Chapter 12 CDS in Planar Graphs

Simple, geometric forms and planar surfaces define Jeep Patriot's timeless, purpose-built design. TREVOR CREED

12.1 Motivation and Overview

Although MIN-CDS in general graphs is hard to approximate, the restriction to certain special graph classes admits much better approximation results. MIN-CDS in planar graphs remains NP-hard even for planar graphs that are regular of degree 4 [57]. The related problem, MIN-DS in planar graphs, is also NP-hard even for planar graphs with maximum vertex degree 3 and planar graphs that are regular of degree 4 [57]. It is well known that MIN-DS in planar graphs possesses a polynomialtime approximation scheme (PTAS) based on the shifting strategy [3]: For any constant $\varepsilon > 0$, there is a polynomial-time $(1+\varepsilon)$ -approximation algorithm. Thus, it is immediate to conclude that MIN-CDS in planar graphs can be approximated within a factor $3 + \varepsilon$ for any $\varepsilon > 0$ in polynomial time. However, the degree of the polynomial grows with $1/\varepsilon$ and hence, the approximation scheme is hardly practical.

In this chapter, we present a simple heuristic for MIN-CDS in general graphs developed in [105]. When running on graphs excluding *Km* (the complete graph of order *m*) as a minor, the heuristic has an approximation ratio of at most 7 if $m = 3$, or at most $\frac{m(m-1)}{2}$ + 5 if *m* ≥ 4. In particular, if running on a planar graph, the heuristic has an approximation ratio of at most 15. The remaining of this chapter is organized as follows. In Sect. [12.2,](#page-1-0) we introduce some related graph-theoretic concepts and parameters. In Sect. [12.3,](#page-2-0) we describe the heuristic for MIN-CDS in general graphs. In Sect. [12.4,](#page-4-0) we provide an upper bound on the cardinality of the CDS output by the heuristic.

12.2 Preliminaries

Let $G = (V, E)$ be a graph. We sometimes write $V(G)$ instead of V and $E(G)$ instead of *E*. For any $U \subseteq V$, we use $G[U]$ to denote the subgraph of *G* induced by *U*. The distance dist_{*G*} (u, v) in *G* of two vertices $u, v \in V(G)$ is the length of a shortest path between *u* and *v* in *G*. The distance between a vertex *v* and a set $U \subseteq V(G)$ is

$$
\min_{u\in U} \operatorname{dist}_G(u,v).
$$

The distance between two subsets *U* and *W* of $V(G)$ is

 $\min_{u \in U} \min_{w \in W} \text{dist}_G(u, w)$.

A vertex set $U \subseteq V(G)$ is a *k*-independent set (*k*-IS) of *G* if the distance between any pair of vertices in *U* is greater than *k*. The *k-independence number* of *G*, denoted by $\alpha_k(G)$, is the largest cardinality of a *k*-IS. Note that a 1-IS is a usual IS and $\alpha_1(G)$ is the usual independence number $\alpha(G)$. The domination number of *G*, denoted by $\gamma(G)$, the connected domination number of *G*, denoted by $\gamma_c(G)$, and $\alpha_2(G)$ are related by the following inequality [44].

$$
\alpha_2(G) \leq \gamma(G) \leq \gamma_c(G).
$$

To see why $\alpha_2(G) \leq \gamma(G)$, let $U \subseteq V(G)$ be a maximum 2-IS of *G*. For each $u \in U$, let $N_G[u]$ denote the closed neighborhood of *u* in *G*. Then the closed neighborhoods $N_G[u]$ for all $u \in U$ are pairwise disjoint. Thus, each dominating set of *G* must contain at least one vertex from each $N_G[u]$. This implies that $\gamma(G) \ge \alpha_2(G)$.

A *contraction* of an edge (u, v) in G is made by identifying *u* and *v* with a new vertex whose neighborhood is the union of the neighborhoods of *u* and *v* (with resulting multiple edges and self-loops deleted). A *contraction* of *G* is a graph obtained from *G* by a sequence of edge contractions. A graph *H* is a *minor* of *G* if *H* is the contraction of a subgraph of *G*. *G* is *H-free* if *G* has no minor isomorphic to *H*. For example, by Kuratowski's theorem, a graph is planar if and only if it is both K_5 -free and $K_{3,3}$ -free. In this chapter, we focus on K_m -free graphs. Our algorithm would find a CDS of size at most

$$
\left(\frac{m(m-1)}{2}+5\right)\alpha_2(G)-5
$$

of a K_m -free graph *G* for any $m \geq 4$. This implies that if *G* is K_m -free for some $m \geq 4$, then

$$
\gamma_{c}(G) \leq \left(\frac{m(m-1)}{2} + 5\right)\alpha_{2}(G) - 5.
$$

In particular, for a planar graph *G*,

$$
\gamma_{c}(G)\leq 15\alpha_{2}(G)-5.
$$

12.3 Algorithm Description

We first give a brief overview on the algorithm design. The algorithm is presented as a color-marking and time-stamping process. Each vertex maintains one of the three colors: black, gray, and white, which is initially white. In addition, each vertex maintains a set of stamps, which is initially empty. The algorithm runs in proceeds in iterative phases. In the k th phase, a subset B_k of nonblack vertices are marked with black, and all of their gray neighbors are stamped with the phase number (interpreted as the time) *k* while keeping all previous stamps, and all of their white neighbors are marked gray and stamped with the current phase number *k*. At the end of the *k*th phase, all black nodes have to be connected, and each white vertex, if there is any left, has a gray neighbor with time-stamp *j* for every $1 \le j \le k$. The algorithm ends when no white vertex is left and outputs all black vertices which form a CDS.

Now, we describe the algorithm. For the simplicity of description, we introduce some new terms and notations. Given a color marking of all vertices of *G*, the *deficiency graph* is the graph obtained from *G* by first removing all black vertices and those gray vertices without white neighbors, and then removing edges between gray vertices. Thus, each vertex of a deficiency graph is either white or gray, and each connected component of a deficiency graph must have at least one white vertex. Given a vertex *v* and a positive integer *k*, we use **MarkStamp** (v, k) to denote the basic operation which marks *v* black and all white neighbors of *v* gray and stamps *v* and all its nonblack neighbors with *k*.

Consider a connected graph *H* and a positive integer *k* which satisfy the following properties: Each vertex of *H* is either white or gray and at least one vertex is white. If $k = 1$, then all vertices are white; and otherwise, every white vertex is adjacent to a gray vertex stamped with *j* for every $1 \le j \le k - 1$. Such pair (H, k) is referred to as a *residue pair*. A *restricted connected 2-dominating set* (RC2DS) of a residue pair (H, k) is a subset of vertices U of H satisfying that:

- $H[U]$ is connected.
- Every white vertex not in *U*, if there is any, is at a distance of exactly two from*U*.
- And for every $1 \leq j \leq k-1$, at least one vertex in *U* has a stamp *j*

We present a simple procedure, called **RC2DS**(*H,k*), which takes a residue pair (H, k) as input and produces a RC2DS for (H, k) which are marked black and a color marking and time-stamping of the remaining vertices. The procedure **RC2DS**(*H,k*) consists of four steps:

- Step 1: Initialization. If $k \ge 2$, let $a_j = 0$ for $j = 1, \ldots, k 1$.
- Step 2: Sorting. Build a spanning tree *T* of *H* rooted at a white vertex, and compute a breadth-first-search order v_1, v_2, \ldots, v_s of all white vertices in *H* with respect to *T*.
- Step 3: Coloring and Stamping. **MarkStamp** (v_1, k) . For $i = 2$ to *s*, if v_i is white and has no gray neighbors stamped with *k*, proceed as follows:
- (a) Set $l = 1$, $u_1 = v_i$. Repeat the following iteration until u_l is black: If $k > 2$ and *u_l* is gray, set $a_i = 1$ for each stamp $j < k$ of u_l . If u_l has a black neighbor, set u_{l+1} to any such neighbor; otherwise, if u_l has a gray neighbor stamped with *k*, set u_{l+1} to any such neighbor; otherwise, set u_{l+1} to its parent in *T*. Increment *l* by 1.
- (b) Repeat the following iteration until $l = 1$: Decrement *l* by 1 and invoke $MarkStamp(u_l, k)$.
- Step 4: Post-processing. If $k > 2$, perform the following processing. For $j = 1$ to $k-1$, if $a_j = 0$, choose a gray neighbor *u* of v_1 stamped with *j*, set $a_t = 1$ for each stamp $t < k$ of *u*, and then **MarkStamp** (u, k) .

The $k-1$ boolean variables a_j for $1 \leq j \leq k-1$ indicate whether at least one black vertex has a stamp *j*. They are initialized to zero in Step 1. Whenever a gray vertex with stamp *j* is marked black at Step 3 or Step 4, *aj* is set to one. Step 4 ensures that all these boolean variables are one eventually.

The for-loop in Step 3 guarantees that in the end, every white vertex is adjacent to a gray vertex stamped with *k*, and thus is exactly two hops away from some black vertex. The inner loop in Step $3(a)$ establishes a path from a white vertex v_i without gray neighbors stamped with k to some black vertex. Let P_i be the subpath of this path excluding the black end-vertex. The inner loop in Step 3(b) invokes **MarkStamp** (u, k) for all vertices in P_i . We claim that P_i consists of either three or four vertices. Indeed, u_1 is v_i , and since v_i is white and has no gray neighbors stamped with k , u_2 is always set to the parent of v_i . Depending on the color of u_2 , we consider two cases:

Case 1: u_2 is white. Then u_2 must have a gray neighbor stamped with k as early as when u_2 is examined, for otherwise, it would have been marked black. Thus, u_3 is a gray neighbor of u_2 stamped with k , and hence P_i consists of the three vertices u_1 , u_2 and u_3 .

Case 2: u_2 is gray. Then every stamp of u_2 is less than *k*. We further consider two subcases.

Subcase 2.1: At least one gray neighbor of u_2 has stamp *k*. Then u_3 is one of such gray neighbors and P_i just consists of the three vertices u_1 , u_2 and u_3 .

Subcase 2.2: None of the gray neighbors of u_2 has stamp *k*. As u_2 is not adjacent to any black vertex, u_3 is the parent of u_2 . Since no gray vertices with stamps less than *k* are adjacent in *H*, u_3 must be white. Then at least a gray neighbor of u_3 is stamped with k as early as when u_3 is examined, for otherwise, u_3 would have been marked black. Thus, u_4 is one of such gray neighbors, and P_i just consists of the four vertices u_1 , u_2 , u_3 , and u_4 .

In summary, the path consists of either three vertices or four vertices. Furthermore, if the path consists of four vertices, then *k* must be greater than one and at least one a_j is set to one for some $1 \leq j \leq k-1$ in Step 3(a).

Now we are ready to describe the algorithm, denoted by **MarkStamp**(*G*), for finding a CDS of *G*. Initially, $k = 0$, and all vertices of *G* have white colors. Repeat the following iteration while there are some white vertices left:

- Increment *k* by 1 and construct the deficiency graph G_k .
- For each connected component *H* of G_k , apply $\mathbf{RC2DS}(H, k)$.

Let *B* denote the set of black vertices produced by $\textbf{MarkStamp}(G)$. It is easy to see that *B* is a CDS of *G*. In the next section, we will provide an upper bound on $|B|$ if the graph *G* is free of K_m -minor for some $m > 3$.

12.4 Performance Analysis

The main theorem of this section is given below.

Theorem 12.4.1. *Suppose that G is free of K_m-minor for some m* \geq *3. If m = 3, then*

$$
|B|\leq 7\alpha_2(G)-4.
$$

If $m \geq 4$ *, then*

$$
|B| \leq \left(\frac{m(m-1)}{2} + 5\right)\alpha_2(G) - 5.
$$

By Kuratowski's theorem, a planar graph has no K_5 -minor. So we have the following corollary of Theorem [12.4.1.](#page-4-1)

Corollary 12.4.2. *If G is a planar graph, then*

$$
|B|\leq 15\alpha_2(G)-5.
$$

Since

$$
\alpha_2(G)\leq \gamma(G)\leq \gamma_c(G),
$$

Theorem [12.4.1](#page-4-1) implies that when running on a graph *G* excluding K_m as a minor, the algorithm **MarkStamp**(*G*) has an approximation ratio of at most 7 if $m = 3$ or at most $\frac{m(m-1)}{2}$ + 5 if *m* ≥ 4. In particular, if running on a planar graph, the algorithm has an approximation ratio of at most 15. The remaining of this section is dedicated to the proof for Theorem [12.4.1.](#page-4-1)

Let *H* be a graph in which every vertex is either white or gray and there is at least one white vertex. A *restricted 2-independent set* (R2IS) is a 2-IS of *H* which consists of only white vertices. The *restricted* 2*-independence number* of *H*, denoted by $\alpha'_{2}(H)$, is the largest cardinality of an R2IS of *H*. Obviously, $\alpha'_{2}(H) \leq \alpha_{2}(H)$. The next lemma presents the "monotonic" properties of the deficiency graphs.

Lemma 12.4.3. *Suppose that MarkStamp*(*G*) *runs in l iterations. Then*

$$
G = G_1 \supset G_2 \supset \cdots \supset G_l;
$$

\n
$$
\alpha_2(G) = \alpha'_2(G_1) \ge \alpha'_2(G_2) \ge \cdots \ge \alpha'_2(G_l).
$$

Proof. It is obvious that $G_1 = G$ and $\alpha'_2(G_1) = \alpha_2(G)$. Fix a *k* between 1 and *l* − 1. We prove that $G_{k+1} \subset G_k$ and $\alpha'_2(G_{k+1}) \leq \alpha'_2(G_k)$.

We first show that $V(G_{k+1}) \subset V(G_k)$. Note that all white vertices of G_{k+1} must have been white in the previous iteration and thus are white vertices of G_k as well. In addition, all gray vertices of G_{k+1} which are white in the previous iteration must be white vertices of G_k . So it is sufficient to show that each gray vertex of G_{k+1} which is also gray in the previous iteration is also a vertex of G_k . Let ν be a gray vertex of G_{k+1} which is also gray in the previous iteration. Then ν has a white neighbor, denoted by u , in G_{k+1} . Since u is also a white vertex of G_k , v must be also a gray vertex of G_k .

Next, we show that $E(G_{k+1}) \subset E(G_k)$. Consider any edge *uv* of G_{i+1} . Then at least one of its endpoints is white. By symmetry, assume *v* is white. If *u* is also white, then the edge *uv* also appears in G_k . If *u* is gray, then *u* is either white or gray in G_k . In either case, the edge *uv* appears in G_k .

Finally, we show that $\alpha'_2(G_{k+1}) \leq \alpha'_2(G_k)$. Let w_1 and w_2 be any pair of white nodes of G_{k+1} . As G_{k+1} is a subgraph of G_k ,

$$
dist_{G_{k+1}}(w_1, w_2) \geq dist_{G_k}(w_1, w_2).
$$

We claim that, however, if dist_{*G_k*} (w_1, w_2) \leq 2, then

$$
dist_{G_{k+1}}(w_1, w_2) = dist_{G_k}(w_1, w_2).
$$

The claim is true if dist_{*G_k*} (*w*₁*,w*₂) = 1. So we assume that dist_{*G_k*} (*w*₁*,w*₂) = 2. Then $dist_{G_{k+1}}(w_1, w_2) \geq 2$. Let *v* be a common neighbor of *w*₁ and *w*₂ in *G*_k. Then *v* must remain as a vertex of G_{k+1} , for otherwise, *v* would have been marked black in the previous iteration and both w_1 and w_2 would have become gray in G_{k+1} . Thus, $dist_{G_{k+1}}(w_1, w_2) = 2$. So our claim is true. From the claim, we conclude that if dist $G_{k+1} (w_1, w_2) > 2$, then dist $G_k (w_1, w_2) > 2$. This implies that $G'_k (G_{k+1}) \leq G'_k (G_k)$. $\alpha_2'(G_{k+1})\leq \alpha_2'$ $\frac{1}{2}(G_k).$

The lemma below gives an upper bound on the total number of iterations if the graph *G* is free of *Km*-minor.

Lemma 12.4.4. *If G is free of K_m-minor for some m* \geq 3, then *MarkStamp*(*G*) *runs in at most m*−1 *iterations.*

Proof. We prove the lemma by contradiction. Assume that *G* is free of *Km*-minor but **MarkStamp**(*G*) runs in at least *m* iterations. Let *H*[∗] *^m* be an arbitrary connected component of G_m . By Lemma [12.4.3,](#page-4-2) for each $1 \leq k \leq m-1$, G_k has a unique connected component, denoted by H_k^* , which contains H_m^* as a subgraph. Obviously,

$$
H_1^* \supset H_2^* \supset \cdots \supset H_m^*.
$$

For each $1 \leq k \leq m$, let B_k^* be the set of black vertices of H_k^* marked by the procedure **RC2DS** (H_k^*, k) . Then for any $1 \le i < j \le m$, B_i^* and B_j^* are disjoint and separated

by one hop as at least one vertex in B_j^* has a stamp *i*. Since each B_k^* is connected, the *m* sets $B_1^*, B_2^*, \ldots, B_m^*$ give rise to a \mathbf{K}_m -minor in *G*, which is a contradiction. Thus, the lemma holds.

The next lemma provides an upper bound on the number of black vertices produced by the procedure **RC2DS**(*H,k*).

Lemma 12.4.5. *The number of black vertices produced by the procedure* $RC2DS(H, k)$ *is at most* $3\alpha'_{2}(H) - 2$ *if* $k = 1$ *, and at most* $4\alpha'_{2}(H) + k - 4$ *if* $k > 2$.

Proof. Let v_1, v_2, \ldots, v_s be the ordering of the white vertices of *H* produced by Step 2 of the procedure $RC2DS(H, k)$. Let *I* be the set of integers *i* in $\{2, \ldots, s\}$ such that when v_i is examined in the for-loop of Step 3, v_i is white and has no gray neighbors stamped with *k*. It is obvious that $\{v_i : i \in \{1\} \cup I\}$ form an R2IS of *H*. Thus,

$$
1+|I|\leq \alpha_2'(H).
$$

Next, we count the number of vertices marked black during each iteration *i* with $i \in I$ in the for-loop of Step 3. Fix an $i \in I$. From the explanation after the procedure $RC2DS(H, k)$ in the previous section, either three or four vertices are marked black during iteration *i*. In addition, if four vertices are marked black in this iteration, then *k* must be greater than one and at least one a_j is set to one for some $1 \leq j \leq k - 1$.

Finally, we count the total number of black vertices. Note that v_1 is always marked black. If for each $i \in I$, the iteration i of the for-loop at Step 3 marks exactly three vertices black, then Step 4 marks at most $k - 1$ additional vertices black. So the total number of black vertices is at most

$$
1+3|I|+k-1
$$

= 3(1+|I|)+k-3

$$
\leq 3\alpha'_{2}(H)+k-3.
$$

If for some $i \in I$, the iteration *i* of the for-loop at Step 3 marks four vertices black, then $k > 1$ and Step 4 marks at most $k - 2$ additional vertices black. So the total number of black vertices is at most

$$
1 + 4|I| + k - 2
$$

= 4(1+|I|) + k - 5

$$
\leq 4\alpha'_2(H) + k - 5.
$$

Thus, if $k = 1$, the total number of black vertices is at most

$$
3\alpha'_{2}(H) + 1 - 3 = 3\alpha'_{2}(H) - 2.
$$

If $k > 2$, the total number of black vertices is at most

$$
\max \{ 3\alpha'_{2}(H) + k - 3, 4\alpha'_{2}(H) + k - 5 \}
$$

\$\leq 4\alpha'_{2}(H) + k - 4\$.

Therefore, the lemma holds.

The next lemma gives upper bounds on the number of black vertices produced in each iteration of **MarkStamp**(*G*).

Lemma 12.4.6. *Let* B_k *be the set of black vertices produced in the kth iteration of MarkStamp*(*G*)*. Then*

$$
|B_1| \le 3\alpha_2(G) - 2,
$$

\n
$$
|B_2| \le 4\alpha_2(G) - 2,
$$

\n
$$
|B_3| \le 4\alpha_2(G) - 1,
$$

\n
$$
|B_k| \le k\alpha_2(G), \quad k \ge 4.
$$

Proof. From Lemmas [12.4.5](#page-6-0) and [12.4.3,](#page-4-2) $|B_1| \leq 3\alpha_2(G) - 2$. So we assume that $k > 1$. Suppose that G_k has *t* connected components, denoted by $H_{k,1}, \ldots, H_{k,t}$. Since each connected component contains at least one white vertex,

$$
1\leq t\leq \sum_{i=1}^t\alpha_2'\left(H_{k,i}\right)=\alpha_2'\left(G_k\right).
$$

For each $1 \leq i \leq t$, let $B_{k,i}$ be the vertices of $H_{k,i}$ produced by the procedure $RC2DS(H_{k,i},k)$. Then

$$
B_k=B_{k,1}\cup\cdots\cup B_{k,t};
$$

and by Lemma [12.4.5,](#page-6-0)

$$
\left|B_{k,i}\right| \leq 4\alpha_2'\left(H_{k,i}\right) + k - 4
$$

for each $1 \le i \le t$. Thus, if $k = 2$ or 3, by Lemma [12.4.3,](#page-4-2) we have

$$
|B_k| = \sum_{i=1}^t |B_{k,i}|
$$

\n
$$
\leq 4 \sum_{i=1}^t \alpha'_2 (H_{k,i}) + (k-4)t
$$

\n
$$
= 4\alpha'_2 (G_k) + (k-4)t
$$

\n
$$
\leq 4\alpha_2 (G) + (k-4).
$$

If $k \geq 4$, by Lemma [12.4.3](#page-4-2) we have

$$
|B_k| = \sum_{i=1}^t |B_{k,i}|
$$

\n
$$
\leq 4 \sum_{i=1}^t \alpha'_2 (H_{k,i}) + (k-4)t
$$

\n
$$
\leq 4\alpha'_2 (G_k) + (k-4)\alpha'_2 (G_k)
$$

\n
$$
= k\alpha'_2 (G_k)
$$

\n
$$
\leq k\alpha_2 (G).
$$

So, the lemma holds.

Now we are ready to give the proof of Theorem [12.4.1.](#page-4-1) By Lemma [12.4.4,](#page-5-0) the total number of iterations is at most $m-1$. If $m=3$, then by Lemma [12.4.6,](#page-7-0)

$$
|B| \le (3\alpha_2(G)-2) + (4\alpha_2(G)-2) \le 7\alpha_2(G)-4.
$$

If $m = 4$, then by Lemma [12.4.6,](#page-7-0)

$$
|B| \le (7\alpha_2(G) - 4) + (4\alpha_2(G) - 1)
$$

= 11\alpha_2(G) - 5
= $\left(\frac{m(m-1)}{2} + 5\right)\alpha_2(G) - 5.$

If *m >* 4, by Lemma [12.4.6,](#page-7-0)

$$
|B| \le (11\alpha_2(G) - 5) + \sum_{k=4}^{m-1} k\alpha_2(G)
$$

= $11\alpha_2(G) - 5 + \left(\frac{m(m-1)}{2} - 6\right)\alpha_2(G)$
= $\left(\frac{m(m-1)}{2} + 5\right)\alpha_2(G) - 5.$

This completes the proof of Theorem [12.4.1.](#page-4-1)