
Chapter 5
Weighted CDS in Unit Disk Graph

I think the weight really got the best of him today.
JODY PETTY

5.1 Motivation and Overview

It was open for many years whether MINW-CDS in unit disk graphs has a
polynomial-time constant-approximation or not. Ambühl et al. [2] discovered the
first one. Their solution consists of two stages. At the first stage, they construct a
dominating set which is a 72-approximation for the minimum-weight dominating
set problem in unit disk graphs as follows.

MINW-DS in Unit Disk Graphs: Given a unit disk graph G = (V,E) with vertex weight
w : V → R+, find a dominating set with minimum total weight.

In the second stage, they connect the dominating set into a CDS with additional
cost 12optWCDS where optWCDS is the minimum weight of a CDS. Putting together,
they obtained a polynomial-time 94-approximation for MINW-CDS in unit disk
graphs.

Huang et al. [66] discovered a new technique on partition, called double partition.
With the new technique, they obtained a polynomial-time (6+ε)-approximation for
MINW-DS in unit disk graphs. Later, the approximation for MINW-DS in unit disk
graphs received further improvements, from performance ratio 6+ε to 5+ε by Dai
and Yu [27], to 4+ ε by Zou et al. [134] and independently by [46], and to 3.63 by
Willson et al. [114].

Connecting a weighted dominating set into a weighted CDS is equivalent to
solving NODE-WEIGHTED STEINER TREE in unit disk graphs.

In general graphs, it is unlikely for NODE-WEIGHTED STEINER TREE to have
a polynomial-time constant-approximation [69]. However, in unit disk graphs, the
situation is different. Actually, the work of Ambühl et al. [2] means that there is a
polynomial-time 12-approximation for NODE-WEIGHTED STEINER TREE in unit

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 5,
© Springer Science+Business Media New York 2013

77

78 5 Weighted CDS in Unit Disk Graph

disk graphs. Huang et al. [66] gave a polynomial-time 4-approximation. Zou et
al. [133] constructed a polynomial-time 2.5ρ-approximation for NODE-WEIGHTED

STEINER TREE in unit disk graphs provided that there exists a polynomial-time
ρ-approximation for the minimum network Steiner tree problem. Recently, the
minimum network Steiner tree problem has been found to have a polynomial-
time 1.39-approximation [10]. Therefore, the approximation of Zou et al. [133] has
performance 3.475. Hence, there exists a polynomial-time 7.105-approximation for
MINW-CDS in unit disk graphs.

The following are still open:

Open Problem 5.1.1. Does MINW-CDS in unit disk graphs have a PTAS?

Open Problem 5.1.2. Does MINW-CDS in unit ball graphs have a polynomial-
time constant-approximation?

5.2 Node-Weighted Steiner Tree

In this section, we introduce the approximation algorithm of Zou et al. [10] for
NODE-WEIGHTED STEINER TREE in unit disk graphs.

Their design is motivated from the following property of optimal solutions for
NODE-WEIGHTED STEINER TREE in unit disk graphs.

Lemma 5.2.1. In a unit disk graph, for any set of terminals, there exists an optimal
solution T for NODE-WEIGHTED STEINER TREE such that every node has degree
at most five.

Proof. Among all optimal trees for NODE-WEIGHTED STEINER TREE, we consider
the one with the shortest Euclidean edge length, called the shortest optimal tree.
First, note that the shortest optimal tree must have the following properties:

(a1) No two edges cross each other.
(a2) Two edges meet at a node with an angle of at least 60◦.
(a3) If two edges meet with an angle of exactly 60◦, then they have the same length.

Indeed, if anyone of the above three conditions does not hold, then we can easily
find another optimal tree with shorter length.

Now, consider a shortest optimal tree T . By (a2), every node has degree at most
six. Suppose T has a node u with degree exactly six, that is, u has six neighbors
v1,v2, . . . ,v6. By (a2), ∠v1uv2 = ∠v2uv3 = · · · = ∠v6uv1 = 60◦. By (a3), |uv1| =
|uv2| = · · · = |uv6|. Moreover, v2 must have degree at most four since replacing
(u,v1) and (u,v3) by (v1,v2) and (v2,v3), the result should still be a shortest optimal
tree. Now, replace (u,v1) by (v1,v2) and do similar replacement at all nodes with
degree six. Then one would obtain a shortest optimal tree with node degree at most
five. �

5.2 Node-Weighted Steiner Tree 79

Assign each edge (u,v) with the following weight:

w(u,v) =
1
2
(χP(u)c(u)+ χP(v)c(v)),

where

χP(u) =

{
1, if u ∈ P,
0, otherwise.

Let T ∗node be the optimal solution for NODE-WEIGHTED STEINER TREE in unit disk
graph G, with the property that every node has degree at most five. Then

w(T ∗node)≤ 2.5c(T ∗node).

Let T ∗edge be the minimum edge-weight Steiner tree on terminal set P. Then

w(T ∗edge)≤ w(T ∗node)

and from [10], one can compute a 1.39-approximation T for T ∗edge in polynomial-
time. Therefore

w(T)≤ 1.39 ·w(T∗edge)≤ 3.475 · c(T∗node).

Moreover,
c(T)≤ w(T)

since each Steiner node has degree at least two in T . Therefore,

c(T)≤ 3.475 · c(T∗node).

Above analysis suggests the following approximation algorithm for NODE-
WEIGHTED STEINER TREE for unit disk graphs.

3.475-Approximation
input: unit disk graph G = (V,E) with node weight c : V → R+

and a terminal set P⊆V .
compute 1.39-approximation T for the minimum edge-weight Steiner tree on
terminal set P in graph G with edge weight

w(u,v) = 1
2 (χP(u)c(u)+ χP(v)c(v)) for (u,v) ∈ E;

output T .

Theorem 5.2.2 (Zou et al. [133]). There exists a polynomial-time 3.475-approxi-
mation for NODE-WEIGHTED STEINER TREE in unit disk graphs.

By this theorem, if there exists a polynomial-time τ-approximation for
MINW-DS in unit disk graphs, then there exists a polynomial-time (τ + 3.475)-
approximation for MINW-CDS in unit disk graphs. The remaining part of this
chapter will be contributed to the study of MINW-DS in unit disk graphs.

80 5 Weighted CDS in Unit Disk Graph

5.3 Double Partition

The partition is a classical technique to design approximation algorithms [36]. In
Sect. 3.2, this technique has been used to design a PTAS for MIN CDS in unit disk
graphs. From there, one may see that the approximation performance ratio and the
running time have a trade-off. Indeed, the running time of (1+ ε)-approximation is
nO(1/ε2). As the approximation performance ratio 1+ε approaches to 1, the running
time nO(1/ε2) increases rapidly. Meanwhile, the size of cells, O(1/ε) in the partition
would also increase linearly. Indeed, the design of PTAS is based on the fact that
MIN-CDS is polynomial time solvable within any constant-size cell.

When applying the partition to MINW-DS, the trouble one meets is that even for
a small constant-size cell, no polynomial-time algorithm for the optimal solution has
been obtained so far. Only within a square of edge size at most

√
2/2, a polynomial-

time 2-approximation exists. In such a case, the double partition technique can be
employed to overcome the trouble.

Initially, the input unit disk graph is put in a square. In the first partition, the
square is partitioned into blocks; each block is a small square with edge length
m
√

2/2. In the second partition, each block is partitioned into smaller cells with
edge length

√
2/2. The advantage of double partition is on the second one. When

m is fixed, each block can be seen to contain a constant-number m2 of cells so that
many types of combinations about cells can be enumerated in polynomial-time. In
this section, the first partition is introduced under the assumption that there is a
ρ-approximation with running time nO(m2) for the following problem.

MINW-DS on a Block B: Given a unit disk graph G=(V,E) with a nonnegative node weight
w : V → R+, find the minimum-weight node subset to dominate all nodes lying inside of B.

With the first partition, one shows the following.

Theorem 5.3.1 (Huang et al. [66]). Suppose there exists a ρ-approximation for
MINW-DS on a fixed block B with running time nO(m2). Then for any ε > 0, there
exists (ρ + ε)-approximation with computation time nO(1/ε2) for MINW-DS in unit
disk graphs.

Proof. Choose m = 12max(1,	1/ε
). Put input unit disk graph G into a grid with
each block being an mμ ×mμ square (Fig. 5.1). All blocks are disjoint. To do so,
each block has boundary open on the left and on the top, but close on the right and
on the bottom.

For each nonempty block B, compute ρ-approximation for MINW-DS on block
B. Unit those ρ-approximation solutions for all nonempty block and denote this
union by A(P) for the partition P induced by this grid.

Now, shaft this grid in diagonal direction with distance 4 in each time. This
results in m/4 partitions P1, . . . ,Pm/4. Choose A = A(Pi) to be the one with the
minimum weight among A(P1), . . . ,A(Pm/4). Now, one claims that c(A(Pi))≤ (ρ +
ε)optWDS where optWDS is the total weight of optimal solution for MINW-DS.

5.3 Double Partition 81

mμ μ

Fig. 5.1 Double partition
(μ =

√
2/2)

Suppose OptWDS is an optimal solution for MINW-DS in unit disk graph G. For
each v ∈ OptWDS, the disk disk1(v) may intersect more than one blocks of Pi. Let
ζi(v) be the number of blocks in partition Pi, intersecting disk1(v). Let O(B) = {v∈
OptWDS | disk1(v)∩B �= /0}. Then O(B) is a feasible solution for MINW-DS on block
B. Therefore,

c(A(Pi))≤ ∑
B∈Pi

c(O(B)) = optWDS + ∑
v∈OptWDS

(ζi(v)− 1)c(v).

Note that disk1(v) can intersect at most one horizontal cutline and at most one
vertical cutline of Pi. Therefore, ζi(v) has only three possible values. ζi(v) = 1
if disk1(v) does not intersect any cutline of Pi, ζi(v) = 2 if disk1(v) intersects
exactly one cutline of Pi, and ζi(v) = 4 if disk1(v) intersects two cutlines of Pi,
one horizontal cutline and one vertical cutline.

Moreover, two vertical cutlines, possibly from two different partitions, have
distance 2

√
2 > 2. Thus, over all partitions, each disk disk1(v) for v ∈ OptWDS can

intersect at most one vertical cutline and similarly at most one horizontal cutline.
This means that for every v ∈ OptWDS,

m/4

∑
i=1

(ζi(v)− 1)≤ 3.

Therefore,

c(A) = min
1≤i≤m/4

c(A(Pi))

≤ 1
m/4

m/4

∑
i=1

∑
B∈Pi

c(O(B))

82 5 Weighted CDS in Unit Disk Graph

= optWDS +
4
m ∑

v∈OptWDS

m/4

∑
i=1

(ζi(v)− 1)c(v)

≤ optWDS +
12
m

optWDS

≤ (1+ ε)optWDS. �

5.4 Cell Decomposition

In the second partition, each block is partitioned into
√

2
2 ×

√
2

2 cells also by a grid. To
have all cells nonoverlapping, assume that each cell has open boundary on the right
and on the top, and close on the left and on the bottom. This section is contributed
to study the following problem.

MINW-DS on a Cell e: Given a unit disk graph G = (V,E) with a nonnegative node weight
w : V → R+, find the minimum-weight node subset to dominate all nodes lying inside of e.

The main duty of this section is to prove the following result.

Lemma 5.4.1. There is a polynomial-time 2-approximation for MINW-DS in a
cell e.

The proof of this lemma is based on a decomposition of nodes in the cell
e into two parts which form two polynomial-time solvable subproblems. This
decomposition stems from the property of optimal solution for MINW-DS in the
cell e.

Suppose Opt(e) is an optimal solution for MINW-DS in a cell e. If Opt(e)
contains a node v lying in e, then Opt(e) = {v} and c(v) = minu∈e c(u) because any
node in e is able to dominate every point of e. The difficult part of characterizing
Opt(e) is in the case that Opt(e) does not contain any node in e.

To deal with this case, let A,B,C,D be four vertices of e and divide outside of
e into eight areas NE (northeastern), NC (north-central), NW (northwestern), ME
(middle-east), MW (middle-west), SE (southeastern), SC (south-central), and SW
(southwestern) as shown in Fig. 5.2.

Let V (e) be the set of nodes lying in the cell e. V (e) will be decomposed into
two parts V (e) = V1∪V2 (V1∩V2 = /0) such that all points in V1 can be dominated
by nodes in Opt1(e) = Opt(e)∩ (N ∪ S) where N = NE ∪NC∪NW and S = SE ∪
SC∪SW , and V2 can be dominated by nodes in Opt2(e) = Opt(e)∩ (E ∪W) where
E = NE ∪ME ∪SE and W = NW ∪MW ∪SW .

Next, the existence of such a partition of V (e) for Opt(e) would be proved
through presentation of two lemmas.

For any vertex p∈V (e), let ∠p be a right angle at p such that two edges intersect
horizontal line AB each at an angle of π/4. Let Δsouth(p) denote the part of e lying
inside of ∠p. Similarly, we can define Δnorth(p), Δeast(p) and Δwest(p) as shown in
Fig. 5.3.

5.4 Cell Decomposition 83

A

B

D

e

NE NC NW

ME MW

SE SC SW

C

Fig. 5.2 Outside of e is
divided into eight areas

p

p
p

p

Fig. 5.3 Δsouth(p), Δnorth(p), Δeast(p) and Δwest(p)

Lemma 5.4.2. If p is dominated by a vertex u in area SC then every point in
Δsouth(p) can be dominated by u. The similar statement holds for ME and Δeast(p),
MW and Δwest(p), and NC and Δnorth(p).

Proof. Note that Δsouth(p) is a convex polygon. It is sufficient to show that the
distance from u to every vertex of Δsouth(p) is at most one.

Suppose v is a vertex of Δsouth(p) on BC (Fig. 5.4). Draw a line L′ perpendicular
to pv and equally divide pv. If u is below L′, then d(u,v)≤ d(u, p)≤ 1. If u is above
L′, then ∠uvp < π/2 and hence ∠uvC < 3π/4. Hence, d(u,v)< μ/cosπ/4 = 1.

A similar argument can be applied in the case that the vertex v of Δsouth(p) is on
DA or on AB. �

Consider two nodes p, p′ ∈ V (e). Suppose p is on the left of p′. Extend the left
edge of ∠p and the right edge of ∠p′ to intersect at point p′′. Define Δsouth(p, p′) to
be the part of e lying inside of ∠p′′ (Fig. 5.5). Similarly, we can define Δnorth(p.p′).

Lemma 5.4.3. Let K be a set of nodes which dominates V (e). Suppose p, p′ ∈V (e)
are dominated by some nodes in K ∩ SC, but neither p nor p′ is dominated by any
node in K∩(ME∪MW). Then every node in Δsouth(p, p′) can be dominated by node
in K ∩ (N ∪S) where N = NE ∪NC∪NW and S = SE ∪SC∪SW.

Proof. By Lemma 5.4.2, it suffices to consider a node u lying in Δsouth(p, p′) \
(Δsouth(p)∪Δsouth(p′)). For contradiction, suppose u is dominated by a node v in
K ∩ (ME ∪MW). If v ∈ ME , then Δeast(v) contains p and by Lemma 5.4.2, p is
dominated by v, a contradiction. A similar contradiction can result from v∈MW . �

84 5 Weighted CDS in Unit Disk Graph

p p

A

CB

D A

CB

D

L’L’

v v

u u

Fig. 5.4 The proof of Lemma 5.4.2

p"

p
p’

u

Fig. 5.5 Δsouth(p, p′)

Now, it is ready to give a property of Opt(e) in case that Opt(e)∩V (e) = /0.

Lemma 5.4.4. Let Opt(e) be an optimal solution for MINW-DS in the cell e.
Suppose Opt(e)∩V (e) = /0. Then there exist four nodes p, p′,q,q′ ∈V (e) such that
V1(e) = V (e)∩ (Δsouth(p, p′)∪ Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩
(N ∪S) and V2(e) =V (e)−V1(e) is dominated by Opt2(e) = Opt(e)∩ (E ∪W).

Proof. Let VS be the set of nodes in V (e), each of which can be dominated by a node
in SC but not dominated by any node in ME ∪MW . Let p be the node in V (S) such
that the left edge of Δ(p) is on the leftmost position among all left edges of Δ(v) for
v ∈VS. Let p′ be the node in VS such that the right edge of Δ(p′) is on the rightmost
position among all right edges of Δsouth(v) for v ∈ VS. Clearly, Δsouth(p, p′) has the
following properties:

(p1) Every node in Δsouth(p, p′) can be dominated by Opt1(e).
(p2) VS ⊂ Δsouth(p, p′).

5.4 Cell Decomposition 85

Similarly, let VN be the set of nodes in V (e), each of which can be dominated
by a node in SC but not dominated by any node in ME ∪MW . One can find nodes
q,q′ ∈VN to meet the following requirement.

(q1) Every node in Δnorth(q,q′) can be dominated by Opt1(e).
(q2) VN ⊂ Δnorth(p, p′).

It follows from (p1) and (q1) that V1(e) is dominated by Opt1(e). If follows from
(p2) and (q2) that V2(e) is dominated by Opt2(e). �

Based on Lemma 5.4.4, one can design a 2-approximation for MINW-DS in the
cell e as follows.

2-Approximation for MINW-DS in a cell e
input a weighted unit disk graph G and a cell e.
u← argminv∈V (e)c(v);
V+(e)← {v ∈V | disk1(v)∩ e �= /0};
V+

1 ←V+(e)∩ (N ∪S);
V+

2 ←V+(e)∩ (E ∪W);
A←{u};
for every {p, p′,q,q′} ⊂V (e)
do begin

V1←V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′));
V2←V (e)\V1;
find the minimum-weight subset O1 of V+

1 , dominating V1;
find the minimum weight subset O2 of V+

2 , dominating V2;
if c(A)> c(O1∪O2)

A←O1∪O2;
end-for;
output A(e) = A.

Clearly, if Opt(e)∩V (e) �= /0, then c(A) = c(Opt(e)). If Opt(e)∩V (e) = /0, then
for {p, p′,q,q′} in Lemma 5.4.4, one has

c(O1)≤ c(Opt1(e)),c(O2)≤ c(Opt2(e)).

Therefore,

c(A(e))≤ c(O1∪O2)≤ c(Opt1(e))+ c(Opt2(e))≤ 2c(Opt(e)).

The next section will show that O1 and O2 can be computed in polynomial-time.
Therefore, the following holds.

Lemma 5.4.5. There is a polynomial-time 2-approximation for MINW-DS in the
cell e.

The following result can be easily obtained based on Lemma 5.4.5.

86 5 Weighted CDS in Unit Disk Graph

Fig. 5.6 For two cells at ends
of a diagonal, at most one has
its interior intersecting a disk
of radius one

Theorem 5.4.6. There is a polynomial-time 28-approximation for MINW-DS in
any block B.

Proof. Suppose for each node v, disk1(v) intersects at most α cells e. Then

c(∪e∈BA(e))≤ ∑
e∈B

c(A(e))≤ ∑
e∈B

2c(Opt(e))≤ 2αc(Opt(b))

where Opt(B) is the optimal solution for MINW-DS in the block B.
Note that disk1(v) can intersect at most four horizontal strips and at most four

vertical strips, hence at most 16 cells. Furthermore, consider two cells at two ends
of a diagonal. Only one of them has its interiors intersecting a disk with radius
one (Fig. 5.6). Thus, α ≤ 14. This means that ∪e∈BA(e) is a 28-approximation for
MINW-DS in the block B. �

5.5 6-Approximation

Why and O1 and O2 be computed within polynomial-time in the 2-Approximation
for MINW-DS in a cell e? This section first answers this question. To do so, it
suffices to study the following problem.

MINW-SENSOR-COVER with Targets in a Strip: Consider a set P of targets lying inside a
horizontal strip and a set D of disks with radius one and centers lying either above or below
the strip (Fig. 5.7). Assume every target in P is covered by at least one disk in D. Given
disks with a nonnegative weight c : D→ R+, find the minimum total weight subset of disks
covering all targets.

Let
D+ = {D ∈ D | the center of Dlies above the strip}

and
D− = {D ∈ D | the center of D lies below the strip}.

5.5 6-Approximation 87

Fig. 5.7 Sensor Cover with
targets in a strip

D

D’ D’
DD D’

LL L

(d2) (d3)(d1)

Fig. 5.8 D′ is controlled by D at line L

Consider a disk D ∈ D+ intersecting a vertical line L. A disk D′ ∈ D+ is said to be
controlled by D at L, denoted by D′ ≺+

L D, if one of the following holds (Fig. 5.8):

(d1) D′ does not intersect L.
(d2) The lower endpoint of D′ ∩L is higher than the lower endpoint of D∩L.
(d3) The lower endpoint of D′ ∩L is identical to the lower endpoint of D∩L. But,

the center of D′ is on the right of the center of D.

Similarly, let D ∈ D− intersect a line L. Then a disk D′ ∈ D− is said to be
controlled by D, denoted by D′ ≺−L , if one of the following holds:

(d1) D′ does not intersect L.
(d2) The upper endpoint of D′ ∩L is lower than the upper endpoint of D∩L.
(d3) The upper endpoint of D′ ∩L is identical to the upper endpoint of D∩L. But,

the center of D′ is on the right of the center of D.

The following are important properties of controlledness.

Lemma 5.5.1. Let D,D′,D′′ ∈ D+ and L a vertical line. If D′′ ≺+
L D′ and D′ ≺+

L
D, then D′′ ≺+

L D. Similarly, for D,D′,D′′ ∈ D−, if D′′ ≺−L D′ and D′ ≺−L D, then
D′′ ≺−L D.

Proof. It follows immediately from the definition of controlledness. �

88 5 Weighted CDS in Unit Disk Graph

L’ L

p
i-1

p
ip

j

L’’

D

D’

Fig. 5.9 The proof of Lemma 5.5.1

Lemma 5.5.2. Let D and D′ be two disks and L a vertical line. Suppose D∩L �= /0.
Then

(e1) If D,D′ ∈ D+, then either D′ ≺+
L D or D≺+

L D′;
(e2) If D,D′ ∈ D−, then either D′ ≺−L D or D≺−L D′.

Proof. It follows immediately from the definition of controlledness. �
Lemma 5.5.3. Let L and L′ be two vertical lines such that L lies on the right of L′.
Then the following holds:

(L1) Let D,D ∈ D+. If D′ ≺+
L D and D≺+

L′ D′, then D∩Q(L′)⊆ D′ ∩Q(L′) where
Q(L′) is the closed lower-left quarter-plane bounded by the upper boundary
of the strip and L′.

(L2) Let D,D ∈D−. If D′ ≺−L D and D≺−L′ D′, then D∩Q′(L′)⊆D′ ∩Q′(L′) where
Q′(L′) is the closed upper-left quarter-plane bounded by the lower boundary
of the strip and L′.

Proof. For contradiction, suppose (L1) is not true, that is, there exists a point
p ∈ (D∩Q(L′))\ (D′ ∩Q(L′)). Let L′′ be the vertical line passing through p. Then
D′ ≺+

L′′ D. Then L′′ is on the left of L′. Let A be the lower endpoint of D∩L and
A′′ the lower endpoint of D∩L′′. Then D∩L′ �= /0. Let A′ be the lower endpoint of
D∩L′ and B′ the lower endpoint of D′ ∩L′. Then A′ is above B′. They both should
lie below the line AA′′ (Fig. 5.9). Therefore, D′ ∩AA′′ is located inside the segment
[A,A′′]. Let E and F be two endpoints of D′ ∩AA′′. Clearly, ∠EAF < ∠A′′A′A and
|EF| ≤ |AA′′|. Therefore,

5.5 6-Approximation 89

radius(D′) =
|EF|

2sin∠EB′F
<

|AA′′|
2sin∠A′′A′A

= radius(D).

a contradiction. �
Now, it is ready to show the following.

Theorem 5.5.4 (Ambühl et al. [2]). MINW-SENSOR-COVER with targets in a
strip can be solved in O(m4n) where n = |P| and m = |D|.
Proof. First, assume every disk in D has a positive weight since disks with zero
weight can be removed together with targets covered by them at the beginning.

Let p1, .., pn be all points in P in the ordering from left to right. Call as an
upper disk (lower disk) for any disk with center above (below) the strip. A dynamic
programming will be employed to find the optimal solution. For simplicity of
description, assume the two boundaries of the strip are also two disks with infinite
radius and weight zero. They do not cover any point in P. The upper bound is an
upper disk, and the lower bound is a lower disk. Note that these two disks do not
belong to D. But, the relations ≺+

L and ≺+
L can be extended to all upper disks and

all lower disks, respectively.
For an upper disks D and a lower disk D′ with D∪D′ covering pi, define by

Ti(D,D′) the one with the minimum total weight among disk subsets D′ satisfying
the following conditions:

1. D′ covers p1, . . . , pi.
2. D,D′ ∈ D′.
3. Let Li be the vertical line passing through pi. Then D controls every upper disk

in D′ at Li, and D′ controls every lower disk in D′ at Li.

Since two boundaries of the strip have zero weight and cover nothing, for simplicity
of the discussion, one assume that they cannot appear in Ti(D,D′)−{D,D′}. In
other word, they can play only the role of D or D′.

Let c(Ti(D,D′)) be the total weight of disks in Ti(D,D′). One claims that the
following recursion holds.

c(Ti(D,D′)) = min
D1,D2
{c(Ti−1(D1,D2))+ c({D,D′} \ {D1,D2})}, (5.1)

where upper disk D1 and lower disk D2 are over all possible pairs satisfying
conditions:

(c1) D1∪D2 covers pi−1.
(c2) Let Li be the vertical line passing through pi. Then D1 ≺+

Li
D and D2 ≺−Li

D′.

To show this claim, at the first choose D1 to be the upper disk in Ti(D,D′) which
controls every upper disk in Ti(D,D′) at Li−1. By Lemma 5.5.1, such a choice must
exist. Similarly, one can choose D2 to the lower disk in Ti(D,D′) which controls

90 5 Weighted CDS in Unit Disk Graph

every lower disk in Ti(D,D′). By Lemma 5.5.3, D∩Q(Li−1) ⊆ D1 ∩Q(Li−1) and
D′ ∩Q′ ⊆ D2∩Q′. Therefore, (Ti(D,D′)−{D,D′})∪{D1,D2} covers p1, . . . , pi−1.
Hence,

c(Ti(D,D′))− c({D,D′} \ {D1,D2})≥ c(Ti−1(D1,D2)),

that is,

c(Ti(D,D′))≥ min
D1,D2

(c(Ti−1(D1,D2))+ c({D,D′} \ {D1,D2})).

On the other hand, for any pair {D1,D2} satisfying (c1) and (c2), Ti−1(D1,D2)∪
{D,D′} covers p1, . . . , pi. Moreover, for any upper disk D̂ in Ti−1(D1,D2), one
must have D̂≺+

Li
D. Indeed, for contradiction, suppose D ≺+

Li
D̂. Then D̂ �= D1 and

hence D̂ ∈ D has a positive weight. By Lemma 5.5.1, D1 ≺+
Li

D̂. Note that by the

definition of Ti−1(D1,D2), D̂≺+
Li−1

D1. By Lemma 5.5.3, then D̂∩Q(Li−1) ⊆ D1∩
Q(Li−1), which means that D̂ can be deleted from Ti−1(D1,D2). This contradicts the
minimality of Ti−1(D1,D2).

Similarly, for any lower disk D̂ in Ti−1(D1,D2), one must have D̂ ≺−Li
D′.

Therefore,

c(Ti(D,D′))≤ Ti−1(D1,D2)+ c({D,D′} \ {D1,D2})

for any pair {D1,D2} satisfying (c1) and (c2). Therefore,

c(Ti(D,D′))≤ min
D1,D2

(Ti−1(D1,D2)+ c({D,D′} \ {D1,D2}))

for {D1,D2} over all pairs satisfying (c1) and (c2). Hence, (5.1) holds.
This recursion suggests a dynamic program for computing all Ti(D,D′). There

are O(nm2) Ti(D,D′)’s and each needs to be computed recursively in time O(m2).
Therefore, this dynamic program runs in time O(nm4). Finally, the minimum weight
of subset of disks covering all targets can be computed from minD,D′ c(Tn(D,D′)),
which requires O(m2) time. �

By Theorem 5.5.4, O1 and O2 in 2-Approximation for MINW-DS in a cell e can
be computed in polynomial time. Hence, a polynomial-time 28-approximation has
been obtained for MINW-DS in a block B.

However, an idea motivated from Theorem 5.5.4 may give a big improvement.
That is to combine V1(e) along a horizontal strip and combine V2(e) along a vertical
strip. With such an idea, the approximation performance ratio can be reduced from
28 to 6.

6-Approximation for MINW-DS in a block B.
input a unit disk graph G = (V,E) and a block B.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B.

5.5 6-Approximation 91

Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |
e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. For each horizontal strip Hi, compute a minimum weight
subset Opt(Hi) of disks with centers lying outside Hi to dominate
(∪e∈Hi∩(C−C′)V1(e)).

Step 2.2. For each vertical strip Y , compute a minimum weight subset Opt(Yi)
of disks with centers lying outside Yi to dominate (∪e∈Yi∩(C−C′)V2(e)).

Step 2.3 Compute O = (∪m
i=Opt(Hi))∪ (∪m

i=1Opt(Yi)).
Step 2.4 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A∗ = A(C′,U) to minimize the total weight c(A(C′,U) for C′
over all subsets of C and U over all choices of ve for all e ∈C′.

output A∗.

Theorem 5.5.5 (Huang et al. [66]). There exists a 6-approximation for MINW-DS
in a block B, with running time nO(m2) where n is the number of nodes v such that
disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A∗. There are O(2m2
) possible

subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combinations of

{p, p′,q,q′} for all cells in C−C′. For each combination, computing all Opt(Hi)

and all Opt(Yi) needs time O(n5). Therefore, total computation time is nO(m2).
Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-

DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪
Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Note that ∪e∈Hi∩(C−Ci)Opt1(e) is a feasible solution for the minimization problem
solved at Step 2.1. Therefore,

c(Opt(Hi))≤ c(∪e∈Hi∩(C−Ci)Opt1(e)).

92 5 Weighted CDS in Unit Disk Graph

1 2 3

4

5

6

Fig. 5.10 Each disk1(v)
intersects at most six strips
not containing v

Similarly,
c(Opt(Yi))≤ c(∪e∈Yi∩(C−Ci)Opt2(e)).

Therefore

c(O) ≤
m

∑
i=1

c(∪e∈Hi∩(C−Ci)Opt2(e))

+
m

∑
i=1

c(∪e∈Yi∩(C−Ci)Opt2(e))

≤ 6 · c(Opt−U)

since each disk diski(v) can intersect at most six strips which do not contain v
(Fig. 5.10). Hence,

c(A∗) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ 6 · c(Opt−U)+ c(U)

≤ 6 · c(Opt). �

5.6 4-Approximation

Zou et al. [134] studied a generalization of MinW-Sensor-Cover with targets in a
strip.

MINW-CHROMATIC-DISK-COVER: Consider m parallel horizontal strips H1, . . .,Hm as
shown in Fig. 5.11. To have all strips disjoint, assume that each strip has open boundary
on the top and close boundary on the bottom. Given a set R of red disks with radius one, a
set B of blue disk with radius one, a positive weight function c : R∪B→ R+, and a set P
of targets points lying in those strips, find the minimum-weight subset of red disks and blue
disks such that every target in strip Hi is covered by a chromatic disk, that is, by either a red
disk with center lying above Hi or a blue disk lying below Hi.

5.6 4-Approximation 93

red

blue

Fig. 5.11 Chromatic disk
cover

When m = 1, MINW-CHROMATIC-DISK-COVER is exactly MINW-SENSOR-
COVER with targets in a strip.

Theorem 5.6.1 (Zou et al. [134]). MINW-CHROMATIC-DISK-COVER can be
solved in time O(nd4m) where n = |P| and d = |R∪B|.
Proof. Denote Ri = R ∩ Hi−1 for i = 2, . . . ,m and R1 = {disk1(v) ∈ R |
v lies above H1}. Denote Bi = B∩Hi+1 for i = 1, . . . ,m− 1 and Bm = {disk1(v) ∈
B | v lies below Hm}.

Let R+
i be obtained from R by putting a dumming disk with radius infinite,

which is the lower half plane bounded by the upper boundary of Hi. Let B+i be
obtained from Bi by putting a dumming disk with radius infinite, which is the upper
half plane bounded by the lower bound of Hi. Consider a 2m-dimensional vectors D
in

S =R+
1 ×·· ·×R+

m×B+1 ×·· ·×B+m .
For simplicity, D is also used to denote the set of components of D. Denote by Di

the ith component of D. Then one has Di ∈ R+
i and Dm+i ∈ B+i for 1 ≤ i ≤ m.

Consider D,D′ ∈ S. For any vertical line L, D′ is said to be controled by D, written
as D′ ≺L D, if for 1≤ i≤ m, D′i ≺+

L Di and D′m+i ≺−L D−m+ i.
Let L1, ..,Lk be all vertical lines passing through target points in P in the ordering

from left to right. Let Pi be the subset of targets in P lying on Li or on the left of Li.
For any D ∈ S, if D does not cover Pj−Pj−1, then define Tj(D) = nil if there does
not exist a disk subset D′ satisfying the following conditions:

• D′ is a chromatic disk cover for Pj.
• D⊆D′.
• For any disk D′ ∈ D′ ∩Ri, D′ ≺+

Lj
Di.

• For any disk D′ ∈ D′ ∩Bi, D′ ≺−Lj
Dm+i.

If such a disk subset D′ exists, then define Tj(D) to be the one with the minimum
total weight.

Since all dumming disks have zero weight and cover nothing, for simplicity of
the discussion, one assumes that they cannot appear in Tj(D)\D.

94 5 Weighted CDS in Unit Disk Graph

Now, one claims that for D covering Pj−Pj−1, the following recursion holds.

c(Tj(D)) = min
D′≺L j D

{c(Tj−1(D
′))+ c(D\D′)}. (5.2)

To show this claim, one first chooses D′i to be the disk in Tj(D)∩R+
j which controls

every disk in Tj(D)∩R+
j at Lj−1. By Lemma 5.5.1, such a choice must exists.

Similarly, one can choose D′m+i to the disk in Tj(D) which controls every disk in
Tj(D)∩B+i at line Lj−1. Define D′ = (D′i,1≤ i≤ 2m).

By Lemma 5.5.3, Di ∩Qi(Lj−1) ⊆ D′i ∩Qi(Lj−1) for 1 ≤ i ≤ m where Qi(Lj) is
the close lower-left quarter-plane bounded by Lj−1 and the upper boundary of Hi.
Similarly, Dm+i ∩Q′i(Lj−1) ⊆ D′m+i ∩Q′i(Lj−1) for 1 ≤ i ≤ m. This means that if
Tj(D) �= nil, then (Tj(D)− (D\D′) is a chromatic disk cover for Pj−1. Hence,

c(Tj(D))− c(D\D′)≥ c(Tj−1(D′)),

that is,
c(Tj(D))≥ min

D′≺L j D
(c(Tj−1(D

′))+ c(D\D′)). (5.3)

If Tj(D) = nil, then c(Tj(B)) = ∞ and hence (5.3) holds trivially.
On the other hand, for any D′ ≺ D, if Tj−1(D′) = nil, then c(Tj−1(D′) = ∞ >

c(Tj(D)). Next, assume that Tj−1(D′) �= nil. Then Tj−1(D′)∪D is a chromatic cover
of Pj.

Moreover, for any disk D̂ in Tj−1(D′), one must have D̂ ≺+
Lj

Di if D̂ ∈ R+
i and

D̂ ≺−Lj
Dm+i if D̂ ∈ B+i . In fact, for contradiction, suppose D̂ ∈ R+

i and D̂ is not

controlled by Di. Thus, D̂ �∈ D′ and hence c(D̂) > 0. Moreover, by Lemma 5.5.2,
Di ≺+

Lj
D̂. By Lemma 5.5.1, D′i ≺+

Lj
D̂. By Lemma 5.5.3, D̂ ∩Qi(Lj−1) ⊆ D′i ∩

Qi(Lj−1). This means that D̂ can be deleted from Tj−1(D′), contradicting the
minimality of Tj−1(D′). Similarly, it is also impossible that D̂ ∈ B+i and D̂ is not
controlled by Dm+i.

From above argument, one can see that Tj−1(D′)∪D satisfies all conditions for
aboveD′. Therefore,

c(Tj(D)) ≤ c(Tj−1(D
′ ∪D))

= c(Tj−1(D
′))+ c(D\D′)

for all D′ ≺Lj D. This completes the proof of (5.2).
The recursion (5.2) suggests a dynamic program for computing all Tj(D).

There are O(nd2m) Tj(D)’s, and each needs to be computed recursively in time
O(d2m). Therefore, this dynamic program runs in time O(nd4m). Finally, the
minimum weight of subset of disks covering all targets can be computed from
minD∈S c(Tk(D)), which requires O(d2m) time. �

5.6 4-Approximation 95

4-Approximation for MINW-DS in a block B.
input a unit disk graph G = (V,E) and a block B.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B.
Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |

e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. Compute an optimal solution Opt(H) for MINW-CHROMATIC-DISK-
COVER with horizontal strips H1, . . . ,Hm, target set P = (∪e∈(C−C′)V1(e)),
red disk set R = {(disk1(v), red) | v ∈ V −U} and blue disk set B =
{(disk1(v),blue) | v ∈V −U}.

Step 2.2. Compute an optimal solution Opt(Y) for MINW-CHROMATIC-DISK-
COVER with vertical strips Y1, . . . ,Ym, target set P=(∪e∈(C−C′)V2(e)), red disk
setR= {(disk1(v), red) | v∈V −U} and blue disk set B = {(disk1(v),blue) |
v ∈ V −U}. (Note: Each target is required to be covered by either a red disk
from the left or a blue disk from the right.)

Step 2.3 Compute O = Opt(H)∪Opt(Y).
Step 2.4 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A∗ = A(C′,U) to minimize the total weight c(A(C′,U)) for C′
over all subsets of C and U over all choices of ve for all e ∈C′.

output A∗.

Theorem 5.6.2 (Zou et al. [134]). There exists a 4-approximation for MINW-DS
in a block B, with running time nO(m2) where n is the number of nodes v such that
disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A∗. There are O(2m2
) possible

subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combinations of

{p, p′,q,q′} for all cells in C−C′. For each combination, computing all Opt(H) and
all Opt(Y) needs time O(n4m+1). Therefore, total computation time is nO(m2).

Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-
DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪

96 5 Weighted CDS in Unit Disk Graph

Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Let

D1(e) = {(disk1(v), red) | v ∈ Opt1(v)∩N}∪{(disk1,blue) | v ∈ Opt1(v)∩S}.

Then ∪e∈(C−Ci)D1(e) is a feasible solution for the minimization problem solved at
Step 2.1. Therefore,

c(Opt(H))≤ c(∪e∈(C−Ci)D1(e)).

Similarly, let

D2(e) = {(disk1(v), red) | v ∈Opt2(v)∩E}∪{(disk1,blue) | v ∈Opt2(v)∩W}.

Then ∪e∈(C−Ci)D2(e) is a feasible solution for the minimization problem solved at
Step 2.2. Therefore,

c(Opt(Y)≤ c(∪e∈(C−Ci)D2(e)).

Therefore

c(O) ≤ c(∪e∈(C−Ci)D1(e))

+c(∪e∈(C−Ci)D2(e))

≤ 4 · c(Opt−U)

since each disk diski(v) can involve feasible solutions for at most two minimization
problems and at each feasible solution disk1(v) has at most two copies, one in red
and one in blue. Hence,

c(A∗) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ 4 · c(Opt−U)+ c(U)

≤ 4 · c(Opt).
�

5.7 3.63-Approximation

Erlebach and Mihalak [46] studied another generalization of MINW-SENSOR-
COVER with targets in a strip.

5.7 3.63-Approximation 97

H2

H1

Fig. 5.12 Multi-strips

Fig. 5.13 The upper envelope

MINW-SENSOR-COVER with Targets in Multi-Strips: Consider m parallel horizontal strips
H1, . . .,Hm in a block as shown in Fig. 5.12. To have all strips disjoint, assume that each
strip has open boundary on the top and close boundary on the bottom. Given a set D of n
disks with radius one and a positive weight function c : D→ R+, and a set P of k targets
points lying in strips H1∪H3∪·∪H2	m/2
−1, find the minimum weight subset of disks such
that every target in strip Hi is covered by a disk with center lying outside of Hi.

Erlebach and Mihalak [46] transformed this problem to a shortest path problem.
To explain this transformation, the first is to study an optimal solution Opt for
MINW-SENSOR-COVER with targets in multi-strips.

Consider a strip Hi for some odd i, 1 ≤ i ≤ m. A disk in Opt is called an upper
disk with respect to Hi if its center lies above Hi. For simplicity of discussion, the
half plane above Hi is also considered as an upper (dumming) disk with respect to
Hi. All upper disks with respect to Hi form an upper area of Hi. The boundary of
this area is called the upper envelope of Hi (Fig. 5.13). Similarly, one may define
lower disks, the lower dumming disks the lower area and the lower envelope of Hi.

Lemma 5.7.1. An upper disk disk1(v) with respect to Hi can appear in the upper
envelope of Hi at most once. If an upper disk disk1(u) is on the left of another upper
disk disk1(v) on the upper envelope of Hi, then the center u is on the left of the
center v.

98 5 Weighted CDS in Unit Disk Graph

v
u

x

yz

Fig. 5.14 The proof of
Lemma 5.7.1

Similarly, a lower disk disk1(v) with respect to Hi can appear in the lower
envelope of Hi at most once. If a lower disk disk1(u) is on the left of another lower
disk disk1(v) on the lower envelope of Hi, then the center u is on the left of the
center v.

Proof. For contradiction, suppose the upper disk disk1(u) is on the left of the upper
disk disk1(v) on the upper envelope of strip Hi, but the center u is on the right of the
center v. Choose a point x from circle1(u) appearing on the upper envelope and a
point y from circle1(v) appearing on the upper envelope. Then segments ux and vy
intersect, say at z. Since x and y appear in the upper envelope, one must have |ux|<
|vx| and |vy| < |uy|. Therefore, |ux|+ |vy|< |vx|+ |uy|. However, |vx| < |vz|+ |zx|
and |uy| < |uz|+ |zy|. Hence |vx|+ |uy| < |vz|+ |zx|+ |uz|+ |zy| = |ux|+ |vy|, a
contradiction. Therefore, the second sentence is true (Fig.5.14).

The first sentence is a corollary of the second sentence. In fact, if disk1(v) appears
twice on the upper envelope, then between two appearances, there must exist another
disk disk1(u) appearing. This means that v is on the left of u and also on the right of
u, a contradiction. �

A corner of the upper envelope of Hi is an intersection point of two upper disks
on the envelope. A corner of the lower envelope of Hi is an intersection point of
two lower disks on the envelope. A sweep line Li for Hi is a vertical line that starts
from a position on the left of all disks in D and moves to right until a position on
the right of all disks in D. Li’s movement is discrete. Each intermediate position of
Li must pass through a corner on either the upper envelope or the lower envelope.
Each of such positions is denoted by a quadruple (d1,d2;d3,d4) with either d1 = d2

or d3 = d4 where d1,d2 are upper disks and d3,d4 are lower disks. If d1 �= d2, then Li

passes through the intersection point of d1 and d2 on the upper envelope. If d3 �= d4,
then Li passes through the intersection point of d3 and d4 on the lower envelope. For
the initial and the end position of Li, d1 = d2 is the upper dumming disk and d3 = d4

is the lower dumming disk.
A move of Li is from its current position (d1,d2;d3,d4) to an adjacent position on

the right. If d1 = d2, this adjacent position is either (d2,d;d4,d4) or (d1,d1;d4,d).
In this case, one says that the disk d3 leaves Li and the disk d enters. If d3 = d4, then
the right adjacent position is either (d2,d;d4,d4) or (d2,d2;d4,d). In this case, one
says that the disk d1 leaves and the disk d enters (Fig. 5.15).

5.7 3.63-Approximation 99

Fig. 5.15 Four possibilities for a sweep line to move to right adjacent position

Note that every disk in Opt must appear in the upper or lower envelope for
some strip Hi and the weight of Opt equals the total weight of disks appearing on
envelopes. The sweep line is used to calculate this total weight so that one can turn
the sweeping process into a shortest path of a graph. There is one trouble if the sweep
line is doing counting individually. Each disk may appear in the lower envelope of
strip Hi and also in the upper envelope of Hi+2. If every sweep line does individual
counting, then the total weight is not exactly c(Opt). Therefore, all sweep line may
be required to do a combined action and to employ a technique for avoiding the
double counting.

A configuration of sweep lines consists of positions of sweep lines L1, L3, . . .,
L2	m/2
−1 at a moment. A legal move from a configuration A to another configuration
B consists of exactly one move of one sweep line which is required to satisfy the
following constraint:

(m1) In this move, if a lower disk d leaves line Li, then the disk d should be already
passed by Li+2. Otherwise, Li has to wait for Li+2 to pass the disk d.

(m2) In this move, if an upper disk d leaves line Li, then the disk d should be
already passed by Li−2. Otherwise, Li has to wait for Li−2 to pass the disk d.

Here, by a disk passed by a sweep line at position (d1,d2;d3,d4), one means that
if d is an upper disk, then the center of d is not on the right of the center of d2; if d
is a lower disk, then the center of d is not on the right of the center of d4.

100 5 Weighted CDS in Unit Disk Graph

Why can this constraint eliminate the double counting? It is because one can set
counting rule as follows: The counting is performed only on a newly entered disk
in each move. This means that when a disk d enters a configuration in a move, the
weight of d is counted if the configuration does not contain d, and the weight of d
is not counted if the configuration already contains d.

Can this constraint stop the moving of configuration? The answer is no because
if the moving stops, then every sweep line is waiting for another line to pass a disk.
Then there are two cases.

Case 1. There are two sweep lines Li and Li+2 such that Li waits for Li+2 to pass
a disk d and Li+2 waits for Li to pass another disk d′. In this case, Li should be in
position (d1,d2;d,d4) and Li+2 should be in position (d′,d′2;d′3,d

′
4). Since Li waits

for Li+2 to pass d, the center of d is on the right of the center of d′2 and hence by
Lemma 5.7.1, the center of d is on the right of the center of d′. Similarly, the center
of d′ should be on the right of the center of d, a contradiction.
Case 2. Case 1 does not occur. If Li waits for Li+2, then Li+2 waits for Li+4, etc.
However, since the number of strips if finite, this process cannot go forever, a
contradiction. If Li waits for Li−2, then Li−2 waits for Li−4. This process cannot
go forever, neither.

Next, an auxiliary graph G(Opt) can be constructed to turn the moving of
configuration into a shortest path. All possible configurations form all vertices.
There exists an arc (A,B) from a configuration A to another configuration B if and
only if B can be reached from A through a legal move. The start vertex s is the
configuration consisting of all sweep lines on the left of all disks in D. The target
vertex is the configuration consisting of all sweep lines on the right of all disks inD.

Now, it is ready to show the following.

Theorem 5.7.2 (Eriksson et al. [45]). MINW-SENSOR-COVER with targets in
multi-strips can be solved in time O(n3(m+1)).

Proof. Use D instead of Opt to construct the sweep line positions, configurations,
legal move of configurations, and graph G(D) by following the same rules in
the construction of graph G(Opt), except an additional requirement for a sweep
line move: during the move, targets between two positions should be covered by
two envelope. Then G(D) contains G(Opt) as a subgraph, and the shortest path
from configuration s to configuration t would give an optimal solution for SENSOR

COVER with targets in multi-strips. Since each sweep line position is determined
by three disks, each sweep line has at most O(n3) positions. Hence, the number
of configurations is at most O(n3m/2) for even m and O(n3(m+1)/2) for odd m.
Therefore, computing the shortest path in G(D) takes time O(n3m) for even m and
O(n3(m+1)) for odd m. �

Based on Theorem 5.7.2, Willson et al. [114] constructed a polynomial-time
3.63-approximation for MINW-DS in a block B. Their main idea is motivated
from the following observation. To construct an approximation solution, MINW-
DS in a block B is divided into four problems, two on horizontal strips and two on
vertical strips. Consider the two on horizontal strips. One is on strips H1,H3,

5.7 3.63-Approximation 101

involved two problems

involved one problem

Fig. 5.16 disk1(v) involves
only one problem if v is
nearly at the central of Hi

The other one is on strips H2,H4, Suppose disk1(v) with v ∈ Hi. Then disk1(v)
will involve only one problem which is on strips Hi−1 and Hi+1 if v lies nearly at the
central of Hi. This means that in average, disk1(v) involves less than two problems.
How to take advantage of this average estimation? Shifting the partition on the block
B is a traditional technique (Fig. 5.16).

3.63-Approximation for MINW-DS in a block.
input a unit disk graph G = (V,E) and a block B.
Put the block B at the position with (0,0) as its left-lower corner. Let P(a,b)
be a grid with cell size μ× μ and the left-lower corner

(−amμ/q,−bmμ/q) such that the block B is covered where μ =
√

2
2 .

A← nil (c(nil) = ∞);
for a = 0 to q− 1 do

for b = 0 to q− 1 do begin
compute A(a,b) with procedure A(a,b);
if c(A)> c(A(a,b))

then A← A(a,b);
end-for;

output A.

Procedure A(a,b)
input a unit disk graph G = (V,E) and a block B. Use grid P(a,b) partition the

block B into cells.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B. Define

Hodd = H1∪H3∪·· ·∪H2	m/2
−1,

Heven = H2∪H4∪·· ·∪H2�m/2�,

Yodd = Y1∪Y3∪·· ·∪Y2	m/2
−1,

Yeven = Y2∪Y4∪·· ·∪Y2�m/2�.

102 5 Weighted CDS in Unit Disk Graph

Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |
e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. Compute an optimal solution Opt(Hodd) for SENSOR-COVER

with targets in multi-strips and with horizontal strips Hodd, target set
P = (∪e∈(C−C′)∩Hodd

V1(e)), disk set D = {disk1(v) | v ∈V −U}.
Step 2.2. Compute an optimal solution Opt(Heven) for SENSOR-COVER

with targets in multi-strips and with horizontal strips Heven, target set
P = (∪e∈(C−C′)∩HevenV1(e)), disk set D = {disk1(v) | v ∈V −U}.

Step 2.3. Compute an optimal solution Opt(Yodd) for SENSOR-COVER

with targets in multi-strips and with vertical strips Yodd, target set
P = (∪e∈(C−C′)∩Yodd

V2(e)), disk set D = {disk1(v) | v ∈V −U}.
Step 2.4. Compute an optimal solution Opt(Yeven) for SENSOR-COVER with tar-

gets in multi-strips with vertical strips Yeven, target set
P = (∪e∈(C−C′)∩YevenV2(e)), disk set D = {disk1(v) | v ∈V −U}.

Step 2.5 Compute O = Opt(Hodd)∪Opt(Heven)∪Opt(Yodd)∪Opt(Yeven)
Step 2.6 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A(a,b) = A(C′,U) to minimize the total weight c(A(C′,U)
for C′ over all subsets of C and U over all choices of ve for all e ∈C′.

output A(a,b).

Theorem 5.7.3 (Willson et al. [114]). There exists a 3.63-approximation for
MINW-DS in a block B, with running time nO(m2) where n is the number of nodes v
such that disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A(a,b). There are O(2m2
)

possible subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combi-

nations of {p, p′,q,q′} for all cells in C−C′. For each combination, computing
Opt(Hodd), Opt(Heven), Opt(Yodd) and Opt(Yeven) needs time O(n4m+1). Therefore,
total computation time is nO(m2).

Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-
DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪

5.7 3.63-Approximation 103

Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Then that ∪e∈(C−Ci)∩Hodd
Opt1(e) is a feasible solution for the minimization problem

solved at Step 2.1. Therefore,

c(Opt(Hodd))≤ c(∪e∈(C−Ci)∩Hodd
Opt1(e)). (5.4)

Similarly,
c(Opt(Heven))≤ c(∪e∈(C−Ci)∩Heven Opt1(e)). (5.5)

c(Opt(Yodd))≤ c(∪e∈(C−Ci)∩Yodd
Opt2(e)). (5.6)

c(Opt(Hodd))≤ c(∪e∈(C−Ci)∩YevenOpt2(e)). (5.7)

For every v ∈ Opt, define

τ1(v;a,b) =

{
1 if disk1(v) intersets three horizontal strips,
2 otherwise,

and

τ2(v;a,b) =

{
1 if disk1(v) intersets three vertical strips,
2 otherwise.

Then disk1(v) involves τ1(v;a,b) of two equations (5.4) and (5.5), and τ2(v;a,b) of
two equations (5.6) and (5.7), Therefore

c(O) ≤ c(∪e∈(C−Ci)∩Hodd
Opt1(e))+ c(∪e∈(C−Ci)∩Heven Opt1(e))

+c(∪e∈(C−Ci)∩Yodd
Opt2(e))+ c(∪e∈(C−Ci)∩YevenOpt2(e))

≤ ∑
v∈Opt−U

c(v)(τ1(v;a,b)+ τ2(v : a,b)).

Hence,

c(A(a,b)) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ ∑
v∈Opt

c(v)(τ1(v;a,b)+ τ2(v : a,b)).

For any v ∈ Opt, note that for any fixed b, there exist at least � 3μ−2
μ/q � values of a

such that τ1(v;a,b) = 1, and for any fixed a, there exist at least � 3μ−2
μ/q � values of b

such that τ2(v;a,b) = 1. Therefore,

104 5 Weighted CDS in Unit Disk Graph

A ≤ 1
q2

q−1

∑
a=0

q−1

∑
b=0

∑
v∈Opt

c(v)(τ1(v;a,b)+ τ2(v;a,b))

≤
(

4− 2
�(3− 2

√
2)q�

q

)
· c(Opt).

As q→ ∞, �(3−2
√

2)q�
q goes to 3−2

√
2. Since 4−2(3−2

√
2)< 3.63, there exists a

fixed q such that (4− 2 �(3−2
√

2)q�
q)< 3.63. �

	Chapter5 Weighted CDS in Unit Disk Graph
	5.1 Motivation and Overview
	5.2 Node-Weighted Steiner Tree
	5.3 Double Partition
	5.4 Cell Decomposition
	5.5 6-Approximation
	5.6 4-Approximation
	5.7 3.63-Approximation

