Chapter 9 CDS in Disk-Intersection Graphs

I don't like to hurt people, I really don't like it at all. But in order to get a red light at the intersection, you sometimes have to have an accident. JACK ANDERSON

9.1 Motivation and Overview

Consider a finite set *V* of nodes in the plane and a radius function $r: V \to \mathbb{R}^+$. The *disk-intersection graph* (DIG) of *V* with the radius function *r*, denoted by $G_r(V)$, is the undirected graph on V in which u and v are adjacent if and only if the disk centered at *u* of radius $r(u)$ and the disk centered at *v* of radius $r(v)$ intersect, or equivalently,

$$
||uv|| \leq r(u) + r(v).
$$

If $r(v) = 1/2$ for all $v \in V$, then $G_r(V)$ is exactly the unit disk graph (UDG) of *V*. Thus, the class of UDGs is a subclass of the class of DIGs. Hence, MIN-DS and MIN-CDS restricted to DIGs are also NP-hard. However, the approximation algorithms for MIN-DS and MIN-CDS restricted to UDGs cannot be directly extended to those for MIN-DS and MIN-CDS restricted to DIGs.

In this chapter, we present a simple local-search approximation algorithm for MIN-DS of DIGs, which yields a polynomial time approximation scheme (PTAS) for MIN-DS of DIGs [59]. In addition, we show that for any fixed $\varepsilon > 0$, there is a polynomial $(3 + \varepsilon)$ -approximation algorithm for MIN-CDS of DIGs. The rest of this chapter is organized as follows. In Sect. [9.2,](#page-1-0) we introduce the Voronoi diagram and Voronoi dual of a set of disks and their geometric properties. In Sect. [9.3,](#page-4-0) we describe a local-search approximation algorithm for MIN-DS of DIGs and show that it yields a PTAS. In Sect. [9.4,](#page-8-0) we present a two-stage approximation algorithm for MIN-CDS of DIGs.

9.2 Voronoi Diagram and Dual of Disks

A pair of disk disks are said to be *geometrically redundant* if one is contained in the other. A set of four disks form a *degenerate quadruple* if there is a circle which is either externally tangent to all of them (see Fig. [9.1a](#page-1-1)) or internally tangent to all of them (see Fig. [9.1b](#page-1-1)).

Let D be a finite set of disks in which no pair of disk are geometrically redundant and no quadruple of disk are degenerate. Then the centers of the disk in D are all distinct. Let *V* be the set of centers of the disk in D. For $v \in V$, we use $D(v)$ to denote the disk in D centered at *v* and ρ (*v*) to denote the radius of the disk $D(v)$. The *shifted distance* from a point *p* and a node $v \in V$ is defined to be

$$
\ell(p, v) = ||pv|| - \rho(v)
$$

For a point *p* and a node $v \in V$, denote

$$
\ell(p, v) = ||pv|| - \rho(v)
$$

In other words, $|\ell(p,v)|$ is the Euclidean distance from p to the boundary of the disk $D(v)$, and $\ell(p, v)$ is positive (respectively, negative) if *p* is outside (respectively, inside) $D(v)$. Figure [9.2](#page-2-0) illustrates the shifted distances. Clearly, for each point *p* and any two nodes *u* and *v* in *V*, if $\ell(p, u) \leq \ell(p, v)$ and $p \in D(v)$, then $p \in D(u)$ as well. For each $v \in V$, the set of points p in the plane satisfying that

$$
\ell(p, v) = \min_{u \in V} \ell(p, u)
$$

is referred to the *Voronoi cell* of $D(v)$. The lemma below shows that the Voronoi cell of $D(v)$ is nonempty and is star-shaped with respect to *v*.

Fig. 9.1 Degenerate quadruples

Fig. 9.2 The shifted distance

Lemma 9.2.1. *Consider any* $v \in V$.

- *1. v lies in only the Voronoi cell of D*(*v*)*.*
- *2. For any point p in the cell of v, each point in the interior of the line segment vp lies in only the Voronoi cell of D*(*v*)*.*

Proof. (1) For any $u \in V \setminus \{v\}$,

$$
\ell(v, u) - \ell(v, v) = ||vu|| - (\rho(u) - \rho(v)) > 0,
$$

where the last inequality follows from the fact that $D(u)$ and $D(v)$ are not geometrically redundant. Thus, the first part of the lemma holds.

(2) Consider any point *q* in the interior of the line segment *vp* and any $u \in V \setminus \{v\}$. We have

$$
\ell(q, v) = ||qv|| - \rho(v) \n= ||pv|| - ||pq|| - \rho(v) \n= \ell(p, v) - ||pq|| \n\leq \ell(p, u) - ||pq|| \n= ||pu|| - ||pq|| - \rho(u) \n\leq ||qu|| - \rho(u) \n= \ell(q, u).
$$

We further claim that $\ell(q, v) \neq \ell(q, u)$. Assume to the contrary that the claim does not hold. Then,

$$
||pu|| - ||pq|| = ||qu||
$$

and

$$
\ell(p,v) = \ell(p,u).
$$

So, *q* lies in the line segment *pu*. By symmetry, we assume that *v* also lies in the segment *pu*. Then,

$$
||uv|| = ||pu|| - ||pv||
$$

= $(\ell(p, u) + \rho(u)) - (\ell(p, v) + \rho(v))$
= $\rho(u) - \rho(v)$.

This means that $D(v)$ is internally tangent to $D(u)$, which is a contradiction. Thus, our claim holds. Therefore,

$$
\ell(q,\nu) < \ell(q,u).
$$

So, the second part of the lemma holds.

Clearly, the boundary of the Voronoi cell of each disk in D is a concatenation of parts of hyperbolic curves and/or lines. The Voronoi cells of all disks in D induce a decomposition of the plane, which is known as the *Voronoi diagram* of D. Since D contains no degenerate quadruple, no point belongs to Voronoi cells of more than three disks in D . A vertex of the Voronoi diagram of D is an point which belongs to the Voronoi cells of three disks in *V*. The *Voronoi dual* of D is a graph on *V* in which two nodes *u* and *v* are adjacent if and only if the Voronoi cells of $D(u)$ and $D(v)$ share a common point. It is a planar graph as shown in the lemma below.

Lemma 9.2.2. *The Voronoi dual of* D *is a planar graph.*

Proof. Consider any edge $e = uv$ of the Voronoi dual of D. Let p_e be an arbitrary common point shared by the Voronoi cells of $D(u)$ and $D(v)$ which is not a vertex of the Voronoi diagram of D . The poly-segment $u p_e v$, which is the concatenation of the two line segments up_e and vp_e , is referred to as the geometric embedding of e in the plane. We show that the geometric embeddings of any two edges e and e' do not cross each other (i.e., have no common interior point). Assume to the contrary that they have a common interior point *q*. We consider in two cases.

Case 1: e and *e*['] have no common endpoint. Let $e = uv$ and $e' = u'v'$. By Lemma [9.2.1,](#page-2-1) any interior point of the poly-segment $u p_e v$ other than p_e either lies only in the Voronoi cell of $D(u)$ or only in the Voronoi cell of $D(v)$, and hence cannot lie in poly-segment $u'p_{e'}v'$. Thus, *q* must be the point p_e . Similarly, *q* must be the point $p_{e'}$. However, $q = p_e = p_{e'}$ would imply that $\{u, v, u', v'\}$ is a degenerate quadruple, which is a contradiction.

Case 2: e and *e*^{\prime} have one common endpoint. Let $e = uv$ and $e' = u'v$. By Lemma [9.2.1,](#page-2-1) any interior point of the line segment *upe* lies only in the Voronoi cell of $D(u)$, and hence cannot lie in poly-segment $u'p_{e'}v$. Thus, q must lie in the line segment *vp_e*. Similarly, *q* must lie in the line segment *vp_e*. However, $p_e \neq p_{e'}$ for otherwise, p_e would be a vertex of the Voronoi diagram of D , which contradicts

to the selection of p_e . Thus, the two line segments vp_e and $vp_{e'}$ only meet at *v*. So, $q = v$, which is a contradiction.

In either case, we have reached a contradiction. So, the geometric embeddings of any two edges e and e' do not have a cross each other. Therefore, the lemma holds.

9.3 Local Search for MIN-DS

In this section, we present a local-search algorithm for MIN-DS. Suppose that each node in *V* has a unique ID for tie-breaking. A node $v \in V$ is said to be *redundant* if there exists a node $u \in V$ satisfying that either *v* only dominates a proper subset of nodes dominated by *u*, or *v* dominates exactly the same set of nodes but has a larger ID than *u*. Let *V*[∗] denote the set of nonredundant nodes in *V*. Clearly, *V*[∗] still contains a minimum DS. Let *B* be a DS contained in V^* . A set $U \subseteq B$ is said to be a *loose* subset of *B* if there is a subset *U*' of V^* such that $|U'| < |U|$ and $(B \setminus U) \cup U'$ is still a DS, and to be a *tight* subset of *B* otherwise. *B* is said to be *k-tight* if every subset $U \subseteq B$ with $|U| \leq k$ is tight. Intuitively, for sufficiently large k the size of a *k*-tight DS is close to the domination number γ , which is the size of a minimum DS. Technically, we relate a *k*-tight DS with a minimum DS using the following planar expansion theorem established in [83].

Theorem 9.3.1. *There are two fixed positive constants c and K such that for any planar bipartite graph* $H = (X, Y; E)$ *satisfying that* $|X| \ge 2$ *and for every subset* $Y' \subseteq Y$ *of size at most* $k \geq K$, $|N_H(Y')| \geq |Y'|$, we have

$$
|Y| \le (1 + c/\sqrt{k}) |X|.
$$

With the help of the above theorem, we shall prove the following relation between the size of k -tight DS and the domination number γ.

Theorem 9.3.2. *Let c and K be the two fixed constants in Theorem [9.3.1.](#page-4-1) Then, for any k-tight DS B* ⊆ *V*[∗] *with k* ≥ max {*K*, 2}*,*

$$
|B| \le \left(1 + c/\sqrt{k}\right)\gamma.
$$

Theorem [9.3.2](#page-4-2) suggests a local-search algorithm for MIN-DS, referred to as *k-Local Search* (*k***-LS**), where *k* is a positive integer parameter at least two. It computes a *k*-tight cover $B \subseteq V'$ in two phases:

• *Preprocessing Phase*: Compute the set *V*[∗] of nonredundant nodes in *V*, and then compute a cover $B \subseteq V^*$ by the well-known greedy algorithm for Minimum Set Cover.

 \Box

• *Replacement Phase*: While *B* is not *k*-tight, find a subset *U* of *B* with size at most *k* and a subset *U'* of *V*^{*} with size at most $|U| - 1$ satisfying that $(B \setminus U) \cup U'$ is still a DS; replace *B* by $(B \setminus U) \cup U'$. Finally, we output *B*.

By Theorem [9.3.2,](#page-4-2) the algorithm k **-LS** has an approximation ratio at most $1 +$ $O(1/$ √ \overline{k}) when $k \geq K$. Its running time is dominated by the second phase. Let $m = |V^*|$. Then, the second phase consists of $O(m)$ iterations. In each iteration, the search for the subset U and its replacement U' takes at most

$$
O\left(m^k\right) \cdot O\left(m^{k-1}\right) = O\left(m^{2k-1}\right)
$$

time. So, the total running time is

$$
O(m) \cdot O\left(m^{2k-1}\right) = O\left(m^{2k}\right).
$$

This means that the algorithm *k***-LS** is a PTAS.

We move on to the proof of [9.3.2.](#page-4-2) Consider a minimum DS *O* contained in *V*∗. Theorem [9.3.2](#page-4-2) holds trivially if $|B| = |O|$. So, we assume that $|B| > |O|$. Then,

$$
|B\setminus O|>|O\setminus B|.
$$

In addition, $|O \setminus B| > k$ for otherwise, we can choose a subset of $|O \setminus B|+1$ nodes from $B \setminus O$ and replace them by $O \setminus B$ to get a smaller DS, which contradicts to the fact that *B* is *k*-tight. Let *T* be the set of nodes in *V* not dominated by $O \cap B$. Then, each node in *T* is dominated by some node in $B \setminus O$ and by some node in $O \setminus B$. In addition, we have the following stronger property.

Lemma 9.3.3. *There is a planar bipartite graph H on* $O \setminus B$ *and B* $\setminus O$ *satisfying the following* "locality condition": For each $t \in T$, there are two adjacent nodes in *H both of which dominate t.*

Let *H* be the planar bipartite graph satisfying the property in the above lemma. We claim that for any $U \subseteq B \setminus O$, $(B \setminus U) \cup N_H(U)$ is still a DS. Indeed, consider any *t* ∈ *V*. If *t* is dominated by *B* \ *U*, then it is also dominated by $(B \setminus U) \cup N_H(U)$. If *t* is not dominated by $B \setminus U$, then *t* is only dominated by nodes in *U* and hence $t \in T$. By Lemma [9.3.3,](#page-5-0) there exist two adjacent nodes $u \in B \setminus O$ and $v \in O \setminus B$ both of which dominate *t*. Then, we must have $u \in U$ and hence $v \in N_H(U)$. Thus, *t* is still dominated by $(B \setminus U) \cup N_H(U)$. So, the claim holds.

Now, consider any $U \subseteq B \setminus O$ with $|U| \leq k$. Then $|N_H(U)| \geq |U|$, for otherwise $(B\setminus U) \cup N_H(U)$ is a DS smaller than *B*, which contradicts to the fact that *B* is *k*-tight. By Theorem [9.3.1,](#page-4-1) we have

$$
|B \setminus O| \leq (1 + c/\sqrt{k}) |O \setminus B|
$$

and hence

$$
|B| \le (1 + c/\sqrt{k}) |O|.
$$

So, Theorem [9.3.2](#page-4-2) holds.

In the remaining of this section, we prove Lemma $9.3.3$. Let *B*^{\prime} (respectively, O') be a replication of *B* \ *O* (respectively, $O \setminus B$), and let $V' = O' \cup B'$. Each replication $v \in V'$ also has a radius $r(v)$ equal to the radius of the original node in *V* it is replicated from. For each $v \in V'$, define

$$
\bar{r}(v) = \min\{\|uv\| - r(u) : \|uv\| > r(u) + r(v), u \in V\}.
$$

Clearly, $\bar{r}(v) > r(v)$, and if we increase the radius of *v* to any value below $\bar{r}(v)$, the set of nodes in *V* dominated by *v* remains the same. A function ρ on *V'* is said to be *domination-preserving* if $r(v) \le \rho(v) < \bar{r}(v)$ for each $v \in V'$. For each dominationpreserving function ρ , we use \mathcal{D}_{ρ} to denote the collection of disks centered at *v* of radius $\rho(v)$ for all $v \in V'$.

Lemma 9.3.4. *There exists a domination-preserving function* ρ *on* V' *such that* \mathcal{D}_0 *contains no degenerate quadruple.*

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let ρ be the "fewest counterexample", in other words, \mathcal{D}_{ρ} contains the least number of degenerate quadruples. Suppose that the disk centered at $u \in V'$ is contained in at least one quadruple in \mathcal{D}_0 . We show that we can change the radius of *u* to some value in $[r(u), \bar{r}(u)]$ such that the disk of *u* is not involved in any degenerate quadruple. Consider any triple disks D_1 , D_2 , D_3 in \mathcal{D}_{ρ} which can potentially form a degenerate quadruple with some disk centered at *u*. Let v_i be the center of D_i for $1 \le i \le 3$. For each circle which is either externally tangent to the triple or internally tangent to the triple, its center q must satisfy the equalities

$$
||qv_1|| - \rho (v_1) = ||qv_2|| - \rho (v_2) = ||qv_3|| - \rho (v_3).
$$

So, *q* lies in a branch of a hyperbola with two foci v_1 and v_2 (which can be degenerated to the perpendicular bisector of v_1v_2), and similarly, *q* also lies in a branch of a hyperbola with two foci v_1 and v_3 (which can be degenerated to the perpendicular bisector of v_1v_3). Since these two branches may have at most 4 intersection points, *q* can take at most 4 positions. Thus, for a disk centered at *u* to form a degenerate quadruple with D_1, D_2 , and D_3 , its radius can be of at most 4 values, each of which is referred to as a *forbidden* radius of *u*. As the number of triples of disks in \mathcal{D}_{ρ} which can potentially form a degenerate quadruple with some disk centered at *u* is at most $\binom{|V'|-1}{3}$, the total number of forbidden radii of *u* is at most 4($\binom{|V'|-1}{3}$. Now consider the radius function ρ' on *V'* satisfying that $\rho'(u)$ takes some value in $[r(u), \bar{r}(u)]$ other than the forbidden radii of *u*, and $\rho'(v) = \rho(v)$ for each $v \neq u$. Then, ρ' is still domination-preserving but $\mathcal{D}_{\rho'}$ contains strictly fewer degenerate quadruples. This contradicts to the choice of ρ . Therefore, the lemma holds.

Now, we fix a domination-preserving function ρ on V' such that \mathcal{D}_{ρ} contains no degenerate quadruple. For each node $v \in V'$, let $D(v)$ denote the disk centered at *v* of radius $\rho(v)$. We claim that any pair of disks in \mathcal{D}_{ρ} are geometrically nonredundant. Indeed, assume to the contrary that there exist two nodes in *u* and *v* such that $D(u) \subseteq$ $D(v)$. Since ρ is domination-preserving, all nodes in *V* dominated by *u* are also dominated by *v*, which is a contradiction. Thus, our claim holds. Let *H* be the graph obtained from the Voronoi dual of \mathcal{D}_{o} by removing all edges between two nodes in O' and all edges between two nodes in B' . By Lemma [9.2.2,](#page-3-0) *H* is a planar bipartite graph on O' and B' .

Next, we show that *H* satisfies the locality condition: For each $t \in T$, there are two adjacent nodes in *H* both of which dominate *t*. Clearly, *t* is dominated by a node $v \in V'$ if and only if $\ell(t, v) \le \rho(t)$ where $\ell(t, v) = ||tv|| - \rho(v)$ is the shifted distance from *t* to *v*. Thus, if $\ell(t, u) \leq \ell(t, v)$ for some two nodes *u* and *v* in *V*['] and *t* is dominated by *v*, then *t* is also dominated by *u* as well. We consider two cases:

Case 1: *t* lies in the Voronoi cell of $D(u)$ for some $u \in O'$. Then, *u* must dominate *t* as *t* is dominated by O' . Let *v* be a node in B' to which *t* has the smallest shifted distance. Then, v must also dominate t , as t is dominated by B' . If u and v are adjacent, then the locality condition holds trivially. So, we assume that u and v are nonadjacent. Then, *t* lies outside the Voronoi cell of $D(v)$. We walk from *t* to *v* along the straight line segment *tv*. During this walk, we may cross some Voronoi cells of the disks in \mathcal{D}_0 , and at some point before reaching *v* we will enter the Voronoi cell of $D(v)$ the first time. Let *x* be the point at which we first enter the Voronoi cell of $D(v)$. We must enter this cell from another cell, and we assume this cell the Voronoi cell of $D(w)$. Then, $\ell(t, w) \leq \ell(t, v)$ as

$$
\ell(t, w) = ||tw|| - \rho(w) \n\le ||tx|| + ||xw|| - \rho(w) \n= ||tx|| + \ell(x, w) \n= ||tx|| + \ell(x, v) \n= ||tx|| + ||xv|| - \rho(v) \n= ||tv|| - \rho(v) \n= \ell(t, v).
$$

We further claim that $\ell(t, w) < \ell(t, v)$. Indeed, assume to the contrary that $\ell(t, w)$ = $\ell(t, v)$. Then, we must have $||tw|| = ||tx|| + ||xw||$, in other words, *w* lies in the ray *tv*. As $\ell(t, w) = \ell(t, v)$, either $D(v) \subseteq D(w)$ or $D(w) \subseteq D(v)$, which is a contradiction. Therefore, our claim is true. By the choice of $v, w \in O'$ and w is adjacent to v. In addition, w dominates *t* since $\ell(t, w) < \ell(t, v)$ and v dominates *t*. Thus, the locality condition is satisfied.

Case 2: *t* lies in the Voronoi cell of $D(u)$ for some $u \in B'$. The proof is the same as in Case 1 is thus omitted.

Since ρ is domination-preserving and *B*^{\prime} (respectively, *O*^{\prime}) be a replication of $B \setminus O$ (respectively, $O \setminus B$), Lemma [9.3.3](#page-5-0) holds.

9.4 A Two-Staged Algorithm for MIN-CDS

In this section, we present a two-staged approximation algorithm for MIN-CDS of DIGs. The first stage applies the local-search algorithm *k***-LS** presented in the previous section to compute a DS *B*. The second stage compute a set *C* of connectors such that $B \cup C$ is a CDS as follows. Initially *C* is empty. Repeat the following iteration until $B \cup C$ is connected. First we find a pair of closest connected components of $G_r(B\cup C)$ and compute a shortest (in terms the number of hops) path *P* between them. Then, we all internal nodes in *P* to *C*.

Clearly, the number of iterations executed in the second stage is at most $|B| - 1$. In addition, it is easy to show that at most two nodes are added to*C* in each iteration. Thus, We claim that $|C|$ ≤ 2($|B|$ − 1). So, $|B \cup C|$ ≤ 3 $|B|$ − 2. By Theorem [9.3.2,](#page-4-2)

$$
|B| = \left(1 + O\left(1/\sqrt{k}\right)\right)\gamma.
$$

Therefore,

$$
|B\cup C| = \left(3+O\left(1/\sqrt{k}\right)\right)\gamma.
$$

Since γ is no more than the connected domination number γ_c , the two-staged approximation algorithm has an approximation bound 3 + $O\left(1/2\right)$ √ *k* .