

Springer Optimization and Its Applications

VOLUME 77

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393

Ding-Zhu Du • Peng-Jun Wan

Connected Dominating Set:
Theory and Applications

123

Ding-Zhu Du
Department of Computer Science
University of Texas, Dallas
Richardson, TX, USA

Peng-Jun Wan
Department of Computer Science
Illinois Institute of Technology
Chicago, IL, USA

ISSN 1931-6828
ISBN 978-1-4614-5241-6 ISBN 978-1-4614-5242-3 (eBook)
DOI 10.1007/978-1-4614-5242-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012948679

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

As a combinatorial subject, the connected dominating set has been studied in as
early as 1970s. However, it was not a major subject and hence did not attract much
attention. This situation had changed since 1998 due to its important applications in
communication and computer networks, especially its role as a virtual backbone in
wireless networks. During the last fourteen years, a large amount of research papers
have been published in the theory and applications of the connected dominating
set. However, until this book, no attempt has been made to put results on this
topic into a collection. When we started to collect references and to make our
plan, we realized that actually there exist too much materials in the literature to
put into a single book. All materials can be classified into three categories, study
in combinatorial structures, applications in networking systems, and theory with
computational nature. We decided to give up the first two categories and hence keep
this book as a theory-oriented one with computational nature. Therefore, in each
topic, we emphasize on theoretical developments on computational complexity and
algorithm designs and analysis. Since each theoretical development is motivated
from some applications in the real world, we start each chapter, except the first
one for introduction, with a section on motivation and overview. This is a reference
book which presents the state of art in research from a computational aspect of the
connected dominating set. It may also serve as a textbook for advanced topics in a
graduate course in applied mathematics, operations research, and computer science.
Indeed, we have used some chapters of this book to teach a seminar course (CS7301)
in the University of Texas at Dallas, a wireless networking course (CS547) in the
Illinois Institute of Technology, and some short courses in graduate summer schools
in China. We wish to express our thanks to Hejiao Huang, Hong Zhu, Zhenhua
Duan, and Tiende Guo for the organization of such summer courses.

We wish to express our thanks to the colleagues and graduate students, Weili Wu,
Zhao Zhang, Wonjun Lee, Deying Li, Yuexuan Wang, Donghyun Kim, Manki Min,
Xiaofeng Gao, Feng Zou, Xiuzhen Cheng, Mihaela Cardei, My Thai, Ling Ding,
James Willson, Lidong Wu, Zaixin Lu, Kai Xing, Lidan Fan, Wen Xu, Yuanjun
Bi, Yuqing Zhu, Huan Ma, Lan Li, Khaled Alzoubi, Ophir Frieder, Xiaohua Xu,

v

vi Preface

Zhu Wang, and Mining Li, who have made direct or indirect contributions in the
process of writing this book.

Especially, we wish to thank Professors Andy Yao, Francis Yao, and Xiaohua Jia
for their support. A lot of work on this book was done during our visit at Institute for
Interdisciplinary Information Sciences, Tsinghua University, and City University of
Hong Kong.

Richardson, TX, USA Ding-Zhu Du
Chicago, IL, USA Peng-Jun Wan

Contents

1 Introduction . 1
1.1 Connected Domination Number . 1
1.2 Virtual Backbone in Wireless Networks . 3
1.3 Converter Placement in Optical Networks . 5
1.4 Connected Domatic Number.. 6
1.5 Lifetime of Sensor Networks . 8
1.6 Theory and Applications . 9

2 CDS in General Graph . 11
2.1 Motivation and Overview . 11
2.2 Complexity of Approximation .. 13
2.3 Two-Stage Greedy Approximation . 14
2.4 Weakly CDS . 17
2.5 One-Stage Greedy Approximation . 20
2.6 Weighted CDS . 29
2.7 Directed CDS . 33

3 CDS in Unit Disk Graph . 35
3.1 Motivation and Overview . 35
3.2 NP-Hardness and PTAS . 37
3.3 Two-Stage Algorithm . 44
3.4 Independent Number (I) . 47
3.5 Independent Number (II). 54
3.6 Zassenhaus–Groemer–Oler Inequality . 57

4 CDS in Unit Ball Graphs and Growth Bounded Graphs 63
4.1 Motivation and Overview . 63
4.2 Gregory–Newton Problem . 64
4.3 Independent Points in Two Balls . 67
4.4 Growth-Bounded Graphs . 69
4.5 PTAS in Growth-Bounded Graphs . 73

vii

viii Contents

5 Weighted CDS in Unit Disk Graph . 77
5.1 Motivation and Overview . 77
5.2 Node-Weighted Steiner Tree . 78
5.3 Double Partition . 80
5.4 Cell Decomposition . 82
5.5 6-Approximation . 86
5.6 4-Approximation . 92
5.7 3.63-Approximation .. 96

6 Coverage . 105
6.1 Motivation and Overview . 105
6.2 Max-Lifetime Connected Coverage . 107
6.3 Domatic Partition .. 113
6.4 Min-Weight Dominating Set . 117

7 Routing-Cost Constrained CDS . 119
7.1 Motivation and Overview . 119
7.2 Complexity in General Graphs . 121
7.3 CDS with Constraint (ROC1). 124
7.4 CDS with Constraint (ROCα) for α ≥ 5 . 125

8 CDS in Disk-Containment Graphs . 133
8.1 Motivation and Overview . 133
8.2 Local Independence Number . 134
8.3 Independence Number . 146
8.4 Greedy Approximation for MIN-CDS. 146

9 CDS in Disk-Intersection Graphs . 151
9.1 Motivation and Overview . 151
9.2 Voronoi Diagram and Dual of Disks . 152
9.3 Local Search for MIN-DS. 155
9.4 A Two-Staged Algorithm for MIN-CDS . 159

10 Geometric Hitting Set and Disk Cover . 161
10.1 Motivation and Overview . 161
10.2 Minimum Geometric Hitting Set . 161
10.3 Minimum Disk Cover . 165

11 Minimum-Latency Scheduling . 169
11.1 Motivation and Overview . 169
11.2 Geometric Preliminaries . 171
11.3 Dominating Tree . 174
11.4 Broadcast Scheduling . 177
11.5 Aggregation Scheduling . 178
11.6 Gathering Scheduling . 179
11.7 Gossiping Scheduling .. 181

Contents ix

12 CDS in Planar Graphs . 183
12.1 Motivation and Overview . 183
12.2 Preliminaries. 184
12.3 Algorithm Description . 185
12.4 Performance Analysis . 187

References . 193

Index . 201

Chapter 1
Introduction

Most practical questions can be reduced to problems
of largest and smallest magnitudes . . . and it is only by
solving these problems that we can satisfy the requirements
of practice which always seeks the best, the most convenient.

P. L. C̆EBYS̆EV

In this chapter, we introduce basic concepts, fundamental results and applications
of connected dominating sets.

1.1 Connected Domination Number

Consider a graph G = (V,E). A subset of vertices, D, is called a dominating set if
every vertex is either in D or adjacent to a vertex in D. If D, in addition, induces
a connected subgraph, then it is called a connected dominating set (CDS). The
connected domination number of a graph G is the minimum cardinality of a CDS,
denoted by γc(G). A CDS that has the size equal to the domination number is called
a minimum CDS.

The connected domination number is a classical subject studied in graph theory
for many years [94]. Some interesting results are obtained in those earlier efforts.
The following are two examples.

Let �(G) denote the max leaf number of a graph G, which is the maximum
number of leaves in a spanning tree of G.

Theorem 1.1.1 (Douglas [35]). For any graph of order n,

γc(G) = n− �(G).

Proof. It is easy to see that for any tree T , γc(T) = |V (T)|− �(T). Moreover, a CDS
for a spanning tree T of G is also a CDS for G. Therefore, γc(G)≤ n− �(G).

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 1,
© Springer Science+Business Media New York 2013

1

2 1 Introduction

S1

x1

S2

x2

s

tFig. 1.1 Graph G in the
proof of Theorem 1.1.1

Now, consider a minimum CDS D of G. Let H be a spanning tree of G[D] where
G[D] is the subgraph of G induced by D. Connect H to every vertex in V −D to
obtain a spanning tree T of G. Then, every vertex in V−D is a leaf of T . Conversely,
every leaf of T is in V −D. Otherwise, if T has a leaf x not in T −D, then D−{x}
would be a CDS for T and hence a CDS for G, contradicting the minimality of D
(Fig. 1.1). ��

Theorem 1.1.2 (Sampathkumar and Walikar [94]). Let G be a graph of order
n≥ 4. Suppose both graph G and its complement Ḡ are connected. Then

γc(G)+ γc(Ḡ)≤ n(n− 3).

Proof. Note that a tree has at least two leaves. By Theorem 1.1.1, we have γc(G)≤
n− 2. Moreover, G is connected and hence n− 1≤ |E(G)|. Therefore

γc(G)≤ n− 2 = 2(n− 1)− n≤ 2|E(G)|− n.

Similarly,

γc(Ḡ)≤ 2|E(Ḡ)|− n.

Thus,

γc(G)+ γc(Ḡ)≤ 2(|E(G)|+ |E(Ḡ)|)− 2n = 2

(
n
2

)
− 2n = n(n− 3). ��

Laskar and Pfaff [71] showed the NP-hardness of computing the connected
domination number or the minimum CDS. Namely, the following problem is
NP-hard.

MIN-CDS: Given a graph G = (V,E), find a CDS with minimum cardinality.

Remark. We make a different usage of MIN-CDS from minimum CDS that MIN-
CDS is for a problem while the minimum CDS is for a subset of vertices.

1.2 Virtual Backbone in Wireless Networks 3

Theorem 1.1.3. MIN-CDS is NP-hard.

Proof. Consider the following problem.

SET COVER: Given a collection C of subsets of a base set X and a positive integer k ≤ |X |,
determine whether C contains a set cover with cardinality at most k, where a set cover is a
subcollection A of C such that every element of X appears in at least one subset in A.

SET-COVER is a well-known NP-complete problem [57]. We construct a
reduction from SET-COVER to MIN-CDS as follows.

For input collection C and base set X in SET-COVER we first construct a bipartite
graph H with n+m vertices labeled by all elements x1,u2, . . . ,xn in X and all subsets
S1,S2, . . . ,Sm in C. An edge exists between two vertices a and b if and only if a ∈ b
or b ∈ a. Graph G is obtained from H by adding two new vertices s and t and
connecting s to t and every Si for i = 1,2, . . . ,m.

Suppose C has a set coverA of at most size k. Then the vertices with labels in A
together with s form a CDS with cardinality at most k+ 1.

Conversely, suppose G has a CDS C of size k′ ≤ k + 1. Note that C must
contains node s in order to dominating node t or connection t to other vertices in C.
Furthermore, we claim that if a ∈C for some a ∈ X , then C−{a} is still a CDS. In
fact, to have a path connecting a and s, there must exist A∈ C such that a∈ A. Thus,
a can be dominated by A. Moreover, all vertices dominated by a are also dominated
by s. Thus, C−{a} is still a CDS. Now, let us denote by C′ the CDS obtained from
C by deleting t and all elements in X . Then, C′ contains s and some vertices labeled
by subsets A1,A2, . . . ,Ah (h≤ k′ −1) in C. These h subsets A1,A2, . . . ,Ah must cover
all elements in X . Therefore, G has a CDS of size at most k+ 1 if and only if C has
a set cover of size at most k. ��

While MIN-CDS in general is NP-hard, a lot of earlier efforts were made on
design of polynomial-time algorithms for special class of graphs, such as series-
parallel graphs [113] and permutation graphs [25].

This situation was changed after applications of CDS were found in wireless
networks and optical networks. Since then, the study of CDS is toward application-
oriented research. A plenty of issues are involved which generate many research
problems in theory.

1.2 Virtual Backbone in Wireless Networks

To keep nodes in a wireless network being able to communicate each other, the
network is required to have certain connectivity. Such a task is called topological
control. Inspired by physical backbone in classical wired networks, the virtual back-
bone has been introduced to involve in topological control for wireless networks to
reduce the utilization of resource. When the wireless network is formulated as a
disk graph, the virtual backbone is a CDS of the graph so that all communications
between nodes can be executed through the virtual backbone. In fact, the virtual

4 1 Introduction

Fig. 1.2 Black nodes form a
virtual backbone

v

u

There is
a routing
table.

Fig. 1.3 Node u sends a data
to node v through a virtual
backbone

backbone is required to have two properties: (1) Every node not in virtual backbone
should be able directly to communicate with (adjacent to) a node in the virtual
backbone. (2) All nodes in the virtual backbone should be able to communicate each
other within the virtual backbone, that is, the virtual backbone induces a connected
subgraph.

To see the performance of using the virtual backbone, let us consider a network as
shown in Fig. 1.2. Note that wireless network has no physical infrastructure. Without
using the virtual backbone, every node has to store a routing table in order to be able
to communicate with others. With the virtual backbone, only nodes in the virtual
backbone need to store a routing table. For nodes not in the virtual backbone, each
of them needs to know only an adjacent node in the virtual backbone. In Fig. 1.3, an
example is presented to show how node u sends a data to node v through a virtual
backbone. Node u first sends the data to its adjacent node w in the virtual backbone
C and tells node w that the data is for node v. Since there is a routing table stored
at node w, w will figure out a routing path through C to u and then delivers the data
along this routing path to node v.

Clearly, we would like to have the virtual backbone as small as possible. This
gives a motivation to study MIN-CDS and to design constructions of CDS with
small size in various cases [8, 26, 28, 38, 45, 93–95, 98–100, 111, 117–122, 128].
There are several remarkable theoretical results in the literature; each of them made
an important progress on the study of CDS as mentioned in the following.

Guha and Khuller [62] designed the first polynomial-time approximation with
guaranteed performance ratio lnn+O(1). They also showed a result on the inap-
proximability that MIN-CDS cannot have a polynomial-time ρ lnn-approximation
for 0 < ρ < 1 unless NP ⊆ DTIME(nO(log logn)) where n is the number of vertices
in input graph. Improving Guha–Khuller’s approximation introduced a study on
analysis of greedy approximation with nonsubmodular potential functions. Ruan
et al. [92] and Du et al. [40] made a significant contribution in this research direction.

1.3 Converter Placement in Optical Networks 5

Wan et al. [104] designed the first polynomial-time constant-approximation for
MIN-CDS in the unit disk graph which is a mathematical model for homogeneous
wireless sensor networks. A plenty of follow-up efforts have been made along this
direction.

Cheng et al. [22] designed the first PTAS for MIN-CDS in unit disk graphs, that
is a group of polynomial-time (1+ ε)-approximation for any ε > 0. This initiates a
series of research work on CDS with partition techniques.

Many variations of MIN-CDS or new problems on CDS are proposed recently,
motivated from special needs in developments of wireless networking technology.
For example Li et al. [75] and Thai et al. [101] proposed the directed CDS;
Kim et al. [67] constructed the diameter-bounded CDS; Willson et al. [115] and
Ding et al. [32] initiated a study on the routing-cost constrained CDS. Especially,
Huang and Gao et al. [53, 66] discovered a technique, double partition, to design
better approximations for the weighted CDS problem and related problems. We will
study them in later chapters.

1.3 Converter Placement in Optical Networks

One of expectations on next-generation of communication network is to enable
people to do remote data gathering and remote scientific experiments. Those
applications demand high-speed communication networks with flexible deployment
and/or mobile connectivity. One of proposed infrastructures with such properties
is the wireless access network on top of the optical core network. Indeed, the
optical network in core provides the efficient high-speed communication with high
bandwidth and the wireless network in access provides mobile communication
or/and flexible deployment. The advantage of fiber-optical backbone network
combined with wireless technology has gained more and more interests in the study
of the next generation communication network.

An optical network can be considered as a graph G = (V,E) that each edge
is associated with a set of wavelengths [60, 73, 81, 82, 88]. The multi-
cast/broadcast/unicast routing requires the existence of a spanning subgraph of
G. If a message from an edge to another edge uses different wavelengths, then a
converter is required at the common endpoint of the two edges.

Let us use a color to represent a connected component in a subgraph induced by
all edges with a certain wavelength. Each converter would connect two connected
components into one. To save resource, a minimization problem is formulated [90,
91] as follows.

CONVERTER PLACEMENT: Given a graph G = (V,E) and color-sets for each edge of G
such that for every color all edges in the color form a connected subgraph, find the minimum
number of vertices such that placing converters on them would connect some colors into a
connected spanning subgraph of G.

CONVERTER PLACEMENT can be reduced to MIN-CDS. To do so, we construct
another graph G′ with vertex set V . Two vertices u and v are connected with an

6 1 Introduction

edge if and only if they are in the same color of G. Without loss of generality, we
may assume that no color covers all vertices because in such a case, no converter
is required. Under the assumption, we can show that a vertex subset C is a feasible
solution for CONVERTER-PLACEMENT if and only if C is a CDS in G′.

First, suppose C is a feasible solution. Then every vertex x must be adjacent to
a converter; otherwise, it cannot communicate with any converter which is also a
vertex in G. Moreover, C must induce a connected subgraph in G′ since, otherwise,
two converters in different connected components cannot communicate each other.
Therefore, C is a CDS in G′.

Conversely, if C is a CDS in G′, then there is a spanning tree T of G′ with all
internal vertices in C. Thus, placing converters at all vertices in C would connect
all colors appearing in T together, which is clearly covering T . Therefore, C is a
feasible solution for CONVERTER PLACEMENT.

In optical networks, there is also an amplifier placement problem related to CDS.
In fact, an optical network usually consists of passive optical star couplers as nodes
which are linked with undirectional fibers. When a signal is traveling too long or
splits at some couplers, its power may become too weak and hence it needs an
amplifier to increase its power to certain level. The minimization of number of
amplifiers under certain network connectivity constraint can also be reduced to a
special case of MIN-CDS [87].

1.4 Connected Domatic Number

The domatic number of a graph G, κ(G), is the maximum number of disjoint
dominating sets in G. The connected domatic number of a graph G, κc(G), is the
maximum number of disjoint CDS in G. κ(G) and κc(G) are very different. The
following theorem indicates this fact.

Theorem 1.4.1. For any positive integer k, there exists a graph G such that

κ(G)−κc(G) = k.

Proof. Let K = (V,E) and K′ = (V ′,E ′) be two disjoint complete graphs of order
k+ 1. Add an edge (v,v′) between K and K′ for a vertex v ∈V and a vertex v′ ∈V ′.
Denote by G the resulting graph. Then κ(G) = k+ 1 and κc(G) = 1. ��

Computing κc(G) is equivalent to the following problem.

MAX#CDS: Given a graph G = (V,E), find the maximum number of disjoint CDS’s.

This problem is also intractable.

Theorem 1.4.2 (Cardei et al. [16]). MAX#CDS is NP-hard.

Proof. The NP-completeness of the following problem is proved in [16].

1.4 Connected Domatic Number 7

t

s1 s3
s2

u v w x u v w x

u’ v’ w’ x’

G G*

a

b

Fig. 1.4 Reduction in the proof of Theorem 1.4.2

3DDS: Given a graph G = (V,E), determine whether G contains three disjoint dominating
sets.

We now construct a polynomial-time reduction from 3DDS to MAX#CDS. For
input graph G = (V,E) of 3DDS, we make a copy of V , V ′ = {v′ | v ∈V}. Connect
each vertex u ∈ V to u′ and v′ for all (u,v) ∈ E . Add four new vertices s1,s2,s3

and t. Connect every si to t for i = 1,2,3 and connect every u ∈ V to every si for
i = 1,2,3. Let G∗ = (V ∗,E∗) be the graph obtained from the above construction
(Fig. 1.4), that is,

V ∗ = V ∪V ′ ∪ {s1,s2,s3, t}
E∗ = E ∪{(u,v′) | (u,v) ∈ E}∪{(u,si) | u ∈V,1≤ i≤ 3}

∪{(si, t) | 1≤ i≤ 3}∪{(u,u′) | u ∈V}.

We show that G contains three disjoint dominating sets if and only if G∗ contains
three disjoint CDS’s. To do so, we first assume that G contains three disjoint
dominating sets D1,D2,D3. Then D1 ∪ {s1}, D2 ∪ {s2} and D3 ∪ {s3} are three
disjoint CDS’s for G∗.

Conversely, assume G∗ contains three disjoint CDS’s C1, C2 and C3. Define
Di = Ci ∩V for i = 1,2,3. Then D1, D2 and D3 are disjoint. We claim that each
Di is a dominating set in G. In fact, if there exist a vertex v ∈ V which cannot be
dominated by Di, then v′ cannot be dominated by Ci because every vertex v′ ∈ V ′
can be dominated by only some vertices in V and v′ is dominated by u ∈ V if and
only if v is dominated by u.

Since above construction is done clearly in polynomial-time, MAX#CDS is NP-
hard. ��

8 1 Introduction

1.5 Lifetime of Sensor Networks

When a very large number of sensors are randomly deployed in target field, the
existence of redundant sensors implies the existence of disjoint CDS’s. By properly
scheduling activation/sleep time of sensors, those CDS’s can be organized working
in different period as virtual backbone so that the lifetime of the sensor networks
is equal to the lifetime of a sensor multiplying the number of disjoint CDS’s.
Therefore, the maximization of the number of disjoint CDS’s has impact in the
lifetime maximization of sensor network. This gives an application of MAX#CDS.
Actually, from study on the lifetime of sensor networks, more research problems on
CDS have been promoted. The following are some of them.

An improvement of lifetime can be seen from the following example as shown in
Fig. 1.5. The graph in Fig. 1.5 does not contain two disjoint CDS’s. However, if we
organize sensors working in the following way, then the lifetime of sensor network
can reach 1.5 when every sensor is supposed to has lifetime one.

1. At the 1st 0.5 time period, CDS {v1,v2} is active.
2. At the 2nd 0.5 time period, CDS {v2,v3} is active.
3. At the 3rd 0.5 time period, CDS {v3,v1} is active.

Motivated from this example, we may study the following problem [129].

CDS-SCHEDULING: Given a graph G = (V,E) and a positive vector b : V → R+, find a
sequence of pairs (C1 , t1), (C2 , t2), . . . , (Ck, tk) where 1 ≤ k ≤ |V | to maximize t1 + t2 +
· · ·+ tk under constraint that ∑i:u∈Ci

ti ≤ b(u) for every u ∈V .

Although our scheduling mechanism is able to make the system lifetime longer,
the control complexity is increased. Note that different orderings of those CDS
C1, ..,Cp give different control complexities. For example, suppose scheduling is
in ordering of

C1 = {v1,v2}, C2 = {v3,v4}, C3 = {v2,v3}.
Then, sensor v2 should be activated twice. However, in ordering of C1,C3,C2, none
of sensors needs to activate twice. This fact raised a research problem on CDS
permutation.

An interesting fact discovered in [5] is that putting a sensor alternatively in active
and sleep modes in a proper way may double its lifetime since the battery could be

v

v

v

1

2

3
Fig. 1.5 An example

1.6 Theory and Applications 9

recovered in certain level during sleeping. This fact indicates that CDS permutation
contains interesting issues. A proper number of changing between sleep and active
modes is good to the lifetime. We may need to find a way to balance the control
complexity and the lifetime.

If we allow partial domination, then the lifetime of the system can certainly be
increased. A partial CDS with percentage p (0 < p < 1) is a vertex subset C which
dominates at least pn vertices and induces a connected subgraph. There are three
types of problems on partial CDS [19, 20].

In the first type of problems, similar to MAX#CDS and CDS SCHEDULING, we
want to maximum the lifetime of the system under constraint that the dominating
percentage is always kept at least p.

In the second type of problems, the lifetime of network is given, we want to
find a sequence of disjoint (or nondisjoint) partial CDS to maximize the minimum
dominating percentage p.

In the third type of problems, the lifetime of network is also given, we want to
find a sequence of disjoint (or nondisjoint) partial CDS to maximize the sum of
products of dominating percentage p and working time of each partial CDS.

1.6 Theory and Applications

In previous sections, we have seen that two mathematical problems MIN-CDS
and MAX#CDS have important applications in network technology. Moreover,
motivated from those applications, many new mathematical problems and new
issues about CDS have been proposed and studied. Especially, as wireless networks
and optical networks are developing rapidly, theory of CDS is growing quickly. The
aim of this book is to put together recent results on theory and applications of CDS
in order to provide the state of arts in this research area for students, professors,
researchers in applied mathematics, operations research and computer science.

In each chapter, we first give a motivation and overview, as well as existing open
problems, for subject which is going to be studied in the chapter. Then we present
theoretical developments. For convenience of the reader, we try to have this book
almost self-contained and each chapter also almost self-contained. Therefore, the
definition of notations may be defined repeatedly in different chapters.

Also for convenience of the reader, we restrict usage of brief names. Indeed,
except DS (dominating set), CDS (connected dominating set), SCDS (strongly
connected dominating set), WCDS (weakly connected dominating set), and names
of problems, we rarely use brief names for others.

Although most of contents of this book come from research with motivations
from applications in the real world, we have to admit that this is a theory book or
mathematical book. Therefore, we do not put any computer experimental result in
this book.

We wish that this book can be a useful tool in further developments on theory and
applications of CDS to enrich contents of combinatorial optimization and computer
and communication networks.

Chapter 2
CDS in General Graph

Leadership is based on inspiration,
not domination; on cooperation, not intimidation.

WILLIAM ATHUR WARD

2.1 Motivation and Overview

Since MIN-CDS is NP-hard, approximation algorithm design becomes an important
issue in study of CDS. What is the complexity of approximation for MIN-CDS?
Guha and Khuller [62] showed that MIN-CDS has no polynomial-time (ρ lnn)-
approximation for 0 < ρ < 1 unless NP ⊆ DT IME(nO(loglogn)) where n is the
number of vertices in input graph. Moreover, they designed a 2-stage greedy
algorithm with performance ratio 3+ lnδ where δ is the maximum vertex degree of
input graph. The effort on improvement of this 2-stage greedy algorithm encounted
an essential difficulty on analysis of greed approximation.

In 1982, Wolsey [116] discovered a general theorem on analysis of greedy
approximation with submodular potential functions, which covers many existing
results. For example, the greedy algorithm for WCDS in [17] has a submodular
potential function and can be analyzed with Wolsey Theorem. Since Wolsey
Theorem was established, the submodularity becomes an important property for
algorithm designer to seek. Unfortunately, the potential function used in Guha–
Khuller’s Greedy Algorithm is not submodular, and so far, no one has found a
submodular potential function to design a greedy approximation for MIN-CDS.

How do we analyze the greedy approximation with a nonsubmodular potential
function? Ruan et al. [92] found a technique and designed a one-stage greedy
approximation for MIN-CDS with performance ratio 2+ lnδ . Du et al. [40] found
more techniques and designed a greedy approximation scheme for MIN-CDS with
performance ratio a(1+ lnδ) for any a > 1.

However, those techniques do not work in weighted version of MIN-CDS.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 2,
© Springer Science+Business Media New York 2013

11

12 2 CDS in General Graph

nodes in strongly connected dominating set

Fig. 2.1 Strongly connected
dominating set

MINW-CDS: Given a connected graph G = (V,E) with vertex weight w : V → R+, find a
CDS with minimum total weight.

For MINW-CDS, Guha and Khuller [62] proposed a two-stage approximation
algorithm as follows: At the first stage, construct a dominating set D with a greedy
approximation for MINW-SET-COVER in which each node v corresponds to the
subset of nodes dominated by the node v.

MINW-SET-COVER: Given a collection C of subsets of X with a nonnegative weight
function w : C→ R+, find a set cover with minimum total weight.

At the second stage, connect D into a CDS with a greed approximation, given by
Klein and Ravi [69], for node-weighted Steiner tree problem.

NODE-WEIGHTED STEINER TREE: Given a graph G = (V,E) with nonnegative node
weight w : V → R+, and a subset P of nodes, find a subset S of nodes with minimum total
weight, interconnecting all nodes in P.

Note that the total weight of dominating D can be upper-bounded by (1+ lnn) ·
opt and the total weight of Steiner nodes S added in the second stage can be upper-
bounded by (1+2ln2) ·opt where opt is the minimum weight of a CDS. Therefore,
the approximation given by Guha and Khuller [62] has performance ratio at most
2+ 3lnn. Soon later, Guha and Khuller [63] found that the technique initiated by
Klein and Ravi [69] can be directly employed to design greedy approximations for
MIN WEIGHT CDS. Actually, this technique works in a wide range of area. The
disadvantage of this technique is that obtained performance ratio is a little large.
Guha and Khuller [63] also improved this technique. Using improved technique,
they designed a polynomial-time approximation for MINW-CDS with performance
ratio approaching 1.35 · lnδ , which is the best known so far.

Consider a directed graph G = (V,E). Thai and Du [101] and Li et al. [74]
introduce the concept of CDS into directed graphs. A node subset C is a dominating
set if every node not in C has an arc going to C and an arc coming from C.
Furthermore, C is called a strongly connected dominating set (SCDS) if subgraph
induced by C is strongly connected (Fig. 2.1). They study the following problem.

2.2 Complexity of Approximation 13

MIN-SCDS: Given a directed graph, find a strongly connected dominating set with
minimum cardinality.

Li et al. [76, 77] found a construction of SCDS by using the solution for MINW-
BROADCAST and hence obtained polynomial-time (2+ 4lnn)-approximation [76]
and (2+ 3lnn)-approximation [77] for MIN-SCDS, respectively.

2.2 Complexity of Approximation

Consider the following problem.

MIN-SET-COVER: Given a collection C of subsets of a finite set X , find a set cover from C,
with minimum cardinality.

MIN-SET-COVER has the following inapproximability.

Theorem 2.2.1 (Feige [47]). For 0 < ρ < 1, there is no polynomial-time (ρ lnn)-
approximation for MIN-SET-COVER unless NP ⊆ DTIME(nO(log logn)).

Using this result, Guha and Khuller [62] established the inapproximability of
MIN-CDS.

Theorem 2.2.2 (Guha and Khuller [62]). For 0 < ρ < 1, MIN-CDS has no
polynomial-time (ρ lnn)-approximation unless NP ⊆ DT IME(nO(loglogn)) where n
is the number of vertices in input graph.

Proof. We recall the reduction from SET-COVER to MIN-CDS in the proof of NP-
hardness of MIN-CDS in Theorem 1.1.3. The reduction can also be seen as a
reduction from MIN-SET-COVER to MIN-CDS as follows.

For any instance of MIN-SET-COVER, a collection C of m subsets of a set X of n
elements, the reduction constructs a graph G = (V,E) with vertex set

V = X ∪C ∪{s, t}
and edge set

E = {(x,S) | x ∈ S for x ∈ X ,S ∈ C}∪{(s,S) | S ∈ C}∪{(s, t)}.
This reduction has been proved to have property that C has a set cover of size at most
k if and only if G has a CDS of size at most k+ 1. Consequently, the minimum set
cover of C contains k subsets if and only if the minimum CDS of G contains k+ 1
vertices.

Now, suppose for some 0 < ρ < 1, there is a polynomial-time (ρ lnn)-
approximation for MIN-CDS. We prove NP⊆ DT IME(nO(loglogn)).

Choose a positive integer k0 > ρ
1−ρ . Then ρ(1 + 1

k0
) < 1. Choose a positive

number ρ ′ such that ρ(1 + 1
k0
) < ρ ′ < 1. We then show that MIN-SET-COVER

in the special case |C| = m ≤ n also has a polynomial-time approximation with
performance ratio ρ ′ lnn.

14 2 CDS in General Graph

For each input collection C in MIN-SET-COVER, we first check all subcollections
of at most k0 subsets whether it is a set cover or not. This takes time bounded by a
polynomial of degree k0.

If no set cover of cardinality k0 is found, then any set cover of C contains at least
k0 + 1 subsets.

Suppose C is (ρ lnn)-approximation solution for MIN-CDS. Then C has size at
most (ρ ln(m+ n+ 2))(k + 1). Thus, we can obtain a set cover A of size at most
ρ ln(m+ n+ 2)(k+ 1)− 1 < ρ(1+ 1

k0
)(1+ ln3

lnn)(lnn)k where A = C ∩C. When n
is sufficiently large,A is a ρ ′ lnn-approximation solution for MIN-SET-COVER. By
Theorem 2.2.1, NP⊆ DT IME(nO(loglogn)). ��

There is another lower bound result for MIN-SET-COVER.

Theorem 2.2.3 (Raz and Safra [89]). There is a constant c > 0 such that the
existence of polynomial-time (c lnn)-approximation for MIN-SET-COVER implies
NP = P.

Following from this result, we can also obtain a similar result for MIN-CDS.

Theorem 2.2.4. There is a constant c > 0 such that the existence of polynomial-
time (c lnn)-approximation for MIN-CDS implies NP = P.

2.3 Two-Stage Greedy Approximation

Consider a graph G and a subset C of vertices in G. We divide all vertices in G into
three classes with respect to C:

• Black vertices: vertices in C.
• Grey vertices: vertices not in C but dominated by black vertices.
• White vertices: vertices not dominated by black vertices.

Clearly, C is a CDS if and only if there does not exist a white vertex and
the subgraph induced by black vertices is connected. Let p(C) be the number of
connected components of G[C], the subgraph of G induced by C, and h(C) the
number of white vertices. Let g(C) = p(C)+ h(C). Then C is a CDS if and only
if g(C) = 1. We may use g to design an algorithm as follows:

Greedy Algorithm GK:
input a connected graph G.
Set C← /0;
while there exists a vertex x such that g(C∪{x})< g(C) do

choose a vertex x to minimize g(C∪{x}) and
set C←C∪{x};

output C.

However, this algorithm may not output a CDS. Indeed, even if for vertex x,
g(C∪{x}) = g(C), C may not be a CDS. An example is shown in Fig. 2.2. In fact,

2.3 Two-Stage Greedy Approximation 15

Fig. 2.2 Output of
Algorithm GK may not
be a CDS

what appeared in this example is a typic case. If a white vertex exists, then let x
be a gray vertex adjacent to a white vertex, then we must have g(C∪{x})< g(C).
Therefore, for C obtained from Greedy Algorithm GK, no white vertex exists.
This means that if output C is not a CDS, then C does not induced a connected
subgraph. In such a case, its connected components are apart not very far. Since
the given graph is connected, all black components are connected together through
some chains of two adjacent gray vertices. To see this, we first note that no gray
vertex is adjacent to two black components since coloring such a gray vertex in
black would reduce the value of potential function. Now, for contradiction, suppose
that all black components cannot be connected through chains of two adjacent gray
vertices. Then, we can divide all black vertices into two parts such that the distance
between the two parts is more than three, say k > 3. Consider the path between the
two parts, (u,x1,x2, . . . ,xk−1,v), which reaches the distance between the two parts,
that is, u and v belong to the two parts respectively, x1,x2, . . . ,xk−1 are gray vertices
with k− 1 ≥ 3, and no shorter path of this type exists. Since x2 is grey, it must be
adjacent to a black vertex w. If w and u are in the same part, then the path from w to
v indicates that the distance between the two parts is at most k− 1, a contradiction.
If w and v are in the same part, then the path from u to w indicates that the distance
between the two parts is at most 3 < k, also a contradiction.

Based on above observations, Guha and Khuller [62] designed a two-stage
greedy algorithm as follows.

Guha–Khuller Algorithm:
input a connected graph G.
Stage 1

Employ Greedy Algorithm GK to obtain a dominating set C;
Stage 2

while there are more than one black components do
find a chain of two gray vertices x and y connecting at least
two black components and C←C∪{x,y};

output C.

In this two-stage greedy approximation, stage 1 is a greedy algorithm computing
a dominating set and stage 2 connects this dominating set into a connected one. In
the potential function g(C), h(C) is used for issuing that Stage 1 gives a dominating
set, and p(C) is used for making the number of black connected components smaller.

16 2 CDS in General Graph

Theorem 2.3.1 (Guha and Khuller [62]). Suppose input graph is not a star. Then,
Guha–Khuller Algorithm is a polynomial-time (3+ lnδ)-approximation for CDS
where δ is the maximum vertex degree of input graph.

Proof. By a piece, we mean a white vertex or connected component of subgraph
induced by black vertices. A piece is said to be touched by a vertex x if x is in
the piece or adjacent to the piece. For any vertex subset C, the number of piece
is g(C). Suppose x1, . . . ,xg are selected in turn by Guha–Khuller Algorithm at
stage 1. Denote Ci = {x1, . . . ,xi} for 1 ≤ i ≤ g and C0 = /0. Then, each vertex x
touches 1+ g(Ci−1)− g(Ci−1∪{x}) pieces with respect to Ci−1 and xi reaches the
maximum of this number. Suppose opt is the number of vertices in a minimum CDS.
Since a dominating set must touch all pieces, there exists a vertex touches at least
�g(Ci−1)/opt� pieces. Therefore

1+ g(Ci−1)− g(Ci)≥ g(Ci−1)

opt

that is,

g(Ci)≤ g(Ci−1)

(
1− 1

opt

)
+ 1.

Set ai = g(Ci)− opt. Then,

ai ≤ ai−1

(
1− 1

opt

)
.

Clearly, as long as ai−1 > 0, we have ai < ai−1. Therefore, we must have ag ≤ 0.
Choose j ≤ g such that a j ≤ 0 < a j−1. Then ag ≤ j−g. This means that when stage
1 ends, at most opt− (g− j)+ 1 pieces exist and hence at most opt− (g− j)+ 1
connected black components exist. Therefore, at most 2(opt−g+ j) vertices would
be added in stage 2. Choose i such that ai+1 < opt≤ ai. Then, j− i≤ opt and

opt≤ ai−1

(
1− 1

opt

)
≤ a0

(
1− 1

opt

)i

≤ ne−i/opt,

where n is the number of vertices of input graph. Thus,

i≤ optln(n/opt).

Therefore,

g+ 2(opt− g+ j)≤ 2opt+ j ≤ 3opt+ i≤ opt(3+ ln(n/opt))≤ opt(3+ lnδ)

for opt≥ 2. ��

2.4 Weakly CDS 17

2.4 Weakly CDS

Improving Guha and Khuller’s Greedy Algorithm is not an easy job. Actually, this
encounted a fundamental difficulty on analysis of greedy algorithms. To explain this,
let us use WCDS as an example to introduce the theory of submodular function.

Consider a graph G = (V,E). For any vertex subset C, denote by q(C) the
number of connected components of the subgraph with vertex set V and the edge
set consisting of all edges incident to vertices in C.

A dominating set C is called a weakly CDS (WCDS) if q(C) = 1. Chen and
Liestman [17] studied the following problem.

MIN-WCDS: Given a graph G, find a WCDS with the minimum cardinality.

They designed a greedy algorithm with potential function q(C).

Chen–Liestman Algorithm
input graph G = (V,E).
C← /0;
while q(C)≥ 2 do

choose u ∈V to mimimize q(C∪{u})
C←C∪{u};

output C.

The performance ratio of this algorithm is guaranteed by the following theorem.

Theorem 2.4.1 (Chen and Liestman [17]). Chen–Liestman Algorithm produces
an approximation solution within a factor of (1+ lnδ) from optimal, where δ is the
maximum vertex degree of input graph.

Actually, the above result has been covered by a general theory on submodular
function proposed by Wolsey [116].

Consider a finite set X and a real function f defined on 2X , the collection of all
subsets of X . f is submodular if for any two subsets A and B of X ,

f (A)+ f (B)≥ f (A∪B)+ f (A∩B).

f is increasing if for A⊂ B, f (A) ≤ f (B). The marginal value of B with respect to
A is defined by

ΔB f (A) = f (A∪B)− f (A).

When B = {x} for some x ∈ X , we simply write Δx f (A) instead of Δ{x} f (A) for the
marginal value of {x} (or simply the marginal value of x) with respect to A. Both
monotonicity and submodularity of a function f can be characterized in terms of the
marginal values [4, 52, 84, 116].

Lemma 2.4.2. f is submodular and increasing if and only if for any x ∈ X,

A⊂ B⇒ Δx f (A)≥ Δx f (B).

18 2 CDS in General Graph

Wolsey [116] studied the following problem and greedy algorithm.

MIN-SUBMODULAR-COVER: Given a submodular and increasing function f : 2X → R and
a nonnegative cost function c : X → R+, find A ⊆ X to minimize C(A) = ∑x∈A c(x) under
constraint f (A) = f (X).

Wolsey Greedy Algorithm
input a monotone increasing submodular function f : 2X → R;
Initially, set A← /0;
while f (A)< f (X) do

choose x ∈ X−A to maximize Δx f (A)
c(x)

A← A∪{x};
output A.

The performance of this algorithm is guaranteed by the following theorem [116].

Theorem 2.4.3 (Wolsey Theorem). Suppose f is a submodular, monotone
increasing integer function on 2X with f (/0) = 0. Then, Wolsey Greedy
Algorithm produces a H(γ)-approximation for MIN-SUBMODULAR-COVER where
γ = maxx∈X f ({x}).
Proof. Let x1,x2, . . . ,xk be the sequence of elements selected by Wolsey Greedy
Algorithm and A = {x1,x2, . . . ,xk}. Let A∗ be an optimal solution of MIN-
SUBMODULAR-COVER. We prove

c(A)≤ H(γ)c(A∗)

by a charging argument. Denote A0 = /0 and Ai = {x1,x2, . . . ,xi} for each 1≤ i≤ k.

Denote μ0 = 0 and μi =
c(xi)

Δxi f (Ai−1)
for each 1≤ i≤ k. The parameter μi is the referred

to as the average price per increment of coverage by xi for each 1≤ i≤ k. We claim
that

μ0 ≤ μ1 ≤ μ2 ≤ ·· · ≤ μk.

Indeed, the first inequality is trivial. For any 1≤ i < k,

μi =
c(xi)

Δxi f (Ai−1)
≤ c(xi+1)

Δxi+1 f (Ai−1)
≤ c(xi+1)

Δxi+1 f (Ai)
= μi+1,

where the first inequality follows from the greedy rule and the second inequality
follows from the submodularity of f . Thus, our claim holds. Now for iteration i
with 1 ≤ i ≤ k, we charge each e ∈ A∗ with μi (Δe f (Ai−1)−Δe f (Ai)). Then, the
total charge on each e ∈ A∗ is

k

∑
i=1

μi (Δe f (Ai−1)−Δe f (Ai)) ,

2.4 Weakly CDS 19

and the total charge on A∗ is

∑
e∈S

k

∑
i=1

μi (Δe f (Ai−1)−Δe f (Ai)) .

We claim that

1. ∑k
i=1 c(xi) is no more than the total charge on A∗.

2. The total charge on e ∈ A∗ is at most H (γ)c(e).

The first claim is true because

k

∑
i=1

c(xi) =
k

∑
i=1

μiΔxi f (Ai−1)

=
k

∑
i=1

μi (f (Ai)− f (Ai−1))

=
k

∑
i=1

μi ((f (A∗)− f (Ai−1))− (f (A∗)− f (Ai)))

=
k

∑
i=1

(μi− μi−1) (f (A∗)− f (Ai−1))

≤
k

∑
i=1

(μi− μi−1)∑
e∈S

Δe f (Ai−1)

= ∑
e∈S

k

∑
i=1

(μi− μi−1)Δe f (Ai−1)

= ∑
e∈S

k

∑
i=1

μi (Δe f (Ai−1)−Δe f (Ai)) .

Next, we prove the second claim. Consider an arbitrary element e ∈ A∗. Let l be
the first i such that Δe f (Ai) = 0. For each 1≤ i≤ l, by the greedy rule,

μi =
c(xi)

Δxi f (Ai−1)
≤ c(e)

Δe f (Ai−1)
.

Hence,

k

∑
i=1

μi (Δe f (Ai−1)−Δe f (Ai))

=
l−1

∑
i=1

μi (Δe f (Ai−1)−Δe f (Ai))+ μlΔe f (Al−1)

20 2 CDS in General Graph

≤ c(e)

(
1+

l−1

∑
i=1

Δe f (Ai−1)−Δe f (Ai)

Δe f (Ai−1)

)

≤ c(e)

(
1+

l−1

∑
i=1

(H (Δe f (Ai−1))−H (Δe f (Ai)))

)

= c(e)(1+H (Δe f (/0))−H (Δe f (Al−1)))

≤ c(e)(1+H (γ)−H (1))

= c(e)H (γ) .

So, the second claim also holds.
The two claims imply that

k

∑
i=1

c(xi)≤ H (γ)∑
e∈S

c(e) . ��

Now, we return to MIN-WCDS and note the following.

Lemma 2.4.4. |V | − q(A) is a submodular, monotone increasing integer function
with |V |− q(/0) = 0.

Proof. Note that q is an integer function and q(/0). By Lemma 2.4.2, it suffices to
show that for any v ∈V ,

A⊂ B⇒ Δvq(A)≤ Δvq(B).

Let H(A) denote the graph with vertex set V and edge set consisting of all edges
incident to a vertex in A. Then, each connected component of graph H(B) is
constituted by one or more connected components of graph H(A). Thus, the number
of connected components of H(B) adjacent to v is no more than the number of
connected components of H(A) adjacent to v. Therefore, the lemma holds. ��

If we set f (A) = |V | − q(A), then it is easy to see that MIN-SUBMODULAR-
COVER becomes MIN-WCDS, Wolsey Greedy Algorithm becomes Chen–Liestman
Algorithm, and Theorem 2.4.1 can result from Wolsey Theorem.

2.5 One-Stage Greedy Approximation

When a potential function is not submodular, how do we analyze a greedy algorithm
with it? We study this problem in this section.

To avoid the above counterexample, we replace h(C) by q(C) the number of
connected components of the subgraph with vertex set V and edge set D(C), where
D(C) be the set of all edges incident to vertices in C. Define f (C) = p(C)+ q(C).

2.5 One-Stage Greedy Approximation 21

xx

a b

Fig. 2.3 A counterexample (Δx f (A)> Δx f (B) but A⊂ B)

Lemma 2.5.1. Suppose G is a connected graph with at least three vertices. Then,
C is a CDS if and only if f (C∪{x}) = f (C) for every x ∈V.

Proof. If C is a CDS, then f (C) = 2, which reaches the minimum value. Therefore,
f (C∪{x}) = f (C) for every x ∈V .

Conversely, suppose f (C∪{x}) = f (C) for every x ∈ V . First, C cannot be the
empty set. In fact, for contradiction, suppose C = /0. Since G is a connected graph
with at least three vertices, there must exist a vertex x with degree at least two
and for such a vertex x, f (C∪{x})< f (C), a contradiction. Now, we may assume
C �= /0. Consider a connected component of the subgraph induced by C. Let B denote
its vertex set which is a subset of C. For every gray vertex y adjacent to B, if y is
adjacent to a white vertex or a gray vertex not adjacent to B, then we must have
p(C∪{y}) < p(C) and q(C∪{y}) ≤ q(C); if y is adjacent to a black vertex not in
B, then p(C∪{y})≤ p(C) and q(C∪{y})< q(C); hence, in all cases f (C∪{y})<
f (C), a contradiction. Therefore, every gray vertex adjacent to B cannot be adjacent
to any vertex neither in B nor adjacent to B. Since G is connected, it follows that
every vertex of G must belong to B or adjacent to B. That is, B =C is a CDS. ��

This lemma means that with− f as potential function, Wolsey Greedy Algorithm
would produce a CDS. If f is a monotone decreasing, submodular function, then we
could directly employ Wolsey Theorem to give an estimation on performance ratio
of the algorithm. Unfortunately, f is not submodular. A counterexample is shown in
Fig. 2.3.

Could we also give analysis of Wolsey Greedy Algorithm in this case? The
answer is yes and a new technique can be introduced based on two observations
in the following.

The first observation is that MIN-CDS is an unweighted problem and in
unweighted case, there is a simpler analysis for Wolsey Greedy Algorithm.

A Simple Analysis of Wolsey Greedy Algorithm in Unweighted Case: Let x1, . . . ,xg

be subsets selected in turn by Wolsey Greedy Algorithm. Denote Ai = {x1, . . . ,xi}.
Let opt be the number of subsets in a minimum submodular cover. Let C =
{y1, . . . ,yopt} be a minimum submodular cover. Denote Cj = {y1, . . . ,y j}.

By the greedy rule,

f (Ai+1)− f (Ai) = Δxi+1 f (Ai)≥ Δy j f (Ai)

22 2 CDS in General Graph

for 1≤ j ≤ opt. Therefore,

f (Ai+1)− f (Ai)≥
∑opt

j=1 Δy j f (Ai)

opt
.

On the other hand,

f (C)− f (Ai)

opt
=

f (Ai∪C)− f (Ai)

opt

=
∑opt

j=1 Δy j f (Ai∪Cj−1)

opt
.

Because f is submodular and monotone increasing, we have

Δy j f (Ai)≥ Δy j f (Ai∪Cj−1).

Therefore,

f (Ai+1)− f (Ai)≥ f (C)− f (Ai)

opt
, (2.1)

that is,

f (C)− f (Ai+1) ≤ (f (C)− f (Ai))

(
1− 1

opt

)

≤ (f (C)− f (/0))

(
1− 1

opt

)i+1

≤ (f (C)− f (/0))e−(i+1)/opt.

Choose i such that f (C)− f (Ai+1)< opt≤ f (C)− f (Ai). Then

0 = f (C)− f (Ag)< f (C)− f (Ag−1)< · · ·< f (C)− f (Ai+1)≤ opt− 1.

Therefore,

g≤ i+ opt

and

opt≤ (f (C)− f (/0))e−i/opt.

Therefore,

g≤ opt

(
1+ ln

f (C)− f (/0)
opt

)
≤ opt(1+ lnγ)

since

f (C)− f (/0)≤
opt

∑
j=1

Δy j f (/0)≤ opt · γ. ��

2.5 One-Stage Greedy Approximation 23

The second observation is that in this analysis, there is only one place that
submodularity is required, which is in the proof of inequality (2.1), where we need
to have

Δy j f (Ai)≥ Δy j f (Ai∪Cj−1).

An important observation on this inequality is that the increment variable y j belongs
to optimal solution. Therefore, although for nonsubmodular f this inequality may
not holds, we may choose a proper ordering for things in optimal solution to make
this inequality almost holds. In the following, we will implement this idea for CDS.

Let vertices x1, . . . ,xg be selected in turn by Wolsey Greedy Algorithm. Denote
Ci = {x1,x2, . . . ,xi} and ai = f (Ci). Initially, a0 = n where n is the number of vertices
in G. Let C∗ be a minimum CDS for G.

Lemma 2.5.2. For i = 1,2, . . . ,g,

ai ≤ ai−1− ai−1− 2
|C∗| + 1.

Proof. First, consider i≥ 2. Note that

ai = f (Ci) = ai−1 +Δxi f (Ci−1),

where

−Δxi f (Ci−1) = max
y

(−Δy f (Ci−1)).

Since C∗ is a CDS, we can always arrange elements of C∗ in an ordering
y1,y2, . . . ,y|C∗| such that y1 is adjacent to a vertex in Ci−1 and for j≥ 2, y j is adjacent
to a vertex in {y1, . . . ,y j−1}. Denote C∗j = {y1,y2, . . . ,y j}. Then

ΔC∗ f (Ci−1) =
|C∗|
∑
j=1

Δy j f (Ci−1∪C∗j−1).

Note that

−Δy j p(Ci−1∪C∗j−1)≤−Δy j p(Ci−1)+ 1.

In fact, y j can dominate at most one additional connected component in the subgraph
G[Ci−1∪C∗j−1] than in G[Ci−1], which is the one contains C∗j−1 since y1, . . . ,y j−1 are
connected. Moreover, by Lemma 2.4.4,

−Δy j q(Ci−1∪C∗j−1)≤−Δy j q(Ci−1).

Therefore,

−Δy j f (Ci−1∪C∗j−1)≤−Δy j f (Ci−1)+ 1.

24 2 CDS in General Graph

It follows that

ai−1− 2 = −ΔC∗ f (Ci−1)

≤
|C∗|
∑
j=1

(−Δy j f (Ci−1)+ 1).

There exists y j ∈C∗ such that

−Δy j f (Ci−1)+ 1≥ ai−1− 2
|C∗| .

Hence,

−Δxi f (Ci−1)≥ ai−1− 2
|C∗| − 1.

It implies that

ai ≤ ai−1− ai−1− 2
|C∗| + 1.

For i = 1, the proof is similar, we only need to note a difference that y1 can be
chosen arbitrarily. ��
Theorem 2.5.3 (Ruan et al. [92]). Wolsey Greedy Algorithm with − f =−p−q as
a potential function gives a polynomial-time (2+ lnδ)-approximation for MIN-CDS
where δ is the maximum vertex-degree in input graph.

Proof. By Lemma 2.5.2,

ai− 2 ≤ (ai−1− 2)

(
1− 1
|C∗|

)
+ 1

≤ (a0− 2)

(
1− 1
|C∗|

)i

+
i−1

∑
k=0

(
1− 1
|C∗|

)k

= (a0− 2)

(
1− 1
|C∗|

)i

+ |C∗|
(

1−
(

1− 1
|C∗|

)i
)

= (a0− 2−|C∗|)
(

1− 1
|C∗|

)i

+ |C∗|.

Since ai ≤ ai−1−1 and ag = 2, we have a|C|−2|C∗| ≥ 2|C∗|+2. If g≤ 2|C∗|, then we
already done the proof. If g > 2|C∗|, then set i = g− 2|C∗|. Then

2|C∗| ≤ (n− 2−|C∗|)
(

1− 1
|C∗|

)i

+ |C∗|.

2.5 One-Stage Greedy Approximation 25

Since (1− 1/|C∗|)i ≤ e−i/|C∗|, we obtain

i≤ |C∗| ln n− 2−|C∗|
|C∗| .

Note that each vertex can dominate at most δ + 1 vertices. Hence, n/|C∗| ≤ δ + 1.
Therefore, g = i+ 2|C∗| ≤ |C∗|(2+ lnδ). ��

Now, let us consider Wolsey Greedy Algorithm for MIN-SET-COVER. If in each
iteration we allow to choose two subsets instead of only one subset, could this
greedy algorithm get a better performance ratio? The answer is not. This happens
also to Wolsey Greedy Algorithm for submodular potential function. However, for
nonsubmodular potential function, the situation is changed. The following greedy
algorithm will approach to performance ratio 1+ lnδ as k→ ∞.

Greedy Algorithm DGPWWZ
input a connected graph G.

Initially, set C← /0;
while f (C) > 2 do

choose a subset X of at most 2k− 1 vertices to maximize −ΔX f (C)
|X |

and set C←C∪X ;
output Cg =C.

To analyze Greedy Algorithm DGPWWZ, we need to note the following property
of the potential function− f .

Lemma 2.5.4. Let A and B be two vertex subsets. If both G[B] and G[X] are
connected, then

−ΔX f (A∪B)+ΔX f (A)≤ 1.

Proof. Since q is submodular, we have ΔX q(A)≤ ΔX q(A∪B).
Moreover, since both subgraphs G[B] and G[X] are connected, the number of

black components dominated by X in G[A ∪ B] is at most one more than the
number of black components dominated by X in G[A]. Therefore, −ΔX p(A∪B)≤
−ΔX p(A)+ 1. Hence, −ΔX f (A∪B)≤−ΔX f (A)+ 1. ��

Let C∗ be a minimum CDS. We show two properties of C∗ in the following two
lemmas.

Lemma 2.5.5. For any integer k ≥ 2, C∗ can be decomposed into Y1,Y2, . . . ,Yh for
some natural number h such that

(a) C∗ = Y1∪Y2∪·· ·∪Yh.
(b) For 1≤ i≤ h, both G[Y1∪Y2∪·· ·∪Yi] and G[Yi] are connected.
(c) k + 1 ≤ |Yi| ≤ 2k− 1 for 1 ≤ i ≤ h except one, in such an exceptional i,

1≤ |Yi| ≤ 2k− 1.
(d) |Y1|+ |Y2|+ · · ·+ |Yh| ≤ |C∗|+ h− 1.

26 2 CDS in General Graph

< k <k < k

x

y yy
1 i2

> k

Fig. 2.4 Case 2 in proof of Lemma 2.5.5

Proof. Consider a tree T with vertex set C∗. Choose a vertex r ∈C∗ as the root of T .
For any vertex x ∈C∗, let T (x) denote the subtree rooted at x and |T (x)| the number
of vertices in T (x). If T contains more than 2k− 1 vertices, then there must exist a
vertex x ∈C∗ such that |T (x)| ≥ k+ 1 and for every child y of x, |T (y)| ≤ k. Next,
consider two cases.

Case 1. There is a child y of x such that |T (y)| = k. Let Y1 consist of all vertices of
T (y) together with x and delete all vertices of T (y) from T .

Case 2. For every child y of x, |T (y)| ≤ k− 1. Suppose y1, . . . ,yi are all children of
x (Fig. 2.4). There must exist 2≤ j ≤ i such that |T (y1)|+ · · ·+ |T (y j)| ≤ k−1 and
|T (y1)|+ · · ·+ |T (y j)|+ |T (y j+1)| ≥ k. Since |T (y j+1)| ≤ k− 1, we have |T (y1)|+
· · ·+ |T (y j)|+ |T (y j+1)| ≤ 2k− 2. Let Y1 consist all vertices in T (y1)∪·· ·T (y j+1)
together with x and delete Y1−{x} from T .

Repeating above process on the remainder of T , we will obtain a required
decomposition. ��
Lemma 2.5.6. Let n = |V |. Then, n≤ (δ − 1)|C∗|+ 2.

Proof. We prove by induction on |C∗| that C∗ with connected G[C∗] can dominate at
most (δ − 1)|C∗|+ 2 vertices. For |C∗|= 1, it is trivially true. For |C∗| ≥ 2, choose
a vertex x ∈C∗ such that G[C∗ − {x}] is still connected. Removal x would remove
at most δ − 1 vertices from the set of vertices dominated by C∗. By the induction
hypothesis, C∗−{x} can dominate at most (δ−1)(|C∗|−1)+2 vertices. Therefore,
C∗ can dominate at most (δ − 1)|C∗|+ 2 vertices. ��
Theorem 2.5.7 (Du et al. [40]). For any ε > 0, there exists a polynomial-time
approximation with performance ratio (1+ ε) ln(δ − 1) for MIN-CDS.

Proof. Note that the input graph G is connected. If its maximum degree δ = 1,
then G contains only one edge. This means that Cg contains only one vertex
and is optimal. Hence, Theorem 2.5.7 holds. For δ = 2, G is a path or a cycle.
When G is a path, its minimum CDS consists of all internal vertices. When G
is a cycle, a minimum CDS can be obtained by deleting two adjacent vertices.

2.5 One-Stage Greedy Approximation 27

Hence, Theorem 2.5.7 holds. Therefore, we may assume δ ≥ 3. Under this
assumption, we may further assume |Cg| > 2|C∗| where C∗ is a minimum CDS,
since, otherwise, |Cg| ≤ 2|C∗| ≤ (1+ ln3)|C∗| ≤ (1+ c+ lnδ)|C∗|.

Suppose X1, . . . ,Xg are chosen by Greedy Algorithm 2.5 and denote Ci = X1 ∪
·· · ∪ Xi. Decompose a minimum CDS C∗j into Y1, . . . ,Yh satisfying conditions in
Lemma 2.5.5. Denote C∗j = Y1∪·· ·∪Yj. By Lemmas 2.5.4 and 2.5.5,

−ΔYj f (Ci ∪C∗j−1) = −ΔYj p(Ci∪C∗j−1)−ΔYjq(Ci∪C∗j−1)

≤ −ΔYj p(Ci)+ 1−ΔYjq(Ci)

≤ −ΔYj f (Ci)+ 1.

By greedy rule,

−ΔXi+1 f (Ci)

|Xi+1| ≥ −ΔYj f (Ci)

|Yj| for 1≤ j ≤ h.

Hence,

−ΔXi+1 f (Ci)

|Xi+1| ≥ −∑h
j=1 ΔYj f (Ci)

∑h
j=1 |Yj|

≥ −(h− 1)−∑h
j=1 ΔYj f (Ci ∪C∗j−1)

∑h
j=1 |Yj|

≥ −(h− 1)− (f (Ci∪C∗)− f (Ci))

opt+ h− 1

=
f (Ci)− (h+ 1)

opt+ h− 1

where opt = |C∗|. Denote ai = f (Ci− (h+ 1). Then,

ai− ai+1

|Xi+1| ≥
ai

opt+ h− 1
,

that is,

ai+1 ≤ ai

(
1− |Xi+1|

opt+ h1

)
≤ aie−|Xi+1|/(opt+h−1)

≤ a0e−(|Xi+1|+|Xi|+···+|X1|)/(opt+h−1).

Choose i such that

ai+1 < opt≤ ai.

28 2 CDS in General Graph

Denote b = ai− opt and b′ = opt− ai+1. Write |Xi+1|= d+ d′ such that

b
d
=

b′

d′
=

ai− ai+1

|Xi+1| ≥
ai

opt+ h− 1
.

Then we have
ai− opt

d
=

b
d
≥ ai

opt+ h− 1
.

So,

opt≤ ai

(
1− d

opt+ h− 1

)
≤ aie

−d/(opt+h−1).

Hence

opt≤ a0e−(d+|Xi|+···+|X1|)/(opt+h−1),

Note a0 = f (/0)− (h+ 1) = n− (h+ 1). Thus,

|X1|+ · · ·+ |Xi|+ d ≤ (opt+ h− 1) ln
n− (h+ 1)

opt
.

Moreover,

d′+ |Xi+2|+ · · ·+ |Xg| ≤ b′+ f (Ci+1)− f (Cg)

= opt− ai+1 + f (Ci+1)− f (C∗)

= opt+(h− 1).

Therefore,

|X1|+ · · ·+ |Xg| ≤ opt

(
1+

1
k

(
1+ ln

n− (h+ 1)
opt

))
.

By Lemma 2.5.6, n≤ (δ − 1)opt+ 2. Since h≥ 1, we have

n− (h+ 1)
opt

≤ δ − 1.

Hence,

|X1|+ · · ·+ |Xg| ≤
(

1+
1
k

)
(1+ ln(δ − 1)).

Choose k such that 1/k < ε . We obtain Theorem 2.5.7. ��

2.6 Weighted CDS 29

2.6 Weighted CDS

Consider a graph G = (V,E) with weight w : V → R+. In Chap. 1, we discussed the
relationship between CDS and leaves of a spanning tree. From the discussion, we
can easily see that a vertex subset is a CDS if and only if it contains all internal
vertices of a spanning tree. Therefore, we can obtain the following facts:

• G has a CDS with minimum weight w∗ if and only if G has a spanning tree with
minimum total internal vertex weight w∗.

• G has a CDS with weight at most w if and only if G has a spanning tree with total
internal vertex weight at most w.

Given a digraph and a source vertex s, a broadcasting tree is a tree with root s
and containing paths that from s to each vertex in the digraph. The broadcasting
tree is also called an out-arborescence. When we treat G as a digraph by replacing
each edge with two arcs with different directions, the following relationship between
broadcasting tree and CDS follows from above relationship between spanning tree
and CDS:

• G has a CDS with minimum weight w∗ if and only if there exists a source vertex
s such that G has a broadcasting tree from s with minimum total internal vertex
weight w∗.

• G has a CDS with weight at most w if and only if there exists a source vertex s
such that G has a broadcasting tree with total internal vertex weight at most w.

Due to this relationship, we first study the following problem on broadcast-
ing tree.

MINW-BROADCAST: Given a digraph G = (V,E) with weight w : V → R+ and a source
node, find a broadcasting tree with minimum total weight of internal nodes.

Consider a subgraph H of input graph G with a source s. An orphan of H is a
strongly connected component without coming edge and not containing s. Given
each node an individual integer ID, the node with smallest ID in an orphan is called
the head of the orphan.

A spider is a subgraph consisting of a body node and several directed paths
from the body node to its feet (see Fig. 2.5). A spider is legal if it satisfies three
conditions:

body node

feetFig. 2.5 Spider

30 2 CDS in General Graph

Fig. 2.6 A new orphan is
produced by adding a spider

1. All feet are heads of some orphans.
2. S head in it must be a foot or body node.
3. Either its body node is the source s or it contains at least two orphan heads.

We ask for the second condition because putting a legal spider in H may introduce a
new orphan at the body node when the body node is not source s so that the number
of reduced orphan heads should be the number of orphan heads in it minus one
(Fig. 2.6).

For a legal spider S, let h(S) be the number of orphan heads in S and cost(S) the
total weight of internal nodes in S other than internal nodes in H. Define

quotient(S) =
cost(S)

h(S)
.

For any node u, cut at all orphan heads and consider the connected component C
containing u. Suppose p1, . . . , pk are k shortest paths from u to k different orphan
heads in C. We consider S = p1 ∪ ·· · ∪ pk as a spider although p1, . . . , pk may
have some common nodes other than u. When calculate cost(S), we assume that all
p1, . . . , pk are disjoint except at body node. Therefore, cost(S) is actually an upper
bound for the total weight of increased internal nodes. The purpose to make this
assumption is to have an easy way to compute quotient(v) for every node u, which
is defined to be

quotient(u) = min{quotient(S) | S is over all legal spider with body node u}.

With above assumption, quotient(u) for any node u can be computed in the
following way: Suppose H has k orphan heads and p1, . . . , pk are shortest paths from
node u to them, respectively, ordering that cost(p1) ≤ cost(p2) ≤ ·· · ≤ cost(pk).
Then for u �= s,

quotient(u) = min
2≤i≤k

quotient(p1∪·· ·∪ pi),

and for u = s,

quotient(u) = min
1≤i≤k

quotient(p1∪·· ·∪ pi).

Before state the algorithm, let us show a useful lemma about quotient(u).

2.6 Weighted CDS 31

sFig. 2.7 Spider
decomposition

Lemma 2.6.1. Let q be the number of orphans in H. Then there exists a node u with

quotient(u)≤ opt
q

,

where opt is the objective function value of optimal solution.

Proof. Let T ∗ be an optimal broadcasting tree. We can prune T ∗ to obtain a subtree
T such that every leaf is an orphan head. Now, we can obtain a sequence of legal
spiders, S1, . . . ,S� from decomposition of T (Fig. 2.7). Those legal spiders contains
all orphan heads and all internal nodes either in H or in T . Therefore,

cost(S1)+ · · ·+ cost(S�)≤ opt

and

h(S1)+ · · ·+ h(S�) = q.

Thus,

min
1≤i≤�

quotient(Si)≤ opt
q

.

This means that one of heads for S1, . . . ,S� meet our requirement. ��
Algorithm Broadcast:
input a strongly connected digraph G = (V,E) with source node s;
U ←{s};
O←V −{s};
while O �= /0 do begin

choose node u with smallest quotient cost;
let S(u) be the legal spider at u reaching quotient(u);
U ←U ∪S(u);
remove from O those orphans whose heads in S(u)
and add back possibly one new orphan;
recalculate quotient cost of each node;

end-while
output U .

32 2 CDS in General Graph

Theorem 2.6.2 (Li et al. [76]). MINW-BROADCAST has a polynomial-time
(1+ 2ln(n− 1))-approximation.

Proof. We analyze the Algorithm Broadcast. Suppose the algorithm runs in k
iterations. Initially, there are n0 = n−1 orphans. Let ni denote the number of orphans
right after the ith iteration. For 1 ≤ i≤ k, let Si be the legal spider chosen at the ith
iteration. Let hi be the number of heads in Si and ci = cost(Si). Then

ni ≤ ni−1− hi

2
,

since if hi = 1, then

ni ≤ ni−1− 1≤ ni−1− hi

2
;

and if hi ≥ 2, then

ni ≤ ni−1− hi + 1≤ ni−1− hi

2
.

Moreover, by Lemma 2.6.1,
ci

hi
≤ opt

ni−1
.

Thus,
ni

ni−1
≤ 1− ci

2opt
.

It implies that

nk−1

n0
≤

k−1

∏
i=1

(
1− ci

2opt

)
.

Hence,

ln
nk−1

n0
≤−c1 + · · ·ck−1

2opt
,

that is,

c1 + · · ·+ ck−1 ≤ 2opt · ln n0

nk−1
≤ 2opt · ln(n− 1).

Since ck
hk
≤ opt

nk−1
and hk = nk−1, we have ck ≤ opt. Therefore,

c1 + · · ·+ ck ≤ (1+ 2ln(n− 1)) ·opt. ��

Now, we return to MINW-CDS.

Theorem 2.6.3. MINW-CDS has a polynomial-time (1+2ln(n−1))-approximation
where n is the number of nodes in input graph.

2.7 Directed CDS 33

Proof. Suppose G = (V,E) is an input graph with weight w : V → R+. Choose a
node u ∈ V . Let N(u) denote the set of neighbors of u and u. For each v ∈ N(u),
compute a broadcasting tree Tv with source v by Algorithm Broadcast. From those
Tv for v ∈ N(u), choose Tv∗ with minimum total weight of internal nodes. We show
that all internal nodes of Tv∗ form a CDS C with total weight within a factor of
1+ 2ln(n− 1) from optimal.

Let C∗ be a CDS with minimum total weight w∗. Note that C∗∩N(u) �= /0. Choose
v ∈C∗ ∩N(u). Construct a spanning tree for G[C∗] and extend it to a spanning tree
for G. Give each edge a direction to form a broadcasting tree T ∗v from source v.
Then, T ∗v has total internal node weight at most w∗. By Theorem 2.6.2,

weight(T ∗v)≤ (1+ 2ln(n− 1))weight(T ∗v),

where weight(Tv) denotes the total internal node weight of Tv. Therefore,

weight(C)≤ weight(T ∗v)≤ (1+ 2ln(n− 1))weight(T ∗v)≤ (1+ 2ln(n− 1))w∗. ��

2.7 Directed CDS

In this section, we show a relationship between SCDS and the broadcast tree.

Lemma 2.7.1. Let optBT(G,r) be the objective function value of optimal solution
for MINW-BROADCAST on input G and a source r. Let optSCDS(G) be the objective
function value of an optimal solution for MIN-SCDS on input G. Then for any r,

optBT(G,r) ≤ optSCDS(G).

Moreover, if r belongs to an optimal solution for MIN-SCDS, then

optBT(G,r)≤ optSCDS(G)− 1.

Proof. Let C∗ be the minimum SCDS of G. For any resource r, we can first get in
C∗ and then through C∗ to reach other nodes not in C∗ so that the broadcasting tree
uses only nodes in C∗ as internal nodes except r. When r ∈C∗, r can be taken off in
counting optBT(G,r). ��
Lemma 2.7.2. If there exists polynomial-time α-approximation for MINW-
BROADCAST, then there exists polynomial-time 2α-approximation for MIN-SCDS.

Proof. Let GR be a directed graph obtained from G by reversing the direction of
each edge. Let C∗ be a minimum strongly SCDS. Choose a node u arbitrarily. Let
N(u) be the set consisting of the node u and its in-neighbors, that is those nodes

34 2 CDS in General Graph

each of which has an edge coming to u. Clearly, N(u)∩C∗ �= /0. For each s ∈ N(u),
compute an α-approximation T1 for MINW-BROADCAST on input G and source s
and also a α-approximation T R

2 for MINW-BROADCAST on input GR with source s.
Let T2 be the tree obtained from T R

2 by reversing the direction of each edge. Then
T1∪T2 is a strongly connected spanning subgraph of G. Furthermore, I(T1)∪ I(T R

2)
induced a strongly connected subgraph of T1 ∪ T2, dominating G. Hence I(T1)∪
I(T R

2) is a SCDS for G where I(Ti) denotes the set of internal nodes in Ti. Clearly,

|I(T1)∪ I(T2)| ≤ |I(T1)−{s}|+ |I(T2)−{s}|+ |{s}|
≤ α(optBT(G,s)+ optBT(G

R,s))+ 1.

Note that when s belongs to a minimum SCDS, we would have

α(optBT(G,s)+ optBT(G
R,s)+ 1

≤ α(optSCDS(G)− 1+ optSCDS(G
R)− 1)+ 1

≤ 2α ·optSCDS(G),

since a minimum SCDS for G is also a minimum SCDS for GR, vice versa. Now,
for s over all nodes in N(u), we choose the one such that I(T1)∪ I(T R

2) has the
smallest cardinality. Such a I(T1)∪ I(T R

2) will have cardinality upper bounded by
2α ·optSCDS(G). ��

By Lemma 2.7.2 and Theorem 2.6.2, we have

Theorem 2.7.3 (Li et al. [76]). There exists a polynomial-time (2+ 4ln(n− 1))-
approximation for MIN-SCDS.

Chapter 3
CDS in Unit Disk Graph

Every dance is kind of fever chart, a graph of the heart.
MARTHA GRAHAM

3.1 Motivation and Overview

A unit disk is a disk with diameter one. Denote by diskr(o) the disk with center o and
radius r. A graph G = (V,E) is called a unit disk graph if it can be embedded into
the Euclidean plane such that an edge between two nodes u and v exists if and only
if disk0.5(u)∩ disk0.5(v) �= /0, that is, their Euclidean distance d(u,v) ≤ 1. The unit
disk graph is a mathematical model for wireless sensor networks when all sensors
have the same communication radius.

For any node v of a unit disk graph G, the neighborhood area of v is the disk
disk1(v). For any subset V ′ of nodes, the neighborhood area of V ′ is the union of
disks, ∪v∈V ′disk1(v). For any subgraph H, the neighborhood area of H is the union
of disks, ∪v∈V (H)disk1(v) where V (H) is the node set of subgraph H. Clearly, in a
unit disk graph, two nodes u and v are independent if and only if d(u,v) > 1. For
any two points u and v in the Euclidean plane, if d(u,v) > 1, then u and v are also
said to be independent.

The boundary of an area Ω is denoted by ∂Ω. Thus, ∂diskr(v) = circler(v), which
is the circle with radius r and center v.

Clark, Colbourn, and Johnson [24] proved that MIN-CDS in unit disk graphs
is still NP-hard. Wan et al. [104] first found that MIN-CDS has polynomial-time
constant-approximations. Cheng et al. [22] designed the first PTAS. Since the
running time of PTAS is a polynomial of a high degree, which is hard to implement,
the design of fast polynomial-time constant-approximation is still an active research
topic in the literature [14,21,51,72,75,79,104,106]. There are many designs using
the approach initiated by Wan et al. [104]: At the first stage, construct a maximal
independent set. At the second stage, connect the maximal independent set into
a CDS.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 3,
© Springer Science+Business Media New York 2013

35

36 3 CDS in Unit Disk Graph

Fig. 3.1 The neighborhood of n(≥ 3) linear points with consecutive distance one may contain
3n+3 independent points

To analyze such two-stage algorithms, one needs to know what is the maximum
size of a maximal independent set (i.e., the size of the maximum independent set)
compared with the size of the minimum CDS. The size of the maximum independent
set in a graph G is called the independent number, denoted by α(G). The size of the
minimum CDS in G is called the connected dominating number, denoted by γc(G).
Wan et al. [106] indicated that there exist some connected unit disk graphs G such
that

α(G) = 3 · γc(G)+ 3

(Fig. 3.1). Many researchers believe that for every connected unit disk graph G

α(G)≤ 3 · γc(G)+ 3. (3.1)

Many efforts have been made to attack this upper bound. They can be classified into
classes based on the difference of basic approaches.

One is based on the study of packing independent points in the neighborhood
area of a small subgraph. Wan et al. [104] showed that the neighborhood area of any
node can contain at most five independent points (Fig. 3.2) and based on this fact,
they showed that for every connected unit disk graph G,

α(G)≤ 4 · γc(G)+ 1.

Wu et al. [123] showed that the neighborhood area of any edge can contain at most
eight independent points (Fig. 3.3), and with this fact, they showed that for every
connected unit disk graph G

α(G)≤ 3.8 · γc(G)+ 1.2.

Along this direction, Wan et al. [106] studied the neighborhood area of a star and
proved that for every connected unit disk graphs with at least two nodes

α(G)≤ 3
2
3
· γc(G)+ 1.

3.2 NP-Hardness and PTAS 37

Fig. 3.2 A disk with radius
one can contain at most five
independent points

Fig. 3.3 The union of two
disks disk1(u)∩disk1(v) with
d(u,v)≤ 1 can contain at
most eight independent points

Vahdatpour et al. [103] claimed that they proved (3.1). However, their proof is far
from a complete one. An analysis on their proof will be given in Sect. 3.4.

Another approach is to study the total area taken by unattached unit disks in the
union of disks of radius 1.5 and with centers at nodes in a CDS. With this approach
and Voronoi division, Funke et al. [51] showed that for every connected unit disk
graph G

α(G)≤ 3.453 · γc(G)+ 8.291.

However, in their proof, a key geometric extreme property was used without proof.
Therefore, some researchers could not accept this result. Gao et al. [54] gave a detail
proof of the geometric extreme property. Li et al. [72] improved approach of Funke
et al. and showed that for every connected unit disk graph G,

α(G)≤ 3.4306 · γc(G)+ 4.8185.

This is the best-known bound so far.

3.2 NP-Hardness and PTAS

In this section, we give a new proof of NP-hardness and a new construction of PTAS
for MIN-CDS in unit disk graphs.

38 3 CDS in Unit Disk Graph

Fig. 3.4 (a) A planar graph.
(b) The constructed graph.
The dark circled points are
candidates of Steiner points
and the light circled points
are terminals

Theorem 3.2.1 (Clark et al. [24]). MIN-CDS in unit disk graphs is still NP-hard.

Proof. The following NP-complete problem can be found in [56, 57].

PLANAR-4-CVC: Given a planar graph G = (V,E) with all vertices of degree at most 4, and
a positive integer k≤ |V |, determine whether there is a connected vertex cover of size k, that
is, a subset V ′ ⊆V with |V ′|= k such that for each edge {u,v} ∈ E at least one of u and v
belongs to V ′ and the subgraph induced by V ′ is connected.

Consider a graph G = (V,E) and a positive integer k, which is an instance of this
problem. We construct a unit disk graph as follows. First, note that we can embed G
into the plane so that all edges consist of horizontal and vertical segments of lengths
being an integer at least 4, so that every two edges meet at an angle of 90◦ or 180◦.
Add new vertices on the interior of each edge in G to divide the edge into a path
of many edges, each of length exactly one. Denote by W the set of all such new
vertices. (See Fig. 3.4. New vertices are light circled points.)

Now, consider a horizontal path (u,w1, . . . ,wh,v) obtained from an edge (u,v).
Choose a constant 0 < c < 0.5(

√
2− 1). For each new vertex wi, add another new

vertex w′i such that d(wi,w′i)= c and w′i is above wi if i is odd and below wi if i is even
(Fig. 3.5). This placement of w′i implies that w′i can connect to only wi. Similarly,
we can deal with path obtained from vertical edges. Denote by G′ the constructed
graph. Then every CDS C of G′ must contain wi. In fact, in order to dominate w′i, C
must contain either wi or w′i. If C contains w′i, then w′i has to connect other vertices
in C through wi. Therefore, we must have wi in C.

Now, it is easy to see the following facts:

1. W is a dominating set of G′.
2. C is a connected vertex-cover of G if and only if C∪W is a CDS of G′.

Therefore, G has a connected vertex-cover of size at most k if and only if G′ has
a CDS of size at most |W |+ k. ��

Next, we give a new construction of a PTAS for MIN-CDS in unit disk graphs.

3.2 NP-Hardness and PTAS 39

wi�

Fig. 3.5 Add w′i’s

(0,0)

(q,q)

(pa,pa)

a

Fig. 3.6 Grid P(0)

Initially, we put input connected unit disk graph G = (V,E) in the interior of the
square [0,q]× [0,q] and construct a grid P(0) as shown in Fig. 3.6. P(0) divides
the square [0, pa]× [0, pa] into p2 cells where a = 8k for a positive integer k and
p = 1+ �q/a�. Each cell e is a a× a square, including its left boundary and its
lower boundary, so that all cells are disjoint and their union covers the interior of
the square [0,q]× [0,q].

For each cell e, let C(e) be the closed area bounded by the (a+ 4)× (a+ 4)
square with the same center as that of e, called the central area of cell e. Let CB(e)
be the interior of the (a+ 8)× (a+ 8) square with the same center as that of e.
Denote by B(e) obtained from CB(e) by removing e, called the boundary area of
cell e (Fig. 3.7).

40 3 CDS in Unit Disk Graph

2

2 central area

boundary area

cell

Fig. 3.7 Central area C(e)
and Boundary area B(e)

a+4

sqrt{2}/2

Fig. 3.8 Partition of central
area C(e)

For each cell e, we study the following problem.

LOCAL(e): Find the minimum subset D of vertices in V ∩CB(e) such that (a) D dominates
all nodes in V ∩C(e), and (b) for any connected component F of subgraph G[V ∩C(e)],
G[D] contains a connected component dominating F .

Lemma 3.2.2. The minimum solution of LOCAL(e) problem can be computed in

time nO(a2)
e where ne = |V ∩CB(e)|.

Proof. Partition C(e) into �(a+ 4)
√

2�2 small squares with edge length at most√
2/2 (Fig. 3.8). Then for each closed small square s, if V ∩ s �= /0, then choose one

from V ∩ s, which would dominate all vertices in V ∩ s. All chosen vertices form a
set D dominating V ∩C(e) and |D| ≤ �(a+ 4)

√
2�2.

Now, consider each connected component F of G[V ∩C(e)]. If D does not contain
a connected component dominating F , then we may add at most 2|F∩D| vertices to
connect all vertices F∩D into one connected component. This means that LOCAL(e)
has a feasible solution of size at most 3�(a+ 4)

√
2�2. Therefore, we can find the

optimal solution for LOCAL(e) in time n3�(a+4)
√

2�2
e = nO(a2)

e . ��

3.2 NP-Hardness and PTAS 41

Let De denote the minimum solution for LOCAL(e). Define D(0) = ∪e∈P(0)De

where e ∈ P(0) means that e is over all cells in partition P(0).

Lemma 3.2.3. D(0) contains a CDS for G, which can be computed in time nO(a2).

Proof. Consider two adjacent cells e and e′. Let F be a connected component of
G[V ∩C(e)] dominated by a connected component DF

e of G[D∩CB(e)]. Let F ′ be
a connected component of G[V ∩C(e′)] dominated by a connected component DF ′

e

of G[D∩CB(e′)]. Suppose F ∪F ′ is connected. We claim that G[DF
e ∪DF ′

e] is also
connected.

To show the claim, we first note that C(e)∩C(e′) is a strip with width 4. Since
F ∪F ′ is connected, there is a vertex x of F ∪F ′ in C(e)∩C(e′). x must belong to
F∩F ′. Let y∈DF

e dominate x and y′ ∈DF ′
e dominate x. We next consider two cases.

Case 1. y ∈C(e′) or y′ ∈C(e). If y ∈C(e′), then y must belong to F ′ and hence y is
dominated by DF ′

e . Thus, G[DF
e ∪DF ′

e] is connected.

Case 2. y �∈ C(e′) and y′ �∈ C(e). In this case, path (y,x,y′) passes through C(e)∩
C(e′). However, d(y,y′)≤ 2. Hence, it is impossible for this case to occur.

The truth of our claim implies that for any connected component F of G[C(e)∪
C(e′)], De ∪De′ has a connected component dominating F . Putting cells together
into a horizontal trip and then putting all horizontal strips together into P(0), we
would obtain a property of D(0) that for every connected component of G, D(0) has
a connected component to dominate it. Since G is connected, D(0) contains a CDS.

Note that each vertex may appear in CB(e) for at most four cells e. Therefore, by
Lemma 3.2.2, D(0) can be computed in time

∑
e∈P(0)

nO(a2)
e ≤ (4n)O(a2) = nO(a2),

where n = |V |. ��
To estimate |D(0)|, we consider a minimum solution D∗ of MIN-CDS. Let

PB(0) = ∪e∈P(0)B(e).

Lemma 3.2.4. Let PB(0) = ∪e∈P(0)B(e). Then |D(0)| ≤ |D∗|+ 24|D∗ ∩PB(0)|.
Proof. For each cell e, we modify D∗ ∩CB(e) into a feasible solution of LOCAL(e)
as follows. Consider a connected component F of G[V ∩C(e)]. Suppose F is
dominated by k connected components C1,C2, . . . ,Ck of G[D∗ ∩CB(e)] (k ≥ 2)
and they are connected outside of CB(e). Then every Ci has a vertex lying in
CB(e)−C(e). Since F is connected, there exist Ci and Cj (i �= j) such that Ci and
Cj can be connected together by adding two new vertices. We can charge these
two vertices to the one vertex of Ci, lying in CB(e)−C(e). Moreover, each vertex
x in D∗ ∩ (CB(e)−C(e)) can dominate at most three connected components of
G[V ∩C(e)] (this is because each connected component Fi contributes a vertex ui

in a half disk with center at x and radius one, and d(ui,u j) > 1 for i �= j, which

42 3 CDS in Unit Disk Graph

a

(q,q)

(-8i, -8i)

Fig. 3.9 Grid P(i)

implies that ∠uixu j > 60◦). Hence x can be charged at most six times. Let D′e be
obtained from D∗ ∩CB(e) by above modification. Then

|D′e| ≤ |D∗ ∩CB(e)|+ 6|D∗ ∩ (CB(e)−C(e))|
≤ |D∗ ∩ e|+ 6|D∗ ∩B(e)|.

Now, note that each vertex can appear in B(e) for at most four cells e and |De| ≤ |D′e|
where De is a minimum solution of LOCAL(e). Thus, we have

|D(0)| ≤ ∑
e∈P(0)

|D′e|

≤ ∑
e∈P(0)

(|D∗ ∩ e|+ 6|D∗ ∩B(e)|)

≤ |D∗|+ 24|D∗ ∩PB(0)|. ��

Now, we shift partition P(0) to P(i) as shown in Fig. 3.9 such that the left and
lower corner of the grid is moved to point (−8i,−8i). For each P(i), we can compute
a feasible solution D(i) in the same way as computing D(0) for P(0). Then we
have

3.2 NP-Hardness and PTAS 43

(0,0)

(q,q)

(pa,pa)

horizontal strip

ve
rt

ic
al

 s
ti
p

Fig. 3.10 Horizontal and vertical strips

(a) D(i) is a CDS.
(b) D(i) can be computed in time nO(a2).
(c) |D(i)| ≤ |D∗|+ 24|D∗ ∩PB(i)|.
From (c), we can obtain the following

Lemma 3.2.5. For k = a/8, |D(0)+ |D(1)|+ · · ·+ |D(k− 1)| ≤ (k+ 48)|D∗|.
Proof. Note that PB(i) consists of a group of horizontal strips and a group of vertical
strips (Fig. 3.10). All horizontal strips in PB(0)∪PB(1)∪·· ·∪PB(k−1) are disjoint
and all vertical strips in PB(0)∪PB(1)∪·· ·∪PB(k−1) are also disjoint. Therefore,

k−1

∑
i=0
|D∗ ∩PB(i)| ≤ 2|D∗|.

Hence,

k−1

∑
i=0

|D(i)| ≤ (k+ 48)|D∗|. ��

Set k = �1/(8ε)� and run the following algorithm.

44 3 CDS in Unit Disk Graph

Algorithm PTAS
input a unit disk graph G;

Compute D(0), D(1), . . . , D(k− 1);
Choose i∗, 0≤ i∗ ≤ k− 1 such that
|D(i∗)|= min(|D(0)|, |D(1)|, . . . , |D(k− 1)|);

output D(i∗).

Theorem 3.2.6 (Cheng et al. [22]). Algorithm PTAS produces an approximation
solution for MIN-CDS with size

|D(i∗)| ≤ (1+ ε)|D∗|

and runs in time nO(1/ε2).

Proof. It follows from Lemmas 3.2.3 and 3.2.5. ��

3.3 Two-Stage Algorithm

Although MIN-CDS in unit disk graph has a PTAS, the running time is a polynomial
with very high degree and hence not able to be implemented for a real world
problem. Therefore, one still wants to find faster approximations with small constant
performance ratio. So far, all approximation algorithms of this type are designed in
the same manner: First, construct a maximal independent set and then connected it
into a CDS. Here, one notes that every maximal independent set is a dominating set.

To save the spending at the second stage, one usually constructs a maximal
independent set in the following way:

Algorithm MIS
input a connected graph;
Color a node in black, its neighbors in grey and all other nodes in white;
while a white node exists do

choose a white node x with a grey neighbor and
color x in black and its white neighbors in grey;

output the set of black nodes.

The maximal independent set constructed as above has the following property.

Lemma 3.3.1 (AoA Property). Every subset of the maximal independent set
constructed as above is within distance two from its complement.

In the second stage, consider the constructed maximal independent set as a set
of terminals and then find the minimum number of Steiner nodes (added nodes) to
interconnect all terminal. This means to solve the following problem.

3.3 Two-Stage Algorithm 45

ST-MSP-IN-UDG: Given a unit disk graph G = (V,E) and a node subset P ⊆V with AoA
Property, find a node subset S with the minimum cardinality, such that G[P∪S] is connected.
(Nodes in P are called terminals while nodes in S are called Steiner nodes.)

This is an NP-hard problem with many approximation solutions. Any one of
them can play the role in the second stage. The following is an example, a greedy
approximation.

For any subset C of nodes, let p(C) denote the number of connected components
of G[C]. Denote Δx p(C) = p(C∪{x})− p(C). Suppose a maximal independent set
D with AoA property is already constructed.

Greedy Connection
input a dominating set D;
C← D;
while p(C)≥ 2 do

choose a node x to maximize−Δx p(C) and
C←C∪{x};

output C.

The following theorem states the performance of this approximation.

Theorem 3.3.2 (Zou et al. [132]). Suppose G is a graph with α(G)≤ a ·γc(G)+b
and D is a maximal independent set with AoA property. Then the CDS produced by
Greedy Connection has size at most

(a+ 2+ ln(a− 1))γc(G)+ b+ �b�− 1.

Proof. Suppose x1, . . . ,xg are selected in turn by the greedy algorithm. Let
{y1, . . . ,yγc(G)} be a minimum CDS and for any i, {y1, . . . ,yi} induces a connected
subgraph. Denote C0 = D, Ci+1 =Ci∪{xi+1} and C∗j = {y1, . . . ,y j}. Then

−Δy j p(Ci∪C∗j−1)+Δy j p(Ci)≤ 1.

So, −Δxi+1 p(Ci)≥−Δy j p(Ci) for all 1≤ j ≤ γc(G). Thus,

−Δxi+1 p(Ci) ≥
−∑γc(G)

j=1 Δy j p(Ci)

γc(G)

≥ −γc(G)+ 1−∑γc(G)
j=1 Δy j p(Ci∪C∗j−1)

γc(G)

=
−γc(G)+ 1− p(Ci∪C∗)+ p(Ci)

γc(G)

=
γc(G)+ p(Ci)

γc(G)
,

46 3 CDS in Unit Disk Graph

that is,

−p(Ci+1)≥−p(Ci)+
−γc(G)+ p(Ci)

γc(G)
.

Denote ai =−γc(G)− b+ p(Ci). Then

ai+1 ≤ ai

(
1− 1

γc(G)

)
.

Thus,

ai ≤ a0

(
1− 1

γc(G)

)i

≤ a0e−i/γc(G).

First, assume the existence of i, 0≤ i < g such that

ai+1 < γc(G)≤ ai.

Then g≤ i+ 2γc(G)− 1+ �b� and

γc(G)≤ a0e−i/γc(G).

Hence,

i≤ γc(G) ln(a0/γc(G)).

Moreover,

a0/γc(G) = (−γc(G)− b+ |D|)/γc(G)≤ a− 1.

Therefore,

|D|+ g≤ (a+ 2+ ln(a− 1))γc(G)+ b+ �b�− 1.

Now, consider the case that there is no i such that ai+1 < γc(G) ≤ ai. Note that
ag = −γc(G)− b+ 1 < γc(G). Thus, it must have a0 < γc(G). This implies that
g≤ 2γc(G)− 2+ �b�. Thus,

|D|+ g≤ (a+ 2)γc(G)+ b+ �b�− 2. ��

There is a better analysis found by Wan et al. [106]. They found some geometric
properties of this approximation and gave a better performance ratio by taking this
advantage.

The best-known approximation for ST-MSP-IN-UDG is given by Min et al. [79]
as follows.

Algorithm MHHW:
input a maximal independent set with AoA property.

3.4 Independent Number (I) 47

Color all its nodes in black and others in gray. In the following, we will change some
gray nodes to black in certain rules. A black component is a connected component
of the subgraph induced by black nodes.

Stage 1 while there exists a grey node adjacent to at least three
black components do
change its color from gray to black;

end-while;
Stage 2 while there exists a grey node adjacent to at least two

black components do
change its color from gray to black;

end-while;
output all black nodes.

They showed the following.

Theorem 3.3.3 (Min et al. [79]). In Algorithm MHHW, the number of gray nodes
changed their color to black is at most 3 · γc(G) where G is input unit disk graph.

3.4 Independent Number (I)

Two points u and v are independent if d(u,v) > 1. To establish the upper bound
of independent number α(G) for unit disk graphs G, one way is to study packing
independent points in the neighborhood area of the minimum CDS.

The following result is first proved by Wan et al. [104].

Lemma 3.4.1 (Wan et al. [104]). A disk D with radius one can contain at most five
independent points.

Proof. Let o be the center of D. Suppose u1,u2, . . . ,uk are all independent points
in D, in counterclockwise ordering. Then we must have ∠u1xu2 > 60◦, ∠u2xu3 >
60◦, . . . ,∠ukxu1 > 60◦ since d(x,ui) ≤ 1 and d(u1,u2) > 1,d(u2,u3) > 1, . . . ,
d(uk,u1)> 1. Therefore, k ·60◦ < 360◦. Hence, k ≤ 5. ��

With Lemma 3.4.1, Wan et al. [104] proved the following

Theorem 3.4.2 (Wan et al. [104]). Let α(G) and γc(G) be the independent number
and the connected dominating number of unit disk graph G, respectively. Then

α(G)≤ 4 · γc(G)+ 1.

Proof. The proof is by induction on γc(G). If γc(G) = 1, then the inequality follows
immediately from Lemma 3.4.1. In general, suppose γc(G) = n > 1. Choose a
node x in the minimum CDS C such that C−{x} is still connected. This can be
done by choosing x as a leaf of spanning tree of G[C]. By induction hypothesis,
there are at most 4(n− 1)+ 1 independent points lying in A = ∪y∈C−{x}disk1(y).

48 3 CDS in Unit Disk Graph

Let z ∈ C−{x} be adjacent to x. Suppose w1, . . . ,wk are independent points in
disk1(x) \A. Note that every point in disk1(x) \ A is independent from z. Thus,
z,w1, . . . ,wk are independent in disk1(x). By Lemma 3.4.1, k ≤ 4. Therefore, there
exist at most 4(n− 1)+ 1+ 4 = 4n+ 1 independent points lying in A∪ disk1(x).

��
Wu et al. [123] showed a result on packing independent points in two disks.

Lemma 3.4.3 (Wu et al. [123]). Let u and v be two points with distance at most
one. Then disk1(u)∪disk1(v) can contain at most eight independent points.

Proof. For contradiction, suppose there exists an independent set I of at least nine
points lying in disk1(u)∪disk1(v). One claims that the intersection A = disk1(u)∩
disk1(v) contains at most one point in I.

Indeed, suppose A contains k vertices in I. By Lemma 3.4.1, disk1(u)− A
contains at most 5− k points in I and disk1(v)−A contains at most 5− k points
in I. Thus, disk1(u)∪disk1(v) contains at most 10−k point in I. Hence, 10−k≥ 9,
that is, k ≤ 1.

In Lemma 3.4.4, one shows that disk1(u) ∪ disk1(v) − A contains at most
seven independent points. Therefore, disk1(u) ∪ disk1(v) contains at most eight
independent points, a contradiction. ��
Lemma 3.4.4. Let u and v be two points with distance at most one. Then
disk1(u)�disk1(v) can contain at most seven independent points where

disk1(u)�disk1(v) = (disk1(u)\ disk1(v))∪ (disk1(v)\ disk1(u)).

Proof. By Lemma 3.4.1, disk1(u) \ disk1(v) contains at most four independent
points and disk1(v) \ disk1(u) contains at most four independent points. For
contraction, suppose disk1(u)�disk1(v) contains eight independent points. Then
disk1(u) \ disk1(v) contains exactly four independent points a1,a2,a3,a4 and
disk1(v) \ disk1(u) contains exactly four independent points a5,a6,a7,a8. Assume
a1, . . . ,a4 lie counter-clockwisely in disk1(u) and a5, . . . ,a8 lie counter-clockwisely
in disk1(v). Denote by ubi the radius passing through ai for i = 2, . . . ,4 and by vbi

the radius passing through ai for i = 5, . . . ,8. Using arcs with radius one, draw four
arc-triangles ub2c2, ub3c3, vb6c6, and vb7c7 as shown in Fig. 3.11. Their boundaries
intersect the boundary of disk1(u)∩disk1(v) at d2,d3,d6,d7, respectively. Note that
none of a1,a4,a5,a8 can lie in the four arc-triangles ub2c2, ub3c3, vb6c6, and vb7c7.
Therefore, a1,a4,a5,a8 must lie in the four small dark areas xc2d2, yc3d3, yc6d6 and
xc7d7, respectively, as shown in Fig. 3.11.

Next, one find a contradiction by proving the fact that there exist two small dark
areas too close to contain two independent vertices.

To show this fact, note that ∠b2ub3 > 60◦ and ∠c2ub2 = ∠b3uc3 = 60◦. Hence,
∠c2uc3 > 180◦ and ∠c3uc2 < 180◦ (note that ∠c3uc2 is the one obtained by moving
c3u counterclockwisely to c2u). Similarly, ∠c7vc6 < 180◦. Therefore ∠uc2c7 +
∠c2c7v+∠vc6c3 +∠c6c3u > 360◦. This means that either ∠uc2c7+∠c2c7v > 180◦

3.4 Independent Number (I) 49

a2

a6

a0

d6d3

d7d2

c6

b6

b7

c7c2

c3

b2

vu

a7

a3

y

x

b3

Fig. 3.11 Four small dark areas

vu

c7
c2 x

d2

d7

Fig. 3.12 Turn unit arc-triangle vb7c7 until vc7 ‖ uc2

or ∠vc6c3 +∠c6c3u > 180◦. Without loss of generality, assume the former occurs
(Fig. 3.12). Next, it will be showed that dark areas xc2d2 and xc7d7 cannot contain
two independent points.

50 3 CDS in Unit Disk Graph

u
v

x

b7

c2

d7

c7

d2

Fig. 3.13 Move u until |uv|= 1

To do so, at the first, the area xc7d7 is enlarged by turning the arc-triangle vb7c7

around v until vc7 is parallel to uc2. At this limit position, quadrilateral c2uvc7 be-
comes a parallelogram so that |c2c7|= |uv| ≤ 1. It follows that the distance between
two points in areas xc2d2 and xc7d7 cannot exceed max(|c2c7|, |c2d7|, |d2c7|, |d2d7|).
Moreover, it can be proved that |d2d7| ≤ max(|c2d7|, |d2c7|). In fact, note that
∠c7d7d2 +∠d7d2c2 > 360◦. Thus, either ∠c7d7d2 > 90◦ or ∠d7d2c2 > 90◦. There-
fore, either |d2c7 > |d2d7| or c2d7 > |d2d7|.

Now, to complete the proof of claimed fact, it suffices to prove that |c2d7| ≤ 1
and |d2c7| ≤ 1. To see |c2d7| ≤ 1, make |c2d7| longer by moving v away from u
until |uv| = 1 (Fig. 3.13). At this limit position, |uv| = |vb7| = |b7d7| = |d7u| = 1.
Therefore, uvb7d7 is a parallelogram. It follows that |d7b7| = |c2c7| = 1 and d7b7

is parallel to uv and hence parallel to c2c7. Thus, c2d7b7c7 is a parallelogram.
Therefore, |c2d7|= |c7b7|= 1. Similarly, one can show |d2c7| ≤ 1. ��

With Lemma 3.4.3, Wu et al. [123] established the following

Theorem 3.4.5 (Wu et al. [123]). Let α(G) and γc(G) be the independent number
and the connected dominating number of unit disk graph G, respectively. Then

α(G)≤ 3.8 · γc(G)+ 1.2.

Proof. First, one proves the following two lemmas about unit disk graph and general
graphs.

Lemma 3.4.6. In any unit disk graph, there exists a minimum spanning tree such
that every vertex has degree at most five.

3.4 Independent Number (I) 51

Proof. First, note that in any minimum spanning tree, each vertex u has degree
at most six. In fact, for contradiction, suppose u has degree more than six. Then
there are two edges uv and uv′ such that ∠vuv′ < 60◦. It follows that |vv′| < |uv|
or |vv′| < |uv′|. Replacing uv (in the former case) or uv′ (in the latter case) by vv′
would result in a shorter spanning tree, a contradiction. A similar argument can also
proved that if a vertex u has degree six, then all edges at u have the same length and
all angles at u equal 60◦.

Suppose T is a minimum spanning tree with the minimum number of vertices
with degree six. For contradiction, suppose T has a vertex u with degree six. Then,
every angle at u equals 60◦ and all edges incident to u have the same length.
Consider a vertex v adjacent to u. Then u has two edges uw and ux such that
∠wuv = ∠vux = 60◦ and |uv| = |uw| = |ux|. Thus, |vw| = |uw| and |vx| = |ux|.
Replacing uw and ux by vw and vx results in still a minimum spanning tree. But, v
gets two more edges. This means that v has degree at most four in T . Thus, replacing
uv by vw in T would result in a minimum spanning tree in which u has degree five
and v has degree at most five, so that the number of vertices with degree six is
reduced by one, a contradiction. ��
Lemma 3.4.7. Every tree T with at least three vertices has a non-leaf vertex
adjacent to at most one non-leaf vertex.

Proof. Let T ′ be the subtree obtained from T by removal of all leaves. Since T has
at least three vertices, T ′ contains at least one vertex. If T ′ contains only one vertex,
then it meets our requirement. If T ′ contains more than one vertex, then every leaf
of T ′ is a non-leaf vertex of T satisfying the condition stated in the lemma. ��

Now, it is ready to prove Theorem 3.4.5. Let H be a subgraph induced by a
minimum CDS in the given unit disk graph G. Then H is also a unit disk subgraph.
By Lemma 3.4.6, H has a minimum spanning tree T such that every vertex has
degree at most five. Let |T | denote the number of vertices in T . It will be proved
by induction on |T | that there exist at most 3.8|T |+ 1.2 independent vertices in
the neighbor area of T . For |T | = 1 or 2, this is true by Lemmas 3.4.1 and 3.4.3.
Next, assume |T | ≥ 3. By Lemma 3.4.7, T contains a non-leaf vertex v adjacent
to at most one non-leaf vertex. Let u be the non-leaf neighbor of v if it exists,
or a leaf neighbor of v, otherwise. Let x1, . . . ,xk (k ≤ 4) be other neighbors of
v. Note that by Lemma 3.4.1, each disk1(xi) for 1 ≤ i ≤ k− 1 contains at most
four independent points which are also independent from v, and by Lemma 3.4.3,
disk1(v) ∪ disk1(xk) contains at most seven independent points which are also
independent from u. Moreover, by the induction hypothesis, the neighbor area
of T −{v,x1, ..,xk} contains at most 3.8(|T | − k− 1) + 1.2 independent vertices.
Therefore, the neighbor area of T contains at most

3.8(|T |− k− 1)+ 1.2+ 7+4(k−1)= 3.8|T |+ 1.2+ 0.2(k− 4)≤ 3.8|T |+ 1.2

independent vertices. Note that |T | = mcds. This completes the proof of Theorem
3.4.5. ��

52 3 CDS in Unit Disk Graph

Wan, Wang and Yao [106] found an idea to prove a better bound based on the
study on packing independent points in the neighborhood area of a star.

First, they note that every tree can be partitioned into nontrivial stars. (A star is
trivial if it contains only one node.)

Lemma 3.4.8. For any tree T , its node set has a partition V (T) = (V1, . . . ,Vk) such
that for every part Vi, T [Vi] is a star with at least two nodes.

Proof. Choose any node r of T as a root and consider T as a rooted tree. Then one
can compute such a partition as follows.

V ←V (T);
i← 0;
while V �= /0 do begin

i← i+ 1;
choose a leaf u at lowest level and find its parent node v;
let V ′ be the set of v and its all children;
if |V −V ′|> 1

then Vi←V ′
else Vi←V

V ←V −Vi;
end-while
output (V1, . . . ,Vi).

��
Wan et al. [106] then found tight upper bound for the number of independent

points lying in the neighborhood area of a star.

Lemma 3.4.9. The neighborhood area of a star with n nodes can contain at most
φn independent points where

φn =

⎧⎨
⎩

3n+ 2 if n≤ 2,
3n+ 3 if n≤ 5,
21 if 6≤ n.

Consider a star S. Let o be the center of S. Then the neighborhood area
of S is contained in disk2(o). By Zassenhaus–Groemer–Oler inequality (in
Section 3.6), disk2(o) can contain at most 21 independent points. This means
that Lemma 3.4.9 holds for n ≥ 6. By Lemmas 3.4.1 and 3.4.3, Lemma 3.4.9
holds for n ≤ 2. For n = 3, suppose V (S) = {v1,v2,v3}. By Lemma 3.4.3,
disk1(v1) ∪ disk1(v2) can contain at most eight independent points and by
Lemma 3.4.1, disk1(v3) \ (disk1(v1) ∪ disk1(v2)) can contain at most four
independent points. Thus, disk1(v1) ∪ disk1(v2) ∪ disk1(v3) can contain at most
twelve independent points. For n = 4,5, the proof is given by a tedious geometric
argument and the interested reader may see the original paper [106] for detail.

3.4 Independent Number (I) 53

Theorem 3.4.6 (Wan et al. [106]). For any connected unit disk graph G with at
least two nodes,

α(G)≤ 11
3
· γc(G)+ 1.

Proof. Let S = {S1, . . . ,Sk} be a nontrivial star partition of a spanning tree of the
minimum CDS of G such that for any 1 ≤ i ≤ k, S1 ∪ ·· · ∪ Si is connected. Let I
be the maximum independent set of G. For any subgraph H, denote by I(H) the
intersection of I and the neighborhood area of H. The proof is by a mathematical
induction on k. By Lemma 3.4.9,

|I(Sk)| ≤ 11
3
· |Sk|+ 1.

Since ∪k
i=1Si is connected, Sk must have a node v lying in the neighborhood area

of ∪k−1
i=1 Si and v is independent to any point in I(∪k−1

i=1 Si) \ I(Sk). By the induction
hypothesis,

|I(∪k−1
i=1 Si)\ I(Sk)|+ 1≤ 11

3
· | ∪k−1

i=1 Si|+ 1,

that is,

|I(∪k−1
i=1 Si)\ I(Sk)| ≤ 11

3
· | ∪k−1

i=1 Si|.
Therefore,

|I(∪k
i=1Si)| = |I(∪k−1

i=1 Si)\ I(Sk)|+ |I(Sk)|

≤ 11
3
· | ∪k

i=1 Si|+ 1. ��

Vahdatpour et al. [103] claimed that they proved that for any connected unit disk
graph G,

α(G) ≤ 3γc(G)+ 3.

If their proof is correct, then this is the best possible result. Wan et al. [106] have
showed that for some unit disk graph G

α(G) = γc(G)+ 3.

Unfortunately, the proof of Vahdatpour et al. is far from a complete one. In the
following, we give an analysis on their proof and indicate what important parts their
proof miss. First, note that their proof use a mathematical induction on the number
of vertices in the minimum CDS based on two important lemmas.

Let T be a spanning tree of the minimum CDS. For any node v, denote N(v) =
disk1(v). Let U be any set of independent points lying in the neighborhood area
Q(T) of T . Assume v1,v2, . . . ,vT is an arbitrary traversal of T . For any i, 2≤ i≤ |T |,

54 3 CDS in Unit Disk Graph

consider Ui = N(vi)∩U −∪i−1
j=1N(v j) be the subset of nodes in U that are adjacent

to vi but not to any of v1,v2, . . . ,vi−1. We will call Ui the semi-exclusive neighboring
set of node vi.” The first lemma is as follows:

Lemma 3.4.10. For two distinct vertices vi and v j of T with |Ui| = |Uj|= 4, there
exists a node vk on the path between vi and v j such that |Uk| ≤ 2.

Now, consider a leaf v j. There are several cases.

Case 1. |Uj| ≤ 3. Then we apply the induction hypothesis on T \ v j and finish the
induction proof.

Case 2. |Uj| = 4 and |Ui| ≤ 3 for every i �= j. In this case, we immediately have
|U | ≤ 3|T |+ 3.

Case 3. |Uj|= 4 and there is i �= j such that |Ui|= 4. By Lemma 3.4.10, there exists
a vertex vk on the path between vi and v j such that |Uk| ≤ 2.

Subcase 3.1. Path P = (v j, . . . ,vk) does not contain a fork vertex (i.e., a vertex with
degree at least three). In this subcase, we can apply the induction hypothesis to T \P
and finish the induction proof.

Subcase 3.2. Path P = (v j, . . . ,vk) contains some fork vertices. In this subcase, T \P
is not connected and hence not a tree so that we cannot apply induction hypothesis
to T \P. This is a complicated subcase. However, Vahdatpour et al. [103] did not
give sufficient argument to deal with it. Indeed, they provided the second lemma to
handle this subcase. However, (1) the second lemma is not sufficient to handle this
subcase and (2) the proof of the second lemma is far from a complete one.

Therefore, it is still an open problem whether the inequality (3.1) holds or not.

3.5 Independent Number (II)

Funke et al. [51] initiated another idea to establish the upper bound of the
independent number α(G) for unit disk graph G. The idea is based on the fact that
all disk0.5(v) for v over nodes in the maximum independent set are disjoint and they
all lie in the union Ω of disk1.5(x) for x over all nodes in the minimum CDS. The
following result follows immediately from this fact.

Theorem 3.5.1 (Funke et al. [51]). Let α(G) and γc(G) be the independent
number and the connected dominating number of unit disk graph G, respectively.
Then

α(G)≤ 3.748γc(G)+ 5.252.

Proof. Define the dominating area of a vertex x to be the disk disk1.5(x). Then two
adjacent nodes have at least 9

2 arccos 1
3 −
√

2 area in common. Thus, the union Ω of
dominating areas of a minimum CDS can have at most

3.5 Independent Number (II) 55

Fig. 3.14 Voronoi division

(γc(G)− 1)

(
9
2

arccos
1
3
−
√

2

)
+π1.52

area. For every node v in a maximal independent set, draw a disk disk0.5(v). All
such disks are disjoint and lie in the adjacent area of the maximum independent set.
Therefore, the size of a maximal independent set α(G) is at most

(γc(G)− 1)(9
2 arccos 1

3 −
√

2)+π1.52

0.25π
≤ 3.748γc(G)+ 5.252. ��

To improve this approach, Funke et al. further introduced Voronoi division
(Fig. 3.14) of the maximum independent set. Denote by voro(v) the Voronoi cell
of node v. Since disk0.5(v) ⊂ voro(v), the area of voro(v) would be bigger that the
area of disk0.5(v). In fact, they claimed that the area of voro(v) is at least

√
3/2 and

voro(v)∩Ω has area at least 0.8525. This fact has been verified by Gao et al. [54].
Therefore, Funde et al. [51] established the following.

Theorem 3.5.2 (Funke et al. [51]). Let α(G) and γc(G) be the independent
number and the connected dominating number of unit disk graph G, respectively.
Then

α(G)≤ 3.453γc(G)+ 4.839.

Proof. Similar to the proof of Theorem 3.5.1.

56 3 CDS in Unit Disk Graph

w

w’

u

v a’

a

Fig. 3.15 The proof of
Lemma 3.5.3

α(G)≤ (γc(G)− 1)(9
2 arccos 1

3 −
√

2)+π1.52

0.8525
≤ 3.453γc(G)+4.839. ��

Li et al. [72] found two ideas to make an improvement. The first idea is based on
the following facts.

Lemma 3.5.3. Every vertex u of Voronoi cell voro(v) lies outside the disk
disk1/

√
3(v).

Proof. Suppose ua and ua′ are two edges of voro(v) at vertex u. Let w be the
symmetric point of v with respect to line ua and w′ the symmetric point of v with
respect to line ua′ (Fig. 3.15). Then by the construction of Voronoi division, it can
be seen that v, w and w′ are independent and they are on circle circled(v,u)(u).
Note that one of angles ∠vuw,∠wuw′,∠w′uv is at most 120◦. This means one of
d(v,w),d(w,w′),d(w′,v) is at most

√
3 ·d(v,u), that is,

1 <
√

3d(v,u) or d(v,u)> 1/
√

3. ��

Lemma 3.5.4. Let P be a polygon inscribed in the circle circle1/
√

3(v) such that
disk0.5(v)⊂ P. Then

area(P)≥
√

3/2,

area(P∩disk1.5(s))≥ σ = 0.85505328..,

for disk0.5(v)⊂ disk1.5(s).

3.6 Zassenhaus–Groemer–Oler Inequality 57

By Lemma 3.5.3, for each v in the maximum independent set, one can construct a
polygon Pv which is inscribed in circle circle1/

√
3(v) and disk0.5(v)⊂ Pv ⊂ voro(v).

By Lemma 3.5.4, the area of Pv∩Ω≥ σ and hence α(G)≤ area(Ω)/σ .
The second idea is motivated from an observation on Lemma 3.5.4. Lemma 3.5.4

indicates that the maximum independent set I can be partitioned into two parts

I1 = {v | voro(v)∩disk1/
√

3(v)⊆Ω},
I2 = {v | voro(v)∩disk1/

√
3(v) �⊆Ω}.

For v ∈ I1, area(voro(v)∩Ω) ≥√3/2 and for v ∈ I2, area(voro(v)∩Ω) ≥ σ . If |I2|
can be upper-bounded in some way, the upper bound for α(G) could be improved.
In fact, since

area(Ω)≥
√

3
2
· |I1|+σ · |I2|,

one has

|I| ≤ area(Ω)√
3

2

+

(
1− σ√

3
2

)
· |I2|.

Li et al. successfully established an upper bound for |I2| as follows.

Lemma 3.5.5. Let C be a minimum CDS of unit disk graph G =V,E). Define Ω′ =
∪x∈Cdisk1.5−1/

√
3(x). Then the boundary length of Ω is at most

2

(
3− 2√

3

)(
(γc(G)− 1)arcsin

1

3− 2√
3

+
π
2

)

and at least 2(1− 1/
√

3)|I2|.
With this lemma, they showed the following best-known upper bound for α(G).

Theorem 3.5.6 (Li et al. [72]). Let α(G) and γc(G) be the independent number
and the connected dominating number of unit disk graph G, respectively. Then

α(G)≤ 3.4305176γc(G)+ 4.8184688.

3.6 Zassenhaus–Groemer–Oler Inequality

Suppose a compact convex region C contains centers of n non-overlapping unit
disks. Then

n≤ 2√
3

A(C)+
1
2

P(C)+ 1,

58 3 CDS in Unit Disk Graph

Fig. 3.16 Three families of simplexes

where A(C) is the area of C and P(C) is its perimeter. This inequality is conjectured
by Zassenhaus in 1947 (see [125]) and proved independently by Groemer [61] and
Oler [85].

This inequality has been used in the proof of Lemma 3.4.9. Indeed, the applica-
tion of this inequality has been found in many places for analysis of approximation
algorithms for optimization problems in unit disk graphs; especially it will be used
in later chapters. Therefore, we introduce it here.

There are several proofs of this inequality [50, 61, 78, 85]. The following was
given by Folkman and Graham [50] with an extension to two-dimensional simplicial
complex.

A zero-dimensional simplex is a point. A one-dimensional simplex is a straight
line segment. A two-dimensional simplex is a triangle. In general, a simplex is a
polytope with minimum number of vertices among all polytopes with certain di-
mension. For example, a tetrahedron is a three-dimensional polytope with minimum
number of vertices and hence a three-dimensional simplex.

Any simplex is the convex hull of its vertices. The convex hull of any subset of
vertices in a simplex S is also a simplex, which is called a face of simplex S. A
family Δ of simplexes is called a simplicial complex if it satisfies the following two
conditions:

(a) For S ∈ Δ, every face of S is in Δ.
(b) For S,S′ ∈ Δ, S∩S′ is a face for both S and S′.

From (a) and (b), it is easy to see the following holds:

(c) For S,S′ ∈ Δ, S∩S′ is also a simplex in Δ.

In Fig. 3.16, there are three families of simplexes. While the first two are not
simplicial complexes, the last one is.

For any simplex A, |A| denotes the number of vertices in A. Thus, |A|− 1 is the
dimension of A. The Euler characteristic of a simplicial complex Δ is defined by

χ(Δ) = ∑
A∈Δ,A �= /0

(−1)|A|−1 = ∑
A∈Δ

(−1)|A|−1 + 1.

3.6 Zassenhaus–Groemer–Oler Inequality 59

Let m(A) denote the area of A for two-dimensional simplex A and the length of A
for one-dimensional simplex A. For one-dimensional simplex A, let ε(A,Δ) denote
the number of two-dimensional simplex in Δ having A as a face. For simplicial
complex Δ in the Euclidean plane, it is easy to see from (b) that ε(A,Δ)≤ 2. When
ε(A,Δ) = 1, A is on the boundary of the union of simplexes in Δ. When ε(A,Δ) = 2,
A is in the interior of the union of simplexes in Δ. Now, a proper definition is given
for the area A(Δ) and the perimeter P(Δ) of a simplicial complex Δ in the Euclidean
plane.

A(Δ) = ∑
A∈Δ,|A|=3

m(A)

and

P(Δ) = ∑
A∈Δ,|A|=2

(2− ε(A,Δ))m(A).

The inequality of Folkman and Graham [50] is as follows:

Theorem 3.6.1 (Folkman–Graham [50]). Let Δ be a simplicial complex in the
Euclidean plane. Suppose for any two distinct vertices x and y in Δ, d(x,y) ≥ 1.
Then

|Δ| ≤ 2√
3

A(Δ)+
1
2

P(Δ)+ χ(Δ),

where |Δ| is the number of vertices in Δ.

To prove this inequality, the following two lemmas is proved at the first.

Lemma 3.6.2. Let a, b, c be lengths of three edges of a triangle Δ. Suppose a ≥
b≥ c≥ 1. Then

4√
3

A(Δ)+ a≥ b+ c.

Proof. By Hero’s formula,

A(Δ) =
1
4

√
(a+ b+ c)(a+ b− c)(a−b+ c)(−a+b+ c)

≥ 1
4

√
(a+ b+ c)(−a+ b+ c)

≥ 1
4

√
3c(−a+ b+ c)

≥ 1
4

√
3(−a+ b+ c)2

=

√
3

4
(−a+ b+ c).

60 3 CDS in Unit Disk Graph

Hence,

4√
3

A(Δ)+ a≥ b+ c. ��

Lemma 3.6.3. Let BCDE be a quadrilateral in the Euclidean plane with area A
and perimeter P. Suppose the length of every diagonal of BCDE is not less than the
length of every edge of BCDE and the length of every edge is at least one. Then

4√
3

A−P+ 2≥ 0.

Proof. Without loss of generality, assume ∠B+∠D≤ π . Note that in this case, one
must have A = A(�BCE)+A(�CDE). Since diagonal CE is the longest edge in
�BCE and in�DEC, one has ∠B≥ π/3 and ∠D≥ π/3. Hence, π/3≤∠B≤ 2π/3
and π/3≤ ∠D≤ 2π/3. Therefore,

A =
1
2
(|BC| · |BE| · sin∠B+ |DC| · |DE| · sin∠D)

≥
√

3
4

(|BC| · |BE|+ |DC| · |DE|).

Thus,

4√
3

A−P+ 2

≥ |BC| · |BE|+ |DC| · |DE|− (|BC|+ |BE|+ |DC|+ |DE|)+2

= (|BC|− 1)(|BE|− 1)+ (|DC|− 1)(|DE|−1)

≥ 0. ��

Now, it is ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. The proof is an induction on the number of one-
dimensional simplexes contained in Δ. First, suppose Δ contains no one-dimensional
simplex. Then A(Δ) = P(Δ) = 0 and χ(Δ) is equal to the number of vertices.
Therefore, the Folkman–Graham Inequality is true.

Next, suppose Δ contains k one-dimensional simplexes and k ≥ 1. Assume that
for every simplicial complex with less than k one-dimensional complexes, the
Folkman–Graham inequality holds. Let union(Δ) denote the union of simplexes in
Δ. Then it is easy to see that for two simplicial complexes Δ and Γ, if union(Δ) =
union(Γ), then A(Δ) = A(Γ), P(Δ) = P(Γ) and χ(Δ) = χ(Γ). Therefore, it suffices
to show the Folkman–Graham Inequality holds for one of simplicial complexes with
the same union. Without loss of generality, suppose that Δ has the minimum total
length of one-dimensional complexes among those simplicial simplexes with the
same union and the same number of one-dimensional simplexes as Δ has.

3.6 Zassenhaus–Groemer–Oler Inequality 61

Consider a one-dimensional complex σ in Δ with the longest length. There are
three cases in the following.

Case 1. ε(σ ,Δ) = 0. In this case, Δ−{σ} is a simplicial complex and P(Δ−{σ})=
P(Δ)− 2m(σ). Therefore, by induction hypothesis,

|Δ| = |Δ−{σ}|

≤ 2√
3

A(Δ−{σ})+ 1
2

P(Δ−{σ})+ χ(Δ−{σ})

=
2√
3

A(Δ)+
1
2

P(Δ)−m(σ)+ χ(Δ)+ 1

≤ 2√
3

A(Δ)+
1
2

P(Δ)+ χ(Δ).

Case 2. ε(σ ,Δ) = 1. Let τ be the two-dimensional simplex in Δ having σ as a face.
Let σ ′ and σ ′′ be other two one-dimensional faces of τ . Without loss of generality,
assume m(σ ′)≥m(σ ′′). From the choice of σ , it can be seen that m(σ)≥ m(σ ′)≥
m(σ ′′)≥ 1. By Lemma 3.6.2,

4√
3

m(τ)+m(σ)≥ m(σ ′)+σ(σ ′′).

Note that Γ = Δ−{τ,σ} is a simplicial complex. By induction hypothesis,

2√
3

A(Δ)+
1
2

P(Δ)+ χ(Δ)

=
2√
3

A(Γ)+
1
2

P(Γ)+ χ(Γ)+
2√
3

A(τ)+
1
2
(m(σ)−m(σ ′)−m(σ ′′))

≥ 2√
3

A(Γ)+
1
2

P(Γ)+ χ(Γ)

≥ |Γ|= |Δ|.

Case 3. ε(σ ,Δ) = 2. Let τ and τ ′ be the two-dimensional simplexes in Δ having σ as
a face. Let B and D be two vertices of σ . Suppose C is the third vertex of τ and E is
the third vertex of τ ′. Because σ is the longest edge in τ and in τ ′, it can be seen that
∠BCE ≤ π/2, ∠CEB ≤ π/2, ∠ECD ≤ π/2 and ∠DEC ≤ π/2. Thus, ∠BCD ≤ π
and ∠DEB ≤ π . This implies that BCDE is a convex quadrilateral. It follows that
a simplicial complex can be obtained from Δ by replacing τ and τ ′ by �BCD and
�DEB with the same union and the same number of one-dimensional simplexes as
Δ has. By the choice of Δ, one has |BD| ≥ |CE|= m(σ). By Lemma 3.6.3,

4√
3
(A(τ)+A(τ ′))−P(τ∪ τ ′)+ 2≥ 0.

62 3 CDS in Unit Disk Graph

Note that Γ = Δ−{σ ,τ,τ ′} is a simplicial complex. By induction hypothesis,

2√
3

A(Δ)+
1
2

P(Δ)+ χ(Δ)

=
2√
3

A(Γ)+
1
2

P(Γ)+ χ(Γ)+
2√
3
(A(τ)+A(τ ′))−P(τ ∪ τ ′)+ 1

≥ 2√
3

A(Γ)+
1
2

P(Γ)+ χ(Γ)

≥ |Γ|= |Δ|. ��

Corollary 3.6.4 (Zassenhaus–Groemer–Oler). Let X be a compact convex region
in the Euclidean plane. Suppose X contains a set V of centers of n non-overlapping
unit circles. Then

n≤ 2√
3

A(X)+
1
2

P(X)+ 1,

where A(X) and P(X) denote the area and perimeter of X, respectively.

Proof. Let H be the convex hull of V . Then A(X) ≥ A(H) and P(X) ≥ P(H). Let
Δ be a simplicial complex with vertex set V , whose two-dimensional faces form
a triangulation of H. Then the union of Δ equals H and χ(Δ) = 1. By Folkman–
Graham Inequality,

2√
3

A(X)+
1
2

P(X)+ 1≥ 2√
3

A(Δ)+
1
2

P(Δ)+ 1≥ |Δ|= |V |. ��

Corollary 3.6.5. A disk diskr(o) can contain at most

2√
3

πr2 +πr+ 1

independent points.

Proof. It follows immediately from Zassenhaus–Graemer–Oler inequality. ��

Chapter 4
CDS in Unit Ball Graphs and Growth
Bounded Graphs

Time is cubic, not linear as stupid educators teach.
GENE RAY

4.1 Motivation and Overview

In a mountain area or underwater [1, 131], environment is often not flat. In such
a situation, deployed sensors would form a three-dimensional wireless sensor
network, which has a mathematical model, the unit ball graph. A unit ball graph
consists of vertices lying in the three-dimensional Euclidean space. There exists an
edge between two vertices u and v if and only if the distance between them, d(u,v)
is at most one.

Many approximation algorithms for MIN-CDS in unit disk graphs can be
extended to unit ball graphs [127, 132], e.g., the two-stage algorithm in which, at
the first stage, a maximal independent set is constructed and at the second stage,
the maximal independent set is connected into a CDS. However, analysis of those
approximations is a little harder than those in unit disk graphs because, instead of
disk packing, spherical packing is required to study.

A set of points is said to be independent if every pair of points has a distance
bigger than one. How many independent points can be packed into a disk of radius
one? It was determined so easily in Sect. 3.2 that the answer is five. However, a
similar problem in three-dimensional Euclidean space may not be so easy to answer.
How many independent points can be packed into a ball of radius one? This question
is closely related to the well-known problem proposed in 1694 [130].

In 1694, Isaac Newton and David Gregory discussed a kissing problem in the
Cambridge University. While Newton claimed that a unit ball can touch (or kiss) at
most twelve unit balls, Gregory believed that thirteen is possible. This discussion
results in a well-known problem as follows.

Gregory–Newton Problem. Can a sphere touch thirteen spheres of the same size?

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 4,
© Springer Science+Business Media New York 2013

63

64 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

The answer of the Gregory–Newton problem was given by Hoppe [65] in 1874.
It is proved that a sphere can touch at most 12 spheres of the same size. On the
other side, there exists a sphere which can touch 12 spheres of the same size. For an
example, consider an icosahedron which has 12 vertices. Let a be its edge length and
r the radius of the circumscribed sphere of the icosahedron. Then a/r = 1/∼ 2π

5 > 1.
This means that if place 13 spheres with radius r/2 at the center and vertices of the
icosahedron, then the 12 spheres at vertices kiss the sphere at the center. Moreover,
the 12 spheres at vertices do not touch each other.

Actually, k independent points can be packed into a ball of radius one if and only
if a sphere can touch k spheres of the same size and those k spheres do not touch each
other. Therefore, as a consequence of the solution of the Gregory–Newton problem,
it is easy to see that the maximum number of independent points that can be packed
into a ball of radius one is 12.

Kim et al. [68] extended the approach for solving the Gregory–Newton problem
to two balls. They showed that if two balls with radius one have their centers within
distance one, then there exist at most 20 independent points lying on their boundary
surface. A consequence is that they cannot touch more than 20 balls of the same
size. However, it is not easy from this result to derive a nontrivial upper bound for
the number of independent points which can be packed in such two balls. Therefore,
an interesting open problem is left.

Open Problem 4.1.1. How many independent points can two balls with radius one
and with center distance at most one contain?

Since a ball with radius one can contain at most 12 independent points and
the center of a ball is independent from any point not in the ball, two balls with
radius one and having their centers within distance one would contain at most 23
independent points. Any upper bound less than 23 is nontrivial.

The unit disk graph and the unit ball graph are typic examples of growth-bounded
graphs. Many approximation algorithms for unit disk graphs and unit ball graphs can
be generalized for growth-bounded graphs [58]. Especially, PTAS exists for MIN-
CDS in growth-bounded graphs [58].

4.2 Gregory–Newton Problem

The answer of the Gregory–Newton problem is presented in this section. To do so,
let ballr(o) and spherer(o) denote the ball and the sphere, respectively, with radius
r and center o.

Theorem 4.2.1 (Hoppe [65]). A sphere can touch at most twelve spheres of the
same size.

Proof. Suppose the unit sphere ball0.5(o) touches k unit spheres with centers
x1, . . . ,xk which are on the sphere sphere1(o). Let ‖xi,x j‖s denote the geodesic

4.2 Gregory–Newton Problem 65

distance between xi and x j on sphere0.5(o). Then for any 1≤ i < j ≤ k,

‖xi,x j‖s ≥ π/3.

Connect xi and x j by a geodesic arc if and only if

‖xi,x j‖s ≤ arccos1/7.

This would result in a network G on sphere0.5(o) with the following properties:

(P1) No two arcs cross each other.
(P2) Every node has degree at most five.

Above two properties are due to the following facts which can be proved easily
by spherical trigonometry.

(F1) A spherical quadrilateral with side length at least π/3 cannot have both
diagonal with length smaller than π/2.

(F2) At any node, two arc in G form an angle larger than π/3.

We can also assume that the network G is connected since all unit balls touched
by ball0.5(o) can be put to touch each other.

The network G divides sphere0.5(o) into several polygons. Let An denote the
minimum area of a polygon with n sides, that is, an n-gon. Then the A3 is reached
by an equilateral triangle and hence,

A3 = 0.5512 . . . ,

A4 is reached by an equilateral quadrilateral with side length π/3 and one diagonal
length arccos1/7 and hence,

A4 = 1.3338 . . . ,

A5 is reached by an equilateral pentagon with side length π/3 and two coterminous
diagonal length arccos1/7 and hence,

A5 = 2.2261

Moreover, it can be proved by induction on n that for n≥ 5,

An ≥ 0.5725+(n− 2)A3.

Let fi be the number of i-gons. Then

4π ≥ 0.5512 · f3+ 1.3338 · f4+ 2.2261 · f5+ · · ·
= 0.5512(f3 + 2 f4 + 3 f5 + · · ·)+ 0.2314 · f4+ 0.5725(f5+ · · ·).

66 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

Let e be the number of arcs. By Euler’s formula,

4k− 4 = 2e− 2(f3 + f4 + f5 + · · ·)
= 3 f3 + 4 f4 + 5 f5 + · · ·− 2(f3 + f4 + f5 + · · ·)
= f3 + 2 f4 + 3 f5 + · · · .

Therefore,

4π ≥ 0.5512(2k− 4)+ 0.2314 f4+ 0.5725(f5+ · · ·).
Thus,

2k− 4≤ 4π
0.5512

= 22.79,

that is,

k ≤ 13.

Assume k = 13. Then

4π ≥ 0.5512× 22+ 0.2314 f4+ 0.5525(f5+ · · ·),
that is,

0.44≥ 0.2314 f4+ 0.5725(f5+ · · ·).
It follows that f4 = 0 or 1 and f5 = · · ·= 0.

If f4 = 0, then f3 = 2e/3 and hence by Euler’s formula, 13+ 2e/3 = e + 2.
Therefore, e = 33. Since 66/13 > 5, there exists at least one node with degree six,
contradicting the property (P2).

If f4 = 1, then f3 = (2e− 4)/3 and by Euler’s formula, 13+(1+(2e− 4)/3)=
e+ 2. Hence, e = 32, f3 = 20. Since 64 = 12× 5+ 4, G must have one node with
degree 4 and 12 nodes with degree 5. Such a network does not exist. ��

As a corollary, we have

Corollary 4.2.2. A ball with radius one can pack at most twelve independent points
where two points are independent if and only if their Euclidean distance is bigger
than one.

Proof. Suppose ball1(o) contains k independent points y1, . . . ,yk. Let xi be the
intersection point of the half line oyi and the sphere sphere1(o). Then by the same
argument in the proof of Theorem 4.2.1, one can prove k≤ 12. ��

With this corollary, one can show the following.

Theorem 4.2.3 (Butenko and Ursulenko [9]). For any unit ball graph G,

α(G)≤ 11γc(G)+ 1.

Proof. Similar to the proof of Theorem 3.4.2. ��

4.3 Independent Points in Two Balls 67

Corollary 4.2.4. There is a polynomial-time approximation for MIN-CDS in unit
ball graphs which produces a CDS of size at most (13+ ln10)γc(G)+ 1 where G is
the input unit ball graph.

Proof. It follows immediately from Theorems 3.3.2 and 4.2.3. ��

4.3 Independent Points in Two Balls

Kim et al. [68] extended the approach for solving the Gregory–Newton problem to
study the following problem: How many independent points can lie on boundary of
the union of two balls with radius one and having their centers within distance at
most one? In this section, we outline their work.

Let B1 = ball1(o1) and B2 = ball1(o2) with d(o1,o2)≤ 1. Denote by Sur(B1∪B2)
the boundary of B1∪B2, that is, Sur(B1∪B2) = (sphere1(o1)\B2)∪ (sphere1(o2)\
B1). Let C be the intersection circle of sphere1(o1) and sphere1(o2) and u the center
of C. First, they showed that Sur(B1∪B2) can have at most 20 independent points.

To do so, suppose x1, . . . ,xk are independent points on Sur(B1∪B2). Let ‖xi,x j‖s

denote the geodesic distance between xi and x j. For xi and x j with ‖xi,x j‖s ≤
3
π arccos1/7, connect xi and x j by an arc as follows: If xi and x j belong to the same
ball, then connect xi and x j by a geodesic arc. If xi ∈ B1 and x j ∈ B2, then connect xi

and x j by a geodesic arc xiw on sphere1(o1) and a geodesic arc wx j on sphere1(o2)
where w is an intersection point of the circle C and the plane passing through xi, x j

and the center u of the circle C (Note: There are two intersection points, and w is the
one which gives shorter total length of xiw and wx j).

Above geodesic arcs would result in a network G without crossing arcs, which
divide Sur(B1 ∪B2) into polygons. Let Pn denote a polygon with n sides, that is,
an n-gon. Pn is called a regular polygon if it lies completely in one sphere and a
striding polygon if it has a part in sphere1(o1) and also a part in sphere1(o2). By
routing calculation, one can obtain the following.

Lemma 4.3.1. Let An be the minimum area of a regular polygon Pn. Then

A3 = 0.5512 . . . ,

A4 = 1.3338 . . . ,

A5 = 2.2261 . . . ,

An ≥ (n− 2)A3 for n≥ 3.

Let Ãn be the minimum area of a striding polygon Pn. Then

Ã3 = 0.4076 . . . ,

Ã4 = 0.9949 . . . ,

68 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

Ã5 = 1.8732 . . . ,

Ãn ≥ (n− 2)Ã3 for n≥ 3.

Now, it is ready to show the following.

Theorem 4.3.2 (Kim et al. [68]). Sur(B1∪B2) can contain at most 20 independent
points.

Proof. First, we move B2 away from B1 until |o1o2|= 1. Note that this move would
preserve the independence of points x1, . . . ,xk. However, in this position, the arc
length of the circle C is

√
3π .

Let e be the number of edges in the network G. Let f be the number of polygons
on Sur(B1∪B2) divided by G, and fi the number of i-gons. By Euler’s formula,

2(k− 2) = 2(e− f)

= 3 f3 + 4 f4 + 5 f5 + · · ·− 2(f3 + f4 + f5 + · · ·)
= f3 + 2 f4 + 3 f5 + · · · .

Let f̃i denote the number of striding i-gons. Note that Sur(B1 ∪ B2) has area at
most 6π .

6π ≥ A3(f3− f̃3)+ Ã3 f̃3 +A4(f4− f̃4)+ Ã4 f̃4

+A5(f5− f̃5)+ Ã5 f̃5 + · · ·
≥ A3(f3 + 2 f4 + 3 f5 + · · ·)− (A3− Ã3)(f̃3 + 2 f̃4 + f̃5 + · · ·)
= A3(2k− 2)− (A3− Ã3)(f̃3 + 2 f̃4 + f̃5 + · · ·).

First, consider the case that f̃4 = f̃5 = · · · = 0. With a geometric calculation,
it is not hard to show that when the circle C passes through two adjacent striding
triangles, it leaves a trace with arc length at least 0.8744. Since C has length

√
3π

and
√

3π
0.8744 = 6.223 . . ., there are at most 12 striding triangles. Hence,

6π ≥ A3(2k− 2)− (A3− Ã3)12,

that is,

k ≤ 20.792.

Therefore, k≤ 20.
In general, each striding n-gon for n > 3 can be divided into smaller polygons

satisfying the following properties:

• Every i-gon for i > 3 is regular.
• Every striding triangle has area at least Ã3.
• Every regular i-gon has area at least (i− 2)A3.

4.4 Growth-Bounded Graphs 69

Note that every new edge has length longer than 3
π arccos1/7. Therefore, it is still

true that the circle C passing through two adjacent striding triangles leaves a piece
of length at least 0.8744 inside of them. This means that this case can be reduced to
the previous case. We leave the detail about the partition of i-gons for the reader to
refer to the original paper [68]. ��

The difficulty for using the above result to attack Open Problem 4.1.1 is as
follows: Let B1 and B2 be two balls with radius one. Suppose their centers have
distance at most one. Let I be the set of independent points contained in B1 ∪B2.
Consider each point v ∈ I. If v ∈ B1 \ B2, then draw a radial from o1 through v
to intersect Sur(B1 ∪ B2) at point x. If v ∈ B2 \ B1, then draw a radial from o2

through v to intersect Sur(B1 ∪ B2) at point x. Note that all x’s obtained in this
way are independent in B1 and also independent in B2. However, they may not be
independent in B1 ∪B2. In other words, two x’s lying in different spheres may not
have distance larger than one.

4.4 Growth-Bounded Graphs

Consider a graph G = (V,E) with a distance function dist(u,v) defined to be
the number of edges on the shortest path between u and v. For any two disjoint
subsets A and B of nodes, dist(A,B) = minu∈A,v∈B dist(u,v). For any subgraph H,
distH(u,v) is the number of edges in the shortest path between u and v through H
and distH(A,B) = minu∈A,v∈B distH(u,v).

For any vertex v∈V , define Nr(v) = {u∈V | dist(u,v)≤ r}. For any subset V ′ of
V , G[V ′] denotes the subgraph induced by V ′ and MaxIS(V ′) denotes the maximum
independent subset in G[V ′]. A subset A of nodes is said to be connected if G[A] is
connected. For simplicity of speaking, the statement “connected components of A”
may also be used instead of “the node sets of connected components of G[A]”.

A graph G= (V,E) is called a growth-bounded graph if there exists a polynomial
function f (·) such that for any v ∈V and r > 0,

|MaxIS(Nr(v))| ≤ f (r).

The unit disk graph and the unit ball graph are growth-bounded graphs. In fact, for
the unit disk graph G = (V,E),

|MaxIS(Nr(v))| ≤ π(r+ 0.5)2

π0.52 = (2r+ 1)2,

and for the unit ball graph G = (V,E),

|MaxIS(Nr(v))| ≤ (4/3)π(r+ 0.5)3

(4/3)π0.53 = (2r+ 1)3.

70 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

A graph G = (V,E) is an α-quasi unit disk graph for a given α , 0 < α ≤ 1, if all
vertices lie in the Euclidean plane and ‖u,v‖ ≤ α implies (u,v) ∈ E and ‖u,v‖> 1
implies (u,v) �∈ E . It was claimed that the quasi unit disk graph is more close to
wireless sensor networks in the real world [70]. Note that the quasi unit disk graph
is also a growth-bounded graph since

|MaxIS(Nr(v))| ≤ π(r+ 0.5)2

π0.52 π(0.5α)2 = (2r+ 1)2/α2.

In this section and the next section, it is always assumed that the studied
G = (V,E) is connected. For such type of growth-bounded graphs, there are some
important properties established by Gfeller and Vicari [58] which will be introduced
in this section.

For any A⊆V , define C(A) to be a subset of N(A) with the minimum cardinality
such that for every connected component B of G[A], G[C(A)] has a connected
component dominating B. The following are two properties regarding C(A).
Lemma 4.4.1. Suppose G = (V,E) is a growth-bounded graph with bounding
function f . Then there is a polynomial p(r) ≤ 3 · f (r)− 2 such that for any v ∈ V,
|C(Nr(v))| ≤ p(r) for any r > 0.

Proof. Let M be an MIS of Nr(A). Then |M| ≤ f (r). For each connected component
B of G[Nr(A)], suppose C1, . . . ,Ck are all connected components of G[M] such that
each Ci has a node either in B or adjacent to a node in B. Then C1∪·· ·∪Ck dominates
B. If k ≥ 2, then there must exist two connected components Ci and Cj with i �= j
such that distG[B](Ci,Cj) ≤ 3. Indeed, for contradiction, suppose such Ci and Cj do
not exist. Choose a node u∈ B such that dist(u,C1) = 2, then u is not adjacent to any
Ci for i = 1, . . . ,k, contradicting the fact that C1 ∪ ·· · ∪Ck dominates B. Now, add
two nodes into M to connect Ci and Cj into one connected component. In this way,
all C1, . . . ,Ck can be connected into one connected component by adding at most
2(k− 1) nodes. Therefore, by adding at most 2(|M|− 1) nodes, M can be modified
to satisfy the property that for any connected component B of G[A], G[M] contains
a connected component dominating B. Therefore, |C(Nr(v))| ≤ 3 f (r)− 2. ��
Lemma 4.4.2. Consider a growth-bounded graph G = (V,E) with bounding func-
tion f . Then for any subset A of nodes, |MaxIS(A)| ≤ f (1) · |C(A)|.
Proof. Every node in MaxIS(A) is in N(v) for some v ∈ C(A) and for every node
v ∈ C(A), MaxIS(N(v))≤ f (1). Therefore, |MaxIS(A)| ≤ f (1) · |C(A)|.

For any V ′ ⊆V , define Γr(v,V ′) = {u ∈V ′ | distG[V ′](u,v)≤ r}. ��
Lemma 4.4.3. Let V ′ ⊆ V. Then, for any growth-bounded graphs G = (V,E) with
a bounding function f ,

|MaxIS(N(Γr(v,V ′))\Γr(v,V ′))| ≤ f (2)|MaxIS(Γr(v,V ′)\Γr−1(v,V ′))|

for any r ≥ 1 and v ∈V.

4.4 Growth-Bounded Graphs 71

Proof. Each node u in MaxIS(N(Γr(v,V ′)) \ Γr(v,V ′)) has a neighbor in
Γr(v,V ′)\Γr−1(v,V ′) which is also a neighbor of some node w in MaxIS(Γr(v,V ′)\
Γr−1(v,V ′)). Therefore, u ∈ N2(w). Since N2(w) can contain at most f (2) nodes in
MaxIS(N(Γr(v,V ′))\Γr(v,V ′)), the inequality holds. ��
Lemma 4.4.4. For any class of growth-bounded graphs with the same bounding
function f and for any ε > 0, there exists a constant R f (ε) = O(1/ε · log(1/ε))
such that for every graph G = (V,E) in this class, every subset V ′ ⊆ V and every
vertex v ∈V,

|MaxIS(N(Γr(v,V ′))\Γr(v,V ′))| ≤ ε · |MaxIS(Γr(v,V ′))|

for some r ≤ R f (ε).

Proof. For contradiction, suppose such a R f (ε) does not exists for some f and some
ε . Then for arbitrarily large r, there exists a graph Gr = (Vr,Er) and a subset V ′r ⊆Vr

in the class such that

|MaxIS(N(Γr′(v,V ′r))\Γr′(v,V ′r))|> ε · |MaxIS(Γr′(v,V ′r))|

for all 0≤ r′ ≤ r. By Lemma 4.4.3,

|MaxIS(Γr′(v,V ′r)\Γr′−1(v,V ′r))| > ε̄ · |MaxIS(Γr′(v,V ′r))|
≥ ε̄ · |MaxIS(Γr′−2(v,V ′r))|

for ε̄ = ε/ f (2). Thus, for 2≤ r′ ≤ r,

|MaxIS(Γr′(v,V ′r))|
≥ |MaxIS(Γr′(v,V ′r)\Γ r′−1(v,V ′r))|+ |MaxIS(Γr′−2(v,V ′r))|
> (1+ ε̄) · |MaxIS(Γr′−2(v,V ′r))|
> (1+ ε̄)2 · |MaxIS(Γr′−4(v,V ′r))|
> · · ·
> (1+ ε̄)�r

′/2�.

Note that |MaxIS(Γr′(v,V ′r))| ≤ f (r′). Therefore,

f (r)≥ (1+ ε̄)�r/2�

for all r ≥ 2, which is impossible since f (r) is a polynomial.
From above proof, it is easy to see that if R satisfies

f (R) < (1+ ε̄)�r/2� (4.1)

72 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

then there must exist 0 < r ≤ R such that

|MaxIS(N(Γr(v,V ′))\Γr(v,V ′))| ≤ ε · |MaxIS(Γr(v,V ′))|.

Suppose f (R) ≤ Rα . Note that (1+ ε)
1

1+1/ε > e. Therefore, to make (4.1) hold, it
suffices to have

Rα < e
ε

1+ε ·(R−1
2).

Choose R = 1+ 4(1+ 2α)(1/ε) ln(1/ε). Then for ε < 1
1+4(1+2α)

,

Rα < (1/ε)1+2α < (1/ε)(1+2α)· 2
1+ε = e

ε
1+ε · R−1

2 . ��

Lemma 4.4.5. Suppose that

|MaxIS(N(Γr(v,V ′))\Γr(v,V ′))| ≤ ε · |MaxIS(Γr(v,V ′))|

holds for some ε > 0 and some r > 0. Then for ε ′ = ε4 f (3) f (1),

|C(Γr+4(v,V ′))| ≤ (1+ ε ′)|C(Γr(v,V ′))|.

Proof. Each u ∈ MaxIS(Γr+4(v,V ′)) \ Γr(v,V ′) is within distance 3 from a node
w ∈ N(Γr(v,V ′))\Γr(v,V ′). Therefore,

|MaxIS(Γr+4(v,V ′))\Γr(v,V ′)|
≤ f (3)|MaxIS(N(Γr(v,V ′))\Γr(v,V ′))|
≤ ε f (3) · |MaxIS(Γr(v,V ′))|.

From the proof of Lemma 4.4.1, it can be seen that

|C(Γr+4(v,V ′)\Γr(v,V ′))| ≤ 3ε f (3) · |MaxIS(Γr(v,V ′))|.

Note that the number of connected components of C(Γr+4(v,V ′) \Γr(v,V ′)) is at
most

|MaxIS(Γr+4(v,V ′))\Γr(v,V ′)| ≤ ε f (3) · |MaxIS(Γr(v,V ′))|.
Thus, it needs to add at most ε f (3)|MaxIS(Γr(v,V ′))| nodes to connect C(Γr(v,V ′))
and C(Γr+4(v,V ′)\Γr(v,V ′)) together into A such that for any connected component
B of Γr+4(v,V ′), G[A] has a connected component dominating B. Therefore,

|C(Γr+4(v,V ′))|
≤ |C(Γr(v,V ′))|+ 4ε f (3)|MaxIS(Γr(v,V ′))|
≤ (1+ ε ′)|C(Γr(v,V ′))|. ��

4.5 PTAS in Growth-Bounded Graphs 73

4.5 PTAS in Growth-Bounded Graphs

Gfeller and Vicari [58] designed a PTAS for MIN-CDS in growth-bounded graphs
as follows.

Algorithm GBG.
input a growth-bounded graph G = (V,E) and a number ε > 0;
D← /0;
V ′ ←V ;
while V �= /0 do begin

r← 0;
while |MaxIS(N(Γr(v,V ′))\Γr(v,V ′))|> ε|MaxIS(Γr(v,V ′))| do

r← r+ 1;
D← D∪C(Γr+4(v,V ′));
V ′ ←V ′ \Γr+2(v,V ′);

end-while;
output D.

The following is the analysis of this algorithm.

Lemma 4.5.1. Algorithm GBG outputs a CDS D.

Proof. Clearly D is a dominating set. In the following, the connectivity of D =
∪C(Ti) is proved. First, prove a claim that for u,u′ ∈ D with dist(u,u′) = 2, u and u′
are connected in G[D]. Since dist(u,u′) = 2, there exists a node w such that u and u′
are in N(w). Suppose that among nodes in N(w), s is the first one deleted from V ′ in
Algorithm GBG. Then when s ∈ Γr+2(v,V ′), N(w) ⊆ Γr+2(v,V ′). Therefore, u and
u′ are in the same connected component of G[C(Γr+4(v,V ′))] and hence in the same
connected component of G[D]. By Lemma 4.4.1, they are connected by a path in D
with length at most 3 f (r+ 4)− 3≤ 3(R f (ε)+ 4)− 3.

For u,u′ ∈ D with dist(u,u′) = 3, suppose (u,w,w′,u′) is the path connecting u
and u′ in G. Suppose w is deleted from V ′ no later than w′, that is, when w∈Γr(v,V ′),
w′ ∈ Γr+4(v,V ′). Therefore, w and w′ are dominated by a connected component of
G[C(Γr+4(v,V ′))]. Hence, there is a path (w,y1, . . . ,yk,w′) of length at most 3 f (r+
4)−1(≤ 3 f (R f (ε)+4)−1), connecting w and w′ through D. By the above claim, u
and y1 are connected by a path in D with length at most 3 f (R f (ε)+4)−3 and yk and
u′ are connected by a path in D with length at most 3 f (R f (ε)+4)−3. Therefore, u
and u′ are connected by a path in D with length at most 9 f (R f (ε)+ 4)− 9.

Now, note that if G[D] is not connected, then there exist two connected
components within distance three since D is a dominating set. However, it has been
proved that for any two nodes u,u′ ∈ D with dist(u,v) ≤ 3, u and u′ are connected
in D. Therefore, G[D] has to be connected. ��
Lemma 4.5.2. Let Si be the set Γr(v,V ′) in the ith iteration of the outer while-loop
of Algorithm GBG. Suppose the outer while-loop runs totally k times. Then

74 4 CDS in Unit Ball Graphs and Growth Bounded Graphs

k

∑
i=1

|C(Si)| ≤ (1+ 2ε f (1))|C(V)|.

Proof. Note that all N(S1), . . . ,N(Sk) are disjoint. Thus, it is sufficient to show
|C(Si)| ≤ |C(V) ∩ N(Si)|. To do so, it suffices to modify the connectivity of
C(V)∩N(Si) and estimate how many nodes required to do the modification, since
C(V)∩N(Si) dominates Si.

Suppose C(V)∩N(Si) has z connected component. Each connected component
must have a node lying in N(Si)\ Si in order to establish the global connectivity of
C(V). Therefore,

z≤ |MaxIS(N(Si)\ Si)| ≤ ε · |MaxIS(Si)|.
This means that it is sufficient to add at most 2ε · |MaxIS(Si)| nodes into C(V)∩
N(Si) in order to make it satisfy the property that for every connected component B
of Si, there is a connected component of modified C(V)∩N(Si) that dominates B.
This means that

|C(Si)| ≤ |C(V)∩N(Si)|+ 2ε|MaxIS(Si)|.
Moreover, by Lemma 4.4.1,

|MaxIS(Si)| ≤ f (1)|C(V)∩N(Si)|.
Hence,

|C(Si)| ≤ (1+ 2ε f (1))|C(V)∩N(Si)|. ��

Lemma 4.5.3. Algorithm GBG runs in time nO(f (R f (ε)).

Proof. The inner while-loop runs at most R f (ε) times. In each iteration of the
inner while-loop, computing MaxIS(N(Γr(v,V ′))\Γr(v,V ′)) and MaxIS(Γr(v,V ′))
takes nO(f (R f (ε)) time. Therefore, Algorithm GBG runs in O(R f (ε) ·nO(f (R f (ε)))) =

nO(f (R f (ε))) time. ��
Lemma 4.5.4. The output D of Algorithm GBG is a (1+O(ε))-approximation for
MIN-CDS in growth-bounded graphs.

Proof. Suppose the outer while-loop of Algorithm GBG runs k times. Denote by Si

and Ti, respectively, the set Γr(v,V ′) and the set Γr+4(v,V ′) in the ith iteration of the
outer while-loop of Algorithm GBG. By Lemma 4.4.5,

|C(Ti)| ≤ (1+ ε ′)|C(Si)|

for 1≤ i≤ k, and by Lemma 4.5.2,

k

∑
i=1

|C(Si)| ≤ (1+ 2ε f (1))|C(V)|.

4.5 PTAS in Growth-Bounded Graphs 75

Therefore,

|D| = | ∪k
i=1 C(Ti)|

≤
k

∑
i=1

|C(Ti)|

≤ (1+ ε ′)
k

∑
i=1

|C(Si)|

≤ (1+ ε ′)(1+ 2ε f (1))|C(V)|. ��

Theorem 4.5.5 (Gfeller and Vicari [58]). Algorithm GBG is a PTAS for MIN-
CDS in growth-bounded graphs.

Proof. It follows immediately from Lemmas 4.5.3 and 4.5.4. ��

Chapter 5
Weighted CDS in Unit Disk Graph

I think the weight really got the best of him today.
JODY PETTY

5.1 Motivation and Overview

It was open for many years whether MINW-CDS in unit disk graphs has a
polynomial-time constant-approximation or not. Ambühl et al. [2] discovered the
first one. Their solution consists of two stages. At the first stage, they construct a
dominating set which is a 72-approximation for the minimum-weight dominating
set problem in unit disk graphs as follows.

MINW-DS in Unit Disk Graphs: Given a unit disk graph G = (V,E) with vertex weight
w : V → R+, find a dominating set with minimum total weight.

In the second stage, they connect the dominating set into a CDS with additional
cost 12optWCDS where optWCDS is the minimum weight of a CDS. Putting together,
they obtained a polynomial-time 94-approximation for MINW-CDS in unit disk
graphs.

Huang et al. [66] discovered a new technique on partition, called double partition.
With the new technique, they obtained a polynomial-time (6+ε)-approximation for
MINW-DS in unit disk graphs. Later, the approximation for MINW-DS in unit disk
graphs received further improvements, from performance ratio 6+ε to 5+ε by Dai
and Yu [27], to 4+ ε by Zou et al. [134] and independently by [46], and to 3.63 by
Willson et al. [114].

Connecting a weighted dominating set into a weighted CDS is equivalent to
solving NODE-WEIGHTED STEINER TREE in unit disk graphs.

In general graphs, it is unlikely for NODE-WEIGHTED STEINER TREE to have
a polynomial-time constant-approximation [69]. However, in unit disk graphs, the
situation is different. Actually, the work of Ambühl et al. [2] means that there is a
polynomial-time 12-approximation for NODE-WEIGHTED STEINER TREE in unit

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 5,
© Springer Science+Business Media New York 2013

77

78 5 Weighted CDS in Unit Disk Graph

disk graphs. Huang et al. [66] gave a polynomial-time 4-approximation. Zou et
al. [133] constructed a polynomial-time 2.5ρ-approximation for NODE-WEIGHTED

STEINER TREE in unit disk graphs provided that there exists a polynomial-time
ρ-approximation for the minimum network Steiner tree problem. Recently, the
minimum network Steiner tree problem has been found to have a polynomial-
time 1.39-approximation [10]. Therefore, the approximation of Zou et al. [133] has
performance 3.475. Hence, there exists a polynomial-time 7.105-approximation for
MINW-CDS in unit disk graphs.

The following are still open:

Open Problem 5.1.1. Does MINW-CDS in unit disk graphs have a PTAS?

Open Problem 5.1.2. Does MINW-CDS in unit ball graphs have a polynomial-
time constant-approximation?

5.2 Node-Weighted Steiner Tree

In this section, we introduce the approximation algorithm of Zou et al. [10] for
NODE-WEIGHTED STEINER TREE in unit disk graphs.

Their design is motivated from the following property of optimal solutions for
NODE-WEIGHTED STEINER TREE in unit disk graphs.

Lemma 5.2.1. In a unit disk graph, for any set of terminals, there exists an optimal
solution T for NODE-WEIGHTED STEINER TREE such that every node has degree
at most five.

Proof. Among all optimal trees for NODE-WEIGHTED STEINER TREE, we consider
the one with the shortest Euclidean edge length, called the shortest optimal tree.
First, note that the shortest optimal tree must have the following properties:

(a1) No two edges cross each other.
(a2) Two edges meet at a node with an angle of at least 60◦.
(a3) If two edges meet with an angle of exactly 60◦, then they have the same length.

Indeed, if anyone of the above three conditions does not hold, then we can easily
find another optimal tree with shorter length.

Now, consider a shortest optimal tree T . By (a2), every node has degree at most
six. Suppose T has a node u with degree exactly six, that is, u has six neighbors
v1,v2, . . . ,v6. By (a2), ∠v1uv2 = ∠v2uv3 = · · · = ∠v6uv1 = 60◦. By (a3), |uv1| =
|uv2| = · · · = |uv6|. Moreover, v2 must have degree at most four since replacing
(u,v1) and (u,v3) by (v1,v2) and (v2,v3), the result should still be a shortest optimal
tree. Now, replace (u,v1) by (v1,v2) and do similar replacement at all nodes with
degree six. Then one would obtain a shortest optimal tree with node degree at most
five. �

5.2 Node-Weighted Steiner Tree 79

Assign each edge (u,v) with the following weight:

w(u,v) =
1
2
(χP(u)c(u)+ χP(v)c(v)),

where

χP(u) =

{
1, if u ∈ P,
0, otherwise.

Let T ∗node be the optimal solution for NODE-WEIGHTED STEINER TREE in unit disk
graph G, with the property that every node has degree at most five. Then

w(T ∗node)≤ 2.5c(T ∗node).

Let T ∗edge be the minimum edge-weight Steiner tree on terminal set P. Then

w(T ∗edge)≤ w(T ∗node)

and from [10], one can compute a 1.39-approximation T for T ∗edge in polynomial-
time. Therefore

w(T)≤ 1.39 ·w(T∗edge)≤ 3.475 · c(T∗node).

Moreover,
c(T)≤ w(T)

since each Steiner node has degree at least two in T . Therefore,

c(T)≤ 3.475 · c(T∗node).

Above analysis suggests the following approximation algorithm for NODE-
WEIGHTED STEINER TREE for unit disk graphs.

3.475-Approximation
input: unit disk graph G = (V,E) with node weight c : V → R+

and a terminal set P⊆V .
compute 1.39-approximation T for the minimum edge-weight Steiner tree on
terminal set P in graph G with edge weight

w(u,v) = 1
2 (χP(u)c(u)+ χP(v)c(v)) for (u,v) ∈ E;

output T .

Theorem 5.2.2 (Zou et al. [133]). There exists a polynomial-time 3.475-approxi-
mation for NODE-WEIGHTED STEINER TREE in unit disk graphs.

By this theorem, if there exists a polynomial-time τ-approximation for
MINW-DS in unit disk graphs, then there exists a polynomial-time (τ + 3.475)-
approximation for MINW-CDS in unit disk graphs. The remaining part of this
chapter will be contributed to the study of MINW-DS in unit disk graphs.

80 5 Weighted CDS in Unit Disk Graph

5.3 Double Partition

The partition is a classical technique to design approximation algorithms [36]. In
Sect. 3.2, this technique has been used to design a PTAS for MIN CDS in unit disk
graphs. From there, one may see that the approximation performance ratio and the
running time have a trade-off. Indeed, the running time of (1+ ε)-approximation is
nO(1/ε2). As the approximation performance ratio 1+ε approaches to 1, the running
time nO(1/ε2) increases rapidly. Meanwhile, the size of cells, O(1/ε) in the partition
would also increase linearly. Indeed, the design of PTAS is based on the fact that
MIN-CDS is polynomial time solvable within any constant-size cell.

When applying the partition to MINW-DS, the trouble one meets is that even for
a small constant-size cell, no polynomial-time algorithm for the optimal solution has
been obtained so far. Only within a square of edge size at most

√
2/2, a polynomial-

time 2-approximation exists. In such a case, the double partition technique can be
employed to overcome the trouble.

Initially, the input unit disk graph is put in a square. In the first partition, the
square is partitioned into blocks; each block is a small square with edge length
m
√

2/2. In the second partition, each block is partitioned into smaller cells with
edge length

√
2/2. The advantage of double partition is on the second one. When

m is fixed, each block can be seen to contain a constant-number m2 of cells so that
many types of combinations about cells can be enumerated in polynomial-time. In
this section, the first partition is introduced under the assumption that there is a
ρ-approximation with running time nO(m2) for the following problem.

MINW-DS on a Block B: Given a unit disk graph G=(V,E) with a nonnegative node weight
w : V → R+, find the minimum-weight node subset to dominate all nodes lying inside of B.

With the first partition, one shows the following.

Theorem 5.3.1 (Huang et al. [66]). Suppose there exists a ρ-approximation for
MINW-DS on a fixed block B with running time nO(m2). Then for any ε > 0, there
exists (ρ + ε)-approximation with computation time nO(1/ε2) for MINW-DS in unit
disk graphs.

Proof. Choose m = 12max(1,�1/ε�). Put input unit disk graph G into a grid with
each block being an mμ ×mμ square (Fig. 5.1). All blocks are disjoint. To do so,
each block has boundary open on the left and on the top, but close on the right and
on the bottom.

For each nonempty block B, compute ρ-approximation for MINW-DS on block
B. Unit those ρ-approximation solutions for all nonempty block and denote this
union by A(P) for the partition P induced by this grid.

Now, shaft this grid in diagonal direction with distance 4 in each time. This
results in m/4 partitions P1, . . . ,Pm/4. Choose A = A(Pi) to be the one with the
minimum weight among A(P1), . . . ,A(Pm/4). Now, one claims that c(A(Pi))≤ (ρ +
ε)optWDS where optWDS is the total weight of optimal solution for MINW-DS.

5.3 Double Partition 81

mμ μ

Fig. 5.1 Double partition
(μ =

√
2/2)

Suppose OptWDS is an optimal solution for MINW-DS in unit disk graph G. For
each v ∈ OptWDS, the disk disk1(v) may intersect more than one blocks of Pi. Let
ζi(v) be the number of blocks in partition Pi, intersecting disk1(v). Let O(B) = {v∈
OptWDS | disk1(v)∩B �= /0}. Then O(B) is a feasible solution for MINW-DS on block
B. Therefore,

c(A(Pi))≤ ∑
B∈Pi

c(O(B)) = optWDS + ∑
v∈OptWDS

(ζi(v)− 1)c(v).

Note that disk1(v) can intersect at most one horizontal cutline and at most one
vertical cutline of Pi. Therefore, ζi(v) has only three possible values. ζi(v) = 1
if disk1(v) does not intersect any cutline of Pi, ζi(v) = 2 if disk1(v) intersects
exactly one cutline of Pi, and ζi(v) = 4 if disk1(v) intersects two cutlines of Pi,
one horizontal cutline and one vertical cutline.

Moreover, two vertical cutlines, possibly from two different partitions, have
distance 2

√
2 > 2. Thus, over all partitions, each disk disk1(v) for v ∈ OptWDS can

intersect at most one vertical cutline and similarly at most one horizontal cutline.
This means that for every v ∈ OptWDS,

m/4

∑
i=1

(ζi(v)− 1)≤ 3.

Therefore,

c(A) = min
1≤i≤m/4

c(A(Pi))

≤ 1
m/4

m/4

∑
i=1

∑
B∈Pi

c(O(B))

82 5 Weighted CDS in Unit Disk Graph

= optWDS +
4
m ∑

v∈OptWDS

m/4

∑
i=1

(ζi(v)− 1)c(v)

≤ optWDS +
12
m

optWDS

≤ (1+ ε)optWDS. ��

5.4 Cell Decomposition

In the second partition, each block is partitioned into
√

2
2 ×

√
2

2 cells also by a grid. To
have all cells nonoverlapping, assume that each cell has open boundary on the right
and on the top, and close on the left and on the bottom. This section is contributed
to study the following problem.

MINW-DS on a Cell e: Given a unit disk graph G = (V,E) with a nonnegative node weight
w : V → R+, find the minimum-weight node subset to dominate all nodes lying inside of e.

The main duty of this section is to prove the following result.

Lemma 5.4.1. There is a polynomial-time 2-approximation for MINW-DS in a
cell e.

The proof of this lemma is based on a decomposition of nodes in the cell
e into two parts which form two polynomial-time solvable subproblems. This
decomposition stems from the property of optimal solution for MINW-DS in the
cell e.

Suppose Opt(e) is an optimal solution for MINW-DS in a cell e. If Opt(e)
contains a node v lying in e, then Opt(e) = {v} and c(v) = minu∈e c(u) because any
node in e is able to dominate every point of e. The difficult part of characterizing
Opt(e) is in the case that Opt(e) does not contain any node in e.

To deal with this case, let A,B,C,D be four vertices of e and divide outside of
e into eight areas NE (northeastern), NC (north-central), NW (northwestern), ME
(middle-east), MW (middle-west), SE (southeastern), SC (south-central), and SW
(southwestern) as shown in Fig. 5.2.

Let V (e) be the set of nodes lying in the cell e. V (e) will be decomposed into
two parts V (e) = V1∪V2 (V1∩V2 = /0) such that all points in V1 can be dominated
by nodes in Opt1(e) = Opt(e)∩ (N ∪ S) where N = NE ∪NC∪NW and S = SE ∪
SC∪SW , and V2 can be dominated by nodes in Opt2(e) = Opt(e)∩ (E ∪W) where
E = NE ∪ME ∪SE and W = NW ∪MW ∪SW .

Next, the existence of such a partition of V (e) for Opt(e) would be proved
through presentation of two lemmas.

For any vertex p∈V (e), let ∠p be a right angle at p such that two edges intersect
horizontal line AB each at an angle of π/4. Let Δsouth(p) denote the part of e lying
inside of ∠p. Similarly, we can define Δnorth(p), Δeast(p) and Δwest(p) as shown in
Fig. 5.3.

5.4 Cell Decomposition 83

A

B

D

e

NE NC NW

ME MW

SE SC SW

C

Fig. 5.2 Outside of e is
divided into eight areas

p

p
p

p

Fig. 5.3 Δsouth(p), Δnorth(p), Δeast(p) and Δwest(p)

Lemma 5.4.2. If p is dominated by a vertex u in area SC then every point in
Δsouth(p) can be dominated by u. The similar statement holds for ME and Δeast(p),
MW and Δwest(p), and NC and Δnorth(p).

Proof. Note that Δsouth(p) is a convex polygon. It is sufficient to show that the
distance from u to every vertex of Δsouth(p) is at most one.

Suppose v is a vertex of Δsouth(p) on BC (Fig. 5.4). Draw a line L′ perpendicular
to pv and equally divide pv. If u is below L′, then d(u,v)≤ d(u, p)≤ 1. If u is above
L′, then ∠uvp < π/2 and hence ∠uvC < 3π/4. Hence, d(u,v)< μ/cosπ/4 = 1.

A similar argument can be applied in the case that the vertex v of Δsouth(p) is on
DA or on AB. �

Consider two nodes p, p′ ∈ V (e). Suppose p is on the left of p′. Extend the left
edge of ∠p and the right edge of ∠p′ to intersect at point p′′. Define Δsouth(p, p′) to
be the part of e lying inside of ∠p′′ (Fig. 5.5). Similarly, we can define Δnorth(p.p′).

Lemma 5.4.3. Let K be a set of nodes which dominates V (e). Suppose p, p′ ∈V (e)
are dominated by some nodes in K ∩ SC, but neither p nor p′ is dominated by any
node in K∩(ME∪MW). Then every node in Δsouth(p, p′) can be dominated by node
in K ∩ (N ∪S) where N = NE ∪NC∪NW and S = SE ∪SC∪SW.

Proof. By Lemma 5.4.2, it suffices to consider a node u lying in Δsouth(p, p′) \
(Δsouth(p)∪Δsouth(p′)). For contradiction, suppose u is dominated by a node v in
K ∩ (ME ∪MW). If v ∈ ME , then Δeast(v) contains p and by Lemma 5.4.2, p is
dominated by v, a contradiction. A similar contradiction can result from v∈MW . �

84 5 Weighted CDS in Unit Disk Graph

p p

A

CB

D A

CB

D

L’L’

v v

u u

Fig. 5.4 The proof of Lemma 5.4.2

p"

p
p’

u

Fig. 5.5 Δsouth(p, p′)

Now, it is ready to give a property of Opt(e) in case that Opt(e)∩V (e) = /0.

Lemma 5.4.4. Let Opt(e) be an optimal solution for MINW-DS in the cell e.
Suppose Opt(e)∩V (e) = /0. Then there exist four nodes p, p′,q,q′ ∈V (e) such that
V1(e) = V (e)∩ (Δsouth(p, p′)∪ Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩
(N ∪S) and V2(e) =V (e)−V1(e) is dominated by Opt2(e) = Opt(e)∩ (E ∪W).

Proof. Let VS be the set of nodes in V (e), each of which can be dominated by a node
in SC but not dominated by any node in ME ∪MW . Let p be the node in V (S) such
that the left edge of Δ(p) is on the leftmost position among all left edges of Δ(v) for
v ∈VS. Let p′ be the node in VS such that the right edge of Δ(p′) is on the rightmost
position among all right edges of Δsouth(v) for v ∈ VS. Clearly, Δsouth(p, p′) has the
following properties:

(p1) Every node in Δsouth(p, p′) can be dominated by Opt1(e).
(p2) VS ⊂ Δsouth(p, p′).

5.4 Cell Decomposition 85

Similarly, let VN be the set of nodes in V (e), each of which can be dominated
by a node in SC but not dominated by any node in ME ∪MW . One can find nodes
q,q′ ∈VN to meet the following requirement.

(q1) Every node in Δnorth(q,q′) can be dominated by Opt1(e).
(q2) VN ⊂ Δnorth(p, p′).

It follows from (p1) and (q1) that V1(e) is dominated by Opt1(e). If follows from
(p2) and (q2) that V2(e) is dominated by Opt2(e). �

Based on Lemma 5.4.4, one can design a 2-approximation for MINW-DS in the
cell e as follows.

2-Approximation for MINW-DS in a cell e
input a weighted unit disk graph G and a cell e.
u← argminv∈V (e)c(v);
V+(e)← {v ∈V | disk1(v)∩ e �= /0};
V+

1 ←V+(e)∩ (N ∪S);
V+

2 ←V+(e)∩ (E ∪W);
A←{u};
for every {p, p′,q,q′} ⊂V (e)
do begin

V1←V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′));
V2←V (e)\V1;
find the minimum-weight subset O1 of V+

1 , dominating V1;
find the minimum weight subset O2 of V+

2 , dominating V2;
if c(A)> c(O1∪O2)

A←O1∪O2;
end-for;
output A(e) = A.

Clearly, if Opt(e)∩V (e) �= /0, then c(A) = c(Opt(e)). If Opt(e)∩V (e) = /0, then
for {p, p′,q,q′} in Lemma 5.4.4, one has

c(O1)≤ c(Opt1(e)),c(O2)≤ c(Opt2(e)).

Therefore,

c(A(e))≤ c(O1∪O2)≤ c(Opt1(e))+ c(Opt2(e))≤ 2c(Opt(e)).

The next section will show that O1 and O2 can be computed in polynomial-time.
Therefore, the following holds.

Lemma 5.4.5. There is a polynomial-time 2-approximation for MINW-DS in the
cell e.

The following result can be easily obtained based on Lemma 5.4.5.

86 5 Weighted CDS in Unit Disk Graph

Fig. 5.6 For two cells at ends
of a diagonal, at most one has
its interior intersecting a disk
of radius one

Theorem 5.4.6. There is a polynomial-time 28-approximation for MINW-DS in
any block B.

Proof. Suppose for each node v, disk1(v) intersects at most α cells e. Then

c(∪e∈BA(e))≤ ∑
e∈B

c(A(e))≤ ∑
e∈B

2c(Opt(e))≤ 2αc(Opt(b))

where Opt(B) is the optimal solution for MINW-DS in the block B.
Note that disk1(v) can intersect at most four horizontal strips and at most four

vertical strips, hence at most 16 cells. Furthermore, consider two cells at two ends
of a diagonal. Only one of them has its interiors intersecting a disk with radius
one (Fig. 5.6). Thus, α ≤ 14. This means that ∪e∈BA(e) is a 28-approximation for
MINW-DS in the block B. �

5.5 6-Approximation

Why and O1 and O2 be computed within polynomial-time in the 2-Approximation
for MINW-DS in a cell e? This section first answers this question. To do so, it
suffices to study the following problem.

MINW-SENSOR-COVER with Targets in a Strip: Consider a set P of targets lying inside a
horizontal strip and a set D of disks with radius one and centers lying either above or below
the strip (Fig. 5.7). Assume every target in P is covered by at least one disk in D. Given
disks with a nonnegative weight c : D→ R+, find the minimum total weight subset of disks
covering all targets.

Let
D+ = {D ∈ D | the center of Dlies above the strip}

and
D− = {D ∈ D | the center of D lies below the strip}.

5.5 6-Approximation 87

Fig. 5.7 Sensor Cover with
targets in a strip

D

D’ D’
DD D’

LL L

(d2) (d3)(d1)

Fig. 5.8 D′ is controlled by D at line L

Consider a disk D ∈ D+ intersecting a vertical line L. A disk D′ ∈ D+ is said to be
controlled by D at L, denoted by D′ ≺+

L D, if one of the following holds (Fig. 5.8):

(d1) D′ does not intersect L.
(d2) The lower endpoint of D′ ∩L is higher than the lower endpoint of D∩L.
(d3) The lower endpoint of D′ ∩L is identical to the lower endpoint of D∩L. But,

the center of D′ is on the right of the center of D.

Similarly, let D ∈ D− intersect a line L. Then a disk D′ ∈ D− is said to be
controlled by D, denoted by D′ ≺−L , if one of the following holds:

(d1) D′ does not intersect L.
(d2) The upper endpoint of D′ ∩L is lower than the upper endpoint of D∩L.
(d3) The upper endpoint of D′ ∩L is identical to the upper endpoint of D∩L. But,

the center of D′ is on the right of the center of D.

The following are important properties of controlledness.

Lemma 5.5.1. Let D,D′,D′′ ∈ D+ and L a vertical line. If D′′ ≺+
L D′ and D′ ≺+

L
D, then D′′ ≺+

L D. Similarly, for D,D′,D′′ ∈ D−, if D′′ ≺−L D′ and D′ ≺−L D, then
D′′ ≺−L D.

Proof. It follows immediately from the definition of controlledness. �

88 5 Weighted CDS in Unit Disk Graph

L’ L

p
i-1

p
ip

j

L’’

D

D’

Fig. 5.9 The proof of Lemma 5.5.1

Lemma 5.5.2. Let D and D′ be two disks and L a vertical line. Suppose D∩L �= /0.
Then

(e1) If D,D′ ∈ D+, then either D′ ≺+
L D or D≺+

L D′;
(e2) If D,D′ ∈ D−, then either D′ ≺−L D or D≺−L D′.

Proof. It follows immediately from the definition of controlledness. �
Lemma 5.5.3. Let L and L′ be two vertical lines such that L lies on the right of L′.
Then the following holds:

(L1) Let D,D ∈ D+. If D′ ≺+
L D and D≺+

L′ D′, then D∩Q(L′)⊆ D′ ∩Q(L′) where
Q(L′) is the closed lower-left quarter-plane bounded by the upper boundary
of the strip and L′.

(L2) Let D,D ∈D−. If D′ ≺−L D and D≺−L′ D′, then D∩Q′(L′)⊆D′ ∩Q′(L′) where
Q′(L′) is the closed upper-left quarter-plane bounded by the lower boundary
of the strip and L′.

Proof. For contradiction, suppose (L1) is not true, that is, there exists a point
p ∈ (D∩Q(L′))\ (D′ ∩Q(L′)). Let L′′ be the vertical line passing through p. Then
D′ ≺+

L′′ D. Then L′′ is on the left of L′. Let A be the lower endpoint of D∩L and
A′′ the lower endpoint of D∩L′′. Then D∩L′ �= /0. Let A′ be the lower endpoint of
D∩L′ and B′ the lower endpoint of D′ ∩L′. Then A′ is above B′. They both should
lie below the line AA′′ (Fig. 5.9). Therefore, D′ ∩AA′′ is located inside the segment
[A,A′′]. Let E and F be two endpoints of D′ ∩AA′′. Clearly, ∠EAF < ∠A′′A′A and
|EF| ≤ |AA′′|. Therefore,

5.5 6-Approximation 89

radius(D′) =
|EF|

2sin∠EB′F
<

|AA′′|
2sin∠A′′A′A

= radius(D).

a contradiction. �
Now, it is ready to show the following.

Theorem 5.5.4 (Ambühl et al. [2]). MINW-SENSOR-COVER with targets in a
strip can be solved in O(m4n) where n = |P| and m = |D|.
Proof. First, assume every disk in D has a positive weight since disks with zero
weight can be removed together with targets covered by them at the beginning.

Let p1, .., pn be all points in P in the ordering from left to right. Call as an
upper disk (lower disk) for any disk with center above (below) the strip. A dynamic
programming will be employed to find the optimal solution. For simplicity of
description, assume the two boundaries of the strip are also two disks with infinite
radius and weight zero. They do not cover any point in P. The upper bound is an
upper disk, and the lower bound is a lower disk. Note that these two disks do not
belong to D. But, the relations ≺+

L and ≺+
L can be extended to all upper disks and

all lower disks, respectively.
For an upper disks D and a lower disk D′ with D∪D′ covering pi, define by

Ti(D,D′) the one with the minimum total weight among disk subsets D′ satisfying
the following conditions:

1. D′ covers p1, . . . , pi.
2. D,D′ ∈ D′.
3. Let Li be the vertical line passing through pi. Then D controls every upper disk

in D′ at Li, and D′ controls every lower disk in D′ at Li.

Since two boundaries of the strip have zero weight and cover nothing, for simplicity
of the discussion, one assume that they cannot appear in Ti(D,D′)−{D,D′}. In
other word, they can play only the role of D or D′.

Let c(Ti(D,D′)) be the total weight of disks in Ti(D,D′). One claims that the
following recursion holds.

c(Ti(D,D′)) = min
D1,D2
{c(Ti−1(D1,D2))+ c({D,D′} \ {D1,D2})}, (5.1)

where upper disk D1 and lower disk D2 are over all possible pairs satisfying
conditions:

(c1) D1∪D2 covers pi−1.
(c2) Let Li be the vertical line passing through pi. Then D1 ≺+

Li
D and D2 ≺−Li

D′.

To show this claim, at the first choose D1 to be the upper disk in Ti(D,D′) which
controls every upper disk in Ti(D,D′) at Li−1. By Lemma 5.5.1, such a choice must
exist. Similarly, one can choose D2 to the lower disk in Ti(D,D′) which controls

90 5 Weighted CDS in Unit Disk Graph

every lower disk in Ti(D,D′). By Lemma 5.5.3, D∩Q(Li−1) ⊆ D1 ∩Q(Li−1) and
D′ ∩Q′ ⊆ D2∩Q′. Therefore, (Ti(D,D′)−{D,D′})∪{D1,D2} covers p1, . . . , pi−1.
Hence,

c(Ti(D,D′))− c({D,D′} \ {D1,D2})≥ c(Ti−1(D1,D2)),

that is,

c(Ti(D,D′))≥ min
D1,D2

(c(Ti−1(D1,D2))+ c({D,D′} \ {D1,D2})).

On the other hand, for any pair {D1,D2} satisfying (c1) and (c2), Ti−1(D1,D2)∪
{D,D′} covers p1, . . . , pi. Moreover, for any upper disk D̂ in Ti−1(D1,D2), one
must have D̂≺+

Li
D. Indeed, for contradiction, suppose D ≺+

Li
D̂. Then D̂ �= D1 and

hence D̂ ∈ D has a positive weight. By Lemma 5.5.1, D1 ≺+
Li

D̂. Note that by the

definition of Ti−1(D1,D2), D̂≺+
Li−1

D1. By Lemma 5.5.3, then D̂∩Q(Li−1) ⊆ D1∩
Q(Li−1), which means that D̂ can be deleted from Ti−1(D1,D2). This contradicts the
minimality of Ti−1(D1,D2).

Similarly, for any lower disk D̂ in Ti−1(D1,D2), one must have D̂ ≺−Li
D′.

Therefore,

c(Ti(D,D′))≤ Ti−1(D1,D2)+ c({D,D′} \ {D1,D2})

for any pair {D1,D2} satisfying (c1) and (c2). Therefore,

c(Ti(D,D′))≤ min
D1,D2

(Ti−1(D1,D2)+ c({D,D′} \ {D1,D2}))

for {D1,D2} over all pairs satisfying (c1) and (c2). Hence, (5.1) holds.
This recursion suggests a dynamic program for computing all Ti(D,D′). There

are O(nm2) Ti(D,D′)’s and each needs to be computed recursively in time O(m2).
Therefore, this dynamic program runs in time O(nm4). Finally, the minimum weight
of subset of disks covering all targets can be computed from minD,D′ c(Tn(D,D′)),
which requires O(m2) time. �

By Theorem 5.5.4, O1 and O2 in 2-Approximation for MINW-DS in a cell e can
be computed in polynomial time. Hence, a polynomial-time 28-approximation has
been obtained for MINW-DS in a block B.

However, an idea motivated from Theorem 5.5.4 may give a big improvement.
That is to combine V1(e) along a horizontal strip and combine V2(e) along a vertical
strip. With such an idea, the approximation performance ratio can be reduced from
28 to 6.

6-Approximation for MINW-DS in a block B.
input a unit disk graph G = (V,E) and a block B.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B.

5.5 6-Approximation 91

Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |
e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. For each horizontal strip Hi, compute a minimum weight
subset Opt(Hi) of disks with centers lying outside Hi to dominate
(∪e∈Hi∩(C−C′)V1(e)).

Step 2.2. For each vertical strip Y , compute a minimum weight subset Opt(Yi)
of disks with centers lying outside Yi to dominate (∪e∈Yi∩(C−C′)V2(e)).

Step 2.3 Compute O = (∪m
i=Opt(Hi))∪ (∪m

i=1Opt(Yi)).
Step 2.4 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A∗ = A(C′,U) to minimize the total weight c(A(C′,U) for C′
over all subsets of C and U over all choices of ve for all e ∈C′.

output A∗.

Theorem 5.5.5 (Huang et al. [66]). There exists a 6-approximation for MINW-DS
in a block B, with running time nO(m2) where n is the number of nodes v such that
disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A∗. There are O(2m2
) possible

subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combinations of

{p, p′,q,q′} for all cells in C−C′. For each combination, computing all Opt(Hi)

and all Opt(Yi) needs time O(n5). Therefore, total computation time is nO(m2).
Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-

DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪
Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Note that ∪e∈Hi∩(C−Ci)Opt1(e) is a feasible solution for the minimization problem
solved at Step 2.1. Therefore,

c(Opt(Hi))≤ c(∪e∈Hi∩(C−Ci)Opt1(e)).

92 5 Weighted CDS in Unit Disk Graph

1 2 3

4

5

6

Fig. 5.10 Each disk1(v)
intersects at most six strips
not containing v

Similarly,
c(Opt(Yi))≤ c(∪e∈Yi∩(C−Ci)Opt2(e)).

Therefore

c(O) ≤
m

∑
i=1

c(∪e∈Hi∩(C−Ci)Opt2(e))

+
m

∑
i=1

c(∪e∈Yi∩(C−Ci)Opt2(e))

≤ 6 · c(Opt−U)

since each disk diski(v) can intersect at most six strips which do not contain v
(Fig. 5.10). Hence,

c(A∗) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ 6 · c(Opt−U)+ c(U)

≤ 6 · c(Opt). �

5.6 4-Approximation

Zou et al. [134] studied a generalization of MinW-Sensor-Cover with targets in a
strip.

MINW-CHROMATIC-DISK-COVER: Consider m parallel horizontal strips H1, . . .,Hm as
shown in Fig. 5.11. To have all strips disjoint, assume that each strip has open boundary
on the top and close boundary on the bottom. Given a set R of red disks with radius one, a
set B of blue disk with radius one, a positive weight function c : R∪B→ R+, and a set P
of targets points lying in those strips, find the minimum-weight subset of red disks and blue
disks such that every target in strip Hi is covered by a chromatic disk, that is, by either a red
disk with center lying above Hi or a blue disk lying below Hi.

5.6 4-Approximation 93

red

blue

Fig. 5.11 Chromatic disk
cover

When m = 1, MINW-CHROMATIC-DISK-COVER is exactly MINW-SENSOR-
COVER with targets in a strip.

Theorem 5.6.1 (Zou et al. [134]). MINW-CHROMATIC-DISK-COVER can be
solved in time O(nd4m) where n = |P| and d = |R∪B|.
Proof. Denote Ri = R ∩ Hi−1 for i = 2, . . . ,m and R1 = {disk1(v) ∈ R |
v lies above H1}. Denote Bi = B∩Hi+1 for i = 1, . . . ,m− 1 and Bm = {disk1(v) ∈
B | v lies below Hm}.

Let R+
i be obtained from R by putting a dumming disk with radius infinite,

which is the lower half plane bounded by the upper boundary of Hi. Let B+i be
obtained from Bi by putting a dumming disk with radius infinite, which is the upper
half plane bounded by the lower bound of Hi. Consider a 2m-dimensional vectors D
in

S =R+
1 ×·· ·×R+

m×B+1 ×·· ·×B+m .
For simplicity, D is also used to denote the set of components of D. Denote by Di

the ith component of D. Then one has Di ∈ R+
i and Dm+i ∈ B+i for 1 ≤ i ≤ m.

Consider D,D′ ∈ S. For any vertical line L, D′ is said to be controled by D, written
as D′ ≺L D, if for 1≤ i≤ m, D′i ≺+

L Di and D′m+i ≺−L D−m+ i.
Let L1, ..,Lk be all vertical lines passing through target points in P in the ordering

from left to right. Let Pi be the subset of targets in P lying on Li or on the left of Li.
For any D ∈ S, if D does not cover Pj−Pj−1, then define Tj(D) = nil if there does
not exist a disk subset D′ satisfying the following conditions:

• D′ is a chromatic disk cover for Pj.
• D⊆D′.
• For any disk D′ ∈ D′ ∩Ri, D′ ≺+

Lj
Di.

• For any disk D′ ∈ D′ ∩Bi, D′ ≺−Lj
Dm+i.

If such a disk subset D′ exists, then define Tj(D) to be the one with the minimum
total weight.

Since all dumming disks have zero weight and cover nothing, for simplicity of
the discussion, one assumes that they cannot appear in Tj(D)\D.

94 5 Weighted CDS in Unit Disk Graph

Now, one claims that for D covering Pj−Pj−1, the following recursion holds.

c(Tj(D)) = min
D′≺L j D

{c(Tj−1(D
′))+ c(D\D′)}. (5.2)

To show this claim, one first chooses D′i to be the disk in Tj(D)∩R+
j which controls

every disk in Tj(D)∩R+
j at Lj−1. By Lemma 5.5.1, such a choice must exists.

Similarly, one can choose D′m+i to the disk in Tj(D) which controls every disk in
Tj(D)∩B+i at line Lj−1. Define D′ = (D′i,1≤ i≤ 2m).

By Lemma 5.5.3, Di ∩Qi(Lj−1) ⊆ D′i ∩Qi(Lj−1) for 1 ≤ i ≤ m where Qi(Lj) is
the close lower-left quarter-plane bounded by Lj−1 and the upper boundary of Hi.
Similarly, Dm+i ∩Q′i(Lj−1) ⊆ D′m+i ∩Q′i(Lj−1) for 1 ≤ i ≤ m. This means that if
Tj(D) �= nil, then (Tj(D)− (D\D′) is a chromatic disk cover for Pj−1. Hence,

c(Tj(D))− c(D\D′)≥ c(Tj−1(D′)),

that is,
c(Tj(D))≥ min

D′≺L j D
(c(Tj−1(D

′))+ c(D\D′)). (5.3)

If Tj(D) = nil, then c(Tj(B)) = ∞ and hence (5.3) holds trivially.
On the other hand, for any D′ ≺ D, if Tj−1(D′) = nil, then c(Tj−1(D′) = ∞ >

c(Tj(D)). Next, assume that Tj−1(D′) �= nil. Then Tj−1(D′)∪D is a chromatic cover
of Pj.

Moreover, for any disk D̂ in Tj−1(D′), one must have D̂ ≺+
Lj

Di if D̂ ∈ R+
i and

D̂ ≺−Lj
Dm+i if D̂ ∈ B+i . In fact, for contradiction, suppose D̂ ∈ R+

i and D̂ is not

controlled by Di. Thus, D̂ �∈ D′ and hence c(D̂) > 0. Moreover, by Lemma 5.5.2,
Di ≺+

Lj
D̂. By Lemma 5.5.1, D′i ≺+

Lj
D̂. By Lemma 5.5.3, D̂ ∩Qi(Lj−1) ⊆ D′i ∩

Qi(Lj−1). This means that D̂ can be deleted from Tj−1(D′), contradicting the
minimality of Tj−1(D′). Similarly, it is also impossible that D̂ ∈ B+i and D̂ is not
controlled by Dm+i.

From above argument, one can see that Tj−1(D′)∪D satisfies all conditions for
aboveD′. Therefore,

c(Tj(D)) ≤ c(Tj−1(D
′ ∪D))

= c(Tj−1(D
′))+ c(D\D′)

for all D′ ≺Lj D. This completes the proof of (5.2).
The recursion (5.2) suggests a dynamic program for computing all Tj(D).

There are O(nd2m) Tj(D)’s, and each needs to be computed recursively in time
O(d2m). Therefore, this dynamic program runs in time O(nd4m). Finally, the
minimum weight of subset of disks covering all targets can be computed from
minD∈S c(Tk(D)), which requires O(d2m) time. �

5.6 4-Approximation 95

4-Approximation for MINW-DS in a block B.
input a unit disk graph G = (V,E) and a block B.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B.
Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |

e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. Compute an optimal solution Opt(H) for MINW-CHROMATIC-DISK-
COVER with horizontal strips H1, . . . ,Hm, target set P = (∪e∈(C−C′)V1(e)),
red disk set R = {(disk1(v), red) | v ∈ V −U} and blue disk set B =
{(disk1(v),blue) | v ∈V −U}.

Step 2.2. Compute an optimal solution Opt(Y) for MINW-CHROMATIC-DISK-
COVER with vertical strips Y1, . . . ,Ym, target set P=(∪e∈(C−C′)V2(e)), red disk
setR= {(disk1(v), red) | v∈V −U} and blue disk set B = {(disk1(v),blue) |
v ∈ V −U}. (Note: Each target is required to be covered by either a red disk
from the left or a blue disk from the right.)

Step 2.3 Compute O = Opt(H)∪Opt(Y).
Step 2.4 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A∗ = A(C′,U) to minimize the total weight c(A(C′,U)) for C′
over all subsets of C and U over all choices of ve for all e ∈C′.

output A∗.

Theorem 5.6.2 (Zou et al. [134]). There exists a 4-approximation for MINW-DS
in a block B, with running time nO(m2) where n is the number of nodes v such that
disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A∗. There are O(2m2
) possible

subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combinations of

{p, p′,q,q′} for all cells in C−C′. For each combination, computing all Opt(H) and
all Opt(Y) needs time O(n4m+1). Therefore, total computation time is nO(m2).

Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-
DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪

96 5 Weighted CDS in Unit Disk Graph

Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Let

D1(e) = {(disk1(v), red) | v ∈ Opt1(v)∩N}∪{(disk1,blue) | v ∈ Opt1(v)∩S}.

Then ∪e∈(C−Ci)D1(e) is a feasible solution for the minimization problem solved at
Step 2.1. Therefore,

c(Opt(H))≤ c(∪e∈(C−Ci)D1(e)).

Similarly, let

D2(e) = {(disk1(v), red) | v ∈Opt2(v)∩E}∪{(disk1,blue) | v ∈Opt2(v)∩W}.

Then ∪e∈(C−Ci)D2(e) is a feasible solution for the minimization problem solved at
Step 2.2. Therefore,

c(Opt(Y)≤ c(∪e∈(C−Ci)D2(e)).

Therefore

c(O) ≤ c(∪e∈(C−Ci)D1(e))

+c(∪e∈(C−Ci)D2(e))

≤ 4 · c(Opt−U)

since each disk diski(v) can involve feasible solutions for at most two minimization
problems and at each feasible solution disk1(v) has at most two copies, one in red
and one in blue. Hence,

c(A∗) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ 4 · c(Opt−U)+ c(U)

≤ 4 · c(Opt).
�

5.7 3.63-Approximation

Erlebach and Mihalak [46] studied another generalization of MINW-SENSOR-
COVER with targets in a strip.

5.7 3.63-Approximation 97

H2

H1

Fig. 5.12 Multi-strips

Fig. 5.13 The upper envelope

MINW-SENSOR-COVER with Targets in Multi-Strips: Consider m parallel horizontal strips
H1, . . .,Hm in a block as shown in Fig. 5.12. To have all strips disjoint, assume that each
strip has open boundary on the top and close boundary on the bottom. Given a set D of n
disks with radius one and a positive weight function c : D→ R+, and a set P of k targets
points lying in strips H1∪H3∪·∪H2�m/2�−1, find the minimum weight subset of disks such
that every target in strip Hi is covered by a disk with center lying outside of Hi.

Erlebach and Mihalak [46] transformed this problem to a shortest path problem.
To explain this transformation, the first is to study an optimal solution Opt for
MINW-SENSOR-COVER with targets in multi-strips.

Consider a strip Hi for some odd i, 1 ≤ i ≤ m. A disk in Opt is called an upper
disk with respect to Hi if its center lies above Hi. For simplicity of discussion, the
half plane above Hi is also considered as an upper (dumming) disk with respect to
Hi. All upper disks with respect to Hi form an upper area of Hi. The boundary of
this area is called the upper envelope of Hi (Fig. 5.13). Similarly, one may define
lower disks, the lower dumming disks the lower area and the lower envelope of Hi.

Lemma 5.7.1. An upper disk disk1(v) with respect to Hi can appear in the upper
envelope of Hi at most once. If an upper disk disk1(u) is on the left of another upper
disk disk1(v) on the upper envelope of Hi, then the center u is on the left of the
center v.

98 5 Weighted CDS in Unit Disk Graph

v
u

x

yz

Fig. 5.14 The proof of
Lemma 5.7.1

Similarly, a lower disk disk1(v) with respect to Hi can appear in the lower
envelope of Hi at most once. If a lower disk disk1(u) is on the left of another lower
disk disk1(v) on the lower envelope of Hi, then the center u is on the left of the
center v.

Proof. For contradiction, suppose the upper disk disk1(u) is on the left of the upper
disk disk1(v) on the upper envelope of strip Hi, but the center u is on the right of the
center v. Choose a point x from circle1(u) appearing on the upper envelope and a
point y from circle1(v) appearing on the upper envelope. Then segments ux and vy
intersect, say at z. Since x and y appear in the upper envelope, one must have |ux|<
|vx| and |vy| < |uy|. Therefore, |ux|+ |vy|< |vx|+ |uy|. However, |vx| < |vz|+ |zx|
and |uy| < |uz|+ |zy|. Hence |vx|+ |uy| < |vz|+ |zx|+ |uz|+ |zy| = |ux|+ |vy|, a
contradiction. Therefore, the second sentence is true (Fig.5.14).

The first sentence is a corollary of the second sentence. In fact, if disk1(v) appears
twice on the upper envelope, then between two appearances, there must exist another
disk disk1(u) appearing. This means that v is on the left of u and also on the right of
u, a contradiction. �

A corner of the upper envelope of Hi is an intersection point of two upper disks
on the envelope. A corner of the lower envelope of Hi is an intersection point of
two lower disks on the envelope. A sweep line Li for Hi is a vertical line that starts
from a position on the left of all disks in D and moves to right until a position on
the right of all disks in D. Li’s movement is discrete. Each intermediate position of
Li must pass through a corner on either the upper envelope or the lower envelope.
Each of such positions is denoted by a quadruple (d1,d2;d3,d4) with either d1 = d2

or d3 = d4 where d1,d2 are upper disks and d3,d4 are lower disks. If d1 �= d2, then Li

passes through the intersection point of d1 and d2 on the upper envelope. If d3 �= d4,
then Li passes through the intersection point of d3 and d4 on the lower envelope. For
the initial and the end position of Li, d1 = d2 is the upper dumming disk and d3 = d4

is the lower dumming disk.
A move of Li is from its current position (d1,d2;d3,d4) to an adjacent position on

the right. If d1 = d2, this adjacent position is either (d2,d;d4,d4) or (d1,d1;d4,d).
In this case, one says that the disk d3 leaves Li and the disk d enters. If d3 = d4, then
the right adjacent position is either (d2,d;d4,d4) or (d2,d2;d4,d). In this case, one
says that the disk d1 leaves and the disk d enters (Fig. 5.15).

5.7 3.63-Approximation 99

Fig. 5.15 Four possibilities for a sweep line to move to right adjacent position

Note that every disk in Opt must appear in the upper or lower envelope for
some strip Hi and the weight of Opt equals the total weight of disks appearing on
envelopes. The sweep line is used to calculate this total weight so that one can turn
the sweeping process into a shortest path of a graph. There is one trouble if the sweep
line is doing counting individually. Each disk may appear in the lower envelope of
strip Hi and also in the upper envelope of Hi+2. If every sweep line does individual
counting, then the total weight is not exactly c(Opt). Therefore, all sweep line may
be required to do a combined action and to employ a technique for avoiding the
double counting.

A configuration of sweep lines consists of positions of sweep lines L1, L3, . . .,
L2�m/2�−1 at a moment. A legal move from a configuration A to another configuration
B consists of exactly one move of one sweep line which is required to satisfy the
following constraint:

(m1) In this move, if a lower disk d leaves line Li, then the disk d should be already
passed by Li+2. Otherwise, Li has to wait for Li+2 to pass the disk d.

(m2) In this move, if an upper disk d leaves line Li, then the disk d should be
already passed by Li−2. Otherwise, Li has to wait for Li−2 to pass the disk d.

Here, by a disk passed by a sweep line at position (d1,d2;d3,d4), one means that
if d is an upper disk, then the center of d is not on the right of the center of d2; if d
is a lower disk, then the center of d is not on the right of the center of d4.

100 5 Weighted CDS in Unit Disk Graph

Why can this constraint eliminate the double counting? It is because one can set
counting rule as follows: The counting is performed only on a newly entered disk
in each move. This means that when a disk d enters a configuration in a move, the
weight of d is counted if the configuration does not contain d, and the weight of d
is not counted if the configuration already contains d.

Can this constraint stop the moving of configuration? The answer is no because
if the moving stops, then every sweep line is waiting for another line to pass a disk.
Then there are two cases.

Case 1. There are two sweep lines Li and Li+2 such that Li waits for Li+2 to pass
a disk d and Li+2 waits for Li to pass another disk d′. In this case, Li should be in
position (d1,d2;d,d4) and Li+2 should be in position (d′,d′2;d′3,d

′
4). Since Li waits

for Li+2 to pass d, the center of d is on the right of the center of d′2 and hence by
Lemma 5.7.1, the center of d is on the right of the center of d′. Similarly, the center
of d′ should be on the right of the center of d, a contradiction.
Case 2. Case 1 does not occur. If Li waits for Li+2, then Li+2 waits for Li+4, etc.
However, since the number of strips if finite, this process cannot go forever, a
contradiction. If Li waits for Li−2, then Li−2 waits for Li−4. This process cannot
go forever, neither.

Next, an auxiliary graph G(Opt) can be constructed to turn the moving of
configuration into a shortest path. All possible configurations form all vertices.
There exists an arc (A,B) from a configuration A to another configuration B if and
only if B can be reached from A through a legal move. The start vertex s is the
configuration consisting of all sweep lines on the left of all disks in D. The target
vertex is the configuration consisting of all sweep lines on the right of all disks inD.

Now, it is ready to show the following.

Theorem 5.7.2 (Eriksson et al. [45]). MINW-SENSOR-COVER with targets in
multi-strips can be solved in time O(n3(m+1)).

Proof. Use D instead of Opt to construct the sweep line positions, configurations,
legal move of configurations, and graph G(D) by following the same rules in
the construction of graph G(Opt), except an additional requirement for a sweep
line move: during the move, targets between two positions should be covered by
two envelope. Then G(D) contains G(Opt) as a subgraph, and the shortest path
from configuration s to configuration t would give an optimal solution for SENSOR

COVER with targets in multi-strips. Since each sweep line position is determined
by three disks, each sweep line has at most O(n3) positions. Hence, the number
of configurations is at most O(n3m/2) for even m and O(n3(m+1)/2) for odd m.
Therefore, computing the shortest path in G(D) takes time O(n3m) for even m and
O(n3(m+1)) for odd m. �

Based on Theorem 5.7.2, Willson et al. [114] constructed a polynomial-time
3.63-approximation for MINW-DS in a block B. Their main idea is motivated
from the following observation. To construct an approximation solution, MINW-
DS in a block B is divided into four problems, two on horizontal strips and two on
vertical strips. Consider the two on horizontal strips. One is on strips H1,H3,

5.7 3.63-Approximation 101

involved two problems

involved one problem

Fig. 5.16 disk1(v) involves
only one problem if v is
nearly at the central of Hi

The other one is on strips H2,H4, Suppose disk1(v) with v ∈ Hi. Then disk1(v)
will involve only one problem which is on strips Hi−1 and Hi+1 if v lies nearly at the
central of Hi. This means that in average, disk1(v) involves less than two problems.
How to take advantage of this average estimation? Shifting the partition on the block
B is a traditional technique (Fig. 5.16).

3.63-Approximation for MINW-DS in a block.
input a unit disk graph G = (V,E) and a block B.
Put the block B at the position with (0,0) as its left-lower corner. Let P(a,b)
be a grid with cell size μ× μ and the left-lower corner

(−amμ/q,−bmμ/q) such that the block B is covered where μ =
√

2
2 .

A← nil (c(nil) = ∞);
for a = 0 to q− 1 do

for b = 0 to q− 1 do begin
compute A(a,b) with procedure A(a,b);
if c(A)> c(A(a,b))

then A← A(a,b);
end-for;

output A.

Procedure A(a,b)
input a unit disk graph G = (V,E) and a block B. Use grid P(a,b) partition the

block B into cells.
Let C be the set of cells e in B with V (e) =V ∩e �= /0. Let H1, . . . ,Hm be horizontal

strips and Y1, . . . ,Ym vertical strips of B. Define

Hodd = H1∪H3∪·· ·∪H2�m/2�−1,

Heven = H2∪H4∪·· ·∪H2�m/2�,

Yodd = Y1∪Y3∪·· ·∪Y2�m/2�−1,

Yeven = Y2∪Y4∪·· ·∪Y2�m/2�.

102 5 Weighted CDS in Unit Disk Graph

Let C′ ⊆ C. For each cell e ∈ C′, choose a vertex ve ∈ V (e) and let U = {ve |
e ∈ C′}. For every subset C′ and every U , compute a vertex subset A(C′,U) in the
following way:

Step 1. Let Z =V ∩(∪v∈U disk1(v)). For every e∈C−C′, update V (e)←V (e)\Z.
Step 2. For every cell e ∈ C−C′ and for every choice of {p, p′,q,q′} ⊆ V (e), let

V1(e) =V (e)∩ (Δsouth(p, p′)∪Δnorth(q,q′)) and V2(e) =V (e)−V1(e).

Step 2.1. Compute an optimal solution Opt(Hodd) for SENSOR-COVER

with targets in multi-strips and with horizontal strips Hodd, target set
P = (∪e∈(C−C′)∩Hodd

V1(e)), disk set D = {disk1(v) | v ∈V −U}.
Step 2.2. Compute an optimal solution Opt(Heven) for SENSOR-COVER

with targets in multi-strips and with horizontal strips Heven, target set
P = (∪e∈(C−C′)∩HevenV1(e)), disk set D = {disk1(v) | v ∈V −U}.

Step 2.3. Compute an optimal solution Opt(Yodd) for SENSOR-COVER

with targets in multi-strips and with vertical strips Yodd, target set
P = (∪e∈(C−C′)∩Yodd

V2(e)), disk set D = {disk1(v) | v ∈V −U}.
Step 2.4. Compute an optimal solution Opt(Yeven) for SENSOR-COVER with tar-

gets in multi-strips with vertical strips Yeven, target set
P = (∪e∈(C−C′)∩YevenV2(e)), disk set D = {disk1(v) | v ∈V −U}.

Step 2.5 Compute O = Opt(Hodd)∪Opt(Heven)∪Opt(Yodd)∪Opt(Yeven)
Step 2.6 Compute O∗ to minimize the total weight c(O) over all possible

combinations of {p.p′,q,q′} for all e ∈C−C′.

Step 3. Set A(C′,U) = O∗ ∪U .

Finally, compute an A(a,b) = A(C′,U) to minimize the total weight c(A(C′,U)
for C′ over all subsets of C and U over all choices of ve for all e ∈C′.

output A(a,b).

Theorem 5.7.3 (Willson et al. [114]). There exists a 3.63-approximation for
MINW-DS in a block B, with running time nO(m2) where n is the number of nodes v
such that disk1(v)∩B �= /0.

Proof. First, let us estimate the time for computing A(a,b). There are O(2m2
)

possible subsets of C, nO(m2) possible choices of U and O(n4m2
) possible combi-

nations of {p, p′,q,q′} for all cells in C−C′. For each combination, computing
Opt(Hodd), Opt(Heven), Opt(Yodd) and Opt(Yeven) needs time O(n4m+1). Therefore,
total computation time is nO(m2).

Next, estimate the performance ratio. Let Opt be an optimal solution for MINW-
DS in the block B. Set C′= {e∈C | e∩Opt �= /0}. For each e∈C′, choose a node ve ∈
Opt∩ e. Set U = {ve | e ∈C′} and Z =V ∩ (∪v∈U disk1(v)). Update V (e) for all e ∈
C−C′ by V (e)←V (e)\Z. For each e ∈C−C′, by Lemma 5.4.4, there exists a set
{p, p′,q,q′} of at most four nodes in V (e) such that V1(e) = V (e)∩ (Δsouth(p, p′)∪

5.7 3.63-Approximation 103

Δnorth(q,q′)) is dominated by Opt1(e) = Opt(e)∩ (S∪N) and V2(e) =V (e)−V1(e)
is dominated by Opt2(e) = Opt(e)∩ (E ∪W) where

Opt(e) = {v ∈V −U | e∩disk1(v) �= /0}.

Then that ∪e∈(C−Ci)∩Hodd
Opt1(e) is a feasible solution for the minimization problem

solved at Step 2.1. Therefore,

c(Opt(Hodd))≤ c(∪e∈(C−Ci)∩Hodd
Opt1(e)). (5.4)

Similarly,
c(Opt(Heven))≤ c(∪e∈(C−Ci)∩Heven Opt1(e)). (5.5)

c(Opt(Yodd))≤ c(∪e∈(C−Ci)∩Yodd
Opt2(e)). (5.6)

c(Opt(Hodd))≤ c(∪e∈(C−Ci)∩YevenOpt2(e)). (5.7)

For every v ∈ Opt, define

τ1(v;a,b) =

{
1 if disk1(v) intersets three horizontal strips,
2 otherwise,

and

τ2(v;a,b) =

{
1 if disk1(v) intersets three vertical strips,
2 otherwise.

Then disk1(v) involves τ1(v;a,b) of two equations (5.4) and (5.5), and τ2(v;a,b) of
two equations (5.6) and (5.7), Therefore

c(O) ≤ c(∪e∈(C−Ci)∩Hodd
Opt1(e))+ c(∪e∈(C−Ci)∩Heven Opt1(e))

+c(∪e∈(C−Ci)∩Yodd
Opt2(e))+ c(∪e∈(C−Ci)∩YevenOpt2(e))

≤ ∑
v∈Opt−U

c(v)(τ1(v;a,b)+ τ2(v : a,b)).

Hence,

c(A(a,b)) ≤ c(A(C′,U)) = c(O∗)+ c(U)

≤ c(O)+ c(U)

≤ ∑
v∈Opt

c(v)(τ1(v;a,b)+ τ2(v : a,b)).

For any v ∈ Opt, note that for any fixed b, there exist at least � 3μ−2
μ/q � values of a

such that τ1(v;a,b) = 1, and for any fixed a, there exist at least � 3μ−2
μ/q � values of b

such that τ2(v;a,b) = 1. Therefore,

104 5 Weighted CDS in Unit Disk Graph

A ≤ 1
q2

q−1

∑
a=0

q−1

∑
b=0

∑
v∈Opt

c(v)(τ1(v;a,b)+ τ2(v;a,b))

≤
(

4− 2
�(3− 2

√
2)q�

q

)
· c(Opt).

As q→ ∞, �(3−2
√

2)q�
q goes to 3−2

√
2. Since 4−2(3−2

√
2)< 3.63, there exists a

fixed q such that (4− 2 �(3−2
√

2)q�
q)< 3.63. �

Chapter 6
Coverage

The only difference between suicide and martyrdom is press
coverage.

CHUCK PALAHNIUK

6.1 Motivation and Overview

A classic type of resource management problem is as follows: Given a certain
amount of resource and a set of users, find an assignment of resource to maximize
the number of satisfied users. The maximum lifetime coverage is such a classic type
of problem in wireless sensor networks.

When a very large number of sensors are randomly deployed into a certain region
possibly by an aircraft to monitor a certain set of targets, usually, there are a lot
of redundant sensors. A better usage of those redundant sensors is to schedule
active/sleep time of sensors to increase the lifetime of the system.

A simple scheduling is to divide sensors into disjoint subsets, each of which fully
covers all targets, called a sensor cover [18, 80].

SENSOR-COVER-PARTITION: Given n targets r1, . . . , rn and m sensors s1, . . . , sm, each
covering a subset of targets, find the maximum number of disjoint sensor covers.

This problem is NP-hard. Various heuristics and approximation algorithms have
been given in [11, 13, 96]. In general, there is no polynomial-time (−ε) lnn)-
approximation for any ε > 0 unless NP⊆DT IME(nO(loglogn)) [48] and there exists
polynomial-time O(logn)-approximation [6,80]. But, there is an open problem in a
special case.

Open Problem 6.1.1. Suppose all sensors are uniform, that is, they have the same
sensing radius. It is unknown whether a polynomial-time constant-approximation
exists or not.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 6,
© Springer Science+Business Media New York 2013

105

106 6 Coverage

When the sensor set and the target set are identical, SENSOR-COVER-PARTITION

becomes the following domatic partition problem.

MAX#DS: Given a graph G = (V,E), partition the vertex set V into maximum number of
disjoint dominating sets.

In general graph, there is no polynomial-time (1 − ε) lnn-approximation
unless NP ⊆ DTIME(nO(log logn)) and there exists polynomial-time O(logn)-
approximation for MAX#DS [48]. However, for unit disk graphs, there is a
polynomial-time constant-approximation [86].

For this type of scheduling, the sensor is activated only once, that is, once the
sensor is activated, it keeps active until it dies.

Cardei et al. [15] found that it is possible to increase the lifetime if each sensor
is allowed to alternate between active and sleeping states. An example can be found
in Chap. 1. The model is also better supported by an interesting fact discovered in
[64] that putting a sensor alternatively in active and sleeping states in a proper way
may double its lifetime since the battery could be recovered in a certain level during
sleeping. The formulation of this model is as follows.

MAX-LIFETIME COVERAGE: Given n targets t1, . . . , tn and m sensors s1, . . . , sm, each
covering a subset of targets, find a family of sensor cover S1, . . . ,Sp with time lengths
t1, . . ., tp in [0,1], respectively, to maximize t1 + · · ·+ tp subject to that the total active time
of every sensor is at most 1.

This is still an NP-hard problem. Cardei [15] formulated it as a 0-1 integer pro-
gramming and designed a heuristic without guaranteed theoretical bound. Berman
et al. [6, 7] first designed an approximation algorithm for MAX-LIFETIME COV-
ERAGE with theoretical bound. They showed that there exists a polynomial-time
approximation for MAX-LIFETIME COVERAGE with performance ratio O(logn)
where n is the number of sensors. By employing Garg–Könemann theorem [55],
Berman et al. reduced MAX-LIFETIME COVERAGE to the following:

MINW-SENSOR-COVER: Consider n targets t1, . . . , tn and m sensors s1, . . . , sm, each cover-
ing a subset of targets. Given a weight function on sensors c : {s1, . . . , sm} → R+, find the
minimum total weight sensor cover.

They showed that if MINW-SENSOR-COVER has a polynomial-time ρ-
approximation, then MAX-LIFETIME COVERAGE has a polynomial-time (1 +
ε)ρ-approximation for any ε > 0. Note that MINW-SENSOR-COVER is equivalent
to MINW-SENSOR-COVER. Therefore, it has a polynomial-time (1 + logn)-
approximation. Hence, MAX-LIFETIME SENSOR COVER has a polynomial-time
O(logn)-approximation. Actually, the first one who found the application of Garg-
Könemann theorem in study of lifetime maximization type of problems is Calnescu
et al. [12].

Ding et al. [34] noted that all results in Chap. 5 about MINW-DS can be
extended to MINW-SENSOR-COVER in the case that all sensors and targets lie in
the Euclidean plane and all sensors have the same covering radius. Therefore, they
proved that in this case, MAX-LIFETIME COVERAGE has polynomial-time 3.63-
approximation.

6.2 Max-Lifetime Connected Coverage 107

Du et al. [37] extended this approach to study the coverage problem with con-
nectivity requirement. They constructed a polynomial-time constant-approximation
in geometric case and O(logn)-approximation in general case. However, many
maximum lifetime coverage with connectivity requirement are still open. The
following is an example.

Open Problem 6.1.2. Does MAX#CDS have a polynomial-time constant-
approximation in unit disk graphs?

6.2 Max-Lifetime Connected Coverage

As described in the previous section, the method of Garg and Könemann [55] plays
an important role in design of constant-approximation for various problems on the
maximum lifetime coverage. In this section, we introduce it through the work of Du
et al. [37].

Du et al. [37] studied a quite general model of wireless sensor networks which
was previously studied by Zhang and Li [126]. In this model, each sensor has two
modes, active mode and sleep mode, and the active mode has two phases, the full-
active phase and the semi-active phase. A full-active sensor can sense, transmit,
receive, and relay the data packets. A semi-active sensor cannot sense data packets,
but it can transmit, receive, and relay data packets. Usually, a sensor in the full-active
phase consumes more energy than in the semi-active phase.

Sensors are often randomly deployed into hostile environment, such as battlefield
and inaccessible area with chemical or nuclear pollution, so that recharging batteries
of sensors is a mission impossible. Assume the battery of each sensor contains a
certain amount of energy, say unit amount. Then the lifetime of each sensor depends
on energy consumption.

Du et al. [37] studied the following problem:

MAX-LIFETIME CONNECTED-COVERAGE with two active phases: Given a set of targets
and a set of sensors with two active phases, find an active/sleeping schedule for sensors to
maximize the system lifetime where the network system is said to be alive if the following
conditions are satisfied:

(A1) Every target is monitored by a full-active sensor.
(A2) All (full-/semi-) active sensors induce a connected subgraph.

They studied this problem with the primal-dual method of Garg and
Könemann [55].

Let S be the set of all sensors. Assume all sensors are uniform, that is, they have
the same communication radius Rc, the same sensing radius Rs, the same full-active
energy consumption u of unit time and the same semi-active energy consumption v
of unit time. Also, assume u≥ v. A pair p of sets is called an active sensor set pair
if p = (p1, p2) where p1 is a set of full-active sensors and p2 is a set of semi-active
sensors with p1∩ p2 = /0. For any active sensor set pair p, define

108 6 Coverage

as,p =

⎧⎨
⎩

u if s ∈ p1,

v if s ∈ p2,

0 otherwise.

Suppose C is the collection of all active sensor set pairs satisfying conditions (A1)
and (A2). Then MAX-LIFETIME CONNECTED COVERAGE with two active phases
can be formulated as the following linear programming:

max ∑
p∈C

xp

subject to ∑
p∈C

as,pxp ≤ 1 for s ∈ S

xp ≥ 0 for p ∈ C.

Its dual is as follows.

min ∑
s∈S

ys

subject to ∑
s∈S

as,pys ≥ 1 for p ∈ C,

ys ≥ 0 for s ∈ S.

Motivated from the work of Garg and Könemann [55], Du et al. [37] designed
the following primal-dual algorithm.

Primal-Dual Algorithm DPWW

Initially, choose xp = 0 for all p ∈ C and ys = δ for all s ∈ S where δ is a positive
constant which will be determined later.

In each iteration, carry out the following steps until (ys,s ∈ S) becomes dual
feasible, that is, all constrains in dual linear programming are satisfied:

Step 1. Compute a ρ-approximation solution p∗ for

MINW-CSC with two active phases:

min
p∈C ∑

s∈S

as,pys.

Step 2. Compute a solution s∗ for

max
s∈S

as,p∗ .

6.2 Max-Lifetime Connected Coverage 109

Step 3. Update xp and ys as follows:

(B1) xp does not change for p �= p∗, and

xp∗ ← xp∗+
1

as∗,p∗
.

(B2) ys does not change for s �∈ p∗1∪ p∗2, and

ys← ys

(
1+θ

as,p∗

as∗,p∗

)

for s ∈ p∗1∪ p∗2 where θ is a constant chosen later.
The following lemmas give two important properties at the end of above

algorithm.

Lemma 6.2.1. At the end of Primal-Dual Algorithm DPWW, (xp, p ∈ C) may not
be a primal-feasible solution. However, (xp/τ, p ∈ C) is a primal-feasible solution

where τ =
(v/u) ln 1+θ

vδ
ln(1+θv/u) .

Proof. Note that when ys gets updated, the following facts must hold:

(a) (ys,s ∈ S) is not dual feasible.
(b) s ∈ p∗1∪ p∗2.

It follows immediately from (a) that ∑s∈S as,p∗ys < 1, which together with (b)
yields that ys < 1/v before ys receives any value change. After ys is updated, we
have

ys <

(
1+θ

as,p∗

as∗,p∗

)
/v≤ (1+θ)/v.

Therefore, at the end of Primal-Dual Algorithm DPWW, ys < (1+θ)/v.
Now, consider a constraint in the primal linear programming,

∑
p∈C

as,pxp ≤ 1,

which may not be satisfied after xp is updated. If updating xp increases the value
of ∑p∈C as,pxp by adding

as,p∗
as∗,p∗

, then the value of ys is increased by multiplying a

factor 1+θ as,p∗
as∗,p∗

. Note that the value of
as,p∗
as∗,p∗

has only two possibilities, v/u and 1.

Suppose
as,p∗
as∗,p∗

takes value v/u for k times and 1 for � times. Then the value of

∑p∈C as,pxp receives an increase in k(v/u)+ � and

(1+θv/u)k(1+θ)� ≤ 1+θ
vδ

110 6 Coverage

since initially ys = δ . Moreover, initially, ∑p∈C as,pxp = 0. Thus, at the end of
Primal-Dual Algorithm DPWW, the value of ∑p∈C as,pxp is k(v/u)+ �. The max-
imum value of k(v/u)+ � can be obtained from the following linear programming
with respect to k and �:

max k(v/u)+ �

subject to k ln(1+θv/u)+ � ln(1+θ)≤ ln
1+θ

vδ
k ≥ 0, �≥ 0.

By theory of the linear programming, the maximum value of objective function can
always be achieved by some extreme point. For above one, the feasible domain has
three extreme points

(0,0),

(
0,

ln 1+θ
vδ

ln(1+θ)

)
,

(
ln 1+θ

vδ
ln(1+θv/u)

,0

)
.

Their objective function values are

0,
ln 1+θ

vδ
ln(1+θ)

,
v
u
· ln 1+θ

vδ
ln(1+θv/u)

,

respectively. Note that z
ln(1+θz) is strictly monotone decreasing for z≤ 1. Thus,

0 <
ln 1+θ

vδ
ln(1+θ)

<
v
u
· ln 1+θ

vδ
ln(1+θv/u)

.

Hence, at the end of Primal-Dual Algorithm DPWW,

∑
p∈C

as,pxp ≤ τ =
v
u
· ln 1+θ

vδ
ln(1+θv/u)

.

Therefore,

∑
p∈C

as,pxp/τ ≤ 1.

��
Lemma 6.2.2. At the end of Primal-Dual Algorithm DPWW,

∑
p∈C

xp/τ ≥ ln(v|S|δ)−1

τθρ
·optlcc

6.2 Max-Lifetime Connected Coverage 111

where optlcc is the objective function value of optimal solution for MAX-LIFETIME

CONNECTED COVERAGE with two active phases and τ = (v/u) log1+θv/u
1+θ
δv .

Proof. Denote by xp(0) the initial value of xp and by ys(0) the initial value of
ys. Denote by xp(i) and ys(i), respectively, the values of xp and ys after the ith
iteration. Denote by s∗(i) and p∗(i), respectively, the values of s∗ and p∗ in the
ith iteration. Furthermore, denote X(i) = ∑p∈C xp(i) and Y (i) = ∑s∈S ys(i). Then,
for i≥ 1, one has

Y (i) = ∑
s∈S

ys(i− 1)+θ
1

as∗(i),p∗(i)
∑
s∈S

as,p∗(i)ys(i− 1)

≤ Y (i− 1)+θ (X(i)−X(i− 1))ρ min
p∈C ∑

s∈S

as,pys(k− 1).

Thus,

Y (i)≤ Y (0)+θρ
i

∑
k=1

((X(k)−X(k− 1))min
p∈C ∑

s∈S

as,pys(k− 1).

By the duality theory of linear programming, optlcc is also the objective function
value of optimal solution for the dual linear programming. Therefore,

optlcc = min
ys

∑s∈S ys

minp∈C ∑s∈S as,pys
,

where the minimization is subject to ys ≥ 0 for s ∈ S. Hence,

min
p∈C ∑

s∈S

as,pys(k− 1)≤ Y (k− 1)
optlcc

.

Therefore,

Y (i)≤ |S|δ +
θρ
opt

i

∑
k=1

(X(k)−X(k− 1))Y(k− 1).

Define
w(0) = |S|δ

and

w(i) = |S|δ +
θρ
opt

i

∑
k=1

(X(k)−X(k− 1))w(k− 1).

It is easy to prove by induction on i that Y (i)≤ w(i). Moreover,

w(i) =

(
1+

θρ
optlcc

(X(i)−X(i− 1))

)
w(i− 1)

≤ e
θρ

optlcc
(X(i)−X(i−1))

w(i− 1)

112 6 Coverage

≤ e
θρ

optlcc
X(i)

w(0)

= e
θρ

optlcc
X(i)|S|δ .

Suppose Primal-Dual Algorithm DPWW stops at the mth iteration. Then Y (m) ≥
1/v. Hence

1/v≤ Y (m)≤ w(m)≤ |S|δe
θρ

optlcc
X(m)

.

Therefore,
optlcc

X(m)/τ
≤ τθρ

ln(v|S|δ)−1 .
��

Theorem 6.2.3 (Du et al. [37]). If MINW-CSC with two active phases has a
polynomial-time ρ-approximation, then MAX-LIFETIME CONNECTED COVERAGE

with two active phases has a polynomial-time ρ(1+ε)-approximation for any ε > 0.

Proof. Choose δ = (1+θ)((1+θ)|S|)−θ/v. Note that

ln 1+θ
δv

ln(δv|S|)−1 =
1

1−θ
,

and (1+θv/u)u/(vθ)+1 > e implies ln(1+θv/u)> vθ
u+vθ . Thus,

τθρ
ln(v|S|δ)−1 =

θρ
(1−θ) ln(1+θv/u)

≤ ρ · 1+θv/u
1−θ

.

Choose θ such that
1+θv/u

1−θ
< 1+ ε.

Then
opt

∑p∈C xp/τ
≤ (1+ ε)ρ .

To estimate the running time of Primal-Dual Algorithm DPWW, let p∗ be a
polynomial time ρ-approximation solution for MINW-CSC with Two Active Phases.
Note that every iteration can be carried out in polynomial-time. Therefore, it suffices
to estimate the number of iterations. Note that at each iteration, at least one of ys

has its value increased. In the proof of Lemma 6.2.1, it is already proved that at
the end of the algorithm, each ys has its value increased by multiplying at most
log1+θv/u

1+θ
δv . Therefore, the number of iterations is at most

|S| log1+θv/u
1+θ

δv
=
|S|θ ln((1+θ)|S|)

ln(1+θv/u)
= O(|S| log |S|),

where δv = (1+θ)((1+θ)|S|)−θ and θ is fixed as ε is fixed. ��

6.3 Domatic Partition 113

In Chap. 5, it has been shown that there exists a polynomial-time 3.63-
approximation for MINW-DS. This result can be extended to the following problem.

MINW-SENSOR-COVER: Consider a set of targets and a set of sensors lying in the Euclidean
plane. Suppose all sensors have the same sensing radius Rs, but may have different weights.
The problem is to find the minimum weight subset of sensors for covering all targets.

Therefore, the following holds.

Theorem 6.2.4 (Du et al. [37]). MAX-LIFETIME CONNECTED COVERAGE with
Two Active Phases has polynomial-time (7.105+ ε)-approximations for any ε >
0 when all targets and all sensors lie in the Euclidean plane and all sensors are
uniform with Rc ≥ 2Rs.

Proof. Let OptCSC be the optimal solution for MINW-CSC with two active phases.
Compute a polynomial-time 3.63-approximation solution A for MINW-SENSOR-
COVER with weight ysu for each sensor s. Then

∑
s∈A

ysu≤ 3.63 ·optCSC,

where optCSC is the objective function value of OptCSC. Since Rc≥ 2Rs, every sensor
in A is adjacent to some sensor in OptCSC. This means that OptCSC ∪A induces a
connected subgraph and hence OptCSC contains the set of Steiner nodes in a feasible
solution for NODE-WEIGHTED STEINER TREE on the terminal set A. Now, find a
polynomial-time 3.475-approximation solution B for NODE-WEIGHTED STEINER

TREE with weight ysv for each sensor s. Then

∑
s∈B

ysv≤ 3.475 · ∑
s∈OptCSC

ysv≤ 3.475 ·optCSC.

Therefore,

∑
s∈A

ysu+ ∑
s∈B

ysv≤ 7.105 ·optCSC. ��

6.3 Domatic Partition

So far, the best known constant-approximation for MAX#DS in unit disk graphs is
designed also using grid partition, however with a new technique. Let us start to
introduce a problem on sensor-cover-partition with a separating line.

SENSOR-COVER-PARTITION with Separating Line: Let L be a horizontal line. Given a set
T of targets above L and a set S of sensors with sensing radius one below L, assume that
every target is covered by at least one sensor. The problem is to find the maximum number
of disjoint sensor covers. (A sensor cover is a subset of sensors covering all targets.)

114 6 Coverage

Let δ (S,T) =mint∈T |{s∈ S | t ∈ disk1(s)}| where disk1(s) denotes the disk with
radius one and the center s. Call as the skyline the part, above line L, of envelope of
disks disk1(s) for all s∈ S. Let S′ be the set of those sensors s such that circle1(s) has
a piece appearing in the skyline where circle1(s) denotes the circle with radius one
and the center s. By Lemma 5.7.1 S′ lines up from right to left by following their
pieces on the skyline. For any t ∈ T , denote CS′(t) = disk1(t)∩ S′. The following
properties are important.

Lemma 6.3.1. Let s1,s2,s3 be three sensors in S with s1.x ≤ s2.x ≤ s3.x where
si.x denotes the x-coordinate of point si. Suppose there exists a target t such
that t ∈ disk1(s1)∩ disk1(s3) but t �∈ disk2(s2). Then up(L)∩ disk1(s2) ⊆ up(L)∩
(disk1(s1)∪disk1(s3)) where up(L) denotes the half plane above the horizontal line
L and circle1(s2) cannot appear in the skyline.

Proof. It is trivial in the case that s1.x = s2.x or s2.x = s3.x. Thus, we next assume
s1.x < s2.x < s3.x. For contradiction, suppose there exists a point p ∈ up(L) ∩
disk1(s2) but p �∈ up(L)∩ (disk1(s1)∪disk1(s3). Note that t ∈ disk1(s1)∩disk1(S3)
implies that for any point q ∈ up(L) with q.x = t.x and q.y ≤ t.y, q ∈ disk1(s1)∩
disk1(S3). Moreover, t �∈ disk1(s2) implies that for any q ∈ up(L)∩ disk1(s2) with
q.x = t.x and q.y < t.y and hence q∈ disk1(s1)∩disk1(S3). It follows that p.x �= t.x.
Hence p.x < t.x or p.x > t.x. First, consider the case that p.x < t.x. In this case,
two segments ps2 and ts1 must intersect at a point o. Note that |ps2| < |ps1| and
|ts2| > |ts1|. Hence, |ps2|+ |ts1| < |ps1|+ |ts2|. However, by the property of the
triangle,

|po|+ |os1| ≥ |ps1|
and

|to|+ |os2| ≥ |ts2|.
Therefore

|ps2|+ |ts1|= |po|+ |os2|+ |to|+ |os1| ≥ |ps1|+ |ts2|,

a contradiction. Similarly, a contradiction can result from the case that p.x > t.x.
Note that circle1(s2)∩up(L) cannot intersect up(L)∩ (circle1(s1)∪ circle1(s3)).

In fact, if they have an intersection point p, then a contradiction can still result from
the above argument by noting that the argument still works when |ps2| = |ps1|.
So, up(L)∩disk1(s2) is contained strictly inside of up(L)∩ (disk1(s1)∪disk1(s3)).
Hence, circle1(s2) cannot appear in the skyline. ��
Lemma 6.3.2. For any t ∈ T , CS′(t) is a nonempty contiguous subset of the ordered
set S′.

Proof. Suppose s1,s2,s3 ∈ S′ with s1.x ≤ s2.x ≤ s3.x. If s1,s3 ∈ CS′(t) and s2.x �∈
CS′(t), then by Lemma 6.3.1, s2 �∈ S′, a contradiction. ��

6.3 Domatic Partition 115

Lemma 6.3.3. Suppose T ′ is a subset of targets, satisfying a property that for any
two distinct targets t, t ′ ∈ T ′, CS(t) �⊆ CS(t ′). Then for any two distinct t, t ′ ∈ T ′,
CS′(t)∩CS′(t

′) �= /0 implies that CS′(t) contains an endpoint of CS′(t
′).

Proof. The lemma holds trivially in the case that CS′(t) is not contained in CS′(t).
So, we next assume CS′(t)⊆CS′(t). By the assumption on T ′, there exists s∈CS(t)\
CS(t ′). Let sr and sl be the right endpoint and the left endpoint of CS′(t

′). Let s′ ∈
CS′(t)∩CS′(t

′). Next, consider two cases.

Case 1. sl .x ≤ s.x ≤ sr.x. Note that t ′ is contained in disk1(sr) and disk1(sl) but
not contained in disk1(s). By Lemma 6.3.1, t ∈ up(L)∩disks ⊆ up(L)∩ (disk1(sl)∪
disk1(sr)). Therefore, sl ∈CS′(t) or sr ∈CS′(t).

Case 2. s1.x > s.x or sr.x < s.x. Note that sl .x ≤ s′.x ≤ sr.x. For contradiction,
suppose t is contained by neither disk1(sl) nor disk1(sr). In the case that s.x <
s1.x, t is contained by disk1(s) and disk1(s′), but not contained by disk1(sl). By
Lemma 6.3.1, sl �∈ S′, a contradiction. Similarly, a contradiction can result from the
case that sr.x < s.x. �

Now, it is ready to show the following.

Theorem 6.3.4. There is a polynomial-time algorithm which can find at least
δ (S,T)/4 disjoint sensor covers.

Proof. Consider the following algorithm.

The DomPart Algorithm.
input: a sensor set S and a target set T .
j← 0;
E← S;
while E is a set cover do begin
1. j← j+ 1;
2. T ′ ← T ;

while there exist t, t ′ ∈ T ′ such that CE(t)⊆CE(t ′)
do T ′ ← T ′ \ {t ′};

3. Let E ′ ⊆ E contribute the skyline of disks at E;
4. Find a maximal subset T ′′ of T ′ such that CE ′(t) for t ∈ T ′′

are disjoint;
5. A j = {two endpoints of CE ′(t) | t ∈ T ′′};
6. E← E \A j;
end-while
output: A1,A2, . . . ,A j.

First, we show that each Ai for i = 1, . . . , j is a sensor cover. In fact, for each
t ′′ ∈ T ′′, Ai contains two endpoints of CE ′(t

′′) and hence t ′′ is covered by Ai. For
t ′ ∈ T ′ \T ′′, there exists t ′′ ∈ T ′′ such that CE ′(t

′)∩CE ′(t
′′) �= /0. By Lemma 6.3.3,

CE ′(t
′) contains an endpoint of CE ′(t

′′) and hence t ′ is covered by Ai. For t ∈ T \T ′,
there exists t ′ ∈ T ′ such that CE(t ′)⊆CE(t). So, there exists t ′′ ∈ T ′′ such that CE(t)
contains an endpoint of CE ′(t

′′) and hence t is covered by Ai.

116 6 Coverage

Next, we show that at the end of the jth iteration, |CE(t)| ≥ δ (S,T)− 4 j for
every t ∈ T . To do so, let E j denote the E at the end of the jth iteration. Suppose this
inequality holds at the end of the (j− 1)th iteration, that is, |CE j−1(t)| ≥ δ (S,T)−
4(j− 1) for all t ∈ T . We show that |CE j (t)| ≥ δ (S,T)− 4 j for all t ∈ T .

In the jth iteration, for t ′′ ∈ T ′′, two endpoints of CE ′(t
′′) are deleted from E j−1

and hence

|CE j (t
′′)| ≥ |CE j−1(t

′′)|− 2 > δ (S,T)− 4 j.

For t ′ ∈ T ′ \ T ′′, if CE ′(t
′) contains an endpoint of CE ′(t

′′) for t ′′ ∈ T ′′, then by
Lemma 6.3.3, CE ′(t

′′) must contain an endpoint of CE ′(t
′). Thus, there are at most

two such t ′′’s because all CE ′(t
′′) for t ′′ ∈ T ′′ are disjoint. This means that

|CE j (t
′)| ≥ |CE j−1(t

′)|− 4≥ δ (S,T)− 4 j.

For t ∈ T \T ′, there exists t ′ ∈ T ′ such that CE j−1(t
′)⊆CE j−1(t). This relationship is

preserved in the algorithm, that is, CE j (t
′)⊆CEJ (t). Therefore,

|CE j(t)| ≥ |CE j (t
′)| ≥ δ (S,T)− 4 j.

It follows immediately from this inequality that at the end of The DomPart
Algorithm, j ≥ δ (S,T)/4. ��

With Theorem 6.3.4, Pandit et al. [86] constructed an algorithm for MAX#DS in
unit disk graphs as follows.

Put input unit disk graph G = (V,E) into a square and partition the square with a
grid of cells with diameter one (or say, diagonal length one). A cell is called a heavy
cell if it contains at least δ/14 nodes where δ min is the minimum node degree of G.
A cell is light if it is not heavy. For each node v in a light cell, disk1(v) intersects at
most 14 cells, at least one of which contains at least δ min/14 nodes adjacent to v.
Choose such a heavy cell σ and put v to T σ , say that v belongs to σ . Let Sσ = σ ∩V .
Consider Sσ as a sensor set and T σ as a target set. Then the following lemma gives
an important fact.

Lemma 6.3.5. If for every heavy cell σ , Sσ can be partitioned into k sensor covers
for T σ , then G has k disjoint dominating sets.

Proof. Choose a sensor cover Aσ for each heavy cell σ . Let A be the union of Aσ

for σ over all heavy cells. Then A is a dominating set because each Aσ dominates
not only all nodes in T σ , but also dominates all nodes in Sσ . ��

For each heavy cell σ , partition T σ into four parts (T σ
north,T

σ
south,T

σ
east,T

σ
west)

where T σ
north consists of nodes lying above the line through the upper bound of σ ,

T σ
south consists of nodes lying below the line through the lower bound of σ , T σ

east
consists of nodes lying in the right of the line through the right bound of σ , and
T σ

west consists of nodes lying in the left of the line through the left bound of σ .
When two parts are available for a node v in T σ , v can arbitrarily choose one of
them as its home. Corresponding these four parts, partition Sσ also into four parts
(Sσ

north,S
σ
south,S

σ
east,S

σ
west) by independently and randomly distributing each node into

these four parts.

6.4 Min-Weight Dominating Set 117

Now, solve SENSOR-COVER-PARTITION with separation line on four inputs
(Sσ

north,T
σ

north), (S
σ
south,T

σ
south), (S

σ
east,T

σ
east), and (Sσ

west,T
σ

west). Combine those solu-
tions into k disjoint dominating sets of G where

k = min{δ (Sσ
south,T

σ
south),δ (S

σ
east,T

σ
east),δ (S

σ
west,T

σ
west) | all heavy cells δ}.

Next, we show that k ≥ δ min/112 with a quite high probability.
Note that for each t ∈ T σ , |σ ∩ disk1(t)| ≥ δ min/14 and the probability of at

least one of two nodes in σ ∩disk1(t) distributed in the part containing t is 3/4. By
Chernoff bound, the probability of at least δ min/56 nodes in σ ∩disk1(t) distributed

in the part containing t is at least 1− e−δ min/112.
Note that for each heavy cell σ , there are at most 20 cells within distance one

to σ . So, there are at most 20 light cells which contain a node belonging to σ .
Hence, |T σ | ≤ (20/14)δ min. Thus, the probability of the following held is at least
1− (20/14)δ mine−δ min/112:

min(δ (Sσ
south,T

σ
south),δ (S

σ
east,T

σ
east),δ (Sσ

west,T
σ

west))≥ δ min/56.

Since the number of heavy cells cannot be bounded by O(δ min), it is hard to estimate
the probability of k≥ δ min/56. Thus, it requires more efforts on distribution of each
element of Sσ in order to establish a solution of the following problem.

Open Problem 6.3.6. Is there a polynomial-time algorithm which produces
Ω(δ min) disjoint dominating sets for G with high probability?

6.4 Min-Weight Dominating Set

Pandit et al. [86] gave an interesting idea to construct approximation algorithms for
MINW-DS using algorithm for MAX#DS.

Consider the following LP-relaxation of MINW-DS.

min ∑
i∈V

cixi

subject to ∑
i∈disk1(j)

xi ≥ 1 for all j ∈V

xi ≥ 0 for all i ∈V.

Let (x∗i , i ∈V) be an optimal solution of this LP. Denote n = |V |. Let

x̄i =

{
0 if x∗i ≤ 1/2n
k

2n if k−1
2n < x∗i ≤ k

2n .

118 6 Coverage

Lemma 6.4.1. The following holds:

(1) For j ∈V, ∑i∈disk1(j) x̄i ≥ 1/2.
(2) ∑i∈V cix̄i ≤ 2 ·optWDS where opteds is the objective function value of an optimal

solution for MINW-DS.

Proof. Since |V ∩ disk(j)| ≤ n, there are at most n x∗i are rounded down to 0.
Therefore,

∑
i∈disk1(j)

x̄i ≥ 1− n · 1
2n

= 1/2.

This means that (1) holds. For (2), note that

∑
i∈V

cix̄i ≤ 2 ∑
i∈disk1(j)

cix
∗
i ≤ 2 ·optWDS. ��

Construct a set P by making 2n · x̄ j copies of node j for each j ∈V . Suppose each
copy of j has the same weight as that of j.

Lemma 6.4.2. c(P)≤ 4n ·optWDS.

Proof. By Lemma 6.4.1, c(P) = 2n ·∑i∈V ci · x̄i ≤ 4noptWDS. ��

Lemma 6.4.3. δ (P,V)≥ n.

Proof. By Lemma 6.4.1, ∑i∈disk1(j x̄i ≥ 1/2. Thus, for each j ∈ V , |P∩disk1(j)| =
2n∑i∈disk1(j) x̄i ≥ n. ��

Suppose there is an algorithm which can produce at least δ (P,V)/C sensor cover
packing A1, . . . ,At (t ≥ n/C) for sensor set P and target set V . Then there exists Ai

such that

c(Ai)≤ c(P)
t
≤ C · c(P)

n
≤ 4Cn ·optWDS

n
= 4C ·optWDS.

This means that the following holds.

Theorem 6.4.4. If there is a polynomial-time algorithm for SENSOR-COVER-
PARTITION which can produce δ (P,V)/C sensor covers for sensor set P and target
set V , then there is a polynomial-time 4C-approximation for MINW-DS.

Chapter 7
Routing-Cost Constrained CDS

If you do not have brains you follow the same route twice.
GREEK PROVERB

7.1 Motivation and Overview

Consider a graph as shown in Fig. 7.1. C = {4,5,6} is a minimum CDS. G = (V,E).
The minimum routing between nodes 1 and 3 not through C is 1-2-3 and through
D is 1-4-5-6-2, which is significantly longer than 1-2-3. This example indicates
a problem about CDS that while CDS is introduced to save resources in wireless
networks, routing cost and communication delay may be increased.

To keep communication delay within certain limit, Kim et al. [67] constructed
a diameter-constrained CDS in the unit disk graph, which has diameter within a
constant factor from the diameter of input graph, and meanwhile, the size within a
constant factor from the unconstrained minimum CDS.

Motivated from a work of Wu et al. [117], Ding et al. [31] tried to keep the
minimum routing cost by studying the problem of constructing the minimum CDS
C under the following constraint:

(ROC0) For any pair of nodes u and v, every shortest path between u and v has all
intermediate nodes in C.

They showed that MIN-CDS with constraint (ROC0) is polynomial-time solv-
able. However, the size of (ROC0)-constrained CDS is too big. Therefore, Ding
et al. [32] relaxed constraint (ROC0) to the following:

(ROC1) For any pair of nodes u and v, there exists a shortest path with all intermediate
nodes in C, connecting u and v.

Willson et al. [115] gave another motivation. Consider Fig. 7.1 again. Through
CDS {4,5,6}, all routing paths from node 1 to node 3, from node 1 to node 9, from
node 7 to node 3, and from node 7 to node 9 must pass through road 4-5-6. This

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 7,
© Springer Science+Business Media New York 2013

119

120 7 Routing-Cost Constrained CDS

1 2 3

4 5 6

7 8 9

Fig. 7.1 Routing through
CDS

makes road 4-5-6 very crowded. To improve the load balance, they also studied
MIN-CDS with constraint (ROC1) and proved NP-hardness of this problem and
gave a polynomial-time O(n)-approximation with distributed construction.

Ding et al. [32] showed that computing the minimum (ROC1)-constrained CDS
in general graph has no polynomial-time ρ lnΔ-approximation for 0 < ρ < 1
unless NP ⊆ DT IME(nO(loglogn)) where δ is the maximum node degree of input
graph. They also presented a distributed construction which produces approximation
solution with performance ratio H(δ (δ−1)

2) where H(k) = ∑k
i=1

1
i is the harmonic

function.
Ding et al. [33] found that the (ROC1)-constrained CDS is still too large and

hence they further relaxed constraint (ROC1) to (ROCα) for α ≥ 1 as follows:

(ROCα) For any pair of nodes u and v, mC(u,v) ≤ α ·m(u,v) where m(u,v) denotes the
number of intermediate nodes in the shortest path between u and v in input graph and
mC(u,v) denotes the number of intermediate nodes in the shortest path between u and v
through considered CDS C.

Ding et al. [33] showed that for any α ≥ 1, computing the minimum (ROCα)-
constrained CDS is NP-hard. Through computational experiments, they also found
that (ROC2)-constrained CDS has size much smaller than the (ROC1)-constrained
CDS. However, it is not easy to give a good theoretically guaranteed approximation
for MIN-CDS with constraint (ROCα) for α ≥ 2 in general graphs and hence left
the following problem open:

Open Problem 7.1.1. Is there a polynomial-time O(logn)-approximation for MIN-
CDS with constraint (ROCα) for α ≥ 2?

Du et al. [41] proved that for any α ≥ 2 MIN-CDS with constraint (ROCα)
does not have a polynomial-time (ρ lnδ)-approximation for 0 < ρ < 1 unless
NP⊆ DT IME(nO(log logn)). Du et al. [42] indicated that for α ≥ 2, MIN-CDS with
constraint (ROCα) could be treated as a minimum submodular cover problem with
submodular objective function [108].

While it is unlikely for MIN-CDS with constraint (ROCα) (α ≥ 1) to have a
polynomial-time constant-approximation in general graphs, Du et al. [43] move
their attention to unit disk graphs. They constructed a polynomial-time constant-

7.2 Complexity in General Graphs 121

approximation in unit disk graphs for MIN-CDS with constraint (ROCα) for α ≥ 5.
Du et al. [39] further gave a PTAS in unit disk graphs for MIN-CDS with constraint
(ROCα) for α ≥ 5. The following are still open:

Open Problem 7.1.2. Is there a polynomial-time constant-approximation in unit
disk graphs for MIN-CDS with constraint (ROCα) for 1≤ α ≤ 4?

Open Problem 7.1.3. Is there a PTAS in unit disk graphs for MIN-CDS with
constraint (ROCα) for 1≤ α ≤ 4?

Ding et al. [29, 30] extended some of the above works to wireless networks with
directional antennas.

7.2 Complexity in General Graphs

First, we give a simple and equivalent form of constraint (ROCα) for α = 0,1,
Let us define constraint (ROC*α) for α = 0,1, . . . as follows.

Let C be a considered CDS.
(ROC*0) For any pair of nodes u and v with m(u,v) = 1, every node adjacent to both u and
v belongs to C.
(ROC*α) For any pair of nodes u and v with m(u,v) = 1, mC(u,v)≤ α .

The following lemma shows that (ROCα) and (ROC*α) are equivalent.

Lemma 7.2.1. Let G be a connected graph and C a CDS of G. Then, for any α =
0,1, . . ., C satisfies (ROCα) if and only if C satisfies (ROC*α).

Proof. Since constraint (ROCα) contains constraint (ROC*α), it suffices to prove
that (ROC*α) implies (ROCα).

For α = 0, suppose (u,w1,w2, . . . ,wk,v) is a shortest path between u and v.
Then (u,w1,w2) is a shortest path between u and w2, (w1,w2,w3) is a shortest
path between w1 and w3, . . . (wk−1,wk,v) is a shortest path between wk−1 and v.
By (ROC*α), all w1,w2, . . . ,wk belong to C.

For α ≥ 1, suppose (u,w1,w2, . . . ,wk,v) is a shortest path between u and v.
By (ROC*α), u and w2 are connected by a path with all intermediate nodes
s11, . . . ,s1α1 in C where α1 ≤ α; s1α1 and w3 are connected by a path with
all intermediate nodes s21, . . . ,s2α2 in C where α2 ≤ α, . . . ,s1αk−1 and v are
connected by a path with all intermediate nodes sk1, . . . ,skαk in C where αk ≤ α
(Fig. 7.2). Therefore, u and v are connected by a path with all intermediate nodes
s11, . . . ,s1α1 ,s21, . . . ,s2α2 , . . . ,sk1, . . . ,skαk in C. Hence mC(u,v)≤ α ·m(u,v), that is,
(ROCα) holds. ��

Lemma 7.2.2. Let C be a dominating set of a connected graph G. Suppose C
satisfies constraint (ROC*α) for some α ∈ {0,1, . . .}. Then C is a CDS.

122 7 Routing-Cost Constrained CDS

vu
w1 wk

s11

Fig. 7.2 The proof of Lemma 7.2.1

Proof. Since G is connected, we have m(u,v) < ∞ for any two nodes u and v.
Therefore, for any two nodes u,v ∈ C, mC(u,v) ≤ αm(u,v) < ∞, that is, there is
a path connecting u and v within C. Thus, C induces a connected subgraph and
hence C is a CDS. ��

Now, we study the complexity of MIN-CDS with constraint (ROC*α) for α ≥ 0.

Theorem 7.2.3 (Ding et al. [31]). MIN-CDS with constraint (ROC*0) is polyno-
mialtime solvable.

Proof. Let C∗ be the minimum (ROC*0)-constrained CDS. Then a node u belongs
to C∗ if and only if u has two adjacent nodes x and y such that no edge exists between
x and y. This means that for each node u, checking whether u belongs to C∗ or not
can be done in polynomial time. ��

We show the NP-hardness of MIN-CDS with constraint (ROC*α) for α ≥ 1 by
constructing reduction from the well-known NP-hard problem MIN-SET-COVER.

Theorem 7.2.4 (Ding et al. [32]). MIN-CDS with constraint (ROC*1) is NP-hard.
Moreover, it does not have polynomial-time approximation with performance ratio
ρ lnδ for 0 < ρ < 1 unless NP ⊆ DTIME(nO(log logn)), where δ is the maximum
node degree of input graph.

Proof. We construct a new reduction from MIN-SET-COVER to MIN-CDS with
constraint (ROC1) as follows.

For each subset A∈ C, we create a node uA and for each element x∈ X , we create
a node vx. In addition, we create two nodes p and q. Connect p to every uA for A∈ C
and connect q to every uA for A ∈ C and every vx for x ∈ X . Connect uA to vx if and
only if x ∈ A. Denote by G the resulting graph (Fig. 7.3). We claim that C has a set
cover of size at most k if and only if G has an (ROC1)-constrained CDS of size at
most k+ 1.

Our claim holds trivially in case of |C|= 1. We next assume |C| ≥ 2.
First, assume C has a set coverA of size at most k. Then, it is easy to verify that

{uA | A ∈ A}∪{q} is a (ROC1)-constrained CDS of size at most k+ 1. Indeed, for
a node pair {x,y} in G, if {x,y}∩{p,q} = /0, then (x,q,y) must be a shortest path.
If x = p, then we must have y = vz or y = q for some z ∈ X . If y = vz, then there
exists A ∈ A such that z ∈ A. It follows that (p,uA,vz) is a shortest path. If y = q,
then for any A ∈A, (p,uA,q) is a shortest path.

7.2 Complexity in General Graphs 123

p

q

uA

vx

Fig. 7.3 The proof of
Theorem 7.2.4

Conversely, suppose that G has an (ROC1)-constrained CDS D of size at most
k+1. Note that the distance from p to each vx is two and every shortest path from p
to vx for x∈X must pass a node uA for some A∈C. Therefore,A= {A∈C | uA ∈D}
is a set cover. For A,B∈ C with A �= B, the distance between uA and uB is two and for
every shortest path between uA and uB, the intermediate node is not in {uA | A ∈ C}.
This means that there exists a node in D, but not in {uA | A ∈ A}. Hence, |A| ≤ k.

��
Theorem 7.2.5 (Du et al. [39]). For α ≥ 2, MIN-CDS with constraint (ROC*α)
is NP-hard. Moreover, It does not have polynomial-time approximation with
performance ratio ρ lnδ for 0 < ρ < 1 unless NP ⊆ DT IME(nO(loglogn)), where
δ is the maximum node degree of input graph.

Proof. We reduce MIN-SET-COVER to MIN-CDS with constraint (ROCα) in the
following way.

Consider an instance of MIN-SET-COVER, a finite set X and a collection C of
subsets of X with ∪A∈CA = X and |X | ≥ 2. First, construct a bipartite graph G =
(U,V,E) where U = {uA | A ∈ C}, V = {vx | x ∈ X}, and E = {(uA,vx) | x ∈ A}.
Next, we connect all nodes in U into a complete subgraph. The obtained graph is
called H (Fig. 7.4).

Now, we show that C contains a set cover of size at most k if and only if H has a
(ROCα)-constrained CDS of size at most k where α ≥ 2.

First, assume C contains a set coverA of size at most k. Let UA = {uA | A ∈A}.
Clearly, UA is a CDS. To verify UA satisfying constraint (ROCα), we consider a
pair of nodes x and y with m(x,y) = 1. There are two cases.

Case 1. x and y both belong to V , that is, x = va and y = vb for some a,b ∈ X .
Since A is a set cover. There exist A,B ∈ A such that a ∈ A and b ∈ B. If A �= B,
(va,uA,uB,vb) is a path with two intermediate nodes. If A = B, (va,uA = uB,vb) is a
path with one intermediate node. Thus, mUA(x,y)≤ 2.

Case 2. x is in U and y is in V , that is, x = uA and y = vb for some A ∈ C and
y = vb with b �∈ A. Since A is a set cover, there exists B ∈ A such that b ∈ B. Then
(uA,uB,vb) is a path with one intermediate node.

124 7 Routing-Cost Constrained CDS

uA uB

vx vy

Fig. 7.4 The proof of
Theorem 7.2.5

Next, assume H has a (ROCα)-constrained CDS D of size at most k. We claim
that for each vx ∈V , we must have a node uA ∈D such that x ∈ A. In fact, if vx �∈D,
then we must have a node uA dominating vx and such a uA satisfies x ∈ A. If vx ∈ D,
then we must have another node w in D since vx cannot dominate vy for y∈ X−{x}.
To connect vx with w, there must exist uA ∈ D such that x ∈ A. Our claim implies
that {A | uA ∈ D} is a set cover.

Now, the theorem results immediately from the fact that MIN-SET-COVER

has no polynomial-time ρ lnn-approximation for 0 < ρ < 1 unless NP ⊆
DTIME(nO(log logn)). ��

7.3 CDS with Constraint (ROC1)

Ding et al. [32] constructed two approximation algorithms for MIN-CDS with
constraint (ROC1), a sequential one and a distributed one. The sequence comes from
the observation that MIN-CDS with constraint (ROC1) can be reduced to MIN-SET-
COVER.

Theorem 7.3.1 (Ding et al. [32]). There is a polynomial-time H(δ (δ−1)
2)-approxi-

mation for MIN-CDS with constraint (ROC1).

Proof. Let G = (V,E) be an input connected graph for MIN-CDS with constraint
(ROC1). To construct an instance of MIN-SET-COVER, define that

Q = {{x,y} | m(x,y) = 1}

and for any w ∈V ,

Q(w) = {{x,y} ∈ Q | (x,w),(w,y) ∈V}.

7.4 CDS with Constraint (ROCα) for α ≥ 5 125

Then, MIN-CDS with constraint (ROC1) is equivalent to the problem of finding a
minimum node subset C such that ∪w∈CQ(w) = Q, that is, MIN-SET-COVER on an
input consisting of a finite set Q and a collection of subsets {Q(w) | w ∈ V} of Q.
Since MIN-SET-COVER has a polynomial-time H(γ)-approximation where γ is the

maximum cardinality of a subset in input subset collection [23] and |Q| ≤ δ (δ−1)
2 ,

the theorem holds. ��

7.4 CDS with Constraint (ROCα) for ˛≥ 5

While no good approximation algorithm has been designed for MIN-CDS with
constraint (ROCα) for α ≥ 2 in general graphs, progress has been made for
this problem in unit disk graphs. In unit disk graphs, the size of any maximal
independent set is linearly bounded by the size of the minimum CDS. Often one
can use this fact to construct polynomial-time constant-approximations for various
variations of the CDS problem. Du et al. [43] confirmed that this is also true for
MIN-CDS with constraint (ROCα) for α ≥ 5. To present their result, let us first
show a relationship between the constraint (ROC*α) for α ≥ 5 and a condition
about maximal independent set as follows.

Lemma 7.4.1. Let G be a connected graph and I a maximal independent set of G.
Suppose C ⊇ I is a CDS satisfies the following condition:

(I) For any two nodes u and v in I with m(u,v)≤ 3, mC(u,v)≤ 3.

Then constraint (ROC5) holds.

Proof. Consider any two nodes x and y with m(x,y) = 1. Since I is a maximal
independent set, we can find nodes x′,y′ ∈ I such that x′ is adjacent to x and y′
is adjacent to y. Therefore, m(x′,y′) ≤ 2+m(x,y) = 3. By assumption, we have
mC(x′,y′)≤ 3. Note that I ⊆C. Thus, x′,y′ ∈C. It follows that mC(x,y)≤ 5, that is,
(ROC*5) holds. By Lemma 7.2.1, (ROC5) holds. ��

The following algorithm is designed based on Lemma 7.4.1.

Algorithm ROC-CDS.
input a unit disk graph G.
Initially, set D← /0. The main body of this algorithm consists of two stages:
Stage 1. Construct a maximal independent set I.
Stage 2. For every pair of nodes u, v in I with m(u,v)≤ 3, compute a

shortest path p(u,v) and put all intermediate nodes of p(u,v) into D.
output C = D∪ I.

Lemma 7.4.2. Let I be a maximal independent set. Then for every u ∈ I, |{v ∈ I |
0 < m(u,v)≤ 3}| ≤ 69.

126 7 Routing-Cost Constrained CDS

Proof. For each node v ∈ I with m(u,v) ≤ 3, v lies in the disk with center u and
radius 4. By Zassenhaus–Groemer–Oler Inequality,

|{v ∈ I | 0 < m(u,v)≤ 3}| ≤ 2√
3
·16π + 4π = 69.6 . . .

since u ∈ I is not counted. Hence

|{v ∈ I | 0 < m(u,v)≤ 3}| ≤ 69. ��

Lemma 7.4.3. In Algorithm ROC-CDS, the node subset D obtained at Stage 2 has
size |D| ≤ 207|I|/2 where I is the maximal independent set obtained in Stage 1.

Proof. Construct a graph H with node set I and edge set {(u,v) | u,v,∈ I,0 <
m(u,v) ≤ 3}. By Lemma 7.4.2, the maximum node degree of H is at most 69.
Therefore, H contains at most 69|I|/2 edges. In Stage 2, each path p(u,v)
corresponds an edge (u,v) of H, for which we add at most three nodes to D since
m(u,v)≤ 3. Therefore, |D| ≤ 3 ·69|I|/2= 207|I|/2. ��
Theorem 7.4.4 (Du et al. [43]). Algorithm ROC-CDS produces a CDS C with size

|C| ≤ 443
2
3
·optMCDS + 201

2
3

which has the property that for any pair of nodes u,v, mC(u,v)≤ 5m(u,v).

Proof. By Lemmas 7.4.3 and 3.5.6,

|C| ≤ |D|+ |I| ≤ 104.5 · |I| ≤ 358.53 ·optMCDS + 503.48.

By Lemma 7.4.1, C has the property that for any pair of nodes u,v, mC(u,v) ≤
5m(u,v). ��

Furthermore, Du et al. [41] constructed a PTAS for MIN-CDS with constraint
(ROCα) for α ≥ 5.

To start their construction, let us first put input unit disk graph G = (V,E) in the
interior of the square [0,q]× [0,q]. Then construct a grid P(0) as shown in Fig. 7.5.
P(0) divides the square [0, pa]× [0, pa] into p2 cells where a = 2(α + 2)k for a
positive integer k and p = 1+ �q/a�. Each cell e is a a× a square, including its left
side and its lower side but not including its right side and upper side, so that all cells
are disjoint and their union covers the interior of the square [0,q]× [0,q].

For each cell e, construct a (a+ 4)× (a+ 4) square and a (a+ 2α + 4)× (a+
2α + 4) square with the center the same as that of e (Fig. 7.6). The area inside of
the second square (not including the boundary of the second square) and outside
of the cell e including the boundary of e) is called the boundary area of cell e,

7.4 CDS with Constraint (ROCα) for α ≥ 5 127

Fig. 7.5 Grid P(0)

Fig. 7.6 Central area ec and
boundary area eb

denoted by eb. The closed area bounded by the first square is called the central area
of cell e, denoted by ec. The union of the boundary area and the central area is the
open area bounded by the second square, denoted by ecb.
Now, for each cell e, we study the following problem.

LOCAL(e): Find the minimum subset D of nodes in V ∩ ecb such that (a) D dominates all
nodes in V ∩ec , and (b) for any two nodes u,v ∈V ∩ec with m(u,v) = 1 and {u,v}∩e �= /0,
mD(u,v) ≤ α .

Lemma 7.4.5. Suppose α ≥ 5 and |V ∩ecb|= ne. Then the minimum solution of the

LOCAL(e) problem can be computed in time nO(a4)
e .

Proof. Partition ec into �(a + 4)
√

2�2 small squares with diameter at most one
(Fig. 7.7). For each (closed) small square s, if V ∩s �= /0, then choose one node which
would dominate all nodes in V ∩ s. Those chosen nodes form a set D dominating
V ∩ ec and |D| ≤ �(a+ 4)

√
2�2.

128 7 Routing-Cost Constrained CDS

Fig. 7.7 Decomposition of
central area ec

Denote by M(u,v) the set of all intermediate nodes on a shortest path between
u and v. For any two nodes u,v ∈ D with m(u,v)≤ 3, connect them with a shortest
path between u and v. Namely, set

C = D∪ (∪u,v∈D:m(u,v)≤3M(u,v)
)
.

and show that C is a feasible solution of LOCAL(e) problem.
For any two nodes u,v ∈ V ∩ ec with m(u,v) = 1 and {u,v} �= /0, since D

dominates V ∩ ec, there are u′,v′ ∈ D such that u is adjacent to u′ and v is adjacent
to v′. Thus, m(u′,v′) ≤ 3. This implies that M(u,v) ⊆ C and hence mC(u,v) ≤ 5.
Therefore, C is a feasible solution of MIN-CDS with constraint (ROCα) for α ≥ 5.
Moreover,

|C| ≤ |D|+ 3 · |D|(|D|− 1)
2

≤ 1.5|D|2 ≤ 1.5 · �(a+ 4)
√

2�4.

This means that the minimum solution of the LOCAL(e) problem has a size at
most 1.5 · �(a+ 4)

√
2�4. Therefore, by an exhausting search, we can compute the

minimum solution of the LOCAL(e) problem in time nO(a4)
e . ��

Let De denote the minimum solution for the LOCAL(e) problem. Define D(0) =
∪e∈P(0)De where e ∈ P(0) means that e is over all cells in partition P(0).

Lemma 7.4.6. D(0) is a feasible solution of MIN-CDS with constraint (ROCα) for

α ≥ 5 and D(0) can be computed in time nO(a4) where n = |V |.
Proof. Since every node in V belongs to some ec, D(0) is a dominating set.
Moreover, for every two nodes u,v ∈ V with m(u,v) = 1, u must belong to
some cell e, which implies that u,v ∈ ec. Hence, mDe(u,v) ≤ α . It follows that
mD(0)(u,v) ≤ α . By Lemma 7.2.2, D(0) is feasible for MIN-CDS with constraint
(ROCα).

7.4 CDS with Constraint (ROCα) for α ≥ 5 129

Note that each node may appear in ecb for at most four cells e. By Lemma 7.4.5,
D(0) can be computed in time

∑
e∈P(0)

nO(a4)
e ≤ (4n)O(a4) = nO(a4),

where n = |V |. ��
To estimate the size of D(0), we consider a minimum solution D∗ of MIN-CDS

with constraint (ROCα). Define P(0)b = ∪e∈P(0)e
b.

Lemma 7.4.7. |D(0)| ≤ |D∗|+ 4|D∗ ∩P(0)b|.
Proof. First, we show that D∗ ∩ecb is feasible for the LOCAL(e) problem. In fact, it
is clear that D∗ ∩ecb dominates V ∩ec. For any two nodes u,v ∈ ec with m(u,v) = 1
and {u,v}∩e �= /0, the path between u and v with at most α intermediate nodes must
lie inside of ecb. Hence, mD∗(u,v)≤ α implies mD∗∩ecb(u,v)≤ α .

Since De is the optimal solution for the LOCAL(e) problem, we have |De| ≤
|D∗ ∩ ecb|. Thus

|D(0)| ≤ ∑
e∈P(0)

|De|

≤ ∑
e∈P(0)

|D∗ ∩ ecb|

≤ ∑
e∈P(0)

|D∗ ∩ e|+ ∑
e∈P(0)

|D∗ ∩ eb|

≤ |D∗|+ 4|D∗ ∩P(0)b|. ��
Now, we shift partition P(0) to P(i) as shown in Fig. 7.8 such that the left and

lower corner of the grid is moved to point (−2(α +2)i,−2(α +2)i). For each P(i),
compute a feasible solution D(i) in the same way as compute D(0) for P(0). Then
we have

(a) D(i) is a feasible solution of MIN-CDS with constraint (ROCα).
(b) D(i) can be computed in time nO(a4).
(c) |D(i)| ≤ |D∗|+ 4|D∗ ∩P(i)b|.

In addition, we have

Lemma 7.4.8. |D(0)+ |D(1)|+ · · ·+ |D(k− 1)| ≤ (k+ 8)|D∗|.
Proof. Note that P(i)b consists of a group of horizontal strips and a group of vertical
strips (Fig. 7.9). All horizontal strips in P(0)b∪P(1)b∪ ·· · ∪P(k− 1)b are disjoint
and all vertical strips in P(0)b∪P(1)b∪·· ·∪P(k− 1)b are also disjoint.

130 7 Routing-Cost Constrained CDS

Fig. 7.8 Horizontal and
vertical strips

Fig. 7.9 Grid P(i)

Therefore,
k−1

∑
i=0

|D∗ ∩P(i)b| ≤ 2|D∗|.

Hence,
k−1

∑
i=0
|D(i)| ≤ (k+ 8)|D∗|. ��

Set k = �1/(8ε)� and run the following algorithm.

Algorithm PTAS
input a unit disk graph G.

Compute D(0), D(1), . . . , D(k− 1);
Choose i∗, 0≤ i∗ ≤ k− 1 such that
|D(i∗)|= min(|D(0)|, |D(1)|, . . . , |D(k− 1)|);

output D(i∗).

7.4 CDS with Constraint (ROCα) for α ≥ 5 131

Theorem 7.4.9 (Du et al. [41]). Algorithm PTAS produces an approximation solu-
tion for MIN-CDS with constant (ROCα) with size

|D(i∗)| ≤ (1+ ε)|D∗|

and running time nO(1/ε4).

Proof. It follows from Lemmas 7.4.6 and 7.4.8. ��

Chapter 8
CDS in Disk-Containment Graphs

What I’m doing here is having more
points of analysis near the customers,
because the key here is quick containment.

PETER WATKINS

8.1 Motivation and Overview

Disk-containment graphs are generalizations of the unit disk graphs. Consider a
finite planar set V of nodes. Each node v is associated with a disk of radius rv

centered at v. The disk-containment graph (DCG) of V is the undirected graph
G = (V,E) in which uv ∈ E if and only if the disk-associated u contains v and disk-
associated v contains u. In other words, uv ∈ E if and only if the Euclidean distance
between u and v is no more than min{ru,rv}. When all the disks associated with the
nodes in V have unit radius, then the DCG of V is exactly the UDG of V . The DCG
arises naturally from communication topologies of multihop wireless networks with
disparate communication ranges [102, 124]. Indeed, if V represents the set of nodes
in a multihop wireless network and each rv represents the communication radius of
the node v, the DCG of V is exactly the symmetric communication topology of the
multihop wireless network.

In this chapter, we present the design and analysis of an approximation algorithm
for MIN-CDS in a DCG G [112]. By proper scaling, we assume that the smallest
radius of the associated disks is one and the largest radius radius of the associated

disks is R. Let g = 1+
√

5
2 be the golden ratio, and denote

R∗ = 5+ 8
⌈
logg R

⌉
.

The local independence number of a node u is the largest size of the independent
sets contained in the closed neighborhood of u in G. We first show that the local
independence number of any node in G is at most R∗ in Sect. 8.2. Based on this

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 8,
© Springer Science+Business Media New York 2013

133

134 8 CDS in Disk-Containment Graphs

upper bound, we derive in Sect. 8.3 a relation between the independence number α
(the size of a maximum independent set) of G and connected domination number γc

(the size of a minimum connected dominating set) of G:

α ≤ (R∗ − 1)γc + 1.

The relation between the independence number α and the connected domination
number γc plays a key role in deriving the approximation bounds of various
two-phased greedy approximation algorithms adapted for MIN-CDS of multihop
wireless networks with disparate communication ranges [102, 106, 124]. In this
chapter, we first proved that α ≤ (R∗ − 1)γc + 1, where R∗ = 5 + 8

⌈
logg R

⌉
for

any R ≥ 1. From this relation, we then derived an approximation bound R∗ +
ln(R∗ − 2) + 1 of the two-phased greedy approximation algorithm adapted from
[106].

Tighter relation between α and γc may be derived with more sophisticated
analyses. A possible approach of obtaining tighter relation between α and γc is to
develop a tighter bound on the number of independent nodes that can be packed in
the neighborhood of a pair of adjacent nodes. An attempt along this approach has
been made in [124], but the argument in [124] contains a critical error. However, we
do believe that this approach is very promising to achieve tighter relation between
α and γc.

Throughout this chapter, D(u,r) denotes the closed disk of radius r centered
at u, and ∂D(u,r) denotes the boundary circle of D(u,r). The Euclidean distance
between two nodes u and v is denoted by ‖uv‖. The cardinality of a finite set S is
denoted by |S|.

8.2 Local Independence Number

In this section, we present an upper bound on the local independence number of an
arbitrary node u.

Theorem 8.2.1. Suppose that I is an independent set of nodes adjacent to a node u.
Then |I| ≤ R∗.

The rest of this section is devoted to the proof of Theorem 8.2.1. Consider an
arbitrary node u ∈V and an independent set I of nodes adjacent to a node u. Let I1

be the set of nodes in I lying in the closed disk of radius g centered at u, and for
each j ≥ 2 let

I j =
{

v ∈ I : g j−1 < ‖uv‖ ≤ g j} .
From [49] we have |I1| ≤ 12. We shall further prove the following lemma for j ≥ 2.

Lemma 8.2.2. For any j ≥ 2,
∣∣I j
∣∣≤ 9 and

∣∣I j ∪ I j+1
∣∣≤ 16.

The above lemma implies Theorem 8.2.1 immediately. If
⌈
logg R

⌉
is odd, then

8.2 Local Independence Number 135

|I| =
∣∣∣∣⋃�logg R�

j=1 I j

∣∣∣∣

= |I1|+
(�logg R�−1)/2

∑
i=1

|I2i∪ I2i+1|

≤ 12+ 16 · (⌈logg R
⌉− 1

)
/2

= 8
⌈
logg R

⌉
+ 4 < R∗.

If
⌈
logg R

⌉
is even, then

|I| =
∣∣∣∣⋃�logg R�

j=1 I j

∣∣∣∣

= |I1|+ |I2|+
�logg R�/2−1

∑
i=2

|I2i−1∪ I2i|

≤ 12+ 9+ 16
(⌈

logg R
⌉
/2− 1

)
= 8

⌈
logg R

⌉
+ 5 = R∗.

So, Theorem 8.2.1 holds in either case.
Next, we prove Lemma 8.2.2 by using a subtle angular argument. Fix a j ≥ 2.

We first derive a lower bound on the angle separation between any pair of nodes in
I j at u.

Lemma 8.2.3. Suppose that v and w are two distinct nodes in I j satisfying that
‖uv‖ ≥ ‖uw‖. Then, ∠wuv > 36◦. In addition, for any 36◦ ≤ α < 60◦,

1. If ‖uw‖ ≥ 2g j−1 cosα , then ∠wuv > arccos g
4cosα ;

2. If ‖uv‖ ≤ 2g j−1 cosα , then ∠wuv > α .

Proof. Since v and w are two independent neighbors of u, we have

‖vw‖> min{rv,rw} ≥min{‖uv‖ ,‖uw‖}= ‖uw‖ .

Thus, v is outside the disk D(w,‖uw‖). Since

2‖uw‖> 2g j−1 > g j,

the two circles ∂D
(
u,g j

)
and ∂D(w,‖uw‖) intersect. Let z denote their intersection

point which lies on the same side of line uw as v (see Fig. 8.1). Then

cos∠wuz =
‖uz‖

2‖uw‖ <
g j

2g j−1 =
g
2
= cos36◦,

136 8 CDS in Disk-Containment Graphs

y

u w

zv
Fig. 8.1 v and w are two
distinct nodes in Ij satisfying
that ‖uv‖ ≥ ‖uw‖

which implies ∠wuz > 36◦. Hence,

∠wuv≥ ∠wuz > 36◦.

Clearly, ∠wuv = 36◦ if and only if w ∈ ∂D
(
u,g j−1

)
and v is coincide with the

point z.

(1) Suppose that ‖uw‖ ≥ 2g j−1 cosα . We have

cos∠wuz =
‖uz‖

2‖uw‖ ≤
g j

4g j−1 cosα
=

g
4cosα

,

which implies ∠wuz≥ arccos g
4cosα . Since v and w are independent, v is outside the

disk D(w,‖uw‖). Thus,

∠wuv > ∠wuz≥ arccos
g

4cosα
.

(2) Suppose that ‖uv‖ ≤ 2g j−1 cosα . Let y be the intersection point of the line
segment vw and ∂D(w,‖uw‖). Then,

‖uy‖< ‖uv‖ ≤ 2g j−1 cosα.

So,

cos∠wuy =
‖uy‖

2‖uw‖ <
2g j−1 cosα

2g j−1 = cosα,

which implies ∠wuy > α .

∠wuv > ∠wuy > α.

This completes the proof for lemma. ��

8.2 Local Independence Number 137

The first inequality in Lemma 8.2.2 follows immediately from the above lemma.
The next lemma derives some necessary conditions for

∣∣I j
∣∣= 9.

Lemma 8.2.4. Suppose that I j consists of nine nodes v1,v2, . . . ,v9 sorted in the
increasing order of the distances from u. Then

1. ‖uv1‖ ≤ 2g j−1 cos58.6◦ and ‖uv9‖ ≥ 2g j−1 cos39◦;
2. ‖uv2‖ ≤ 2g j−1 cos58.2◦ and ‖uv8‖ ≥ 2g j−1 cos39.8◦;
3. ‖uv3‖ ≤ 2g j−1 cos56.29◦ and ‖uv7‖ ≥ 2g j−1 cos43.2◦.

Proof. We will use the following fact multiple times in this proof: Suppose that I′
is a subset of five nodes in I j. Then, among five consecutive sectors centered at u
formed by the five nodes in I′, at least one of them does not contain any other node
in I j. This is because

∣∣I j \ I′
∣∣ = 4 < 5 and hence at least one of those five sectors

does not contain any node in I j \ I′.

(1) We prove the first part of lemma by contradiction. Assume to the contrary that
either

‖uv1‖> 2g j−1 cos58.6◦

or
‖uv9‖< 2g j−1 cos39◦.

We first claim that the angle separation of any two nodes in I j at u is greater
than 39◦. Indeed, if

‖uv1‖> 2g j−1 cos58.6◦,

then
‖uvi‖> 2g j−1 cos58.6◦

for all 1≤ i≤ 9, and hence the claim holds by Lemma 8.2.3(1). If

‖uv9‖< 2g j−1 cos39◦,

then
‖uvi‖< 2g j−1 cos39◦

for all 1 ≤ i ≤ 9, and hence the claim holds by Lemma 8.2.3(2). So, our claim
is true. We proceed in two cases.

Case 1. ‖uv5‖ ≥ 2g j−1 cos50◦. Let vi and vk be the two nodes in {v5,v6, . . . ,v9}
such that the sector ∠viuvk centered at u does not contain any other node in I j. Then
by Lemma 8.2.3(1), ∠viuvk > 51◦. So, the total of the nine consecutive angles at u
formed by the nodes in I j is greater than

51◦+ 8 ·39◦= 363◦ > 360◦,

which is also a contradiction.

138 8 CDS in Disk-Containment Graphs

Case 2. ‖uv5‖ < 2g j−1 cos50◦. Let vi and vk be the two nodes in {v1,v2, . . . ,v5}
such that the sector ∠viuvk centered at u does not contain any other node in I j. Then
by Lemma 8.2.3(2), ∠viuvk > 50◦. So, the total of the nine consecutive angles at u
formed by the nodes in I j is greater than

50◦+ 8 ·39◦= 362◦ > 360◦,

which is a contradiction.
In either case, we have reached a contradiction. Therefore, the first part of the

lemma holds.

(2) We prove the second part of the lemma by contradiction. Assume to the contrary
that either

‖uv2‖> 2g j−1 cos58.2◦,

or
‖uv8‖< 2g j−1 cos39.8◦.

We first claim that there exists a node va ∈ I j such that the angle separation of
any two nodes in I j \ {va} at u is greater than 39.8◦. Indeed, if

‖uv2‖> 2g j−1 cos58.2◦,

then
‖uvi‖> 2g j−1 cos58.2◦

for all 2≤ i≤ 9, and hence the claim holds for a = 1 by Lemma 8.2.3(1). If

‖uv8‖< 2g j−1 cos39.8◦,

then ‖uvi‖< 2g j−1 cos39.8◦

for all 1 ≤ i ≤ 8, and hence the claim holds for a = 9 by Lemma 8.2.3(2). So,
our claim is true. We remark that the angle separation between va and any other
node is still greater than 36◦. We proceed in two cases.

Case 1. ‖uv5‖ ≥ 2g j−1 cos50◦. Let vi and vk be the two nodes in {v5,v6, . . . ,v9}
such that the sector ∠viuvk centered at u does not contain any other node in I j. Then
by Lemma 8.2.3(1), ∠viuvk > 51◦. Let k be the number of consecutive angles at u
formed by the nodes in I j other than ∠viuvk with va on the boundary. Then, k ≤ 2.
So, the total of the nine consecutive angles at u formed by the nodes in I j is greater
than

51◦+(8− k) ·39.8◦+ k ·36◦

= 51◦+ 8 ·39.8◦− k ·3.8◦

≥ 51◦+ 8 ·39.8◦− 2 ·3.8◦

= 361.8◦ > 360◦,
which is also a contradiction.

8.2 Local Independence Number 139

Case 2. ‖uv5‖ < 2g j−1 cos50◦. Let vi and vk be the two nodes in {v1,v2, . . . ,v5}
such that the sector ∠viuvk centered at u does not contain any other node in I j. Then
by Lemma 8.2.3(2), ∠viuvk > 50◦. Let k be the number of consecutive angles at u
formed by the nodes in I j other than ∠viuvk with va on the boundary. Then, k ≤ 2.
So, the total of the nine consecutive angles at u formed by the nodes in I j is greater
than

50◦+(8− k) ·39.8◦+ k ·36◦ = 50◦+ 8 ·39.8◦− k ·3.8◦

≥ 50◦+ 8 ·39.8◦− 2 ·3.8◦

= 360.8◦ > 360◦,

which is a contradiction.
In either case, we have reached a contradiction. Therefore, the first part of the

lemma holds.

(3) We prove the third part of the lemma by contradiction. Assume to the contrary
that either

‖uv3‖> 2g j−1 cos56.29◦

or

‖uv7‖< 2g j−1 cos43.2◦.

We claim that there exist two nodes va,vb ∈ I j such that ∠vauvb > 58.2◦ and the
angle separation at u of any two nodes in I′ = I j \{va,vb} is greater than 43.2◦.
Indeed, if

‖uv3‖> 2g j−1 cos56.29◦,

then

‖uvi‖> 2g j−1 cos56.29◦

for all 3 ≤ i ≤ 9 and hence the angle separation at u of any two nodes in I j \
{v1,v2} is greater than 43.2◦ by Lemma 8.2.3(1). By the second part of this
lemma, we have

‖uv2‖ ≤ 2g j−1 cos58.2◦,

which implies ∠v1uv2 > 58.2◦ by Lemma 8.2.3(2). Thus the claim holds with
a = 1 and b = 2. Similarly, if

‖uv7‖< 2g j−1 cos43.2◦,

then
‖uvi‖< 2g j−1 cos43.2◦

140 8 CDS in Disk-Containment Graphs

for all 1 ≤ i ≤ 7 and hence the angle separation at u of any two nodes in I j \
{v8,v9} is greater than 43.2◦ by Lemma 8.2.3(2). By the second part of this
lemma, we have

‖uv8‖ ≥ 2g j−1 cos39.8◦,

which implies that ∠v8uv9 > 58.2◦ by Lemma 8.2.3(1). Thus the claim holds
with a = 8 and b = 9. So, our claim is true. We proceed in two cases.

Case 1. The sector ∠vauvb centered at u does not contain any node in I′. Then,
among the nine consecutive angles at u formed by the nodes in I j, ∠vauvb is greater
than 58.2◦, the two other angles with va and vb on the boundary respectively are
each greater than 36◦, and the rest six angles are all greater than 43.2◦. So, the total
of these nine angles is greater than

58.2◦+ 2 ·36◦+ 6 ·43.2◦= 389.4◦ > 360◦,

which is a contradiction.

Case 2. The sector ∠vauvb centered at u contains at least one node in I′. Then,
among the nine consecutive angles at u formed by the nodes in I j, the four angles
with va and vb on the boundary respectively are each greater than 36◦, and the rest
five angles are all greater than 43.2◦. So, the total of these nine angles is greater than

4 ·36◦+ 5 ·43.2◦= 360◦,

which is also a contradiction.
In either case, we have reached a contradiction. Therefore, the first part of the

lemma holds. ��
We further derive a lower bound on the angle separation between any pair of

nodes in I j and I j+1 respectively at u.

Lemma 8.2.5. Suppose that w ∈ I j and v ∈ I j+1.

1. If ‖uw‖ ≥ 2g j−1 cosα for some 36◦ ≤ α ≤ arccos g2

4 , then ∠wuv > arccos g2

4cosα .
2. If ‖uv‖ ≤ 2g j cosα for some arccos 1

g ≤ α < 60◦, then ∠wuv > arccos(gcosα).

Proof. Since v and w are two independent neighbors of u and ‖uv‖> ‖uw‖, we have

‖vw‖> min{rv,rw} ≥min{‖uv‖ ,‖uw‖}= ‖uw‖ .

Thus, v is outside the disk D(w,‖uw‖).
(1) Since

α ≤ arccos
g2

4
,

we have

2‖uw‖ ≥ 4g j−1 cosα ≥ 4g j−1 g2

4
= g j+1.

8.2 Local Independence Number 141

z
v

wu

Fig. 8.2 Part (1) in the proof
of Lemma 8.2.5

Thus, the two circles ∂D
(
u,g j+1

)
and ∂D(w,‖uw‖) intersect. Let z denote their

intersection point which lies on the same side of line uw as v (see Fig. 8.2). Since

‖uw‖ ≥ 2g j−1 cosα,

we have

cos∠wuz =
‖uz‖

2‖uw‖ ≤
g j+1

4g j−1 cosα
=

g2

4cosα
,

which implies that

∠wuz≥ arccos
g2

4cosα
.

Thus,

∠wuv > ∠wuz≥ arccos
g2

4cosα
.

(2) Since

α ≥ arccos
1
g
,

we have

‖uv‖ ≤ 2g j cosα ≤ 2g j 1
g
= 2g j−1 < 2‖uw‖ .

Thus, the two circles ∂D(u,‖uv‖) and ∂D(w,‖uw‖) intersect. Let y denote their
intersection point which lies on the same side of line uw as v (see Fig. 8.3). Since

‖uv‖ ≤ 2g j cosα,

we have

cos∠wuy =
‖yu‖

2‖wu‖ <
2g j cosα

2g j−1 = gcosα,

which implies that
∠wuy > arccos(gcosα).

142 8 CDS in Disk-Containment Graphs

v y

wu

Fig. 8.3 Part (2) in the proof
of Lemma 8.2.5

Thus,
∠wuv > ∠wuy > arccos(gcosα).

This completes the proof for lemma. ��
Now are ready to prove the second inequality in Lemma 8.2.2. Assume to the

contrary that
∣∣I j ∪ I j+1

∣∣= l ≥ 17. Let

I j ∪ I j+1 = {vi : 1≤ i≤ l}

where v1,v2, . . . ,vl are sorted in the increasing order of the distances from the node
u. By Lemma 8.2.2, we have

max
{∣∣I j

∣∣ , ∣∣I j+1
∣∣}≤ 9.

Since l ≥ 17, we must have

max
{∣∣I j

∣∣ , ∣∣I j+1
∣∣} = 9,

min
{∣∣I j

∣∣ , ∣∣I j+1
∣∣} ≥ 8.

We consider two cases:

Case 1.
∣∣I j
∣∣= 9. Then

∣∣I j+1
∣∣≥ 8. By Lemma 8.2.4, we have

‖uv7‖ ≥ 2g j−1 cos43.2◦.

Let J = {v7,v8,v9}. By Lemma 8.2.3(1), the angle separation between any two
nodes in J at u is greater than 56.29◦. We further consider two subcases:

Subcase 1.1: There exist two nodes va,vb ∈ J such that the sector ∠vauvb centered
at u does not contain any node in I j+1 (see Fig. 8.4). Let vi and vk be the two nodes
in I j+1 such that the sector ∠viuvk contains va and vb but does not contain any other
node in I j+1, and vi,va,vb and vk are in the clockwise direction with respect to u. By
Lemma 8.2.5(1),

min{∠vkuvb,∠vauvi}> 26◦.

8.2 Local Independence Number 143

va

vi

vk

vb

u

Fig. 8.4 Subcase 1.1

u
v7

v8

v’’

v’

v’’
v’

v9

v’

v’’

9
9

8

8
7

7

Fig. 8.5 Subcase 1.2

Thus,

∠vkuvb +∠vbuva +∠vauvi

> 2 ·26◦+ 56.29◦

= 108.29◦.

Hence, the total of the
∣∣I j+1

∣∣ consecutive angles at u formed by the nodes in I j+1 is
greater than

108.29◦+
(∣∣I j+1

∣∣− 1
) ·36◦

≥ 108.29◦+ 7 ·36◦= 360.29◦

> 360◦,

which is a contradiction.
Subcase 1.2: For any two nodes va,vb ∈ J, the sector ∠vauvb centered at u contains
at least one node in I j+1 (see Fig. 8.5). For each a = 7,8 and 9, let v′a,v′′a ∈ I j+1

satisfy that va is the only node contained in the sector ∠v′auv′′a centered at u among
all the nodes in I j+1∪ J. Then by Lemmas 8.2.5(1) and 8.2.4, we have

144 8 CDS in Disk-Containment Graphs

vb
vk

vi

u

va

Fig. 8.6 Subcase 2.1

min
{
∠v′7uv7,∠v7uv′′7

}
> 26◦,

min
{
∠v′8uv8,∠v8uv′′8

}
> 31.5◦,

min
{
∠v′9uv9,∠v9uv′′9

}
> 32.5◦.

Thus,

∠v′7uv′′7 +∠v′8uv′′8 +∠v′9uv′′9
> 2 · (26◦+ 31.5◦+ 32.5◦)

= 180◦.

Hence, the total of the
∣∣I j+1

∣∣ consecutive angles at u formed by the nodes in I j+1 is
greater than

180◦+
(∣∣I j+1

∣∣− 3
) ·36◦

≥ 180◦+ 5 ·36◦= 360◦,

which is a contradiction.
Case 2.

∣∣I j
∣∣= 8. Then

∣∣I j+1
∣∣= 9. By Lemma 8.2.4, we have

‖uv11‖ ≤ 2g j cos56.29◦.

Let J = {v9,v10,v11}. By Lemma 8.2.3(2), the angle separation between any two
nodes in J at u is greater than 56.29◦. We further consider two subcases:

Subcase 2.1: There exist two nodes va,vb ∈ J such that the sector ∠vauvb centered
at u does not contain any node in I j (see Fig. 8.6). Let vi and vk be the two nodes
in I j such that the sector ∠viuvk contains va and vb but does not contain any other
node in I j, and vi,va,vb and vk are in the clockwise direction with respect to u. By
Lemma 8.2.5(2),

min{∠vkuvb,∠vauvi}> 26◦.

8.2 Local Independence Number 145

u

v’’

v9

9
9

v

v’’

v’ v10

v’’

v’

v’

10

10
11

11

11

Fig. 8.7 Subcase 2.2

Thus,

∠vkuvb +∠vbuva +∠vauvi

> 2 ·26◦+ 56.29◦

= 108.29◦.

Hence, the total of the 8 consecutive angles at u formed by the nodes in I j is greater
than

108.29◦+ 7 ·36◦= 360.29◦ > 360◦,

which is a contradiction.

Subcase 2.2: For any two nodes va,vb ∈ J, the sector ∠vauvb centered at u contains at
least one node in I j (see Fig. 8.7). For each a = 9,10 and 11, let v′a,v′′a ∈ I j satisfying
that va is the only node contained in the sector ∠v′auv′′a centered at u among all the
nodes in I j ∪ J. Then by Lemmas 8.2.5(2) and 8.2.4, we have

min
{
∠v′9uv9,∠v9uv′′9

}
> 32.5◦,

min
{
∠v′10uv10,∠v10uv′′10

}
> 31.5◦,

min
{
∠v′11uv11,∠v11uv′′11

}
> 26◦.

Thus,

∠v′9uv′′9 +∠v′10uv′′10 +∠v′11uv′′11

> 2 · (32.5◦++31.5◦+ 26◦)

= 180◦.
Hence, the total of the eight consecutive angles at u formed by the nodes in I j is
greater than

180◦+ 5 ·36◦= 360◦,

which is a contradiction.
Thus, in every case we have reached a contradiction. So, we must have∣∣I j ∪ I j+1

∣∣≤ 16. This completes the proof of Lemma 8.2.2.

146 8 CDS in Disk-Containment Graphs

8.3 Independence Number

In this section, we present an upper bound on the independence number α in terms
of the connected domination number γc.

Theorem 8.3.1. α ≤ (R∗ − 1)γc + 1.

Proof. Let M be any maximum independent set of G, and OPT be any MIN-CDS
of G. Then |M| = α and |OPT | = γc. Consider an arbitrary preorder traversal of
G [OPT] given by v j with 1 ≤ j ≤ γc. Let M1 be the set of nodes in M that are
adjacent to v1. For any 2≤ j≤ γc, let Mj be the set of nodes in M that are adjacent to
v j but none of v1,v2, . . . ,v j−1. Then the γc sets Mj with 1≤ j≤ γc form a partition of
M. By Theorem 8.2.1, |M1| ≤ R∗. For any 2≤ j ≤ γc, there exists an index 1≤ j′ ≤
j−1 such that v j′ is adjacent to v j. Since v j′ is not adjacent to any node in Mj, the set{
v j′
}∪Mj is an independent set of nodes adjacent to v j. Again by Theorem 8.2.1,

we have ∣∣Mj
∣∣+ 1≤ R∗,

and consequently ∣∣Mj
∣∣≤ R∗ − 1.

Therefore,

|M| =
γc

∑
j=1

∣∣Mj
∣∣≤ R∗+(R∗ − 1)(γc− 1)

= (R∗ − 1)γc + 1.

Thus, the theorem holds. ��

8.4 Greedy Approximation for MIN-CDS

In this section, we present a greedy algorithm adapted from the two-phased greedy
approximation algorithm originally proposed in [106] for computing a CDS in
UDGs to DCGs.

The greedy algorithm consists of two phases. The first phase selects a maximal
independent set (MIS) I of G. Specifically, we construct an arbitrary rooted spanning
tree T of G and select an MIS I of G in the first-fit manner in the breadth-first-search
ordering in T . The second phase selects a set C of connectors to interconnect I.
For any subset U ⊆ V \ I, f (U) denotes the number of connected components in
G [I∪U]. For any U ⊆ V \ I and any w ∈ V \ I, the gain of w with respect to U is
defined to be f (U)− f (U ∪{w}). The second phase greedily selects C iteratively
as follows. Initially C is empty. While f (C)> 1, choose a node w ∈V \ (I∪C) with
maximum gain with respect to C and add w to C. When f (C) = 1, then I ∪C is a
CDS. Let C be the output of the second phase. Then, I∪C is the output CDS.

8.4 Greedy Approximation for MIN-CDS 147

The correctness of the second phase follows from the following bound on the
gain established in [106].

Lemma 8.4.1. Suppose that there are f (U) > 1 for some U ⊆ V \ I. Then, there
exists a w ∈V \ (I∪U) whose gain with respect to U is at least

max{1,� f (U)/γc�− 1} .

Proof. By the selection of I, any pair of complementary subset of I are separated by
exactly two hops. Thus, there is a node w which is adjacent to at least two connected
components of G [I∪U]. For such node w, its gain with respect to U is at least one
and w ∈V \ (I∪U).

Now, consider a minimum CDS

OPT = {vi : 1≤ i≤ γc}
of G, and let di be the number of components adjacent to or containing vi for 1 ≤
i≤ γc. Then,

γc

∑
i=1

di ≥ f (U)

because each component of G [I∪U] must be adjacent to or contain some node in
OPT . So,

max
1≤i≤γc

di ≥ � f (U)/γc� .

Let w be the node in OPT which is adjacent to the largest number of connected
components in G [I∪U]. Then, the gain of w with respect to U is at least
� f (U)/γc�− 1 and w ∈V \ (I∪U).

Finally, let w be a node in w ∈V \ (I∪U) with maximum gain with respect to U .
Then, its gain with respect to U is at least

max{1,� f (U)/γc�− 1} .
So, the lemma holds. ��

We further apply the above lemma to derive the following upper bound on |C|.
Lemma 8.4.2. |C| ≤ (ln(R∗ − 2)+ 2)γc.

Proof. For each 1 ≤ i≤ |C|, we denote by Ci the sequence of the first i nodes in C.
We also set C0 = /0. Let k be the first (smallest) nonnegative integer such that

f (Ck)< 2γc + 2.

We claim that
|C \Ck| ≤ 2γc− 1.

By Lemma 8.4.1, each node in C \Ck has gain at least one. If f (Ck)≤ 2γc, then

|C \Ck| ≤ f (Ck)− 1≤ 2γc− 1.

148 8 CDS in Disk-Containment Graphs

If f (Ck) = 2γc + 1, then the first node in C \Ck has gain at least two with respect to
Ck by Lemma 8.4.1, and hence

2+(|C \Ck|− 1)≤ f (Ck)− 1 = 2γc,

which also implies that
|C \Ck| ≤ 2γc− 1.

Thus, the claim holds.
The previous claim implies that

|C|= k+ |C \Ck| ≤ k+ 2γc− 1 = (k− 1)+ 2γc.

Thus, it is sufficient to show that

k− 1≤ γc ln(Δ− 2) .

This inequality holds trivially if k≤ 1. So we assume that k > 1. For each 0≤ i≤ k,
let

�i = f (Ci)− γc.

Then

|I|− γc = �0 > �1 > · · ·> �k ≥ γc + 2.

By Lemma 8.4.1, for each 0≤ i≤ k,

�i−1− �i = f (Ci−1)− f (Ci)≥ f (Ci−1)

γc
− 1 =

�i−1

γc
,

and hence
�i−1− �i

�i−1
≥ 1

γc
.

Therefore,

k
γc
≤

k

∑
i=1

�i−1− �i

�i−1
≤ ln

�0

�k
≤ ln

|I|− γc

γc + 2
.

By Theorem 8.3.1,

|I|− γc

γc + 2
≤ (R∗ − 1)γc + 1− γc

γc + 2

=
(R∗ − 2)γc + 1

γc + 2

≤ R∗ − 2.

8.4 Greedy Approximation for MIN-CDS 149

Thus,

k
γc
≤ ln(R∗ − 2)

which implies
k ≤ γc ln(R∗ − 2) .

This completes the proof of the lemma. ��
From Theorem 8.3.1 and Lemma 8.4.2, we obtain the following bound on the

size of the CDS output by the greedy algorithm.

Theorem 8.4.3. |I∪C| ≤ (R∗+ ln(R∗ − 2)+ 1)γc + 1.

Chapter 9
CDS in Disk-Intersection Graphs

I don’t like to hurt people, I really
don’t like it at all. But in order to get a red light
at the intersection, you sometimes have to have an accident.

JACK ANDERSON

9.1 Motivation and Overview

Consider a finite set V of nodes in the plane and a radius function r : V → IR+. The
disk-intersection graph (DIG) of V with the radius function r, denoted by Gr (V),
is the undirected graph on V in which u and v are adjacent if and only if the disk
centered at u of radius r (u) and the disk centered at v of radius r (v) intersect, or
equivalently,

‖uv‖ ≤ r (u)+ r (v) .

If r (v) = 1/2 for all v ∈ V , then Gr (V) is exactly the unit disk graph (UDG) of
V . Thus, the class of UDGs is a subclass of the class of DIGs. Hence, MIN-DS
and MIN-CDS restricted to DIGs are also NP-hard. However, the approximation
algorithms for MIN-DS and MIN-CDS restricted to UDGs cannot be directly
extended to those for MIN-DS and MIN-CDS restricted to DIGs.

In this chapter, we present a simple local-search approximation algorithm for
MIN-DS of DIGs, which yields a polynomial time approximation scheme (PTAS)
for MIN-DS of DIGs [59]. In addition, we show that for any fixed ε > 0, there is
a polynomial (3+ ε)-approximation algorithm for MIN-CDS of DIGs. The rest of
this chapter is organized as follows. In Sect. 9.2, we introduce the Voronoi diagram
and Voronoi dual of a set of disks and their geometric properties. In Sect. 9.3, we
describe a local-search approximation algorithm for MIN-DS of DIGs and show that
it yields a PTAS. In Sect. 9.4, we present a two-stage approximation algorithm for
MIN-CDS of DIGs.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 9,
© Springer Science+Business Media New York 2013

151

152 9 CDS in Disk-Intersection Graphs

9.2 Voronoi Diagram and Dual of Disks

A pair of disk disks are said to be geometrically redundant if one is contained in the
other. A set of four disks form a degenerate quadruple if there is a circle which is
either externally tangent to all of them (see Fig. 9.1a) or internally tangent to all of
them (see Fig. 9.1b).

LetD be a finite set of disks in which no pair of disk are geometrically redundant
and no quadruple of disk are degenerate. Then the centers of the disk in D are all
distinct. Let V be the set of centers of the disk in D. For v ∈ V , we use D(v) to
denote the disk in D centered at v and ρ (v) to denote the radius of the disk D(v).
The shifted distance from a point p and a node v ∈V is defined to be

�(p,v) = ‖pv‖−ρ (v)

For a point p and a node v ∈V , denote

�(p,v) = ‖pv‖−ρ (v)

In other words, |�(p,v)| is the Euclidean distance from p to the boundary of the disk
D(v), and �(p,v) is positive (respectively, negative) if p is outside (respectively,
inside) D(v). Figure 9.2 illustrates the shifted distances. Clearly, for each point p
and any two nodes u and v in V , if �(p,u)≤ �(p,v) and p ∈ D(v), then p ∈D(u) as
well. For each v ∈V , the set of points p in the plane satisfying that

�(p,v) = min
u∈V

�(p,u)

is referred to the Voronoi cell of D(v). The lemma below shows that the Voronoi
cell of D(v) is nonempty and is star-shaped with respect to v.

a b

Fig. 9.1 Degenerate quadruples

9.2 Voronoi Diagram and Dual of Disks 153

1
pv

1
v p

a b

Fig. 9.2 The shifted distance

Lemma 9.2.1. Consider any v ∈V.

1. v lies in only the Voronoi cell of D(v).
2. For any point p in the cell of v, each point in the interior of the line segment vp

lies in only the Voronoi cell of D(v).

Proof. (1) For any u ∈V \ {v},

�(v,u)− �(v,v) = ‖vu‖− (ρ (u)−ρ (v))> 0,

where the last inequality follows from the fact that D(u) and D(v) are not
geometrically redundant. Thus, the first part of the lemma holds.

(2) Consider any point q in the interior of the line segment vp and any u ∈V \ {v}.
We have

�(q,v) = ‖qv‖−ρ (v)

= ‖pv‖−‖pq‖−ρ (v)

= �(p,v)−‖pq‖
≤ �(p,u)−‖pq‖
= ‖pu‖−‖pq‖−ρ (u)

≤ ‖qu‖−ρ (u)

= �(q,u).

We further claim that �(q,v) �= �(q,u). Assume to the contrary that the claim
does not hold. Then,

‖pu‖−‖pq‖= ‖qu‖

154 9 CDS in Disk-Intersection Graphs

and
�(p,v) = �(p,u).

So, q lies in the line segment pu. By symmetry, we assume that v also lies in the
segment pu. Then,

‖uv‖ = ‖pu‖−‖pv‖
= (�(p,u)+ρ (u))− (�(p,v)+ρ (v))

= ρ (u)−ρ (v) .

This means that D(v) is internally tangent to D(u), which is a contradiction.
Thus, our claim holds. Therefore,

�(q,v)< �(q,u).

So, the second part of the lemma holds. ��
Clearly, the boundary of the Voronoi cell of each disk in D is a concatenation of

parts of hyperbolic curves and/or lines. The Voronoi cells of all disks in D induce
a decomposition of the plane, which is known as the Voronoi diagram of D. Since
D contains no degenerate quadruple, no point belongs to Voronoi cells of more than
three disks in D. A vertex of the Voronoi diagram of D is an point which belongs
to the Voronoi cells of three disks in V . The Voronoi dual of D is a graph on V in
which two nodes u and v are adjacent if and only if the Voronoi cells of D(u) and
D(v) share a common point. It is a planar graph as shown in the lemma below.

Lemma 9.2.2. The Voronoi dual of D is a planar graph.

Proof. Consider any edge e = uv of the Voronoi dual of D. Let pe be an arbitrary
common point shared by the Voronoi cells of D(u) and D(v) which is not a vertex
of the Voronoi diagram ofD. The poly-segment upev, which is the concatenation of
the two line segments upe and vpe, is referred to as the geometric embedding of e
in the plane. We show that the geometric embeddings of any two edges e and e′ do
not cross each other (i.e., have no common interior point). Assume to the contrary
that they have a common interior point q. We consider in two cases.

Case 1: e and e′ have no common endpoint. Let e = uv and e′ = u′v′. By
Lemma 9.2.1, any interior point of the poly-segment upev other than pe either lies
only in the Voronoi cell of D(u) or only in the Voronoi cell of D(v), and hence
cannot lie in poly-segment u′pe′v

′. Thus, q must be the point pe. Similarly, q must
be the point pe′ . However, q = pe = pe′ would imply that {u,v,u′,v′} is a degenerate
quadruple, which is a contradiction.

Case 2: e and e′ have one common endpoint. Let e = uv and e′ = u′v. By
Lemma 9.2.1, any interior point of the line segment upe lies only in the Voronoi
cell of D(u), and hence cannot lie in poly-segment u′pe′v. Thus, q must lie in the
line segment vpe. Similarly, q must lie in the line segment vpe′ . However, pe �= pe′
for otherwise, pe would be a vertex of the Voronoi diagram of D, which contradicts

9.3 Local Search for MIN-DS 155

to the selection of pe. Thus, the two line segments vpe and vpe′ only meet at v. So,
q = v, which is a contradiction.

In either case, we have reached a contradiction. So, the geometric embeddings of
any two edges e and e′ do not have a cross each other. Therefore, the lemma holds.

��

9.3 Local Search for MIN-DS

In this section, we present a local-search algorithm for MIN-DS. Suppose that each
node in V has a unique ID for tie-breaking. A node v ∈ V is said to be redundant
if there exists a node u ∈ V satisfying that either v only dominates a proper subset
of nodes dominated by u, or v dominates exactly the same set of nodes but has a
larger ID than u. Let V ∗ denote the set of nonredundant nodes in V . Clearly, V ∗ still
contains a minimum DS. Let B be a DS contained in V ∗. A set U ⊆ B is said to be a
loose subset of B if there is a subset U ′ of V ∗ such that |U ′|< |U | and (B\U)∪U ′
is still a DS, and to be a tight subset of B otherwise. B is said to be k-tight if every
subset U ⊆ B with |U | ≤ k is tight. Intuitively, for sufficiently large k the size of a
k-tight DS is close to the domination number γ , which is the size of a minimum DS.
Technically, we relate a k-tight DS with a minimum DS using the following planar
expansion theorem established in [83].

Theorem 9.3.1. There are two fixed positive constants c and K such that for any
planar bipartite graph H = (X ,Y ;E) satisfying that |X | ≥ 2 and for every subset
Y ′ ⊆ Y of size at most k≥ K, |NH(Y ′)| ≥ |Y ′|, we have

|Y | ≤ (1+ c/
√

k) |X | .

With the help of the above theorem, we shall prove the following relation between
the size of k-tight DS and the domination number γ .

Theorem 9.3.2. Let c and K be the two fixed constants in Theorem 9.3.1. Then, for
any k-tight DS B⊆V ∗ with k ≥max{K,2},

|B| ≤
(

1+ c/
√

k
)

γ.

Theorem 9.3.2 suggests a local-search algorithm for MIN-DS, referred to as k-
Local Search (k-LS), where k is a positive integer parameter at least two. It computes
a k-tight cover B⊆V ′ in two phases:

• Preprocessing Phase: Compute the set V ∗ of nonredundant nodes in V , and then
compute a cover B⊆ V ∗ by the well-known greedy algorithm for Minimum Set
Cover.

156 9 CDS in Disk-Intersection Graphs

• Replacement Phase: While B is not k-tight, find a subset U of B with size at most
k and a subset U ′ of V ∗ with size at most |U |− 1 satisfying that (B\U)∪U ′ is
still a DS; replace B by (B\U)∪U ′. Finally, we output B.

By Theorem 9.3.2, the algorithm k-LS has an approximation ratio at most 1 +

O
(

1/
√

k
)

when k ≥ K. Its running time is dominated by the second phase. Let

m = |V ∗|. Then, the second phase consists of O(m) iterations. In each iteration, the
search for the subset U and its replacement U ′ takes at most

O
(

mk
)
·O
(

mk−1
)
= O

(
m2k−1

)

time. So, the total running time is

O(m) ·O
(

m2k−1
)
= O

(
m2k
)
.

This means that the algorithm k-LS is a PTAS.
We move on to the proof of 9.3.2. Consider a minimum DS O contained in V ∗.

Theorem 9.3.2 holds trivially if |B|= |O|. So, we assume that |B|> |O|. Then,

|B\O|> |O\B| .

In addition, |O\B| ≥ k for otherwise, we can choose a subset of |O\B|+ 1 nodes
from B\O and replace them by O\B to get a smaller DS, which contradicts to the
fact that B is k-tight. Let T be the set of nodes in V not dominated by O∩B. Then,
each node in T is dominated by some node in B\O and by some node in O\B. In
addition, we have the following stronger property.

Lemma 9.3.3. There is a planar bipartite graph H on O \B and B \O satisfying
the following “locality condition”: For each t ∈ T, there are two adjacent nodes in
H both of which dominate t.

Let H be the planar bipartite graph satisfying the property in the above lemma.
We claim that for any U ⊆ B \O, (B\U)∪NH (U) is still a DS. Indeed, consider
any t ∈V . If t is dominated by B\U , then it is also dominated by (B\U)∪NH (U).
If t is not dominated by B \U , then t is only dominated by nodes in U and hence
t ∈ T . By Lemma 9.3.3, there exist two adjacent nodes u ∈ B\O and v ∈O\B both
of which dominate t. Then, we must have u ∈U and hence v ∈ NH (U). Thus, t is
still dominated by (B\U)∪NH (U). So, the claim holds.

Now, consider any U ⊆ B\O with |U | ≤ k. Then |NH (U)| ≥ |U |, for otherwise
(B\U)∪NH (U) is a DS smaller than B, which contradicts to the fact that B is
k-tight. By Theorem 9.3.1, we have

|B\O| ≤ (1+ c/
√

k) |O\B|
and hence

|B| ≤ (1+ c/
√

k) |O| .
So, Theorem 9.3.2 holds.

9.3 Local Search for MIN-DS 157

In the remaining of this section, we prove Lemma 9.3.3. Let B′ (respectively, O′)
be a replication of B\O (respectively, O\B), and let V ′ = O′ ∪B′. Each replication
v ∈ V ′ also has a radius r (v) equal to the radius of the original node in V it is
replicated from. For each v ∈V ′, define

r̄ (v) = min{‖uv‖− r (u) : ‖uv‖> r (u)+ r (v) ,u ∈V}.

Clearly, r̄ (v)> r (v), and if we increase the radius of v to any value below r̄ (v), the
set of nodes in V dominated by v remains the same. A function ρ on V ′ is said to be
domination-preserving if r (v)≤ ρ (v)< r̄ (v) for each v ∈V ′. For each domination-
preserving function ρ , we use Dρ to denote the collection of disks centered at v of
radius ρ (v) for all v ∈V ′.

Lemma 9.3.4. There exists a domination-preserving function ρ on V ′ such thatDρ
contains no degenerate quadruple.

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let ρ
be the “fewest counterexample”, in other words, Dρ contains the least number of
degenerate quadruples. Suppose that the disk centered at u ∈ V ′ is contained in at
least one quadruple inDρ . We show that we can change the radius of u to some value
in [r (u) , r̄(u)) such that the disk of u is not involved in any degenerate quadruple.
Consider any triple disks D1,D2,D3 in Dρ which can potentially form a degenerate
quadruple with some disk centered at u. Let vi be the center of Di for 1≤ i≤ 3. For
each circle which is either externally tangent to the triple or internally tangent to the
triple, its center q must satisfy the equalities

‖qv1‖−ρ (v1) = ‖qv2‖−ρ (v2) = ‖qv3‖−ρ (v3) .

So, q lies in a branch of a hyperbola with two foci v1 and v2 (which can be
degenerated to the perpendicular bisector of v1v2), and similarly, q also lies in
a branch of a hyperbola with two foci v1 and v3 (which can be degenerated to
the perpendicular bisector of v1v3). Since these two branches may have at most
4 intersection points, q can take at most 4 positions. Thus, for a disk centered at u
to form a degenerate quadruple with D1,D2, and D3, its radius can be of at most
4 values, each of which is referred to as a forbidden radius of u. As the number of
triples of disks in Dρ which can potentially form a degenerate quadruple with some

disk centered at u is at most
(|V ′|−1

3

)
, the total number of forbidden radii of u is at

most 4
(|V ′|−1

3

)
. Now consider the radius function ρ ′ on V ′ satisfying that ρ ′ (u) takes

some value in [r (u) , r̄(u)) other than the forbidden radii of u, and ρ ′ (v) = ρ (v) for
each v �= u. Then, ρ ′ is still domination-preserving but Dρ ′ contains strictly fewer
degenerate quadruples. This contradicts to the choice of ρ . Therefore, the lemma
holds. ��

Now, we fix a domination-preserving function ρ on V ′ such that Dρ contains no
degenerate quadruple. For each node v∈V ′, let D(v) denote the disk centered at v of
radius ρ (v). We claim that any pair of disks in Dρ are geometrically nonredundant.

158 9 CDS in Disk-Intersection Graphs

Indeed, assume to the contrary that there exist two nodes in u and v such that D(u)⊆
D(v). Since ρ is domination-preserving, all nodes in V dominated by u are also
dominated by v, which is a contradiction. Thus, our claim holds. Let H be the graph
obtained from the Voronoi dual of Dρ by removing all edges between two nodes in
O′ and all edges between two nodes in B′. By Lemma 9.2.2, H is a planar bipartite
graph on O′ and B′.

Next, we show that H satisfies the locality condition: For each t ∈ T , there are
two adjacent nodes in H both of which dominate t. Clearly, t is dominated by a
node v ∈ V ′ if and only if �(t,v) ≤ ρ (t) where �(t,v) = ‖tv‖−ρ (v) is the shifted
distance from t to v. Thus, if �(t,u)≤ �(t,v) for some two nodes u and v in V ′ and
t is dominated by v, then t is also dominated by u as well. We consider two cases:

Case 1: t lies in the Voronoi cell of D(u) for some u ∈ O′. Then, u must dominate
t as t is dominated by O′. Let v be a node in B′ to which t has the smallest shifted
distance. Then, v must also dominate t, as t is dominated by B′. If u and v are
adjacent, then the locality condition holds trivially. So, we assume that u and v are
nonadjacent. Then, t lies outside the Voronoi cell of D(v). We walk from t to v along
the straight line segment tv. During this walk, we may cross some Voronoi cells of
the disks in Dρ , and at some point before reaching v we will enter the Voronoi cell
of D(v) the first time. Let x be the point at which we first enter the Voronoi cell of
D(v). We must enter this cell from another cell, and we assume this cell the Voronoi
cell of D(w). Then, �(t,w)≤ �(t,v) as

�(t,w) = ‖tw‖−ρ (w)

≤ ‖tx‖+ ‖xw‖−ρ (w)

= ‖tx‖+ �(x,w)

= ‖tx‖+ �(x,v)

= ‖tx‖+ ‖xv‖−ρ (v)

= ‖tv‖−ρ (v)

= �(t,v).

We further claim that �(t,w)< �(t,v). Indeed, assume to the contrary that �(t,w) =
�(t,v). Then, we must have ‖tw‖= ‖tx‖+‖xw‖, in other words, w lies in the ray tv.
As �(t,w) = �(t,v), either D(v)⊆ D(w) or D(w)⊆ D(v), which is a contradiction.
Therefore, our claim is true. By the choice of v, w ∈ O′ and w is adjacent to v. In
addition, w dominates t since �(t,w) < �(t,v) and v dominates t. Thus, the locality
condition is satisfied.

Case 2: t lies in the Voronoi cell of D(u) for some u ∈ B′. The proof is the same as
in Case 1 is thus omitted.

Since ρ is domination-preserving and B′ (respectively, O′) be a replication of
B\O (respectively, O\B), Lemma 9.3.3 holds.

9.4 A Two-Staged Algorithm for MIN-CDS 159

9.4 A Two-Staged Algorithm for MIN-CDS

In this section, we present a two-staged approximation algorithm for MIN-CDS
of DIGs. The first stage applies the local-search algorithm k-LS presented in
the previous section to compute a DS B. The second stage compute a set C of
connectors such that B∪C is a CDS as follows. Initially C is empty. Repeat the
following iteration until B∪C is connected. First we find a pair of closest connected
components of Gr (B∪C) and compute a shortest (in terms the number of hops)
path P between them. Then, we all internal nodes in P to C.

Clearly, the number of iterations executed in the second stage is at most |B|− 1.
In addition, it is easy to show that at most two nodes are added to C in each iteration.
Thus, We claim that |C| ≤ 2(|B|− 1). So, |B∪C| ≤ 3 |B|− 2. By Theorem 9.3.2,

|B|=
(

1+O
(

1/
√

k
))

γ.

Therefore,

|B∪C|=
(

3+O
(

1/
√

k
))

γ.

Since γ is no more than the connected domination number γc, the two-staged

approximation algorithm has an approximation bound 3+O
(

1/
√

k
)

.

Chapter 10
Geometric Hitting Set and Disk Cover

Another means of silently lessening the inequality of property is
to exempt
all from taxation below a certain point, and to tax the higher
portions of
property in geometric progression as they rise.

THOMAS JEFFERSON

10.1 Motivation and Overview

MIN-SENSOR-COVER is a special case of MIN-SET-COVER, which can be seen
as MIN-SET-COVER in a geometric case with the base set formed by all targets
and all given subsets of targets induced by sensing disks. When all sensing disks
have the same size, a classic result indicates that MIN-SENSOR-COVER has PTAS.
In this chapter, we introduce some related results in case that sensing disks may
have different sizes. Those results may lead us to a sequence of research works on
coverage and connected coverage with different sizes of sensing disks.

10.2 Minimum Geometric Hitting Set

Consider a set V of nodes and a set D of target disks in the plane. A node v ∈ V is
said to hit a disk D ∈ D if v ∈ D. A subset S of V is said to be a hitting set (HS) of
D if each disk in D is hit by some node in V . The problem of finding a minimum
subset of V which is an HS ofD is referred to as MIN-HITTING-SET. In this section,
we present a PTAS for MIN-HITTING-SET.

If a target disk is hit by all nodes in V , we simply remove it from D. In addition,
if a target disk contains some other target disk, we also remove it from D. Thus, we
assume that each target disk in D is not hit by at least one node in V and does not

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 10,
© Springer Science+Business Media New York 2013

161

162 10 Geometric Hitting Set and Disk Cover

contain any other disk in D. Consequently, the disks in D have distinct centers. Let
T denote the set of the centers of disks in D. For each t ∈ T , we use D(t) to denote
the disk inD centered at t, and r (t) to denote the radius of the disk D(t). Let S be an
HS. A set U ⊆ S is said to be a loose subset of S if there is a subset U ′ of V such that
|U ′|< |U | and (S \U)∪U ′ is still an HS, and to be a tight subset of S otherwise. S is
said to be k-tight if every subset U ⊆ S with |U | ≤ k is tight. Intuitively, a k-tight HS
for sufficiently large k is close to the minimum HS in size. We will formerly prove
such relation in the next theorem.

Theorem 10.2.1. Let c and K be the two universal constants in Theorem 9.3.1.
Then, for any k-tight hitting set S⊆V ′ with k≥max{K,2}, |C| ≤

(
1+ c/

√
k
)

opt,

where opt is the size of a minimum hitting set.

Theorem 10.2.1 suggests a local search algorithm for MIN-DISK-COVER,
referred to as k-Local Search (k-LS), where k is a positive integer parameter at
least two. It computes a k-tight HS S in two phases:

• Preprocessing Phase. Compute an HS S by the well-known greedy algorithm for
minimum set cover.

• Replacement Phase. While S is not k-tight, find a subset U of S with size at most
k and a subset U ′ of V with size at most |U |−1 satisfying that (S \U)∪U ′ is still
an HS; replace S by (S \U)∪U ′. Finally, we output S.

By Theorem 10.2.1, the algorithm k-LS has an approximation ratio at most 1+

O
(

1/
√

k
)

when k ≥ K. Its running time is dominated by the second phase. Let

m = |V |. Then, the second phase consists of O(m) iterations. In each iteration, the
search for the subset U and its replacement U ′ takes at most

O
(

mk
)
·O
(

mk−1
)
= O

(
m2k−1

)

time. So, the total running time is

O(m) ·O
(

m2k−1
)
= O

(
m2k
)
.

This means that the algorithm k-LS is a PTAS.
We move on to the proof of 10.2.1. Let O be a minimum HS. Theorem 10.2.1

holds trivially if |S| = |O|. So, we assume that |S| > |O|. Let S′ = S \O and O′ =
O\S. Then, |S′|> |O′|. In addition, |O′| ≥ k for otherwise, we can choose a subset of
|O′|+1 nodes from S′ and replace them by O′ to get a smaller HS, which contradicts
to the fact that S is k-tight. Let T ′ be the set of centers of the target disks not hit by
O∩S. Then, for each t ∈ T ′, D(t) is hit by some node in S′ and by some node in O′.
In addition, we have the following stronger property.

Lemma 10.2.2. There is a planar bipartite graph H on O′ and S′ satisfying the
following “locality condition”: For each t ∈ T, there are two adjacent nodes in H,
both of which hit D(t).

10.2 Minimum Geometric Hitting Set 163

Let H be the planar bipartite graph satisfying the property in the above lemma.
We claim that for any U ⊆ S′, (S \U)∪NH (U) is still an HS. Indeed, consider any
t ∈ T . If D(t) is hit by S\U , then it is also hit by (S \U)∪NH (U). If D(t) is not hit
by S \U , then D(t) is only hit by nodes in U and hence t ∈ T ′. By Lemma 10.2.2,
there exist two adjacent nodes u ∈ S′ and v ∈ O′, both of which hit D(t). Then, we
must have u ∈U and hence v ∈ NH (U). Thus, D(t) is still hit by (S \U)∪NH (U).
So, the claim holds.

Now, consider any U ⊆ S′ with |U | ≤ k. Then |NH (U)| ≥ |U |, for otherwise
(S \U)∪NH (U) is an HS smaller than S, which contradicts to the fact that S is
k-tight. By Theorem 9.3.1, we have

∣∣S′∣∣≤ (1+ c/
√

k)
∣∣O′∣∣

and hence
|S| ≤ (1+ c/

√
k) |O| .

So, Theorem 10.2.1 holds.
In the remaining of this section, we prove Lemma 10.2.2. Let V ′ = O′ ∪ S′.

Consider any t ∈ T ′. Define

r̄(t) = min
v∈V ′

{‖tv‖+ r (t)
2

: ‖tv‖> r (v)

}
.

Clearly, r̄(t)> r (t). Let D′ (t) be the disk centered at t of radius r̄(t). Then, for each
node v ∈V ′, v hits D(t) if and only if v hits D′ (t). LetD′ to denote the collection of
disks D′ (t) for all t ∈ T ′. Consider any v ∈V ′. Define

δ1 (v) = min
{

r̄ (t)−‖tv‖ : ‖tv‖ ≤ r (t) , t ∈ T ′
}
,

δ2 (v) = min{‖vu‖/3 : u ∈V \ {v}} ,
δ (v) = min{δ1 (v) ,δ2 (v)} .

Then, δ (v) > 0 and the disk of radius δ (v) centered at v is referred to as the
perturbation range of v. Then, for any point v′ in the perturbation range of v and
any t ∈ T ′, v hits D(t) if and only if v′ hits D′ (t). In addition, the perturbation
ranges of all nodes in V ′ are disjoint. A restricted perturbation of V ′ is a mapping
σ from V ′ to the plane such that for each v ∈ V ′, σ (v) lies within the perturbation
range of v.

A set of four points in the plane form a degenerate quadruple if they all lie on
some circle. The next lemma shows that V ′ has a restricted perturbation containing
no degenerate quadruple.

Lemma 10.2.3. There exists a restricted perturbation σ of V ′ such that σ (V ′)
contains no degenerate quadruple.

164 10 Geometric Hitting Set and Disk Cover

Proof. We prove the lemma by contradiction. Assume the lemma is not true. Let σ
be the “fewest counterexample,”in other words, σ (V ′) contains the least number of
degenerate quadruples. Suppose that a node σ (u) ∈ V ′ is contained in at least one
degenerate quadruple in σ (V ′). We show that we can change σ (u) to some point in
the perturbation range of u which is not involved in any degenerate quadruple. For
any triple nodes {v1,v2,v3} in V ′ \ {u} such that σ (v1), σ (v2), and σ (v3) are not
collinear, the circumcircle of {σ (v1) ,σ (v2) ,σ (v3)} is referred to as a forbidden

circle of u. As the number of forbidden circles of u is at most
(|V ′|−1

3

)
, there is a point

u′ which lies in the perturbation range of u but not on any forbidden circle of u. Let
σ ′ be the restricted perturbation of O′ ∪S′ obtained from σ by replacing σ (u) with
u′. Then, u′ = σ ′ (u) is not contained in any degenerate quadruple of σ ′ (V ′). Thus,
σ ′ (V ′) contains strictly fewer degenerate quadruples than σ (V ′), which contradicts
to the choice of σ . Therefore, the lemma holds. ��

Now, we fix a restricted perturbation σ of V ′ satisfying that σ (V ′) contains no
degenerate quadruple. Let G′ be the graph obtained from Voronoi dual of σ (V ′) by
removing all edges between two nodes in O′ and all edges between two nodes in
S′. Then, G′ is planar. In the next, we show that G′ satisfies the locality condition:
For each target t ∈ T ′, there are two adjacent nodes in G′, both of which hit D′ (t).
We consider two cases:

Case 1: t lies in the Voronoi cell of σ (u) for some u ∈ O′. Then, σ (u) must hit
D′ (t) as D′ (t) is hit by σ (O′). Let v be a node in S′ such that σ (v) has the shortest
distance from t. Then, σ (v) must also hit D′ (t) as D′ (t) is hit by σ (O′). If σ (u) and
σ (v) are adjacent, then lemma holds trivially. So, we assume that σ (u) and σ (v)
are nonadjacent. Then t lies outside the Voronoi cell of σ (v). We walk from t to
σ (v) along the straight line segment tσ (v). During this walk, we may cross some
Voronoi cells, and at some point before reaching σ (v), we will enter the Voronoi
cell of σ (v) the first time. Let x be the point at which we first enter the Voronoi cell
of σ (v). We must enter this cell from another cell, and we assume the cell is the
Voronoi cell of σ (w). Then, σ (w) does not lie in the ray xσ (v), and hence

‖tσ (w)‖< ‖tx‖+ ‖xσ (w)‖= ‖tx‖+ ‖xσ (v)‖= ‖tσ (v)‖ .

Since σ (v) hits D′ (t), σ (w) hits D′ (t) as well; and by the choice of v, w ∈ O′. As
σ (w) is adjacent to σ (v), the locality condition is satisfied.

Case 2: t lies in the Voronoi cell of σ (u) for some u ∈ S′. The proof is the same as
in Case 1 and is thus omitted.

Finally, we define a graph H on V ′ such that two nodes u and v are adjacent if and
only if σ (u) and σ (v) are adjacent in G′. Then, H is also a planar bipartite graph.
In addition, for any target t ∈ T ′, let σ (u) and σ (v) be two adjacent nodes in G′,
both of which hit D′ (t). Then, u and v are two adjacent nodes in H, both of which
hit D(t). This completes the proof of Lemma 10.2.2.

10.3 Minimum Disk Cover 165

10.3 Minimum Disk Cover

Consider a set D of disks and a set T of target points in the plane. A disk D ∈ D is
said to cover a target t ∈ T if t ∈D. A subsetD′ ofD is said to be a cover of T if each
target in T is covered by some node in V . The problem of finding a minimum subset
of D which is a cover of T is referred to as MIN-DISK-COVER. In this section, we
present a PTAS for MIN-DISK-COVER.

Suppose that each disk in D has a unique ID for tie-breaking. A disk D ∈ D is
said to be redundant if there exists another disk D′ ∈ D satisfying that either D only
covers a proper subset of targets covered by D′, or D covers exactly the same set
of targets as D′ but has a larger ID than D. If a disk in D is redundant, we simply
remove it from D. Thus, we assume that no disk in D is redundant. Consequently,
we can identify the disks in D by their centers. Let V denote the set of the centers
of disks in D. For each v ∈ V , we use D(v) to denote the disk in D centered at v,
and r (v) to denote the radius of the disk D(v). For simplicity, a node v ∈ V is said
to cover a target t ∈ T if D(v) covers t, a subset C of V is said to be a cover of T if
the set of disks {D(v) : v ∈C} is a cover of T .

Let C ⊆V be a cover of T . A set U ⊆C is said to be a loose subset of C if there
is a subset U ′ of V such that |U ′|< |U | and (C \U)∪U ′ is still a cover, and to be a
tight subset of C otherwise. C is said to be k-tight if every subset U ⊆C with |U | ≤ k
is tight. Intuitively, a k-tight cover for sufficiently large k is close to the minimum
cover in size. We will formerly prove such relation in the next theorem.

Theorem 10.3.1. Let c and K be the two universal constants in Theorem 9.3.1.
Then, for any k-tight cover C ⊆ V ′ with k ≥ max{K,2}, |C| ≤

(
1+ c/

√
k
)

opt,

where opt is the size of a minimum cover.

Theorem 10.3.1 suggests a local search algorithm for MIN-DISK-COVER, re-
ferred to as k-Local Search (k-LS), where k is a positive integer parameter at least
two. It computes a k-tight cover C in two phases:

• Preprocessing Phase. Compute a cover C ⊆ V by the well-known greedy
algorithm for minimum set cover.

• Replacement Phase. While C is not k-tight, find a subset U of C with size at most
k and a subset U of V with size at most |U |−1 satisfying that (C \U)∪U ′ is still
a cover; replace C by (C \U)∪U ′. Finally, we output C.

By Theorem 10.3.1, the algorithm k-LS has an approximation ratio at most 1+

O
(

1/
√

k
)

when k ≥ K. Its running time is dominated by the second phase. Let

m = |V |. Then, the second phase consists of O(m) iterations. In each iteration, the
search for the subset U and its replacement U ′ takes at most

O
(

mk
)
·O
(

mk−1
)
= O

(
m2k−1

)

166 10 Geometric Hitting Set and Disk Cover

time. So, the total running time is

O(m) ·O
(

m2k−1
)
= O

(
m2k
)
.

This means that the algorithm k-LS is a PTAS.
We move on to the proof of 10.3.1. Let O ⊆ V be a minimum cover. Theo-

rem 10.3.1 holds trivially if |C|= |O|. So, we assume that |C|> |O|. Let C′ =C \O
and O′ = O\C. Then, |C′|> |O′|. In addition, |O′| ≥ k for otherwise, we can choose
a subset of |O′|+ 1 nodes from C′ and replace them by O′ to get a smaller cover,
which contradicts to the fact that C is k-tight. Let T ′ be the set of targets not covered
by O∩C. Then, each t ∈ T ′ is covered by some node in O′ and by some node in C′.
In addition, we have the following stronger property.

Lemma 10.3.2. There is a planar bipartite graph H on O′ and C′ satisfying the
following “locality condition”: For each t ∈ T, there are two adjacent nodes in H,
both of which cover t.

Let H be the planar bipartite graph satisfying the property in the above lemma.
We claim that for any U ⊆ C′, (C \U)∪NH (U) is still a cover. Indeed, consider
any t ∈ T . If t is covered by C \U , then it is also covered by (C \U)∪NH (U).
If t is not covered by C \U , then it is only covered by nodes in U and hence t ∈ T ′.
By Lemma 10.3.2, there exist two adjacent nodes u ∈C′ and v ∈ O′, both of which
cover t. Then, we must have u ∈U and hence v ∈ NH (U). Thus, t is still covered by
(C \U)∪NH (U). So, the claim holds.

Now, consider any U ⊆ C′ with |U | ≤ k. Then |NH (U)| ≥ |U |, for otherwise
(C \U)∪NH (U) is a cover smaller than C, which contradicts to the fact that C is
k-tight. By Theorem 9.3.1, we have

∣∣C′∣∣≤ (1+ c/
√

k)
∣∣O′∣∣

and hence
|C| ≤ (1+ c/

√
k) |O| .

So, Theorem 10.3.1 holds.
In the remaining of this section, we prove Lemma 10.3.2. Let V ′ = O′ ∪C′. For

each v ∈V ′, define
r̄(v) = min

t∈T
{‖tv‖ : ‖tv‖> r (v)},

Clearly, r̄(v) > r (v), and if we increase the radius of v to any value below r̄(v),
the set of targets covered by v remains the same. A function ρ on V ′ is said to
be coverage-preserving if r (v) ≤ ρ (v) < r̄(v) for each v ∈ V ′. For each coverage-
preserving function ρ , we use Dρ to denote the collection of disks centered at v of
radius ρ (v) for all v ∈V ′.

Lemma 10.3.3. There exists a coverage-preserving function ρ on V ′ such that Dρ
contains no degenerate quadruple.

10.3 Minimum Disk Cover 167

Now, fix a coverage-preserving function ρ on V ′ such that Dρ contains no
degenerate quadruple. For each node v∈V ′, let D′ (v) denote the disk centered at v of
radius ρ (v). We claim that any pair of disks in Dρ are geometrically nonredundant.
Indeed, assume to the contrary that there exist two nodes in u and v such that
D′ (u) ⊆ D′ (v). Since ρ is coverage-preserving, all targets covered by u are also
covered by v, which is a contradiction. Thus, our claim holds. Let H be the graph
obtained from the Voronoi dual of Dρ by removing all edges between two nodes in
O′ and all edges between two nodes in C′. Then, H is a planar bipartite graph on O′
and C′.

Next, we show that H satisfies the locality condition: For each t ∈ T , there are
two adjacent nodes in H, both of which cover t. Clearly, t is covered by a node v∈V ′
if and only if �(t,v) ≤ 0 where �(t,v) = ‖tv‖−ρ (v) is the shifted distance from t
to v. Thus, if �(t,u)≤ �(t,v) for some two nodes u and v in V ′ and t is covered by
v, then t is also covered by u. We consider two cases:

Case 1: t lies in the Voronoi cell of D′ (u) for some u ∈ O′. Then, u must cover t as
t is covered by O′. Let v be a node in C′ to which t has the smallest shifted distance.
Then, v must also cover t, as t is covered by C′. If u and v are adjacent, then the
locality condition holds trivially. So, we assume that u and v are nonadjacent. Then,
t lies outside the Voronoi cell of D′ (v). We walk from t to v along the straight line
segment tv. During this walk, we may cross some Voronoi cells of the disks in Dρ ,
and at some point before reaching v we will enter the Voronoi cell of D′ (v) the first
time. Let x be the point at which we first enter the Voronoi cell of D′ (v). We must
enter this cell from another cell, and we assume this cell the Voronoi cell of D′ (w).
Then, �(t,w)≤ �(t,v) as

�(t,w) = ‖tw‖−ρ (w)

≤ ‖tx‖+ ‖xw‖−ρ (w)

= ‖tx‖+ �(x,w)

= ‖tx‖+ �(x,v)

= ‖tx‖+ ‖xv‖−ρ (v)

= ‖tv‖−ρ (v)

= �(t,v).

We further claim that �(t,w)< �(t,v). Indeed, assume to the contrary that �(t,w) =
�(t,v). Then, we must have ‖tw‖ = ‖tx‖+ ‖xw‖, in other words, w lies in the
ray tv. As �(t,w) = �(t,v), either D′ (v) ⊆ D′ (w) or D′ (w) ⊆ D′ (v), which is a
contradiction. Therefore, our claim is true. By the choice of v, w ∈ O′ and w is
adjacent to v. In addition, w covers t since �(t,w)< �(t,v) and v dominates t. Thus,
the locality condition is satisfied.

Case 2: t lies in the Voronoi cell of D′ (u) for some u ∈C′. The proof is the same as
in Case 1 and is thus omitted.

Since ρ is coverage-preserving, Lemma 10.3.2 holds.

Chapter 11
Minimum-Latency Scheduling

The key is not to prioritize what’s
on your schedule, but to schedule your priorities.

STEPHEN R. COVEY

11.1 Motivation and Overview

Consider a multihop wireless network in which all network nodes V lie in plane
and have a unit communication radius. Its communication topology G is the unit
disk graph (UDG) of V . Under the protocol interference model, every node has a
communication radius normalized to one, and an interference radius ρ for some
parameter ρ ≥ 1 (see Fig. 11.1). A node v can receive the message successfully
from a transmitting node u if v is within the transmission range of u but is outside
the interference range of any other node transmitting simultaneously.

In this chapter, we study minimum-latency schedulings for the following four
group communications in the multihop wireless network:

• Broadcast. A distinguished source node sends a common packet to all other
nodes.

• Data Aggregation. A distinguished sink node collects the data aggregated from
all the packets at the nodes other than the sink node. In other words, every
intermediate node combines all received packet with its own packet into a single
packet of fixed size according to some aggregation function such as logical
and/or, maximum, or minimum.

• Data Gathering. A distinguished sink node collects a packet from every other
node.

• Gossiping. Every node broadcasts a common packet to all other nodes.

Suppose that all communications proceed in synchronous time slots and a node
can transmit at most one packet of a fixed size in each time slot. A communi-
cation schedule for each of these four communication tasks not only specifies a

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 11,
© Springer Science+Business Media New York 2013

169

170 11 Minimum-Latency Scheduling

1

ρ

v

Fig. 11.1 Each node has a
unit communication radius
and an interference radius
ρ ≥ 1

communication routing but also assigns a time slot to every communication link in
the routing subject to two constraints:

1. The link ordering given by the routing should be followed.
2. All communication links assigned in each time slot are interference-free.

The latency of a communication schedule is the number of time slots during which
at least one transmission occurs. The minimum-latency schedulings for the above
four group communications are all NP-hard. In this chapter, we present constant-
approximation algorithms for them.

The CDS plays a critical role in the design of scheduling algorithms [109, 110].
Indeed, all relaying nodes of a message must form a CDS of G. However, in order
to achieve a short latency, the CDS has to be short and sparse instead of being just
small. Specifically, consider a node s ∈ V and let R be the graph radius of G with
respect to s. A CDS U of G with s ∈U should be “short” in the sense that the graph
radius of G [U] with respect to s is bounded by a constant factor of R and “sparse”
in the sense that the maximum degree of G [U] is bounded by a small constant. In
Sect. 11.3, we will present a construction of such short and sparse CDS.

The following terms and notations will be adopted throughout this chapter. Let
n = |V |. The connected domination number of G is denoted by γc. The unit disk
centered at a node v is denoted by D(v). The topological boundary of a planar set A

is denoted by ∂A. The directed version of G, denoted by
−→
G , is the digraph obtained

from G by replacing every edge e in G with two oppositely oriented links between
the two endpoints of e. A subset U of nodes is said to be distance-d independent
for some d > 0 if and only if their mutual Euclidean distances are greater than d.
Equivalently, a set of nodes are distance-d independent if and only if they form an
independent set of the d-disk graph on V . For any d > 0, a distance-d coloring of a
subset U of nodes is an assignment of colors to the nodes in U such that any pair
of nodes of distance at most d receives distinct colors. Let X and Y be two disjoint
subsets of V . Y is a cover of X if each node in X is adjacent to some node in Y ,
and a minimal cover of X if Y is a cover of X but no proper subset of Y is a cover
of X . Any ordering y1,y2, · · · ,ym of Y induces a minimal cover Z ⊆ Y of X by the
following sequential pruning method: Initially, Z = Y . For each i = m down to 1,

11.2 Geometric Preliminaries 171

x4x3x1 x2 x7x6x5

y4y3y1 y2 y5 y3y2 y5

x4x3x1 x2 x7x6x5

a bFig. 11.2 (a)
X = {xi : 1≤ i≤ 7} is
covered by
Y = {yi : 1≤ i≤ 5}. (b)
{y2,y3,y4} is a minimal cover
of X . The black nodes are
private neighbors

Table 11.1 Summary on the
approximation bounds of the
scheduling algorithms

Communication Approximation bound

Broadcast 2βρ
Aggregation with ρ > 1

(
αρ +12

)
βρ

Gathering 2βρ
Gossiping 4βρ

if Z \ {yi} is a cover of X , remove yi from Z. Figure 11.2 is an illustration of such
sequential pruning method. Suppose that Y is a cover of X . A node x ∈ X is called a
private neighbor of a node y ∈Y with respect to Y if y is the only node in Y which is
adjacent to x. Clearly, if Y is a minimal cover of X , then each node in Y has at least
one private neighbor with respect to Y .

Short and sparse CDS has important applications in the design of scheduling
algorithms for group communications in wireless networks. In this chapter, we have
constructed a short and sparse CDS and built a dominating tree on such CDS which
is used as the routing for the group communications. By exploiting the rich structural
properties of the dominating tree, we are able to design scheduling algorithms
with constant approximation bounds for the group communications. Table 11.1
summarizes the approximation bounds of our scheduling algorithms described in
this chapter for the four group communications.

11.2 Geometric Preliminaries

For any ρ > 1, let αρ denote the maximum number of points in a unit disk whose
mutual distances are greater than ρ− 1. For any ρ ≥ 1, let βρ denote the maximum
number of points in a half disk of radius ρ + 1 whose mutual distances are greater
than one. The upper bounds on αρ and βρ can be derived by the following classic
result on disk packing.

Theorem 11.2.1 (Zassebhaus-Groemer-Oler Inequality). Suppose that S is a
compact convex set and U is a set of points with mutual distances at least one.
Then

|U ∩S| ≤ area(S)√
3/2

+
peri(S)

2
+ 1,

where area(S) and peri(S) are the area and perimeter of S, respectively.

172 11 Minimum-Latency Scheduling

z
x

q

p

y

vπ/6u

Fig. 11.3 The two circles
have unit radius, and
1≤ ‖uv‖ ≤ 2. Then, both
�pvx and�qvy are
equilateral

When the set S is a disk or a half disk, we have the following packing bound.

Corollary 11.2.2. Suppose that S (respectively, S′) is a disk (respectively, half disk)
of radius r, and U is a set of points with mutual distances at least one. Then

|U ∩S| ≤ 2π√
3

r2 +πr+ 1,

∣∣U ∩S′
∣∣ ≤ π√

3
r2 +

(π
2
+ 1
)

r+ 1.

By the above corollary,

αρ ≤
⌊

2π/
√

3

(ρ− 1)2 +
π

ρ− 1

⌋
+ 1

and

βρ ≤
⌊

π√
3
(ρ + 1)2 +

(π
2
+ 1
)
(ρ + 1)

⌋
+ 1.

Now, we introduce an interesting “equilateral triangle property,”which will be
used in the proof of Lemma 11.2.4.

Lemma 11.2.3. Consider two nodes u and v with 1 ≤ ‖uv‖ ≤ 2. Let p and q be
their two intersection points of ∂D(u) and ∂D(v) (see Fig. 11.3). Suppose that x
and y are the two intersection points between ∂D(v) and the ray emanating from
u which is apart from uv by 30◦ and is on the same side of uv as q, with x being
between u and y. Then�pvx and�qvy are equilateral.

Proof. Let z be the midpoint of xy. Then, vz is perpendicular to xy and

x̂vz = arccos‖vz‖= arccos
‖uv‖

2
= p̂vu.

11.2 Geometric Preliminaries 173

w

1

q

y

z

θ π/6

x

u v

p1

Fig. 11.4 If θ ≤ 2arcsin 1
4 ,

then ‖uy‖ ≥ ‖uv‖, and hence
w ∈ ux ⊂�upq

Hence,

p̂vx = p̂vu+ ûvx = x̂vz+ ûvx = ûvz =
π
3
.

Similarly, ŷvz = ûvq and hence

q̂vy = ŷvz+ q̂vz = ûvq+ q̂vz = ûvz =
π
3
.

Thus, the lemma follows. ��
The next lemma presents two sufficient conditions for the intersection of two unit

disks being covered by a third unit-disk.

Lemma 11.2.4. Consider three nodes u,v, and w satisfying that 1 < ‖uv‖ ≤ 2 and
‖vw‖ > 1. Then,

D(u)∩D(v)⊆ D(w)

if one of the following two conditions holds

1. ‖uw‖ ≤ 1 and v̂uw≤ π
6 .

2. 1 < ‖uw‖ ≤ ‖uv‖ and v̂uw≤ 2arcsin 1
4 ≈ 28.955◦ (see Fig. 11.4).

Proof. Let p be the intersection point of ∂D(u) and ∂D(v) which lies on the
different side of uv from w, and q be the point on ∂D(v) satisfying that q
is on the same side of uv, q̂uv = π

6 and ûqv ≥ π
2 (see Fig. 11.4). By 11.2.3,

‖pq‖= 1. We will show that w lies in�upq. This would imply that ‖pw‖ ≤ 1 and
consequently

D(u)∩D(v)⊆ D(w) .

Under the first condition in the lemma, w lies in �upq obviously. So we assume
the second condition in the lemma holds. Let x and y be the intersection points of
the ray uw and ∂D(v) with x being closer to u than y (see Fig. 11.4). We claim that
‖uy‖ ≥ ‖uv‖. Note that

ûyv = v̂xy = x̂uv+ x̂vu,

ûvy = x̂vu+ x̂vy.

174 11 Minimum-Latency Scheduling

It is sufficient to show that x̂vy≥ x̂uv. For the simplicity of presentation, we denote
x̂uv by θ . Let z be the midpoint of xy. Then, z is the perpendicular foot of v on uw,
and

‖vz‖ = ‖uv‖sinθ ≤ 2sinθ

= 4sin
θ
2

cos
θ
2

≤ 4sin

(
arcsin

1
4

)
cos

θ
2

= cos
θ
2
.

Hence,

x̂vy = 2arccos‖vz‖ ≥ 2arccos

(
cos

θ
2

)
= θ .

Thus, our claim holds. So,

‖uw‖ ≤ ‖uv‖ ≤ ‖uy‖ ,
which means w is on the line segment uy. As w /∈ D(v), w must be on the line
segment ux. Consequently, w lies in�upq as well. ��

11.3 Dominating Tree

In this section, we describe a rooted spanning tree T of G constructed from a
connected dominating set (CDS). This tree will be used in the routings of all the
four group communications. Depending on the type of the group communications,
the root of T , denoted by s, is chosen as follows. For broadcast, s is the source of
the broadcast; for aggregation or gathering, s is the sink node; for gossiping, s is
a graph center of G. In either case, we use L to denote the graph radius of G with
respect to s.

We begin with the construction of a small, short, and sparse CDS of G. We first
select a maximal independent set (MIS) I of G in the first-fit manner in a breadth-
first-search (BFS) ordering (with respect to s) of V . All nodes in I form a dominating
set, and hence are referred to as dominators. Then, we select a set C of connectors
to interconnect I as follows. Let G′ be the graph on I in which there is edge between
two dominators if and only if they have a common neighbor. The radius of G′ with
respect to s is denoted by L′. Clearly, L′ ≤ L−1. For each 0≤ l ≤ L′, let Il be the set
of dominators of depth l in G′. Then, I0 = {s}. For each 0≤ l < L′, let Pl be the set
of nodes adjacent to at least one node in Il and at least one node in Il+1, and compute
a minimal cover Cl ⊆ Pl of Il+1 (see an illustration in Fig. 11.5). Set C =

⋃L′−1
l=0 Cl .

Then, I ∪C is a CDS of G. We will prove the following lemma on the sparsity of
I∪C.

11.3 Dominating Tree 175

s I0

I1

I2

IL’

P0

P1

PL’−1

C0

C1

CL’−1

Fig. 11.5 The selection of
connectors (marked by gray)

v2

vj’

vj’’

wj’

wj’’

w1s

wk−1

wk

w2

v1

vk−1

vk

Fig. 11.6 w1,w2, . . .,wk are
the connectors in C0. Each v j

is a private dominator
neighbor of w j in I1 with
respect to C0

Lemma 11.3.1. |C0| ≤ 12 and each dominator in Il with 1≤ l ≤ L′ −1, is adjacent
to at most 11 connectors in Cl .

Proof. We first prove that |C0| ≤ 12. Assume to the contrary that C0 =
{w1,w2, . . . ,wk} for some k ≥ 13. By the minimality of C0, for each 1 ≤ j ≤ k,
there is a node v j ∈ I1 such that v j is adjacent to wj but not to any other node in
C0 (see Fig. 11.6). Among the k nodes v1, . . . ,vk, there exist two, say v j′ and v j′′ ,
satisfying that ∠v j′sv j′′ ≤ 2π

13 . Assume by symmetry that v j′′ is closer to s than v j′ .
Since the distance between v j′ and v j′′ is greater than one, D(s)∩D

(
v j′
)⊆ D

(
v j′′
)

by Lemma 11.2.4. Hence, wj′ ∈ D
(
v j′′
)
, which is a contradiction.

176 11 Minimum-Latency Scheduling

......

......

......

u Il

Cl

Cl−1

Il+1

Il−1

w0

vk−1 vk

wkwk−1w2w1

v2v1

v0

Fig. 11.7 w1,w2, . . .,wk are
the connectors in Cl adjacent
to u. Each v j with 1≤ j ≤ k
is a private dominator
neighbor of w j in Il+1 with
respect to Cl

Next, we show that each dominator u in Il for some 1 ≤ l ≤ L′ − 1 is adjacent
to at most 11 connectors in Cl . Suppose that w1,w2, . . . ,wk are the connectors in Cl

which are adjacent to u. By the minimality of Cl , for each 1≤ j ≤ k, there is a node
v j ∈ Il+1 such that v j is a private neighbor of wj with respect to Cl (see Fig. 11.7). Let
w0 be a connector in Cl−1 which is adjacent to u, and v0 be a dominator in Il−1 which
is adjacent to w0. Then, for each 0 ≤ j ≤ k, wj is the only node in {w0,w1, . . . ,wk}
which is adjacent to v j. By the same argument above, we can show that k+ 1≤ 12,
which implies k≤ 11. ��
Now, we construct T by specifying the parent of each node other than s. First, each
dominator in Il with 1≤ l ≤ L′ chooses the neighboring connector of the smallest ID
in Cl−1 as its parent. Second, each connector in Cl with 0 ≤ l ≤ L′ − 1 chooses the
neighboring dominator of the smallest ID in Il as its parent. Third, each other node,
referred to as dominate, chooses the neighboring dominator of the smallest ID as its
parent. Clearly, T is a spanning tree and is called a dominating tree. Figure 11.8 is an
illustration of the construction of T . By the property of the CDS I∪U , the maximum
depth of T is at most 2L′+1≤ 2L−1, s has at most 12 connector children, and each
other dominator has at most 11 connector children.

In the remaining of this section, we present a first-fit distance-(ρ + 1) coloring
of an arbitrary subset U of dominators. In the lexicographic order of U , all nodes
in U are sorted from the left to the right with ties broken by the ordering from the
bottom to the top. Suppose that 〈u1,u2, . . . ,uk〉 is the lexicographic order of U . The
first-fit coloring in this order uses colors represented by natural numbers and runs
as follows: Assign the color 1 to u1. For i = 2 up to k, assign to ui with the smallest
color not used by any v j with j < i and

∥∥viv j
∥∥≤ (ρ + 1). We claim that at most βρ

colors are used by this coloring. Indeed, consider an arbitrary node u ∈U . All other
nodes in U which precede u and are apart from u by a distance at most ρ + 1 lie in
the left half disk of radius ρ +1 centered at u. The number of these dominators is at
most βρ − 1, where the −1 term is due to that u is also in this half disk. Hence, the
color number received by u is at most

(
βρ − 1

)
+ 1 = βρ . Thus, our claim holds.

11.4 Broadcast Scheduling 177

s I0

C1

I1

C1

I2

CL’−1

IL’

Fig. 11.8 An illustration of
dominating tree

11.4 Broadcast Scheduling

Let s be the source of the broadcast. We first construct the dominating tree T rooted
at s as in Sect. 11.3. The routing of the broadcast is the spanning s-aborescence
oriented from T . The broadcast schedule is then partitioned in 2L′ + 1 rounds
sequentially dedicated to the transmissions by

I0,C0, I1,C1, . . . , IL′−1,CL′−1, IL′

respectively. For each 1≤ l ≤ L′, we compute a first-fit distance-(ρ + 1) coloring of
Il in the lexicographic order. The individual rounds are then scheduled as follows:

• In the round for I0, only the source node s transmits, and hence this round has
only one time slot.

• In the round for C0, all nodes in C0 transmit one by one, and thus this round takes
at most 12 time slots.

• In the round for Il with 1 ≤ l ≤ L′, a dominator of the ith color transmits in the
ith time slot, and hence this round takes at most βρ time slots.

• In the round for Cl with 1≤ l ≤ L′ −1, a connector with a child dominator of the
ith color transmits in the ith time slot, and hence this round also takes at most βρ
time-slots.

178 11 Minimum-Latency Scheduling

Thus, the latency of the entire broadcast schedule is at most

1+ 12+
(
2L′ − 1

)
βρ

≤ 13+βρ (2L− 3)

= 2βρL− (3βρ − 13
)
.

Since L is a trivial lower bound on the minimum broadcast latency, the above
broadcast schedule is a 2βρ-approximation of the optimum.

11.5 Aggregation Scheduling

Let s be the sink of the aggregation. Let Δ denote the maximum degree of G,
and L be the graph radius of G with respect to s. For the trivial case that L = 1,
we simply let all nodes other than s transmit one by one. Such trivial schedule
has latency n− 1 = Δ. Subsequently, we assume that L > 1. We first construct
the dominating tree T rooted as s as in Sect. 11.3. The routing of the aggregation
schedule is the spanning inward s-aborescence oriented from T . Let W denote the
set of dominates. The aggregation schedule is then partitioned in 2L′+ 1 rounds
sequentially dedicated to the transmissions by

W, IL′ ,CL′−1, IL′−1, . . . ,C1, I1,C0

respectively. We describe a procedure used by the scheduling in the round for W and
the round for each Cl with 1≤ l ≤ L′ − 1.

Let B be a set of links whose receiving endpoints are all dominators. Suppose
that φ is the maximum number of links with a common dominator endpoint. We
first partition into at most φ subsets B j with 1 ≤ j ≤ φ such that each dominator is
incident to at most one link in each B j. The schedule of B is then further partitioned
into φ sub-rounds dedicated to B1,B2, , . . . ,Bφ , respectively. In the sub-round for
B j, we compute a first-fit distance-(ρ + 1) coloring of the dominators incident to
the links in B j, and then all links in B j whose dominator endpoints receive the ith
color are scheduled in the ith time slot. Thus, each of the φ consists of at most βρ
time slots. Hence, the total number of slots is at most φβρ .

Now, we are ready to describe the schedule in the individual rounds.

• In the round for W , we adopt the above procedure to produce a schedule in this
round. Since each dominator is adjacent to at least one dominate, the maximum
number of nodes in W adjacent to a dominator is at most Δ−1. Hence, this round
takes at most (Δ− 1)βρ time slots.

• In the round for Cl with 1 ≤ l ≤ L′ − 1, we also adopt the above procedure to
produce a schedule in this round. Since each dominator in Il−1 is adjacent to at
most 11 connectors in Cl , this round takes at most 11βρ time slots.

• In the round for C0, all nodes in C0 transmit one by one, and thus this round takes
at most 12 time slots.

11.6 Gathering Scheduling 179

• In the round for Il with 1≤ l≤ L′, we compute a first-fit distance-(ρ + 1) coloring
of Il in the lexicographic order and let each dominator with the ith color transmit
in the ith time slot. This round takes at most βρ time slots.

Thus, the latency of the entire aggregation schedule is at most

(Δ− 1)βρ + 11βρ
(
L′ − 1

)
+ 12+L′βρ

= Δβρ + 12βρ
(
L′ − 1

)
+ 12

≤ Δβρ + 12βρ (L− 2)+ 12

= Δβρ + 12βρL− 12
(
2βρ− 1

)
.

Since the trivial case takes Δ time slots and βρ > 1, we have the following theorem.

Theorem 11.5.1. The latency of the above aggregation schedule is at most Δβρ +
12βρL− 12

(
2βρ− 1

)
.

In the next, we present a lower bound on the minimum aggregation latency in
terms of Δ.

Lemma 11.5.2. For any ρ > 1, the minimum aggregation latency is at least Δ/αρ .

Proof. Let u be a node with maximum degree in G, and S be the unit disk centered
at u. Then, S contains Δ+ 1 nodes. If s is not in S, then all these Δ+ 1 nodes in S
have to transmit; otherwise, exactly Δ nodes in S have to transmit. In either case, at
least Δ nodes in S have to transmit. Since all nodes transmitting in the same time slot
must be apart from each other by a distance greater than ρ−1, at most αρ nodes in
C can transmit in a time slot. Hence, the Δ transmissions by the nodes in S take at
least Δ/αρ time slots. ��

Since L is also a trivial lower bound on the minimum aggregation latency, the
approximation bound of the aggregation schedule is at most

αρ βρ + 12βρ =
(
αρ + 12

)
βρ .

11.6 Gathering Scheduling

Let s be the sink of the gathering. If L = 1, then all other nodes transmit to s one by
one, and this schedule is optimal. So, we assume subsequently that L > 1. We first
construct the dominating tree of G rooted at s. The routing of the gathering schedule
is the spanning inward s-aborescence oriented from T . Our gather schedule utilizes
a labelling of the edges of T , which is described below.

Let 〈v1,v2, . . . ,vn−1〉 be an ordering of V \ {s} in the descending order of depth
in T with ties broken arbitrarily. For 1 ≤ i ≤ n, we assign the jth edge in the tree
path from s to v j with a label 2(i− 1)+ j (see an example in Fig. 11.9). Clearly,

180 11 Minimum-Latency Scheduling

17

s

10 12
8

3 5

1
3

7
15

5
13

19

2
4

6

14

7

9
11

v1 v2 v3

v6v5

v4 v7

v10
v9v8

Fig. 11.9 A multi-labelling
of the edges in the
dominating tree

the number of labels received by an edge connecting v and its parent is equal
to the number of descendents (including v itself) of v in T . If v is a connector
(respectively, dominator), all labels received by the edge between v and its parent
are odd (respectively, even). In addition, all edges across two consecutive layers of
the dominating tree receive distinct labels. We further claim that the largest label
is 2n− 3. Consider a node vi and let h be the length of the path from s to vi. The
maximum label assigned to the edges in the path from s to vi is 2(i− 1)+ h. It is
sufficient to show that

2(i− 1)+ h≤ 2n− 3.

Since none of v1,v2, . . . ,vi−1 belongs to the path from s to vi, we have

h+ i− 1≤ n− 1.

and hence i≤ n− h. Therefore,

2(i− 1)+ h≤ 2(n− h− 1)+ h = 2n− h− 2≤ 2n− 3.

So, the claim holds.
For each 1 ≤ k ≤ 2n− 3, let Ek denote the set of edges of T which has been

assigned with a label k, and Ak denote the links in the inward s-arborescence
oriented from the edges in Ek. Then, for odd (respectively, even) k, all the receiving
(respectively, transmitting) endpoints of links in Ak are dominators. In addition, for
each 1≤ k≤ 2n− 3, every dominator is incident to at most one link in Ak.

Now, we are ready to describe the gathering schedule. The schedule is partitioned
in 2n− 3 rounds sequentially dedicated to

A2n−3,A2n−2, . . . ,A2,A1

respectively. For each 1 ≤ k ≤ 2n− 3, the round for Ak is scheduled as follows.
We first compute a first-fit distance-(ρ + 1) coloring of the dominator endpoints
of the links Ak. Then each link whose dominator endpoint receives the ith color is

11.7 Gossiping Scheduling 181

dominator
subframe

connector
subframe

dominator
subframe

connector
subframe

dominator
subframe

connector
subframe

Fig. 11.10 Framing of the time slots

scheduled in the ith time slot of the kth round. Thus, each round takes at most βρ
time slots. Consequently, the latency of the gathering schedule is βρ (2n− 3). So,
we have the following theorem.

Theorem 11.6.1. The latency of the above gathering schedule is at most
βρ (2n− 3).

Since n− 1 is a trivial lower bound on the minimum gathering latency, the
approximation ratio of the gathering schedule presented in this section is at
most 2βρ .

11.7 Gossiping Scheduling

Let s be the graph center of G. If L= 1, we adopt the following two-phased schedule.
In the first phase, all nodes other than s transmit one by one. This phase takes n− 1
time slots. In the second phase, the source node transmit all the received packets
and its own packet one by one. This phase takes n time slots. So, the total latency
is 2n− 1. Clearly, n is a trivial lower bound on the minimum gossiping latency, as
every node has to transmits at least once and receive at least n− 1 times. Thus, its
approximation factor is at most 2.

From now on, we assume that L > 1. Our gossiping schedule consists of two
phases. In the first phase s collects all the packets from all other nodes, and in the
second phase s broadcasts all the n packets to all other nodes. We adopt the gathering
schedule presented in the previous section for the first phase. In the sequel, the node
s disseminates all received packets and its own packet to all other nodes. We present
a schedule for the second phase in the next.

We first construct the dominating tree T of G rooted at s. The routing of the
second phase is the spanning s-aborescence oriented from T . Then, we compute the
first-fit coloring distance-(ρ + 1) coloring of dominators. Let k be the number of
colors used by this coloring. Then, k ≤ βρ . By proper renumbering of the colors,
we assume that s has the first color. We group the time slots into 2k-slot frames
(see Fig. 11.10). In each frame, the first k slots form a dominator subframe, and
the remaining k slots form a connector subframe. Only dominators (respectively,
connectors) are allowed to transmit in the dominator (respectively, connector)
subframe in each frame. Each dominator with color i is only allowed to transmit
in the ith slot of a dominator (respectively, connector) subframe. Each connector is
only allowed to transmit in the subsets of time slots corresponding to the colors
of its child dominators. The source node s transmits one packet in each frame.

182 11 Minimum-Latency Scheduling

Each connector receiving a packet in a dominator subframe transmits the received
packet in all the time slots corresponding to the colors of its child dominators of
the connector subframe of the same frame. Each dominator with color i receiving a
packet in a connector subframe transmits the received packet in the ith time slot of
the dominator subframe of the subsequent frame.

The correctness of the above schedule is obvious. Next, we bound the latency of
the second phase. After n− 1 frames, s transmits the last packet. After another L′
frames, the last packet reaches all nodes in IL′ . Finally, after another half frame, the
last packet reaches all nodes. So, the total number of time slots taken by the second
phase is at most

2k
(
n− 1+L′

)
+ k

≤ 2k (n+L− 2)+ k

= 2k (n+L− 1.5)

≤ 2βρ (n+L− 1.5).

By Theorem 11.6.1, the first phase takes at most βρ (2n− 3) time slots. Hence,
the total number of time slots taken by the two phases is at most

βρ (2n− 3)+ 2βρ (n+L− 1.5)

= βρ (4n− 6+ 2L).

Therefore, we have the following theorem.

Theorem 11.7.1. The latency of the two-phased gossiping schedule is at most
βρ (4n− 6+ 2L).

In the next, we present a lower bound on the minimum gossiping latency.

Lemma 11.7.2. The minimum gossiping latency of G is at least n− 1+L.

Proof. The broadcasting of each message requires at least L transmissions. So,
the total number of transmissions in any gossiping schedule is at least nL. This
implies that some node must take at least L transmissions. On the other hand, every
node must take n− 1 receptions. Therefore, some node takes at least n− 1+ L
transmissions and receptions. This implies that n− 1+L is a lower bound on the
minimum gossiping latency. ��

Since
4n− 6+ 2L= 4(n− 1+L)− 2(L+ 1)< 4(n− 1+L).

Therefore, the approximation factor of our gossiping schedule is at most 4βρ .

Chapter 12
CDS in Planar Graphs

Simple, geometric forms and planar surfaces
define Jeep Patriot’s timeless, purpose-built design.

TREVOR CREED

12.1 Motivation and Overview

Although MIN-CDS in general graphs is hard to approximate, the restriction to
certain special graph classes admits much better approximation results. MIN-CDS
in planar graphs remains NP-hard even for planar graphs that are regular of degree 4
[57]. The related problem, MIN-DS in planar graphs, is also NP-hard even for planar
graphs with maximum vertex degree 3 and planar graphs that are regular of degree
4 [57]. It is well known that MIN-DS in planar graphs possesses a polynomial-
time approximation scheme (PTAS) based on the shifting strategy [3]: For any
constant ε > 0, there is a polynomial-time (1+ ε)-approximation algorithm. Thus,
it is immediate to conclude that MIN-CDS in planar graphs can be approximated
within a factor 3 + ε for any ε > 0 in polynomial time. However, the degree of
the polynomial grows with 1/ε and hence, the approximation scheme is hardly
practical.

In this chapter, we present a simple heuristic for MIN-CDS in general graphs
developed in [105]. When running on graphs excluding Km (the complete graph of
order m) as a minor, the heuristic has an approximation ratio of at most 7 if m= 3, or

at most m(m−1)
2 +5 if m≥ 4. In particular, if running on a planar graph, the heuristic

has an approximation ratio of at most 15. The remaining of this chapter is organized
as follows. In Sect. 12.2, we introduce some related graph-theoretic concepts and
parameters. In Sect. 12.3, we describe the heuristic for MIN-CDS in general graphs.
In Sect. 12.4, we provide an upper bound on the cardinality of the CDS output by
the heuristic.

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3 12,
© Springer Science+Business Media New York 2013

183

184 12 CDS in Planar Graphs

12.2 Preliminaries

Let G= (V,E) be a graph. We sometimes write V (G) instead of V and E (G) instead
of E . For any U ⊆ V , we use G [U] to denote the subgraph of G induced by U . The
distance distG (u,v) in G of two vertices u,v ∈V (G) is the length of a shortest path
between u and v in G. The distance between a vertex v and a set U ⊆V (G) is

min
u∈U

distG (u,v) .

The distance between two subsets U and W of V (G) is

min
u∈U

min
w∈W

distG (u,w) .

A vertex set U ⊆V (G) is a k-independent set (k-IS) of G if the distance between any
pair of vertices in U is greater than k. The k-independence number of G, denoted by
αk (G), is the largest cardinality of a k-IS. Note that a 1-IS is a usual IS and α1 (G)
is the usual independence number α (G). The domination number of G, denoted by
γ (G), the connected domination number of G, denoted by γc (G), and α2 (G) are
related by the following inequality [44].

α2 (G)≤ γ (G)≤ γc (G) .

To see why α2 (G)≤ γ (G), let U ⊆V (G) be a maximum 2-IS of G. For each u∈U ,
let NG [u] denote the closed neighborhood of u in G. Then the closed neighborhoods
NG [u] for all u ∈ U are pairwise disjoint. Thus, each dominating set of G must
contain at least one vertex from each NG [u]. This implies that γ (G)≥ α2 (G).

A contraction of an edge (u,v) in G is made by identifying u and v with a new
vertex whose neighborhood is the union of the neighborhoods of u and v (with
resulting multiple edges and self-loops deleted). A contraction of G is a graph
obtained from G by a sequence of edge contractions. A graph H is a minor of G
if H is the contraction of a subgraph of G. G is H-free if G has no minor isomorphic
to H. For example, by Kuratowski’s theorem, a graph is planar if and only if it is both
K5-free and K3,3-free. In this chapter, we focus on Km-free graphs. Our algorithm
would find a CDS of size at most

(
m(m− 1)

2
+ 5

)
α2 (G)− 5

of a Km-free graph G for any m≥ 4. This implies that if G is Km-free for some m≥ 4,
then

γc (G)≤
(

m(m− 1)
2

+ 5

)
α2 (G)− 5.

In particular, for a planar graph G,

γc (G)≤ 15α2 (G)− 5.

12.3 Algorithm Description 185

12.3 Algorithm Description

We first give a brief overview on the algorithm design. The algorithm is presented
as a color-marking and time-stamping process. Each vertex maintains one of the
three colors: black, gray, and white, which is initially white. In addition, each vertex
maintains a set of stamps, which is initially empty. The algorithm runs in proceeds
in iterative phases. In the kth phase, a subset Bk of nonblack vertices are marked with
black, and all of their gray neighbors are stamped with the phase number (interpreted
as the time) k while keeping all previous stamps, and all of their white neighbors are
marked gray and stamped with the current phase number k. At the end of the kth
phase, all black nodes have to be connected, and each white vertex, if there is any
left, has a gray neighbor with time-stamp j for every 1≤ j ≤ k. The algorithm ends
when no white vertex is left and outputs all black vertices which form a CDS.

Now, we describe the algorithm. For the simplicity of description, we introduce
some new terms and notations. Given a color marking of all vertices of G, the
deficiency graph is the graph obtained from G by first removing all black vertices
and those gray vertices without white neighbors, and then removing edges between
gray vertices. Thus, each vertex of a deficiency graph is either white or gray, and
each connected component of a deficiency graph must have at least one white vertex.
Given a vertex v and a positive integer k, we use MarkStamp(v,k) to denote the
basic operation which marks v black and all white neighbors of v gray and stamps v
and all its nonblack neighbors with k.

Consider a connected graph H and a positive integer k which satisfy the following
properties: Each vertex of H is either white or gray and at least one vertex is white.
If k = 1, then all vertices are white; and otherwise, every white vertex is adjacent to
a gray vertex stamped with j for every 1 ≤ j ≤ k− 1. Such pair (H,k) is referred
to as a residue pair. A restricted connected 2-dominating set (RC2DS) of a residue
pair (H,k) is a subset of vertices U of H satisfying that:

• H[U] is connected.
• Every white vertex not in U , if there is any, is at a distance of exactly two from U .
• And for every 1≤ j ≤ k− 1, at least one vertex in U has a stamp j

We present a simple procedure, called RC2DS(H,k), which takes a residue pair
(H,k) as input and produces a RC2DS for (H,k) which are marked black and a color
marking and time-stamping of the remaining vertices. The procedure RC2DS(H,k)
consists of four steps:

• Step 1: Initialization. If k ≥ 2, let a j = 0 for j = 1, . . . ,k− 1.
• Step 2: Sorting. Build a spanning tree T of H rooted at a white vertex, and

compute a breadth-first-search order v1,v2, . . . ,vs of all white vertices in H with
respect to T .

• Step 3: Coloring and Stamping. MarkStamp(v1,k). For i = 2 to s, if vi is white
and has no gray neighbors stamped with k, proceed as follows:

186 12 CDS in Planar Graphs

(a) Set l = 1, u1 = vi. Repeat the following iteration until ul is black: If k≥ 2 and
ul is gray, set a j = 1 for each stamp j < k of ul . If ul has a black neighbor,
set ul+1 to any such neighbor; otherwise, if ul has a gray neighbor stamped
with k, set ul+1 to any such neighbor; otherwise, set ul+1 to its parent in T .
Increment l by 1.

(b) Repeat the following iteration until l = 1: Decrement l by 1 and invoke
MarkStamp(ul ,k).

• Step 4: Post-processing. If k≥ 2, perform the following processing. For j = 1 to
k− 1, if a j = 0, choose a gray neighbor u of v1 stamped with j, set at = 1 for
each stamp t < k of u, and then MarkStamp(u,k).

The k− 1 boolean variables a j for 1 ≤ j ≤ k− 1 indicate whether at least one
black vertex has a stamp j. They are initialized to zero in Step 1. Whenever a gray
vertex with stamp j is marked black at Step 3 or Step 4, a j is set to one. Step 4
ensures that all these boolean variables are one eventually.

The for-loop in Step 3 guarantees that in the end, every white vertex is adjacent
to a gray vertex stamped with k, and thus is exactly two hops away from some
black vertex. The inner loop in Step 3(a) establishes a path from a white vertex vi

without gray neighbors stamped with k to some black vertex. Let Pi be the subpath
of this path excluding the black end-vertex. The inner loop in Step 3(b) invokes
MarkStamp(u,k) for all vertices in Pi. We claim that Pi consists of either three
or four vertices. Indeed, u1 is vi, and since vi is white and has no gray neighbors
stamped with k, u2 is always set to the parent of vi. Depending on the color of u2,
we consider two cases:

Case 1: u2 is white. Then u2 must have a gray neighbor stamped with k as early as
when u2 is examined, for otherwise, it would have been marked black. Thus, u3 is a
gray neighbor of u2 stamped with k, and hence Pi consists of the three vertices u1,
u2 and u3.

Case 2: u2 is gray. Then every stamp of u2 is less than k. We further consider two
subcases.

Subcase 2.1: At least one gray neighbor of u2 has stamp k. Then u3 is one of such
gray neighbors and Pi just consists of the three vertices u1, u2 and u3.

Subcase 2.2: None of the gray neighbors of u2 has stamp k. As u2 is not adjacent
to any black vertex, u3 is the parent of u2. Since no gray vertices with stamps less
than k are adjacent in H, u3 must be white. Then at least a gray neighbor of u3 is
stamped with k as early as when u3 is examined, for otherwise, u3 would have been
marked black. Thus, u4 is one of such gray neighbors, and Pi just consists of the four
vertices u1, u2, u3, and u4.

In summary, the path consists of either three vertices or four vertices. Further-
more, if the path consists of four vertices, then k must be greater than one and at
least one a j is set to one for some 1≤ j ≤ k− 1 in Step 3(a).

Now we are ready to describe the algorithm, denoted by MarkStamp(G), for
finding a CDS of G. Initially, k = 0, and all vertices of G have white colors. Repeat
the following iteration while there are some white vertices left:

12.4 Performance Analysis 187

• Increment k by 1 and construct the deficiency graph Gk.
• For each connected component H of Gk, apply RC2DS(H,k).

Let B denote the set of black vertices produced by MarkStamp(G). It is easy to
see that B is a CDS of G. In the next section, we will provide an upper bound on |B|
if the graph G is free of Km-minor for some m≥ 3.

12.4 Performance Analysis

The main theorem of this section is given below.

Theorem 12.4.1. Suppose that G is free of Km-minor for some m ≥ 3. If m = 3,
then

|B| ≤ 7α2 (G)− 4.

If m≥ 4, then

|B| ≤
(

m(m− 1)
2

+ 5

)
α2 (G)− 5.

By Kuratowski’s theorem, a planar graph has no K5-minor. So we have the
following corollary of Theorem 12.4.1.

Corollary 12.4.2. If G is a planar graph, then

|B| ≤ 15α2 (G)− 5.

Since
α2 (G)≤ γ (G)≤ γc (G) ,

Theorem 12.4.1 implies that when running on a graph G excluding Km as a minor,
the algorithm MarkStamp(G) has an approximation ratio of at most 7 if m = 3 or at

most m(m−1)
2 + 5 if m≥ 4. In particular, if running on a planar graph, the algorithm

has an approximation ratio of at most 15. The remaining of this section is dedicated
to the proof for Theorem 12.4.1.

Let H be a graph in which every vertex is either white or gray and there is at
least one white vertex. A restricted 2-independent set (R2IS) is a 2-IS of H which
consists of only white vertices. The restricted 2-independence number of H, denoted
by α ′2 (H), is the largest cardinality of an R2IS of H. Obviously, α ′2 (H) ≤ α2 (H).
The next lemma presents the “monotonic” properties of the deficiency graphs.

Lemma 12.4.3. Suppose that MarkStamp(G) runs in l iterations. Then

G = G1 ⊃ G2 ⊃ ·· · ⊃ Gl ;

α2 (G) = α ′2 (G1)≥ α ′2 (G2)≥ ·· · ≥ α ′2 (Gl) .

188 12 CDS in Planar Graphs

Proof. It is obvious that G1 = G and α ′2 (G1) = α2 (G). Fix a k between 1 and l−1.
We prove that Gk+1 ⊂ Gk and α ′2 (Gk+1)≤ α ′2 (Gk).

We first show that V (Gk+1)⊂ V (Gk). Note that all white vertices of Gk+1 must
have been white in the previous iteration and thus are white vertices of Gk as well.
In addition, all gray vertices of Gk+1 which are white in the previous iteration must
be white vertices of Gk. So it is sufficient to show that each gray vertex of Gk+1

which is also gray in the previous iteration is also a vertex of Gk. Let v be a gray
vertex of Gk+1 which is also gray in the previous iteration. Then v has a white
neighbor, denoted by u, in Gk+1. Since u is also a white vertex of Gk, v must be also
a gray vertex of Gk.

Next, we show that E (Gk+1) ⊂ E (Gk). Consider any edge uv of Gi+1. Then at
least one of its endpoints is white. By symmetry, assume v is white. If u is also
white, then the edge uv also appears in Gk. If u is gray, then u is either white or gray
in Gk. In either case, the edge uv appears in Gk.

Finally, we show that α ′2 (Gk+1) ≤ α ′2 (Gk). Let w1 and w2 be any pair of white
nodes of Gk+1. As Gk+1 is a subgraph of Gk,

distGk+1 (w1,w2)≥ distGk (w1,w2) .

We claim that, however, if distGk (w1,w2)≤ 2, then

distGk+1 (w1,w2) = distGk (w1,w2) .

The claim is true if distGk (w1,w2) = 1. So we assume that distGk (w1,w2) = 2. Then
distGk+1 (w1,w2) ≥ 2. Let v be a common neighbor of w1 and w2 in Gk. Then
v must remain as a vertex of Gk+1, for otherwise, v would have been marked
black in the previous iteration and both w1 and w2 would have become gray
in Gk+1. Thus, distGk+1 (w1,w2) = 2. So our claim is true. From the claim, we
conclude that if distGk+1 (w1,w2) > 2, then distGk (w1,w2) > 2. This implies that
α ′2 (Gk+1)≤ α ′2 (Gk). ��

The lemma below gives an upper bound on the total number of iterations if the
graph G is free of Km-minor.

Lemma 12.4.4. If G is free of Km-minor for some m≥ 3, then MarkStamp(G) runs
in at most m− 1 iterations.

Proof. We prove the lemma by contradiction. Assume that G is free of Km-minor
but MarkStamp(G) runs in at least m iterations. Let H∗m be an arbitrary connected
component of Gm. By Lemma 12.4.3, for each 1 ≤ k ≤ m− 1, Gk has a unique
connected component, denoted by H∗k , which contains H∗m as a subgraph. Obviously,

H∗1 ⊃ H∗2 ⊃ ·· · ⊃H∗m.

For each 1≤ k≤m, let B∗k be the set of black vertices of H∗k marked by the procedure
RC2DS

(
H∗k ,k

)
. Then for any 1 ≤ i < j ≤ m, B∗i and B∗j are disjoint and separated

12.4 Performance Analysis 189

by one hop as at least one vertex in B∗j has a stamp i. Since each B∗k is connected, the
m sets B∗1,B

∗
2, . . . ,B

∗
m give rise to a Km-minor in G, which is a contradiction. Thus,

the lemma holds. ��
The next lemma provides an upper bound on the number of black vertices

produced by the procedure RC2DS(H,k).

Lemma 12.4.5. The number of black vertices produced by the procedure
RC2DS(H,k) is at most 3α ′2 (H)− 2 if k = 1, and at most 4α ′2 (H) + k− 4 if
k ≥ 2.

Proof. Let v1,v2, . . . ,vs be the ordering of the white vertices of H produced by Step
2 of the procedure RC2DS(H,k). Let I be the set of integers i in {2, . . . ,s} such that
when vi is examined in the for-loop of Step 3, vi is white and has no gray neighbors
stamped with k. It is obvious that {vi : i ∈ {1}∪ I} form an R2IS of H. Thus,

1+ |I| ≤ α ′2 (H) .

Next, we count the number of vertices marked black during each iteration i with
i ∈ I in the for-loop of Step 3. Fix an i ∈ I. From the explanation after the procedure
RC2DS(H,k) in the previous section, either three or four vertices are marked black
during iteration i. In addition, if four vertices are marked black in this iteration, then
k must be greater than one and at least one a j is set to one for some 1≤ j ≤ k− 1.

Finally, we count the total number of black vertices. Note that v1 is always
marked black. If for each i ∈ I, the iteration i of the for-loop at Step 3 marks exactly
three vertices black, then Step 4 marks at most k− 1 additional vertices black. So
the total number of black vertices is at most

1+ 3 |I|+ k− 1

= 3(1+ |I|)+ k− 3

≤ 3α ′2 (H)+ k− 3.

If for some i ∈ I, the iteration i of the for-loop at Step 3 marks four vertices black,
then k > 1 and Step 4 marks at most k− 2 additional vertices black. So the total
number of black vertices is at most

1+ 4 |I|+ k− 2

= 4(1+ |I|)+ k− 5

≤ 4α ′2 (H)+ k− 5.

Thus, if k = 1, the total number of black vertices is at most

3α ′2 (H)+ 1− 3= 3α ′2 (H)− 2.

190 12 CDS in Planar Graphs

If k ≥ 2, the total number of black vertices is at most

max
{

3α ′2 (H)+ k− 3,4α ′2 (H)+ k− 5
}

≤ 4α ′2 (H)+ k− 4.

Therefore, the lemma holds. ��
The next lemma gives upper bounds on the number of black vertices produced in

each iteration of MarkStamp(G).

Lemma 12.4.6. Let Bk be the set of black vertices produced in the kth iteration of
MarkStamp(G). Then

|B1| ≤ 3α2 (G)− 2,

|B2| ≤ 4α2 (G)− 2,

|B3| ≤ 4α2 (G)− 1,

|Bk| ≤ kα2 (G) , k ≥ 4.

Proof. From Lemmas 12.4.5 and 12.4.3, |B1| ≤ 3α2 (G)− 2. So we assume that
k > 1. Suppose that Gk has t connected components, denoted by Hk,1, . . . ,Hk,t . Since
each connected component contains at least one white vertex,

1≤ t ≤
t

∑
i=1

α ′2
(
Hk,i
)
= α ′2 (Gk) .

For each 1 ≤ i ≤ t, let Bk,i be the vertices of Hk,i produced by the procedure
RC2DS

(
Hk,i,k

)
. Then

Bk = Bk,1∪·· ·∪Bk,t ;

and by Lemma 12.4.5, ∣∣Bk,i
∣∣≤ 4α ′2

(
Hk,i
)
+ k− 4

for each 1≤ i≤ t. Thus, if k = 2 or 3, by Lemma 12.4.3, we have

|Bk| =
t

∑
i=1

∣∣Bk,i
∣∣

≤ 4
t

∑
i=1

α ′2
(
Hk,i
)
+(k− 4)t

= 4α ′2 (Gk)+ (k− 4)t

≤ 4α2 (G)+ (k− 4) .

12.4 Performance Analysis 191

If k ≥ 4, by Lemma 12.4.3 we have

|Bk| =
t

∑
i=1

∣∣Bk,i
∣∣

≤ 4
t

∑
i=1

α ′2
(
Hk,i
)
+(k− 4)t

≤ 4α ′2 (Gk)+ (k− 4)α ′2 (Gk)

= kα ′2 (Gk)

≤ kα2 (G) .

So, the lemma holds. ��
Now we are ready to give the proof of Theorem 12.4.1. By Lemma 12.4.4, the

total number of iterations is at most m− 1. If m = 3, then by Lemma 12.4.6,

|B| ≤ (3α2 (G)− 2)+ (4α2 (G)− 2)≤ 7α2 (G)− 4.

If m = 4, then by Lemma 12.4.6,

|B| ≤ (7α2 (G)− 4)+ (4α2 (G)− 1)

= 11α2 (G)− 5

=

(
m(m− 1)

2
+ 5

)
α2 (G)− 5.

If m > 4, by Lemma 12.4.6,

|B| ≤ (11α2 (G)− 5)+
m−1

∑
k=4

kα2 (G)

= 11α2 (G)− 5+

(
m(m− 1)

2
− 6

)
α2 (G)

=

(
m(m− 1)

2
+ 5

)
α2 (G)− 5.

This completes the proof of Theorem 12.4.1. ��

References

1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research
challenges. Ad Hoc Network 3(3), 257–279 (2005)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-approximation for
minimum-weight (connected) dominating sets in unit disk graphs. Proceedings of the
9th International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX 2006). Lecture Notes in Computer Science, vol. 4110 pp. 3–14. Springer, Berlin
(2006)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM
41(1), 153–180 (1994)

4. Baudis, G., Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximating minimum
spanning sets in hypergraphs and polymatroids. Technical Report, Humboldt-Universitt zu
Berlin (2000)

5. Benini, L., Castelli, G., Macii, A., Poncino, M., Scarsi, R.: A discrete-time battery model for
high-level power estimation. Proceedings of DATE, pp. 35–39 (2000)

6. Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Power efficient monitoring management
in sensor networks. IEEE Wireless Communication and Networking Conference (WCNC’04),
Atlanta, pp. 2329–2334 (2004)

7. Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Efficient energy management in sensor
networks. In: Xiao, Y., Pan, Y. (eds.) Ad Hoc and Sensor Networks, Wireless Networks and
Mobile Computing, vol. 2. Nova Science Publishers, New York (2005)

8. Bharghavan, V., Das, B.: Routing in ad hoc networks using minimum connected dominating
sets. International Conference on Communication, Montreal, Canada (1997)

9. Butenko, S., Kahruman-Anderoglu, S., Ursulenko, O.: On connected domination in unit ball
graphs. Optim. Lett. 5(2), 195–205 (2011)

10. Byrka, J., Grandoni, F., Rothvoss, T., Sanita, L.: An improved LP-based approximation for
Steiner tree. STOC’10, pp. 583–592 (2010)

11. Calinescu, G., Ellis, R.: On the lifetime of randomly deployed sensor networks. DialM-POMC
the Fifth ACM SIGACTSIGOPS International Workshop on Foundation of Mobile
Computing (2008)

12. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power
assignment in ad-hoc wireless networks. Proceedings of European Symposium on Algorithms
(ESA’03), Lecture Notes in Computer Science, vol. 2832, pp. 114–126 (2003)

13. Cardei, M., Du, D.-Z.: Improving wireless sensor network lifetime through power aware
organization. ACM Wireless Network. 11(3), 333–340 (2005)

14. Cardei, M., Cheng, M.X., Cheng, X., Du, D.-Z.: Connected domination in ad hoc wireless
networks. In: Proceedings the Sixth International Conference on Computer Science and
Informatics (CS&I’2002) (2002)

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3,
© Springer Science+Business Media New York 2013

193

194 References

15. Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor
networks. IEEE INFOCOM, pp. 1976–1984 (2005)

16. Cardei, M., MacCallum, D., Cheng, X., Min, M., Jia, X., Li, D., Du, D.-Z.: Wireless sensor
networks with energy efficient organization. J. Interconnect. Networks 3(3–4), 213–229
(2002)

17. Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating
sets for clustering mobile ad hoc networks. In: Proceedings of the Third ACM International
Symposium on Mobile ad hoc Networking and Computing, Lausanne, Switzerland (2002)

18. Cheng, M.X., Gong, X.: Maximum lifetime coverage preserving scheduling algorithms in
sensor networks. J. Global Optim. 51(3), 447–462 (2011)

19. Cheng, M.X., Ruan, L., Wu, W.: Achieving minimum coverage breach under bandwidth
constraints in wireless sensor networks. INFOCOM, pp. 2638–2645 (2005)

20. Cheng, M.X., Ruan, L., Wu, W.: Coverage breach problems in bandwidth-constrained sensor
networks. TOSN 3(2), 12 (2007)

21. Cheng, X., Ding, M., Du, D.H., Jia, X.: Virtual backbone construction in multihop ad hoc
wireless networks. Wireless Comm. Mobile Comput. 6, 183–190 (2006)

22. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approxima-
tion scheme for minimum connected dominating set in ad hoc wireless networks.
Networks 42(2), 202–208 (2003)

23. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235
(1979)

24. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Disc. Math. 86(1–3), 165–177
(1990)

25. Colbourn, C.J., Stewart, L.K.: Permutation graphs: connected domination and Steiner trees.
Disc. Math. 86(1–3), 179–189 (1990)

26. Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in
ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)

27. Dai, D., Yu, C.: A (5+ε)-approximation algorithm for minimum weighted dominating set in
unit disk graph. Theor. Comput. Sci. 410, 756–765 (2009)

28. Deering, S., Farinacci, D., Jacobson, V., Lui, C.-G., Wei, L.: An architecture for wide area
multicast routing. In: Proceedings of ACM SIGCOMM 1994, pp. 126–135 (1994)

29. Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W.: Construction of directional virtual
backbones with minimum routing cost in wireless networks. In: 30th Annual Joint Conference
of IEEE Communication and Computer Society (INFOCOM), pp. 1557–1565 (2011)

30. Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W.: Efficient virtual backbone construction with
routing cost constraint in wireless networks using directional antennas. IEEE Trans. Mobile
Comput. 11(7), 1102–1112 (2012)

31. Ding, L., Gao, X., Wu, W., Lee, W., Zhu, X., Du, D.-Z.: An exact algorithm for minimum
CDS with shortest path constraint in wireless networks. Optim. Lett. (2010) published online

32. Ding, L., Gao, X., Wu, W., Lee, W., Zhu, Xu, Du, D.-Z.: Distributed construction of connected
dominating sets with minimum routing cost in wireless network. In: Proceedings of the 30th
International Conference on Distributed Computing Systems (ICDCS), pp. 448–457 (2010)

33. Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W., Du, D.-Z.: Efficient algorithms for topology
control problem with routing cost constraints in wireless networks. IEEE. Trans. Parallel.
Distr. Syst. 22(10), 1601–1609 (2011)

34. Ding, L., Wu, W., Willson, J.K., Wu, L., Lu, Z., Lee, W.: Constant-approximation for target
coverage problem in wireless sensor networks. In: Proceedings of the 31st Annual Joint
Conference of IEEE Communication and Computer Society (INFOCOM) (2012)

35. Douglas, R.J.: NP-completeness and degree restricted spanning trees. Disc. Math. 105(1–3),
41–47 (1992)

36. Du, D.-Z., Ko, K.-I., Hu, X.: Design and Analysis of Approximation Algorithms. Springer,
Berlin (2011)

37. Du, H., Pardalos, P.M., Wu, W., Wu, L.: Maximum lifetime connected coverage with two
active-phase sensors. J. Global Optim. (2012), on line

References 195

38. Du, D.-Z., Thai, M.Y., Li, Y., Liu, D., Zhu, S.: Strongly connected dominating sets in wireless
sensor networks with unidirectional links. APWeb, pp. 13–24 (2006)

39. Du, H., Wu, W., Ye, Q., Li, D., Lee, W., Xu, X.: CDS-based virtual backbone construction
with guaranteed routing cost in wireless sensor networks. IEEE Trans. Parallel Distr. Syst., to
appear

40. Du, D.-Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao, W.: Analysis of greedy
approximation with nonsubmodular potential functions. In: Proceedings of SODA (2008)

41. Du, H., Ye, Q., Zhong, J., Wang, A., Lee, W., Park, H.: PTAS for minimum connected
dominating set with routing cost constraint in wireless sensor networks. In: 4th Annual
International Conference on Combinatorial Optimization and Applications (COCOA) (2010)

42. Du, H., Wu, W., Lee, W., Liu, Q., Zhang, Z., Du, D.-Z.: On minumum submodular cover with
submodular cost. J. Global Optim. 50(2), 229–234 (2011)

43. Du, H., Ye, Q., Wu, W., Lee, W., Li, D., Du, D.-Z., Howard, S.: Constant approximation
for virtual backbone construction with guaranteed routing cost in wireless sensor networks.
INFOCOM, pp. 1737–1744 (2011)

44. Duchet, P., Meyniel, H.: On Hadwiger’s number and stability numbers. Annal. Disc. Math.
13, 71–74 (1982)

45. Eriksson, H.: MBone: the multicast backbone. Commun. ACM 37(8), pp. 54–60 (1994)
46. Erlebach, T., Mihalák, M.: A (4+ ε)-approximation for the minimum-weight dominating set

problem in unit disk graphs. WAOA, pp. 135–146 (2009)
47. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652 (1998)
48. Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the domatic

number. SIAM J. Comput. 32(1), 172–195 (2002)
49. Fodor, F.: The densest packing of 13 congruent circles in a circle. Beitrage Algebra Geom.

44(2), 431–440 (2003)
50. Folkman, J.H., Graham, R.L.: A packing inequality for compact convex subsets of the plane.

Canad. Math. Bull. 12, 745–752 (1969)
51. Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed algorithm for

minimum CDS in unit disk graphs. ACM Trans. Sensor Net. 2, 444–453 (2006)
52. Fujito, T.: Approximation algorithms for submodular set cover with application, IEICE Trans.

Inf. Syst. E83-D(3), 480–487 (2000)
53. Gao, X., Huang, Y., Zhang, Z., Wu, W.: (6+epsilon)-approximation for minimum weight

dominating set in unit disk graphs. COCOON, pp. 551–557 (2008)
54. Gao, X., Wang, Y., Li, X., Wu, W.: Analysis on theoretical bounds of approximating

dominating set problems. Disc. Math. Algorithms Appl. 1(1), 71–84 (2009)
55. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flows and other

fractional packing problems. In: Proceedings of 39th Annual Symposium on the Foundations
of Computer Science (FOCS), pp. 300–309 (1998)

56. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J.
Appl. Math. 32, 826–834 (1977)

57. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Sons, San Francisco, CA (1979)

58. Gfeller, B., Vicari, E.: A faster distributed approximation scheme for the connected domi-
nating set problem for growth-bounded graphs. In: Proceedings of the 6th Ad-Hoc, Mobile,
and Wireless Networks International Conference (ADHOC-NOW 2007). Lecture Notes in
Computer Science, vol. 4686, pp. 59–73. Springer, Berlin (2007)

59. Gibson, M., Pirwani, I.: Algorithms for dominating set in disk graphs: breaking the logn
barrier. Algorithms–ESA, pp. 243–254 (2010)

60. Green, P.E.: Fiber-Optic Networks. Prentical-Hall, Cambrige, MA (1992)
61. Groemer, H.: Über die Einlagerung von Kreisen in einen konvexen Bereich. Math. Z. 73,

285–294 (1960)
62. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica

20(4), 374–387 (1998)

196 References

63. Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and
connected dominating sets. Springer Lect. Notes Comput. Sci. 1530, 54–66 (1998)

64. Hahn, R., Reichl, H.: Batteries and power supplies for wearable and ubiquitous computing.
In: Proceedings of the 3rd International Symposium on Wearable Computers (1999)

65. Hoppe, R.: Bemerkungen de redaktion. Grunert Arch. Math. Phys. 56, 307–312 (1874)
66. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted

dominating set in unit disk graph. J. Combin. Optim. 18(2), 179–194 (2009)
67. Kim, D., Wu, Y., Li, Y., Zou, F., Du, D.-Z.: Constructing minimum connected dominating

sets with bounded diameters in wireless networks. IEEE Trans. Parallel Distrib. Syst. 20(2),
147–157 (2009)

68. Kim, D., Zhang, Z., Li, X., Wang, W., Wu, W., Du, D.-Z.: A better approximation algorithm
for computing connected dominating sets in unit ball graphs. IEEE Trans. Mobile Comput.
9(8), 1108–1118 (2010)

69. Klein, P.N., Ravi, R.: A nearly best-possible approximation for node-weighted Steiner trees.
J. Algorithms 19, 104–115 (1995)

70. Kuhn, F., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proceedings of the
Joint Workshop of Foundation of Mobile Computing (DIALM-POMC) (2003)

71. Laskar, R., Pfaff, J.: Domination and irredundance in split graphs. Technical Report 430,
Department of Mathematical Sciences, Clemson University (1983)

72. Li, M., Wan, P.J., Yao, F.F.: Tighter approximation bounds for minimum CDS in wireless
ad hoc networks. ISAAC’2009. Lecture Notes in Computer Science, vol. 5878, pp. 699–709
(2009)

73. Li, D., Du, X., Hu, X., Jia, X.: Minimizing number of wavelengths in multicast routing trees
in WDM networks. Networks 35(4), 260–265 (2000)

74. Li, Y., Thai, M.T., Wang, F., Du, D.-Z.: On the construction of a strongly connected
broadcast arborescence with bounded transmission delay. IEEE Trans. Mobile Comput. 5(10),
1460–1470 (2006)

75. Li, Y., Thai, M.Y., Wang, F., Yi, C.-W., Wan, P.-J., Du, D.-Z.: On greedy construction of
connected dominating sets in wireless networks. Wireless Commun. Mobile Comput. 5,
927–932 (2005)

76. Li, D., Du, H., Wan, P.-J., Gao, X., Zhang, Z., Wu, W.: Minimum power strongly connected
dominating sets in wireless networks. In: Proceedings of the 2008 International Conference
on Wireless Networks (ICWN’08) (2008)

77. Li, D., Du, H., Wan, P.-J., Gao, X., Zhang, Z., Wu, W.: Construction of strongly connected
dominating sets in asymmetric multihop wireless networks. Theoret. Comput. Sci. 410(8–10),
661–669 (2009)

78. Liu, Q., Li, X., Wu, L., Du, H., Zhang, Z., Wu, W., Xu, Y.: A new proof for
Zassenhaus–Groemer–Oler inequality. Disc. Math. Algorithms Appl. 4(2), (2012) DOI:
10.1142/S1793830912500140

79. Min, M., Du, H., Jiao, X., Huang, X., Huang, S.C.-H., Wu, W.: Improving construction for
connected dominating set with Steiner tree in wireless sensor networks. J. Global Optim. 35,
111–119 (2006)

80. Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In: Proceedings
of the 5th IEEE International Workshop on Algorithms for Wireless, Mobile, Ad hoc and
Sensor Networks (2005)

81. Mukherjee, B.: WDM-based local lightwave networks Part I: single-hop system. IEEE
Networks 3, 12–26 (1992)

82. Mukherjee, B.: WDM-based local lightwave networks Part II: multihop system. IEEE
Networks 4, 22–32 (1992)

83. Mustafa, N., Ray, S.: Improved results on geometric hitting set problems. Disc. Comput.
Geometry 44(4), 883–895 (2010)

84. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York
(1999)

85. Oler, N.: An inequality in the geometry of numbers. Acta Math. 105, 19–48 (1961)

References 197

86. Pandit, S., Pemmaraju, S.V., Varadarajan, K.R.: Approximation algorithms for domatic
partitions of unit disk graphs. In: Dinur, L. et al. (eds.) APPROX and RANDOM 2009. Lecture
Notes in Computer Science, vol. 5687, pp. 312–325 (2009)

87. Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers
needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of IEEE INFO-
COM’97, pp. 261–268 (1997)

88. Ramaswami, R., Sasaki, G.: Multiwavelength optical networks with limited wavelength
conversion. IEEE/ACM Trans. Networking 6(6), 744–754 (1998)

89. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In: Proceedings of 28th STOCS (1997)

90. Ruan, L., Du, D.-Z., Hu, X., Jia, X., Li, D.: Approximations for color-covering problems. In:
Proceedings of 1st International Congress of Chinese Mathematicians, pp. 503–507. Beijing,
China (1998)

91. Ruan, L., Du, D.-Z., Hu, X., Jia, X., Li, D., Sun, Z.: Converter placement supporting broadcast
in WDM optical networks. IEEE Trans. Comput. 50(7), 750–758 (2001)

92. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approximation for minimum
connected dominating set. Algorithmca, 329(1–3), 325–330 (2004)

93. Salhieh, A., Weinmann, J., Kochha, M., Schwiebert, L.: Power efficient topologies for
wireless sensor networks. ICPP’2001, pp. 156–163 (2001)

94. Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph. J. Math.
Phys. Sci. 13(6), 607–613 (1979)

95. Sivakumar, R., Das, B., Bharghavan, V.: An improved spine-based infrastructure for routing
in ad hoc networks. In: IEEE Symposium on Computer and Communications, Athens, Greece
(1998)

96. Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks. IEEE
International Conference on Communications, pp. 472–476 (2001)

97. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number
of leaves. In: Proceedings of 6th European Symposium on Algorithms (ESA’98). Lecture
Notes in Computer Science, vol. 1461, pp. 441–452. Springer, Berlin (1998)

98. Srinivasan, A., Wu, J.: TRACK: A novel connected dominating set based sink mobility model
for WSNs. ICCCN, pp. 664–671 (2008)

99. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination based
broadcasting algorithms in wireless networks. In: Proceedings of IEEE Hawaii International
Conference on System Sciences (2001)

100. Sum, J., Wu, J., Ho, K.: Analysis on a localized pruning method for connected dominating
sets. J. Inf. Sci. Eng. 23(4), 1073–1086 (2007)

101. Thai, M.T., Du, D.-Z.: Connected dominating sets in disk graphs with bidirectional links.
IEEE Commun. Lett. 10(3), 138–140 (2006)

102. Thai, M.Y., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected dominating sets in wireless
networks with different communication ranges. IEEE Trans. Mobile Comput. 6(7), 721–730
(2007)

103. Vahdatpour, A., Dabiri, F., Moazeni, M., Sarrafzadeh, M.: Theoretical bound and practical
analysis of connected dominating set in ad hoc and sensor networks. In: Proceedings of 22nd
International Symposium on Distributed Computing (DISC), pp. 481–495 (2008)

104. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set
in wireless ad hoc networks. ACM/Springer Mobile Network. Appl. 9(2), 141–149 (2004).
A preliminary version of this paper appeared in IEEE INFOCOM (2002)

105. Wan, P.-J., Alzoubi, K.M., Frieder, O.: A simple heuristic for minimum connected dominating
set in graphs. Int. J. Found. Comput. Sci. 14(2), 323–333 (2003)

106. Wan, P.J., Wang, L., Yao, F.F.: Two-phased approximation algorithms for minimum CDS in
wireless ad hoc networks. IEEE ICDCS, pp. 337–344 (2008)

107. Wan, P.-J., Xu, X., Wang, Z.: Wireless coverage with disparate ranges. ACM Mobihoc (2011)

198 References

108. Wan, P.-J., Du, D.-Z., Pardalos, P.M., Wu, W.: Greedy approximations for minimum
submodular cover with submodular cost. Comput. Optim. Appl. 45(2), 463–474 (2010)

109. Wan, P.J., Huang, S.C.-H., Wang, L., Wan, Z., Jia, X.: Minimum-latency aggregation
scheduling in multihop wireless networks. ACM MOBIHOC (2009)

110. Wan, P.-J., Wang, Z., Wan, Z., Huang, S.C.-H., Liu, H.: Minimum-latency schedulings for
group communications in multi-channel multihop wireless networks. WASA (2009)

111. Wang, F., Thai, M.T., Du, D.-Z.: On the construction of 2-connected virtual backbone in
wireless networks. IEEE Trans. Wireless Commun. 8(3), 1230–1237 (2009)

112. Wang, L., Wan, P.-J., Yao, F.F.: Minimum CDS in multihop wireless networks with disparate
communication ranges, WASA (2010)

113. White, K., Parber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly
chordal graphs. Networks 15(1), 109–124 (1985)

114. Willson, J.K., Ding, L., Wu, W., Wu, L., Lu, Z., Lee, W.: A better constant-approximation for
coverage problem in wireless sensor networks, preprint.

115. Willson, J.K., Gao, X., Qu, Z., Zhu, Y., Li, Y., Wu, W.: Efficient distributed algorithms for
topology control problem with shortest path constraints. Disc. Math. Algorithms Appl. 1,
437–461 (2009)

116. Wolsey, L.A.: An analysis of the greedy algorithm for submodular set covering problem.
Combinatorica 2(4), 385–393 (1982)

117. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad hoc wireless
networks. In: Proceedings of the 3rd ACM International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pp. 7–14 (1999)

118. Wu, J., Dai, F.: Virtual backbone construction in MANETs using adjustable transmission
ranges. IEEE Trans. Mob. Comput. 5(9), 1188–1200 (2006)

119. Wu, J., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating sets for
efficient routing in ad hoc wireless networks. ICPP pp. 346–356 (2001)

120. Wu, J., Wu, B., Stojmenovic, I.: Power-aware broadcasting and activity scheduling in ad hoc
wireless networks using connected dominating sets. Wireless Commun. Mobile Comput. 3(4),
425–438 (2003)

121. Wu, J., Dai, F., Yang, S.: Iterative local solutions for connected dominating set in ad hoc
wireless networks, MASS (2005)

122. Wu, J., Lou, W., Dai, F.: Extended multipoint relays to determine connected dominating sets
in MANETs. IEEE Trans. Comput. 55(3), 347–337 (2006)

123. Wu, W., Du, H., Jia, X., Li, Y., Huang, S.C.-H.: Minimum connected dominating sets and
maximal independent sets in unit disk graphs, Theor. Comput. Sci. 352(1–3), 1–7 (2006)

124. Xing, K., Cheng, W., Park, E.K., Rotenstreich, S.: Distributed connected dominating set
construction in geometric k-disk graphs. IEEE ICDCS, pp. 673–680 (2008)

125. Zassenhaus, H.: Modern development in the geometry of numbers. Bull. Amer. Math. Soc.
67, 427–439 (1961)

126. Zhang, Y., Li, W.: Modeling and energy consumption evaluation of a stochastic wireless
sensor networks. preprint (2011)

127. Zhang, Z., Gao, X., Wu, W., Du, D.-Z.: A PTAS for minimum connected dominating set in
3-dimensional wireless sensor networks. J. Global Optim. 45(3), 451–458 (2009)

128. Zhang, N., Shin, I., Zou, F., Wu, W., Thai, M.T.: Trade-off scheme for fault tolerant connected
dominating sets on size and diameter. FOWANC, pp. 1–8 (2008)

129. Zhao, Y., Wu, J., Li, F., Lu, S.: VBS: Maximum lifetime sleep scheduling for wireless sensor
networks using virtual backbones, INFOCOM pp. 366–370 (2010)

130. Zhong, C.: Sphere Packing. Springer, Berlin (1999)
131. Zhong, X., Wang, J., Hu, N.: Connected dominating set in 3-dimensional space for ad hoc

network. In: Proceedings of IEEE Wireless Communications and Networking Conference
(WCNC’07) (2007)

References 199

132. Zou, F., Li, X., Kim, D., Wu, W.: Construction of minimum connected dominating set
in 3-dimensional wireless networks. In: Proceedings of Third International Conference on
Wireless Algorithms, Systems and Applications (WASA 08) (2008)

133. Zou, F., Li, X., Gao, S., Wu, W.: Node-weighted Steiner tree approximation in unit disk
graphs. J. Combin. Optim. 18(4), 342–349 (2009)

134. Zou, F., Wang, Y., Xu, X., Du, H., Li, X., Wan, P., Wu, W.: New approximations for weighted
dominating sets and connected dominating sets in unit disk graphs. Theoret. Comput. Sci.
412(3), 198–208 (2011)

Index

Symbols
2-independence number, 187
H-free, 184
α-quasi unit disk graph, 70
∂ Ω, 35
ballr(o), 64
k-Local Search, 155, 162, 165
k-independence number, 184
k-tight, 155, 162, 165
spherer(o), 64
diskr(o), 35
(ROCα), 120
(ROC*α), 121
(ROC*0), 121
(ROC0), 119
(ROC1), 119
Voronoi cell, 152
Voronoi diagram, 154
Voronoi dual, 154
contraction of G, 184
contraction of an edge, 184
degenerate quadruple, 152
disk intersection graph (DIG), 151
geometrically redundant, 152
loose, 155
maximum gain, 146
minor of G, 184
move of Li, 98
redundant, 155
shifted distance, 152
tight, 155
Gregory–Newton Problem, 63
configuration of sweep lines, 99
corner of the upper envelope, 98
regular polygon, 67
striding polygon, 67
3DDS, 7

CDS-SCHEDULING, 8
CONVERTER PLACEMENT, 5
LOCAL(e), 40, 127
MAX-LIFETIME CONNECTED-COVERAGE

with two active phases, 107
MAX-LIFETIME COVERAGE, 106
MAX#CDS, 6
MAX#DS, 106
MIN-CDS, 2
MIN-SCDS, 13
MIN-SET-COVER, 13
MIN-SUBMODULAR-COVER, 18
MIN-WCDS, 17
MINW-BROADCAST, 29
MINW-CDS, 12
MINW-CSC with Two Active Phases, 108
MINW-CHROMATIC-DISK-COVER, 92
MINW-DS in Unit Disk Graphs, 77
MINW-DS on a Block B, 80
MINW-DS on a Cell e, 82
MINW-SENOR-COVER, 106
MINW-SENSOR-COVER, 113
MINW-SET-COVER, 12
NODE-WEIGHTED STEINER TREE, 12
PLANAR-4-CVC, 38
ST-MSP-IN-UDG, 45
SENSOR-COVER-PARTITION, 105
SENSOR-COVER-PARTITION with Separating

Line, 113
SENSOR-COVER with Targets in Multi-Strips,

97
SENSOR-COVER with Targets in a Strip, 86
SET COVER, 3

A
active sensor set pair, 107
alive, 107

D.-Z. Du and P.-J. Wan, Connected Dominating Set; Theory and Applications, Springer
Optimization and Its Applications 77, DOI 10.1007/978-1-4614-5242-3,
© Springer Science+Business Media New York 2013

201

202 Index

B
black component, 47
boundary area, 39, 126
broadcasting tree, 29

C
CDS, 1
central area, 39, 127
circler(v), 35
closed, 134
connected components, 69
connected domatic number, 6
connected dominating set, 1
connected domination number, 1
connected vertex cover, 38
controlled, 87
cover, 165, 170
coverage-preserving, 166

D
deficiency graph, 185
degenerate quadruple, 163
Disk-containment graphs, 133
domatic number, 6
dominating set, 1, 12
dominating tree, 176
domination-preserving, 157
double partition, 77

E
Euler characteristic, 58

F
face, 58
forbidden, 157
forbidden circle, 164

G
gain, 146
growth-bounded graph, 69

H
head, 29
heavy, 116
hit, 161
hitting set, 161

I
increasing, 17
independent, 47, 63

L
legal, 29
legal move, 99
light, 116
local independence number, 133
locality condition, 156, 162, 166
loose, 162, 165
lower area, 97
lower disk, 89
lower dumming disks, 97
lower envelope, 97

M
marginal value, 17
max leaf number, 1
minimal cover, 170
minimum CDS, 1

N
neighborhood area, 35

O
orphan, 29
out-arborescence, 29

P
partial CDS, 9
private, 171

R
redundant, 165
residue pair, 185
restricted, 187
restricted 2-independent set, 187
restricted connected 2-dominating set, 185
restricted perturbation, 163

S
sensor cover, 105
set cover, 3
simplex, 58
simplicial complex, 58
skyline, 114
spider, 29

Index 203

Steiner nodes, 45
strongly connected dominating set (SCDS), 12
submodular, 17
sweep line, 98

T
terminals, 45
tight, 162, 165
topological control, 3

U
unit disk graph, 35
upper (dumming) disk, 97
upper area, 97
upper disk, 89
upper envelope, 97

W
weakly CDS (WCDS), 17

	Connected Dominating Set:Theory and Applications
	Preface
	Contents
	Chapter1 Introduction
	Chapter2 CDS in General Graph
	Chapter3 CDS in Unit Disk Graph
	Chapter 4 CDS in Unit Ball Graphs and Growth Bounded Graphs
	Chapter5 Weighted CDS in Unit Disk Graph
	Chapter6 Coverage
	Chapter7 Routing-Cost Constrained CDS
	Chapter8 CDS in Disk-Containment Graphs
	Chapter 9 CDS in Disk-Intersection Graphs
	Chapter10 Geometric Hitting Set and Disk Cover
	Chapter11 Minimum-Latency Scheduling
	Chapter12 CDS in Planar Graphs
	References
	Index

