
Chapter 16

Neural Interfacing with the Peripheral Nervous

System: A FINE Approach

Dominique M. Durand, Brian Wodlinger, and HyunJoo Park

1 Neurotechnology for Interfacing with the Peripheral

Nervous System

Functional Electrical Stimulation (FES) strives to restore function to neurologically

impaired individuals by electrically activating intact tissue distal to a neural lesion.

Until recently, clinical neuromuscular control has been achieved by placing

electrodes in or on the muscle, near the motor point. There are, however, several

disadvantages to these systems that limit the potential for future advances. The

stimulation current requirements for intramuscular (IM) electrodes are one to two

orders of magnitude higher than those necessary to stimulate the axon directly.

Also, with IM systems, at least one electrode must be implanted per muscle,

requiring multiple involved surgical procedures and an unacceptable number of

leads to service and maintain. Mechanical failure of the electrodes frequently arises

from the stress generated by contracting muscles. Further, the recruitment

properties of the electrodes are neither stable nor reliable. As the muscle contracts,

the stimulation site moves relative to the muscle motor point and generates a

recruitment curve dependent upon muscle length. In addition, electrode migration

causes varying recruitment characteristics over time and stimulation spillover to

unwanted muscles. Consequently, many researchers have been searching for

methods to directly stimulate the efferent motor neurons in peripheral nerves.
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Direct nerve stimulation offers many advantages over IM stimulation. It is

possible to control many muscles with one electrode array, so that only a single

implant procedure is required. The neural electrodes can also be implanted in

locations with relatively little motion and stress. Hence, they are less susceptible

to mechanical failure and do not exhibit length-dependent recruitment properties.

Furthermore, the stimulation currents are one to two orders of magnitude lower than

those of the muscle electrodes and require much less power to provide muscle

function. A highly selective electrode could stimulate separate motor units sequen-

tially, allowing fine motor control with reduced muscle fatigue. Finally, nerve

electrodes have the potential to record afferent signals, and show promise as a

means of supplying feedback for neuromuscular control.

1.1 Interface Systems with Peripheral Nerves

Modern neural electrodes are used for both stimulation and recording, and can be

classified as extraneural (round or flat interface) and endoneural (intrafascicular).

This distinction is based upon the neural membranes (epineurium or perineurium)

that are disrupted by the electrodes. The different properties and functions of these

membranes make this classification important. The epineurium is a soft, loose

connective tissue whose main purpose is to bind the fascicles together [1]. The

perineurium, on the other hand, is a tough membrane several cell layers thick that

serves multiple functions: regulating endoneurial solute concentrations,

maintaining positive intrafascicular pressure, and serving as a barrier to infection.

Electrodes that pierce the perineurium are more likely to damage the nerve than

those that do not.

Round extraneural electrodes pierce neither membrane, reshape the nerve into a

round shape or use multiple contacts placed around the nerve for selective stimula-

tion and recording. These electrodes can cause some damage but it appears to be

reversible [2]. They are limited in stimulation and recording selectivity because

some fascicles are located in the center of the nerve away from the electrodes.

Modeling and experimental studies have demonstrated that round extraneural

electrodes tend to recruit motor units in “inverse order,” and recruit small fascicles

before large fascicles [3]. Moreover, it is difficult to access deep regions of the

nerve without stimulating surface regions [4–6]. Different stimulation protocols

have been tried with mixed success to correct these problems, including tripole

electrode configurations [7, 8], “pre-pulsing” [9], and steering currents [7, 8, 10].

Current round extraneural electrode designs include the spiral [11–14], and the

helix [15]. The spiral and helix electrodes have self-sizing properties to allow for

neural swelling and inflammation, while providing a tight coupling between the

nerve and electrical contacts. The spiral and cuff-type electrodes provide an

insulating surface around the nerve that lowers stimulation thresholds by confining

current to the nerve.
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Whole nerve recording has also been performed with extraneural cuff electrodes.

In humans, the sural nerve has been used to provide sensory feedback for correction

of foot-drop [16]. Also, slip control in hand-grasp has been aided with recording

from the radial branch of a digital palmar nerve [17]. Spiral cuffs implanted on the

hypoglossal nerves of anesthetized cats were able to monitor the animal’s respira-

tory drive, and stable recordings have been obtained from the hypoglossal nerve of

a dog over a 14-month period [18]. There have also been efforts to localize ENG

signals within the nerve using multi-contact electrodes, and recent experiments

have demonstrated limited fascicle level selectivity under specialized conditions.

Experiments carried out in rabbits used oval cuffs to account for the normal, flat

geometry of the sciatic nerve [19], and showed a modest ability to discriminate

between two fascicles at opposite sides of the nerve. Higher levels of selectivity

with cuff electrodes have been reported [20–22].

1.2 Intrafascicular Nerve Electrodes

Intrafascicular electrodes penetrate both neural membranes and can provide selec-

tive activation of small subsets of axons and more information from sensory

afferents than extraneural electrodes. Models have also shown a more physiologic

recruitment pattern for intrafascicular electrodes. Unfortunately, they can damage

the axons and require delicate implant procedures, and some designs are not

applicable for chronic implantation. There are four types of intrafascicular

electrodes: the regeneration arrays, multiple electrode arrays (Utah array), the

longitudinal intrafascicular electrode (LIFE), and the transverse intrafascicular

electrode (TIME). The regeneration array [23, 24] is a perforated silicon plane

with a metal electrode sputtered around each hole for stimulation and recording.

This electrode is sutured between two ends of a severed nerve, and, in theory, the

axons regenerate through the holes. If the holes are very small, the axons will be

unable to penetrate and tend to regenerate around the array. This design is obviously

damaging as the nerve must be completely severed. However, it can provide useful

information for short periods [25]. Micromachined silicon probes have also been

used for intrafascicular stimulation and recording. Three-dimensional multi-contact

electrodes [26, 27] have been fabricated. The stimulation selectivity for the Utah

slanted array is quite high [28]. This electrode pierces the perineurium at several

points. Although viable axons are seen next to the electrodes, this array can cause

significant disruption in the cross section of the nerve. The recorded sensory signals

were not always stable. The LIFE interface consists of very thin electrical wires (up

to 24) or thin substructure with electrical contacts threaded into the fascicles. Single

unit recording resolution [29], as well as stimulation selectivity, has been achieved

[30–32]. Muscle fatigue has been reduced using interleaved stimulation with two

wire electrodes in the same fascicle [33]. This electrode has also been used for

stimulation and recording in human amputees [34, 35]. Significant tissue reaction,

edema, and scarring are evident at the point of wire entry into the fascicle [36].
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The TIME interface is a more recent development whereby a cable with multiple

contacts is inserted within the nerve transversely and allows contacts within the

cable to record or stimulate the nerve [37].

These intrafascicular electrodes have significant advantages as they provide

intimate contacts with the neural tissue and can generate high degrees of selectivity

for stimulation and high signal-to-noise ratios for recordings. However, there are

also significant questions concerning the long-term stability of recruitment and

recording properties due to the movement of the probe tip relative to the axons.

Moreover, these electrodes penetrate the perineurium, a highly protective mem-

brane, and could cause significant damage.

1.3 Flat Interface Nerve Electrode

The flat interface electrode design was recently introduced [38]. This design takes

advantage of the fact that nerves are not round but rather oblong in shape and that

the nerve shape is plastic. Recent observations suggest that the cross-sectional

geometries of nerve trunks are generally ellipsoid in shape and these geometries

are created by the local anatomy of the surrounding tissue [39]. Experimental data

also show that nerve cross-sectional geometries can also be reshaped by extraneural

electrodes [40]. Extraneural electrodes such as the spiral [11, 41] and the helix [42]

have cylindrical cross sections and actually reshape the nerve into a round configu-

ration. Some nerves or portions of nerves have an already nearly flat configuration

such as the human femoral nerve shown in Fig. 16.1. Other nerves such as the

hypoglossal nerve and pudendal nerve are nearly flat in some sections. Since the

round shape minimizes the ratio of circumference to cross-sectional area, it is the

shape that provides the least amount of space to place the electrodes. Conversely,

the flat shape will allow a much higher electrode density.

To improve the selectivity of extraneural nerve electrodes, the flat interface

nerve electrode (FINE) [38] was designed, built, and tested. The FINE is designed

to either maintain a nerve in its original flat configuration or to reorganize the

transverse cross section of the nerve and its fascicles into ovals by applying a small,

non-circumferential force to the nerve.

Computer simulations [43] and experiments have shown that by realigning the

fascicles within the electrode, the FINE provides both fascicular [38] and

subfascicular [44] selectivities. Stimulation selectivity has been demonstrated in

acute and chronic experiments, in the sciatic and the hypoglossal nerve. A chronic

study of this electrode has shown that simply aligning the fascicle is safe while

reshaping the fascicles drastically can cause transient damage [45]. The electrode

has now been implanted in human patients safely for short period of time [46].

One of the most challenging problems in peripheral nerve stimulation is the fact

that the conventional electrode configurations always recruit larger motor units

before smaller ones [47] contrary to the physiological recruitment order. Nerve

diameter selective stimulation is important in restoring some motor functions, e.g.,
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the functional movement [48, 49] and bladder prosthesis [50, 51]. Several stimula-

tion techniques have been proposed to solve this problem; anodic block [50–54],

single cathode [55], and subthreshold-depolarizing prepulse [56–58]. These

techniques rely on the properties of sodium channels and require a long-duration

stimulating pulse (>500 ms), which could lead to electrode corrosion [59].

However, previous studies have showed that excitability of axons within specific

diameter range could be controlled by manipulating the extracellular voltage profile

(Ve) along the nerve fiber [60]. The technique relies on the fact that excitability of

myelinated axons is reciprocal to the second spatial difference of Ve and that the

internodal distance of myelinated axons is proportional to the axon diameter.

Results from computer simulations and animal experiments show that an array of

alternating four cathodes and five anodes with 1.2 mm intercathodic distance could

suppress the excitability of axons having diameter within the 12 � 2 mm range, and

that the technique was independent of stimulating pulse width [61].

Fig. 16.1 (a) Silicone implementation of the FINE used for rats experiments. Opening height

of the electrode is 0.4 mm. (b) Cross section of a human femoral nerve indicating the natural

flat shape
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Selective recording from nerves is another difficult problem. For most

individuals with SCI and stroke survivors, a significant portion of the peripheral

nervous system is intact and can provide viable sources for FES control signals. As

such, recording the electrical activity from a whole nerve or functionally specific

branches is a particularly appealing choice. Unlike recording methods associated

with EMG or EEG, direct neural recordings are specific and provide rapid feedback.

In addition to the relatively noninvasive surgical procedure associated with nerve

cuff electrodes, the reported long-term reliability and safety of these devices offer

further validation for the implementation of this technology into FES systems [62].

The majority of FES applications involve nerve trunks (e.g., radial, sciatic or

hypoglossal nerves) that consist of multiple bundles of motor and sensory fibers,

the electrical activity of which could be used to control both the afferent and
efferent pathways involved with the prosthesis. As a consequence, multi-contact

cuff electrodes have been developed to circumvent the need for multiple electrodes

implanted on each distal nerve branch. While numerous studies have documented

the selective stimulation properties of these conventionally round (i.e., transverse

geometry) and even self-sizing electrodes [11], there is a paucity of experimental

data concerning the ability of such electrodes to record and distinguish between

different active fascicles [21, 22].

FINE presents a unique cuff design for selective nerve recording by realigning

the fascicles and reshaping the nerve into a more flattened cross section. Several

studies have been aimed at determining the safety of the electrodes in animal

chronic implants [45, 63]. In particular, the pressure generated by the electrode

was estimated and the electrodes are designed to minimize the pressure and allow

the neural tissue to be reshaped and not compressed since the cross section of the

electrode is greater than that of the nerve. Moreover, the electrode height is kept

greater than that of the largest fascicle. This electrode has now been shown to be

safe, has been approved by the FDA for short duration human implants and has been

tested in humans for selective stimulation [46]. One goal of selective stimulation is

to restore sensation in patients with limb amputation. In the remainder of the

chapter, we provide recent information on the problem of obtaining voluntary

signals from nerves of amputees to control artificial limbs.

2 Selective Recording of Peripheral Neural Activity

Physiological sensors function on a number of timescales and through a large

variety of mechanisms. While it may be possible to sense these physiological

variables as accurately using artificial means, creating sensors with sufficient

long-term biocompatibility and cosmesis is extremely difficult. Recording from

peripheral nerves presents the opportunity to recover not only the signals of a wide

variety of physiological sensors, but also physiological command signals

controlling the functions of muscles and other organs. Even though this technology

presents a variety of opportunities, it also presents several challenges. This section
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discusses the problem of how to separate the mixed signals of interest in a

peripheral nerve recording.

Attempts to address the mixing of biological signals have been made for a

number of approaches. For example spatial filtering has become quite common in

EEG recordings in order to minimize the levels of cross-talk [64]. Only recently has

this issue attained significance in the peripheral nervous systems. Zariffa and

Popovic [65] have implemented several approaches to solve the inverse problem

in nerve cuff recordings, reconstructing individual neural sources from the mixed

data recorded on the surface of the nerve. Tesfayesus and Durand [66] recently

applied blind source separation (BSS) to perform similar de-mixing of the recorded

signals, without the need for a model of the nerve geometry. These techniques will

be discussed below with particular emphasis to those presented in Wodlinger and

Durand [67] as they been have investigated thoroughly in both simulation and

animal models.

2.1 Detection Algorithms

Signal separation algorithms fall into two main categories: BSS, and Inverse

Problems (IP) including Beamforming/Spatial Filtering (BF). These techniques

are reviewed below. The classic inverse problem solutions with regularization are

treated separately from the beamforming method.

2.2 Blind Source Separation

When working with biological systems, especially those of unknown or con-

stantly changing geometry such as nerves, a more robust technique is needed.

BSS uses statistical information in the recordings to automatically de-mix the

neural signals. This technique makes two important assumptions: the first is that

the neural signals are mixed linearly, an assumption supported by Maxwell’s

equations of the quasi-static propagation of current in the volume conductor. The

second assumption is that the neural signals are statistically independent, such

that maximizing the statistical independence of linear combinations of the

recordings can reproduce them. This assumption is less clear and may depend

on the nature of the training data available and the relationship between

the signals of interest.

BSS algorithms also introduce a permutation ambiguity, where sources can

appear swapped between successive time windows. This ambiguity can be readily

solved using techniques presented in Tesfayesus and Durand [66], who demonstrate

the benefits of BSS techniques to nerve cuff recordings.
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2.3 Classic Inverse Problem Solutions (IP)

Inverse problem algorithms are based on the idea that a rigorous and complete

forward model of the system can be found. This model can then be inverted so that

for a given output one can calculate a (usually infinite) set of likely inputs.

Regularization can be applied to improve the stability of the inversion, or apply

additional constraints on the system to help identify the most useful possible inputs.

This family of techniques can be extremely powerful when good models are

available, and has been used successfully in magnetoencephalography (MEG)-

based source localization [68], mapping epicardial potentials from chest surface

recordings, and impedance spectroscopy [69] and EEG source imaging [70]. As a

matrix inversion is required, the results can be slow and sensitive to model inaccu-

racy or choice of regularization parameter.

2.4 Spatial Filtering or Beamforming

Spatial filtering, or Beamforming, presents a compromise between techniques requir-

ing extensive accurate models and those requiring none. Rather than trying to

explicitly invert the given model, these techniques calculate a set of (usually linear)

filters which can be applied to new data to estimate source levels. Spatial filtering

methods are particularly well suited to nerve cuffs because of the spatial separation

between functional (fascicular) sources, and small internal area of the cuff.

Filters can be calculated using a number of methods, from simple Laplacian

operators used to take the second spatial difference to methods requiring the

sensitivity fields of each contact on the electrode. These techniques are generally

very fast after training, requiring a simple matrix multiplication at each time step.

However, they suffer from poor performance compared to IP algorithms, and so

they are often combined with a post-processing stage to improve performance. This

post-processing is usually adaptive in nature, for example the large array of

techniques presented in Sekihara and Nagarajan [71].

A variation of a beamforming technique is presented in the following sections,

and in more details in Wodlinger and Durand [72]. This beamforming filter is

calculated using an FEMmodel of the nerve cuff in saline, and includes a static (i.e.,

non-adaptive) post-processing technique to improve separation quality without

requiring statistical independence of the signals. Results are presented to demon-

strate the performance of the system on simulated and animal model data.

2.4.1 Beamforming Algorithm Mapping

A computer model of a flat interface peripheral nerve electrode (FINE) placed on a

homogenous nerve model is shown in Fig. 16.2a, b. This Finite Element Model
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(FEM) may be used to calculate the lead-field matrix, or forward problem, which

relates the voltage recorded on each contact to the source current at each voxel

within the nerve. This simple homogeneous nerve model represents our pre-

implantation knowledge of the geometry (the a priori FEM, or apFEM) and

provides the necessary information to calculate the beamforming or spatial filters.

A more realistic model (the realistic FEM or rFEM) used to test the resulting filters

is shown in Fig. 16.2c, d.

2.4.2 Beamforming Filter Matrix

To calculate the Beamforming Filter Matrix, the weights (ti) on the sensitivity

vectors (S) for each contact are optimized for a source signal located in a single

ideal pixel (di). Equation (16.1) is solved for each pixel i where

Sti ¼ di: (16.1)

Fig. 16.2 Finite element models generated to test and train the beamforming algorithm. Parts (a)

and (b) show isometric and cross-sectional views (respectively) of the a priori model (apFEM)

containing an insulating cuff with 22 contacts (in addition to upper and lower tripoles) and a simple

rectangular epineurium filling the cuff. This model was used to generate the spatial filters, or

beamformers, for the transformation matrix. Parts (c) and (d) show isometric and cross-sectional

views (respectively) of the realistic model (rFEM), which contains the same cuff but with

anisotropic endoneuria, and perineuria around each of the 22 fascicles. Fascicles used in testing

are numbered and color-coded to correspond to the functional group. The geometry for this model

is obtained from realistic cross sections of the human femoral nerve presented in Schiefer et al.

[73]. Figure reproduced from Wodlinger and Durand [67] with permission from IEEE-TNSRE
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Assuming n recording contacts and m pixels in the desired reconstruction, the

variables are S{m�n}, the sensitivity matrix, and ti
{n�1} the linear coefficients of

the Beamforming Filter Matrix. Note that this equation is entirely independent

of time and considers only the static behavior of the model. For increased effi-

ciency, the reduced QR factorization of S{m�n} is first calculated so that for di equal
to the delta function at index i, the solution reduces to Eq. (16.2), where q*i is the ith
row of Q (since Q is orthogonal, the transpose acts as an inverse on the range).

Normalization is performed for each set of weights, as in Eq. (16.3).

ti ¼ R=q�i ; (16.2)

ti ¼ ti
Stik k : (16.3)

The column vectors ti can then be concatenated to form the Beamforming filter

matrix T{m�n}, which operates on a single time point t of observed data (o{n�1}) to

produce the estimated activity at each pixel (â{m�1}) at time t, as in Eq. (16.4).

This activity vector can then be displayed as an image of the estimated activity in

the plane of interest. Repeated application of the Beamforming filter matrix at

different time points gives time dependence to this procedure:

â ¼ To: (16.4)

2.4.3 Source Localization

When the Beamforming filter matrix is multiplied by the vector of voltages on each

contact [Eq. (16.4)], an image is created providing an estimate of the activation of

each pixel within the cross section of the nerve. A simple local-maxima-based

algorithm was used to locate sources in the estimate using automatic thresholding to

remove areas of low activity [74]. Morphological opening (erosion followed by

dilation), which removes islands and peninsulas below a given size from a binary

image, was applied to prevent the algorithm from finding small sources near the

periphery associated with noise. Once the fascicle locations are determined, the

beamformers for those locations are applied to the full time-signal in order to

reconstruct the fascicular activity. Post-processing techniques, such as RMS

windowed averaging or BSS, can improve SNR and reduce cross-talk.

2.4.4 Source-Based Filter Generation

Filters for a given real neural source may be calculated by averaging the columns of

T over which the activity is observed. To improve the determination of the spatial

extent of the sources, new filters are generated to take into account information

666 D.M. Durand et al.



from other locations. The filters from each pixel are weighted by the value of the

source image at that pixel and averaged. This method places more emphasis on

locations where the source is stronger, and provides some spatial averaging to

reduce noise.

f i ¼ STi M; (16.5)

where n is the number of contacts, m the number of pixels, fi
{1�n} the filter for

the ith source, Si
{m�1} the source image for that source, and M{m�n} is the

Beamforming Filter Matrix. In order to reduce sensitivity to areas with high

interference, the spatial locations causing interference are iteratively subtracted

from each filter using the following:

1. Calculate the interference (Iij) due to source j picked up by the filter for source i

Iij ¼ ðMf Ti Þ
T
Sj i 6¼ jj (16.6)

2. Subtract or add the difference between the images, multiplied by the amount of

incorrect signal in each to reduce the amount of interfering signal

Si ¼ Si �
X

ð j j¼ij Þ
IijðSj � SiÞ (16.7)

3. Repeat, also recalculating the filters as in Eq. (16.5), until threshold is reached,

or previous iteration was ineffective at removing inference

2.5 Signal Separation in Computer Models

To form an accurate model of recorded neural activity, a volume conductor FEM

was combined with template models of action potentials as in Jezernik and Sinkjaer

[75], Yoo and Durand [76], and Tesfayesus et al. [77]. These templates are

randomly delayed and summed to create a simulated ENG signal with the desired

temporal characteristics.

2.5.1 Localization of Sources

In order to examine the localization capability of the beamforming filters, a

simulated signal isolated to a particular fascicle was created as described above

(Fig. 16.3a). The signal power (RMS) at each contact was calculated in 10 ms bins,

and the beamforming localization procedure was applied to each (Fig. 16.3b)

and the mean of the resulting list of sources was calculated. This estimated

location (green cross, Fig. 16.3c) was then compared to the known location

16 Neural Interfacing with the Peripheral Nervous System: A FINE Approach 667



Fig. 16.3 Localization using realistic signals. (a) Sample signal of single fascicle activity

recorded on a single contact. The signal power (RMS) is shown as a dark thick line, while the

raw signal is light and thin. (b) Localization results for each of the three marked time points in

(a). The estimated location is marked with a green circle, and the actual location with a red square.
(c) To locate the source, the mean location of all reconstructions is used. This final localization
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(red square, Fig. 16.3c) and overlaid onto the fascicle map of the nerve for

reference. This process was repeated and the results for one trial of all 10 fascicles

at 40% noise are shown in Fig. 16.3d, where the estimated source is shown as a

green circle and the true location as a red square. Even at this noise level, the figure

clearly shows that all 10 sources are located within their respective fascicles.

In noise-free signals, sources could be located within 0.14 � 0.03 mm

(N ¼ 100) of their fascicle’s center. As the noise level was increased to 40%, the

mean and standard deviation both increase to 0.18 � 0.17 mm (N ¼ 100). These

results suggest that the location of single sources can be identified to 180 � 170 mm
even in the presence of significant noise in the signal.

2.5.2 Recovery of Two Active Sources

To demonstrate the ability of the beamforming algorithm to resolve two mixed

signals, simulated single fascicle recordings (SR) were summed, two at a time with

0, 10 or 40% added Gaussian noise. The beamforming algorithm was applied at

each time point and the pixels corresponding to each fascicle’s center were used to

generate the Reconstructed Fascicle 1 (RF1) and Reconstructed Fascicle 2 (RF2)

signals. The correlation of the reconstructed signals to the original inputs (SR with

RF) was calculated after applying a 10-ms RMS windowed average to improve

noise tolerance. The process was repeated 10 times for each pair of fascicles with

new signals randomly generated each time.

An example of the RMS averaged actual and recovered signals is shown in

Fig. 16.4a. These signals show very low cross-talk and each pair is highly correlated

(R > 0.9). The correlation coefficients for all fascicle pairs are plotted versus the

distance between the fascicle centers in Fig. 16.4b. The figure shows R increasing

towards 1 with larger separation distance, as expected since less mixing occurs

between sources that are further apart. Recovery with R > 0.9 was achieved for

sources separated by a minimum distance of approximately 1.5 mm.

2.5.3 Effect of Multiple Active Fascicles

In a physiological situation, there would likely be more than two fascicles from

which to record (depending on the nerve and location). Therefore, we tested the

ability of the algorithm to recover signals from n simultaneously active fascicles,

�

Fig. 16.3 (continued) result is shown superimposed on the fascicle map, with the estimate marked

by a cross and the true location by a square. (d) Localization results for all fascicles (single trial at
40% noise). The fascicle map is shown in gray, with true source locations as red squares, and a

green circle centered on the estimated location. 10 trials, each 100 ms, were performed for each of

the 10 fascicles modeled. The accuracy for the 40% noise trials, as pictured here, was 0.18 � 0.17

mm (N ¼ 100). Figure reproduced from Wodlinger and Durand [67] with permission from

IEEE-TNSRE
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Fig. 16.4 Separating signals from pairs of simultaneous active fascicles. (a) Example recovered

signal when fascicles 1 and 5 are active, including the actual activity level for each fascicle.

Fascicles 1 and 5 are 5.5 mm apart and this trial resulted in R ¼ 0.97. (b) Correlation coefficients

and standard deviations for each fascicular separation distance at three noise levels. Ten trials were

performed for each noise level and each trial included every possible pair of fascicles. Recovery
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for n from 1 to 10, assuming the true source locations were known. For up to five

simultaneously active fascicles, the reconstruction accuracy is unchanged with a

mean value of R ¼ 0.74 � 0.18 (N ¼ 50). The accuracy decreases steadily as the

number of active fascicles grows larger than five, reaching 80% of the single

fascicle value for 10 simultaneously active fascicles. Recording noise has a strong

effect on the reconstruction, lowering the mean value of the n ¼ 1 . . . 5 trials to

R ¼ 0.61 � 0.18 (N ¼ 50), and dropping to 65% of the noisy single fascicle value

for 10 simultaneously active fascicles.

2.6 Recovery of Neural Signals from a Rabbit Sciatic Nerve

The beamforming algorithm with Source-Based Filter (SBF) post-processing is

demonstrated in a Rabbit sciatic nerve model. The high-density FINE was placed

on the main trunk of the sciatic nerve near the popliteal fossa, while smaller

stimulating cuff electrodes were placed on the two main branches, the tibial and

peroneal. These smaller cuffs were stimulated with pulses to elicit compound action

potentials which could be used to localize the activity from the two fascicle groups

originating in the two branches. Sinusoidal stimulation was also delivered to create

more realistic patterns of activity. This sinusoidal stimulation has the added benefit

that any stimulation artifact can be easily removed from the recordings using

filtering. This is not the case for traditional pulse stimulation due to the large

number of harmonics created. Low-frequency sinusoids were found to elicit

CAP-like discharges in phase with the sinusoid, while high-frequency stimulation

produced pseudo-random activity, as described in Rubinstein et al. [78].

2.6.1 Recovery of Low-Frequency Evoked Activity

In order to test the ability of the algorithm to recover signals from the high-SNR

low-frequency evoked activity, the Tibial and Peroneal fascicles were stimulated

with a 130 Hz sinusoidal stimulus independently and recorded signals were then

normalized and mixed off-line. Due to the linearity of the volume conductor, no

generality is lost with the off-line mixing and it provides convenient single-source

references for evaluating the separation quality. The stimulus artifact was removed

and the beamforming filter matrix was applied to localize the activity within the

nerve. An example of the recovered signals from the two identified sources is

shown in Fig. 16.5. Filters for the two fascicle groups were calculated using the

�

Fig. 16.4 (continued) with negligible cross-talk is seen at R ¼ 0.9, which for 10% noise occurs

at approximately 1.5 mm—half the height of the cuff, and about twice the average fascicular

diameter. Figure reproduced from Wodlinger and Durand [67] with permission from

IEEE-TNSRE
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SBF beamforming algorithm were then applied to the data. An example of the

recovered signals from the two identified sources is shown in Fig. 16.5b, c.

The correlation between the recovered and original signals was R2 ¼ 0.81 � 0.08

(n ¼ 14). This represents an improvement of 30 � 14% over simply using the best

single channels in the mixed recording and 22 � 11% over the beamforming filter

matrix without any post-processing.

2.6.2 Effect of Contact Density and Position on Signal Recovery

The beamforming algorithm is a spatial filter, and so may be sensitive to the density

of recording contacts on the electrode. In order to determine the role of contact

density, the above experiments were repeated with 8 instead of 16 contacts.

The above experiments were repeated offline recalculating the beamforming filter

matrix using only half of the electrodes in the cuff. The R2 value was reduced from

Fig. 16.5 Separation of Peroneal and Tibial components from combined signal using

Beamforming filters. (a) The mean of all 16 channels (for clarity) for a signal created by adding

a normalized recording during tibial stimulation with a normalized recording during peroneal

stimulation. The beamformers were applied to this signal to generate an estimate for each branch,

shown in (b) and (c) (Recovered signal). The two signals can easily be distinguished based on the

shape of the responses, and the separation is nearly complete. The equivalent single-branch signals

(calculated by applying the filters to the single-branch recordings directly) are shown as a thick line
for reference [67] with permission from IEEE-TNSRE
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0.81 � 0.08 to 0.47 � 0.28 (n ¼ 14) when only the top half of the electrode was

used and to 0.59 � 0.19 when only the evenly numbered contacts were used. This

dramatic difference suggests that a high (2 contacts/mm) density of electrodes is

required to achieve adequate performance.

2.6.3 Recovery of Pseudo-spontaneous Signals

High-frequency sinusoids were used to elicit pseudo-random activity in both

fascicle groups in overlapping time windows. This test was repeated on five

separate nerves and one typical example is shown in Fig. 16.6. The upper frame

shows the mean of all 16 channels in the rectified and 100 ms bin-integrated

recording. The mean of the 16 channels is used for clarity, since the 16 raw channels

are difficult to visualize. The lower two frames show the outputs of the

beamforming filter matrix with SBF post-processing acting on the rectified,

100 ms bin-integrated recording. The black bars in the upper frame correspond to
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Fig. 16.6 Overlapping stimulation of the Peroneal and Tibial branches. (Top) The mean of all

16 channels in the rectified, integrated recording. Black bars indicate stimulation periods for the

Peroneal (left) and Tibial (right) branches. (Middle) Output after applying Tibial beamforming

filter to the rectified, integrated signal. (Bottom) Output after applying peroneal beamforming filter

to the rectified, integrated signal. The cross talk between the two branches was 23 � 13%

(N ¼ 10)
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the stimulation intervals, with the peroneal branch stimulated first. The cross-talk

between the two branches was 23 � 13%, calculated using periods when only one

of the two branches was active, on 10 signals from 5 nerves. Without a reference for

comparison uncontaminated by the overlapping activity, the accuracy of the sepa-

ration cannot be calculated outside the windows where only one source was active.

Many techniques have been proposed to separate individual fascicular signals

from whole peripheral nerve recordings, including Inverse Problem techniques,

BSS, and Beamforming. While Inverse Problem techniques rely heavily on the

accuracy of the system model, Blind source techniques do not assume any particu-

lar model, requiring only linear mixing of the statistically independent source

signals. Beamforming represents a compromise, making use of some of the avail-

able model. A beamforming algorithm was investigated, along with a Source-based

Filter post-processing, on both artificial and real neural recordings and

demonstrated to provide R2 ¼ 0.81 � 0.08 separation of signals from two inde-

pendent fascicular groups.

The ability to recover neural signals is only the first step in the larger goal of a

closed loop system for neural control. A major component is the ability to control

neural function with multiple contact nerve peripheral nerve electrodes. The fol-

lowing section describes in silico and in vivo experiments to study the ability of the

FINE cuff to control the ankle joint.

3 Control of Multifasciculated Nerves with

Selective Stimulation

A common strategy for system control is to first obtain an analytical model of the

plant. Since it is very difficult to find accurate models of neuromuscular skeletal

systems including the fascicular distribution inside a nerve trunk and the mapping

from each fascicle to the target muscle(s) it innervates, we developed a new control

method that does not require analytical modeling of the neuromuscular skeletal

system. The controller finds an inverse dynamics of the system for control purposes

using only measurable input and output data.

3.1 Controller Design

The controller is composed of an inverse steady state controller (ISSC), a

feedforward controller, and a feedback controller as shown in Fig. 16.7. ISSC is

an inverse model of the system at steady state. Feedforward controller is a dynamic

inverse model of the combination of the system ISSC in series, and it is

implemented with artificial neural networks. PID controller is used for feedback

controller to compensate for external disturbances and system parameter variation.
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3.2 Controller with Separated Static and Dynamic Properties

One of the difficulties in controlling the neuromuscular skeletal system can be

attributed to the redundancy of the system. Due to this redundancy, an inverse

model of the system is not uniquely determined and thus the direct inverse modeling

approach has its limitation in obtaining a proper inverse model [79]. Therefore, we

adopted a design that can reduce the redundancy by separating the static from the

dynamic properties and can find the inverse model sequentially. The ISSC is

obtained first with repetitive interpolation and extrapolation of existing steady-

state data in the output joint coordinate. Once the ISSC is obtained, the feedforward

controller is trained to learn the inverse dynamics of the combination of the ISSC

and the system in series, whose redundancy has been drastically reduced.

In order to determine the performance of the controller, simulations were first

carried out. A two-degree-of-freedom ankle-subtalar joint model with eight

muscles was combined with the controller algorithm and the joint angles generated

by the controller were compared to the desired angles. The simulation results show

that the controller could generate small output tracking errors for various reference

trajectories such as pseudo-step, sinusoidal, and filtered random signals. The results

also indicate that the separation of the steady-state properties from the dynamics

could minimize the problem of redundancy for the control of multiple input and

multiple output (MIMO) systems [80]. The controller was then tested experimen-

tally in rabbits and applied to the dynamic control of the ankle joint.

3.3 Multi-contact Electrode Control of Rabbit Ankle Joint

Animals were initially anesthetized with the injection of ketamine (50 mg/kg) and

xylazine (5 mg/kg), and then maintained with 1–3% isoflurane mixed with pure

oxygen or medical gas. A surgical incision was made on the posterior thigh to

System

Feedforward
Controller

ISSC
Feedback
Controller

z

z

r[k+p]

r[k+1]

r[k] y[k]
a[k]u[k]

uff [k]

ufb [k]

Fig. 16.7 The controller is composed of Inverse Steady State Controller (ISSC), Artificial Neural

Network (ANN) feedforward controller, and PID feedback controller. r[k] is the desired output, y
[k] is the system output, u[k] is the input to ISSC, off[k] is the feedforward controller output, of[k] is
the feedback controller output, and a[k] is the input to the system at time step k
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expose the sciatic nerve around the branching point to common peroneal nerve and

tibial nerve. Then a 14-contact FINE with seven contacts on each side was

implanted on the sciatic nerve proximal to the branching point. After suturing

closed the incision, the rabbit was placed on the measurement instrument in the

prone position. The foot was secured to the armature, and the knee joint was

maintained at approximately 90�. A needle electrode was inserted under the skin

of the contralateral hip as a returning electrode.

The performance of the rabbit ankle joint motion control was tested for sinusoi-

dal reference trajectories and filtered random trajectories. An example of the

control performance is shown in Fig. 16.8. The normalized RMS errors for sinusoi-

dal signals with 0.5 Hz and 1.0 Hz for a total of eight legs were 7.2 � 1.6% and

9.9 � 1.9%, respectively. Although the RMS error for higher frequency is greater

than lower frequency (p < 0.05), the time delay between the desired trajectories

and the measured trajectories was negligible in both cases. The normalized RMS

error for low pass filtered random trajectories with cutoff frequency of 1.0 Hz was

6.0 � 1.0%. The control system was then applied to the more complex human

ankle joint motion.

3.4 In Silico Control of Human Ankle

A computation model of a human ankle joint system with the sciatic nerve was

developed for the simulation study. The ankle-subtalar joint model has 12 muscles

and 2 hinge joints, which was adopted from the lower extremity model [81]. The 12

muscles in this model are medial gastrocnemius (MG), lateral gastrocnemius

(LG), soleus (Sol), tibialis anterior (TA), tibialis posterior (TP), peroneus brevis

(PB), peroneus longus (PL), peroneus tertius (PT), extensor digitorum longus

(EDL), extensor hallucis longus (EHL), flexer digitorum longus (FDL), and flexor

hallucis longus (FHL). Musculographics SIMM and SD/FAST were used for the

modeling and simulation of musculoskeletal system [82]. The inputs to the muscu-

loskeletal model were the muscle excitation level of each muscle between 0 (no

excitation) and 1 (maximum excitation), and the outputs were the ankle and subtalar

joint angles. The range of motion of the ankle joint and subtalar joint was �40� to
20� and �20� to 20�, respectively.

The nervous system model was based on histological data of human sciatic

nerve. A FINE was hypothetically placed on the sciatic nerve proximal to the

branching point to the common peroneal and tibial nerves so that a single FINE

could control both dorsiflexion/planter flexion and inversion/eversion. Since the

mapping from the fascicles to the target muscles was unknown, we arbitrarily

assigned the mapping according to maximum muscle strength and geometrical

proximity of each fascicle to tibial or common peroneal branches. After the

fascicular redistribution was determined by the reshaping algorithm, we used finite

element method to find voltage distribution inside the fascicles with Ansoft Max-

well. The conductivity of endoneurium, epineurium, and perineurium in the
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neuronal model is shown in Table 16.1. The axons inside the fascicles are located

uniformly with 50 mm distance between the two adjacent axons in transversal plane.

The axonal diameter has Gaussian distribution between 10 mm and 20 mm, and a

single layer cable model was adopted for axon model [60]. The axon model has

15 nodes and we used NEURON to run simulations with a cathodic pulse with pulse

width of 50 ms. We assumed that adjacent contacts are sequentially stimulated

within the refractory period. We also assumed that the muscle excitation level is the
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Fig. 16.8 Results for (a) sinusoidal trajectory with 0.5 Hz (RMS error: 3.5�), (b) sinusoidal

trajectory with 1.0 Hz (RMS error: 5.6�), (c) filtered random trajectory (RMS error: 3.6�)
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weighted sum of excited axons over the total axons proportional to the axonal cross-

sectional area.

For each of two different configurations with cuff heights of 2.5 mm and 3.0 mm

shown in Fig. 16.9, three different controllers were tried with different

combinations of contacts selected. The average RMS errors for sinusoidal reference

trajectories between 0.5 Hz and 1.0 Hz with random amplitudes and random phase

difference between ankle and subtalar joint angles were 1.6 � 1.1� for ankle joint
and 1.6 � 0.7� for subtalar joint, which are less than 5% of the maximum range of

the motion. In order to show the robustness of the controller, the maximum strength

of each muscle was randomly decreased up to 50%. For filtered random reference

Table 16.1 Parameters used in FEM simulations

Material Conductivity (S/m) [43] Parameter Length (mm)

Epineurium 0.083 Cuff height 3

Saline 2.000 Cuff length 15

Endoneurium (trans.) 0.083 Cuff width 12

Endoneurium (long.) 0.571 Saline volume 150 � 200 � 150

Perineurium 0.002
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Fig. 16.9 Each fascicle in the sciatic nerve is modeled as a regular dodecagon. The fascicles are

mapped to the muscles as follows: 1,2,3: Sol, 4,5: MG, 6: LG, 14,15: TP, 16: FHL, 17: FDL, 21:

EHL, 22: EDL, 23: TA, 24: PT, 25: PB, 26: PL. (a) Realignment of fascicles with a FINE of

2.5 mm height. (b) Realignment of fascicles with a FINE of 3.0 mm height
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trajectories, the average RMS errors were 1.6 � 0.5� for ankle and 1.4 � 0.3� for
subtalar joint, which are only a little increased from the simulation without muscle

fatigue (1.4 � 1.1�, 1.2 � 0.3�). In addition, a time varying external force was

applied to the foot with the maximum strength of 25 N to show the robustness of the

controller against external disturbance. The output error for sinusoidal reference

signals increased to 2.1 � 1.2� and 1.7 � 0.7� from 1.6 � 1.1� and 1.6 � 0.7� for
ankle and subtalar joint angle, respectively. However, even with the time varying

external disturbance, the average output angle errors were within 5% of the

maximum range of motion. These results show that a motion controller using a

FINE could be built without analytical modeling.

4 Conclusions

Significant research in the design of effective and functional interfaces has been

carried in the last few years with the central nervous system interfaces known as

brain machine interfaces (BMI) leading the way particularly in the clinical area.

However, progress has also been made in interfacing with the peripheral nervous

system. Several electrode designs either penetrating the fascicles or external to the

nerve (cuff) have been proposed, each with their advantages and disadvantages and

it is not clear at this time which design will be most successful.

In this chapter, we have concentrated on the results obtained with the flat cuff

electrode design (FINE) and for this type of electrode, several conclusions can be

made:

• The flat interface nerve electrode presents a unique opportunity to place a large

number of electrodes on the circumference of a nerve safely.

• Fascicular sources within the cross section of a peripheral can be imaged.

• Fascicular signals can be recovered selectively using beamforming algorithms as

demonstrated both in silico and in vivo animal experiments.

• The challenge of controlling a neuromuscular skeletal dynamic system with

multiple contact nerve electrodes can be met.

• Separation of the static and dynamic properties of the system to be controlled

can reduce the problem of redundancy inherent to most multiple input multiple

output systems (MINO) such as the ankle joint.

Taken together these results suggest that it might soon be possible to obtain

neural signals from the peripheral nerve and provide amputees with a

neurotechnology-based solution for the voluntary control of an artificial limb.

Moreover, the combination of the neural recording and neural control presented

above would also provide a closed loop neural control of neural function.
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