Chapter 10 Geometric Hitting Set and Disk Cover

Another means of silently lessening the inequality of property is to exempt all from taxation below a certain point, and to tax the higher portions of property in geometric progression as they rise. THOMAS JEFFERSON

10.1 Motivation and Overview

MIN-SENSOR-COVER is a special case of MIN-SET-COVER, which can be seen as MIN-SET-COVER in a geometric case with the base set formed by all targets and all given subsets of targets induced by sensing disks. When all sensing disks have the same size, a classic result indicates that MIN-SENSOR-COVER has PTAS. In this chapter, we introduce some related results in case that sensing disks may have different sizes. Those results may lead us to a sequence of research works on coverage and connected coverage with different sizes of sensing disks.

10.2 Minimum Geometric Hitting Set

Consider a set *V* of nodes and a set D of target disks in the plane. A node $v \in V$ is said to *hit* a disk $D \in \mathcal{D}$ if $v \in D$. A subset *S* of *V* is said to be a *hitting set* (HS) of D if each disk in D is hit by some node in V . The problem of finding a minimum subset of *V* which is an HS of D is referred to as MIN-HITTING-SET. In this section, we present a PTAS for MIN-HITTING-SET.

If a target disk is hit by all nodes in V , we simply remove it from D . In addition, if a target disk contains some other target disk, we also remove it from D . Thus, we assume that each target disk in D is not hit by at least one node in V and does not contain any other disk in D . Consequently, the disks in D have distinct centers. Let *T* denote the set of the centers of disks in D . For each $t \in T$, we use $D(t)$ to denote the disk in D centered at *t*, and $r(t)$ to denote the radius of the disk $D(t)$. Let *S* be an HS. A set $U \subseteq S$ is said to be a *loose* subset of S if there is a subset U' of V such that $|U'|$ < |*U*| and $(S \setminus U) ∪ U'$ is still an HS, and to be a *tight* subset of *S* otherwise. *S* is said to be *k-tight* if every subset $U \subseteq S$ with $|U| \le k$ is tight. Intuitively, a *k*-tight HS for sufficiently large *k* is close to the minimum HS in size. We will formerly prove such relation in the next theorem.

Theorem 10.2.1. *Let c and K be the two universal constants in Theorem 9.3.1. Then, for any k-tight hitting set S* \subseteq *V' with k* \geq max {*K*,2}, $|C|$ \leq $\left(1+c/\right)$ en \bar{k}) opt, *where opt is the size of a minimum hitting set.*

Theorem [10.2.1](#page-1-0) suggests a local search algorithm for MIN-DISK-COVER, referred to as *k-Local Search* (*k***-LS**), where *k* is a positive integer parameter at least two. It computes a *k*-tight HS *S* in two phases:

- *Preprocessing Phase*. Compute an HS *S* by the well-known greedy algorithm for minimum set cover.
- *Replacement Phase*. While *S* is not *k*-tight, find a subset *U* of *S* with size at most *k* and a subset *U'* of *V* with size at most $|U| - 1$ satisfying that $(S \setminus U) \cup U'$ is still an HS; replace *S* by $(S \setminus U) \cup U'$. Finally, we output *S*.

By Theorem [10.2.1,](#page-1-0) the algorithm k **-LS** has an approximation ratio at most $1 +$ $O(1/$ √ \overline{k}) when $k \geq K$. Its running time is dominated by the second phase. Let $m = |V|$. Then, the second phase consists of $O(m)$ iterations. In each iteration, the search for the subset U and its replacement U' takes at most

$$
O\left(m^k\right) \cdot O\left(m^{k-1}\right) = O\left(m^{2k-1}\right)
$$

time. So, the total running time is

$$
O(m) \cdot O\left(m^{2k-1}\right) = O\left(m^{2k}\right).
$$

This means that the algorithm *k***-LS** is a PTAS.

We move on to the proof of [10.2.1.](#page-1-0) Let *O* be a minimum HS. Theorem [10.2.1](#page-1-0) holds trivially if $|S| = |O|$. So, we assume that $|S| > |O|$. Let $S' = S \setminus O$ and $O' =$ $O \setminus S$. Then, $|S'| > |O'|$. In addition, $|O'| \geq k$ for otherwise, we can choose a subset of $|O'|+1$ nodes from S' and replace them by O' to get a smaller HS, which contradicts to the fact that *S* is *k*-tight. Let T' be the set of centers of the target disks not hit by *O*∩*S*. Then, for each *t* ∈ *T*^{t}, *D*(*t*) is hit by some node in *S*^{t} and by some node in *O*^{t}. In addition, we have the following stronger property.

Lemma 10.2.2. *There is a planar bipartite graph H on* O' *and S' satisfying the following* "locality condition": *For each* $t \in T$, *there are two adjacent nodes in H*, *both of which hit* $D(t)$ *.*

Let H be the planar bipartite graph satisfying the property in the above lemma. We claim that for any $U \subseteq S'$, $(S \setminus U) \cup N_H(U)$ is still an HS. Indeed, consider any *t* ∈ *T*. If *D*(*t*) is hit by *S* \ *U*, then it is also hit by $(S \setminus U) \cup N_H(U)$. If *D*(*t*) is not hit by $S \setminus U$, then $D(t)$ is only hit by nodes in *U* and hence $t \in T'$. By Lemma [10.2.2,](#page-1-1) there exist two adjacent nodes $u \in S'$ and $v \in O'$, both of which hit $D(t)$. Then, we must have $u \in U$ and hence $v \in N_H(U)$. Thus, $D(t)$ is still hit by $(S \setminus U) \cup N_H(U)$. So, the claim holds.

Now, consider any $U \subseteq S'$ with $|U| \le k$. Then $|N_H(U)| \ge |U|$, for otherwise $(S \setminus U) \cup N_H(U)$ is an HS smaller than *S*, which contradicts to the fact that *S* is *k*-tight. By Theorem 9.3.1, we have

$$
\left|S'\right| \leq \left(1 + c/\sqrt{k}\right)\left|O'\right|
$$

and hence

$$
|S| \le (1 + c/\sqrt{k}) |O|.
$$

So, Theorem [10.2.1](#page-1-0) holds.

In the remaining of this section, we prove Lemma [10.2.2.](#page-1-1) Let $V' = O' \cup S'$. Consider any $t \in T'$. Define

$$
\bar{r}(t) = \min_{v \in V'} \left\{ \frac{\|tv\| + r(t)}{2} : \|tv\| > r(v) \right\}.
$$

Clearly, $\bar{r}(t) > r(t)$. Let $D'(t)$ be the disk centered at *t* of radius $\bar{r}(t)$. Then, for each node $v \in V'$, *v* hits $D(t)$ if and only if *v* hits $D'(t)$. Let D' to denote the collection of disks $D'(t)$ for all $t \in T'$. Consider any $v \in V'$. Define

$$
\delta_1(v) = \min \{ \bar{r}(t) - ||tv|| : ||tv|| \le r(t), t \in T' \},
$$

\n
$$
\delta_2(v) = \min \{ ||vu|| / 3 : u \in V \setminus \{v\} \},
$$

\n
$$
\delta(v) = \min \{ \delta_1(v), \delta_2(v) \}.
$$

Then, $\delta(v) > 0$ and the disk of radius $\delta(v)$ centered at *v* is referred to as the perturbation range of ν . Then, for any point ν' in the perturbation range of ν and any $t \in T'$, *v* hits $D(t)$ if and only if *v'* hits $D'(t)$. In addition, the perturbation ranges of all nodes in V' are disjoint. A *restricted perturbation* of V' is a mapping σ from *V'* to the plane such that for each $v \in V'$, σ (*v*) lies within the perturbation range of *v*.

A set of four points in the plane form a *degenerate quadruple* if they all lie on some circle. The next lemma shows that V' has a restricted perturbation containing no degenerate quadruple.

Lemma 10.2.3. *There exists a restricted perturbation* σ *of* V' *such that* $\sigma(V')$ *contains no degenerate quadruple.*

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let σ be the "fewest counterexample," in other words, $\sigma(V')$ contains the least number of degenerate quadruples. Suppose that a node $\sigma(u) \in V'$ is contained in at least one degenerate quadruple in $\sigma(V')$. We show that we can change $\sigma(u)$ to some point in the perturbation range of *u* which is not involved in any degenerate quadruple. For any triple nodes $\{v_1, v_2, v_3\}$ in $V' \setminus \{u\}$ such that $\sigma(v_1)$, $\sigma(v_2)$, and $\sigma(v_3)$ are not collinear, the circumcircle of $\{\sigma(v_1), \sigma(v_2), \sigma(v_3)\}\$ is referred to as a *forbidden circle* of *u*. As the number of forbidden circles of *u* is at most $\binom{|V'|-1}{3}$, there is a point u' which lies in the perturbation range of *u* but not on any forbidden circle of *u*. Let *σ'* be the restricted perturbation of *O'* ∪ *S'* obtained from *σ* by replacing *σ* (*u*) with *u*^{\prime}. Then, $u' = \sigma'(u)$ is not contained in any degenerate quadruple of $\sigma'(V')$. Thus, $\sigma'(V')$ contains strictly fewer degenerate quadruples than $\sigma(V')$, which contradicts to the choice of σ . Therefore, the lemma holds.

Now, we fix a restricted perturbation σ of V' satisfying that $\sigma(V')$ contains no degenerate quadruple. Let G' be the graph obtained from Voronoi dual of $\sigma(V')$ by removing all edges between two nodes in $O[']$ and all edges between two nodes in S' . Then, G' is planar. In the next, we show that G' satisfies the locality condition: For each target $t \in T'$, there are two adjacent nodes in G' , both of which hit $D'(t)$. We consider two cases:

Case 1: *t* lies in the Voronoi cell of $\sigma(u)$ for some $u \in O'$. Then, $\sigma(u)$ must hit *D*^{\prime} (*t*) as *D*^{\prime} (*t*) is hit by σ (*O*^{\prime}). Let *v* be a node in *S*^{\prime} such that σ (*v*) has the shortest distance from *t*. Then, $\sigma(v)$ must also hit $D'(t)$ as $D'(t)$ is hit by $\sigma(O')$. If $\sigma(u)$ and $\sigma(v)$ are adjacent, then lemma holds trivially. So, we assume that $\sigma(u)$ and $\sigma(v)$ are nonadjacent. Then *t* lies outside the Voronoi cell of $\sigma(v)$. We walk from *t* to $\sigma(v)$ along the straight line segment $t\sigma(v)$. During this walk, we may cross some Voronoi cells, and at some point before reaching $\sigma(v)$, we will enter the Voronoi cell of $\sigma(v)$ the first time. Let *x* be the point at which we first enter the Voronoi cell of $\sigma(v)$. We must enter this cell from another cell, and we assume the cell is the Voronoi cell of $\sigma(w)$. Then, $\sigma(w)$ does not lie in the ray $x\sigma(v)$, and hence

$$
||t\sigma(w)|| < ||tx|| + ||x\sigma(w)|| = ||tx|| + ||x\sigma(v)|| = ||t\sigma(v)||.
$$

Since $\sigma(v)$ hits $D'(t)$, $\sigma(w)$ hits $D'(t)$ as well; and by the choice of $v, w \in O'$. As $\sigma(w)$ is adjacent to $\sigma(v)$, the locality condition is satisfied.

Case 2: *t* lies in the Voronoi cell of $\sigma(u)$ for some $u \in S'$. The proof is the same as in Case 1 and is thus omitted.

Finally, we define a graph H on V' such that two nodes u and v are adjacent if and only if $\sigma(u)$ and $\sigma(v)$ are adjacent in *G'*. Then, *H* is also a planar bipartite graph. In addition, for any target $t \in T'$, let $\sigma(u)$ and $\sigma(v)$ be two adjacent nodes in G' , both of which hit $D'(t)$. Then, *u* and *v* are two adjacent nodes in *H*, both of which hit $D(t)$. This completes the proof of Lemma [10.2.2.](#page-1-1)

10.3 Minimum Disk Cover

Consider a set D of disks and a set T of target points in the plane. A disk $D \in D$ is said to *cover* a target $t \in T$ if $t \in D$. A subset D' of D is said to be a *cover* of T if each target in *T* is covered by some node in *V*. The problem of finding a minimum subset of D which is a cover of *T* is referred to as MIN-DISK-COVER. In this section, we present a PTAS for MIN-DISK-COVER.

Suppose that each disk in D has a unique ID for tie-breaking. A disk $D \in \mathcal{D}$ is said to be *redundant* if there exists another disk $D' \in \mathcal{D}$ satisfying that either *D* only covers a proper subset of targets covered by *D* , or *D* covers exactly the same set of targets as D' but has a larger ID than *D*. If a disk in D is redundant, we simply remove it from D . Thus, we assume that no disk in D is redundant. Consequently, we can identify the disks in D by their centers. Let *V* denote the set of the centers of disks in D. For each $v \in V$, we use $D(v)$ to denote the disk in D centered at *v*, and $r(v)$ to denote the radius of the disk $D(v)$. For simplicity, a node $v \in V$ is said to *cover* a target $t \in T$ if $D(v)$ covers t , a subset C of V is said to be a *cover* of T if the set of disks $\{D(v) : v \in C\}$ is a cover of *T*.

Let $C \subseteq V$ be a cover of *T*. A set $U \subseteq C$ is said to be a *loose* subset of *C* if there is a subset *U'* of *V* such that $|U'| < |U|$ and $(C \setminus U) \cup U'$ is still a cover, and to be a *tight* subset of *C* otherwise. *C* is said to be *k-tight* if every subset $U \subseteq C$ with $|U| \le k$ is tight. Intuitively, a *k*-tight cover for sufficiently large *k* is close to the minimum cover in size. We will formerly prove such relation in the next theorem.

Theorem 10.3.1. Let c and K be the two universal constants in Theorem 9.3.1. *Then, for any k-tight cover* $C \subseteq V'$ *with* $k \ge \max\{K,2\}$, $|C| \le \left(1 + \frac{c}{\sqrt{k}}\right)$ *opt, where opt is the size of a minimum cover.*

Theorem [10.3.1](#page-4-0) suggests a local search algorithm for MIN-DISK-COVER, referred to as *k-Local Search* (*k***-LS**), where *k* is a positive integer parameter at least two. It computes a *k*-tight cover *C* in two phases:

- *Preprocessing Phase*. Compute a cover *C* ⊆ *V* by the well-known greedy algorithm for minimum set cover.
- *Replacement Phase*. While *C* is not *k*-tight, find a subset *U* of*C* with size at most *k* and a subset *U* of *V* with size at most $|U| - 1$ satisfying that $(C \setminus U) \cup U'$ is still a cover; replace *C* by $(C \setminus U) \cup U'$. Finally, we output *C*.

By Theorem [10.3.1,](#page-4-0) the algorithm k **-LS** has an approximation ratio at most $1 +$ $O(1/$ √ \overline{k} when $k \geq K$. Its running time is dominated by the second phase. Let $m = |V|$. Then, the second phase consists of $O(m)$ iterations. In each iteration, the search for the subset U and its replacement U' takes at most

$$
O\left(m^k\right) \cdot O\left(m^{k-1}\right) = O\left(m^{2k-1}\right)
$$

time. So, the total running time is

$$
O(m) \cdot O\left(m^{2k-1}\right) = O\left(m^{2k}\right).
$$

This means that the algorithm *k***-LS** is a PTAS.

We move on to the proof of [10.3.1.](#page-4-0) Let $O \subseteq V$ be a minimum cover. Theo-rem [10.3.1](#page-4-0) holds trivially if $|C| = |O|$. So, we assume that $|C| > |O|$. Let $C' = C \setminus O$ and $O' = O \setminus C$. Then, $|C'| > |O'|$. In addition, $|O'| \geq k$ for otherwise, we can choose a subset of $|O'| + 1$ nodes from C' and replace them by O' to get a smaller cover, which contradicts to the fact that *C* is *k*-tight. Let T' be the set of targets not covered by $O \cap C$. Then, each $t \in T'$ is covered by some node in O' and by some node in C' . In addition, we have the following stronger property.

Lemma 10.3.2. *There is a planar bipartite graph H on* O' *and* C' *satisfying the following* "locality condition": *For each* $t \in T$, *there are two adjacent nodes in H*, *both of which cover t.*

Let H be the planar bipartite graph satisfying the property in the above lemma. We claim that for any $U \subseteq C'$, $(C \setminus U) \cup N_H(U)$ is still a cover. Indeed, consider any *t* ∈ *T*. If *t* is covered by $C \setminus U$, then it is also covered by $(C \setminus U) \cup N_H(U)$. If *t* is not covered by $C \setminus U$, then it is only covered by nodes in *U* and hence $t \in T'$. By Lemma [10.3.2,](#page-5-0) there exist two adjacent nodes $u \in C'$ and $v \in O'$, both of which cover *t*. Then, we must have $u \in U$ and hence $v \in N_H(U)$. Thus, *t* is still covered by $(C\setminus U)\cup N_H(U)$. So, the claim holds.

Now, consider any $U \subseteq C'$ with $|U| \leq k$. Then $|N_H(U)| \geq |U|$, for otherwise $(C\setminus U)\cup N_H(U)$ is a cover smaller than *C*, which contradicts to the fact that *C* is *k*-tight. By Theorem 9.3.1, we have

$$
\left|C'\right| \leq \left(1 + c/\sqrt{k}\right)\left|O'\right|
$$

and hence

$$
|C| \le (1 + c/\sqrt{k}) |O|.
$$

So, Theorem [10.3.1](#page-4-0) holds.

In the remaining of this section, we prove Lemma [10.3.2.](#page-5-0) Let $V' = O' \cup C'$. For each $v \in V'$, define

$$
\bar{r}(v) = \min_{t \in T} \{ ||tv|| : ||tv|| > r(v) \},\
$$

Clearly, $\bar{r}(v) > r(v)$, and if we increase the radius of *v* to any value below $\bar{r}(v)$, the set of targets covered by *v* remains the same. A function ρ on V' is said to be *coverage-preserving* if $r(v) \le \rho(v) < \bar{r}(v)$ for each $v \in V'$. For each coveragepreserving function ρ , we use \mathcal{D}_{ρ} to denote the collection of disks centered at *v* of radius $\rho(v)$ for all $v \in V'$.

Lemma 10.3.3. *There exists a coverage-preserving function* ρ *on* V' *such that* \mathcal{D}_{ρ} *contains no degenerate quadruple.*

Now, fix a coverage-preserving function ρ on V' such that \mathcal{D}_0 contains no degenerate quadruple. For each node $v \in V'$, let $D'(v)$ denote the disk centered at v of radius $\rho(v)$. We claim that any pair of disks in \mathcal{D}_{ρ} are geometrically nonredundant. Indeed, assume to the contrary that there exist two nodes in *u* and *v* such that $D'(u) \subseteq D'(v)$. Since ρ is coverage-preserving, all targets covered by *u* are also covered by *v*, which is a contradiction. Thus, our claim holds. Let *H* be the graph obtained from the Voronoi dual of \mathcal{D}_{α} by removing all edges between two nodes in O' and all edges between two nodes in C' . Then, *H* is a planar bipartite graph on O' and *C* .

Next, we show that *H* satisfies the locality condition: For each $t \in T$, there are two adjacent nodes in *H*, both of which cover *t*. Clearly, *t* is covered by a node $v \in V'$ if and only if $\ell(t, v) \leq 0$ where $\ell(t, v) = ||tv|| - \rho(v)$ is the shifted distance from *t* to *v*. Thus, if $\ell(t, u) \leq \ell(t, v)$ for some two nodes *u* and *v* in *V'* and *t* is covered by *v*, then *t* is also covered by *u*. We consider two cases:

Case 1: *t* lies in the Voronoi cell of $D'(u)$ for some $u \in O'$. Then, *u* must cover *t* as *t* is covered by O' . Let *v* be a node in C' to which *t* has the smallest shifted distance. Then, ν must also cover t , as t is covered by C' . If u and ν are adjacent, then the locality condition holds trivially. So, we assume that *u* and *v* are nonadjacent. Then, *t* lies outside the Voronoi cell of $D'(v)$. We walk from *t* to *v* along the straight line segment *tv*. During this walk, we may cross some Voronoi cells of the disks in \mathcal{D}_0 , and at some point before reaching ν we will enter the Voronoi cell of $D'(v)$ the first time. Let *x* be the point at which we first enter the Voronoi cell of $D'(v)$. We must enter this cell from another cell, and we assume this cell the Voronoi cell of *D* (*w*). Then, $\ell(t, w) \leq \ell(t, v)$ as

$$
\ell(t, w) = ||tw|| - \rho(w) \n\leq ||tx|| + ||xw|| - \rho(w) \n= ||tx|| + \ell(x, w) \n= ||tx|| + \ell(x, v) \n= ||tx|| + ||xv|| - \rho(v) \n= ||tv|| - \rho(v) \n= \ell(t, v).
$$

We further claim that $\ell(t, w) < \ell(t, v)$. Indeed, assume to the contrary that $\ell(t, w) =$ $\ell(t, v)$. Then, we must have $||tw|| = ||tx|| + ||xw||$, in other words, w lies in the ray *tv*. As $\ell(t, w) = \ell(t, v)$, either $D'(v) \subseteq D'(w)$ or $D'(w) \subseteq D'(v)$, which is a contradiction. Therefore, our claim is true. By the choice of *v*, $w \in O'$ and *w* is adjacent to *v*. In addition, *w* covers *t* since $\ell(t, w) < \ell(t, v)$ and *v* dominates *t*. Thus, the locality condition is satisfied.

Case 2: t lies in the Voronoi cell of $D'(u)$ for some $u \in C'$. The proof is the same as in Case 1 and is thus omitted.

Since ρ is coverage-preserving, Lemma [10.3.2](#page-5-0) holds.