Chapter 9
CDS in Disk-Intersection Graphs

I don’t like to hurt people, I really

don’t like it at all. But in order to get a red light

at the intersection, you sometimes have to have an accident.
JACK ANDERSON

9.1 Motivation and Overview

Consider a finite set V of nodes in the plane and a radius function r : V — IR". The
disk-intersection graph (DIG) of V with the radius function r, denoted by G, (V),
is the undirected graph on V in which u« and v are adjacent if and only if the disk
centered at u of radius r(u) and the disk centered at v of radius r(v) intersect, or
equivalently,

uv]| < r(u)+r(v).

If r(v) =1/2 for all v € V, then G, (V) is exactly the unit disk graph (UDG) of
V. Thus, the class of UDGs is a subclass of the class of DIGs. Hence, MIN-DS
and MIN-CDS restricted to DIGs are also NP-hard. However, the approximation
algorithms for MIN-DS and MIN-CDS restricted to UDGs cannot be directly
extended to those for MIN-DS and MIN-CDS restricted to DIGs.

In this chapter, we present a simple local-search approximation algorithm for
MIN-DS of DIGs, which yields a polynomial time approximation scheme (PTAS)
for MIN-DS of DIGs [59]. In addition, we show that for any fixed € > 0, there is
a polynomial (3 + €)-approximation algorithm for MIN-CDS of DIGs. The rest of
this chapter is organized as follows. In Sect. 9.2, we introduce the Voronoi diagram
and Voronoi dual of a set of disks and their geometric properties. In Sect. 9.3, we
describe a local-search approximation algorithm for MIN-DS of DIGs and show that
it yields a PTAS. In Sect. 9.4, we present a two-stage approximation algorithm for
MIN-CDS of DIGs.
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152 9 CDS in Disk-Intersection Graphs
9.2 Voronoi Diagram and Dual of Disks

A pair of disk disks are said to be geometrically redundant if one is contained in the
other. A set of four disks form a degenerate quadruple if there is a circle which is
either externally tangent to all of them (see Fig. 9.1a) or internally tangent to all of
them (see Fig.9.1b).

Let D be a finite set of disks in which no pair of disk are geometrically redundant
and no quadruple of disk are degenerate. Then the centers of the disk in D are all
distinct. Let V be the set of centers of the disk in D. For v € V, we use D (v) to
denote the disk in D centered at v and p (v) to denote the radius of the disk D (v).
The shifted distance from a point p and a node v € V is defined to be

t(pv) = llpvll=p (v)

For a point p and a node v € V, denote

tpv) =llpvll—p ()

In other words, |¢(p,v)| is the Euclidean distance from p to the boundary of the disk
D(v), and £(p,v) is positive (respectively, negative) if p is outside (respectively,
inside) D (v). Figure 9.2 illustrates the shifted distances. Clearly, for each point p
and any two nodes u and vin V, if £(p,u) < {(p,v) and p € D (v), then p € D (u) as
well. For each v € V, the set of points p in the plane satisfying that

{p,v) = I,}lelgf(pm)

is referred to the Voronoi cell of D (v). The lemma below shows that the Voronoi
cell of D (v) is nonempty and is star-shaped with respect to v.

Fig. 9.1 Degenerate quadruples
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Fig. 9.2 The shifted distance

Lemma 9.2.1. Consider anyv V.

1. v lies in only the Voronoi cell of D (v).
2. For any point p in the cell of v, each point in the interior of the line segment vp
lies in only the Voronoi cell of D (v).

Proof. (1) Foranyu € V\{v},

(v,u) = £(v,v) = [[vul| = (p () = p (v)) > 0,

where the last inequality follows from the fact that D (u) and D(v) are not
geometrically redundant. Thus, the first part of the lemma holds.

(2) Consider any point ¢ in the interior of the line segment vp and any u € V \ {v}.
We have

t(g,v) = llgvll —p (v)
= llpvll=llpgll =p (v)

=U(p,v)—|lpdl

< Up,u)—|pq|

= |lpul = llpqll — p ()
< llqull — p ()

= l(q,u).

We further claim that ¢(g,v) # ¢(q,u). Assume to the contrary that the claim
does not hold. Then,

[pull = 1lpgll = llqull
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and
U(p,v) =L(p,u).

So, g lies in the line segment pu. By symmetry, we assume that v also lies in the
segment pu. Then,

Juv]) = llpull = ]
= (Up.u) +p () — (Ep,v) +p (V)
—pW)—p).

This means that D (v) is internally tangent to D (u), which is a contradiction.
Thus, our claim holds. Therefore,

t(q,v) < L(q,u).
So, the second part of the lemma holds. a

Clearly, the boundary of the Voronoi cell of each disk in D is a concatenation of
parts of hyperbolic curves and/or lines. The Voronoi cells of all disks in D induce
a decomposition of the plane, which is known as the Voronoi diagram of D. Since
D contains no degenerate quadruple, no point belongs to Voronoi cells of more than
three disks in D. A vertex of the Voronoi diagram of D is an point which belongs
to the Voronoi cells of three disks in V. The Voronoi dual of D is a graph on V in
which two nodes u and v are adjacent if and only if the Voronoi cells of D («) and
D (v) share a common point. It is a planar graph as shown in the lemma below.

Lemma 9.2.2. The Voronoi dual of D is a planar graph.

Proof. Consider any edge e = uv of the Voronoi dual of D. Let p, be an arbitrary
common point shared by the Voronoi cells of D (1) and D (v) which is not a vertex
of the Voronoi diagram of D. The poly-segment up,v, which is the concatenation of
the two line segments up, and vp,, is referred to as the geometric embedding of e
in the plane. We show that the geometric embeddings of any two edges e and ¢’ do
not cross each other (i.e., have no common interior point). Assume to the contrary
that they have a common interior point g. We consider in two cases.

Case I: e and ¢ have no common endpoint. Let ¢ = uv and ¢ = u'v'. By
Lemma 9.2.1, any interior point of the poly-segment up,v other than p, either lies
only in the Voronoi cell of D (u) or only in the Voronoi cell of D(v), and hence
cannot lie in poly-segment ' p,v'. Thus, g must be the point p,. Similarly, ¢ must
be the point p,,. However, g = p, = p, would imply that {u,v,u’,v'} is a degenerate
quadruple, which is a contradiction.

Case 2: e and ¢ have one common endpoint. Let ¢ = uv and ¢ = u'v. By
Lemma 9.2.1, any interior point of the line segment up, lies only in the Voronoi
cell of D (u), and hence cannot lie in poly-segment u'p,v. Thus, ¢ must lie in the
line segment vp,. Similarly, ¢ must lie in the line segment vp,,. However, p, # py
for otherwise, p, would be a vertex of the Voronoi diagram of D, which contradicts
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to the selection of p,. Thus, the two line segments vp, and vp, only meet at v. So,

q = v, which is a contradiction.
In either case, we have reached a contradiction. So, the geometric embeddings of
any two edges e and ¢’ do not have a cross each other. Therefore, the lemma holds.
O

9.3 Local Search for MIN-DS

In this section, we present a local-search algorithm for MIN-DS. Suppose that each
node in V has a unique ID for tie-breaking. A node v € V is said to be redundant
if there exists a node u € V satisfying that either v only dominates a proper subset
of nodes dominated by u, or v dominates exactly the same set of nodes but has a
larger ID than u. Let V* denote the set of nonredundant nodes in V. Clearly, V* still
contains a minimum DS. Let B be a DS contained in V*. A set U C B is said to be a
loose subset of B if there is a subset U’ of V* such that |U’| < |U| and (B\U)UU’
is still a DS, and to be a tight subset of B otherwise. B is said to be k-tight if every
subset U C B with |U| < k is tight. Intuitively, for sufficiently large k the size of a
k-tight DS is close to the domination number 7y, which is the size of a minimum DS.
Technically, we relate a k-tight DS with a minimum DS using the following planar
expansion theorem established in [83].

Theorem 9.3.1. There are two fixed positive constants ¢ and K such that for any
planar bipartite graph H = (X,Y;E) satisfying that |X| > 2 and for every subset
Y' CY of size at most k > K, [Ny (Y')| > |Y’|, we have

Y] < (1+¢/Vi)IX|.

With the help of the above theorem, we shall prove the following relation between
the size of k-tight DS and the domination number 7.

Theorem 9.3.2. Let ¢ and K be the two fixed constants in Theorem 9.3.1. Then, for
any k-tight DS B C V* with k > max {K,2},

|B| < (1 +c/\/%) Y.

Theorem 9.3.2 suggests a local-search algorithm for MIN-DS, referred to as k-
Local Search (k-LS), where k is a positive integer parameter at least two. It computes
a k-tight cover B C V' in two phases:

e Preprocessing Phase: Compute the set V* of nonredundant nodes in V, and then
compute a cover B C V* by the well-known greedy algorithm for Minimum Set
Cover.
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e Replacement Phase: While B is not k-tight, find a subset U of B with size at most
k and a subset U’ of V* with size at most |U| — 1 satisfying that (B\U)UU"’ is
still a DS; replace B by (B\ U)UU'’. Finally, we output B.

By Theorem 9.3.2, the algorithm k-LS has an approximation ratio at most 1+
o (1/ \/I;) when k > K. Its running time is dominated by the second phase. Let

m = |V*|. Then, the second phase consists of O (m) iterations. In each iteration, the
search for the subset U and its replacement U’ takes at most

o(n)-0 (1) =0 (n)

time. So, the total running time is
O(m)-0 (myc*l) =0 (mZk) .

This means that the algorithm k-LS is a PTAS.
We move on to the proof of 9.3.2. Consider a minimum DS O contained in V*.
Theorem 9.3.2 holds trivially if |B| = |O|. So, we assume that |B| > |O|. Then,

1B\ 0| >0\ B.

In addition, |0\ B|] > k for otherwise, we can choose a subset of |O\ B|+ 1 nodes
from B\ O and replace them by O\ B to get a smaller DS, which contradicts to the
fact that B is k-tight. Let T be the set of nodes in V not dominated by ONB. Then,
each node in 7T is dominated by some node in B\ O and by some node in O\ B. In
addition, we have the following stronger property.

Lemma 9.3.3. There is a planar bipartite graph H on O\ B and B\ O satisfying
the following “locality condition”: For each t € T, there are two adjacent nodes in
H both of which dominate t.

Let H be the planar bipartite graph satisfying the property in the above lemma.
We claim that for any U C B\ O, (B\U)UNg (U) is still a DS. Indeed, consider
any t € V. If t is dominated by B\ U, then it is also dominated by (B\ U)UNg (U).
If ¢ is not dominated by B\ U, then ¢ is only dominated by nodes in U and hence
t € T. By Lemma9.3.3, there exist two adjacent nodes u € B\ O and v € O\ B both
of which dominate ¢. Then, we must have u € U and hence v € Ny (U). Thus, ¢ is
still dominated by (B\ U)UNpg (U). So, the claim holds.

Now, consider any U C B\ O with |U| < k. Then [Ny (U)| > |U|, for otherwise
(B\U)UNpg (U) is a DS smaller than B, which contradicts to the fact that B is
k-tight. By Theorem 9.3.1, we have

B\ O| < (1+¢/Vk)|0\B]
and hence
1B < (1+¢/VA)[O].
So, Theorem 9.3.2 holds.
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In the remaining of this section, we prove Lemma 9.3.3. Let B’ (respectively, O')
be a replication of B\ O (respectively, O\ B), and let V/ = O’ UB'. Each replication
v € V' also has a radius r(v) equal to the radius of the original node in V it is
replicated from. For each v € V’, define

F(v) = min{||uv|| — r () : ||uv| > r(u)+r(v),u e V}.

Clearly, 7(v) > r(v), and if we increase the radius of v to any value below 7 (v), the
set of nodes in V dominated by v remains the same. A function p on V’ is said to be
domination-preserving if r (v) < p (v) < 7(v) for each v € V'. For each domination-
preserving function p, we use D, to denote the collection of disks centered at v of
radius p (v) forall v € V',

Lemma 9.3.4. There exists a domination-preserving function p on V' such that D,
contains no degenerate quadruple.

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let p
be the “fewest counterexample”, in other words, D, contains the least number of
degenerate quadruples. Suppose that the disk centered at u € V' is contained in at
least one quadruple in D,,. We show that we can change the radius of « to some value
in [r(u),7(u)) such that the disk of « is not involved in any degenerate quadruple.
Consider any triple disks D1, D>, D3 in D, which can potentially form a degenerate
quadruple with some disk centered at u. Let v; be the center of D; for 1 <i < 3. For
each circle which is either externally tangent to the triple or internally tangent to the
triple, its center ¢ must satisfy the equalities

lgvill = p (v1) = llgvall = p (v2) = llgvsll = p (v3).

So, g lies in a branch of a hyperbola with two foci v; and v, (which can be
degenerated to the perpendicular bisector of viv;), and similarly, g also lies in
a branch of a hyperbola with two foci v; and v3 (which can be degenerated to
the perpendicular bisector of v;v3). Since these two branches may have at most
4 intersection points, g can take at most 4 positions. Thus, for a disk centered at u
to form a degenerate quadruple with Dy, D;, and Dj, its radius can be of at most
4 values, each of which is referred to as a forbidden radius of u. As the number of

triples of disks in D), which can potentially form a degenerate quadruple with some
disk centered at u is at most (|V/3|71), the total number of forbidden radii of u is at
most 4 (|V/|71). Now consider the radius function p” on V' satisfying that p’ (u) takes
some value in [r(u),7(u)) other than the forbidden radii of u, and p’ (v) = p (v) for
each v # u. Then, p’ is still domination-preserving but Dy contains strictly fewer
degenerate quadruples. This contradicts to the choice of p. Therefore, the lemma
holds. O

Now, we fix a domination-preserving function p on V' such that D, contains no
degenerate quadruple. For each node v € V', let D (v) denote the disk centered at v of
radius p (v). We claim that any pair of disks in D, are geometrically nonredundant.
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Indeed, assume to the contrary that there exist two nodes in u and v such that D () C
D (v). Since p is domination-preserving, all nodes in V dominated by u are also
dominated by v, which is a contradiction. Thus, our claim holds. Let H be the graph
obtained from the Voronoi dual of D, by removing all edges between two nodes in
O' and all edges between two nodes in B'. By Lemma 9.2.2, H is a planar bipartite
graph on O’ and B'.

Next, we show that H satisfies the locality condition: For each t € T, there are
two adjacent nodes in H both of which dominate 7. Clearly, ¢ is dominated by a
node v € V' if and only if £(z,v) < p (t) where £(¢,v) = [|tv|]| — p (v) is the shifted
distance from ¢ to v. Thus, if £ (t,u) < £(t,v) for some two nodes u and v in V' and
t is dominated by v, then 7 is also dominated by u as well. We consider two cases:

Case I: t lies in the Voronoi cell of D (u) for some u € O’. Then, u must dominate
t as t is dominated by O'. Let v be a node in B’ to which 7 has the smallest shifted
distance. Then, v must also dominate 7, as ¢ is dominated by B’. If u and v are
adjacent, then the locality condition holds trivially. So, we assume that « and v are
nonadjacent. Then, 7 lies outside the Voronoi cell of D (v). We walk from 7 to v along
the straight line segment ¢v. During this walk, we may cross some Voronoi cells of
the disks in Dp, and at some point before reaching v we will enter the Voronoi cell
of D (v) the first time. Let x be the point at which we first enter the Voronoi cell of
D (v). We must enter this cell from another cell, and we assume this cell the Voronoi
cell of D (w). Then, £(t,w) < £(t,v) as

((t,w) = [iw]| = p (w)
< [lex] + [owll = p (w)
= |ltx|| 4+ £(x,w)
= ||tx|| 4+ £(x,v)
= llex]| + [l = p (v)

= [ltvl| = p (v)
= L(t,v).

We further claim that ¢(z,w) < £(¢,v). Indeed, assume to the contrary that £(¢,w) =
£(z,v). Then, we must have |[zw|| = ||zx]| + ||xw]|, in other words, w lies in the ray #v.
As l(t,w) = L(t,v), either D (v) C D(w) or D(w) C D(v), which is a contradiction.
Therefore, our claim is true. By the choice of v, w € O’ and w is adjacent to v. In
addition, w dominates ¢ since £(¢,w) < £(t,v) and v dominates 7. Thus, the locality
condition is satisfied.

Case 2: t lies in the Voronoi cell of D (u) for some u € B'. The proof is the same as
in Case 1 is thus omitted.

Since p is domination-preserving and B’ (respectively, O') be a replication of
B\ O (respectively, O\ B), Lemma 9.3.3 holds.



9.4 A Two-Staged Algorithm for MIN-CDS 159
9.4 A Two-Staged Algorithm for MIN-CDS

In this section, we present a two-staged approximation algorithm for MIN-CDS
of DIGs. The first stage applies the local-search algorithm k-LS presented in
the previous section to compute a DS B. The second stage compute a set C of
connectors such that BUC is a CDS as follows. Initially C is empty. Repeat the
following iteration until BUC is connected. First we find a pair of closest connected
components of G,(BUC) and compute a shortest (in terms the number of hops)
path P between them. Then, we all internal nodes in P to C.

Clearly, the number of iterations executed in the second stage is at most |[B| — 1.
In addition, it is easy to show that at most two nodes are added to C in each iteration.
Thus, We claim that |C] <2(|B| —1). So, |[BUC| < 3|B| —2. By Theorem 9.3.2,

IB| = (1+0(1/ﬁ))y.

Therefore,

IBUC| = (3+0(1/ﬁ))y.

Since y is no more than the connected domination number 7., the two-staged

approximation algorithm has an approximation bound 3 + O ( 1/ \/%) .
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