
Chapter 12
CDS in Planar Graphs

Simple, geometric forms and planar surfaces
define Jeep Patriot’s timeless, purpose-built design.

TREVOR CREED

12.1 Motivation and Overview

Although MIN-CDS in general graphs is hard to approximate, the restriction to
certain special graph classes admits much better approximation results. MIN-CDS
in planar graphs remains NP-hard even for planar graphs that are regular of degree 4
[57]. The related problem, MIN-DS in planar graphs, is also NP-hard even for planar
graphs with maximum vertex degree 3 and planar graphs that are regular of degree
4 [57]. It is well known that MIN-DS in planar graphs possesses a polynomial-
time approximation scheme (PTAS) based on the shifting strategy [3]: For any
constant ε > 0, there is a polynomial-time (1+ ε)-approximation algorithm. Thus,
it is immediate to conclude that MIN-CDS in planar graphs can be approximated
within a factor 3 + ε for any ε > 0 in polynomial time. However, the degree of
the polynomial grows with 1/ε and hence, the approximation scheme is hardly
practical.

In this chapter, we present a simple heuristic for MIN-CDS in general graphs
developed in [105]. When running on graphs excluding Km (the complete graph of
order m) as a minor, the heuristic has an approximation ratio of at most 7 if m= 3, or

at most m(m−1)
2 +5 if m ≥ 4. In particular, if running on a planar graph, the heuristic

has an approximation ratio of at most 15. The remaining of this chapter is organized
as follows. In Sect. 12.2, we introduce some related graph-theoretic concepts and
parameters. In Sect. 12.3, we describe the heuristic for MIN-CDS in general graphs.
In Sect. 12.4, we provide an upper bound on the cardinality of the CDS output by
the heuristic.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 12,
© Springer Science+Business Media New York 2013

183

184 12 CDS in Planar Graphs

12.2 Preliminaries

Let G= (V,E) be a graph. We sometimes write V (G) instead of V and E (G) instead
of E . For any U ⊆ V , we use G [U] to denote the subgraph of G induced by U . The
distance distG (u,v) in G of two vertices u,v ∈V (G) is the length of a shortest path
between u and v in G. The distance between a vertex v and a set U ⊆V (G) is

min
u∈U

distG (u,v) .

The distance between two subsets U and W of V (G) is

min
u∈U

min
w∈W

distG (u,w) .

A vertex set U ⊆V (G) is a k-independent set (k-IS) of G if the distance between any
pair of vertices in U is greater than k. The k-independence number of G, denoted by
αk (G), is the largest cardinality of a k-IS. Note that a 1-IS is a usual IS and α1 (G)
is the usual independence number α (G). The domination number of G, denoted by
γ (G), the connected domination number of G, denoted by γc (G), and α2 (G) are
related by the following inequality [44].

α2 (G)≤ γ (G)≤ γc (G) .

To see why α2 (G)≤ γ (G), let U ⊆V (G) be a maximum 2-IS of G. For each u ∈U ,
let NG [u] denote the closed neighborhood of u in G. Then the closed neighborhoods
NG [u] for all u ∈ U are pairwise disjoint. Thus, each dominating set of G must
contain at least one vertex from each NG [u]. This implies that γ (G)≥ α2 (G).

A contraction of an edge (u,v) in G is made by identifying u and v with a new
vertex whose neighborhood is the union of the neighborhoods of u and v (with
resulting multiple edges and self-loops deleted). A contraction of G is a graph
obtained from G by a sequence of edge contractions. A graph H is a minor of G
if H is the contraction of a subgraph of G. G is H-free if G has no minor isomorphic
to H. For example, by Kuratowski’s theorem, a graph is planar if and only if it is both
K5-free and K3,3-free. In this chapter, we focus on Km-free graphs. Our algorithm
would find a CDS of size at most

(
m(m− 1)

2
+ 5

)
α2 (G)− 5

of a Km-free graph G for any m≥ 4. This implies that if G is Km-free for some m≥ 4,
then

γc (G)≤
(

m(m− 1)
2

+ 5

)
α2 (G)− 5.

In particular, for a planar graph G,

γc (G)≤ 15α2 (G)− 5.

12.3 Algorithm Description 185

12.3 Algorithm Description

We first give a brief overview on the algorithm design. The algorithm is presented
as a color-marking and time-stamping process. Each vertex maintains one of the
three colors: black, gray, and white, which is initially white. In addition, each vertex
maintains a set of stamps, which is initially empty. The algorithm runs in proceeds
in iterative phases. In the kth phase, a subset Bk of nonblack vertices are marked with
black, and all of their gray neighbors are stamped with the phase number (interpreted
as the time) k while keeping all previous stamps, and all of their white neighbors are
marked gray and stamped with the current phase number k. At the end of the kth
phase, all black nodes have to be connected, and each white vertex, if there is any
left, has a gray neighbor with time-stamp j for every 1 ≤ j ≤ k. The algorithm ends
when no white vertex is left and outputs all black vertices which form a CDS.

Now, we describe the algorithm. For the simplicity of description, we introduce
some new terms and notations. Given a color marking of all vertices of G, the
deficiency graph is the graph obtained from G by first removing all black vertices
and those gray vertices without white neighbors, and then removing edges between
gray vertices. Thus, each vertex of a deficiency graph is either white or gray, and
each connected component of a deficiency graph must have at least one white vertex.
Given a vertex v and a positive integer k, we use MarkStamp(v,k) to denote the
basic operation which marks v black and all white neighbors of v gray and stamps v
and all its nonblack neighbors with k.

Consider a connected graph H and a positive integer k which satisfy the following
properties: Each vertex of H is either white or gray and at least one vertex is white.
If k = 1, then all vertices are white; and otherwise, every white vertex is adjacent to
a gray vertex stamped with j for every 1 ≤ j ≤ k− 1. Such pair (H,k) is referred
to as a residue pair. A restricted connected 2-dominating set (RC2DS) of a residue
pair (H,k) is a subset of vertices U of H satisfying that:

• H[U] is connected.
• Every white vertex not in U , if there is any, is at a distance of exactly two from U .
• And for every 1 ≤ j ≤ k− 1, at least one vertex in U has a stamp j

We present a simple procedure, called RC2DS(H,k), which takes a residue pair
(H,k) as input and produces a RC2DS for (H,k) which are marked black and a color
marking and time-stamping of the remaining vertices. The procedure RC2DS(H,k)
consists of four steps:

• Step 1: Initialization. If k ≥ 2, let a j = 0 for j = 1, . . . ,k− 1.
• Step 2: Sorting. Build a spanning tree T of H rooted at a white vertex, and

compute a breadth-first-search order v1,v2, . . . ,vs of all white vertices in H with
respect to T .

• Step 3: Coloring and Stamping. MarkStamp(v1,k). For i = 2 to s, if vi is white
and has no gray neighbors stamped with k, proceed as follows:

186 12 CDS in Planar Graphs

(a) Set l = 1, u1 = vi. Repeat the following iteration until ul is black: If k ≥ 2 and
ul is gray, set a j = 1 for each stamp j < k of ul . If ul has a black neighbor,
set ul+1 to any such neighbor; otherwise, if ul has a gray neighbor stamped
with k, set ul+1 to any such neighbor; otherwise, set ul+1 to its parent in T .
Increment l by 1.

(b) Repeat the following iteration until l = 1: Decrement l by 1 and invoke
MarkStamp(ul ,k).

• Step 4: Post-processing. If k ≥ 2, perform the following processing. For j = 1 to
k− 1, if a j = 0, choose a gray neighbor u of v1 stamped with j, set at = 1 for
each stamp t < k of u, and then MarkStamp(u,k).

The k− 1 boolean variables a j for 1 ≤ j ≤ k − 1 indicate whether at least one
black vertex has a stamp j. They are initialized to zero in Step 1. Whenever a gray
vertex with stamp j is marked black at Step 3 or Step 4, a j is set to one. Step 4
ensures that all these boolean variables are one eventually.

The for-loop in Step 3 guarantees that in the end, every white vertex is adjacent
to a gray vertex stamped with k, and thus is exactly two hops away from some
black vertex. The inner loop in Step 3(a) establishes a path from a white vertex vi

without gray neighbors stamped with k to some black vertex. Let Pi be the subpath
of this path excluding the black end-vertex. The inner loop in Step 3(b) invokes
MarkStamp(u,k) for all vertices in Pi. We claim that Pi consists of either three
or four vertices. Indeed, u1 is vi, and since vi is white and has no gray neighbors
stamped with k, u2 is always set to the parent of vi. Depending on the color of u2,
we consider two cases:

Case 1: u2 is white. Then u2 must have a gray neighbor stamped with k as early as
when u2 is examined, for otherwise, it would have been marked black. Thus, u3 is a
gray neighbor of u2 stamped with k, and hence Pi consists of the three vertices u1,
u2 and u3.

Case 2: u2 is gray. Then every stamp of u2 is less than k. We further consider two
subcases.

Subcase 2.1: At least one gray neighbor of u2 has stamp k. Then u3 is one of such
gray neighbors and Pi just consists of the three vertices u1, u2 and u3.

Subcase 2.2: None of the gray neighbors of u2 has stamp k. As u2 is not adjacent
to any black vertex, u3 is the parent of u2. Since no gray vertices with stamps less
than k are adjacent in H, u3 must be white. Then at least a gray neighbor of u3 is
stamped with k as early as when u3 is examined, for otherwise, u3 would have been
marked black. Thus, u4 is one of such gray neighbors, and Pi just consists of the four
vertices u1, u2, u3, and u4.

In summary, the path consists of either three vertices or four vertices. Further-
more, if the path consists of four vertices, then k must be greater than one and at
least one a j is set to one for some 1 ≤ j ≤ k− 1 in Step 3(a).

Now we are ready to describe the algorithm, denoted by MarkStamp(G), for
finding a CDS of G. Initially, k = 0, and all vertices of G have white colors. Repeat
the following iteration while there are some white vertices left:

12.4 Performance Analysis 187

• Increment k by 1 and construct the deficiency graph Gk.
• For each connected component H of Gk, apply RC2DS(H,k).

Let B denote the set of black vertices produced by MarkStamp(G). It is easy to
see that B is a CDS of G. In the next section, we will provide an upper bound on |B|
if the graph G is free of Km-minor for some m ≥ 3.

12.4 Performance Analysis

The main theorem of this section is given below.

Theorem 12.4.1. Suppose that G is free of Km-minor for some m ≥ 3. If m = 3,
then

|B| ≤ 7α2 (G)− 4.

If m ≥ 4, then

|B| ≤
(

m(m− 1)
2

+ 5

)
α2 (G)− 5.

By Kuratowski’s theorem, a planar graph has no K5-minor. So we have the
following corollary of Theorem 12.4.1.

Corollary 12.4.2. If G is a planar graph, then

|B| ≤ 15α2 (G)− 5.

Since
α2 (G)≤ γ (G)≤ γc (G) ,

Theorem 12.4.1 implies that when running on a graph G excluding Km as a minor,
the algorithm MarkStamp(G) has an approximation ratio of at most 7 if m = 3 or at

most m(m−1)
2 + 5 if m ≥ 4. In particular, if running on a planar graph, the algorithm

has an approximation ratio of at most 15. The remaining of this section is dedicated
to the proof for Theorem 12.4.1.

Let H be a graph in which every vertex is either white or gray and there is at
least one white vertex. A restricted 2-independent set (R2IS) is a 2-IS of H which
consists of only white vertices. The restricted 2-independence number of H, denoted
by α ′

2 (H), is the largest cardinality of an R2IS of H. Obviously, α ′
2 (H) ≤ α2 (H).

The next lemma presents the “monotonic” properties of the deficiency graphs.

Lemma 12.4.3. Suppose that MarkStamp(G) runs in l iterations. Then

G = G1 ⊃ G2 ⊃ ·· · ⊃ Gl ;

α2 (G) = α ′
2 (G1)≥ α ′

2 (G2)≥ ·· · ≥ α ′
2 (Gl) .

188 12 CDS in Planar Graphs

Proof. It is obvious that G1 = G and α ′
2 (G1) = α2 (G). Fix a k between 1 and l−1.

We prove that Gk+1 ⊂ Gk and α ′
2 (Gk+1)≤ α ′

2 (Gk).
We first show that V (Gk+1)⊂ V (Gk). Note that all white vertices of Gk+1 must

have been white in the previous iteration and thus are white vertices of Gk as well.
In addition, all gray vertices of Gk+1 which are white in the previous iteration must
be white vertices of Gk. So it is sufficient to show that each gray vertex of Gk+1

which is also gray in the previous iteration is also a vertex of Gk. Let v be a gray
vertex of Gk+1 which is also gray in the previous iteration. Then v has a white
neighbor, denoted by u, in Gk+1. Since u is also a white vertex of Gk, v must be also
a gray vertex of Gk.

Next, we show that E (Gk+1) ⊂ E (Gk). Consider any edge uv of Gi+1. Then at
least one of its endpoints is white. By symmetry, assume v is white. If u is also
white, then the edge uv also appears in Gk. If u is gray, then u is either white or gray
in Gk. In either case, the edge uv appears in Gk.

Finally, we show that α ′
2 (Gk+1) ≤ α ′

2 (Gk). Let w1 and w2 be any pair of white
nodes of Gk+1. As Gk+1 is a subgraph of Gk,

distGk+1 (w1,w2)≥ distGk (w1,w2) .

We claim that, however, if distGk (w1,w2)≤ 2, then

distGk+1 (w1,w2) = distGk (w1,w2) .

The claim is true if distGk (w1,w2) = 1. So we assume that distGk (w1,w2) = 2. Then
distGk+1 (w1,w2) ≥ 2. Let v be a common neighbor of w1 and w2 in Gk. Then
v must remain as a vertex of Gk+1, for otherwise, v would have been marked
black in the previous iteration and both w1 and w2 would have become gray
in Gk+1. Thus, distGk+1 (w1,w2) = 2. So our claim is true. From the claim, we
conclude that if distGk+1 (w1,w2) > 2, then distGk (w1,w2) > 2. This implies that
α ′

2 (Gk+1)≤ α ′
2 (Gk). 	

The lemma below gives an upper bound on the total number of iterations if the
graph G is free of Km-minor.

Lemma 12.4.4. If G is free of Km-minor for some m ≥ 3, then MarkStamp(G) runs
in at most m− 1 iterations.

Proof. We prove the lemma by contradiction. Assume that G is free of Km-minor
but MarkStamp(G) runs in at least m iterations. Let H∗

m be an arbitrary connected
component of Gm. By Lemma 12.4.3, for each 1 ≤ k ≤ m− 1, Gk has a unique
connected component, denoted by H∗

k , which contains H∗
m as a subgraph. Obviously,

H∗
1 ⊃ H∗

2 ⊃ ·· · ⊃ H∗
m.

For each 1≤ k ≤m, let B∗
k be the set of black vertices of H∗

k marked by the procedure
RC2DS

(
H∗

k ,k
)
. Then for any 1 ≤ i < j ≤ m, B∗

i and B∗
j are disjoint and separated

12.4 Performance Analysis 189

by one hop as at least one vertex in B∗
j has a stamp i. Since each B∗

k is connected, the
m sets B∗

1,B
∗
2, . . . ,B

∗
m give rise to a Km-minor in G, which is a contradiction. Thus,

the lemma holds. 	

The next lemma provides an upper bound on the number of black vertices

produced by the procedure RC2DS(H,k).

Lemma 12.4.5. The number of black vertices produced by the procedure
RC2DS(H,k) is at most 3α ′

2 (H)− 2 if k = 1, and at most 4α ′
2 (H) + k − 4 if

k ≥ 2.

Proof. Let v1,v2, . . . ,vs be the ordering of the white vertices of H produced by Step
2 of the procedure RC2DS(H,k). Let I be the set of integers i in {2, . . . ,s} such that
when vi is examined in the for-loop of Step 3, vi is white and has no gray neighbors
stamped with k. It is obvious that {vi : i ∈ {1}∪ I} form an R2IS of H. Thus,

1+ |I| ≤ α ′
2 (H) .

Next, we count the number of vertices marked black during each iteration i with
i ∈ I in the for-loop of Step 3. Fix an i ∈ I. From the explanation after the procedure
RC2DS(H,k) in the previous section, either three or four vertices are marked black
during iteration i. In addition, if four vertices are marked black in this iteration, then
k must be greater than one and at least one a j is set to one for some 1 ≤ j ≤ k− 1.

Finally, we count the total number of black vertices. Note that v1 is always
marked black. If for each i ∈ I, the iteration i of the for-loop at Step 3 marks exactly
three vertices black, then Step 4 marks at most k− 1 additional vertices black. So
the total number of black vertices is at most

1+ 3 |I|+ k− 1

= 3(1+ |I|)+ k− 3

≤ 3α ′
2 (H)+ k− 3.

If for some i ∈ I, the iteration i of the for-loop at Step 3 marks four vertices black,
then k > 1 and Step 4 marks at most k − 2 additional vertices black. So the total
number of black vertices is at most

1+ 4 |I|+ k− 2

= 4(1+ |I|)+ k− 5

≤ 4α ′
2 (H)+ k− 5.

Thus, if k = 1, the total number of black vertices is at most

3α ′
2 (H)+ 1− 3= 3α ′

2 (H)− 2.

190 12 CDS in Planar Graphs

If k ≥ 2, the total number of black vertices is at most

max
{

3α ′
2 (H)+ k− 3,4α ′

2 (H)+ k− 5
}

≤ 4α ′
2 (H)+ k− 4.

Therefore, the lemma holds. 	

The next lemma gives upper bounds on the number of black vertices produced in

each iteration of MarkStamp(G).

Lemma 12.4.6. Let Bk be the set of black vertices produced in the kth iteration of
MarkStamp(G). Then

|B1| ≤ 3α2 (G)− 2,

|B2| ≤ 4α2 (G)− 2,

|B3| ≤ 4α2 (G)− 1,

|Bk| ≤ kα2 (G) , k ≥ 4.

Proof. From Lemmas 12.4.5 and 12.4.3, |B1| ≤ 3α2 (G)− 2. So we assume that
k > 1. Suppose that Gk has t connected components, denoted by Hk,1, . . . ,Hk,t . Since
each connected component contains at least one white vertex,

1 ≤ t ≤
t

∑
i=1

α ′
2

(
Hk,i

)
= α ′

2 (Gk) .

For each 1 ≤ i ≤ t, let Bk,i be the vertices of Hk,i produced by the procedure
RC2DS

(
Hk,i,k

)
. Then

Bk = Bk,1 ∪·· ·∪Bk,t ;

and by Lemma 12.4.5, ∣∣Bk,i
∣∣≤ 4α ′

2

(
Hk,i

)
+ k− 4

for each 1 ≤ i ≤ t. Thus, if k = 2 or 3, by Lemma 12.4.3, we have

|Bk| =
t

∑
i=1

∣∣Bk,i
∣∣

≤ 4
t

∑
i=1

α ′
2

(
Hk,i

)
+(k− 4)t

= 4α ′
2 (Gk)+ (k− 4)t

≤ 4α2 (G)+ (k− 4) .

12.4 Performance Analysis 191

If k ≥ 4, by Lemma 12.4.3 we have

|Bk| =
t

∑
i=1

∣∣Bk,i
∣∣

≤ 4
t

∑
i=1

α ′
2

(
Hk,i

)
+(k− 4)t

≤ 4α ′
2 (Gk)+ (k− 4)α ′

2 (Gk)

= kα ′
2 (Gk)

≤ kα2 (G) .

So, the lemma holds. 	

Now we are ready to give the proof of Theorem 12.4.1. By Lemma 12.4.4, the

total number of iterations is at most m− 1. If m = 3, then by Lemma 12.4.6,

|B| ≤ (3α2 (G)− 2)+ (4α2 (G)− 2)≤ 7α2 (G)− 4.

If m = 4, then by Lemma 12.4.6,

|B| ≤ (7α2 (G)− 4)+ (4α2 (G)− 1)

= 11α2 (G)− 5

=

(
m(m− 1)

2
+ 5

)
α2 (G)− 5.

If m > 4, by Lemma 12.4.6,

|B| ≤ (11α2 (G)− 5)+
m−1

∑
k=4

kα2 (G)

= 11α2 (G)− 5+

(
m(m− 1)

2
− 6

)
α2 (G)

=

(
m(m− 1)

2
+ 5

)
α2 (G)− 5.

This completes the proof of Theorem 12.4.1. 	

	Chapter12 CDS in Planar Graphs
	12.1 Motivation and Overview
	12.2 Preliminaries
	12.3 Algorithm Description
	12.4 Performance Analysis

