducted to assess its effects on measures of irreversible morbidity
for multiple sclerosis patients, such as a delay in time to walking with a cane
(i.e., Expanded Disability Status Scale Score D 6) or being wheelchair bound (i.e.,
Expanded Disability Status Scale Score D 7). Similarly, the uncertainty about the
clinical utility of rosiglitazone in type 2 diabetes mellitus could have been avoided
had this agent been studied in a trial similar to PROactive, a large-scale long-term
clinical trial conducted in a high-risk patient population to reliably evaluate effects
of another thiazolidinedione, pioglitazone, on measures of major morbidity and
mortality (see Fig. 2) [38].

6 Illustration: Considerations for Cardiovascular Safety
Trials in Type 2 Diabetes Mellitus

For many years, experimental regimens were approved for use in clinical practice in
type 2 diabetes mellitus (T2DM) patients even though efficacy was evaluated only
through an assessment of the effect of treatment on the biomarker, “HbA1c changes
at 6 months.” As discussed in the previous section, one of the consequences of this
approach is the lack of reliable insights about important safety risks on measures of
major morbidity and mortality.

A principal goal of effective management of T2DM is the reduction in risk of
long-term complications that result in major morbidity and mortality. Clinical trials
such as the DCCT [39] and the UKPDS 33 [40] provide evidence that sustained
intensive blood-glucose control by using either sulfonylureas or insulin substan-
tially decreases the long-term risk of microvascular complications, such as dia-
betic retinopathy, nephropathy, and neuropathy. However, sustained blood-glucose
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control has not been established to reduce the long-term risk of macrovascular
disease, such as stroke, myocardial infarction, or death due to cardiovascular
disease. Furthermore, while clinical trials of muraglitazar and rosiglitazone had
established their positive effects on glucose control (specifically, on the outcome
“HbA1c at 6 months”), recent overviews of available clinical trials strongly suggest
these agents lead to increased major morbidity and mortality due to adverse effects
on macrovascular complications [14, 41].

In late 2008, FDA’s Division of Metabolic and Endocrine Drug Products, in
response to advice received in July of that year from the FDA Endocrinologic
and Metabolic Drugs Advisory Committee, determined that small- and short-term
studies evaluating effects on HbA1c do not provide sufficiently reliable evidence
about the benefit-to-risk profile of experimental products in patients with T2DM [42,
43]. The Agency took a significant step forward in its efforts to protect public health
by deciding that long-term cardio-vascular (CV) safety trials would be required as
part of the evaluation of new interventions in this clinical setting.

In these CV safety trials, patients with T2DM would be randomized to the
experimental regimen against a standard of care therapeutic intervention. To ensure
sensitivity to CV safety risks induced by the experimental regimen, evidence
establishing CV safety should be required for any ancillary agents that would
be administered more frequently in the standard of care control relative to the
experimental arm of the trial. Examples of ancillary agents with such evidence
include pioglitazone, metformin, sulfonylureas, or insulin. The trial would need to
be of sufficient size and duration to allow reliable estimation of the relative risk for
the composite CV endpoint, “cardiovascular death, stroke or myocardial infarction.”
Due to enhanced beneficial effects on microvascular complications provided by
interventions that enhance glucose control, it was judged that a new regimen with
improved effects on HbA1c would be acceptable as long as it induces no more
than 5 or 6 excess “cardiovascular death, stroke or myocardial infarction” events
per 1,000 person years. Since the rate of this composite endpoint is expected to
be approximately 20 events per 1,000 person years on the control arm, the CV
safety trial would be designed to determine whether a 1.3 relative increase in the
rate of this composite could be ruled out. In the CV safety trial, 611 patients would
need to experience the composite endpoint to have 90% power to rule out a 1.3
relative risk when experimental regimen truly provides no increase in the risk of
the composite endpoint, when using a statistical test having a (one-sided) 2.5%
false positive risk of declaring safety when the experimental truly does induce a
30% increase in relative risk. This CV safety trial would successfully rule out a
relative risk of 1.3 if the estimated (experimental to control) relative risk, r, of “CV
death, stroke, myocardial infarction” events is less than 1.11, corresponding to an
estimate of approximately 2.2 excess major CV events per 1,000 person years. Given
the annual event rate of 20 composite endpoints per 1,000 person years follow-
up, it follows that approximately 6,000 patients would need to be randomized and
followed for an average of approximately 60 months in order to yield 611 events.

Due to the size and duration of the CV safety trial, it was proposed at the
July 2008 meeting of the FDA Endocrinologic and Metabolic Drugs Advisory



Identifying and Addressing Safety Signals in Clinical Trials: Some Issues. . . 151

Assume 2% per year rate of  CVD/MI/Stroke

Safety Trial: Confirmatory Screening

Rule out 1.30 1.80 1.50 1.30

• Excess Events
per 1000 PY 6.0 16.0 10.0 6.0

•

•

# Events 611 122

Critical Value 1.11 1.262*

&   0.17  (if r = 1.50)
&   0.44  (if r = 1.30)

*Pr (Screening trial “+”) is  0.90 (if r= 1) &   0.025 (if r = 1.80)

Fig. 5 Illustration of sizes and properties of “screening” and “confirmatory” cardiovascular safety
trials in type 2 diabetes mellitus patients. CVD is cardiovascular death, MI is myocardial infarction,
PY is person years

Committee that the trial could be conducted in a pre-marketing “screening” stage
and a post-marketing “confirmatory” stage [42]. If the data in the “screening” stage
rule out that the true (experimental to control) relative risk, r, of “CV death, stroke,
myocardial infarction” events is at least 1.8, then marketing approval followed by
the post-marketing “confirmatory” stage would be considered. With 122 events
in the screening stage, this would be achieved if the estimated relative risk is less
than 1.262, corresponding to an estimate of approximately 5 excess major CV
events per 1,000 person years. This “screening” stage would have 90% power for
achieving favorable results that justify marketing approval for regimens with true
relative risk, r, equal to unity, while having 97.5%, 83%, and 56% probability for
screening out experimental regimens with true relative risk, r, equal to 1.80, 1.50,
and 1.30, respectively, (see Fig. 5). To obtain 122 events in the screening stage, if
approximately 2,500 patients would be randomized, they would need to be followed
for an average of approximately 24 months.

The “confirmatory” stage can be separate from the “screening” stage, as in
scenario #1 in Fig. 6 or can include the 122 events from the “screening” stage, as in
scenario #2 in Fig. 6. In both scenarios, the 122 event dataset in the “screening” stage
is used to test the “null hypothesis” that r D 1.80, at a traditional false positive error
rate 0.025, where satisfying this CV safety criterion would allow marketing of the
product. These data also can be used to test the “null hypothesis” that r D 1.30, the
defined criterion for establishing CV safety. In scenario #1, the “null hypothesis”
that r D 1.30 is tested at a traditional 0.025 false positive error rate. If the estimated
relative risk is less than 0.91, a post-marketing “confirmatory” stage would not be
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Scenario #1: L = 122 “pre-marketing” events
are not included in post-marketing safety evaluation

L = 122

Scenario #2: L = 122 “pre-marketing” events
are included in post-marketing safety evaluation

L = 122 Additional  L = 489

If est. r = 1.26 ⇒ Rule out 1.80 If est. r = 1.11 ⇒ Rule out 1.30

If est. r = 1.26 ⇒ Rule out 1.80
If est. r = 0.91 ⇒ Rule out 1.30

If est. r = 1.11 ⇒ Rule out 1.30

If est. r = 0.53 ⇒ Rule out 1.30*  
* Using an O’Brien-Fleming adjustment 

     Pre-Marketing     

     Pre-Marketing     

     Post-Marketing     

     Post-Marketing     

Additional  L = 611

Fig. 6 Issues regarding “interim analyses” of “confirmatory” CV safety trials in type 2 diabetes
mellitus; L represents targeted number of events, r represents relative risk

needed; however, if the estimate is greater than 0.91, the “screening” stage data
could not be used in the “confirmatory” stage due to multiplicity issues. In contrast,
scenario #2 allows pooling of the “screening” and “confirmatory” stage data to test
the “null hypothesis” that r D 1.30, by making a multiplicity adjustment (such as
using an O’Brien-Fleming design [44], as illustrated in Fig. 6) when testing that
hypothesis at the time of the analysis of the 122 event “screening” stage data.

7 Conclusions

It is important to have reliable evidence about whether the interventions used in
clinical practice are safe as well as effective. Substantial insights about safety
usually will be provided before marketing through Phase 1, 2, and 3 clinical
trials. These insights, especially regarding risks associated with long-term use of
the intervention and risks of rare but clinically compelling events, are enhanced
by post-marketing active and passive surveillance, and especially by large, long-
term randomized trials that provide the most reliable approach for identifying and
addressing safety signals. To enhance the integrity of these randomized trials, it
is important to prevent irregularities in the quality of trial conduct that reduce the
sensitivity to detecting clinically meaningful true differences in safety risks between
the experimental and control regimens.
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The discovery and evaluation of the signals for cancer risks from use of
ezetimibe/simvastatin to slow progression of aortic-valve stenosis illustrate im-
portant opportunities and challenges in the evaluation of safety, (see Fig. 3).
Exploratory analyses of the SEAS trial provided a signal for increased risk of
cancer incidence and cancer death [20]. However, due to the exploratory nature
of the process leading to the discovery of this finding, p-values representing the
strength of evidence for this safety signal are difficult to interpret, and estimates
of the excess risk have random high bias. The IMPROVE-IT and SHARP trials
provided important confirmatory evidence about the signal for cancer risk from
exetimibe/simvastatin [25, 26]. While the confidence intervals for relative risk of
cancer events from the meta-analysis of data from these two trials include unity,
the failure to establish excess risk is not sufficient to justify safety. Rather, safety is
established by ruling out any level of excess risk that would be unacceptable [28].
Since the data are consistent with ezetimibe/simvastin causing as much as an 84%
increase in cancer incidence, further study of the effect of this agent on cancer risk
is needed.

The use of the IMPROVE-IT and SHARP trials to address the safety signal
from SEAS was appropriate. However, since these 2 trials were ongoing, the SEAS
trial data should have been presented to the Data Monitoring Committees from
IMPROVE-IT and SHARP, and the interim data from these 2 trials regarding cancer
risks should have been released only when their Data Monitoring Committees
judged the trials provided reliable answers to the questions they were designed to
address. Unfortunately, rather than following this process, it appears the safety data
from these two trials were prematurely released to the sponsor and others who were
seeking rapid access to data informative about the safety signal from SEAS. Interim
data prematurely released from IMPROVE-IT and SHARP regarding cancer risks
are difficult to interpret due to the lack of a prespecified sampling context for such
post-hoc interim analyses, and the lack of full access to peer-reviewed summaries
of data from the two trials to address whether performance standards for safety
trials have been met. Furthermore, the release of such interim data compromises the
integrity of IMPROVE-IT and SHARP regarding the effect of ezetimibe/simvastin
on the primary outcome measures these trials were designed to address.

A primary goal of clinical research is to obtain a timely and reliable assessment
of the benefit-to-risk profile of an intervention. Benefit is established by clinical
data providing substantial evidence of efficacy. Regarding risk, as discussed with
ezetimibe/simvastin, safety is not established by failure to establish excess risk, such
as obtaining confidence intervals for the relative risk of safety events that include
unity. Absence of evidence is not evidence of absence. Rather, safety is established
by determining the threshold for unacceptable risk, where this threshold should be
dependent upon the strength of the evidence for efficacy, and then by obtaining
safety data that rule out that threshold.
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Past, Present, and Future of Drug Safety
Assessment

Robert Temple

Abstract Adverse effects are an expected consequence of drug use, but how to
detect them when they are rare or represent only a small increase over background
rates remains a formidable problem. It is useful to review the past history of how
important adverse effects were discovered so that we can improve our ability to
detect them more rapidly.

We discover serious adverse effects in different ways, depending on how rare
they are and whether they occur spontaneously (i.e., in the absence of a drug), and
on how great the increase over background rate is. Depending on such factors we
rely on spontaneous reports, epidemiologic data (if the risk increase is reasonably
large), and on large controlled trials or meta-analyses (when the increase in risk is
smaller).

These methods, the history of their use, and their usefulness in the future are
considered.

1 Introduction

Developers and reviewers of drugs, as well as the patients and physicians who
use them, are well aware that drugs have adverse effects, some of them serious.
Common, non-serious adverse effects are seen with virtually all drugs and are
generally readily detected in pre-marketing controlled trials (as long as the right
questions are asked). Serious adverse effects, if frequent, are also readily detected
as part of development, a common situation for cancer chemotherapy, where such
serious risks may be acceptable in light of benefits. Detection of risks pre-marketing
is described in FDA’s Guidance, Pre-marketing Risk Assessment [1].
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In most cases, however, serious risks are not frequent and become apparent only
after marketing, often surprising us, and often raising concern about how long
it took to discover them. A question increasingly being raised, both within and
outside FDA, is whether there are approaches that could lead to earlier detection
of such serious adverse effects, ideally pre-marketing, but, if not, more rapidly post-
marketing.

Risk is always weighed against benefit, and substantial rates of serious risks can
be accepted when there is no safer alternative; examples include:

• Life-threatening risks of many oncologic drugs, older anti-HIV medications, and
inflammatory disease modifiers

• A rate of agranulocytosis of about 1.5% with clozapine for use in people failing
other antipsychotic treatment

• Serious bleeding, sometimes fatal, with anticoagulants (coumadin, dabigatran,
riveroxiban, with rates of about 5% in atrial fibrillation) and platelet-inhibiting
drugs (prasugrel, ticagrelor, clopidogrel, with rates of 3–5% with use in acute
coronary syndrome, post-infarction)

• PML (progressive multifocal leukoencephalophy), a usually fatal viral encephali-
tis that occurs at a rate of about 1/1,000 with long-term use of natalizumab
(Tysabri)

In all these cases, the sometimes lethal risks are accepted because the drug’s
benefits are thought to outweigh the risk. Clearly, however, no considered weighing
of risks and benefits or modification of use to reflect risk is possible until risks are
recognized. It is therefore worthwhile to consider how we detect serious risks.

2 How Do We Find Serious Risks?

There are four distinct patterns of serious risk and we detect these risks in different
ways. The method depends on the frequency of the adverse effect and how often the
event occurs spontaneously, i.e., without a drug cause.

2.1 Serious Adverse Effects That Are Not So Rare and Are
Obviously Drug-Related

Serious adverse events that are relatively frequent can be detected in usual-size pre-
marketing trial databases if these are large enough, e.g., in a large single study or
in a pooled analysis of 1,000–3,000 patients, and if rates of the events are markedly
higher than spontaneous rates. Thus:
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1. Studies of anticoagulants for treatment of atrial fibrillation or platelet inhibitors
in acute coronary syndrome show major bleeding rates of 3–5%, compared to
background rates of well under 1%.

2. Studies of clozapine revealed a roughly 1.5% rate of agranulocytosis, compared
to background rates of essentially zero.

3. The anti-inflammatory TNF blockers (infliximab, adalimumab, certolizumab,
and others), used for rheumatoid arthritis, psoriasis, and inflammatory bowel
disease, have been found to increase the rates of lymphomas and opportunistic
infections compared to controls.

4. Oncologic drug studies reveal a wide range of effects on erythropoiesis, lympho-
cytes, platelets, and granulocytes, often with superinfections, again, events that
only rarely occur spontaneously.

2.2 Rare Serious Adverse Effects That Are Obviously
Drug-Related Because They Have Very Low Rates
of Spontaneous Occurrence

Less common serious risks (e.g., events occurring at a rate of one per thousand)
can sometimes be detected in clinical trials if they are interpretable as single
cases, e.g., severe hepatic necrosis, acute renal failure, Stevens–Johnson syndrome,
hematologic events (aplastic anemia, agranulocytosis, thrombocytopenia), although
concomitant treatment and illness can render interpretation of single cases more
difficult. In general, the probability is about 95% of seeing at least one case of an
adverse effect occurring at a rate of one per thousand in a 3,000 patient sample, but
pre-marketing databases often have fewer patients than this so that very rare events
will often be missed.

Such events are readily detected post-marketing, however, usually as sponta-
neous reports, and they can generally be reliably attributed to the treatment (unless
the drug-induced events are extremely rare, e.g., less than 1/50,000–100,000),
because the events rarely occur spontaneously. This would mean, if cases of such
an adverse event are seen, that the risk ratio for the event in relation to drug use is
large, surely >10 and probably >100, and a causal relationship is highly credible,
as the drug withdrawals (Table 1) and many warnings for hepatic necrosis, torsade
de pointes arrhythmias, Stevens–Johnson syndrome, and agranulocytosis show.

In recent years it has become possible to anticipate the occurrence of two
serious, rare, drug-related adverse effects by detecting a surrogate for these effects in
clinical studies: (1) finding a specific hepatocellular injury that is not itself usually
accompanied by severe hepatic failure, but that predicts the occurrence of cases
of life-threatening hepatic necrosis, and (2) finding prolongation of the corrected
electrocardiographic QT interval (QTc) that is not life-threatening but that predicts
the occurrence of torsade de pointes arrhythmias (TdP) and sudden death.
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Table 1 History of drug safety withdrawals

Drug
Year
approved

Year
withdrawn

Data
source

Adverse
effect

Azaribine (Triazure) 1975 1976 1 Arterial thrombosis
Phenformin 1978 2 Lactic acidosis
Ticrynafen (Selacryn) 1979 1980 1 DILI
Benoxaprofen (Oraflex) 1982 1982 1 DILI
Zomepirac (Zomax) 1980 1983 1 Anaphylaxis
Methaqualone (Qualude) 1960s 1984 1 Overdose very hard to treat
Nomifensine (Merital) 1984 1986 1 Hemolytic anemia
Suprofen (Suprol) 1985 1987 1 Acute renal failure
Encainidea (Enkaid) 1986 1991 3a Mortality (HRD2)
Temafloxacin (Omniflox) 1992 1992 1 Hemolysis, renal failure
Flosequinan (Manoplax) 1992 1993 3a Mortality (HR – 1.5)
Fenfluramine (Pondimin) 1973 1997 2 Valvulopathy
Terfenadine (Seldane) 1985 1998 1, 4 TdP
Mibefradil (Posicor) 1997 1998 1 Drug–drug interactions

causing TdP and
rhabdomyolysis

Bromfenac (Duract) 1997 1998 1 DILI
Trovafloxacinb (Trovan) 1997 1998 1 DILI
Astemizole (Hismanil) 1988 1999 1, 4 TdP
Grepafloxacin (Raxar) 1997 1999 1, 4 TdP
Troglitazone (Rezulin) 1997 2000 1 DILI
Cisapride (Propulsid) 1993 2000 1, 4 TdP
Alosetronc (Lotronex) 2000 2000 1 Ischemic colitis;

constipation needing
surgery

PPA (phenylpropanolamine) <1962 2000 2 Hemorrhagic stroke
Rapacuronium (Raplon) 1999 2001 1 Bronchospasm
Cerivastatin (Baycol) 1997 2001 1, 2 Higher rate of

rhabdomyolysis than
other statins

Etretinate 1986 2002 1 Birth defects
Levacetyl methadol (0rlaam) 1993 2003 1, 4 TdP
Rofecoxib (VIOXX) 1999 2004 3a AMI
Natalizumabc (Tysabri) 2000 2005 1 PML
Pemoline (Cylert) 1975 2005 1 DILI
Valdecoxib (Bextra) 2001 2005 1 Stevens–Johnson syndrome
Gatifloxacin (Tequin) 1999 2006 1 Hyperglycemia and

hypoglycemia
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Table 1 (continued)

Drug
Year
approved

Year
withdrawn

Data
source

Adverse
effect

Pergolide (Permax) 1998 2007 2 Valvulopathy
Tegaserod (Zelnorm) 2002 2007 3b CV events
Aprotinin (Trasylol) 1993 2008 3a Increased mortality
Sibutramine (Meridia) 1997 2010 3a CV events
Propoxyphene <1962 2010 2, 4 Mortality, esp in overdose

DILI drug-induced liver injury, TdP torsade de pointes, PML progressive multifocal leukoen-
cephalopathy
Data sources:
1D individual cases
2 D epidemiologic data
3 D RCT’s: 3a large trials; 3b MetaA
4 D Evidence of QT prolongation
aImportant toxicity, but withdrawal not FDA encouraged
bNOT withdrawn, but limited
cReturned to market

It is now standard [2] to examine patients in drug development programs for
hepatic aminotransferase elevations and for a pattern of abnormalities in individual
cases referred to as meeting Hy’s Law (named after hepatologist Hy Zimmerman):
a substantial aminotransferase elevation and increase of serum bilirubin to above
2 mg/dL, with no evidence of hepatic obstruction (elevated alkaline phosphatase),
and no evidence of other causes of liver injury (hepatitis viruses, acute heart failure,
or other hepatic disease). Zimmerman found that 10% or more of patients who had
hepatocellular injury sufficient to cause jaundice would go on to hepatic failure
[3]. Observing even one or two Hy’s Law cases in a New Drug Application
(NDA) database has led to rejection of marketing applications for lumiracoxib,
ximelagatran, dilevalol, and tasosartan (the first 3 of which were marketed in Europe
and withdrawn because of hepatotoxicity), usually without any documented cases of
life-threatening liver injury, and has represented an early signal of subsequent prob-
lems with bromfenac and troglitazone, which were withdrawn from the US market.

Virtually all drugs are now studied in a thorough QT study (TQT), as called
for in ICH E-14 [Clinical Evaluation of QT/QTc Interval Prolongation and Proar-
rhythmic Potential for Non-Antiarrhythmic Drugs [4]]. A TQT study is a controlled
observation of the QTc prolonging effects seen on an electrocardiogram (ECG) of
a drug compared to placebo and (usually) to an active control with a modest QTc
prolonging effect. QTc prolongation is a well-recognized predictor of TdP (torsade
de pointes-type ventricular tachycardia), which can be fatal. QTc prolongation of
more than a modest amount (above >10 msec) leads to close electrocardiographic
observations in phase 3 studies, and larger effects (e.g., >20 msec, can lead
to rejection of an application (e.g., sertindole) and to particular care and ECG
monitoring in use if the drug is needed despite the risk (e.g., sotalol and dofetilide
for maintaining sinus rhythm after conversion of atrial fibrillation, arsenic trioxide
for promyelocytic leukemia).
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2.3 A Serious Adverse Effect That Can Occur Spontaneously,
with Reasonable Frequency, and That Is Therefore Not
Obviously Drug-Related, but Whose Rate Is Greatly
Increased by a Drug

Some serious adverse effects of drugs that would not have been interpretable from
spontaneous reports, because the adverse events were often seen in the population
receiving the drug, have been identified as drug-related in epidemiologic studies
because the risk ratio was quite large, at least 4–5 (deep vein thrombosis and pul-
monary embolism for oral contraceptives [5], endometrial cancer from unopposed
postmenopausal estrogen [6], valvulopathy with fenfluramine or pergolide [7, 8],
many teratogenic effects, vaginal cancer after exposure to diethylstilbestrol [9]). Of
course, many epidemiologic studies report far smaller increases and there is debate
as to when (at what risk ratio) these become credible [10]. In general, however,
uncertainty grows as the risk estimate decreases and epidemiologists have suggested
thresholds of two- to threefold [11, 12] Whatever the limit, however, it is clear that
smaller increases in risk (i.e., below the credibility limit for epidemiologic studies)
are also of clinical interest and methods of discovering them are critical.

2.4 Serious Events That Occur Spontaneously and Are Only
Modestly (<1.5-Fold) Increased in Rate by the Drug

Typically, the adverse effects of interest in these cases are cardiovascular (CV) but
they could also be tumors, or adverse outcomes of the disease, such as increased
asthma deaths in people treated with long-acting beta-agonists [13]. As noted, views
will differ on the size of risk increases that can be reliably detected or ruled out, but
it is reasonably clear that although increases of 30–50% in serious CV events would
be of major concern for widely used drugs, particularly when the goal of treatment
is symptomatic (long-term pain relief) or risk reduction (oral hypoglycemics,
cholesterol lowering drugs, anti-arrhythmics, antihypertensives, chemoprevention
drugs), most observers would not find epidemiologic data definitive in such cases.

But large enough clinical trials, or pooled data from a number of smaller trials,
can detect such effects and have been called for [14], and used [15, 16] both pre-
marketing and post-marketing, to do so. There is growing interest in the conduct of
such trials, an important change in focus on how to monitor safety (see Sect. 4).

3 How Have the Serious Risks Post-marketing That Led
to Drug Withdrawal Been Detected?

Table 1 lists 35 drugs withdrawn from the market (in a few cases temporarily)
since 1970 for safety reasons. The table shows both the adverse effect that led to
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withdrawal and the source of the data (types discussed in Sect. 2) documenting
the adverse effect. The table does not address instances in which pre-marketing
studies identified the risks (some of these are considered below), so that drugs were
never marketed, or instances in which critical safety findings did not result in drug
withdrawal but led to restrictive labeling. The large majority of withdrawals resulted
from individual case reports to FDA (or reported in the literature) but some recent
withdrawals were based on findings in controlled trials or meta-analyses.

4 Evolving Concerns

As Table 1 shows, the large majority of adverse effects leading to drug withdrawal
were deadly, but rare, events, detected by FDA’s spontaneous reporting system
(AERS, the Adverse Reaction Reporting System), sometimes with cases reported
in the literature. The vast improvement in the spontaneous adverse effect reporting
system (AERS had <50,000 reports per year in the 1970s but has gradually grown
to over 600,000 in recent years) can now detect these adverse effects very rapidly;
the hepatotoxicity of bromfenac and troglitazone and adverse reactions arising from
drug–drug interactions with mibefradil (TdP with several drugs and rhabdomyolysis
with simvastatin) were detected within a few months.

Recent experiences showing modestly increased rates of common serious ad-
verse outcomes of widely used drugs, however, have focused attention on the
desirability of conducting longer and larger controlled trials, especially for chron-
ically administered drugs. Such trials could undoubtedly have detected the large
risks of thromboembolic disease with oral contraceptives, endometrial cancer with
estrogen replacement therapy, and valvulopathy with fenfluramine, increases well
above two- to threefold that were detected in epidemiologic studies, but it is
also clear that they can detect much smaller increases in serious event rates, i.e.,
30–50%, especially in high risk patients.

There is growing interest in being able to detect such modest increases in
important adverse outcomes. Such adverse effects have been detected in the past,
but several recent situations, both pre- and post-marketing, have greatly increased
interest, generally involving drugs directed at cardiovascular endpoints, because of
highly unexpected findings:

• COX-2 selective NSAIDs and NSAIDs more generally may increase CV risk.
• Rosiglitazone may increase CV risk, and it and other oral hypoglycemics are

used in a high-risk population.
• Erythropoietin increased CV risk in dialysis and pre-dialysis patients, also a

high risk population; it also promoted tumor growth in several groups of cancer
patients.

• Studies of long-acting beta agonists showed an increase rate of asthma
exacerbation.
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• The Women’s Health Initiative Trial (WHI) found adverse effects of estro-
gen/progesterone replacement on CV outcomes and carcinogenicity [17].

• Torcetrapib, a drug that raised HDL cholesterol and lowered LDL cholesterol,
increased CV risk (pre-marketing) [15].

• Meta-analyses of antidepressants showed increased suicidality [18, 19] in chil-
dren and young adults.

Before reflecting on where this new interest might lead, it is useful to consider
the past history of randomized trials that have shown safety problems.

5 Past Outcome Trials Examining CV Events

Most of the randomized controlled trials (RCTs) that have shown or looked for
adverse CV effects have been studies of CV diseases, or, less commonly, an
examination of CV effects in non-CV disease, which were carried out for two
principal reasons:

1. In most cases the trials sought to show a beneficial effect on an outcome because
there was a known favorable effect on a surrogate endpoint. That is, there was
no adverse hypothesis, and therefore no ethical issue involved in randomizing to
drug or placebo.

2. In some cases there was an existing safety concern about a drug that seemed
valuable (e.g., with clear short-term benefit and strong suspicion of longer term
benefit, but no proof of this), so that the study was aimed at both confirming long-
term benefit and assessing safety concerns. In some of the cases the CV concern
that arose in long-term use was a complete surprise.

5.1 Attempts to Show Benefit

5.1.1 University Group Diabetes Program [20]

The University Group Diabetes Program (UGDP), a National Institutes of Health
(NIH) trial conducted in the late 1960s, sought to show the value of improved
glucose control with insulin, given as fixed or variable doses, and tolbutamide, a
sulfonylurea oral hypoglycemic, compared to placebo. It showed an adverse effect
of tolbutamide on cardiovascular deaths compared to the other treatments, a point
made in labeling for all sulfonylureas since then, although the results have been
challenged and are controversial.
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5.1.2 Subsequent Trials in Diabetes Mellitus (DM)

Numerous studies in type 2 diabetes (recently stopped ACCORD [21], an NIH
trial, and many other commercial, and government-sponsored European and U.S.
trials) have failed to show the hoped-for benefit on CV outcomes. Indeed, ACCORD
reported that very tight control in type 2 diabetes led to a roughly 25% increase in
mortality.

5.1.3 CAST

The Cardiac Arrhythmia Suppression Trial (CAST), an NIH trial [22], was intended
to show improved survival compared to placebo in post-infarction patients with �6
ventricular premature beats (VPBs) per hour (that rate was a known risk factor for
sudden death) in patients given an effective (VPB-suppressing) antiarrhythmic. To
be randomized patients had to respond to encainide or flecainide with substantial
reduction of VPB’s (mean response 70%; median response 100%). The expectation
of benefit at the onset of the trial was so strong that it used a one-sided hypothesis
and some questioned the ethics of the trial. CAST showed approximately 2.4-fold
increase in mortality in the treated patients, a stunning surprise. CAST II [23]
showed a similar result for ethmosin.

5.1.4 NSAIDs (Rofecoxib, Celecoxib)

The studies of COX-2 selective NSAIDs that were most suggestive of increased CV
risk were designed to show

• Reduced risk of major GI bleeds (VIGOR [24], TARGET [25], EDGE [26]).
This could be considered an attempt to validate the documented surrogate effect
of decreased endoscopic ulcers.

• Reduced rate of colon polyp formation (APC and PreSAP [27] trials of cele-
coxib); approve trial of rofecoxib) [28] or improvement in Alzheimer’s disease
(ADAPT trial of celecoxib) [29].

5.1.5 Erythropoietin

Three outcome studies were intended to confirm the common belief that titrating
people to higher hemoglobin levels would be good for them (survival, quality of
life), as epidemiologic data had suggested. Instead, there were unfavorable effects
on stroke and survival, thus far not well explained [30–32].
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5.1.6 Postmenopausal Estrogens

Epidemiological data led to the belief that estrogen/progestin postmenopausal
treatment would have a favorable effect on CV outcome in older women. The
Women’s Health Initiative Trial [16] examined those effects in a randomized trial
and found no benefit but an increased rate of adverse cardiovascular outcomes and
breast cancer.

5.1.7 Torcetrapib

Torcetrapib was the first drug to have an important HDL-raising effect, an effect
that overwhelming epidemiologic data predicted would be beneficial. Instead, the
ILLUMINATE study [15] showed a 58% increase in mortality, perhaps the result of
a BP-raising effect.

5.2 Attempts to Resolve a Safety Concern, Where Short-Term
Clinical Benefit Had Been Demonstrated

Experience with two classes of CV drugs (inotropic drugs for congestive heart
failure (CHF) and antiarrhythmics generally) raised concern about possible adverse
effects on survival. The Division of Cardiorenal Products in FDA has therefore
required, for more than 2 decades, that these drugs be studied, prior to approval,
to assess CV risk. Such studies were practical because the CV event rate in CHF
and most arrhythmias was high, making reasonably sized studies possible, and were
considered ethical because an important benefit was expected.

5.2.1 CHF

Early experience with beta-agonists raised concern that inotropes (or at least some
inotropes) might worsen outcome, leading to the requirement for outcome trials
prior to approval for inotropic agents that improved exercise tolerance. Studies
of various sympathomimetics, whether direct (beta agonists, such as dobutamine)
or indirect (phosphodiesterase inhibitors, including milrinone, flosequinan, ves-
narinone), all of which had shown clear favorable short-term effects on exercise
tolerance, showed adverse effects on survival. The PROMISE Study [16], which
randomized 1,088 patients with severe chronic heart failure to milrinone or placebo,
each added to standard treatment, showed a 34% increase in cardiovascular mortal-
ity (p D 0.016). The PROFILE study (not published in full) comparing flosequinan
to placebo showed a highly significant 48% increase in mortality in a 1,900 patient
trial (p D 0.0004). A randomized placebo-controlled study of vesnarinone [33]
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showed a dose-related decrease in survival on the drug. In all of these cases the
very high risk patients in the trials allowed studies of reasonable size to detect the
adverse CV outcomes.

5.2.2 Antiarrhythmics

Since the CAST experience the FDA has sought assurance, in at least some setting,
that any marketing application for an antiarrhythmic drug does not adversely affect
CV outcome.

The application for sotalol for preventing recurrence of atrial fibrillation had the
post-AMI Julien [34] trial (18% reduction of mortality, although not statistically
significant), while the dofetilide application had 2 “Diamond” [35, 36] studies
showing no adverse outcome in patients with CHF or post-infarction. Dronedarone,
also for use in maintaining sinus rhythm, showed increased mortality in patients
with recent CHF exacerbation, but the large effectiveness trial supporting approval
(ATHENA) [37], which excluded such patients, showed numerically higher survival
and a highly significant reduction in cardiovascular hospitalizations.

6 Recent Outcome Studies Raising New Issues

The studies described above have sobering implications because they showed that
drugs with favorable effects on surrogate and even short-term clinical endpoints
can have serious adverse effects, often unanticipated. Not surprisingly, there is
particular concern when drug recipients are already at high risk, as is the case
with patients with CHF and arrhythmias, diabetes, chronic kidney disease, and lipid
abnormalities. Whether all drugs used long-term in high-risk patients need outcome
data prior to, or even after, approval has not been determined and practice to date
has depended on past experience and the specifics of the clinical studies needed to
establish effectiveness. Thus, as noted, any antiarrhythmic agent or drug for CHF
has needed outcome data prior to approval. Drugs that are used as anticoagulants
to prevent embolic events in atrial fibrillation or used in various stages of CAD to
inhibit platelet aggregation to prevent CV death, stroke, and myocardial infarction
(clopidogrel, prasugrel, ticagrelor, iiB/iiiA inhibitors) have no credible surrogate
measure and so have uniformly been studied in large outcome studies to demonstrate
benefit; these studies, at the same time, are large enough to assess adverse outcomes.

Cardiovascular drugs have not uniformly been expected to be studied in outcome
trials, in part because of what appeared to be reassuring past experience. Antihy-
pertensives, for example, are approved based on evidence of sustained BP effects,
with no requirement for outcome studies before or after approval. Depending on
your view, ALLHAT [38] supports or challenges that position, finding at most
modest differences between an angiotensin-converting enzyme inhibitor (ACEI),
a calcium channel blocker (CCB), a diuretic, and an alpha blocker, although the
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last was clearly less effective in treating or preventing heart failure. A problem
in designing such trials would be the great difficulty in defining a safety margin
to rule out, as almost all patients will be on more than one drug and probably
different drugs. In ALLHAT, for example, the groups randomized to the ACEI
and CCB could not receive an added diuretic (a test drug in the study), a drug
that greatly enhances effectiveness of ACEIs and that would help deal with CCB
fluid retention. In any event, the lack of need for outcome studies does not mean
the effect of treatments may not differ, as suggested by the LIFE Study [39], which
showed a greater effect on stroke for losartan than atenolol, and the ACCOMPLISH
Study [40], which showed a better effect of amlodipine than hydrochlorothiazide,
each added to benazepril, on major adverse cardiovascular events (MACE) plus CV
hospitalization.

LDL-lowering drugs have been approved based on the basis of effects on
LDL, but all currently marketed HMGCoA reductase inhibitors (statins) have
subsequently had at least one favorable outcome study conducted after approval.
There seems little doubt that the torcetrapib experience will be strongly considered
in deciding whether HDL-raising drugs will need pre-approval outcome studies.

Outcome studies with nonsteroidal anti-inflammatory drugs (NSAIDs), including
rofecoxib, celecoxib, etoricoxib, and lumiracoxib, have affected the expectations
for new NSAIDs; although FDA has prepared no formal guidance on the class, the
database for lumiracoxib had well over 10,000 patients. There is reason to hope
the ongoing >20,000 patient PRECISION study comparing ibuprofen, naproxen,
and celecoxib, which is designed to rule out a >30% increased CV risk for
celecoxib, compared to naproxen, will shed light on this class. Also of interest is the
mechanism of the adverse CV effects seen with, for example, rofecoxib. Elevated
BP is generally considered the leading candidate cause, but that might have been
expected to lead to excess strokes, not the increase in acute myocardial infarction
actually seen.

Finally, the still somewhat controversial results of individual and pooled studies
of rosiglitazone have focused attention on the long-term effects of oral hypo-
glycemic agents, a class of drugs used in a high CV risk population. The meta-
analysis receiving most [41] attention included over 40 relatively short-term placebo
and active controlled trials of rosiglitazone and added 2 larger longer-term trials,
ADOPT [42] and DREAM [43], whose results were of course known before the
analysis. The combined data supported (p D 0.03) an effect on nonfatal MI and
leaned toward an adverse effect on survival (p D 0.06). Interestingly, the short-
term studies supported the adverse mortality effect while ADOPT, DREAM, and
a later, longer study, RECORD [44] did not suggest an adverse effect on survival.
However one interprets these results, they powerfully raised the question of what
data we should be available at the time of marketing an oral hypoglycemic drug and
afterward.

The recent SCOUT [45] trial of sibutramine, an effective weight loss drug, has
raised similar issues related to this class of drugs, which are also used in high-risk
population. The SCOUT trial showed a 16% increase in the rate of the primary
endpoint (CV death, nonfatal MI and non-fatal stroke) in the sibutramine-treated
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patients, although there was no effect on CV death. Sibutramine had a modest effect
on BP and heart rate and more generally, has sympathomimetic properties, possibly
a problem in high-risk patients.

7 Outcome Data at the Time of Approval and Afterward

Where there is documented reason for concern about cardiovascular outcomes with
a particular drug intended for long-term use, especially a drug intended for high-
risk patients, or concern about a drug class, as FDA concluded there was for
antiarrhythmics and drugs for CHF, and, more recently, for NSAIDs, an outcome
study would generally be expected pre-marketing (perhaps unless there was strong
effectiveness in an untreated or hard-to-treat population). But suppose there is no
documented reason for concern. Are there some conditions in which reassurance
about long-term effects should be sought nonetheless?

There was a fair consensus in the literature, and many specific suggestions [46]
that oral hypoglycemics should in fact be studied in a way that could rule out
an excessive CV risk. Risk was sometimes linked to use of a surrogate marker,
HbA1c, as the effectiveness endpoint for these drugs, but that seems something
of a distraction, as improved glucose control is well accepted as a surrogate that
predicts improved microvascular outcomes. A far more forceful argument is that in
drugs intended for people at high risk, it is appropriate to expect, as a condition of
approval, that an applicant should rule out an unacceptable cardiovascular risk of
the drug [47]. Following a July 2008 meeting of the Endocrinologic and Metabolic
Drugs Advisory Committee, FDA published in December 2008 a final guidance [14]
calling for:

• Pre-marketing demonstration, generally based on pooled data from controlled
trials, that there is not an unacceptable increase in CV risk, indicated by an upper
bound of the 95% CI for risk of less than 1.8 for test drug (but a point estimate
much above 1 would also be a concern).

• Post-approval demonstration, obviously in a larger database, that the 95% CI
upper bound for CV risk is less than 1.3.

These studies are plainly demanding but not unreasonably daunting if the trials
include patients at higher risk (with many events). For a class of drugs directed at a
population with high CV risk, this requirement seems hard to dispute. The 1.8 and
1.3 upper bounds are arbitrary (but reasonable, and similar to the goal in the large
PRECISION trial of celecoxib, ibuprofen, and naproxen).

FDA has not applied the oral hypoglycemic policy to additional areas and
remains conscious of the tension between the desirability of expanded efforts to
assure pre-market safety and potential effects of increased cost and duration of study
on the drug development process. These issues have arisen with respect to weight
loss drugs and drugs for asthma (following the outcome results with long-acting
beta-agonists), [13] but could be raised for many other chronically used drugs.
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The problems of design and analysis posed by such trials are quite formidable:

• Unless the population is at high risk, CV studies will have little chance of
showing an adverse effect unless they are enormous (or unless a very high upper
bound for the risk is used).

• In many cases, studies will need to be quite long, acceptable for outcome studies,
but very hard to achieve in symptomatic conditions, where even in active control
trials, dropouts are very common.

• In symptomatic settings, long-term placebo control is unrealistic and the risk of
potential active controls is often unevaluated.

• If a study represents a follow-up of even a weak suggestion of harm, ethical
concerns have been raised, at least for drugs without unusual benefits. That has
not stopped the PRECISION study, but TIDE, a planned controlled comparative
study of rosiglitazone and pioglitazone, has been suspended for this reason.

• The large outcome trials are taking years, even decades, to be conducted. Perhaps
a higher upper bound would be an acceptable trade-off for a quicker answer?

We all know that results from epidemiologic studies can vary, but recent
experience shows that RCT results can vary too when effects are small. How sure of
the results will we be able to be?

• ASA secondary prevention: the largest trial (AMIS) [48] showed no significant
overall effect and survival was actually leaning adversely; iib/iiia inhibitor trials
in ACS vary from 0 to 50% reduction in death plus AMI at 30 days.

• Of 3 placebo-controlled celecoxib trials of similar size, one (APC) showed more
than a doubling of risk, one showed no risk at all (PreSAP), and the third showed
a small increase in risk that was numerically smaller than the risk of naproxen in
that trial, a drug thought by many to have lowest risk of the NSAIDS (ADAPT).

• A fairly strong mortality effect in the short-term studies in the Nissen meta-
analysis of rosiglitazone was not seen at all in ADOPT, DREAM, and RECORD.
For AMI’s in that meta-analysis, in contrast, short-term studies did not show
a significant effect (there was numerical increase in AMIs, however) and only
by adding in the larger studies (ADOPT and DREAM) did a significant effect
emerge. None of this is to suggest what answer is correct in this case or to suggest
poor analytic process, but it does show the problem of selection in meta-analyses
as well as the problem of variable results.

In addition, there are other considerations related to value and cost–benefit

• Requiring outcome data might affect drug development. The antiarrhythmic pol-
icy is “associated with” with minimal antiarrhythmic development for ventricular
arrhythmias (implanted defibrillators may have influenced this also) and new
pharmacologically novel CHF treatments are very scarce. On the other hand,
many trials with 10–20,000 patients are needed and carried out in development
programs for antiplatelet drugs and anticoagulants. That is, the need for large
outcome trials in those areas has not prevented active drug development.
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• How likely, absent an animal or human signal, is a bad outcome for a drug
with a beneficial effect on symptoms. If such outcomes are very hard to detect,
and detection is uncertain, how worthwhile is it to study this compared to other
important questions?

• Expanded ability to conduct large trials (e.g., in HMO-type environments) would
greatly enhance our ability to do such trials.

8 Conclusion

There is clearly a new interest in possible modest increases in serious adverse effects
of chronic-use drugs and a growing desire to assess the potential for such effects
before and after a drug is marketed. Interest has spread from cardiovascular drugs
(where it has long been present because of experience with antiarrhythmics and
various inotropes) to other chronic-use drugs, including antidiabetics, NSAIDs, and
chronic-use asthma drugs. As noted above, adverse long-term effects will already
have been detected for drugs that have their effectiveness evaluated in long-
term studies (e.g., antiplatelet drugs, bisphosphonates and other bone-preserving
agents, adjuvant chemotherapy) that are of substantial size and measure important
outcomes, at least if the right population is studied. But there are many other long-
term treatments whose usual controlled studies are relatively short term, and for
these we need to examine our expectations.
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Designing, Monitoring, and Analyzing Group
Sequential Clinical Trials Using the RCTdesign
Package for R

Daniel L. Gillen and Scott S. Emerson

Abstract The use of group sequential methodology has become widespread in the
conduct of clinic trials. As each clinical trial presents unique scientific, statistical,
and logistical constraints, it is important to carefully evaluate candidate group se-
quential designs to ensure desirable operating characteristics. At the implementation
stage of a clinical trial design it is also essential to account for deviations from
original design specifications in order to control operating characteristics such as
type I and II error rates. These changes might include the number and/or timing of
analyses as well as deviations from the originally assumed variability of outcome
measures. Due to the computational complexity involved in evaluating, monitoring,
and analyzing a group sequential procedure, specialized software is required. In
this manuscript we demonstrate how the RCTdesign package (www.rctdesign.
org) in R can be used to select, implement, and analyze a group sequential stopping
rule. Throughout, we illustrate trial design and monitoring in the context of a group
sequential survival trial of an experimental monoclonal antibody in patients with
relapsed chronic lymphocytic leukemia (CLL).

1 Introduction

The use of group sequential methodology has become widespread in the conduct
of clinic trials. Many authors have addressed the design [6, 22, 25, 32, 36],
implementation [3, 18], and analysis [7, 34] of group sequential trials.
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In the general case, a stopping rule is defined for a schedule of analysis occurring
at times t1, t2, . . . , tJ , which may be random. Often, the analysis times are in turn
defined according to the statistical information available at each analysis. In the case
of a statistical model that has statistical information proportional to the sample size
accrued to the study, such an approach is equivalent to defining the sample sizes
N1, N2, . . . , NJ at which the analysis will be performed. For j D 1; : : : ; J , we
calculate a specified test statistic Tj based on observations available at time tj . The
outcome space for Tj is then partitioned into stopping set Sj and continuation set
Cj . Starting with j D 1, the clinical trial proceeds by computing Tj , and if Tj 2 Sj ,
the trial is stopped. Otherwise, Tj is in the continuation set Cj , and the trial gathers
additional observations until time tj C1. By choosing CJ D ;, the empty set, the
trial must stop at or before the J -th analysis.

All of the most commonly used group sequential stopping rules are included
if we consider continuation sets of the form Cj D .aj ; bj 	 [ Œcj ; dj / such that
�1 � aj � bj � cj � dj � 1. Quite often, these boundaries are interpreted as
the critical values for a decision rule. For instance, in a clinical trial comparing two
active treatments A and B, test statistics less than aj might correspond to decisions
for the superiority of treatment A, test statistics exceeding dj might correspond
to decisions for the inferiority of treatment A, and test statistics between bj and
cj might correspond to decisions for approximate equivalence between the two
treatments.

As each clinical trial presents unique scientific, statistical, and logistical con-
straints, it is important to carefully evaluate candidate group sequential designs
to ensure desirable operating characteristics. [9] describe a variety of frequentist
design characteristics which might be examined in the most commonly encountered
statistical problems. Among them are

1. The scientific measures of treatment effect which will correspond to early
termination for futility and/or efficacy.

2. The sample size requirements as described by the maximal sample size and
summary measures of the sample size distribution (e.g., mean, 75th percentile)
as a function of the hypothesized treatment effect.

3. The probability that the trial would continue to each analysis as a function of the
hypothesized treatment effect.

4. The frequentist power to reject the null hypothesis as a function of the hypothe-
sized treatment effect, with the type I error corresponding to the power under the
null hypothesis.

5. The frequentist inference (adjusted point estimates, confidence intervals, and P

values), which would be reported were the trial to stop with results corresponding
exactly to a boundary.

At the implementation stage of a clinical trial design it is also essential to account
for deviations from original design specifications in order to control operating
characteristics such as type I and II error rates [3,18]. These changes might include
the number and/or timing of analysis as well as deviations from the originally
assumed variability of outcome measures. Finally, at the completion of a group
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sequential test it is important that point and interval estimates be adjusted to account
for bias that arises through repeated testing, particularly when the implemented
stopping boundaries allow for early stopping under more modest effect sizes [7,34].

Due to the computational complexity involved in evaluating, monitoring, and
analyzing a group sequential procedure, specialized software is required. Multiple
software packages can be used for the design and/or analysis of group sequential
trials [4, 24, 27]. The RCTdesign package (www.rctdesign.org) for R statistical
software is an extension of the SeqTrialmodule for SPlus [28]. RCTdesign is
a comprehensive package that allows users to choose from a full array of previously
proposed group sequential stopping rules, monitor an ongoing trial using standard
constrained boundaries techniques, and report bias-adjusted results at the conclusion
of a clinical trial.

In this manuscript we demonstrate how the RCTdesign package can be used
to select, implement, and analyze a group sequential stopping rule. Throughout,
we illustrate trial design and monitoring in the context of a clinical trial of an
experimental monoclonal antibody in patients with relapsed chronic lymphocytic
leukemia (CLL). Section 2 provides an evaluation of candidate clinical trial
designs based upon commonly considered frequentist operating characteristics.
Section 3 describes previously proposed methods for flexibly monitoring a group
sequential test. An example implementing the constrained boundaries algorithm [3]
is presented, and adjusted inference is discussed. In Sect. 4, we present additional
issues that should be considered when designing and monitoring a clinical trial to
investigate an intervention for which the effect may be hypothesized to vary with
the duration of time since initiation. Section 5 concludes with a discussion of the
importance of thorough evaluation in the selection of a group sequential stopping
rule along with areas of current and future research.

2 Evaluation of a Group Sequential Trial for a Censored
Time-to-Event Endpoint

In this section we illustrate the evaluation of statistical operating statistics in
the context of a randomized, double-blind, placebo-controlled clinical trial of an
experimental monoclonal antibody in patients with relapsed CLL. Treatment of CLL
tends to focus on controlling disease symptoms through the use of chemotherapy,
radiation therapy, biological therapy, or bone marrow transplantation. Recently there
have been multiple trials to assess the efficacy of treating CLL via monoclonal
antibodies that target markers which are heavily expressed by CLL cells. In one
of these trials, patients with relapsed CLL were randomly assigned to receive
an experimental antibody or placebo, in addition to a standard chemotherapeutic
regime. The intervention was administered intravenously once a week for four
weeks and patients were followed for the primary endpoint of overall survival. It was
anticipated that the median survival time among patients treated with placebo would

www.rctdesign.org
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be approximately 16 months and that the distribution of survival times among this
group would be approximately exponentially distributed. It was hoped that patients
receiving the antibody would experience a 33% reduction in the hazard for death and
that the effect of treatment on the hazard would remain roughly constant over time.

In the discussion of the operating characteristics which follows, we will use
comparisons similar to (but not exactly the same as) those explored by the
collaborators in the CLL study. In all cases, we consider level 0.025 one-sided
hypothesis tests appropriate for testing a null hypothesis H0 W � � 1 versus the
lesser alternative H1 W � � 0:67, where � represents the hazard ratio comparing
treatment to control. Throughout, a one-to-one randomization scheme is assumed.

To illustrate the evaluation process, we consider candidate designs as derived
from the unified family of group sequential stopping rules [17]. As noted in
Sect. 1, all of the most commonly used group sequential stopping rules are included
if we consider continuation sets of the form Cj D .aj ; bj 	 [ Œcj ; dj / such
that �1 � aj � bj � cj � dj � 1. Particular families of group
sequential designs correspond to parameterized boundary functions which relate the
stopping boundaries at successive analysis according to the proportion of statistical
information accrued and the hypothesis rejected by the boundary. For instance,
letting …j represent the proportion of the maximal statistical information available
at the j -th analysis (e.g., …j D Nj =NJ for the most commonly used analytic
models), then for some specified parametric function fd ./, the boundary function
for the upper boundary might be given by dj D fd .�d ; …j /, where �d is the
hypothesis rejected when Tj > dj . Furthermore, many of the group sequential
design families previously described can be expressed in a parameterization which
has dj D f .�d ; g.…j I Ad ; Pd ; Rd ; Gd // with boundary shape function

g.…I A; P; R; G/ D .A C …�P .1 � …/R/G

where parameters A, P , and R are typically specified by the user to attain
some desired level of conservative behavior at the earliest analyses, and critical
value G might be found in an iterative search to attain some specified operating
characteristics (e.g., frequentist type I error and power) when the stopping rule is to
be used as the basis of a decision rule. In this parameterization, taking A D R D 0

yields a one-parameter family of stopping boundaries where larger values of P

result in increased conservatism of the stopping rule meaning that it is more difficult
to stop at early analyses for a given treatment effect. In the unified family [17], the
boundaries are expressed on the treatment effect scale and the boundary hypothesis
is merely a shift of the boundary shape function so that

dj D �d C g.…j I Ad ; Pd ; Rd ; Gd /

aj D �a C g.…j I Aa; Pa; Ra; Ga/:

For the remainder of the manuscript we will focus on the following candidate
designs. RCTdesign code to compute each of the above stopping rules is provided
in Appendix A.
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1. Fixed.Sample: A fixed sample study with 263 events providing 90.1% power to
detect the alternative H1.

2. SymmOBF.2, SymmOBF.3, SymmOBF.4: One-sided symmetric stopping rules
that treat the null and alternative hypotheses symmetrically [6] and utilize
O’Brien–Fleming boundary relationships having a total of 2, 3, and 4 equally
spaced analyses, respectively, and a maximal sample size of 263 events.

3. SymmOBF.Power: One-sided symmetric stopping rule with O’Brien–Fleming
boundary relationships, a total of 4 equally spaced analysis and the total sample
size selected to provide 90.1% power to detect the alternative H1.

4. Futility.5, Futility.8, Futility.9: One-sided stopping rules from the unified family
[17] with a total of four equally spaced analyses, with a maximal sample size of
263 events, and having O’Brien–Fleming lower (efficacy) boundary relationships
and upper (futility) boundary relationships corresponding to boundary shape
parameters P D 0:5, 0.8, and 0.9, respectively. In this parameterization of
the boundary shape function, parameter P is a measure of conservatism at the
earliest analysis. P D 0:5 corresponds to Pocock boundary shape functions,
and P D 1:0 corresponds to the more conservative O’Brien–Fleming boundary
relationships.

5. Eff11.Fut8, Eff11.Fut9: One-sided stopping rules from the unified family [17]
with a total of 4 equally spaced analysis, with a maximal sample size of 263
events, and having lower (efficacy) boundary relationships corresponding to
boundary shape parameter P D 1:1 and upper (futility) boundary relationships
corresponding to boundary shape parameters P D 0:8 and 0.9, respectively.

6. Fixed.Power: A fixed sample study which provides the same power to detect H1

as the Eff11.Fut8 trial design.

2.1 Evaluation of Stopping Boundaries

It is important that clinical trialists not be surprised by the conditions under which
a particular stopping rule suggests that a trial might continue or stop early. As such,
we believe that it is of paramount importance that the stopping boundary at each
analysis be considered as the stopping rule is selected. [9] note that there are a
number of scales on which the boundaries can be examined. While there exists a
one-to-one relationship between these scales, the statistical and scientific utility of
the scales varies depending upon one’s background. In the context of the CLL trial,
we may consider any of the following test statistics as the basis for the definition of
the stopping rule at interim analysis j :

1. Partial sum statistic: Sj , the partial likelihood based score function for log.�/ in
a proportional hazards regression model.

2. Crude estimate of treatment effect: O�j , the estimated hazard ratio from a
proportional hazards model.

3. Normalized Z statistic: Zj , the score statistic for testing H0.
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4. Fixed sample P value statistic: Pj D ˆ.Zj /, where ˆ.�/ represents the cumu-
lative distribution function corresponding to the standard normal distribution.

5. Error spending statistic: An error spending statistic can be defined for any
of the four boundaries based on an arbitrary hypothesized value for the true
treatment effect. For instance, if a group sequential stopping rule were defined
for the partial sum statistic and the observed value of the test statistic at the j -th
analysis were Sj D sj , a lower type I error spending statistic defined for the null
hypothesis H0 W � D �0 would have

Eaj D 1

˛L

 
Pr

"
Sj � sj ;

j �1\

kD1

Sk 2 Ck j � D �0

#

C
j �1X

`D1

Pr

"
S` � a`;

`�1\

kD1

Sk 2 Ck j � D �0

#!
;

where ˛L is the lower type I error of the stopping rule defined by

˛L D
JX

`D1

Pr

"
S` � a`;

`�1\

kD1

Sk 2 Ckj� D �0

#
:

6. Bayesian posterior probabilities: Bj .�0/ D Pr.� � �0 j Sj D sj /, the posterior
probability that the null hypothesis H0 W � � �0 is false under a specified prior
distribution.

7. Conditional power statistics: The conditional probability that the test statistic
at the final (J -th) analysis would exceed the threshold for declaring statistical
significance, where we condition on the observed statistic Sj D sj at the j -
th analysis and assume some particular value for the true treatment effect � .
For instance, we might define a conditional power statistic using a threshold
aJ defined for the partial sum statistic. Such a threshold would represent the
critical value for declaring statistical significance at the J -th analysis. Using an
alternative hypothesis H1 W � D �1 conditional power would be computed as

Cj .aJ ; �1/ D Pr.SJ < aJ j Sj D sj I � D �1/

Alternatively, a conditional power statistic might use the current best estimate of
the treatment effect O�j in place of �1.

8. Predictive probability statistics: The Bayesian predictive probability that the test
statistic would exceed some specified threshold at the final analysis. In the case
of a threshold aJ defined for the partial sum statistic, a predictive probability
statistic may be computed as

Hj .aJ ; 
; �2/ D
Z

Pr.SJ < aJ j Sj D sj ; �/ p.� j Sj D sj / d�
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Fig. 1 Stopping boundaries on the scale of the crude estimate of treatment effect (estimated hazard
ratio). In the case of the CLL trial, stopping boundaries for level 0.025 one-sided stopping rules for
a maximum of 263 events and various levels of conservatism for the efficacy (lower) and futility
(upper) boundary relationships

Returning to the CLL trial, we find it most useful to consider stopping boundaries
on the scientifically relevant scale of the estimated treatment effect. By graphing
the stopping boundaries versus the number of events (or statistical information)
available at each analysis, we can see both the degree of conservatism employed
at the earliest analysis and the worst case sample size requirements for the study.
In Fig. 1 we display the stopping boundaries for the SymmOBF.4, Eff11.Fut9, and
Eff11.Fut8 stopping rules, all of which use the same level of significance. These
three designs all have a maximal sample size of 263 events but differ in the boundary
shape function used for the efficacy (lower) and futility (upper) boundary, ranging
in conservatism (higher values of P yield a more conservative stopping rule).
By comparing Eff11.Fut9 and Eff11.Fut8, it can be seen that altering the futility
boundary has only minimal effects on the efficacy boundary. We can also see from
Fig. 1 that at the planned first analysis (N D 66 events) the O’Brien–Fleming
boundary shape function would suggest early termination for futility only if the
estimated hazard ratio were 1.639 or larger—a difference that may be deemed too
large. The futility boundary shape function for the Eff11.Fut8 stopping rule, on the
other hand, would allow early termination for futility when the observed hazard
ratio is 1.319. Similar comparisons may be made with respect to the efficacy bound.
It is worth noting that in many cases the extreme conservatism of the Eff11.Fut9
and Eff11.Fut8 efficacy bounds may be desired at early analyses because stopping
a trial early for efficacy would preclude the collection of longer-term safety data
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in a controlled setting. RCTdesign code to generate the resulting boundary plot
and to create a table of the stopping boundaries on different scales is provided
in Appendix A.

2.2 Frequentist Type I Error and Power

The most commonly used definition for statistical evidence against a null hypothesis
is to consider the probability of falsely rejecting the null hypothesis. In fact,
regulatory agencies often use this criterion as a de facto standard for strength of
evidence that will be attained in a clinical trial design. Thus, when specifying a
group sequential stopping rule, clinical trialists most often constrain the type I error
associated with a decision boundary to some prescribed level, typically 0.05 for a
two-sided test and 0.025 for a one-sided test.

Similarly, it is often the case that the sample size to be used in a clinical trial is
determined by computing the sample size that will allow estimation of the treatment
effect with specified precision (often according to the width of a 95% confidence in-
terval) or that will allow a decision to reject the null hypothesis to be made with high
probability (e.g., 80%, 90%, 95%, or 97.5% statistical power) when a specific alter-
native hypothesis is true. This criterion of statistical power is of particular interest
from a scientific standpoint: It describes the probability that the clinical trial will dis-
criminate between the two viable scientific hypotheses represented by the null and
alternative hypotheses. Hence, basic scientists, clinical researchers, epidemiologists,
and biostatisticians often focus on the statistical power of the study to detect a hy-
pothesis representing the minimal treatment effect which is of clinical importance.

Figure 2 displays power curves for some stopping rules considered in the design
of the CLL trial. In this figure we compare the effect of increasing the number
of interim analysis on the statistical power when the maximal sample size is
maintained at 263 events. Rather than displaying the absolute power curve as in
Fig. 2a, we often find it most convenient to display the power relative to some
reference design. In Fig. 2b, we examine the loss of power relative to a fixed sample
clinical trial for several stopping rules which vary in the number of interim analyses.
With the O’Brien–Fleming boundary relationships considered in this figure, we
see relatively little loss of power: A one-sided symmetric design with O’Brien–
Fleming relationships and a total of four equally spaced analyses [6] loses at most
0.019 power (from 68.5 to 66.6%) relative to a fixed sample analysis with the same
maximal sample size.

Table 1 compares the power of the Fixed.Sample, Eff11.Fut9, and Eff11.Fut8
stopping rules under specific hypotheses and provides the alternative hypotheses
for which the various designs have prescribed statistical power. From this table
it is apparent that the introduction of either of these stopping rules has relatively
minimal impact on the statistical power of the study. This in turn means that
the introduction of either of these stopping rules has relatively little effect on the
scientific interpretation of a failure to reject the null hypothesis. More specifically,
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Fig. 2 Power curves and difference in power relative to a fixed sample design for a fixed
sample design and one-sided symmetric tests with O’Brien–Fleming (SymmOBF:J ) boundary
relationships with J D 2; 3, or 4 analysis. All designs have type I error of 0.025 under the null
hypothesis H0 W � � 1 and a maximal sample size of 263 events

using a confidence level of 95% as the statistical criterion for evidence, a failure
to reject the null can be interpreted as a rejection of a hazard ratio corresponding
to the alternative for which the design attains a power of 0.975: equal to 0.617
using the Fixed.Sample design, 0.610 using the Eff11.Fut9 design, and 0.607
using the Eff11.Fut8 design. We note that this difference in rejected alternatives
is due to the fact that the maximal sample size was not increased when a
stopping rule was introduced. With an increase in the maximal sample size, we
can maintain the magnitude of the alternative rejected by a failure to reject the
null hypothesis.
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Table 1 Comparison of operating characteristics of three candidate stopping
rules: (upper panel) detectable alternatives and mean sample size for fixed
power; (lower panel) power and mean sample size for fixed alternative

Fixed.Sample Eff11.Fut9 Eff11.Fut8
Stopping rule Stopping rule Stopping rule

Hazard Average Hazard Average Hazard Average
Power ratio samp size ratio samp size ratio samp size

0.800 0.708 263 0.703 207 0.702 204
0.900 0.670 263 0.665 196 0.663 194
0.950 0.641 263 0.635 185 0.633 184
0.975 0.617 263 0.610 176 0.607 174

Hazard Average Average Average
ratio Power samp size Power samp size Power samp size

1.00 0.025 263 0.025 163 0.025 154
0.75 0.645 263 0.628 214 0.624 211
0.67 0.901 263 0.889 198 0.885 196
0.60 0.985 263 0.981 172 0.980 172

2.3 Sample Size Distribution

In a fixed sample clinical trial, if the sample size is chosen to attain some
prespecified statistical power, one of the first operating characteristics considered
is whether obtaining that sample size is feasible logistically and financially. Clinical
trial collaborators also have to consider whether the sample size would provide
credible scientific evidence. In the presence of data collected using a stopping rule,
the actual sample size obtained during the conduct of a clinical trial is a random
variable with a distribution that depends on the magnitude of the true treatment
effect—a dependence that is, of course, behind the ethical motivation for interim
analyses: We want to use fewer patients when one treatment is markedly inferior
to another or not sufficiently superior to warrant further investigation. Thus, when
examining the sample size requirements of a particular clinical trial design, we will
be interested in summary measures of the probability distribution for the sample
size. The maximal sample size will be of interest for the feasibility of accrual, just
as it is in a fixed sample trial. Examination of the curves for the average sample
size (ASN D average sample number) and various quantiles of the sample size
distribution provides some indication of the values that might reasonably be attained
under various hypotheses. In the case of a survival endpoint, statistical information
is (at least partially) dictated by the number of observed events. In this case it is
natural to consider summary measures of the distribution of the required number
of events.

In Fig. 3 we compare the average and 75th percentile of the distributions of
required events for the group sequential stopping rules considered for the futility
boundary in the CLL trial. From this figure it can be seen that substantially
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Fig. 3 Average and 75th percentile of the distribution of required events as a function of the
hypothesized treatment effect. In the case of the CLL trial, stopping boundaries for level 0.025
one-sided stopping rules for a maximum of 263 events and having O’Brien–Fleming efficacy
(lower) boundary relationships and various levels of conservatism for the futility (upper) boundary
relationships

smaller numbers of events would be accrued on average as the futility (upper)
boundary becomes successively less conservative. Of course, because the maximal
number of events does not differ among these stopping rules, the power curves
will vary. Therefore, the ultimate selection of a stopping rule involved simultaneous
graphical comparisons of the average event curves and the respective power curves
(not shown here, but analogous to those shown in Fig. 2) in order to judge
the acceptability of trade-offs between the loss of power and gains in average
number of events.

2.4 Stopping Probabilities

When more detail about the stopping behavior of the group sequential trial design
is desired, the probability of stopping at each analysis time can be examined as a
function of the hypothesized true treatment effect. Figure 4 displays the cumulative
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Fig. 4 Cumulative stopping probabilities at each analysis as a function of hypothesized treatment
effect. The one-sided level 0.025 stopping rule to test the null hypothesis H0 W � � 0 has
a maximum of four equally spaced analysis with an efficacy (lower) boundary shape function
corresponding to P D 1:1 and a futility (upper) boundary shape function corresponding to
P D 0:8 in the unified family of group sequential designs

stopping probability at each analysis versus the true treatment effect. For any
given hypothesized hazard ratio (x-axis) the vertical distance up to each contour
line represents the cumulative probability that the trial will stop at or before the
corresponding analysis time (as depicted by the number of the contour). In this
figure, the shading indicates the probability with which a decision at stopping will be
made for the alternative hypothesis (i.e., when the test statistic is less than the lower
boundary) or the null hypothesis (i.e., when the test statistic is greater than the upper
boundary). Thus from this figure we can see that under the Eff11.Fut8 stopping
rule, when the true treatment effect corresponds to a hazard ratio of � D 0:70, the
probability of stopping at or before the third analysis is approximately 0.67, and as
the shading below that curve is generally the darker color, the predominant decision
will be one to reject the null hypothesis. Furthermore, by examining the stopping
boundaries on the scale of the crude estimate of treatment effect (Fig. 1), it can be
seen that the stopping rule would only recommend continuing past the third analysis
if the observed hazard ratio comparing treatment to placebo was between 0.717 and
0.838, a situation that may look promising enough to invest in the larger sample size.
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2.5 Frequentist Inference at the Stopping Boundaries

In order to ensure the scientific and statistical credibility of the study results,
it is important to examine the statistical inference that would be reported if the
study were to be terminated early. Of particular interest is whether estimates
of treatment effect would indeed be extreme enough to convince the scientific
community that action should be taken with less precision in the estimates. When
using frequentist inference, we typically consider point estimates of treatment
effect with small bias and mean squared error, and we consider the precision of
such estimates using 95% confidence intervals. Strength of evidence against a
null hypothesis is often quantified by the P value—the probability that results
as or more extreme than those actually obtained would be observed when the
null hypothesis is true. These same frequentist measures are possible in the
setting of group sequential stopping rules, though the calculation of the estimates,
confidence intervals, and P values must use the correct sampling distribution.
Further discussion of inferential procedures that account for group sequential testing
is presented in Sect. 3.2.

In the process of evaluating group sequential designs, it is useful to consider
the inference associated with outcomes which correspond exactly to the stopping
boundaries. Clearly, if such outcomes are scientifically and statistically convincing,
more extreme results would also be acceptable. Figure 5 displays such hypo-
thetical inference for the stopping boundaries of the Eff11.Fut8 stopping rule.
The top and bottom panels display the adjusted point estimates (bias adjusted
mean, BAM, as described by Whitehead [33]) and the sample mean ordering
based 95% confidence intervals and P values for hypothetical results which
correspond to the futility (upper) and efficacy (lower) boundaries, respectively. Also
displayed for reference are horizontal lines corresponding to the null hypothesis
� D 1 and the alternative hypothesis � D 0:67. From this plot we see the
extreme conservatism of the efficacy boundary. At the first analysis, we would
stop the study early with a decision for efficacy only if we could with high
confidence rule out that the treatment effect was less extreme than an alternative
far beyond that which we considered in the design of the trial (i.e., the 95%
confidence interval not only excludes the null hypothesis but also excludes an
alternative corresponding to a hazard ratio of 0.54). On the other hand, the
futility boundary is less conservative as evidenced by the fact that although results
which would cause termination have ruled out a markedly beneficial effect of
treatment, they have not established with high confidence that the treatment might
have some small beneficial effect (i.e., the 95% confidence interval correspond-
ing to results at the futility stopping boundary includes the null hypothesis of
� D 1) (Fig. 5).
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Fig. 5 Display of estimates and confidence intervals for observed trial results which correspond
exactly to the stopping boundaries of a one-sided level 0.025 stopping rule to test the null
hypothesis H0 W � � 1 and having a maximum of four equally spaced analysis, an efficacy (lower)
boundary shape function corresponding to P D 1:1 and a futility (upper) boundary shape function
corresponding to P D 0:8 in the unified family of group sequential designs. Inference for the
futility (upper) boundary is displayed in the upper panel, and inference for the efficacy (lower)
boundary is displayed in the lower panel. All estimates, confidence intervals, and P values are
adjusted for the stopping rule. Horizontal lines correspond to the null hypothesis � = 1 and the
alternative hypothesis � = 0.67

2.6 Assessing the Implications of Varying Patient
Accrual Patterns

The rate at which patients accrue will directly impact the observed censoring
distribution in the trial when testing a time-to-event endpoint. For example, if
accrual to the study were heavy at early times and slowed as the study progressed,
then a majority of patients would tend to have high censoring times relative to the
maximal follow-up of the trial. On the one hand, if the rate of accrual were low at
the initial stages of the trial but increased towards the end of trial, then a majority of
patients would tend to have low censoring times relative to the maximal follow-up.
More rigorously, if TL denotes the total follow-up for the trial and TA denotes the
duration of accrual, the probability that a subject is observed for an event over the
course of the study is given by
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1 �
Z TA

0

ST .TL � u/fA.u/du;

where ST denotes the survival function of the subject and fA denotes the probability
density function of the accrual distribution of the subject. Because of this, changes to
the accrual distribution can have economic (the duration of the study), statistical (the
rate of statistical information growth), and scientific (the length of time treatments
are to be compared) implications on a clinical trial.

Under a proportional hazards treatment effect, the statistical information as
derived from the partial likelihood is directly proportional to the number of events
observed on the trial. This reduces the complexity of planning interim analyses but
one must still translate between the number of observed events and when those
events are to be expected in calendar time so that a Data Monitoring Committee
can be convened for interim analyses. The translation from events to calendar
time requires specification of the accrual rate of patients, the duration of accrual,
the duration of continued follow-up after accrual is closed, the baseline survival
distribution, and the treatment effect. Most, if not all, of these parameters are
unknown to investigators at the design stage of a trial and must be assumed.
Therefore we find it useful to explore the potential impact of varying assumptions
on the timing of analysis and the overall duration of the trial. In RCTdesign
patient accrual patterns can be explored at the time of design specification. To
provide flexibility in the exploration process, accrual rates may be parameterized via
a Beta.a; b/ distribution or simulated from existing pilot data. Similarly, baseline
survival may be parameterized via a Weibull distribution, a piece-wise constant
hazard function, or simulated from existing pilot data.

In the context of the CLL trial, Fig. 6 depicts the event accrual rates and expected
analysis times under fast (a) and slow (b) patient accrual patterns. In both cases, a
total of 400 subjects were assumed to enroll over a period of 3 years and baseline
survival in the placebo group was assumed to follow an exponential distribution with
a median survival of 16 months. In Fig. 6a, a Beta(1,10) accrual distribution was
assumed while in Fig. 6b, a Beta(10,1) distribution was assumed. In each figure,
the solid line represents the cumulative number of subjects accrued to the trial
as a function of calendar time, the small dashed line represents the number of
subjects still at risk in the trial, and the large dashed line represents the cumulative
number of events observed in the trial. Lighter dashed lines depict estimates under
the null hypothesis (� D 1/ and darker dashed lines depict estimates under the
full design alternative (� D 0:67). Entry distributions have been chosen to be
extreme to highlight the impact of the patient accrual patterns. Specifically, under
fast accrual the first interim analysis is estimated to take place between 7 and
8 months after study start. From a clinical perspective, this may be too soon to
begin assessing efficacy because long-term survival effects are generally of primary
interest. Conversely, under slow early accrual the first interim analysis is expected
to take place more than 3 years after recruitment into the trial began. In the context
of the trial, this may be too long of a wait to assess futility, particularly in light
of the fact that by this time all 400 patients will have been recruited to the trial
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Fig. 6 Expected event accrual rates and analysis times under fast (a) and slow (b) patient accrual
patterns. Analysis times are for one-sided level 0.025 stopping rule to test the null hypothesis
H0 W � � 1 and having a maximum of four equally spaced analysis, an efficacy (lower)
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and treated. Also of note is the total expected duration of the study under each
scenario. Under the full alternative, the total study time could be as little as 2.8
years if early accrual is fast and as long as 5.2 years if early accrual is slow. Beyond
the obvious clinical implications of estimating the treatment effect in a controlled
setting for these different periods of time, the cost of running a trial for longer
periods of time may not be feasible for a sponsor.

3 Implementing a Group Sequential Design

3.1 Flexible Implementation of Stopping Rules
Based on Constrained Boundaries

The stopping rule chosen in the design of a clinical trial serves as a guideline to
a Data Monitoring Committee as it makes the decision to recommend continuing
or stopping a clinical trial. If all aspects of the conduct of the clinical trial adhered
exactly to the conditions stipulated during the design, the stopping rule obtained
during the design phase could be used directly. However there are usually at least
two complicating factors that must be dealt with during the conduct of the clinical
trial. First, the schedule of interim analysis does not follow that used in the design
of the trial. Often, meetings of the Data Monitoring Committee are scheduled
according to calendar time, and thus the sample sizes available for analysis at any
given meeting is a random variable. Similarly, accrual may be slower or faster
than planned, thereby resulting in a different number of interim analyses than was
originally planned. Either of these eventualities will necessitate modifications of
the stopping rule, because the exact stopping boundaries are dependent upon the
number and timing of analysis. Second, the estimate for response variability that
was used at the design phase is typically incorrect. Often very crude estimates
of response variability or baseline event rates are used at the design phase. As
the trial progresses, more accurate estimates are to be used. Clearly the operating
characteristics of particular stopping rules are heavily dependent on the variability
of response measurement. In order to address these issues, flexible methods of
implementing stopping rules have been developed which allow the clinical trialist to
maintain at least some of the operating characteristics of the stopping rule. Typically
such flexible methods always maintain the size (type I error) at the prescribed level.
A choice must then be made as to whether the maximal sample size or the power to
detect the design alternative should be maintained.

The flexible methods of implementing stopping rules in RCTdesign are based
on the idea of computing a stopping boundary for the current interim analysis
in such a way that the desired operating characteristics are satisfied and that the
stopping rule is constrained to agree with the stopping boundaries used at all
previously conducted interim analysis. Algorithmically, the monitoring strategy
proceeds as follows:
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1. At the first analysis, the stopping boundaries are derived by using the parametric
boundary shape family specified in the design. The exact stopping boundary is
computed by considering the proportion …1 of statistical information available
at that first analysis. The value of …1 depends on which operating characteristics
of the stopping rule the trial designer chooses to preserve:

(a) If the maximal sample size (or number of events), N , is to be maintained,
…1 D N1=N . Here N1 represents the number of subjects (or events) accrued
at the first analysis.

(b) If the power of the test to detect the design alternative is to be maintained, a
schedule of future analysis is assumed and a stopping rule using the design
parametric family (possibly constrained) is found which has the desired
power. This consists of searching for the value of N which has the correct type
I error and power to detect the alternative for the parametric design family for
the assumed schedule of interim analysis. In either case, interpolation of the
exact, minimum, or maximum constraints specified at the design stage is used
to derive any constraints for the interim analysis specified by the assumed
schedule of future analysis (which may differ from the schedule specified at
the design stage). In cases where statistical information is dependent upon
a variance parameter, the current best estimate of the statistical information
contributed by a single sampling unit is used instead of the estimate supplied
at the design stage.

2. At later interim analysis, the exact stopping boundaries used at previously
conducted interim analysis are used as exact constraints at those analysis times,
and the stopping boundaries at the current analysis, and all future analyses
specified by an assumed schedule of future analysis are computed using the
parametric family of designs specified at the design stage. The basic approach
is that described for the first analysis, in which the proportion of statistical
information at the j -th analysis is computed based either on the planned maximal
sample size N if that operating characteristic is to be maintained, or it is
computed based on a recomputation of a sample size which takes into account the
new schedule of interim analysis and the current best estimate of the statistical
information contributed by a single sampling unit. In either case, …j D Nj=N

is used as the proportion of statistical information available at the j -th analysis.

It should be noted that when a variance parameter is reestimated at each analysis,
the stopping boundaries at previously conducted interim analysis depend upon
which boundary scale is used when constraining the stopping rules at those analyses.
That is, if the value of the variance parameter used in computing the stopping rule
is constant over the course of the study, it is irrelevant which boundary scale is
used for the constraints at previously conducted analyses. If, as is usually the case,
the estimate of the variance parameter varies over the study, there will be some
difference between the boundaries obtained. There is no clear advantage for one
such scale over another.
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This approach based on constrained boundaries is a generalization of the error
spending approach of [18, 23]: That approach corresponds to boundary constraints
specified on the error spending scale. More recently, [3] suggested the above
constrained boundaries algorithm to allow a clinical trialist to constrain the stopping
rule on any scale (e.g. the sample mean scale) and for any parametric family of
designs (e.g. the unified family of group sequential designs).

To illustrate the use of the constrained boundaries approach in RCTdesign,
Fig. 7 depicts data simulated in the context of the CLL trial. To demonstrate the
method, suppose that the Eff11.Fut8 design (boundaries depicted in Fig. 1) was the
chosen stopping rule for the trial. Data were simulated under uniform patient accrual
over 3 years assuming exponential survival times, with a median survival of 16
months in the placebo arm and a median survival of 22.9 months in the antibody
arm (corresponding to a hazard ratio of 0.70). Figures (a)–(c) depict the observed
survival curves and estimates of treatment effect at three interim analyses taking
place at 1.5, 2.75, and 3.5 years after the start of trial enrollment. For reference,
subfigure (d) depicts the data that would have been observed if a fixed sample design
were performed after a total of 263 events were observed (occurring at 4.11 years
after the start of trial enrollment).

Table 2 depicts the observed statistics at each of the three interim analyses,
including the total number of observed events, the estimated hazard ratio (not
adjusted for the stopping rule), and the normalized Z statistic (also not adjusted
or the stopping rule). In addition to the observed statistics at each analysis,
Table 2 yields the modified stopping rule obtained from the constrained boundaries
algorithm. Of note, the first analysis took place after 49 events were observed in the
study and not the originally planned 66 events. This earlier analysis time results in a
much wider continuation interval at the first analysis when compared to the original
Eff11.Fut8 stopping boundaries depicted in Fig. 1. Given the observed hazard ratio
of 0.46, the stopping rule suggested continuation of the trial and new stopping
thresholds were derived using the original parametric family under a specified
timing for the future analyses while maintaining an overall type I error rate of
0.025. The algorithm was again implemented at the second analysis occurring after
146 events were observed (differing from the previously assumed 132 events). We
note that the stopping thresholds at the first analysis remained unchanged, while
future stopping boundaries are recomputed. Again, the stopping rule suggested
continuation of the study. The process was repeated at the third interim analysis,
where a hazard ratio of 0.70 was computed (not adjusted for the stopping rule)
after observing 208 events. At this analysis, the stopping rule suggested stopping
the trial in favor of efficacy. Figure 8 provides a visual comparison of the original
Eff11.Fut8 (solid lines), having a maximum of four equally spaced analyses, an
efficacy (lower) boundary shape function corresponding to P D 1:1 and a futility
(upper) boundary shape function corresponding to P D 0:8 in the unified family
of group sequential designs, and the final implemented design (dashed lines) using
constrained boundaries to account for variation in the originally planned timing of
analysis. In the figure, “X” denotes the observed point estimate (hazard ratio) at the
three interim analysis.
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Table 2 Implementation of the original Eff11.Fut8 using constrained boundaries to account for
variation in the originally planned analysis times. Original analysis times were planned at 66, 132,
198, and 263 events Data were simulated in the context of the CLL trial and are depicted in Fig. 7.
Due to deviations from patient and event accrual rates, the first three interim analysis actually took
place at 49, 146, and 208 events

Observed statistics

No. Crude Normalized Modified stopping boundariesa;b Stopping rule

Analysis events HR Z statistic Time Efficacy Futility recommendation

1 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
– – – NEvD132 0.595 0.947
– – – NEvD198 0.718 0.837
– – – NEvD263 0.784 0.784

2 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
146 0.678 �2.342 NEvD146 0.629 0.915 Continue
– – – NEvD198 0.717 0.837
– – – NEvD263 0.784 0.784

3 49 0.462 �2.628 NEvD 49 0.214 1.619 Continue
146 0.678 �2.342 NEvD146 0.629 0.915 Continue
208 0.704 �2.522 NEvD208 0.730 0.826 Stop (efficacy)
– – – NEvD263 0.784 0.784

aNEv denotes the observed number of events
bStopping boundaries are displayed on the scale of the estimated hazard ratio

3.2 Adjusted Inference

As previously stated, the use of a group sequential stopping rule generally alters
the sampling distribution of usual fixed sample statistics. Therefore special tech-
niques must be used to compute point estimates, interval estimates and P values.
Commonly reported point estimates include the usual maximum likelihood estimate
(MLE), the median unbiased estimator (MUE; see [35]), the BAM [33], and the
Rao–Blackwell adjusted unbiased estimate (RBUE; [19]).

In order to compute a MUE, P value, or confidence interval which adjusts for
the stopping rule used in a group sequential trial, an ordering of possible clinical
trial outcomes must be chosen. There is no uniformly optimal choice for such an
ordering. In group sequential testing, the issue is how to treat outcomes observed at
different analyses (see [7]). RCTdesign offers two approaches: the sample mean
ordering [7] and the analysis time ordering [31].

The sample mean ordering judges one result more extreme than another ac-
cording to whether the estimate of the treatment effect is more extreme. Thus, a
treatment effect measured by a hazard ratio of 0.6 is lower than a treatment effect
measured by a hazard ratio of 0.7, regardless of the analysis time. In the analysis
time ordering, results that led to earlier termination of the study are judged to be
more extreme than those observed at later analyses. Results that exceed an upper
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Fig. 8 Comparison of the original Eff11.Fut8 (solid lines), having a maximum of four equally
spaced analysis, an efficacy (lower) boundary shape function corresponding to P D 1:1 and a
futility (upper) boundary shape function corresponding to P D 0:8 in the unified family of group
sequential designs, and the final implemented design (dashed lines) using constrained boundaries
to account for variation in the originally planned timing of analysis. “X” denotes the observed point
estimate (hazard ratio) at the first three analysis. As indicated in the plot, the stopping rule recom-
mended stopping at the third analysis so that no observed estimate is provided at the final analysis

boundary for the treatment effect at a specific analysis are higher than all results
exceeding the upper boundary at later analyses, and also higher than all results less
than the lower boundary at any analysis. Thus, a treatment effect measured by a
hazard ratio of 0.6, which was judged so high as to warrant early termination of the
study, is less extreme than a hazard ratio of 0.7 which was similarly judged high
enough to warrant termination of the study at an earlier analysis.

Emerson and Fleming [7] investigated the relative behavior of the sample mean
and analysis time orderings with respect to the average width of confidence inter-
vals. The sample mean ordering tends to average shorter confidence interval lengths
for the same coverage probabilities. Gillen and Emerson [14] more recently showed
that under a time-varying treatment effect, the sample mean ordering tends to attain
higher power relative to the analysis time ordering in the sense that the probability of
attaining a small P value is higher with the sample mean ordering when compared
to the analysis time ordering. Finally, the analysis time ordering is not defined for
two-sided group sequential tests that allow early stopping under both the null and
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Table 3 Inference adjusted for the Eff11.Fut8 stopping rule. Data were simulated in
the context of the CLL trial and are depicted in Fig. 7. Due to variability in patient and
event accrual rates, the first three interim analysis actually took place at 49, 146, and
208 events. Based upon the sequential boundaries the trial was stopping at the third
interim analysis

Result Analysis time ordering Sample mean ordering

Unadjusted estimate 0.7044
Adjusted estimates
BAM 0.7127
RBadj 0.7167
MUE 0.7074 0.7153
Adjusted inference
95% CI (0.5382, 0.9313) (0.5469, 0.9347)
P value 0.006906 0.007238

alternative analysis. For these reasons, the sample mean ordering is the
recommended method of computing ordering-dependent inference in RCTdesign.
However, the sample mean ordering does depend on the number and timing of future
analysis, but such dependence was found to be fairly slight by Emerson and Fleming
[7].

Table 3 depicts the resulting inference at the conclusion of the simulated CLL
trial. Based upon the implemented Eff11.Fut8 design the trial was stopped at
the third analysis. The observed hazard ratio (unadjusted for the stopping rule)
was 0.7044. As can be seen from Table 3, each of the adjusted estimates are
attenuated towards the null hypothesis. This adjustment for bias is slight in the
example due to the conservativeness of the Eff11.Fut8 stopping rule. Had a less
conservative design been chosen, a larger difference between the unadjusted and
adjusted estimates would have been observed. Also reported in Table 3 are the
corrected 95% confidence intervals and P values based upon the analysis time and
sample mean orderings. Again the two orderings produce similar results. This is
because the trial continued to the penultimate analysis before stopping. Had the
trial stopped earlier, at the first analysis for example, the difference in the inference
obtained from the two orderings would have been more extreme.

4 Consideration of Potential Time-Varying
Treatment Effects

The methods discussed in this manuscript have focused on settings in which the
measure of treatment effect does not vary with time. However, it is often the case
that a given treatment might have a delayed effect within individuals or that the
effect of treatment might dissipate over time. Special issues arise in such settings.
For instance, when using nonparametric statistics to analyze survival data exhibiting
nonproportional hazards one must consider (among other things):
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1. The formulation of alternatives at which operating characteristics are to be
evaluated.

2. The rate of information growth of the test statistic for appropriately timing
interim analysis.

3. The changing censoring distribution across interim analysis and its impact on the
asymptotic distribution of the test statistic under alternatives.

In a further extension to the evaluation paradigm demonstrated here, [16]
describe one general approach to the evaluation of clinical trial designs in the setting
of nonproportional hazards. Gillen and Emerson [16] note that in the presence of
nonproportional hazards survival data, nonparametric methods such as the G�;�

family of weighted logrank statistics [11] are often used and the evaluation of
stopping rules is no longer a trivial task. Specifically, nonparametric test statistics do
not necessarily correspond to a parameter of clinical interest, thus making it difficult
to characterize alternatives at which operating characteristics are to be computed.
It is shown that this sometimes leads to contradictions when reporting clinically
meaningful measures of treatment effect in the event that they do not correspond to
the nonparametric statistic on which testing is based. Gillen and Emerson [16] go
on to describe re-sampling approaches which might be used to construct alternatives
under nonproportional hazards when preexisting pilot data are available. Those
methods can be implemented using the RCTdesign package as a foundation for
generating stopping boundaries.

It was noted in Sect. 2.6 that under a proportional hazards treatment effect,
statistical information is directly proportional to the number of events observed
on the trial. In this case one only needs to estimate the calendar time that a
specified number of events is likely to occur in order to schedule interim analyses.
However, when testing is based upon a weighted statistic, such as the G�;� family of
weighted logrank statistics (perhaps to emphasize particular time intervals where
treatment effects are of greatest clinical importance), the growth of statistical
information is nonlinear with respect to the cumulative number of observed events
(see [13]). Specifically, the amount of information contributed by each event
is dependent upon when the event occurred as well as the accrual distribution.
Building on the work of [2, 3, 13] describe a general constrained boundaries
algorithm that can be used to flexibly monitor a group sequential survival trial
under nonlinear information growth patterns. This procedure modifies the usual
constrained boundaries algorithm described in Sect. 3.1 by using observed survival
and accrual data at each interim analysis to predict the information growth curve,
then mapping information accrual to calendar time. Because the method is an
extension of the constrained boundaries approach implemented in RCTdesign it
can easily be implemented in the current software.

Finally, multiple authors have noted that the parameter consistently estimated by
the Cox proportional hazards model and the logrank statistic are dependent upon
the observed censoring distribution when the proportional hazards assumption does
not hold (cf. [15, 29]). This dependence is not only on the total length of follow-up
observed in the trial, but also on the shape of the underlying censoring distribution.
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Fig. 9 Example illustrating the effect of the censoring distribution on the parameter consistently
estimated by the Cox proportional hazards model under 50 different censoring distributions (shown
in subfigure (b)). Data were generated under the survival configurations presented in subfigure (a)
and the resulting estimand from each censoring scenario is plotted in subfigure (c)

As an illustration, Fig. 9 depicts the effect of the censoring distribution on the
parameter consistently estimated by the Cox proportional hazards model under 50
different censoring distributions (shown in Fig. 9b). In this simulation study, survival
curves were generated under the piecewise constant hazard ratio alternative depicted
in Fig. 9a. With no censoring over 3 years the Cox model consistently estimates a
“marginal” or “weighted” hazard ratio of 0.64. However, as censoring is introduced
Fig. 9c illustrates that the parameter consistently estimated by the Cox model can
vary from 0.67 (no censoring) to 0.87 (heavy early censoring as depicted in scenario
50). To remove this dependence, [37] suggested an inverse probability of censoring
estimator that assumes a common censoring pattern across all comparison groups.
Boyd et al. [1] later extended the weighted estimator to allow for group-dependent
censoring in the case of a two-sample comparison and derived a consistent variance
estimator in this case. Most recently Nguyen and Gillen developed a censoring
robust reweighted estimator for discrete survival outcomes in the two sample setting
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[21] and proposed a method to provide robust estimation of survival effects under
covariate-dependent censoring in observational studies [20]. Because it is necessary
to a priori specify the estimation and testing procedure to be used in a clinical
trial, the above estimators are attractive in that they limit the influence of study
accrual/dropout patterns on trial results under a misspecified model. In addition,
although these estimators are not directly implemented in RCTdesign at the
present time, the ability to monitor a normalized Z statistic using RCTdesign
provides clinical trialists with a software tool that can be adapted to monitor any
statistic that can be suitably normalized.

5 Discussion

In this manuscript we have demonstrated how the RCTdesign package can be
used to select, implement, and analyze a group sequential stopping rule. The
RCTdesign package aids in the complete evaluation of a clinical trial design by
easily allowing clinical trialists to compare a broad range of candidate designs with
respect to:

1. The scientific measures of treatment effect which will correspond to early
termination for futility and/or efficacy.

2. The sample size requirements as described by the maximal sample size and
summary measures of the sample size distribution (e.g., mean, 75th percentile)
as a function of the hypothesized treatment effect.

3. The probability that the trial would continue to each analysis as a function of the
hypothesized treatment effect.

4. The frequentist power to reject the null hypothesis as a function of the hypothe-
sized treatment effect, with the type I error corresponding to the power under the
null hypothesis.

5. The frequentist inference (adjusted point estimates, confidence intervals, and P

values) which would be reported were the trial to stop with results corresponding
exactly to a boundary.

6. The frequentist power to obtain a point estimate above some relevant threshold.
7. The expected timing of interim analysis as a function of patient accrual patterns.

After the selection of a group sequential stopping rule, flexible implementation
of the sequential boundaries using a constrained boundaries approach was demon-
strated. This method easily accounts for deviations in planned variance, timing, and
number of analysis in order to maintain some of those operating characteristics
specified at the design stage. With careful evaluation of stopping rules and methods
for flexibly implementing those rules under changing circumstances, there seems
little reason to resort to less efficient adaptive designs such as those based on using
conditional power to re-design a study [26] or Fisher’s “self-designing clinical
trial” [10]. The most frequently cited motivation for using such adaptive designs
include the possibility that at an interim analysis a clinical trialist might observe
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treatment effects that were promising, but not statistically significant, and thus want
to continue the clinical trial to obtain a larger sample size. Of course, as noted in
this manuscript, by examining the stopping boundary on the scale of the estimated
treatment effect, all such possibilities can truly be considered at the design stage, and
there is no real need to accommodate adaptive designs based solely on the estimate
of the primary measure of treatment effect. Additionally, if conditions external
to the trial suggest a change in the clinical or economic importance of particular
alternative hypotheses or estimates of treatment effect, redesign of the clinical trial
can proceed without materially affecting the type I error, because in that setting the
factors affecting the redesign of the trial are not based on the trial results. This then
argues that there is no real need for using adaptive designs. Furthermore, there are
distinct disadvantages to the adaptive methods, most notably those related to the
loss of statistical efficiency [5, 30].

The CLL case study used throughout this manuscript considered a survival
endpoint and the design approach relied on a semi-parametric (proportional hazards)
model. Robust methods for the analysis of survival data under a time-varying
treatment effect remain an active area of research. Section 4 discusses multiple
approaches to modify common survival statistics in order to limit the impact the
censoring distribution in these settings. While these methods are effective for
removing the dependence of the resulting estimand on the censoring distribution
under fixed support, they do not address the dependence of these estimators on
the underlying length of trial follow-up. This is a particular problem in the case of
sequential testing where interim analysis inherently truncate the observed support
of the survival distribution. Gillen [12] proposes one method for quantifying
uncertainty in future treatment effects by utilizing a random walk approach to
generate future alternatives which might reasonably be observed conditional upon
data collected up to the time of an interim analysis. Similar methods could also
be used in the design, evaluation, and monitoring of longitudinal studies, since the
potential for time-varying treatment effects in these settings forces one to consider
future alternative which might arise following an interim analysis.

Finally, the current manuscript has focused on the evaluation of frequentist
operating characteristics. Increasingly, however, there has been much interest
in the design and analysis of clinical trials under a Bayesian paradigm. While
not demonstrated here, the RCTdesign package also allows for the Bayesian
evaluation of group sequential designs. For further reading on this topic, the reader
should see [8].

Appendix A RCTdesign Code to Recreate the CLL
Examples in Sects. 2 and 3 Using R

##
##### Definition of candidate designs for the CLL trial
##
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Fixed.Sample <- seqDesign( prob.model = "hazard", arms = 2,
null.hypothesis = 1.,
alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 1,
test.type = "less",
sample.size=263,
power = "calculate",
alpha = 0.025 )

SymmOBF.2 <- update( Fixed.Sample, nbr.analysis=2, P=c(1,1),
sample.size=263,
power="calculate" )

SymmOBF.3 <- update( SymmOBF.2, nbr.analysis = 3 )
SymmOBF.4 <- update( SymmOBF.2, nbr.analysis = 4 )
SymmOBF.Power <- update( SymmOBF.4, power = 0.901 )
Futility.5 <- update( SymmOBF.4, P=c(1,.5) )
Futility.8 <- update( SymmOBF.4, P=c(1,.8) )
Futility.9 <- update( SymmOBF.4, P=c(1,.9) )
Eff11.Fut8 <- update( SymmOBF.4, P=c(1.1,.8) )
Eff11.Fut9 <- update( SymmOBF.4, P=c(1.1,.9) )
Fixed.Power <- update( Fixed.Sample, nbr.analysis=1,

power=0.8853 )

##
##### Figure 1 : Comparison of stopping boundaries on crude

estimate of treatment effect
scale

##
seqPlotBoundary( SymmOBF.4, Eff11.Fut8, Eff11.Fut9,

lty=c(1,3,4), col=1,
stagger=0, fixed=FALSE )

seqBoundary( Eff11.Fut8, scale="X" )
seqBoundary( Eff11.Fut8, scale="Z" )
1-seqBoundary( Eff11.Fut8, scale="P" )

##
##### Figure 2 : Comparison of statistical power curves
##
seqPlotPower(SymmOBF.4,SymmOBF.3,SymmOBF.2, lty=1:4, col=1,

lwd=2 )
seqPlotPower(SymmOBF.4,SymmOBF.3,SymmOBF.2, reference=TRUE,

lty=1:4, col=1, lwd=2 )

##
##### Table 1 : Computation of power and alternative tables

for the Eff11.Fut8 design
##
seqOC( Eff11.Fut8, power=c(.8,.9,.95,.975) )
seqOC( Eff11.Fut8, theta=c(1,.75,.67,.60) )

##
##### Figure 3 : Comparison of sample size distributions
##
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seqPlotASN(SymmOBF.4,Futility.9,Futility.8,Futility.5,
fixed=FALSE, lty=c(2,1,3,4),
col=1, lwd=2)

##
##### Figure 4 : Depiction of stopping probabilities
##
seqPlotStopProb(Eff11.Fut8)

##
##### Figure 5 : Statistical inference on the boundaries
##
plot(seqInference(Eff11.Fut8))

##
##### Figure 6a : Patient accrual patterns (early accrual)
##
Eff11.Fut8Extd.early <- seqDesignExtd(prob.model = "hazard",

arms = 2, null.hypothesis
= 1., alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 4,
test.type = "less",
alpha = 0.025,
sample.size=263,
power="calculate",
P=c(1.1,.8),
accrualSize=400,
accrualTime=3, bShapeAccr=10,
eventQuantiles=16/12,
nPtsSim=10000, seed=0)

seqPlotPHNSubjects(Eff11.Fut8Extd.early)

##
##### Figure 6b : Patient accrual patterns (late accrual)
##
Eff11.Fut8Extd.late <- seqDesignExtd(prob.model = "hazard",

arms = 2,
null.hypothesis
= 1., alt.hypothesis = 0.67,
ratio = c(1., 1.),
nbr.analysis = 4,
test.type = "less",
alpha = 0.025,
sample.size=263,
power="calculate",
P=c(1.1,.8),
accrualSize=400,
accrualTime=3, aShapeAccr=10,
eventQuantiles=16/12,
nPtsSim=10000, seed=0)

seqPlotPHNSubjects(Eff11.Fut8Extd.late)
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##
##### Simulation of CLL data
##
set.seed( 123456 )
n <- 200
grp1 <- rexp( n, rate=.75*log(2) )
grp2 <- rexp( n, rate=(.75*log(2))*.70 )
trueSurv <- c( grp1, grp2 )
entry <- runif( 2*n, 0, 3 )
grp <- rep( 0:1, each=n )

## First analysis at 1.5 years after study start
analysisTime <- 1.5
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim1 <- seqMonitor( Eff11.Fut8, response=resp,

treatment=cllData$grp,
future.analysis=c(132,198,263) )

## Second analysis at 2.75 years after study start
analysisTime <- 2.75
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim2 <- seqMonitor( interim1, response=resp,

treatment=cllData$grp,
future.analysis=c(198,263) )

## Third analysis at 3.5 years after study start
analysisTime <- 3.5
obsSurv <- ifelse( trueSurv + entry <= analysisTime, trueSurv,

analysisTime-entry )
event <- ifelse( obsSurv == trueSurv, 1, 0 )
cllData <- as.data.frame( cbind( grp, entry, obsSurv, event ) )
cllData <- cllData[ cllData$obsSurv > 0, ]
resp <- Surv( cllData$obsSurv, cllData$event )
interim3 <- seqMonitor( interim2, response=resp,

treatment=cllData$grp,
future.analysis=c(263) )

##
##### Figure 8 : Comparison of implemented and original

design
##
plot( interim3, dsnLbls=c("Implemented Design", "Original

Design") )
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##
##### Table 3 : Inference adjusted for the stopping rule
##
print( interim3 )
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Genetic Markers in Clinical Trials

B.S. Weir and P.J. Heagerty

Abstract The current availability of dense sets of marker SNPs for the human
genome is having a large impact on genetic studies and offers new possibilities
for clinical trials. This chapter offers a unified basis for the analysis of marker and
response data, emphasizing the central importance of the correlation, or linkage
disequilibrium, between SNP markers and the genes that affect response. It is
convenient to phrase the development of association mapping in the language of
quantitative genetics, using additive and non-additive components of variance. A
novel feature of dense SNP data is that good estimates can be made of actual
inbreeding and relatedness. These estimates are more relevant than values predicted
from family pedigree, and are all that are available in the absence of family data.

The dimensionality of SNP marker datasets has required the development of
new methods that are appropriate for a large number of statistical comparisons, and
the development of computational methods that allow high-dimensional regression.
These methods are reviewed here, as is the use of biological annotation for both
viewing the relevance of empirical associations, and to structure analysis in order
to focus on those markers with the highest expectation for association with the
outcomes under study.

1 Introduction

This chapter explores the statistical issues surrounding the use of SNPs in clinical
trials and genome-wide association studies, and it contains the material presented
in a short course by the authors. It is based, in part, on their experience with
two NHGRI-funded consortia: GENEVA [3, 12], a collection of genome-wide
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association studies, and GARNET, a collection of randomized clinical trials. It
also reflects our work as a data coordinating center for a number of randomized
clinical trials including evaluation of vertebroplasty for osteoporotic fractures [11]
and surgery for carpal tunnel syndrome [10], performed through the Center for
Biomedical Statistics at the University of Washington.

At the time of the Fourth Seattle Symposium on Biostatistics there were
199 clinical trials listed at www.clinicaltrials.gov that were collecting genetic
information on participants. The entry for trial NCT01106144, for example, states:

The main component in the treatment of acute myeloid leukemia (AML) is consist
of anthracycline (such as daunorubicin or idarubicin) and cytarabine. Inter-individual
variability of transport/ metabolism of the chemotherapeutic agent and several genetic
pathways involved in the drug action might be associated with different response following
the treatment for AML usually consisted of chemotherapy and/or transplantation. One
of potential pathways involved in the drug action is DNA repair pathway, accordingly
single nucleotide polymorphisms (SNPs) in the DNA repair machinery pathway might be a
predictive marker for therapy outcomes in AML.

This chapter focusses on the use of SNPs for clinical trials.

2 Single Nucleotide Polymorphisms

Information about the genetic constitution of an individual in a study is often
provided by technologies that reveal SNP profiles. Each of us receives one genome,
including 23 chromosomes, from each of our parents and the genome can be
described by the base type (A,C,G, or T) at each of the three billion nucleotides
in the genomic DNA sequence. There can be constraints on which bases can be
present at each nucleotide position but there is now documentation of 25 million
or so positions at which there is variation among people (http://www.1000genomes.
org). The low rate of change with which one base may be replaced by another means
that most SNPs have only two possible states in a population, such as A and C. If
the frequency of type A in a population is pA D 0:8, then C is termed the minor
allele and the minor allele frequency (MAF) is 0.2.

Individuals may be typed at specific target regions of the genome but it is
generally cost-effective to type many SNPs with platforms that give whole-genome
data. The OMNI5 chip produced by the Illumina company allows five million SNPs
to be typed (http://www.illumina.com/products), most of them with MAF values
over 0.01 in publicly available data sets such as HapMap or 1000 Genomes (www.
hapmap.org, or www.1000genomes.org). In a recent review, [5] listed sets of studies
where associations of SNPs with drug response had been sought, often resulting in
highly significant results.

www.clinicaltrials.gov
http://www.1000genomes.org
http://www.1000genomes.org
http://www.illumina.com/products
www.hapmap.org
www.hapmap.org
www.1000genomes.org
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3 Associations

The use of genetic markers for mapping disease genes or as biomarkers in clinical
trials depends on associations between genetic variants and observed or measured
traits. We first examine associations between genetic variants before taking up the
association of markers with traits or outcomes.

It is convenient to describe associations between pairs of alleles in terms of
correlations. At one locus, the correlation coefficient is an inbreeding coefficient
and at two loci, the correlation depends upon linkage disequilibrium. For marker
and trait locus pairs, the squared correlation coefficient is the key parameter.

3.1 Allelic Association at One Locus

For a set of n individuals in a sample from one population, it is convenient to replace
every allele by an indicator variable for, say, allele A at locus A. For allele k (k D
1; 2) in individual j (j D 1; 2; : : : ; n), these indicator variables xjk are defined as

xjk D
�

1 allele is of type A

0 otherwise

Taking averages over all samples from the population of these Bernoulli variables
is straightforward:

E.xjk/ D pA

E.x2
jk/ D pA

Var.xjk/ D pA.1 � pA/

where pA is the allele frequency for A.
Now the product of the two x’s for one individual is nonzero only if the individual

is homozygous AA, and this leads to the covariance of indicator variables within
individuals:

E.xjkxjk0/ D PAA; k ¤ k0

Cov.xjk; xjk0/ D PAA � p2
A

where PAA is the genotype frequency for AA.
The (within-population) inbreeding coefficient fA at locus A is defined to allow

the reparameterization of genotype frequencies in terms of allele frequencies:

PAA D p2
A C pA.1 � pA/fA
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PAa D 2pA.1 � pA/ � 2pA.1 � pA/fA

Paa D .1 � pA/2 C pA.1 � pA/fA

This imposes no constraints on genotypic proportions and it preserves the usual
reduction of genotypic frequencies to allele frequencies:

pA D PAA C 1

2
PAa; pa D Paa C 1

2
PAs

The inbreeding coefficient can be seen to be the correlation coefficient of the
indicator variables for the two alleles carried by an individual at a locus. This follows
because

Var.xjk/ D pA.1 � pA/

Cov.xjk; xjk0/ D pA.1 � pA/fA; k ¤ k0

Corr.xjk; xjk0/ D fA

Because genotypic frequencies are bounded by allele frequencies above and zero
below,

0 � PAA D p2
A C pApafA � pA

there are bounds on the inbreeding coefficient

max

�
�pA

pa

; � pa

pA

�
� fA � 1

Sample Values If a sample of n individuals is found to have counts nAA; nAa; naa

for genotypes AA; Aa; aa, the sample allele frequencies, denoted by tildes, are

QpA D 1

2n
.2nAA C nAa/ D QPAA C 1

2
QPAa

and these have means and variances over all samples from the same population of

E. QpA/ D pA

Var. QpA/ D 1

2n
pA.1 � pA/.1 C fA/:

A structured population is shown in Fig. 1, where the subpopulations have
distinct allele frequencies p�. Among samples from the i th subpopulation the allele
counts are binomially distributed : .2n Qpi / � Binomial.2n; p�

i / providing there
is Hardy–Weinberg equilibrium (f D 0) in that subpopulation. We will return to
variation among subpopulations later.
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Subpopulation 1

p�

1 : : :

p

Subpopulation r

p�

r

Population

Fig. 1 Allele frequencies in a substructured population

3.2 Allelic Association at Two Loci

A gamete is the set of genetic material, in the egg or sperm, passed from parent
to child and a haplotype is a relatively small region on one chromosome. For the
present purposes the terms are essentially interchangeable, but “gamete” will be
used as it has greater generality.

If data are available for a set of n gametes, indicator variables xA and xB can be
defined for loci A and B in the same way as that above for one locus. For gamete j :

xjA D
�

1 if gamete carries A

0 otherwise

xjB D
�

1 if gamete carries B

0 otherwise

As the product xjAxjB is nonzero only if the gamete is of type AB it has
expectation E.xjAxjB / D PAB , where PAB is frequency of that gamete type.
Therefore

E.xjA/ D pA; Var.xjA/ D pA.1 � pA/

E.xjB / D pB; Var.xjB / D pB.1 � pB/

E.xjAxjB / D PAB; Cov.xjA; xjB / D DAB D PAB � pApB
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The quantity DAB is defined to be the (gametic) linkage disequilibrium between
alleles A and B .

The correlation of indicator variables at two loci is

�AB D Corr.xjA; xjB / D DABp
pA.1 � pA/pB.1 � pB/

and this is the two-locus analog of the inbreeding coefficient f . It is the parameter
that determines the behavior of all genetic association tests. In practice, use is made
of the squared sample value

r2
AB D

QD2
AB

QpA.1 � QpA/ QpB.1 � QpB/

Because gamete frequencies are bounded above by allele frequencies and below
by zero it can be seen that

0 � DAB C pApB � pA ; 0 � �DAB C pApb � pA

0 � �2 � min
�

pApb

papB
;

papB

pApb

�
� 1

The two loci need equal allele frequencies (pA D pB ) for �2
AB to attain the value 1.

Allelic Association at Two Unphased Loci It is generally the case that only
genotypic data, rather than gametic data, are available and this suggests another
measure of linkage disequilibrium. The indicator variables now need two subscripts:
j (j D 1; 2; : : : ; n) for individual and k for gamete (k D 1; 2) within individual.
Summing the indicator values at each locus:

XjA D xj1A C xj 2A

XjB D xj1B C xj 2B

provides indicators XjA having values 2; 1; 0 with probabilities PAA; PAa; Paa and
indicators XjB having values 2; 1; 0 with probabilities PBB; PBb; Pbb .

The means, variances, and covariances of the genotypic indicators are

E.XjA/ D 2pA; Var.XjA/ D 2pA.1 � pA/.1 C fA/

E.XjB / D 2pB; Var.XJB / D 2pB.1 � pB/.1 C fB/

E.XjAXjB / D 4PAABB C 2PAABb C 2PAaBB C PAaBb

Cov.XjA; XjB / D 2Dc
AB
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These equations introduce the “composite” linkage disequilibrium Dc
AB and

Corr.XjA; XjB / D Dc
ABp

pApa.1 C fA/pBpb.1 C fB/

With Hardy–Weinberg equilibrium, fA D fB D 0 and Dc
AB D DAB . In this special

case it is straightforward, although computationally challenging, to recover gamete
frequencies from genotypic frequencies and it is possible to work only with gametic
disequilibria.

3.3 Subgroup Analysis

Before considering association mapping methods that depend on linkage disequi-
librium between marker and trait loci, we consider evaluating treatment effects in
genotype subgroups. In a small modification of previous notation, the genotype
indicator Xlj is the number of copies of the minor allele for the l th SNP in the
j th individual, and we could consider a binary grouping: marker l is positive if
Xlj � 1 and it is negative if Xlj D 0. Subjects can be placed into marker-positive
and marker-negative subgroups.

Subgroup treatment effects �lg are the differences in responses Y between the
two treatment groups T x D 1 and T x D 0, for that subgroup:

�lg D E.Yj jXlj D g; T x D 1/ � E.Yj jXlj D g; T x D 0/ (1)

The first question of interest is whether or not there are subgroups that have strong
treatment effects, or evidence for harm: H0 W �lg D 0. Within a subgroup, a test
statistic for treatment effect is z D O�lg=

p
Vlg , where O�lg is the observed effect for

SNP l in that subgroup and Vjg is an estimate of the variance of the effect.
As an example of a study with which we have had experience, we refer to an

evaluation of compound “X” by GlaxoSmithKline in which the main objective of
the analysis is to identify genetic markers that influence the clinical efficacy of the
compound for the treatment of disease “D.”

A second question is whether or not there are subgroups that have treatment
effects that are larger (or smaller) than the overall treatment effect. In other words,
are there “enhanced” treatment effects? If N� is the treatment effect averaged over
subgroups, or simply the overall marginal treatment effect:

N� D E.Yj jT x D 1/ � E.Yj jT x D 0/

this question is H0 W �lg D N�. This is equivalent to H0 W �lg D N�lgC where g; gC

are the subgroups Xlj D g; Xlj ¤ g.
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4 Association Mapping

Association methods use random samples from a population and are alternatives to
linkage methods based on pedigrees. The associations depend on linkage disequilib-
rium between marker and trait loci instead of depending on linkage between those
loci as in pedigree methods.

Suppose that a quantitative trait locus T contributes to a trait of interest. The
QTL genotype cannot be observed but maybe it can be inferred, and the location
of the QTL estimated, from observations on the trait and the genotype at a genetic
marker M. Individuals have observable marker genotypes and unobservable trait or
response genotypes.

Each marker genotypic class MuMv is composed of a mixture of elements from
each of the QTL classes, TrTs , where the proportion of QTL class TrTs contained
within marker class MuMv is P r.TrTsjMuMv/ D Pr.TrTsMuMv/= Pr.MuMv/.
With random mating, joint TM genotype frequencies are products of gamete
frequencies as shown in Table 1, and gamete frequencies differ from products of
allele frequencies because of linkage disequilibrium as shown in Table 2.

Trait Variables A treatment of association mapping also requires genetic variables
Z and G for loci M and T. The values of Z are assigned for the marker, whereas
the values G represent the genetic contributions to measured trait variables, disease
status, or treatment response. The G’s are not under control of the investigator. In
either case, the Hardy–Weinberg assumption provides the following expressions for
the means and variances:

E.Z/ D �Z D p2
M ZMM C 2pM pmZMm C p2

mZmm

E.G/ D �G D p2
T GT T C 2pT pt GT t C p2

t Gtt

Var.Z/ D 2
AM

C 2
DM

Var.G/ D 2
AT

C 2
DT

Table 1 Two-allele
genotypic frequencies

T T T t t t

MM P 2
M T 2PM T PM t P 2

M t

M m 2PM T PmT 2PM T Pmt C 2PM t PmT 2PM t Pmt

mm P 2
mT 2PmT Pmt P 2

mt

Table 2 Two-allele gametic
frequencies

T t

M PM T D pM pT C DM T PM t D pM pt � DM T

m PmT D pmpT � DM T Pmt D pmpt C DM T
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The “additive” and “dominance” components of variance are

2
AM

D 2pM pmŒpM .ZMM � ZMm/ C pm.ZMm � Zmm/	2

2
AT

D 2pT pt ŒpT .GT T � GT t / C pt.GT t � Gtt /	
2

2
DM

D p2
M p2

m.ZMM � 2ZMm C Zmm/2

2
DT

D p2
T p2

t .GT T � 2GT t C Gtt /
2

and the covariance of Z and G depends on the linkage disequilibrium �MT between
M and T:

Cov.G; Z/ D �MT AT AM C �2
MT DT DM

If either Z or G are purely additive, then

Cov.G; Z/ D �MT AT AM

whereas if either is purely nonadditive

Cov.G; Z/ D �2
MT DT DM

The choice of marker coding, i.e. whether Z has only additive variance, only
nonadditive variance, or a combination of the two, will determine the nature of trait
genetic effects that can be detected by association mapping.

Suppose the measured trait or response variable has value Y where Y D G C E ,
the sum of the genetic effect G of locus T and all other effects E . These other effects
may be supposed to have mean zero and to be independent of both G and the marker
variable Z. Then

E.Y / D E.G/

Cov.Y; Z/ D Cov.G; Z/

Var.Y / D 2
AT

C 2
DT

C VE

4.1 Continuous Traits

Regression Trait values Y may be regressed on marker variables Z. The regression
coefficient has parametric value

ˇYZ D Cov.Y; Z/

Var.Z/
D �MT AT AM C �2

MT DT DM

2
AM

C 2
DM
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Marker variable Z is often chosen to be additive, e.g ZMM D 2; ZMm D
1; Zmm D 0, 2

DM
D 0, and then

ˇYZ D �MT

AT

AM

Evidence for a nonzero regression slope is therefore evidence for linkage disequilib-
rium between trait and marker loci. This, in turn, is generally regarded as evidence
for genomic proximity of these loci. A cluster of SNPs with nonzero regression
coefficients is likely to delineate the region of a chromosome containing a trait locus.

The marker variable could also be made to have zero additive variance, e.g.
ZMM D pm; ZMn D 0; Zmm D pM , and then

ˇYZ D �2
MT

DT

DM

The size of the regression coefficient is lower than in the additive case, partly
because �2

AB � �AB and partly because it is generally the case that 2
DT

� 2
AT

.
For any scoring of the marker genotypes, a significant regression coefficient

implies a significant linkage disequilibrium measure �MT between marker and
disease loci.

Correlation It may be more convenient to work with the correlation of Y and Z.
For an additive marker variable

Corr.Y; Z/ D �YZ D �MT h
.T /
Y

where .h
.T /
Y /2 D 2

AT
=.2

AT
C 2

DT
C VE/ is the (narrow sense) heritability of trait

Y due to locus T. Sample values rYZ for the correlation �YZ can be transformed to
normal variables with Fisher’s transformation

z D 1

2
ln

�
1 C rYZ

1 � rYZ

�

and then standard theory for correlation coefficients provides that, for ˛% signifi-
cance level and .1 � ˇ/% power, the necessary sample size n is (approximately)

n D
2

42.z˛=2 C zˇ/

ln
�

1C�YZ

1��YZ

�

3

5
2

C 3

For 90 % power, zˇ D 1:28. For 90 % power and 1 % or 0.001 % significance level
and for an SNP with �2

MT D 0:8 to the disease gene and a trait with per-locus

heritability .h
.T /
Y /2 D 0:2 these sizes are about 85 or 185. Although heritabilities of
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0.2 are not uncommon, these are values over all causal loci and the per-locus values
are much smaller.

Analysis of Variance Instead of regressing trait values on marker scores, the trait
means could be compared among marker classes. The expected trait means follow as

E.Y jMuMv/ D
X

r;s

Grs Pr.TrTsjMuMv/

D
X

r;s

Grs Pr.TrMu; TsMv/= Pr.MuMv/

in general. For a trait locus with only two alleles, T; t , for marker homozygote MM

and still assuming Hardy–Weinberg equilibrium

E.Y jMM / D .GT T P 2
MT C 2GT t PMT PMt C Gtt P

2
Mt /=p2

M

The trait means among the three marker genotype classes are

E.Y jMM / D �G C 2�MT A=pM C �2
MT D=p2

M

E.Y jM m/ D �G C �MT A.1=pM � 1=pm/ � �2
MT D=.pM pm/

E.Y jmm/ D �G � 2�MT A=pm C �2
MT D=p2

m

where A D AT

p
.pM pm/; D D DT .pM pm/, so that an analysis of variance will

also test that �MT D 0 and the test will be affected by both additive and dominance
effects at the trait locus.

4.2 Dichotomous Traits

Case Only The case–control approach starts with independent samples of indi-
viduals who are either affected or not affected with a disease and compares marker
frequencies between the two groups. The following development also applies to two
arms of a clinical trial. The MM marker frequency among cases is

Pr.MM jCase/ D p2
M C 1

�G

�
pM �MT A C �2

MT DT D
�

Pr.M mjCase/ D 2pM pm C 1

�G

�
.pm � pM /�MT A � 2�2

MT D
�

Pr.mmjCase/ D p2
m C 1

�G

��pm�MT A C �2
MT D

�
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Combining the genotypic frequencies to give allele frequencies:

Pr.M jCase/ D pM C �MT AT

2�G

p
2pM pm

Pr.mjCase/ D pm � �MT AT

2�G

p
2pM pm

Case-only HWE Testing The inbreeding coefficient at the marker locus in the case
population, from the earlier definition of f , now written as f D ŒPr.MM jCase/ �
Pr.M jCase/2	=fPr.M jCase/Œ1 � Pr.M jCase/	g, is

f D �2
MT .2�GDT � 2

AT
/

.�G

p
2pM =pm C �MT AT /.�G

p
2pm=pM � �MT AT /

so that a test for Hardy–Weinberg equilibrium (f D 0) at the marker among cases is
actually a test for linkage disequilibrium between marker and trait loci in the whole
population. The power of this test depends on nf 2 which is proportional to �4

MT so
the power will decrease quickly as �MT decreases.

It is common for investigators to assume a multiplicative trait model (i.e., additive
on a log scale), but that leads to Hardy–Weinberg equilibrium at marker loci among
cases since then 2�GDT D 2

AT
.

Case–Control An argument similar to that above provides the marker genotype
frequencies among controls:

Pr.MM jControl/ D p2
M � 1

1 � �G

�
pM �MT A C �2

MT D
�

Pr.M mjControl/ D 2pM pm � 1

1 � �G

�
.pm � pM /�MT A � 2�2

MT D
�

Pr.mmjControl/ D p2
m � 1

1 � �G

��pm�MT A C �2
MT D

�

Adding these to give allele frequencies:

Pr.M jControl/ D pM � �MT A

2.1 � �G/

Pr.mjControl/ D pm C �MT A

2.1 � �G/

The simplest case–control test compares marker allele frequencies between the
two samples and it is clearly equivalent to testing that �MT D 0 since

Pr.M jCase/ � Pr.M jControl/ / �MT AT

p
2pM pm

The test is not affected by nonadditivity at the trait locus.
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Table 3 Notation for trend
test

i D 0 i D 1 i D 2

Marker genotype MM M m mm Total
Marker variable Z0 Z1 Z2

Case counts r0 r1 r2 R

Control counts s0 s1 s2 S

Total counts n0 n1 n2 N

If the allelic counts for M; m in cases and controls are laid out in a 2 � 2 table,
the contingency-table chi-square test statistic has 1 df. An alternative is to work with
the 3 � 2 table of marker genotype counts in cases and controls and calculate a 2 df
chi-square test statistic. This test is affected by both additivity and nonadditivity
at the trait locus but it is sensitive to errors in genotype calls for rare alleles. The
main problem with the allelic case–control test is its sensitivity to departures from
Hardy–Weinberg equilibrium, and for this reason there is preference for trend tests.

Trend Test The Armitage trend test is based on a score statistic U . Using the
notation in Table 3:

U D
2X

iD0

Zi

�
S

N
ri � R

N
si

�

This is also the sample covariance between marker variable Z and disease status
scored as 0 or 1 for case or control.

With random sampling, the case and control counts are multinomially distributed
and the expected value of U is

E.U / D SR

N

X

i

Zi .Ri � Si /

where Ri ; Si are the expected values of ri ; si . This expected value can be written as

E.U / D 1

�G.1 � �G/

�
�MT AT AM C �2

MT DT DM

�

showing that it is zero when there is linkage equilibrium �MT D 0.
The variance of U is

Var.U / D S2R

N 2

0

@
X

i

Z2
i Ri �

 
X

i

Zi Ri

!2
1

ACSR2

N 2

0

@
X

i

Z2
i Si �

 
X

i

Zi Si

!2
1

A

Under the hypothesis of no association, Ri D Si , E.U / D 0 and

Var.U / D SR

N

0

@
X

i

Z2
i Ri �

 
X

i

Zi Ri

!2
1

A D SR

N

	
2

AM
C 2

DM
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Assuming normality for U , the score test statistic is

X2 D U 2

cVar.U /
D N.N

P
i riZi � R

P
i ni Zi /

2

SRŒN
P

i ni Z
2
i � .

P
i ni Zi /2	

and this is distributed as �2
.1/ under the hypothesis H0 W �MT D 0.

It is usual to consider a linear trend test, say Z0 D 0; Z1 D 1; Z2 D 2, so that
2

DM
D 0 and

X2 D N ŒN.r1 C 2r2/ � R.n1 C 2n2/	2

SRŒN.n1 C 4n2/ � .n1 C 2n2/2	

This will provide a test for additive effects at the disease locus. Setting X0 D
pm; X1 D 0; X2 D pM gives 2

AM
D 0 and a test for nonadditive effects.

Effects of Inbreeding From the form of the allelic case–control test statistic

X2
A D 2N ŒN.r1 C 2r2/ � R.n1 C 2n2/	2

SRŒ2N.n1 C 2n2/ � .n1 C 2n2/2	

and the previous form of the genotypic linear trend test statistic it can be shown that

E.X2
A/ � .1 C f /

E.X2
T / � 1

when there is inbreeding to extent f in the population. The trend test is therefore
robust to departures from Hardy–Weinberg equilibrium. The other general concern
about association tests are that they are sensitive to population structure.

Effect of Population Structure The effect of population structure on association
tests can be phrased in terms of the variation in allele frequencies over subpopula-
tions (Fig. 1). This variation reflects the dependence among individuals imposed by
the history of the population. If xjk indicates the allelic state of allele k in individual
j , it is now necessary to consider that these states are dependent among individuals,
as indicated by joint probability PA;A for two individuals each carrying A:

E.xjkxj 0k0/ D PA;A; j ¤ j 0; k ¤ k0

This is no longer p2
A as it was for the analyses within populations.

The expected value of squared sample allele frequency for a single subpopulation
is changed to:

E. Qp2
A/ D PA;A C 1

2n
.pA C PAA � 2PA;A/
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Population

Subpopulation 1

f1 : : :

F

Subpopulation r

fr

Fig. 2 Inbreeding coefficients in a structured population. Within a subpopulation: P �

AA D .p�

A/2C
fp�

A.1 � p�

A/. Over all subpopulations: PAA D p2
A C FpA.1 � pA/

so that the (total) variance is

Var. QpA/ D .PA;A � p2
A/ C 1

n
.PAA � PA;A/ C 1

2n
.pA � PAA/

With this evolutionary perspective there is need for a new parameterization for
joint allele frequencies to reflect the variation over subpopulations as well as over
samples from one subpopulation:

PAA D p2
A C pA.1 � pA/F

PA;A D p2
A C pA.1 � pA/�

The total inbreeding coefficient F still refers to alleles within individuals but is
for all individuals in the collection of subpopulations (see Fig. 2). The coancestry
coefficient �i is for alleles in two individuals in the i th subpopulation. A common
value � is assumed here for all subpopulations and the subpopulations are assumed
to be independent (�i D �; �i i 0 D 0 in Fig. 3). The frequency pA is now the average
over all subpopulations, and the total variance is

Var. QpA/ D pA.1 � pA/

�
� C 1

n
.F � �/ C 1

2n
.1 � F /

�

There are three components of variance: among populations pA.1 � pA/� , among
individuals within populations pA.1 � pA/.F � �/, and among alleles within
individuals pA.1 � pA/.1 � F /, with a total variance of pA.1 � pA/.
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Fig. 3 Coancestry coefficients in a structured population. Within the i th subpopulation: PA;A D
p2

A C �i pA.1 � pA/. Between the i; i 0th subpopulations: PA;A D p2
A C �ii 0 pA.1 � pA/

Within a subpopulation it is still the case that

P �
AA D .p�

A/2 C fp�
A.1 � p�

A/

Taking expectation values over populations, and using f D .F � �/.1 � �/:

E.p�
A/ D pA

E Œ.p�
A/2	 D p2

A C �pA.1 � pA/

E.P �
AA/ D Œp2

A C �pA.1 � pA/	 C f ŒpA � p2
A � �pA.1 � pA/	

D p2
A C FpA.1 � pA/

If xi ; yi ; zi are the proportions of cases, controls and all samples from the i th
subpopulation, the case–control and trend test statistics have expectations

E.X2
A/ � 2RS�

P
i .xi � yi /

2 C N.F � �/ C N.1 � �/

N.1 � �
P

i z2
i / � .F � �/=2 � .1 � �/=2

E.X2
T / � 2RS�

P
i .xi � yi /

2 C N.F � �/ C N.1 � �/

N Œ.1 C F / � 2�
P

i z2
i 	

The behavior of these test statistics is therefore affected by both inbreeding (within
subpopulations) and population structure (the existence of subpopulations).
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If there is random mating within each subpopulation, F D � , and if there
are equal numbers of cases and controls R D S D N=2. If there are many
subpopulations, it is possible to ignore the term F

P
i z2

i in the denominator and
then

E.X2
A/ D E.X2

T / � 1 C RF
P

i .xi � yi /
2 � 2F

1 C F

as was given by Pritchard and Donnelly [14].
If there is only one subpopulation (x1 D y1 D z1 D 1/:

E.X2
A/ � 1 C f

E.X2
T / � 1

as before.

5 Treatment Effects

In the previous section we considered individuals categorized by case/control status
or by either of two treatment arms in a clinical trial. We now generalize this to
allow for continuous treatments and we consider the joint effects of treatment
and genotype on response. We preserve the notation of Y for response and X for
genotype, and introduce S for treatment. For the j th subject and l th SNP we let �lj

be the conditional mean response, recognizing that this depends on both genotype
and treatment:

�lj D E.Yj jXlj ; Sj /

with link function

g.�lj / D ˇ0 C ˇ1Xlj C �0Sj C �1Xlj Sj

For linear regression, g.�/ D � and for logistic regression g.�/ D lnŒ�=.1 � �/	.
In the previous section we accommodated a range of genetic models with the

marker variable Z. We now express these models in terms of subgroup treatment
effects as in Eq. (1). For an additive model, such as the genotype variable being the
number of minor alleles, and for linear regression

�l0 D �0

�l1 D �0 C �1

�l2 D �0 C 2�1
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whereas for logistic regression the �’s are treatment log-odds ratios specific for
each genotype subgroup.

A dominant model regards the effects of one or two major alleles being the same
and Xlj is replaced by 1 if there are one or no minor alleles and 0 if there are two
minor alleles:

g.�lj / D ˇ0 C ˇ11.Xlj � 1/ C �0Sj C �11.Xlj � 1/Sj

where the variable 1.a/ is 1 if a is true. This implies

�l0 D �0

�l1 D �0 C �1

�l2 D �0 C �1

Conversely, a recessive model regards the effects of one or two minor alleles
being the same and Xlj is replaced by 1 if there are no minor alleles and 0 if there
are one or two minor alleles:

g.�lj / D ˇ0 C ˇ11.Xlj D 2/ C �0Sj C �11.Xlj D 2/Sj

This implies

�l0 D �0

�l1 D �0

�l2 D �0 C �1

A general, or nominal, model assigns different effect levels to each marker
genotype:

g.�lj / D ˇ0 C ˇ11.Xlj D 1/ C ˇ21.Xlj D 2/

C �0Si C �11.Xlj D 1/Sj C �21.Xlj D 2/Sj

This implies

�l0 D �0

�l1 D �0 C �1

�l2 D �0 C �2
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Table 4 Likelihoods for
testing gene by treatment
interaction

Number of Maximum
Model Likelihood parameters ln.L/

Full X C S C X � S p C q ln.L1/

Null X C S p ln.L0/

Table 5 Likelihood ratio
tests for specific models

Null
Model parameters LR test

Additive �1 �2
.1/

Dominant �1 �2
.1/

Recessive �1 �2
.1/

Nominal �1, �2 �2
.2/

Table 6 Power for gene by
treatment interaction

Test assumes
Truth Additive Nominal Dominant

Additive 0.882 0.800 0.746
Dominant 0.607 0.611 0.746

5.1 Testing for Gene by Treatment Interaction

A general testing procedure uses the likelihood ratio test based on alternative pairs
of models for treatment and genetic effects. To test for no gene by treatment
interaction, the likelihoods are displayed in Table 4. Under the null hypothesis of
no interaction

2Œln.L1/ � ln.L0/	 � �2
.q/

In Table 5 we display the interaction test parameters and distributions for each of
the genetic models.

Designing a study to test for gene by treatment interaction is made complicated
by the true genetic model being unknown. There is a body of literature to suggest
that complex traits are additive, reflecting the independent and additive effects of
alleles at the trait loci [8] but also a suggestion that at least some genes act in a
nonadditive fashion [1,20]. In Table 6 we show powers of likelihood ratio tests under
different model assumptions when the true model is either additive or dominant.
For simulations we used data sets consisting of 780 cases and 780 controls. For an
additive structure we assumed additivity on the probability scale with a prevalence
of 0.4 when Xl D 0 and 0.3, 0.2 for Xl D 1; 2, respectively. For a dominant model
we used a prevalence of 0.4 when Xl D 0 and 0.28 when Xl is either 1 or 2. Use
of logistic regression with an additive genetic effect on the log odds scale is only
an approximation to the true data-generating model (e.g., additive on probability
scale).
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5.2 Multiple Comparisons

With millions of SNPs being scored or imputed for each study participant, the issue
of multiple testing needs to be considered. If ˛� is the per-test (per-SNP) false-
positive error rate, then a set of L tests under the null is expected to produce ˛�L

false positives. For L � 106 this number can be large. The family-wise error rate
(FWER) ˛ is the probability of at least one false positive in a set of tests where all
the null hypotheses are true. The Bonferroni approach sets the per-test error to ˛� D
˛=L, or 5 � 10�8 for an FWER of 0.05 and one million tests. The Sidak approach
uses ˛� D 1 � .1 � ˛/1=L, with the very similar value of 5:13 � 10�8 in this case.

These simple multiple comparison corrections are conservative and they may
assume independent tests even though linkage disequilibrium prevents whole-
genome sets of SNPs being independent. Permutation procedures can yield correct
FWER values for dependent tests, at the expense of being computationally intensive
and dataset dependent. These procedures keep the genetic profiles intact and
permute the outcomes Y among individuals: in essence destroying any genotype-
trait association and producing data for which the null hypotheses at each SNP are
true. Repeated permutations lead to reference distributions for the single-SNP test
statistics. Approximations were proposed by Nyholt [13].

5.3 Bayes’ Factors

Genetics research is embracing “evidence” criteria such as likelihood ratios. In
linkage studies, where the transmission of trait values and genotypes are traced
down pedigrees, LOD scores based on likelihood ratios have long been used. The
appeal of an alternative that does not rely on p-values, the probabilities of data
assuming the null hypothesis to be true, is that power (probabilities when the null
is not true) and sample size can be considered when choosing criteria for evaluating
tests.

The Bayes Factor is the ratio of the probability of the data under the null to
the probability under the alternative hypothesis. Wakefield [17] showed that an
Approximate Bayes Factor (ABF) is given by

ABF D
r

V C W

V
exp

�
�Z2

2

W

V C W

�

where the maximum likelihood estimate O� of a parameter of interest is normally
distributed with mean � and variance V . The test statistic Z for the hypothesis
H0 W � D 0 is Z D O�=

p
V . The Bayesian aspect of the analysis is to assign a prior

distribution for parameter � , such as normal with mean 0 and variance W , and to
decide in favor of the alternative hypothesis if

ABF � PO < R (2)
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The prior odds PO is the ratio of the probabilities of the hypotheses before the data
are collected, PO D Pr.H0/= Pr.H1/ and R is the ratio of costs: the cost of a false
non-discovery divided by the cost of a false discovery. For example, R is the cost of
a Type II error divided by that of a Type I error.

In practice, values are assigned to (PO/R) and then the ABF threshold is
determined. It may be that PO is 10,000 and R D 1, so that the threshold is 10�4.
The ABF threshold is translated into a threshold for the test statistic from Eq. (2).

5.4 Bioinformatics Tools

The biological significance of an association found between an SNP and an outcome
can be phrased in terms of the biological function of an SNP or the biological
pathway to which it belongs. There are a variety of tools available to help this
activity:

• UCSC Genome Bioinformatics (http://ucsc.genome.edu).
• Fast SNP (http://fastsnp.ibm.sinica.edu.tw).
• Gene Ontology (GO) (http://www.geneontology.org).

These and other tools were reviewed by Bansal et al. [1].

6 Analyses with Multiple Markers

For a set of individuals j there is information Yj on the outcome of interest, on the
treatment or dose Sj , and on the genetic profile Xj D fXlj ; l D 1; 2; : : : Lg. A
series of questions can be posed:

• How can the genetic markers be used to predict outcome?
• How can the genetic markers be used to score the individuals with respect to

treatment benefit?
• How can the genetic markers be used to create a treatment decision function?

We address these questions in a generalized linear model framework:

E.Yj jXj ; Sj / D �j

g.�j / D ˇ.Xj / C �.Xj / � Sj

Hastie and Tibshirani [7] introduced a “varying coefficient model.” As a simple
example

g.�j / D .ˇ0 C ˇ1X1j C : : : C ˇLXLj / C .�0 C �1X1j C : : : C �LXLj / � Sj

http://ucsc.genome.edu
http://fastsnp.ibm.sinica.edu.tw
http://www.geneontology.org
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Major challenges to this work include

• How do we select SNPs to include in ˇ.Xj / and �.Xj /?
• Should we also consider epistasis: gene by gene interactions, Xlj � Xl 0j ; l ¤ l 0

or higher-order interaction?
• How can we fit a model when L, the number of SNPs, is much greater than n,

the number of individuals?
• How do the model choice criteria reflect the ultimate clinical goal of the model

(for example, prediction versus treatment selection)?

6.1 Regularization Methods

Tibshirani [16] introduced “lasso” for regression shrinkage and selection. He
discussed maximizing an objective function, such as a likelihood, subject to
constraints or a penalty. More generally, a set of parameters ` is estimated as

O� D argmax

�

0

@
X

j

ln Pr.Yj jXj ; Sj ; `/ � �
X

j

j�j jp
1

A

There are three special cases:

• p D 1: Lasso [16] with penalty �
P

j j�j j.
• p D 2: Ridge Regression [9] with penalty �

P
j j�j j2.

• p D 1; 2: Elastic Net [19] with penalty �1

P
j j�j j C �2

P
j j�j j2.

Some comments about regularization methods are:

• Lasso tends to “select” variables by keeping Ǒ
l D 0.

• Ridge regression tends to include all variables, but with small coefficients. This
is essentially no selection.

• Lasso will not estimate a model with more nonzero coefficients than there are
individuals.

• Fast algorithms exist for calculating regularization paths.
• Lasso tends to select only one variable from a set of highly correlated predictors.

6.2 Example

Wu et al. [18] presented an analysis of SNP data in a case–control setting, and
conducted simulations to demonstrate the feasibility of allowing for interactions
among SNPs. In their example they analyzed n D 2;200 subjects with 778 having
Coeliac Disease and 1,422 as controls. Using LASSO Wu et al. [18] constructed
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Table 7 Treatment selection
example

Genotype NYj .0/ NYj .1/ A0 A1 A�

0 (30 %) 10 20 0 1 1
1 (50 %) 10 10 0 1 0
2 (20 %) 15 5 0 1 0

Population mean 11 12 14

a multi-marker predictive model using L D 310; 637 SNPs. In order to explore
models of increasing dimension the authors chose the L1 penalty parameter � to
obtain a fixed number (e.g., 5, 10, 20, 50) of predictors with nonzero coefficients,
and used cross-validation to evaluate the accuracy of models with increasing
dimension. Using a sequence of models has the attractive property that subsets
of markers can be ordered in terms of their inclusion in the regression models.
Rather than focusing on a specific model selection criterion such as the area under
the ROC curve, or a statistical loss function, Wu et al. [18] evaluate a sequence
of models of a specified dimensionality (such as using 50 SNPs). These authors
clearly demonstrate the ability of modern penalized regression methods to consider
development and evaluation of multi-marker models, and provide guidance for
model development and the potential evaluation of interactions.

6.3 Treatment Selection

How can genetic marker analysis provide a scoring for treatment selection? To
answer this question it is necessary to state the goals in statistical terms. Gunter
et al. [6] formulated an action function and then defined the resulting population
mean outcome that would result when using the specified action function:

Action function: A.Xj / D a

Population result: EaEY ŒYj .a/jA.Xj / D a	 D �A

Here Yj .a/ is the potential outcome for subject j if treated with choice a. For
example, a D 1 may be “treat” and a D 0 may be “do not treat.” Alternatively,
a may be a dose level.

As a small example, consider the values shown in Table 7 for a single marker.
There are three genetic marker values (0,1,2) and two treatment values (0,1). The
function A0 always assigns A D 0, while A1 always assigns A D 1. However,
the action function A� is optimal in the sense it maximizes �A over all possible
functions A.

With a vector Xj of genetic values the optimal action rule is

A�.Xj / W argmaxA�A D argmaxAEaEY ŒYj .a/jA.Xj / D a	
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The goal is to determine which components of Xj are prescriptive markers, i.e. those
with qualitative interactions rather than simply having quantitative interactions with
treatment.

The space of functions fA.x/g has high dimension: with each genotype taking
three values, and with L total genotypes there are 3L possible genotypes that the
function A.x/ can evaluate. In addition, there are two possible outcomes for each
genotype evaluated (e.g., treat, or not treat) leading to .3L/2 binary actions a.
Therefore, computation methods are needed to define model search strategies that
can maximize the intended performance metric such as �A in order to identify an
optimal allocation rule, A�.

Gunter et al. [6] suggested that the following marginal characteristics of a marker
are important for that marker to have prescriptive potential:

• Fraction with benefit:

pl1 D E ˚1 	argmaxaE ŒYj .a/jXlj ; A.Xlj / D a	 D 1



• Interaction magnitude:

Dl D maxj

˚E ŒYj .a/jXlj ; a D 1	 � E ŒYj .a/jXlj ; a D 0	


� minj

˚E ŒYj .a/jXlj ; a D 1	 � E ŒYj .a/jXlj ; a D 0	


Since pl1 doesn’t capture the number of subjects who have their treatment
changed because of their genetic profile, Gunter et al. [6] suggest using Pl D
pl1.1�pl1/. The motivation for considering marginal measures for Xlj is to provide
an algorithm that can search among candidate functions A.Xj / using an attractive
subset of Xj .

Gunter et al. [6] then suggest two criteria for ranking markers:

Ul D Scale.Pl / � Scale.Dl/

Scale.xl / D .xl / � minkxk/=.maxkxk � minkxk/

The second criterion measures the impact on the mean outcome using Xlj optimally
to direct treatment:

Tl D EX

˚
maxaE ŒYj .a/jXlj ; A D a	

 � max.�A0 ; �A1/

D �A� � max.�A0; �A1 /
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With all these quantities defined, we can state the selection algorithm of Gunter
et al. [6]:

1. Use lasso with K-fold cross-validation to obtain an additive model estimate of
E ŒYj jXj ; Sl 	.

2. Estimate Ul and/or Tl , then rank Xl .
3. For h D 1; 2; : : : ; H :

• Use lasso with top h markers, main effects from step 1, and interactions
between top h markers and treatment.

• Estimate �1 based on CV with a focus on �h
A�

obtained from h markers:
A�.Xh

l /.

4. Choose h that maximizes �h
A�

. Done.

Step 1 of this algorithm is suggested in order to stabilize estimates of the mean
function E ŒYj jXj ; Sj 	 used to estimate Ul and Tl . It may not be needed for genotype
markers. This model selection targets out-of-sample estimation of the optimal
population outcome. The algorithm is limited to a small number of candidate
models. There may be other search procedures but Gunter et al. [6] used simulations
to compare their algorithm to standard lasso and found it performs slightly better.

The work of Gunter et al. [6] offers a focus on model development with the goal
of defining a treatment selection function. These authors target an optimal result at
the population level.

7 Resemblance Between Relatives

Some individuals in a clinical trial may be related to each other, whether or not this
is by design. Here “related” means members of the same family. There is also a low-
level evolutionary relatedness that results in a low level of inbreeding within a study
population. Because relatedness depends on previous generations it is necessary to
work with the coefficients F and � , and extensions of these, rather than the within-
population coefficient f .

To extend the earlier treatment, it may now be supposed there is an arbitrary
number of alleles at a trait/response locus, and the genetic value for genotype TrTs

is written as
Grs D �0 C ˛r C ˛s C ırs

where

�0 D
X

r

X

s

prpsGrs D G��

˛r D
X

s

psGrs � � D Gr � � G��

ırs D Grs � � � ˛r � ˛s D Grs � Gr � � Gs� C G��
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These imply that
P

r pr˛r D 0;
P

r ırs D 0. The variance components are

2
A D 2

X

r

pr˛
2
r

2
D D

X

r

X

s

prpsı
2
rs

If several loci contribute to a trait, the effects of all alleles can be summed,
and interactions (epistasis) introduced between loci. For an individual with alleles
Tlr ; r D 1; 2, at locus l :

Y D � C
X

l

"
X

r

˛lr C
X

r

X

r 0

ılrr 0

#

C
X

l¤l 0

"
X

r

X

r 0

.˛˛/lr;l 0r 0 C
X

r

X

s

X

s0

.˛ı/lr;l 0ss0 C
X

r

X

r 0

X

s

X

s0

.ıı/lrr 0;l 0ss0

#
C : : :

The total genetic variance becomes

Var.G/ D 2
A C 2

D C 2
AA C 2

AD C 2
DD C : : :

where the variance components are

2
A D 2

X

l

X

r

plr˛
2
lr

2
D D

X

l

X

r

X

r 0

plrplr 0ı2
lrr 0

2
AA D 2

X

l¤l 0

X

r

X

r 0

plrpl 0r 0.˛˛/2
lr;l 0r 0

: : :

7.1 Trait Mean in Inbred Populations

Inbreeding, whether due to individuals having related parents or simply a conse-
quence of populations being finite, affects the trait or response mean in a population.
If random members of a population are inbred to an extent F relative to a reference
or founder population, the genotype frequencies are

Prr D p2
r C Fpr .1 � pr/
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Prs D 2prps.1 � F /; r ¤ s

The expected trait value is, therefore,

�F D
X

r

X

s

Prs.�0 C ˛r C ˛s C ırs/

D
X

r

�
Fpr C .1 � F /p2

r

�
.�0 C 2˛r C ırr/

C
X

r¤s

Œprps.1 � F /	 .�0 C ˛r C ˛s C ırs/

D F
X

r

pr .�0 C 2˛r C ırr/ C .1 � F /
X

r

X

s

prps.�0 C ˛r C ˛s C ırs/

D F.�0 C
X

r

prırr / C .1 � F /.�0/

D �0 C FH

This result uses the notation H D P
r prırr where the ı’s terms are as defined in

the non-inbreeding case. The mean in an inbred population changes with the degree
of inbreeding and the degree of dominance.

For a trait affected by multiple loci, the mean is also affected by the two-locus
inbreeding coefficient and the degree of dominance by dominance epistasis.

7.2 Genetic Variance in Inbred Populations

For the trait variance, it is necessary to find the expected value of the square of the
linear model for trait values. Using a similar approach as that for the mean:

E.G2
rs/ D F

X

r

pr .�
2
0 C 4˛2

r C ı2
rr C 4�0˛i C 2�0ırr C 4˛rırr /

C .1 � F /
X

r;s

prps.�
2
0 C ˛2

r C ˛2
s C 2˛r˛s C 2�0˛r C 2�0˛s

C 2�0ırs C 2˛rırs C 2˛rırs C ı2
rs/

D F

"
�2

0 C 4
X

r

pr˛
2
r C

X

r

prı
2
rr C 2�0

X

r

prırr C 4
X

r

pr˛rırr

#

C .1 � F /

 
�2

0 C 2
X

r

pr˛
2
r C

X

r;s

prpsı
2
rs

!
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The genetic variance becomes

2
G D 2.1 C F /

X

r

pr˛
2
r C .1 � F /

X

r;s

prpsı
2
rs C F

X

r

prı
2
rr

C 4F
X

r

pr˛r ırr � F 2

 
X

r

prırr

!2

D .1 C F /2
A C .1 � F /2

D C 4FD1 C FD2 C F.1 � F /H 2

to introduce D1 D P
r pr˛rırr and D2 D P

r prı
2
rr . This expression for variance

allows for inbreeding but not for linkage disequilibrium among the trait loci. For two
equally frequent alleles, D1 D 0; D2 D 0. For additive traits, H D D1 D D2 D 0.

For a trait affected by multiple loci, the variance in an inbred population involves
the two-locus inbreeding coefficient F11 as well as the usual one locus coefficient:

2
G D .1 C F /2

A C .1 � F /2
D C .1 C 2F C F11/2

AA

C .1 � F11/
2
AD C .1 � 2F C F11/2

DD C : : :

It is not always the case that F11 D F 2. This expression for variance allows for
inbreeding but not for linkage disequilibrium among the trait loci.

7.3 Genetic Covariance for Two Individuals

If J; J 0, with genotypes TrTs and Tr 0Ts0 , are two members of a population, the
covariance of trait values for the two individuals rests on the covariance of their
genetic values which, in turn, rests on their joint genotypic frequencies:

Cov.GJ ; GJ 0/ D E.GJ GJ 0/ � E.GJ /E.GJ 0/

E.GJ GJ 0/ D
X

r;s;r 0;s0

Prs;r 0s0GrsGr 0s0

For one individual Prs can be written in terms of allele frequencies and the
inbreeding coefficient F . For two individuals Prs;r 0s0 needs an expanded set of
probabilities that alleles are identical by descent (ibd).

A complete description of the ibd status among four alleles a; b; c; d carried
by two individuals J; J 0 with alleles ab and cd requires 15 measures, as opposed
to the two, F and 1 � F , for one individual. If there is no need to distinguish
between the identity status for maternal and paternal alleles, the 15 ibd states can
be collapsed into the nine states shown in Fig. 4. Solid lines in that figure join
alleles that are identical by descent. State S3, shown as identity among alleles a; b; c

also represents identity among alleles a; b; d . Note here that a; b; c; d are labels to
distinguish one allele from another: they do not indicate allelic type.
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Fig. 4 Reduced identity states S for two individuals J.a; b/ and J 0.c; d/

I I’

��

�������������������������

�������������������������

a d

b c

J(a,b) J’(c,d)

Fig. 5 IBD coefficients for Sibs J; J 0 from unrelated parents I; I 0

The coancestry coefficient �JJ 0 referred to earlier is the probability that a random
allele from J.ab/ is ibd (	) to a random allele from J 0.cd/:

�JJ 0 D 1

4
ŒPr.a 	 c/ C Pr.a 	 d/ C Pr.b 	 c/ C Pr.b 	 d/	

D �1 C 1

2
.�3 C �5 C �7/ C 1

4
�8

For non-inbred relatives

� D 1

2
�7 C 1

4
�8

As an example, the pedigree for two non-inbred sibs J; J 0 with parents I; I 0 is
shown in Fig. 5.

Non-inbred Relatives When neither individual is inbred, neither a; b nor c; d are
ibd. There are only three states and the three probabilities are often written as k2 D
�7; k1 D �8 or k0 D �9 to indicate the number of pairs of ibs alleles carried by the
two individuals. Values of these three probabilities for some common relationships
are shown in Table 8.
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Table 8 Identity coefficients
for common non-inbred
relatives

Relationship k2 k1 k0 � D 1
2
k2 C 1

4
k1

Identical twins 1 0 0 1
2

Full sibs 1
4

1
2

1
4

1
4

Parent child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibsa 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
aAlso grandparent grandchild and avuncular (e.g., uncle
niece)

Table 9 SNP genotype probabilities for pairs of relatives

Genotypes General Non-inbred

AA; AA �1pA C .�2 C �3 C �5 C �7/p2
A k0p

4
A C k1p

3
A C k2p2

A

C.�4 C �6 C �8/p
3
A C �9p

4
A

aa; aa �1pa C .�2 C �3 C �5 C �7/p
2
a k0p

4
a C k1p3

a C k2p
2
a

C.�4 C �6 C �8/p
3
a C �9p

4
a

Aa; Aa 2�7pApa C �8pApa C 4�9p2
Ap2

a 4k0p
2
Ap2

a C k1pApa C 2k2pApa

AA; Aa �3pApa C .2�4 C �8/p
2
Apa C 2�9p3

Apa 2k0p
3
Apa C k1p

2
Apa

Aa; AA �5pApa C .2�6 C �8/p
2
Apa C 2�9p3

Apa 2k0p
3
Apa C k1p

2
Apa

aa; Aa �3pApa C .2�4 C �8/pAp2
a C 2�9pAp3

a 2k0pAp3
a C k1pAp2

a

Aa; aa �5pApa C .2�6 C �8/pAp2
a C 2�9pAp3

a 2k0pAp3
a C k1pAp2

a

AA; aa �2pApa C �4pAp2
a C �6p2

Apa C �9p
2
Ap2

a k0p
2
Ap2

a

aa; AA �2pApa C �6pAp2
a C �4p2

Apa C �9p
2
Ap2

a k0p
2
Ap2

a

7.4 Joint Genotypic Probabilities for Relatives

The set of identity measures �i D Pr.Si / for identity states Si allow the joint
genotypic probabilities to be written as in Table 9 for SNPs. These in turn allow for
the covariance in trait values to be found for any pair of relatives.

7.5 Genetic Covariance for Non-inbred Relatives

The general expression for covariance can be shown to be

CJJ 0 D 2�JJ 02
A C �7

2
D C .4�1 C �3 C �5/D1

C �1D2 C .�1 C �2 � FJ FJ 0/H 2
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Table 10 Genetic
covariances of common
non-inbred relatives

Relationship Genetic covariance

Identical twins 2
A C 2

D

Full sibs 1
2
2

A C 1
4
2

D

Parent-child 1
2
2

A

Double first cousins 1
4
2

A C 1
16

2
D

Half sibsa 1
4
2

A

First cousins 1
8
2

A

Unrelated 0

aAlso grandparent–grandchild and avuncu-
lar (e.g., uncle–niece)

When J and J 0 are the same individual, �JJ 0 D .1 C F /=2, �1 D F and �7 D
.1 � F /. The other seven �’s are zero, so

CJJ D VI D .1 C F /2
A C .1 � F /2

D C 4FD1 C FD2 C F.1 � F /H 2

as expected.
For non-inbred relatives

CJJ 0 D
�

k2 C 1

2
k1

�
2

A C k2
2
D

and values for common relationships are shown in Table 10.

7.6 Heritability

Trait and response values have both genetic and environmental components. The
simplest model of Y D GCE leads to the variance of trait values among individuals
J in a non-inbred population of unrelated individuals:

VarJ D 2
A C 2

D C 2
E

This is also referred to as the phenotypic variance 2
P .

For an additive trait and for individuals that have no shared environment, the
variance–covariance matrix for a sample of related pairs I; I 0 and inbred individuals
I has elements

VarJ D .1 C FI /2
A C 2

E

CovJJ 0 D 2�JJ 02
A

The narrow-sense heritability h2 is defined as h2 D 2
A=2

P . The correlation of
additive trait values for pairs of non-inbred individuals related to an extent �JJ 0 is,
therefore,

�JJ 0 D 2�JJ 0h2
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Traditional methods for estimating heritability have used trait values measured
for sets of individuals whose relationship is known from their family membership. It
is common, for example, to take measurements on monozygotic (MZ) and dizygotic
(DZ) twins and make use of the relationships

VarJ D 2
A C 2

D C 2
E

CovMZ D 2
A C 2

D

CovDZ D 1

2
2

A C 1

4
2

D

where any environmental correlations have been ignored. It is a simple matter to
estimate the three variance components, and hence heritability, by the method of
moments from these three equations although maximum likelihood methods are
used in practice.

The SNP profiles of individuals in a study can be used to estimate the actual
inbreeding and coancestry coefficients. These, in turn, lead to estimates of the
additive genetic variance and hence the heritability of a complex trait. Although
heritability is a statistical construct, depending on allele frequencies in the study
population, rather than a biological quantity, it is of interest. The heritability
explained by markers found to be associated with a trait or response variable
can be compared to prior values based on family pedigrees in order to check
on the completeness of the genetic study. There has been discussion of “missing
heritability” when the genetic estimates are less than prior values ( [20] and
references therein). This chapter will conclude with a discussion of estimating
inbreeding and relatedness.

7.7 Estimation of Actual Inbreeding

Individual-specific inbreeding coefficients F can be estimated under the assumption
that all loci have the same coefficient, interpreted as the probability of identity by
descent (ibd). Many loci are needed. At locus l , write pl for the frequency of Al and
code the genotypes Al Al ; Al al ; al al as Xl D 2; 1; 0. These coding variables have
the properties E.Xl/ D 2pl ; Var.Xl/ D 2pl.1 � pl/.1 C F /.

Then one moment estimator is formed by summing over loci l; l D 1; 2; : : : L:

OF1 D 1

L

LX

lD1

.Xl � 2pl/
2

2pl.1 � pl/
� 1

Another one is

OF2 D 1

L

LX

lD1

X2
l � .1 C 2pl/Xl C 2p2

l

2pl.1 � pl/

If the pl are known, both these are unbiased. The second one has a smaller variance.
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The variances can be reduced by an alternative weighting over loci:

OF a
1 D

PL
lD1.Xl � 2pl/

2

PL
lD1 2pl.1 � pl /

� 1

OF a
2 D

PL
lD1ŒX

2
l � .1 C 2pl/Xl C 2p2

l 	
PL

lD1 2pl.1 � pl/

To avoid having to choose among different moment estimates, and to reduce
variance, it may be preferable to use maximum likelihood estimation. An iterative
method makes use of Bayes’ theorem. If F represents the probability the individual
in question has two ibd alleles at a locus, i.e. is inbred at that locus,

Pr.AlAl jinbred/ D pl ; Pr.AlAl jNot inbred/ D p2
l

Pr.Al al jinbred/ D 0; Pr.Alal jNot inbred/ D 2pl.1 � pl/

Pr.al al jinbred/ D 1 � pl ; Pr.al al jNot inbred/ D .1 � pl/
2

From Bayes’ theorem then

Pr.inbredjAlAl/ D Pr.Al Al jinbred/ Pr.inbred/

Pr.AlAl /
D F

F C pl.1 � F /

Pr.inbredjAlal / D 0

Pr.inbredjalal / D F

F C .1 � pl/.1 � F /

This suggests an iterative scheme: assign an initial value to F , and then average
the updated values over loci. If Gl is the genotype at locus l , the updated value F 0 is

F 0 D 1

L

LX

lD1

Pr.inbredjGl/

This value is then substituted into the right-hand side and the process continues until
convergence.

7.8 Estimation of Actual Relatedness

A moment estimate makes use of observed identity in state (ibs), as shown in
Table 11. If N0; N1; N2 are the number of loci in ibs state i I i D 0; 1; 2 then

Pr.ibs D 0/ D Pr.ibs D 0jibd D 0/ Pr.ibd D 0/
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Table 11 Identity in state categories for two individuals

ibs state Genotypes Probabilitya

2 .AA; AA/, .aa; aa/, .Aa; Aa/ .p2 C q2/2k0 C k1.p3 C pq C q3/ C k2

1 .AA; Aa/, .Aa; AA/, .aa; Aa/, .Aa; aa/ 4pq.p2 C q2/k0 C 2pqk1

0 .AA; aa/, .aa; AA/ 2p2q2k0

a q D 1 � p

summed over loci to provide

N0 D Pr.ibd D 0/
X

l

2p2
l .1 � pl/

2

leads to a moment estimate

Pr.ibd D 0/ D N0P
l 2p2

l .1 � pl/2

From

Pr.ibd D 1/ D Pr.ibs=1jibd D 0/ Pr.ibd D 0/

C Pr.ibs=1jibd D 1/ Pr.ibd D 1/

summed over loci to provide

N1 D Pr.ibd D 0/
X

l

4pl.1 � pl /Œp
2
l C .1 � pl/

2	 C Pr.ibd D 1/
X

l

2pl.1 � pl/

a moment estimate of k1 is obtained. Use is made of the previously estimated k0:

Pr.ibd D 1/ D N1 �P
l 4pl.1 � pl/Œp

2
l C .1 � pl/

2	 Pr.ibd D 0/P
l 2pl.1 � pl/

The remaining coefficient k2 is found from the result k0 C k1 C k2 D 1. In
practice, this method is not robust to small allele frequencies and it can return invalid
estimates.

A moment estimator for the coancestry �jj 0 between individuals j and j 0, rather
than the three k’s is:

O�jj 0 D 1

L

LX

lD1

.Xlj � 2pl/.Xlk � 2pl/

2pl.1 � pl/

where Xlj ; Xlj 0 are 2; 1; 0 if j; j 0 are .AA; Aa; aa/, respectively, at locus l . An
alternative way of combining over loci is

O�jj 0a D
PL

lD1Œ.Xlj � 2pl/.Xlj 0 � 2pl/	PL
lD1Œ2pl.1 � pl/	

These are both unbiased but they have different variances.
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An iterative procedure for maximum likelihood estimation of relatedness is
analogous to that for the inbreeding coefficient, and it uses all six distinct pairs of
genotypes shown in Table 9 (combining pairs of rows with the same probabilities)
with probabilities depending on allele frequencies for that SNP and on a set of three
k parameters that are assumed to be the same for all SNPs.

If S is the observed pair of genotypes, Table 9 provides the conditional
probabilities Pr.S jDi / where the Di represent the identity states (the relationship).
The probability of ibd state Di is ki . An iterative algorithm for estimating the k’s
from observed genotypes Sl at SNP l is based on Bayes’ theorem for the probability
of descent state Di ; i D 0; 1; 2:

Pr.Di jSl/ D Pr.Sl jDi / Pr .Di /

Pr.Sl /

The procedure begins with initial estimates of the ki D Pr.Di /. The denominator is
calculated from the law of total probability by adding over the three descent states:

Pr.Sl / D
X

i

Pr.Sl jDi / Pr.Di / D
X

i

Pr.Sl jDi /ki

The updated estimates are obtained by averaging over L loci:

k0
i D 1

L

LX

lD1

 
Pr.Sl jDi /kiP
j Pr.Sl jDj /kj

!
; i D 0; 1; 2

These updated values are then substituted into the right-hand side and the process
continued until the likelihood no longer changes (or changes by less than some
specified small amount) where

Likelihood D
LY

lD1

"
X

i

Pr.Sl jDi /ki

#

It will be better to monitor changes in the log-likelihood.

8 Discussion

The current availability of dense sets of marker SNPs for the human genome is
having a large impact on genetic studies and offers new possibilities for clinical
trials. This chapter offers a unified basis for the analysis of marker and response
data, emphasizing the central importance of linkage disequilibrium between marker
locus and the genes that affect response. It is convenient to phrase the development
of association mapping in the language of quantitative genetics, using additive and
nonadditive components of variance.
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A novel feature of dense SNP data is that good estimates can be made of actual
inbreeding and relatedness. These estimates are more relevant than values predicted
from family pedigree, and all that are available in the absence of family data.

In biomedical research genetic markers can be used both to infer causes of
disease and to identify treatments that are tailored to the individual. However, the
dimensionality of genomic markers has challenged us to develop new methods that
are appropriate for a large number of statistical comparisons and to develop com-
putational methods that allow high-dimensional regression. In the broader context,
the use of biological annotation is also essential for both viewing the relevance of
empirical associations and to structure analysis in order to focus on those markers
with the highest expectation for association with the outcomes under study.

The continued expansion of molecular technologies will challenge the biostatisti-
cal community to develop appropriate methodology so that reliable conclusions can
be obtained from new measurements. Ultimately, meaningful collaboration between
quantitative scientists and biomedical investigators will lead to the understanding of
the mechanisms leading to disease onset, progression, and response to treatment.
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