
Chapter 11

Functional Magnetic Resonance Imaging

John A. Sexton, Gopikrishna Deshpande, Zhihao Li,

Christopher B. Glielmi, and Xiaoping P. Hu

1 Principles of MRI

Nuclear magnetic resonance, the physical phenomenon which makes MRI possible,

occurs in atoms with an odd number of protons and/or an odd number of neutrons.

The nuclei of such atoms possess a property known as spin angular momentum (~J)
and an associated magnetic dipole moment (~m):

~m ¼ g� ~J; (11.1)

where g is the nucleus-specific gyromagnetic ratio.1 Nuclei with a magnetic dipole

moment (called “spins”) are subject to the effects of an externally applied magnetic

field. The single-proton nucleus of the Hydrogen atom is most commonly used for

MR imaging because it possesses a relatively large magnetic moment and is found

in abundance throughout the human body (primarily in H2O).

In the context of imaging it is convenient to consider the net magnetization (~M),

or magnetic moment per unit volume, of many spins. In the absence of an external
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magnetic field, thermal activity and internal dipole fields leave the spins within

a given volume oriented randomly and with zero net magnetization. In the presence

of a magnetic field (known as the static field or B0), about half of the spins will align

parallel to the field, while about half of the spins will align antiparallel to it. A tiny

majority of the spins2 will align parallel to it, resulting in a nonzero net magnetiza-

tion ~M aligned parallel to the field.

The angular momentum of spins which comprise ~M causes those spins, and

hence ~M itself, to precess about the applied field ~B0 (see Fig. 11.1b). The frequency

of this precession is given by the Larmor Equation:

o0 ¼ g� B0: (11.2)

2About five spins out per million at a field strength of 1.5 T. The difference in populations is small

because the difference in energy levels between the parallel and antiparallel states is small.

a

c d

b

Fig. 11.1 (a) The fixed laboratory frame and (b) the rotating frame of reference. B0 is parallel to z
and z0 while the x0 and y0 axes rotate around the z axis at o0 . The RF pulse B1 is applied

perpendicular to B0 to tip M into the transverse (x–y) plane. The motion of M in the laboratory

frame of reference (c) is complex compared to that in the rotating frame (d)
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The magnitude of the net magnetization ~M is very small compared to that of B0;

therefore when ~M is aligned parallel to B0 it is difficult to measure. To detect the

magnetization, it is tipped away from B0 by a second magnetic field, known as

the radio-frequency (RF) pulse orB1, which is applied perpendicular toB0.When the

oscillation frequency of B1 matches the Larmor frequency of spins in a target

volume, the RF pulse is said to be “on resonance” with those spins. The RF Pulse

is usually applied for a short duration (t), which causes ~M to rotate away from B0 by a

“flip angle” given by y ¼ gB1t.
When B1 is applied, the magnetization will simultaneously precess about B0 at

frequency o0 and about B1 at frequency o1. In a fixed frame of reference (x, y, z),
the resulting motion of ~M is complicated (see Fig. 11.1c). It can be simplified by

introducing a frame of reference x0; y0; z0ð Þ which rotates about B0 at the same

frequency and direction as ~M. Under these conditions, ~M appears stationary in the

rotating frame when precessing about B0 (Fig. 11.1d).

The rotation of ~M away from the direction of B0 leads to a component of the net

magnetization that is perpendicular to B0. This component is known as the trans-

verse magnetization and is the source of the signal measured with MRI.

The component of ~M which remains parallel to B0 is known as the longitudinal

magnetization.

Once excited by B1, spins tend to release the energy they absorbed in a process

known as relaxation. There are two relaxation processes, characterized by relaxation

times T1 and T2. T1 is known as “spin–lattice” relaxation and characterizes the rate at
which excited spins exchange energy with their surrounding environment. This time

constant dictates how quickly the longitudinal magnetization returns back to its

equilibrium value. T2 is known as “spin–spin” relaxation and reflects the rate at

which excited spins exchange energy with one another. This time constant describes

the rate at which the transverse magnetization decays to zero. A third parameter T�
2

accounts for the accelerated decay of the observed transverse magnetization in the

presence of magnetic field inhomogeneities (DB) and T2 decay:

1

T�
2

¼ 1

T2

þ g� DB: (11.3)

According to Faraday’s law, precessional motion of a net magnetization vector

which has a transverse component will generate a time-varying magnetic flux

through a nearby receiver coil. This flux in turn generates a voltage in the receiver

coil which oscillates at the Larmor frequency of the spins which created it.

This voltage is the measured NMR signal, which reflects the volume integral of

the transverse magnetization over time.

Magnetic Resonance Imaging (MRI) aims to map the measured NMR signal

(and therefore resonance frequency) to a specific location in space (~r ). Since
resonance frequency at a given point is determined by the strength of the local

magnetic field, it is possible to control the distribution of resonance frequencies in

space by causing the magnetic field to vary in a predictable way. This is achieved

with the application of linear magnetic field gradients superimposed on top of B0.

This situation is illustrated for a gradient applied along the x-axis in Fig. 11.2.
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Most MRI experiments encode magnetization information from one slice of the

volume of interest at a time. Slice selection is achieved by applying a radio-frequency

pulse with bandwidth Do (centered on the resonance frequency of the target slice o)
together with a linear field gradient in the slice-select direction (e.g., along the z-axis).
This RF pulse excites spins within a slice of thickness Dz whose Larmor frequencies

fall within the frequency range of the RF pulse (Do). Once excited, the task of image

formation is then to distinguish signals from different locations in the slice of interest

before the transverse magnetization decays away.

To create an image, the resonance frequencies of spins within an excited slice

must be differentiated with additional magnetic field gradients. Generally such

spins are encoded in terms of local frequency and phase.

Assuming the excited slice to be in the xy-plane, applying a linear gradient Gx

along the x direction will cause the precession frequency of spins to vary according
to their position along the x-axis (see Fig. 11.2).

If an additional gradient Gy is applied along the y direction for a short period tpe
and then turned off, spins will accumulate phase relative to one another based on

their position along the y-axis during the time interval [0, tpe] (see Fig. 11.3). For a
slice centered at location z0 with slice thicknessDz; the signal measured at location
~r at time t may then be written as follows:

S0 ~r; tð Þ ¼
ð ð ðz0þDz

2

z0�Dz
2

rM ~rð Þe�ig Gz�z�tþGy�y�tpeð Þdx dy dz: (11.4)

Fig. 11.2 Gradient field localization of precession frequency along the x-axis. Gradient fields are
imposed on top of B0, causing precession frequency to vary with position. Larger arrows indicate

larger precession frequencies
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This equation is a 2D Fourier Transform between resonance frequency and

location in space. Though resonance frequency is what MRI actually measures,

investigators using MRI are generally interested in the spatial information—images

of the body. Therefore an image may be reconstructed through an inverse

2-dimensional Fourier transform of the measured resonance frequencies.

Once spins in a given volume are excited, the signal they generate will decay

according to the time constants T1 and T2 as described above. The type of signal

most commonly measured in MRI is called an echo. To form an echo, the transverse

magnetization is intentionally de-phased following excitation and then re-phased at

a chosen time known as the echo time (TE). Echoes may be formed through the

application of additional RF pulses after excitation (spin echoes) or through manip-

ulation of the linear gradient fields (gradient echoes). Spin echoes are usually

acquired for clinical imaging because the radio-frequency refocusing pulses elimi-

nate the signal loss due to local field inhomogeneities (DB). The signal in the

resulting images depends on T2. In contrast, gradient echoes do not eliminate signal

decay owing to DB; therefore the signal in gradient echo images depends on the

shorter time constant T�
2 . However, gradient echoes can be created much more

quickly than spin echoes and generally offer higher contrast in functional MRI

images. The signal generated by a gradient echo imaging sequence is given by

SGE ¼ M0 � sin y � 1� e
�TR
T1

1� cos y � e�TR
T1

� e
�TE
T�
2 ; (11.5)

where M0 is the initial magnetization, y is the flip angle, and TR is the repetition

time, a parameter which measures the time between excitations in MR imaging

sequences. Flip angle, TR, and TE may be specified by the individual conducting

the experiment before scanning.

Fig. 11.3 Frequency and

phase encoding in two

dimensions. Precession

frequency increases from left
to right, while phase increases
from bottom to top. Each spin

has a unique combination of

frequency and phase which

corresponds to its location in

space
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There exist many imaging sequences in MRI, each designed for a different

purpose. For functional brain imaging, we aim to detect small activation-related

signal changes very quickly and often use a sequence known as Echo Planar

Imaging (EPI). EPI sequences acquire an entire image following a single excitation

pulse. Within an excited slice, the signal from all of the spins is encoded with a train

of gradient echoes generated by rapidly oscillating frequency-encoding gradients

and “blipped” phase-encoding gradients.

The high sampling rate in EPI effectively freezes motion during the scan and

allows imaging of dynamic processes in the body with a time series of images.

EPI also maximizes the fraction of imaging time devoted to data acquisition and

generally provides high signal-to-noise per unit time. On the other hand, the quality

of individual EPI images may be rather poor. Because the entire train of gradient

echoes is collected within one T�
2 decay envelope, EPI is sensitive to bulk magnetic

field inhomogeneities which lead to shifting, geometric distortion, blurring, and

signal loss in EPI images [1]. There may also be inconsistencies between gradient

echoes obtained with positive vs. negative frequency-encoding gradients; this leads

to the so-called Nyquist ghost artifact, in which copies of the true image are shifted

and layered on top of it. Together these complications may cause serious artifacts in

EPI images or may decrease the stability of a time series of EPI images. However,

many of these issues can be addressed with careful sequence optimization or

through post-processing. In general the benefits of using EPI sequences for imaging

brain function outweigh the drawbacks, and EPI is currently the most widely used

sequence for functional brain imaging.

2 Principles of Functional MRI

About two decades ago, it was demonstrated that magnetic resonance imaging

could be used to noninvasively map changes in neural activity in the brain.

In 1990, Ogawa et al. showed that blood with varying levels of oxygen content

modulated contrast in a time series of MR images of the rat brain. This blood

oxygen level dependent (BOLD) effect was replicated in humans [2–4], and

BOLD-based functional magnetic resonance imaging (fMRI) rapidly became

a primary research tool for the study of human brain function. In the last twenty

years, fMRI has been used to investigate everything from activity in the primary

sensory and motor cortices to cognitive functions including attention, language,

learning, and memory, to brain disorders ranging from Alzheimer’s to autism, and

to more (e.g., [5]). Recently it has become clear that fMRI scans of persons at rest

can provide insights into how brain regions are networked and how changes in those

networks are reflected in behavior and cognition [6–8]. This section describes the

principles and methods that make it possible to measure brain function with MRI.

Before going into more detail, it is important to note that BOLD fMRI

experiments do not measure neural activity directly, but instead measure differences

in the NMR signal related to changes in blood oxygenation near the sites of increased
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neural activity. A comprehensive description of BOLD-related signal changes

depends on complex interactions between several physiological factors including

cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic

rate of oxygen (CMRO2). Fig. 11.4 illustrates these relationships schematically.

The mechanisms underlying most BOLD fMRI experiments can be summarized

as follows: First, the metabolic process associated with neuronal activity transforms

diamagnetic oxyhemoglobin (Hb), which has magnetic properties similar to those of

tissue, into paramagnetic deoxyhemoglobin (dHb), which has magnetic properties

different from those of tissue. The differences in magnetic susceptibility Dwð Þ
between compartments which contain dHb (red blood cells within blood vessels)

and those which contain only oxygenated Hb (the surrounding area) create small

magnetic field gradients which cause local spins to become out of phase and shorten

T�
2 near the site of activation. Second, an increase in neural activity induces

a significant increase in regional cerebral blood flow (CBF) and cerebral blood

volume (CBV) without a commensurate increase in the regional oxygen consumption

rate (CMRO2) [9, 10]. When the fresh, oxygenated blood arrives at the site of

increased activity, the already metabolized paramagnetic dHb is washed away and

the local concentration of diamagnetic Hb in veins and capillaries increases signifi-

cantly. This in turn leads to a significant increase in the local T�
2 ; which lasts for

several seconds and is reflected in increased intensity in images sensitive toT�
2 (or T2).

If a series of T�
2-weighted images is collected while a subject alternates between

rest and task conditions, image intensity during task vs. rest can be statistically

compared to draw inferences about which brain regions are engaged by the task.

Material specific to the design and analysis of fMRI experiments will be covered

later in this chapter.

Fig. 11.4 Schematic representation of the mechanisms behind the various types of functional

MRI (CBV, CBF, and BOLD). The source of the BOLD signal is a net decrease in

deoxyhemoglobin in blood vessels near the site of neural activity. Even though the slight increase

in CMRO2 may increase the local deoxyhemoglobin concentration, the more dramatic effects of

increased CBV and CBF far outweigh this effect and net dHb is decreased. Other fMRI methods

seek to measure changes in CBV and CBF directly
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Figure 11.4 suggests that CBF and CBV can be used as surrogate measures of brain

activity. The measurement of CBF is based on the radio-frequency labeling of water

protons in the arterial blood and is often termed arterial spin labeling (ASL). Specifi-

cally, ASL uses magnetically labeled arterial blood water as an endogenous tracer for

measuring CBF [11]. In this method, arterial blood flowing toward the region of

interest (ROI) is labeled by magnetic inversion. After a delay to allow for labeled

blood to flow into the ROI, an image is acquired which depends on both the static

tissue and the amount of tagged blood that has entered the slice. A control image in

which the inflowing blood is not inverted is also acquired. The difference of the

labeled image and the control image depends only on blood flow and thus serves as a

CBF-weighted image that can be used to calculate absolute CBF.

It is also possible to acquire CBV-weighted images, with or without the use of a

contrast agent. The approach without contrast agent detects changes in vascular

space occupancy (VASO) by acquiring images when the blood signal is selectively

nulled [12]. It provides a means for measuring relative changes in CBV due to brain

activation.

Functional activation maps generated with BOLD, CBF, and CBV are mostly

similar. However, because BOLD, CBF, and CBV contrasts probe different points

Fig. 11.5 Illustration of differences between baseline and active states inside blood vessels near

the site of neural activity (top), together with a simplified schematic of the source of the bold signal

from Fig. 11.4 (bottom)
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(and spatial characteristics) in the hemodynamic response process, and because

imaging brain function with each of these methods requires a specialized imaging

sequence, there are important differences in their properties. In general, BOLD

methods have the highest sensitivity and are therefore the most widely used

approach for functional brain imaging. However, there are advantages of CBV

and CBF approaches, most notably high spatial specificity, reproducibility, and

longitudinal consistency [13, 14]. See Table 11.1 for a more detailed comparison of

BOLD, CBF, and CBV-based fMRI methods.

3 fMRI Experiment Design

Since the BOLD fMRI signal is derived from the hemodynamic response, the

design of fMRI studies must take the slow temporal characteristics of this response

into account. In light of this, two major types of fMRI study designs have emerged:

“block” and “event-related” design (illustrated in Fig. 11.6).

Block design is analogous to the method used in older PET studies, where

sustained cognitive or perceptual engagement is required and brain activation is

defined by the difference in response between the task and rest/control blocks. In

typical block design fMRI, stimulus is presented continuously during the “task”

blocks. This is advantageous in that the activity-related signal change observed in

block design fMRI is generally quite high. However, several drawbacks relate to the

requirement of a sustained stimulus during the “task” blocks. For example, block

design precludes the use of many classic psychological paradigms (e.g., the “odd-

ball” scheme), may introduce confounding factors such as habituation or expecta-

tion, and discards temporal information about individual hemodynamic response

functions to specific stimuli. Block design experiments are commonly found in

early fMRI studies of visual processing; in one example, O’Craven et al. asked

Table 11.1 Approaches to imaging brain function with MRI

BOLD CBF CBV

Definition Mix of CBF, CBV,

CMRO2

Blood passing capillary bed

in tissue per unit time

Volume of blood in given

quantity of tissue

MRI approach T2*-weighting Arterial spin labeling (ASL) Contrast agent or vascular

space occupancy

(VASO)

Specificity Venous bias,

susceptibility in

surrounding

regions

Arterioles/capillaries Mixed

Advantages Robust Spatial specificity,

reproducibility,

quantifiable

Spatial specificity,

reproducibility,

quantifiable

Disadvantages Poor reproducibility Low SNR, low sensitivity Low SNR, low sensitivity
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subjects to pay attention to static or moving dots in different task blocks and

observed attentional modulation of neural activity in the MT region [15].

As another example, Fig. 11.7 shows activation maps and the corresponding

block design paradigm for a simple finger-tapping task.

Event-related design is used in situations where the brain responses to single trial/

stimulus or the temporal details of the brain responses are of interest. In event-related

designs, stimuli are presented individually and the corresponding hemodynamic

responses are measured separately (Fig. 11.6). The time between stimuli (known as

Fig. 11.7 Activation map (top) and signal time course (bottom) for a finger-tapping task [courtesy
of Yihong Yang, National Institute on Drug Abuse (NIDA)]

Fig. 11.6 Schematic diagram of block (a) and event-related (b) fMRI experiment design (adapted

from with permission). In the block design, stimuli or trials are continuously presented in task

blocks, yielding cumulated “steady state” BOLD signal during the blocks. In the event-related

design, stimuli or trials are presented individually yielding distinguishable hemodynamic

responses
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the inter-stimulus-interval (ISI) or inter-trial-interval (ITI)) can be used to further

categorize event-related designs into “spaced” and “rapid” single trial approaches.

The “spaced” design usually uses a long ISI/ITI (typically more than 10 s) to allow

full hemodynamic response recovery so that signals of successive stimulus/trial are

fully separated, while the “rapid” design uses short ISI/ITI (typically 2–5 s) to

improve experiment efficiency. In rapid design, the responses of successive stimu-

lus/trial are overlapped; this requires a linear deconvolution post-processing step to

separate the BOLD responses [16]. Examples of event-related fMRI are easily found

in studies of error monitoring (e.g., [17]). Errors occur unpredictably by nature and

therefore must be examined in the context of an event-related design. More details

regarding fMRI experiment design can be found in Amaro and Barker [18].

4 fMRI Data Analysis

The power of fMRI lies in our ability to form an association between BOLD signal

variation, external sensory input, and brain function. This can be achieved by

analyzing the fMRI signal with statistical and mathematical techniques. However,

many artifacts and noise sources may compromise the integrity of fMRI data;

we must therefore remove such artifacts before we can conduct meaningful analysis

on it. The steps between image reconstruction and data analysis are collectively

known as preprocessing.

4.1 Preprocessing

The goal of preprocessing procedures is to reduce unwanted variability in the

experimental data and to improve the validity of statistical analyses. Some common

fMRI data processing steps include: motion correction to ensure registration

throughout a time series of images which may have been collected over several

minutes [19]; “slice timing” correction of phase differences between slices acquired

at significantly different times in multi-slice acquisitions like EPI [20, 21]; distor-

tion correction to ensure adequate registration of functional activity to associated

anatomical images [22, 23] and spatial smoothing to increase image SNR and

improve signal detection capabilities at the cost of subject-specific activation

information. Figure 11.8 (adapted from [24]) shows the basic framework for

preprocessing of fMRI data, where most steps outlined are introduced in this

section.

Many common artifacts can be detected by directly examining raw functional

images. One effective way of viewing raw data is to display slices in a rapid

sequence and using the human eye’s sensitivity to dynamic change to detect

artifacts. Statistical tests such as measurements of mean image intensity, principal

component analysis (PCA), and independent component analysis (ICA) may also

be used to evaluate the quality of collected fMRI data.
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4.1.1 Motion Correction

Motion correction aims to ensure that each voxel stays in the same spatial location

throughout the duration of data acquisition. Because the brain does not change size

and shape (it merely shifts and rotates as the head moves), rigid body transforma-

tion methods are often used for retrospective correction of head motion in fMRI.

Successive image volumes in the time series are co-registered to a single reference

volume by first determining the six variables of rigid body transformation (three

rotations and three translations) and then performing interpolation according to

these six parameters. Each of the main fMRI data analysis packages (SPM [24],

FSL [25], AFNI [26], and Brain Voyager [27]) has implemented their own approach

to motion correction. In cases of excessive motion (shifts on the order of several

voxels), the data may not be usable for further analysis. It is therefore common

practice to limit physical head motion during data acquisition with head-

immobilization techniques such as a strap restraint, bite bar, or foam padding.

4.1.2 Slice Timing Correction

In a given MR data volume acquisition time (typically 1–3 s), the slices within a

volume are collected either sequentially or in an interleaved manner (e.g., odd slices

followed by even slices). If the relative acquisition time of each slice is not taken

into account, the time courses for each slice would appear to vary dramatically even

if the underlying activity is identical. To address this issue, temporal interpolation

algorithms (mostly sinc interpolation) are often employed. These algorithms use

information about nearby slices to estimate the signal that would have been

obtained at the same time as the reference slice. The interpolated time point is

typically chosen as TR/2 to minimize relative errors across each TR.

Fig. 11.8 Schematic framework for preprocessing of fMRI data with an interleaved slice acquisi-

tion scheme. In a sequential slice acquisition scheme, Head Motion Correction and Slice Timing

Correction are reversed
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4.1.3 Functional–Structural Co-registration

Functional co-registration aims to align an fMRI time series with a high-resolution

structural MR image. Because the size, shape, and sulcus patterns of the brain are

much more distinct on structural images, it is beneficial to use information from

these images to locate subject’s task activation area and guide normalization of

functional images. After motion correction, a mean fMRI scan is calculated and

used in the functional–structural co-registration. An affine (twelve parameters)

functional MRI–structural MRI transformation can allow for scaling between the

two image types. Cost functions based on mutual information are considered

optimal for fMRI–MRI registration [28].

4.1.4 Normalization

Human brains differ in size, shape, and organization of cortical structures.

To compare the areas of activation across different subjects, we must be able to

study such activation in a common spatial coordinate system. This process, known

as normalization, is a form of co-registration which uses mathematical stretching,

squeezing, and warping to bring brains into common frame of reference. Currently,

the most widely used template is the Talairach system which is based on a single

brain [29]. Recently a more sophisticated template, derived from the anatomies of

over a hundred subjects, has become available. This template is developed by the

researchers at the Montreal Neurological Institute (MNI) and is called the MNI

space [30]. Within MNI space, the most common normalization algorithms are cost

functions using surface-based landmarks or voxel-based intensities; of these,

the latter is most widely used.

4.1.5 Temporal Filtering

In fMRI data analysis, we are generally interested in signal changes related to a

specific task. Therefore we need to minimize or filter out the influence of undesired

noise. Depending on what sort of variability should be eliminated, different kinds of

temporal filters (low-pass, band-pass, etc.) can be selected. For example, the human

heart rate generally varies between 1.0 and 1.5 Hz. For a block design experiment

with two alternating blocks of 20-s length, the task rate is 0.05 Hz. In this situation,

a low-pass filter with cutoff frequency less than 1.0 Hz would remove the physio-

logical oscillations without significantly reducing the ability to detect the task effect

of interest.

Generally, temporal filtering is used for physiological noise correction, removing

thermal noise, and estimation of temporal autocorrelations. The use of temporal

filters can substantially improve the quality of fMRI data by improving functional

signal-to-noise ratio (SNR).
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4.1.6 Spatial Filtering

The blurring of fMRI data across adjacent voxels to improve the validity

of statistical testing and maximizing functional SNR is called spatial smoothing

or spatial filtering. A Gaussian smoothing kernel of 1–2 voxels full width half

maximum is usually used. While spatial smoothing can increase the SNR and

provide cleaner activation maps, it does so at the price of spatial resolution

and therefore the ability to associate a given area of activity with a specific

anatomical feature. The extent of spatial smoothing is largely depends on the

desired application. If precise spatial discrimination of adjacent activation sites

is required, one should be conservative with spatial smoothing; on the other

hand, if coarse but clean activation maps are desired and/or the SNR is very low

due to a subtle cognitive effect, more spatial smoothing may be appropriate

[31–33].

4.2 Statistical Tests

A fundamental assumption of fMRI is that regions in the brain which activate in

response to a given stimuli must show signal variation that is similar in some way to

the external input. The extent to which the fMRI signal at various locations and

external stimulus are similar (or dissimilar) can be judged by statistical analysis of

the fMRI time series data. Types of statistical analysis commonly applied to fMRI

research include t-test, correlation analysis, and regression analysis.

4.2.1 t-Test

A t-test is generally used to test the hypothesis that the mean of a sample is different

from a specific value or that the means of two different samples are different from

one another. Suppose there is a blocked design with two conditions: task and rest.

To conduct a t-test in this design, the means of the data from these two conditions

are subtracted and then divided by the shared standard deviation:

t ¼ �x� �y

sxy
¼ �x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2x þ s2y
q ; (11.6)

where x represents the data of a given voxel acquired during the task condition,

and y represents data of that voxel acquired during rest. The standard deviations of

the time courses x and y are given by sx and sy, respectively.
The calculated t-value can be converted to a probability value by dividing it by

the number of degrees of freedom. By comparing the calculated probability value
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with the set alpha value, we can then decide whether or not to reject the null

hypothesis. For example, suppose the calculated probability value is 0.001;

this means there is a 0.001 chance that the data in these conditions were drawn

from the same distribution. If the alpha value is set to be 0.01, the probability value

is lower than the threshold alpha value, and thus the null hypothesis can be rejected.

4.2.2 Correlation Analysis

One way of ascertaining the similarity of the external stimulus (and hence the

predicted hemodynamic response) and the measured fMRI signal from a voxel is by

employing the correlation coefficient. If the experimental data are represented by x,
and the predicted response is represented by y, then the correlation coefficient

between the measured and predicted response is given by

r ¼ 1

n� 1
� S x� �xð Þ y� �yð Þ

sx � sy ; (11.7)

where the numerator is the covariance of the two data sets and sx and sy are the

standard deviations. The correlation value (r) can be converted to a probability

value in the same way as with a t-test, and the probability value may then be

compared with an alpha value. This correlation analysis is repeated for each voxel

in the brain to obtain a map of significant task-related signal changes. The t-test and

correlation analysis have complementary strengths. The former allows us to evalu-

ate contrasts between experimental conditions, whereas the latter allows us to

create models for expected fMRI activation.

4.2.3 Regression Analysis: The General Linear Model

The t-test and correlation analyses are suitable for comparing a limited number of

conditions. If the comparison is between multiple conditions resulting in many

contrasts, regression analysis is more suitable. With regression analysis, it is also

possible tomodel nuisance variables and hence increase the power to detect activation.

In regression analysis, the observed data are treated as a linear combination of

several regressors plus the residual noise (error) in the measurement. For each

regressor, there is a weighting coefficient which determines the relative influence of

that regressor on the data model. One of the most popular types of regression

analysis used in fMRI experiments is the General Linear Model (GLM).

The general linear model assumes a linear relationship between the measured

data and the task-induced changes, such that

yðtÞ ¼ bi � xiðtÞ þ cþ eðtÞ; (11.8)
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in which the subscript i counts the number of regressors in the model, and where y(t)
is the time series of a given voxel, x(t) is a regressor of interest (i.e., a task), c is a
constant, and e(t) is the residual error of the model which accounts for variance in

y(t) which cannot be explained by the linear model [34, 35]. Beta weights b are

commonly estimated through an ordinary least squares fit to the GLM and

are used to determine the significance of activation (commonly measured as T- or

F-statistics).

Figure 11.9 shows an illustration of the general linear model. In GLM analysis

for fMRI, the acquired data become a two-dimensional matrix Y, with V columns

representing the tested voxels, and n rows representing the time points per voxel.

The data matrix is known since it is obtained experimentally. The design matrix is

composed of the regressors, and is an n-by-Mmatrix where each column represents

a regressor, and each row represents the time course of that regressor. The design

matrix is constructed based on knowledge of the stimuli and the predicted responses

of the experiment. The parametric matrix is an M-by-V matrix in which each

volume of beta represents certain weighted coefficients of all the regressors for

a corresponding voxel. Finally, the error matrix is an n-by-i matrix which captures

the variance in the data which cannot be explained by the design and parametric

matrices. The primary task of GLM analysis is to calculate the optimal parameter

matrix so that some cost function of the error matrix is minimized.

Note that in both GLM and correlation analysis, we calculate activation signifi-

cance based on how well the experimental data fit a prediction. If the general linear

model only contains one regressor which is calculated by the convolution of events

with a standard hemodynamic response, then this GLM model resembles the

correlation analysis. The t-test can be incorporated into the general linear model

by using only one regressor with two discrete levels: one for the task condition and

the other for the rest condition in an alternating blocked design.

5 Biophysical Modeling of the fMRI Signal

As mentioned above, BOLD-based fMRI depends on changes in the concentration

of oxygenated and deoxygenated hemoglobin. In the brain, hemoglobin

stays within blood vessels and its effects must be considered in that context.

Fig. 11.9 Schematic of the general linear model as applied in fMRI
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If one considers an infinite cylinder as an approximation for a blood vessel with a

magnetic susceptibility difference Dw compared to the surrounding tissue, then the

magnetic field surrounding that cylinder (expressed in resonance frequency) will be

perturbed from the applied magnetic field o0 in proportion to the local magnetic

susceptibility gradients. Inside the vessel, intravascular (IV) perturbation is given by

Doin
B ¼ 2pDw0 1� Yð Þo0 cos2y� 1

3

� �
; (11.9)

while at any point outside the cylinder the magnetic field will vary depending on the

distance and orientation relative to the blood vessel and the external magnetic field

direction. This field extravascular (EV) perturbation is given by

Doout
B ¼ 2pDw0 1� Yð Þ o0

rb
r

� �2
sin2 yð Þ � cos 2fð Þ; (11.10)

where Dw0 is the maximum susceptibility difference expected in the presence

of fully deoxygenated blood, Y is the fraction of oxygenated blood present, rb
represents the cylinder radius, and r is the distance from the point of interest to

the center of the cylinder in the plane normal to the cylinder. These relationships are

illustrated in Fig. 11.10.

The dephasing effect is dependent on the orientation of the vessel. Vessels

running parallel to the magnetic field do not have the EV effect, while those

orthogonal to B0 will have maximal effect. Outside the blood vessel, the magnetic

field changes rapidly; at a distance equal to the diameter of the cylinder from the

cylinder center, oout
B is already down to 25% of its value at the cylinder boundary.

T�
2-based BOLD signal changes can arise both from intravascular and extravas-

cular effects originating from both large and small blood vessels. The relative

contributions of these effects will depend on the magnetic field strength [36].

Fig. 11.10 A blood vessel in

a static magnetic field. The

labeled parameters determine

the susceptibility effect

induced by deoxyhemoglobin

in red blood cells at a distance

r from the center of the vessel.

The vessel with radius a is

oriented at angle y from the

main magnetic field B0, and f
is the angle between r and a

plane defined by B0 and the

vessel axis
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BOLD contrast relies on monitoring oxygen concentration in the blood (particu-

larly venous blood). It is therefore intimately related to CBF, cerebral metabolic

rate of oxygen (CMRO2), and cerebral blood volume (CBV) as shown in Fig. 11.6.

The interplay between these three physiological parameters determines the BOLD

response and can be described in a phenomenological manner as follows:

DR�
2 ¼ � DBOLD

BOLD
� 1

TE
¼ �a�

DY
1� Y

� b�
DCBV

CBV

� �
; (11.11)

where a* and b* are constants (a is typically assumed to be 0.38), and Y is the

oxygenation content of the blood [37]. The change in the oxygenation level DY is

related to the changes of CMRO2 and CBF as follows:

DY
1� Y

¼ 1�
1þ DCMRO2

CMRO2

1þ DCBF
CBF

: (11.12)

With measurements of DR� and DCBF, the above equations can be used along

with the Grubb’s relationship [38], which quantifies the effects of changes in

arterial carbon dioxide tension on CBV, CBF, and vascular mean transit time, to

estimate DCMRO2.

Various models have been proposed to estimate DCMRO2 from fMRI

measurements. For instance, the balloon model [39] assumes that CBV changes

occur predominantly in the venous compartment and that the CBF increase induced

by neuronal activity is accompanied by an increase in DCMRO2 which causes an

increase followed by a subsequent decrease in CBV.

Similarly, the deoxyhemoglobin dilution model [11, 40] replaces the assumption

of numerous parameters with a single parameter (M) that can be measured experi-

mentally using the following:

DBOLD

BOLD
¼ M � 1� CMRO2

CMRO2ð Þ0

� �b
� CBF

CBF0

� �a�b
 !

; (11.13)

where b is a constant reflecting the influence of deoxyhemoglobin concentration.

For this approach, BOLD and CBF are measured at various levels of

deoxyhemoglobin concentration and hypercapnia (a, inhaled CO2 concentrations

typically ranging from 1 to 5%) and the data are fit to yield a value of the calibration

parameter M that is specific to a given subject, day, brain region, and so on. More

sophisticated models with similar assumptions have recently been presented

[41–43], as well as approaches for estimating CBV directly from MR

measurements instead of assuming Grubb’s relationship [37].

Another model assumes multiple compartments, separating the BOLD signal

into intravascular (30% arteriole, 70% venule) and extravascular components.

Instead of relying on calibration, this approach utilizes task-related BOLD and
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CBV changes to calculate oxygen extraction fraction (OEF) as a means to estimate

CMRO2 [44]:

1þ DOEF

OEF

� �
� 1þ DCBF

CBF

� �
¼ 1þ DCMRO2

CMRO2

� �
: (11.14)

However, non-contrast studies typically require the assumption of resting CBV

levels as well as the measurement of VASO signal changes during activation.

Ultimately, further studies will evaluate the extent to which each of these methods

are accurate and have acceptable assumptions.

6 Spatial and Temporal Resolutions

Depending on the application, low-resolution coverage of the entire brain or high-

resolution coverage of certain brain areas may be desirable. Most fMRI experiments

at 3 T employ single-shot EPI with about 30 slices of matrix size 64 � 64 or

80 � 80 with 3 mm � 3 mm � 3 mm voxels in about 2.5 s [5]. However, with

the advent of high field human scanners operating at 7 T and above, imaging at much

higher spatial resolutions has become possible. Higher magnetic field strengths

increase the baseline signal which in turn allows higher spatial resolutions (and

therefore more precise illustrations of the organization and topography in the human

brain) to be achieved with reasonable SNR. Figure 11.11 shows maps of the primary

visual cortex (V1) acquired at resolutions of 1.67 mm � 1.67 mm � 1.67 mm and

1.12 mm � 1.12 mm � 1.12 mm at 7 Tesla.

Twomajor physiological factors contribute to the achievable spatial resolution of

fMRI studies. One is the sensitivity of the chosen imaging sequence to blood vessels

of different sizes, and the second is the actual spatial specificity of the BOLD-related

events that ultimately yield the functional images.

Beyond the nominal voxel size, the achievable spatial resolution of fMRI is

dependent on intrinsic hemodynamic response as well as SNR. Both factors will

determine the accuracy of the functional map.

Since the BOLD signal is related to changes in blood flow, the inherent temporal

resolution of fMRI is tied to the timescale of this hemodynamic response (on the

order of seconds) and not changes in neural activity (which occur on a scale of

milliseconds) [45]. Therefore it can be difficult to obtain high temporal resolution

information about brain function from BOLD data even when the MR images

themselves are obtained rapidly.

Typically, hemodynamic signal changes are observed at 1–2 seconds after the onset

of neuronal stimulation and reach amaximum after 4–8 seconds. The precise timing of

neural activity relative to the hemodynamic responses cannot be easily obtained

because the hemodynamic response varies depending on local vascular structures. If

the hemodynamic response times in all regions in all subjects were the same, neuronal

activities could be directly inferred from fMRI time courses. However, thismay not be
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true in all regions and in all subjects, and thus apparent differences in fMRI time

courses may simply be related to differences in intrinsic hemodynamic response time

rather than the timing of neuronal activity. This is critically importantwhen attempting

to determine, for example, the sequence of neural events when one area in a network of

brain regions may be driving activity in other regions [46].

7 Signal and Noise Considerations

In a functional MRI experiment, images must be acquired quickly to adequately

sample the hemodynamic response to brain activity. The fast speed at which these

images must be acquired also means the SNR of individual images in an fMRI time

series tends to be low. Tomake up for this, many images are generally obtained in both

“task” and “rest” conditions. Differences in signal between the two are then compared

to a measure of temporal signal variance and significant differences between “task”

and “rest” are then determined by statistical tests. Because the signal changes

associated with BOLD fMRI are so small, high temporal signal stability is critical to

BOLD fMRI experiments. The temporal signal-to-noise ratio (TSNR) is defined as the

mean value of a signal within a single voxel compared to the standard deviation of the

signal in that voxel over time in a series of images:

TSNR ¼
�S

s
: (11.15)

Fig. 11.11 Activation maps of the primary visual cortex (V1) acquired with EPI at 1.12 � 1.12

� 1.12 mm3 (left) and 1.67 � 1.67 � 1.67 mm3 (right) on a 7 T scanner. Blue lines represent the
edges of the cortical surface, while green lines represent the gray/white matter boundary. Notice

that some activation appears distorted off of the cortical surface; this is an example of a magnetic

susceptibility effect as described previously (images courtesy Jascha Swisher, Vanderbilt Univer-

sity Institute of Imaging Science)
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Several noise components contribute to the total signal variation in a time series

of images. These include time-varying thermal noise (sT), noise caused by system

instability (sS) and, in living subjects, physiological noise from metabolic, cardiac,

or respiratory activity and related motion (sP). When these are independent the total

noise may be written as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2T þ s2S þ s2P

q
: (11.16)

First identified by Weisskoff et al. in 1993, physiological noise (sP) is now

known to be a dominant source of temporal signal variation in fMRI time series

data. Physiological noise depends on the NMR signal and therefore increases with

magnetic field strength and voxel volume [47, 48]. Numerous techniques for

physiological noise removal have been suggested, including navigator echoes,

retrospective gating, digital filtering, k-space and image-space based estimation,

pulse sequence gating, and more [49–54].

8 Combining fMRI and EEG for Human Brain Mapping

Localizing neural activities in the brain, both in time and in space, is a central

challenge to understanding functional brain mechanisms. However, even with

a variety of modern neuroimaging modalities available (electroencephalography

(EEG), magnetoencephalography (MEG), positron emission tomography (PET),

single photon emission computed tomography (SPECT), and fMRI), no single

approach can claim the highest resolution in both space and time for all experimental

or clinical conditions. BOLD fMRI can map brain activity with a spatial resolution on

the order of millimeter, but since BOLD fMRI relies on the hemodynamic response

this technique can only provide slow, temporally blurred information about the

underlying neuronal activity. In contrast, EEG (or MEG) can directly capture electri-

cal or magnetic signals associated with active neurons in real time, but because those

signals are measured through the scalp, the recorded signal is a spatially blurred

mixture of underlying neural “sources” and thus has limited spatial resolution.

Given the complementary strengths and weaknesses of fMRI and EEG,

many researchers are working to bring these two modalities together to achieve

high-resolution data in both space and time simultaneously. Early attempts at such

temporal–spatial data integration can be found in studies of cognitive attention;

for example, Heinze and colleagues explored the cortical anatomy and time course

of attentional selection [55]. In this study, temporal and spatial information was

acquired with EEG and PET, respectively, in separate sessions. Multimodal data

acquisition is especially desirable in clinical studies of brain diseases such as epi-

lepsy, where researchers commonly use EEG to record epileptic discharges and use

fMRI to examine their hemodynamic correlates [56]. As such discharges are usually

unpredictable, these EEG and fMRI data must be acquired simultaneously and then
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analyzed in the context of an event-related design where events measured on EEG are

used as markers in fMRI data analysis.

The fundamental assumption behind any EEG–fMRI integration is that the signals

of both modalities are (at least partly) produced by the same neural sources. However,

experiments with separate EEG and fMRI recording may violate this assumption

as different circumstances regarding stimulation, habituation, or emotion may

involve different neural activities. Even with simultaneous recording, differences in

the physiological nature of EEG (electrical activity from neurons) and fMRI signal

(hemodynamic response) could make one modality blind to signals detected by the

other. These different signals may also arise from physically separate locations in the

brain [57]. Other confounds include the possibility that nonelectrical, energy-

consuming physiological processes (e.g., neurotransmitter synthesis) may produce

BOLD signal changes invisible to EEG [58], or that transient electrical activity may

produce EEG signals invisible to fMRI [59]. These and other issues surrounding the

integration of fMRI and EEG data are explored in detail Chapter 12.

9 Summary

Functional magnetic resonance imaging is widely used for noninvasively mapping

brain activity. The methods and applications of fMRI continue to expand rapidly

as new approaches such as measuring functional connectivity in brain networks,

tracking information flow in the brain, and integration with EEG and other

neuroimaging techniques become widespread. This chapter has introduced the

principles of magnetic resonance imaging and functional MRI, examined the

biophysical basis of the fMRI signal, and given an overview of fMRI experiment

design and data analysis. The interested reader is invited to browse the literature

for numerous examples of fMRI applied to fields as diverse as psychology, art,

music, economics, medicine, and more.
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