
Chapter 9
CDS in Disk-Intersection Graphs

I don’t like to hurt people, I really
don’t like it at all. But in order to get a red light
at the intersection, you sometimes have to have an accident.

JACK ANDERSON

9.1 Motivation and Overview

Consider a finite set V of nodes in the plane and a radius function r : V → IR+. The
disk-intersection graph (DIG) of V with the radius function r, denoted by Gr (V ),
is the undirected graph on V in which u and v are adjacent if and only if the disk
centered at u of radius r (u) and the disk centered at v of radius r (v) intersect, or
equivalently,

‖uv‖ ≤ r (u)+ r (v) .

If r (v) = 1/2 for all v ∈ V , then Gr (V ) is exactly the unit disk graph (UDG) of
V . Thus, the class of UDGs is a subclass of the class of DIGs. Hence, MIN-DS
and MIN-CDS restricted to DIGs are also NP-hard. However, the approximation
algorithms for MIN-DS and MIN-CDS restricted to UDGs cannot be directly
extended to those for MIN-DS and MIN-CDS restricted to DIGs.

In this chapter, we present a simple local-search approximation algorithm for
MIN-DS of DIGs, which yields a polynomial time approximation scheme (PTAS)
for MIN-DS of DIGs [59]. In addition, we show that for any fixed ε > 0, there is
a polynomial (3+ ε)-approximation algorithm for MIN-CDS of DIGs. The rest of
this chapter is organized as follows. In Sect. 9.2, we introduce the Voronoi diagram
and Voronoi dual of a set of disks and their geometric properties. In Sect. 9.3, we
describe a local-search approximation algorithm for MIN-DS of DIGs and show that
it yields a PTAS. In Sect. 9.4, we present a two-stage approximation algorithm for
MIN-CDS of DIGs.
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152 9 CDS in Disk-Intersection Graphs

9.2 Voronoi Diagram and Dual of Disks

A pair of disk disks are said to be geometrically redundant if one is contained in the
other. A set of four disks form a degenerate quadruple if there is a circle which is
either externally tangent to all of them (see Fig. 9.1a) or internally tangent to all of
them (see Fig. 9.1b).

Let D be a finite set of disks in which no pair of disk are geometrically redundant
and no quadruple of disk are degenerate. Then the centers of the disk in D are all
distinct. Let V be the set of centers of the disk in D. For v ∈ V , we use D(v) to
denote the disk in D centered at v and ρ (v) to denote the radius of the disk D(v).
The shifted distance from a point p and a node v ∈V is defined to be

�(p,v) = ‖pv‖−ρ (v)

For a point p and a node v ∈V , denote

�(p,v) = ‖pv‖−ρ (v)

In other words, |�(p,v)| is the Euclidean distance from p to the boundary of the disk
D(v), and �(p,v) is positive (respectively, negative) if p is outside (respectively,
inside) D(v). Figure 9.2 illustrates the shifted distances. Clearly, for each point p
and any two nodes u and v in V , if �(p,u)≤ �(p,v) and p ∈ D(v), then p ∈ D(u) as
well. For each v ∈V , the set of points p in the plane satisfying that

�(p,v) = min
u∈V

�(p,u)

is referred to the Voronoi cell of D(v). The lemma below shows that the Voronoi
cell of D(v) is nonempty and is star-shaped with respect to v.

a b

Fig. 9.1 Degenerate quadruples
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Fig. 9.2 The shifted distance

Lemma 9.2.1. Consider any v ∈V.

1. v lies in only the Voronoi cell of D(v).
2. For any point p in the cell of v, each point in the interior of the line segment vp

lies in only the Voronoi cell of D(v).

Proof. (1) For any u ∈V \ {v},

�(v,u)− �(v,v) = ‖vu‖− (ρ (u)−ρ (v))> 0,

where the last inequality follows from the fact that D(u) and D(v) are not
geometrically redundant. Thus, the first part of the lemma holds.

(2) Consider any point q in the interior of the line segment vp and any u ∈V \ {v}.
We have

�(q,v) = ‖qv‖−ρ (v)

= ‖pv‖−‖pq‖−ρ (v)

= �(p,v)−‖pq‖
≤ �(p,u)−‖pq‖
= ‖pu‖−‖pq‖−ρ (u)

≤ ‖qu‖−ρ (u)

= �(q,u).

We further claim that �(q,v) �= �(q,u). Assume to the contrary that the claim
does not hold. Then,

‖pu‖−‖pq‖= ‖qu‖
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and
�(p,v) = �(p,u).

So, q lies in the line segment pu. By symmetry, we assume that v also lies in the
segment pu. Then,

‖uv‖ = ‖pu‖−‖pv‖
= (�(p,u)+ρ (u))− (�(p,v)+ρ (v))

= ρ (u)−ρ (v) .

This means that D(v) is internally tangent to D(u), which is a contradiction.
Thus, our claim holds. Therefore,

�(q,v)< �(q,u).

So, the second part of the lemma holds. ��
Clearly, the boundary of the Voronoi cell of each disk in D is a concatenation of

parts of hyperbolic curves and/or lines. The Voronoi cells of all disks in D induce
a decomposition of the plane, which is known as the Voronoi diagram of D. Since
D contains no degenerate quadruple, no point belongs to Voronoi cells of more than
three disks in D. A vertex of the Voronoi diagram of D is an point which belongs
to the Voronoi cells of three disks in V . The Voronoi dual of D is a graph on V in
which two nodes u and v are adjacent if and only if the Voronoi cells of D(u) and
D(v) share a common point. It is a planar graph as shown in the lemma below.

Lemma 9.2.2. The Voronoi dual of D is a planar graph.

Proof. Consider any edge e = uv of the Voronoi dual of D. Let pe be an arbitrary
common point shared by the Voronoi cells of D(u) and D(v) which is not a vertex
of the Voronoi diagram of D. The poly-segment upev, which is the concatenation of
the two line segments upe and vpe, is referred to as the geometric embedding of e
in the plane. We show that the geometric embeddings of any two edges e and e′ do
not cross each other (i.e., have no common interior point). Assume to the contrary
that they have a common interior point q. We consider in two cases.

Case 1: e and e′ have no common endpoint. Let e = uv and e′ = u′v′. By
Lemma 9.2.1, any interior point of the poly-segment upev other than pe either lies
only in the Voronoi cell of D(u) or only in the Voronoi cell of D(v), and hence
cannot lie in poly-segment u′pe′v

′. Thus, q must be the point pe. Similarly, q must
be the point pe′ . However, q = pe = pe′ would imply that {u,v,u′,v′} is a degenerate
quadruple, which is a contradiction.

Case 2: e and e′ have one common endpoint. Let e = uv and e′ = u′v. By
Lemma 9.2.1, any interior point of the line segment upe lies only in the Voronoi
cell of D(u), and hence cannot lie in poly-segment u′pe′v. Thus, q must lie in the
line segment vpe. Similarly, q must lie in the line segment vpe′ . However, pe �= pe′
for otherwise, pe would be a vertex of the Voronoi diagram of D, which contradicts
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to the selection of pe. Thus, the two line segments vpe and vpe′ only meet at v. So,
q = v, which is a contradiction.

In either case, we have reached a contradiction. So, the geometric embeddings of
any two edges e and e′ do not have a cross each other. Therefore, the lemma holds.

��

9.3 Local Search for MIN-DS

In this section, we present a local-search algorithm for MIN-DS. Suppose that each
node in V has a unique ID for tie-breaking. A node v ∈ V is said to be redundant
if there exists a node u ∈ V satisfying that either v only dominates a proper subset
of nodes dominated by u, or v dominates exactly the same set of nodes but has a
larger ID than u. Let V ∗ denote the set of nonredundant nodes in V . Clearly, V ∗ still
contains a minimum DS. Let B be a DS contained in V ∗. A set U ⊆ B is said to be a
loose subset of B if there is a subset U ′ of V ∗ such that |U ′|< |U | and (B\U)∪U ′
is still a DS, and to be a tight subset of B otherwise. B is said to be k-tight if every
subset U ⊆ B with |U | ≤ k is tight. Intuitively, for sufficiently large k the size of a
k-tight DS is close to the domination number γ , which is the size of a minimum DS.
Technically, we relate a k-tight DS with a minimum DS using the following planar
expansion theorem established in [83].

Theorem 9.3.1. There are two fixed positive constants c and K such that for any
planar bipartite graph H = (X ,Y ;E) satisfying that |X | ≥ 2 and for every subset
Y ′ ⊆ Y of size at most k ≥ K, |NH(Y ′)| ≥ |Y ′|, we have

|Y | ≤ (1+ c/
√

k) |X | .

With the help of the above theorem, we shall prove the following relation between
the size of k-tight DS and the domination number γ .

Theorem 9.3.2. Let c and K be the two fixed constants in Theorem 9.3.1. Then, for
any k-tight DS B ⊆V ∗ with k ≥ max{K,2},

|B| ≤
(

1+ c/
√

k
)

γ.

Theorem 9.3.2 suggests a local-search algorithm for MIN-DS, referred to as k-
Local Search (k-LS), where k is a positive integer parameter at least two. It computes
a k-tight cover B ⊆V ′ in two phases:

• Preprocessing Phase: Compute the set V ∗ of nonredundant nodes in V , and then
compute a cover B ⊆ V ∗ by the well-known greedy algorithm for Minimum Set
Cover.
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• Replacement Phase: While B is not k-tight, find a subset U of B with size at most
k and a subset U ′ of V ∗ with size at most |U |− 1 satisfying that (B\U)∪U ′ is
still a DS; replace B by (B\U)∪U ′. Finally, we output B.

By Theorem 9.3.2, the algorithm k-LS has an approximation ratio at most 1 +

O
(

1/
√

k
)

when k ≥ K. Its running time is dominated by the second phase. Let

m = |V ∗|. Then, the second phase consists of O(m) iterations. In each iteration, the
search for the subset U and its replacement U ′ takes at most

O
(

mk
)
·O

(
mk−1

)
= O

(
m2k−1

)

time. So, the total running time is

O(m) ·O
(

m2k−1
)
= O

(
m2k

)
.

This means that the algorithm k-LS is a PTAS.
We move on to the proof of 9.3.2. Consider a minimum DS O contained in V ∗.

Theorem 9.3.2 holds trivially if |B|= |O|. So, we assume that |B|> |O|. Then,

|B\O|> |O\B| .

In addition, |O\B| ≥ k for otherwise, we can choose a subset of |O\B|+ 1 nodes
from B\O and replace them by O\B to get a smaller DS, which contradicts to the
fact that B is k-tight. Let T be the set of nodes in V not dominated by O∩B. Then,
each node in T is dominated by some node in B\O and by some node in O\B. In
addition, we have the following stronger property.

Lemma 9.3.3. There is a planar bipartite graph H on O \B and B \O satisfying
the following “locality condition”: For each t ∈ T, there are two adjacent nodes in
H both of which dominate t.

Let H be the planar bipartite graph satisfying the property in the above lemma.
We claim that for any U ⊆ B \O, (B\U)∪NH (U) is still a DS. Indeed, consider
any t ∈V . If t is dominated by B\U , then it is also dominated by (B\U)∪NH (U).
If t is not dominated by B \U , then t is only dominated by nodes in U and hence
t ∈ T . By Lemma 9.3.3, there exist two adjacent nodes u ∈ B\O and v ∈ O\B both
of which dominate t. Then, we must have u ∈ U and hence v ∈ NH (U). Thus, t is
still dominated by (B\U)∪NH (U). So, the claim holds.

Now, consider any U ⊆ B\O with |U | ≤ k. Then |NH (U)| ≥ |U |, for otherwise
(B\U)∪ NH (U) is a DS smaller than B, which contradicts to the fact that B is
k-tight. By Theorem 9.3.1, we have

|B\O| ≤ (1+ c/
√

k) |O\B|
and hence

|B| ≤ (1+ c/
√

k) |O| .
So, Theorem 9.3.2 holds.
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In the remaining of this section, we prove Lemma 9.3.3. Let B′ (respectively, O′)
be a replication of B\O (respectively, O\B), and let V ′ = O′ ∪B′. Each replication
v ∈ V ′ also has a radius r (v) equal to the radius of the original node in V it is
replicated from. For each v ∈V ′, define

r̄ (v) = min{‖uv‖− r (u) : ‖uv‖> r (u)+ r (v) ,u ∈V}.

Clearly, r̄ (v)> r (v), and if we increase the radius of v to any value below r̄ (v), the
set of nodes in V dominated by v remains the same. A function ρ on V ′ is said to be
domination-preserving if r (v)≤ ρ (v)< r̄ (v) for each v ∈V ′. For each domination-
preserving function ρ , we use Dρ to denote the collection of disks centered at v of
radius ρ (v) for all v ∈V ′.

Lemma 9.3.4. There exists a domination-preserving function ρ on V ′ such that Dρ
contains no degenerate quadruple.

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let ρ
be the “fewest counterexample”, in other words, Dρ contains the least number of
degenerate quadruples. Suppose that the disk centered at u ∈ V ′ is contained in at
least one quadruple in Dρ . We show that we can change the radius of u to some value
in [r (u) , r̄(u)) such that the disk of u is not involved in any degenerate quadruple.
Consider any triple disks D1,D2,D3 in Dρ which can potentially form a degenerate
quadruple with some disk centered at u. Let vi be the center of Di for 1 ≤ i ≤ 3. For
each circle which is either externally tangent to the triple or internally tangent to the
triple, its center q must satisfy the equalities

‖qv1‖−ρ (v1) = ‖qv2‖−ρ (v2) = ‖qv3‖−ρ (v3) .

So, q lies in a branch of a hyperbola with two foci v1 and v2 (which can be
degenerated to the perpendicular bisector of v1v2), and similarly, q also lies in
a branch of a hyperbola with two foci v1 and v3 (which can be degenerated to
the perpendicular bisector of v1v3). Since these two branches may have at most
4 intersection points, q can take at most 4 positions. Thus, for a disk centered at u
to form a degenerate quadruple with D1,D2, and D3, its radius can be of at most
4 values, each of which is referred to as a forbidden radius of u. As the number of
triples of disks in Dρ which can potentially form a degenerate quadruple with some

disk centered at u is at most
(|V ′|−1

3

)
, the total number of forbidden radii of u is at

most 4
(|V ′|−1

3

)
. Now consider the radius function ρ ′ on V ′ satisfying that ρ ′ (u) takes

some value in [r (u) , r̄(u)) other than the forbidden radii of u, and ρ ′ (v) = ρ (v) for
each v �= u. Then, ρ ′ is still domination-preserving but Dρ ′ contains strictly fewer
degenerate quadruples. This contradicts to the choice of ρ . Therefore, the lemma
holds. ��

Now, we fix a domination-preserving function ρ on V ′ such that Dρ contains no
degenerate quadruple. For each node v∈V ′, let D(v) denote the disk centered at v of
radius ρ (v). We claim that any pair of disks in Dρ are geometrically nonredundant.
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Indeed, assume to the contrary that there exist two nodes in u and v such that D(u)⊆
D(v). Since ρ is domination-preserving, all nodes in V dominated by u are also
dominated by v, which is a contradiction. Thus, our claim holds. Let H be the graph
obtained from the Voronoi dual of Dρ by removing all edges between two nodes in
O′ and all edges between two nodes in B′. By Lemma 9.2.2, H is a planar bipartite
graph on O′ and B′.

Next, we show that H satisfies the locality condition: For each t ∈ T , there are
two adjacent nodes in H both of which dominate t. Clearly, t is dominated by a
node v ∈ V ′ if and only if �(t,v) ≤ ρ (t) where �(t,v) = ‖tv‖−ρ (v) is the shifted
distance from t to v. Thus, if �(t,u)≤ �(t,v) for some two nodes u and v in V ′ and
t is dominated by v, then t is also dominated by u as well. We consider two cases:

Case 1: t lies in the Voronoi cell of D(u) for some u ∈ O′. Then, u must dominate
t as t is dominated by O′. Let v be a node in B′ to which t has the smallest shifted
distance. Then, v must also dominate t, as t is dominated by B′. If u and v are
adjacent, then the locality condition holds trivially. So, we assume that u and v are
nonadjacent. Then, t lies outside the Voronoi cell of D(v). We walk from t to v along
the straight line segment tv. During this walk, we may cross some Voronoi cells of
the disks in Dρ , and at some point before reaching v we will enter the Voronoi cell
of D(v) the first time. Let x be the point at which we first enter the Voronoi cell of
D(v). We must enter this cell from another cell, and we assume this cell the Voronoi
cell of D(w). Then, �(t,w)≤ �(t,v) as

�(t,w) = ‖tw‖−ρ (w)

≤ ‖tx‖+ ‖xw‖−ρ (w)

= ‖tx‖+ �(x,w)

= ‖tx‖+ �(x,v)

= ‖tx‖+ ‖xv‖−ρ (v)

= ‖tv‖−ρ (v)

= �(t,v).

We further claim that �(t,w)< �(t,v). Indeed, assume to the contrary that �(t,w) =
�(t,v). Then, we must have ‖tw‖= ‖tx‖+‖xw‖, in other words, w lies in the ray tv.
As �(t,w) = �(t,v), either D(v)⊆ D(w) or D(w)⊆ D(v), which is a contradiction.
Therefore, our claim is true. By the choice of v, w ∈ O′ and w is adjacent to v. In
addition, w dominates t since �(t,w) < �(t,v) and v dominates t. Thus, the locality
condition is satisfied.

Case 2: t lies in the Voronoi cell of D(u) for some u ∈ B′. The proof is the same as
in Case 1 is thus omitted.

Since ρ is domination-preserving and B′ (respectively, O′) be a replication of
B\O (respectively, O\B), Lemma 9.3.3 holds.
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9.4 A Two-Staged Algorithm for MIN-CDS

In this section, we present a two-staged approximation algorithm for MIN-CDS
of DIGs. The first stage applies the local-search algorithm k-LS presented in
the previous section to compute a DS B. The second stage compute a set C of
connectors such that B∪C is a CDS as follows. Initially C is empty. Repeat the
following iteration until B∪C is connected. First we find a pair of closest connected
components of Gr (B∪C) and compute a shortest (in terms the number of hops)
path P between them. Then, we all internal nodes in P to C.

Clearly, the number of iterations executed in the second stage is at most |B|− 1.
In addition, it is easy to show that at most two nodes are added to C in each iteration.
Thus, We claim that |C| ≤ 2(|B|− 1). So, |B∪C| ≤ 3 |B|− 2. By Theorem 9.3.2,

|B|=
(

1+O
(

1/
√

k
))

γ.

Therefore,

|B∪C|=
(

3+O
(

1/
√

k
))

γ.

Since γ is no more than the connected domination number γc, the two-staged

approximation algorithm has an approximation bound 3+O
(

1/
√

k
)

.
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