
Chapter 6
Coverage

The only difference between suicide and martyrdom is press
coverage.

CHUCK PALAHNIUK

6.1 Motivation and Overview

A classic type of resource management problem is as follows: Given a certain
amount of resource and a set of users, find an assignment of resource to maximize
the number of satisfied users. The maximum lifetime coverage is such a classic type
of problem in wireless sensor networks.

When a very large number of sensors are randomly deployed into a certain region
possibly by an aircraft to monitor a certain set of targets, usually, there are a lot
of redundant sensors. A better usage of those redundant sensors is to schedule
active/sleep time of sensors to increase the lifetime of the system.

A simple scheduling is to divide sensors into disjoint subsets, each of which fully
covers all targets, called a sensor cover [18, 80].

SENSOR-COVER-PARTITION: Given n targets r1, . . . , rn and m sensors s1, . . . , sm, each
covering a subset of targets, find the maximum number of disjoint sensor covers.

This problem is NP-hard. Various heuristics and approximation algorithms have
been given in [11, 13, 96]. In general, there is no polynomial-time (−ε) lnn)-
approximation for any ε > 0 unless NP⊆DT IME(nO(loglogn)) [48] and there exists
polynomial-time O(logn)-approximation [6,80]. But, there is an open problem in a
special case.

Open Problem 6.1.1. Suppose all sensors are uniform, that is, they have the same
sensing radius. It is unknown whether a polynomial-time constant-approximation
exists or not.
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106 6 Coverage

When the sensor set and the target set are identical, SENSOR-COVER-PARTITION

becomes the following domatic partition problem.

MAX#DS: Given a graph G = (V,E), partition the vertex set V into maximum number of
disjoint dominating sets.

In general graph, there is no polynomial-time (1 − ε) lnn-approximation
unless NP ⊆ DTIME(nO(log logn)) and there exists polynomial-time O(logn)-
approximation for MAX#DS [48]. However, for unit disk graphs, there is a
polynomial-time constant-approximation [86].

For this type of scheduling, the sensor is activated only once, that is, once the
sensor is activated, it keeps active until it dies.

Cardei et al. [15] found that it is possible to increase the lifetime if each sensor
is allowed to alternate between active and sleeping states. An example can be found
in Chap. 1. The model is also better supported by an interesting fact discovered in
[64] that putting a sensor alternatively in active and sleeping states in a proper way
may double its lifetime since the battery could be recovered in a certain level during
sleeping. The formulation of this model is as follows.

MAX-LIFETIME COVERAGE: Given n targets t1, . . . , tn and m sensors s1, . . . , sm, each
covering a subset of targets, find a family of sensor cover S1, . . . ,Sp with time lengths
t1, . . ., tp in [0,1], respectively, to maximize t1 + · · ·+ tp subject to that the total active time
of every sensor is at most 1.

This is still an NP-hard problem. Cardei [15] formulated it as a 0-1 integer pro-
gramming and designed a heuristic without guaranteed theoretical bound. Berman
et al. [6, 7] first designed an approximation algorithm for MAX-LIFETIME COV-
ERAGE with theoretical bound. They showed that there exists a polynomial-time
approximation for MAX-LIFETIME COVERAGE with performance ratio O(logn)
where n is the number of sensors. By employing Garg–Könemann theorem [55],
Berman et al. reduced MAX-LIFETIME COVERAGE to the following:

MINW-SENSOR-COVER: Consider n targets t1, . . . , tn and m sensors s1, . . . , sm, each cover-
ing a subset of targets. Given a weight function on sensors c : {s1, . . . , sm} → R+, find the
minimum total weight sensor cover.

They showed that if MINW-SENSOR-COVER has a polynomial-time ρ-
approximation, then MAX-LIFETIME COVERAGE has a polynomial-time (1 +
ε)ρ-approximation for any ε > 0. Note that MINW-SENSOR-COVER is equivalent
to MINW-SENSOR-COVER. Therefore, it has a polynomial-time (1 + logn)-
approximation. Hence, MAX-LIFETIME SENSOR COVER has a polynomial-time
O(logn)-approximation. Actually, the first one who found the application of Garg-
Könemann theorem in study of lifetime maximization type of problems is Calnescu
et al. [12].

Ding et al. [34] noted that all results in Chap. 5 about MINW-DS can be
extended to MINW-SENSOR-COVER in the case that all sensors and targets lie in
the Euclidean plane and all sensors have the same covering radius. Therefore, they
proved that in this case, MAX-LIFETIME COVERAGE has polynomial-time 3.63-
approximation.



6.2 Max-Lifetime Connected Coverage 107

Du et al. [37] extended this approach to study the coverage problem with con-
nectivity requirement. They constructed a polynomial-time constant-approximation
in geometric case and O(logn)-approximation in general case. However, many
maximum lifetime coverage with connectivity requirement are still open. The
following is an example.

Open Problem 6.1.2. Does MAX#CDS have a polynomial-time constant-
approximation in unit disk graphs?

6.2 Max-Lifetime Connected Coverage

As described in the previous section, the method of Garg and Könemann [55] plays
an important role in design of constant-approximation for various problems on the
maximum lifetime coverage. In this section, we introduce it through the work of Du
et al. [37].

Du et al. [37] studied a quite general model of wireless sensor networks which
was previously studied by Zhang and Li [126]. In this model, each sensor has two
modes, active mode and sleep mode, and the active mode has two phases, the full-
active phase and the semi-active phase. A full-active sensor can sense, transmit,
receive, and relay the data packets. A semi-active sensor cannot sense data packets,
but it can transmit, receive, and relay data packets. Usually, a sensor in the full-active
phase consumes more energy than in the semi-active phase.

Sensors are often randomly deployed into hostile environment, such as battlefield
and inaccessible area with chemical or nuclear pollution, so that recharging batteries
of sensors is a mission impossible. Assume the battery of each sensor contains a
certain amount of energy, say unit amount. Then the lifetime of each sensor depends
on energy consumption.

Du et al. [37] studied the following problem:

MAX-LIFETIME CONNECTED-COVERAGE with two active phases: Given a set of targets
and a set of sensors with two active phases, find an active/sleeping schedule for sensors to
maximize the system lifetime where the network system is said to be alive if the following
conditions are satisfied:

(A1) Every target is monitored by a full-active sensor.
(A2) All (full-/semi-) active sensors induce a connected subgraph.

They studied this problem with the primal-dual method of Garg and
Könemann [55].

Let S be the set of all sensors. Assume all sensors are uniform, that is, they have
the same communication radius Rc, the same sensing radius Rs, the same full-active
energy consumption u of unit time and the same semi-active energy consumption v
of unit time. Also, assume u≥ v. A pair p of sets is called an active sensor set pair
if p = (p1, p2) where p1 is a set of full-active sensors and p2 is a set of semi-active
sensors with p1∩ p2 = /0. For any active sensor set pair p, define
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as,p =

⎧
⎨

⎩

u if s ∈ p1,

v if s ∈ p2,

0 otherwise.

Suppose C is the collection of all active sensor set pairs satisfying conditions (A1)
and (A2). Then MAX-LIFETIME CONNECTED COVERAGE with two active phases
can be formulated as the following linear programming:

max ∑
p∈C

xp

subject to ∑
p∈C

as,pxp ≤ 1 for s ∈ S

xp ≥ 0 for p ∈ C.

Its dual is as follows.

min ∑
s∈S

ys

subject to ∑
s∈S

as,pys ≥ 1 for p ∈ C,

ys ≥ 0 for s ∈ S.

Motivated from the work of Garg and Könemann [55], Du et al. [37] designed
the following primal-dual algorithm.

Primal-Dual Algorithm DPWW

Initially, choose xp = 0 for all p ∈ C and ys = δ for all s ∈ S where δ is a positive
constant which will be determined later.

In each iteration, carry out the following steps until (ys,s ∈ S) becomes dual
feasible, that is, all constrains in dual linear programming are satisfied:

Step 1. Compute a ρ-approximation solution p∗ for

MINW-CSC with two active phases:

min
p∈C ∑

s∈S

as,pys.

Step 2. Compute a solution s∗ for

max
s∈S

as,p∗ .
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Step 3. Update xp and ys as follows:

(B1) xp does not change for p 	= p∗, and

xp∗ ← xp∗+
1

as∗,p∗
.

(B2) ys does not change for s 	∈ p∗1∪ p∗2, and

ys← ys

(

1+θ
as,p∗

as∗,p∗

)

for s ∈ p∗1∪ p∗2 where θ is a constant chosen later.
The following lemmas give two important properties at the end of above

algorithm.

Lemma 6.2.1. At the end of Primal-Dual Algorithm DPWW, (xp, p ∈ C) may not
be a primal-feasible solution. However, (xp/τ, p ∈ C) is a primal-feasible solution

where τ =
(v/u) ln 1+θ

vδ
ln(1+θv/u) .

Proof. Note that when ys gets updated, the following facts must hold:

(a) (ys,s ∈ S) is not dual feasible.
(b) s ∈ p∗1∪ p∗2.

It follows immediately from (a) that ∑s∈S as,p∗ys < 1, which together with (b)
yields that ys < 1/v before ys receives any value change. After ys is updated, we
have

ys <

(

1+θ
as,p∗

as∗,p∗

)

/v≤ (1+θ )/v.

Therefore, at the end of Primal-Dual Algorithm DPWW, ys < (1+θ )/v.
Now, consider a constraint in the primal linear programming,

∑
p∈C

as,pxp ≤ 1,

which may not be satisfied after xp is updated. If updating xp increases the value
of ∑p∈C as,pxp by adding

as,p∗
as∗,p∗

, then the value of ys is increased by multiplying a

factor 1+θ as,p∗
as∗,p∗

. Note that the value of
as,p∗
as∗,p∗

has only two possibilities, v/u and 1.

Suppose
as,p∗
as∗,p∗

takes value v/u for k times and 1 for � times. Then the value of

∑p∈C as,pxp receives an increase in k(v/u)+ � and

(1+θv/u)k(1+θ )� ≤ 1+θ
vδ
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since initially ys = δ . Moreover, initially, ∑p∈C as,pxp = 0. Thus, at the end of
Primal-Dual Algorithm DPWW, the value of ∑p∈C as,pxp is k(v/u)+ �. The max-
imum value of k(v/u)+ � can be obtained from the following linear programming
with respect to k and �:

max k(v/u)+ �

subject to k ln(1+θv/u)+ � ln(1+θ )≤ ln
1+θ

vδ
k ≥ 0, �≥ 0.

By theory of the linear programming, the maximum value of objective function can
always be achieved by some extreme point. For above one, the feasible domain has
three extreme points

(0,0),

(

0,
ln 1+θ

vδ
ln(1+θ )

)

,

(
ln 1+θ

vδ
ln(1+θv/u)

,0

)

.

Their objective function values are

0,
ln 1+θ

vδ
ln(1+θ )

,
v
u
· ln 1+θ

vδ
ln(1+θv/u)

,

respectively. Note that z
ln(1+θz) is strictly monotone decreasing for z≤ 1. Thus,

0 <
ln 1+θ

vδ
ln(1+θ )

<
v
u
· ln 1+θ

vδ
ln(1+θv/u)

.

Hence, at the end of Primal-Dual Algorithm DPWW,

∑
p∈C

as,pxp ≤ τ =
v
u
· ln 1+θ

vδ
ln(1+θv/u)

.

Therefore,

∑
p∈C

as,pxp/τ ≤ 1.

�
Lemma 6.2.2. At the end of Primal-Dual Algorithm DPWW,

∑
p∈C

xp/τ ≥ ln(v|S|δ )−1

τθρ
·optlcc
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where optlcc is the objective function value of optimal solution for MAX-LIFETIME

CONNECTED COVERAGE with two active phases and τ = (v/u) log1+θv/u
1+θ
δv .

Proof. Denote by xp(0) the initial value of xp and by ys(0) the initial value of
ys. Denote by xp(i) and ys(i), respectively, the values of xp and ys after the ith
iteration. Denote by s∗(i) and p∗(i), respectively, the values of s∗ and p∗ in the
ith iteration. Furthermore, denote X(i) = ∑p∈C xp(i) and Y (i) = ∑s∈S ys(i). Then,
for i≥ 1, one has

Y (i) = ∑
s∈S

ys(i− 1)+θ
1

as∗(i),p∗(i)
∑
s∈S

as,p∗(i)ys(i− 1)

≤ Y (i− 1)+θ (X(i)−X(i− 1))ρ min
p∈C ∑

s∈S

as,pys(k− 1).

Thus,

Y (i)≤ Y (0)+θρ
i

∑
k=1

((X(k)−X(k− 1))min
p∈C ∑

s∈S

as,pys(k− 1).

By the duality theory of linear programming, optlcc is also the objective function
value of optimal solution for the dual linear programming. Therefore,

optlcc = min
ys

∑s∈S ys

minp∈C ∑s∈S as,pys
,

where the minimization is subject to ys ≥ 0 for s ∈ S. Hence,

min
p∈C ∑

s∈S

as,pys(k− 1)≤ Y (k− 1)
optlcc

.

Therefore,

Y (i)≤ |S|δ +
θρ
opt

i

∑
k=1

(X(k)−X(k− 1))Y(k− 1).

Define
w(0) = |S|δ

and

w(i) = |S|δ +
θρ
opt

i

∑
k=1

(X(k)−X(k− 1))w(k− 1).

It is easy to prove by induction on i that Y (i)≤ w(i). Moreover,

w(i) =

(

1+
θρ

optlcc
(X(i)−X(i− 1))

)

w(i− 1)

≤ e
θρ

optlcc
(X(i)−X(i−1))

w(i− 1)
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≤ e
θρ

optlcc
X(i)

w(0)

= e
θρ

optlcc
X(i)|S|δ .

Suppose Primal-Dual Algorithm DPWW stops at the mth iteration. Then Y (m) ≥
1/v. Hence

1/v≤ Y (m)≤ w(m)≤ |S|δe
θρ

optlcc
X(m)

.

Therefore,
optlcc

X(m)/τ
≤ τθρ

ln(v|S|δ )−1 .
�

Theorem 6.2.3 (Du et al. [37]). If MINW-CSC with two active phases has a
polynomial-time ρ-approximation, then MAX-LIFETIME CONNECTED COVERAGE

with two active phases has a polynomial-time ρ(1+ε)-approximation for any ε > 0.

Proof. Choose δ = (1+θ )((1+θ )|S|)−θ/v. Note that

ln 1+θ
δv

ln(δv|S|)−1 =
1

1−θ
,

and (1+θv/u)u/(vθ)+1 > e implies ln(1+θv/u)> vθ
u+vθ . Thus,

τθρ
ln(v|S|δ )−1 =

θρ
(1−θ ) ln(1+θv/u)

≤ ρ · 1+θv/u
1−θ

.

Choose θ such that
1+θv/u

1−θ
< 1+ ε.

Then
opt

∑p∈C xp/τ
≤ (1+ ε)ρ .

To estimate the running time of Primal-Dual Algorithm DPWW, let p∗ be a
polynomial time ρ-approximation solution for MINW-CSC with Two Active Phases.
Note that every iteration can be carried out in polynomial-time. Therefore, it suffices
to estimate the number of iterations. Note that at each iteration, at least one of ys

has its value increased. In the proof of Lemma 6.2.1, it is already proved that at
the end of the algorithm, each ys has its value increased by multiplying at most
log1+θv/u

1+θ
δv . Therefore, the number of iterations is at most

|S| log1+θv/u
1+θ

δv
=
|S|θ ln((1+θ )|S|)

ln(1+θv/u)
= O(|S| log |S|),

where δv = (1+θ )((1+θ )|S|)−θ and θ is fixed as ε is fixed. �
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In Chap. 5, it has been shown that there exists a polynomial-time 3.63-
approximation for MINW-DS. This result can be extended to the following problem.

MINW-SENSOR-COVER: Consider a set of targets and a set of sensors lying in the Euclidean
plane. Suppose all sensors have the same sensing radius Rs, but may have different weights.
The problem is to find the minimum weight subset of sensors for covering all targets.

Therefore, the following holds.

Theorem 6.2.4 (Du et al. [37]). MAX-LIFETIME CONNECTED COVERAGE with
Two Active Phases has polynomial-time (7.105+ ε)-approximations for any ε >
0 when all targets and all sensors lie in the Euclidean plane and all sensors are
uniform with Rc ≥ 2Rs.

Proof. Let OptCSC be the optimal solution for MINW-CSC with two active phases.
Compute a polynomial-time 3.63-approximation solution A for MINW-SENSOR-
COVER with weight ysu for each sensor s. Then

∑
s∈A

ysu≤ 3.63 ·optCSC,

where optCSC is the objective function value of OptCSC. Since Rc≥ 2Rs, every sensor
in A is adjacent to some sensor in OptCSC. This means that OptCSC ∪A induces a
connected subgraph and hence OptCSC contains the set of Steiner nodes in a feasible
solution for NODE-WEIGHTED STEINER TREE on the terminal set A. Now, find a
polynomial-time 3.475-approximation solution B for NODE-WEIGHTED STEINER

TREE with weight ysv for each sensor s. Then

∑
s∈B

ysv≤ 3.475 · ∑
s∈OptCSC

ysv≤ 3.475 ·optCSC.

Therefore,

∑
s∈A

ysu+ ∑
s∈B

ysv≤ 7.105 ·optCSC. �

6.3 Domatic Partition

So far, the best known constant-approximation for MAX#DS in unit disk graphs is
designed also using grid partition, however with a new technique. Let us start to
introduce a problem on sensor-cover-partition with a separating line.

SENSOR-COVER-PARTITION with Separating Line: Let L be a horizontal line. Given a set
T of targets above L and a set S of sensors with sensing radius one below L, assume that
every target is covered by at least one sensor. The problem is to find the maximum number
of disjoint sensor covers. (A sensor cover is a subset of sensors covering all targets.)
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Let δ (S,T ) =mint∈T |{s∈ S | t ∈ disk1(s)}| where disk1(s) denotes the disk with
radius one and the center s. Call as the skyline the part, above line L, of envelope of
disks disk1(s) for all s∈ S. Let S′ be the set of those sensors s such that circle1(s) has
a piece appearing in the skyline where circle1(s) denotes the circle with radius one
and the center s. By Lemma 5.7.1 S′ lines up from right to left by following their
pieces on the skyline. For any t ∈ T , denote CS′(t) = disk1(t)∩ S′. The following
properties are important.

Lemma 6.3.1. Let s1,s2,s3 be three sensors in S with s1.x ≤ s2.x ≤ s3.x where
si.x denotes the x-coordinate of point si. Suppose there exists a target t such
that t ∈ disk1(s1)∩ disk1(s3) but t 	∈ disk2(s2). Then up(L)∩ disk1(s2) ⊆ up(L)∩
(disk1(s1)∪disk1(s3)) where up(L) denotes the half plane above the horizontal line
L and circle1(s2) cannot appear in the skyline.

Proof. It is trivial in the case that s1.x = s2.x or s2.x = s3.x. Thus, we next assume
s1.x < s2.x < s3.x. For contradiction, suppose there exists a point p ∈ up(L) ∩
disk1(s2) but p 	∈ up(L)∩ (disk1(s1)∪disk1(s3). Note that t ∈ disk1(s1)∩disk1(S3)
implies that for any point q ∈ up(L) with q.x = t.x and q.y ≤ t.y, q ∈ disk1(s1)∩
disk1(S3). Moreover, t 	∈ disk1(s2) implies that for any q ∈ up(L)∩ disk1(s2) with
q.x = t.x and q.y < t.y and hence q∈ disk1(s1)∩disk1(S3). It follows that p.x 	= t.x.
Hence p.x < t.x or p.x > t.x. First, consider the case that p.x < t.x. In this case,
two segments ps2 and ts1 must intersect at a point o. Note that |ps2| < |ps1| and
|ts2| > |ts1|. Hence, |ps2|+ |ts1| < |ps1|+ |ts2|. However, by the property of the
triangle,

|po|+ |os1| ≥ |ps1|
and

|to|+ |os2| ≥ |ts2|.
Therefore

|ps2|+ |ts1|= |po|+ |os2|+ |to|+ |os1| ≥ |ps1|+ |ts2|,

a contradiction. Similarly, a contradiction can result from the case that p.x > t.x.
Note that circle1(s2)∩up(L) cannot intersect up(L)∩ (circle1(s1)∪ circle1(s3)).

In fact, if they have an intersection point p, then a contradiction can still result from
the above argument by noting that the argument still works when |ps2| = |ps1|.
So, up(L)∩disk1(s2) is contained strictly inside of up(L)∩ (disk1(s1)∪disk1(s3)).
Hence, circle1(s2) cannot appear in the skyline. �
Lemma 6.3.2. For any t ∈ T , CS′(t) is a nonempty contiguous subset of the ordered
set S′.

Proof. Suppose s1,s2,s3 ∈ S′ with s1.x ≤ s2.x ≤ s3.x. If s1,s3 ∈ CS′(t) and s2.x 	∈
CS′(t), then by Lemma 6.3.1, s2 	∈ S′, a contradiction. �
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Lemma 6.3.3. Suppose T ′ is a subset of targets, satisfying a property that for any
two distinct targets t, t ′ ∈ T ′, CS(t) 	⊆ CS(t ′). Then for any two distinct t, t ′ ∈ T ′,
CS′(t)∩CS′(t

′) 	= /0 implies that CS′(t) contains an endpoint of CS′(t
′).

Proof. The lemma holds trivially in the case that CS′(t) is not contained in CS′(t).
So, we next assume CS′(t)⊆CS′(t). By the assumption on T ′, there exists s∈CS(t)\
CS(t ′). Let sr and sl be the right endpoint and the left endpoint of CS′(t

′). Let s′ ∈
CS′(t)∩CS′(t

′). Next, consider two cases.

Case 1. sl .x ≤ s.x ≤ sr.x. Note that t ′ is contained in disk1(sr) and disk1(sl) but
not contained in disk1(s). By Lemma 6.3.1, t ∈ up(L)∩disks ⊆ up(L)∩ (disk1(sl)∪
disk1(sr)). Therefore, sl ∈CS′(t) or sr ∈CS′(t).

Case 2. s1.x > s.x or sr.x < s.x. Note that sl .x ≤ s′.x ≤ sr.x. For contradiction,
suppose t is contained by neither disk1(sl) nor disk1(sr). In the case that s.x <
s1.x, t is contained by disk1(s) and disk1(s′), but not contained by disk1(sl). By
Lemma 6.3.1, sl 	∈ S′, a contradiction. Similarly, a contradiction can result from the
case that sr.x < s.x. �

Now, it is ready to show the following.

Theorem 6.3.4. There is a polynomial-time algorithm which can find at least
δ (S,T )/4 disjoint sensor covers.

Proof. Consider the following algorithm.

The DomPart Algorithm.
input: a sensor set S and a target set T .
j← 0;
E← S;
while E is a set cover do begin
1. j← j+ 1;
2. T ′ ← T ;

while there exist t, t ′ ∈ T ′ such that CE(t)⊆CE(t ′)
do T ′ ← T ′ \ {t ′};

3. Let E ′ ⊆ E contribute the skyline of disks at E;
4. Find a maximal subset T ′′ of T ′ such that CE ′(t) for t ∈ T ′′

are disjoint;
5. A j = {two endpoints of CE ′(t) | t ∈ T ′′};
6. E← E \A j;
end-while
output: A1,A2, . . . ,A j.

First, we show that each Ai for i = 1, . . . , j is a sensor cover. In fact, for each
t ′′ ∈ T ′′, Ai contains two endpoints of CE ′(t

′′) and hence t ′′ is covered by Ai. For
t ′ ∈ T ′ \T ′′, there exists t ′′ ∈ T ′′ such that CE ′(t

′)∩CE ′(t
′′) 	= /0. By Lemma 6.3.3,

CE ′(t
′) contains an endpoint of CE ′(t

′′) and hence t ′ is covered by Ai. For t ∈ T \T ′,
there exists t ′ ∈ T ′ such that CE(t ′)⊆CE(t). So, there exists t ′′ ∈ T ′′ such that CE(t)
contains an endpoint of CE ′(t

′′) and hence t is covered by Ai.
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Next, we show that at the end of the jth iteration, |CE(t)| ≥ δ (S,T )− 4 j for
every t ∈ T . To do so, let E j denote the E at the end of the jth iteration. Suppose this
inequality holds at the end of the ( j− 1)th iteration, that is, |CE j−1(t)| ≥ δ (S,T )−
4( j− 1) for all t ∈ T . We show that |CE j (t)| ≥ δ (S,T )− 4 j for all t ∈ T .

In the jth iteration, for t ′′ ∈ T ′′, two endpoints of CE ′(t
′′) are deleted from E j−1

and hence

|CE j (t
′′)| ≥ |CE j−1(t

′′)|− 2 > δ (S,T )− 4 j.

For t ′ ∈ T ′ \ T ′′, if CE ′(t
′) contains an endpoint of CE ′(t

′′) for t ′′ ∈ T ′′, then by
Lemma 6.3.3, CE ′(t

′′) must contain an endpoint of CE ′(t
′). Thus, there are at most

two such t ′′’s because all CE ′(t
′′) for t ′′ ∈ T ′′ are disjoint. This means that

|CE j (t
′)| ≥ |CE j−1(t

′)|− 4≥ δ (S,T )− 4 j.

For t ∈ T \T ′, there exists t ′ ∈ T ′ such that CE j−1(t
′)⊆CE j−1(t). This relationship is

preserved in the algorithm, that is, CE j (t
′)⊆CEJ (t). Therefore,

|CE j(t)| ≥ |CE j (t
′)| ≥ δ (S,T )− 4 j.

It follows immediately from this inequality that at the end of The DomPart
Algorithm, j ≥ δ (S,T )/4. �

With Theorem 6.3.4, Pandit et al. [86] constructed an algorithm for MAX#DS in
unit disk graphs as follows.

Put input unit disk graph G = (V,E) into a square and partition the square with a
grid of cells with diameter one (or say, diagonal length one). A cell is called a heavy
cell if it contains at least δ/14 nodes where δ min is the minimum node degree of G.
A cell is light if it is not heavy. For each node v in a light cell, disk1(v) intersects at
most 14 cells, at least one of which contains at least δ min/14 nodes adjacent to v.
Choose such a heavy cell σ and put v to T σ , say that v belongs to σ . Let Sσ = σ ∩V .
Consider Sσ as a sensor set and T σ as a target set. Then the following lemma gives
an important fact.

Lemma 6.3.5. If for every heavy cell σ , Sσ can be partitioned into k sensor covers
for T σ , then G has k disjoint dominating sets.

Proof. Choose a sensor cover Aσ for each heavy cell σ . Let A be the union of Aσ

for σ over all heavy cells. Then A is a dominating set because each Aσ dominates
not only all nodes in T σ , but also dominates all nodes in Sσ . �

For each heavy cell σ , partition T σ into four parts (T σ
north,T

σ
south,T

σ
east,T

σ
west)

where T σ
north consists of nodes lying above the line through the upper bound of σ ,

T σ
south consists of nodes lying below the line through the lower bound of σ , T σ

east
consists of nodes lying in the right of the line through the right bound of σ , and
T σ

west consists of nodes lying in the left of the line through the left bound of σ .
When two parts are available for a node v in T σ , v can arbitrarily choose one of
them as its home. Corresponding these four parts, partition Sσ also into four parts
(Sσ

north,S
σ
south,S

σ
east,S

σ
west) by independently and randomly distributing each node into

these four parts.
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Now, solve SENSOR-COVER-PARTITION with separation line on four inputs
(Sσ

north,T
σ

north), (S
σ
south,T

σ
south), (S

σ
east,T

σ
east), and (Sσ

west,T
σ

west). Combine those solu-
tions into k disjoint dominating sets of G where

k = min{δ (Sσ
south,T

σ
south),δ (S

σ
east,T

σ
east),δ (S

σ
west,T

σ
west) | all heavy cells δ}.

Next, we show that k ≥ δ min/112 with a quite high probability.
Note that for each t ∈ T σ , |σ ∩ disk1(t)| ≥ δ min/14 and the probability of at

least one of two nodes in σ ∩disk1(t) distributed in the part containing t is 3/4. By
Chernoff bound, the probability of at least δ min/56 nodes in σ ∩disk1(t) distributed

in the part containing t is at least 1− e−δ min/112.
Note that for each heavy cell σ , there are at most 20 cells within distance one

to σ . So, there are at most 20 light cells which contain a node belonging to σ .
Hence, |T σ | ≤ (20/14)δ min. Thus, the probability of the following held is at least
1− (20/14)δ mine−δ min/112:

min(δ (Sσ
south,T

σ
south),δ (S

σ
east,T

σ
east),δ (Sσ

west,T
σ

west))≥ δ min/56.

Since the number of heavy cells cannot be bounded by O(δ min), it is hard to estimate
the probability of k≥ δ min/56. Thus, it requires more efforts on distribution of each
element of Sσ in order to establish a solution of the following problem.

Open Problem 6.3.6. Is there a polynomial-time algorithm which produces
Ω(δ min) disjoint dominating sets for G with high probability?

6.4 Min-Weight Dominating Set

Pandit et al. [86] gave an interesting idea to construct approximation algorithms for
MINW-DS using algorithm for MAX#DS.

Consider the following LP-relaxation of MINW-DS.

min ∑
i∈V

cixi

subject to ∑
i∈disk1( j)

xi ≥ 1 for all j ∈V

xi ≥ 0 for all i ∈V.

Let (x∗i , i ∈V ) be an optimal solution of this LP. Denote n = |V |. Let

x̄i =

{
0 if x∗i ≤ 1/2n
k

2n if k−1
2n < x∗i ≤ k

2n .
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Lemma 6.4.1. The following holds:

(1) For j ∈V, ∑i∈disk1( j) x̄i ≥ 1/2.
(2) ∑i∈V cix̄i ≤ 2 ·optWDS where opteds is the objective function value of an optimal

solution for MINW-DS.

Proof. Since |V ∩ disk( j)| ≤ n, there are at most n x∗i are rounded down to 0.
Therefore,

∑
i∈disk1( j)

x̄i ≥ 1− n · 1
2n

= 1/2.

This means that (1) holds. For (2), note that

∑
i∈V

cix̄i ≤ 2 ∑
i∈disk1( j)

cix
∗
i ≤ 2 ·optWDS. �

Construct a set P by making 2n · x̄ j copies of node j for each j ∈V . Suppose each
copy of j has the same weight as that of j.

Lemma 6.4.2. c(P)≤ 4n ·optWDS.

Proof. By Lemma 6.4.1, c(P) = 2n ·∑i∈V ci · x̄i ≤ 4noptWDS. �

Lemma 6.4.3. δ (P,V )≥ n.

Proof. By Lemma 6.4.1, ∑i∈disk1( j x̄i ≥ 1/2. Thus, for each j ∈ V , |P∩disk1( j)| =
2n∑i∈disk1( j) x̄i ≥ n. �

Suppose there is an algorithm which can produce at least δ (P,V )/C sensor cover
packing A1, . . . ,At (t ≥ n/C) for sensor set P and target set V . Then there exists Ai

such that

c(Ai)≤ c(P)
t
≤ C · c(P)

n
≤ 4Cn ·optWDS

n
= 4C ·optWDS.

This means that the following holds.

Theorem 6.4.4. If there is a polynomial-time algorithm for SENSOR-COVER-
PARTITION which can produce δ (P,V )/C sensor covers for sensor set P and target
set V , then there is a polynomial-time 4C-approximation for MINW-DS.
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