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Abstract

Analytical and numerical models for describing and understanding the light

propagation in samples imaged by optical coherence tomography (OCT) sys-

tems are presented. An analytical model for calculating the OCT signal based on

the extended Huygens-Fresnel principle valid both for the single- and multiple-

scattering regimes is derived. An advanced Monte Carlo model for calculating

the OCT signal is also derived, and the validity of this model is shown through

a mathematical proof based on the extended Huygens-Fresnel principle. From

the analytical model, an algorithm for enhancing OCT images is developed, the

so-called true-reflection algorithm in which the OCT signal may be corrected for

the attenuation caused by scattering. The algorithm is verified experimentally

and by using the Monte Carlo model as a numerical tissue phantom. Applica-

tions of extraction of optical properties from tissue are discussed. Finally, the

Wigner phase-space distribution function is derived in a closed-form solution,

which may have applications in OCT.

17.1 Introduction

Optical coherence tomography (OCT) has developed rapidly since its potential

for applications in clinical medicine was first demonstrated in 1991 [1]. OCT

performs high-resolution, cross-sectional tomographic imaging of the internal

microstructure in materials and biologic systems by measuring backscattered or

backreflected light.

Mathematical models [2–9] have been developed to promote understanding of

the OCT imaging process and thereby enable development of better imaging

instrumentation and data processing algorithms. One of the most important issues

in the modeling of OCT systems is the role of the multiple-scattered photons, an

issue, which only recently has become fully understood, the works of Thrane et al.
[10] and Turchin et al. [11] representing the most comprehensive modeling. Hence,

such modeling, capable of describing both the single- and multiple-scattering

regimes simultaneously in heterogeneous media, is essential in order to completely

describe the behavior of OCT systems.

Experimental validation of models on realistic sample structures, for example,

layered sample structures, would require manufacturing of complex tissue phan-

toms with well-controlled optical properties. However, a useful alternative to

validate the analytical predictions on such geometries is to apply a Monte Carlo
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(MC)-based simulation model [12], since there are few limitations on which

geometries that may be modeled using MC simulations. MC models for analyzing

light propagation are based on simulating the radiative equation of transfer by

tracing a large number of energy packets, each considered to represent a given

fraction of the incident light energy [13, 14]. Hence, as a numerical experiment, one

has full control of all parameters.

The scope of this chapter is the presentation of analytical and numerical models

that are able to describe the performance of OCT systems including multiple-

scattering effects in heterogeneous media. Such models, where the contribution to

the OCT signal from multiple-scattering effects has been taken into account, are

essential for the understanding and in turn optimization of OCT systems. Moreover,

establishing a valid MC model of OCT systems is important, because such a model

may serve as a numerical phantom providing data that are otherwise cumbersome to

obtain experimentally. In general, these models, analytical as well as numerical,

may serve as important tools for improving interpretation of OCT images.

17.1.1 Organization of This Chapter

The chapter is divided into four sections, covering specific topics in modeling OCT

systems. In Sect. 17.2, an analytical model for the detected OCT signal is derived

based on the extended Huygens-Fresnel principle. In the field of biomedical optics,

Monte Carlo simulations have already proved their value. In Sect. 17.3, an advanced

Monte Carlo model for calculating the OCT signal is presented, and comparisons

to the analytical model are made. The analytical model, in Sect. 17.4, is then used

to derive the optical properties of a scattering medium, which forms the basis of the

so-called true-reflection algorithm. The algorithm is verified using MC simulations

as well as experiments. The Wigner phase-space distribution function has been

proposed as an alternative to OCT. In Sect. 17.5, we demonstrate the applicability

of using the extended Huygens-Fresnel principle to calculate the Wigner phase-space

distribution function and to derive a novel method of OCT imagery.

17.2 Analytical OCT Model Based on the Extended Huygens-
Fresnel Principle

Since the first paper describing the use of the OCT technique for noninvasive cross-

sectional imaging in biological systems [1], various theoretical models of the OCT

system have been developed. The primary motivation has been optimization of the

OCT technique, thereby improving the imaging capabilities. The first theoretical

models were based on single-scattering theory [2, 3]. These models are restricted to

superficial layers of highly scattering tissue in which only single scattering occurs.

Single scattering or single backscattering refers to photons which do not undergo

scattering either to or from the backscattering plane of interest, that is, ballistic

photons.

17 Optical Coherence Tomography: Advanced Modeling 745



At larger probing depths, however, the light is also subject to multiple scattering.

The effects of multiple scattering have been investigated on an experimental basis

[4] and by using a hybrid Monte Carlo/analytical model [5], analysis methods of

linear systems theory [6], on the basis of solving the radiative transfer equation in

the small-angle approximation [7], a model based on the extended Huygens-Fresnel

(EHF) principle [8], and MC simulations [9]. Note that modeling using MC

simulations is treated in greater detail in Sect. 17.3.3.

In the present context, the main objective is the analysis of multiple-scattering

effects. As shown by several investigations, the primary effects of multiple scat-

tering are a reduction of the imaging contrast and resolution of the OCT system.

In Ref. [15], the authors suggested solving the multiple-scattering problem by

using the EHF principle [8] known from atmospheric propagation of laser beams

[16]. Their analysis contains one important inaccuracy because in their end result,

the ballistic component is included twice, leading to erroneous calculations. As

a result, their analysis should be applied with care. In addition, the effects of the

so-called shower-curtain effect [16] are not accounted for in their analysis. Thrane

et al. [10] succeeded in applying the EHF principle for the OCT geometry

(see below). Following their analysis, Feng et al. [17] aimed at expanding on the

use of EHF in modeling the OCT geometry. In particular, their aim is to simplify the

analysis, but several mistakes are introduced in the attempt: Firstly, an imaginary

lens is introduced with the purpose of obviating the shower-curtain effect, leading

to errors in the final calculation of the OCT signal. Secondly, an erroneous lateral

coherence length is introduced, that is, the lateral coherence length should be

calculated as resulting from reflecting off a rough surface and not, as done in Ref.

[17], a specular surface. Hence, their model should be approached with caution.

A statistical optics approach to adequately model the effects of multiple scatter-

ing was proposed by Karamata et al. [18]. However, their analysis, based on

a heuristic argument, is misleading and incorrect. The main error is due to their

assumption regarding spatial coherence, where it is alleged that transverse spatial

coherence is not degraded due to multiple scattering. The argument used by

Karamata et al. [18] is valid only for the case of a focused beam reflecting off

a rough surface with no scattering medium in between the reflection site and the

collection aperture (see, e.g., pages 210–211 of Ref. [19]). This is definitely not the

case for OCT in turbid media (i.e., tissue). The degradation of spatial coherence of

a beam propagating through a multiple-scattering media is well known and

documented in the literature (see Ref. [20] and references therein). Therefore, the

analysis given in Ref. [18] is not considered further, and the results and conclusions

should not be used in modeling light propagation in turbid media.

Recently, Turchin et al. [11] expanded the analysis of Dolin [7] to an OCT

geometry. Their analysis is based on the radiative transfer equation (RTE) in the

small-angle approximation, of which Arnush [21] first obtained the closed-form

solution. It should be noted that in this approximation, the solution of the RTE and

the EHF is identical [22, 23]. In general, the analysis of Ref. [11] is consistent

with that of the EHF model, which is presented below. However, technically there

are two important differences that need to be pointed out. Firstly, the choice of
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scattering phase function in Ref. [11]: as in Ref. [10], the forward scattered part is

modeled by a Gaussian distribution, but additionally a small backscattered frac-

tion is included. This way of taking into account tissue backscattering was

previously suggested by Raymer and coworkers [24] and discussed by Yura

et al. [23]. However, it was not included in the EHF analysis of the OCT geometry

[10], but it can be readily adopted [25]. Hence, the RTE [11] and EHF [10]

descriptions are equivalent. Secondly, Thrane et al. [10] present an analytic

engineering expression for the OCT signal current based on an accurate analytical

approximation for the irradiance distribution in the backscatter plane (see

Sect. 17.7 for details). Turchin et al. [11] do not use this approximation, and

consequently their end results require numerical computations, which yield

highly accurate values for the OCT signal current. They also obtain accurate

results in the extraction of optical scattering properties of the sample, which is

further addressed in at the end of this chapter. Furthermore, it is noted that the

analysis of Turchin et al. [11] is restricted to the special case where the focusing

lens in the sample arm is in direct contact with the tissue being investigated. This

is in contrast to the analysis of Ref. [10] where the ABCD ray-matrix formalism

was used to readily include an arbitrary configuration of the sample arm. Finally,

in contrast to the totally numerical results of Ref. [11], the multiple-scattering

EHF analysis presented below yields accurate analytic expressions for the OCT

signal for a wide range of optical configurations that are both amenable to

physical interpretation and are desirable for use in parametric studies for OCT

system optimization.

In this section, a general theoretical description [10, 26–28] of the OCT tech-

nique when used for imaging in highly scattering tissue is presented. The descrip-

tion is based on the EHF principle. It is shown that the theoretical model, based on

this principle and the use of mutual coherence functions, simultaneously describes

the performance of the OCT system in both the single- and multiple-scattering

regimes. In a standard OCT system [1] with diffuse backscattering from the tissue

discontinuity being probed, and a distance between the focusing lens and the tissue,

the so-called shower-curtain effect [16, 29, 30] is present. This effect has been

omitted in previous theoretical models [8]. However, it is demonstrated in this

section that inclusion of this effect is of utmost importance in the theoretical

description of an OCT system.

17.2.1 The Extended Huygens-Fresnel Principle

When an optical wave propagates through a random medium, for example, tissue,

both the amplitude and phase of the electric field experience random fluctuations

caused by small random changes in the index of refraction. Several different

theoretical approaches have been developed for describing these random amplitude

and phase fluctuations, based upon solving the wave equation for the electric field

of the wave or for the various statistical moments of the field. By assuming

a sinusoidal time variation in the electric field, it has been shown [31–34] that
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Maxwell’s equations for the vector amplitude E(R) of a propagating electromag-

netic wave through a non-absorbing refracting medium lead directly to

H2Eþ k2n2 Rð ÞEþ 2H E � H ln n Rð Þ½ � ¼ 0; (17.1)

where R denotes a point in space, k is the wave number of the electromagnetic

wave, and n(R) is the index of refraction whose time variations have been

suppressed. We now assume that the magnitude of the index of refraction fluctua-

tions is small in comparison with unity. Hence, the index of refraction

n Rð Þ ¼ n Rð Þh i þ nf Rð Þ, where nf (R) is the small fluctuating part of the index of

refraction with zero mean and a root-mean-square value much less than unity. This

assumption is in general valid for tissue [35]. In this case, it has been shown that the

last term on the left-hand side of (17.1), which is related to the change in polari-

zation of the wave as it propagates, is negligible if the wavelength of the radiation

l � 2p l0, where l0 is a measure of the smallest random inhomogeneities in the

medium [33, 34]. The structures that dominate light propagation in tissue, for

example, cells, have a size of 2 mm or more, which means that the criteria

for neglecting the depolarization term are fulfilled in the case of interest where

l � 1.0 mm. By dropping this term, (17.1) simplifies to

H2Eþ k2n Rð ÞE ¼ 0; (17.2)

which is now easily decomposed into three scalar equations, one for each compo-

nent of the field E. If we let U(R) denote one of the scalar components transverse to

the direction of propagation along the positive z-axis, then (17.2) may be replaced

by the scalar stochastic equation

H2U þ k2n2 Rð ÞU ¼ 0: (17.3)

Equation (17.3) cannot be solved exactly in closed form. Some early attempts to

solve (17.3) were based on the geometric optics approximation [36], which ignores

diffraction effects, and on perturbation theories widely known as the Born approx-

imation and Rytov approximation [32]. One approach to solving (17.3) by other

than perturbation methods was developed, independent of each other, by

Lutomirski and Yura [37] and by Feizulin and Kravtsov [38]. This technique is

called the extended Huygens-Fresnel (EHF) principle. As the name indicates, it is

an extension of the Huygens-Fresnel principle to a medium that exhibits a random

spatial variation in the index of refraction. That is, the field due to some arbitrary

complex disturbance specified over an aperture can be computed, for propagation

distances that are large compared with the size of the aperture, by superimposing

spherical wavelets that radiate from all elements of the aperture. This principle

follows directly from Green’s theorem [39] and the Kirchhoff approximation [39]

applied to the scalar wave equation together with a field reciprocity theorem

between an observation point and a source point of spherical waves in the random

medium. On the basis of this principle, the geometry of the problem, that is, the
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aperture field distribution, can be separated from the propagation problem, which is

determined by the way a spherical wave propagates through the medium. Further-

more, Yura and Hanson [40, 41] have applied the EHF principle to paraxial wave

propagation through an arbitrary ABCD system in the presence of random inho-

mogeneities. An arbitrary ABCD system refers to an optical system that can be

described by an ABCD ray-transfer matrix [42]. In the cases of interest in this

section, the ABCD ray-transfer matrix is real, and the field in the output plane is

then given by [40]

UðrÞ ¼
ð
U0ðpÞGðp; rÞdp; (17.4)

where r and p are two-dimensional vectors transverse to the optical axis in the

output plane and input plane, respectively. Throughout this chapter it is understood

that spatial integrals are to be carried out over the entire plane in question.

The quantity U0(p) is the field in the input plane, and G(p,r) is the EHF Green’s

function response at r due to a point source at p given by [37, 40]

Gðp; rÞ ¼ G0ðp; rÞ exp½i’ðp; rÞ�; (17.5)

where G0(p,r) is the Huygens-Fresnel Green’s function for propagation through an

ABCD system in the absence of random inhomogeneities and ’(p,r) is the random
phase of a spherical wave propagating in the random medium from the input plane

to the output plane. The Huygens-Fresnel Green’s function G0(p,r) is given by [40]

G0 p; rð Þ ¼ � ik

2pB
exp � ik

2B
Ap2 � 2p � rþ Dr2
� �� �

; (17.6)

where A, B, and D are the ray-matrix elements for propagation from the input plane

to the output plane. In the following, it is assumed that ’ is a normally distributed

zero-mean random process.

17.2.2 The OCT Signal

A conventional OCT system [1] consists of a superluminescent diode (SLD),

a Michelson interferometer with movable reference mirror, and a photodetector.

The rotationally symmetric sample arm geometry of the OCT system is shown in

Fig. 17.1. The tissue discontinuity being probed arises from a refractive index

discontinuity between two tissue layers (n 6¼ n1 in Fig. 17.1). Therefore, the

discontinuity, located at a depth z in the tissue, is characterized by a Fresnel

reflection coefficient Rd. A lens with focal length f is placed at a distance d from

the tissue surface. In the system of interest, the focal plane coincides with the tissue

discontinuity. Furthermore, the reference arm optical path length in the Michelson

interferometer is matched to the focal plane optical depth.
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In the case of human skin, light scattering in the bulk tissue is predominantly in

the forward direction for the wavelengths of interest in the NIR region [43]. Hence,

we neglect bulk backscattering and use the EHF principle [37, 38] to describe the

light propagation in the bulk tissue. This is justified by the fact that the EHF

principle is based on the paraxial approximation and therefore valid for small-angle

forward scattering. In particular, it can be shown that the paraxial approximation

is valid up to 30�, that is, 0.5 rad [42]. Because most tissues are characterized

by rms scattering angles below this limit, the EHF principle may be used to

describe light propagation in tissue, retaining both amplitude and phase informa-

tion. Also, the bulk tissue absorption is neglected [43]. Thus, the bulk tissue is

characterized by a scattering coefficient ms, a root-mean-square scattering angle

yrms or asymmetry parameter g [44], and a mean index of refraction n. Furthermore,

the bulk tissue is modeled as a material with scatterers randomly distributed

over the volume of interest. Note that in the present analysis, polarization effects

are excluded.

By mixing the sample field US reflected from the discontinuity in the tissue at

depth z, with the reference field UR on the photodetector of the OCT system, we

obtain that the heterodyne signal current i(z) can be expressed as [8]

iðzÞ / Re

ð
URðp; tÞU�

Sðp; tþ tÞdp
� �

; (17.7)

where the integration is taken over the area of the photodetector, Re denotes the real

part, and t is the difference between the propagation times of the reference

and sample beams. In practice, the heterodyne signal current i(z) is measured

over a time much longer than the source coherence time. In this case, it can be

shown that [8]

iðzÞ / gðtÞj jRe
ð
URðpÞU�

SðpÞdp
� �

; (17.8)

mixing
plane

lens, f

d

n n1

z

tissue
surface

tissue
discontinuity

Fig. 17.1 Sample arm

geometry of the OCT system

(From Ref. [10])
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where |g(t)| is the modulus of the normalized temporal coherence function of the

source (notice that g(t) is not related to the asymmetry parameter g).
Because the detailed structure of the tissue is unknown a priori, it is necessary

and appropriate to treat the optical distortions as a random process and, as is

commonly done in the literature, to specify certain measures of the average

performance, for example, the mean (i.e., ensemble average) square heterodyne

signal current. It can be shown that the mean square heterodyne signal current

i2ðzÞ� �
, which is proportional to the heterodyne signal power, is given by [8, 29]

i2ðzÞ� � ¼ 2a2 gðtÞj j2Re
ð ð

GSðp1; p2; zÞGRðp1; p2Þdp1dp2
� �

; (17.9)

where

GRðp1; p2Þ ¼ URðp1ÞU�
Rðp2Þ; (17.10)

GSðp1; p2; zÞ ¼ USðp1; zÞU�
Sðp2; zÞ

� �
(17.11)

are the mutual coherence functions of the reference and the reflected sample optical

fields in the mixing plane. The angular brackets denote an ensemble average both

over the statistical properties of the tissue and the reflecting discontinuity. For

simplicity, the heterodyne mixing process has been chosen to take place directly

behind the lens at the side facing the tissue, and p1, p2 are two-dimensional vectors

in this plane transverse to the optical axis. The quantity a is a conversion factor for

power to current and equals (qe�/hn), where qe is the electronic charge, � the

detector quantum efficiency, n the optical frequency, and h the Planck’s constant.

In the case of interest, the reference arm optical path length in the Michelson

interferometer is always matched to the sample arm optical path length, from

which it follows that |g(t)| ¼ |g(0)| ¼ 1 [8].

For the heterodyne detection scheme, the spatial coherence properties of the

sample field contained in the mutual coherence function GS are of utmost impor-

tance in the determination of the corresponding signal. In particular, if the spatial

coherence of the sample field is degraded with respect to the reference field, one

obtains a corresponding degradation in the signal-to-noise ratio.

The reference field and the input sample field USi in the lens plane impinging on

the sample are assumed to be of Gaussian shape and given by

URðp; tÞ ¼
ffiffiffiffiffiffiffiffi
PR

pw2
0

s
exp � p2

2

1

w2
0

þ ik

f

	 
� �
exp½ioRtþ ’RðtÞ�; (17.12)

USiðp; tÞ ¼
ffiffiffiffiffiffiffiffi
PR

pw2
0

s
exp � p2

2

1

w2
0

þ ik

f

	 
� �
exp½ioSt�; (17.13)
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where PR and PS are the powers of the reference and input sample beams, respec-

tively, w0 is the 1/e intensity radius of these beams in the lens plane, k ¼ 2p/l,
where l is the center wavelength of the source in vacuum,oR andoS are the angular

frequencies of the reference and input sample beams, respectively, and ’R is the

phase of the reference field relative to the input sample field.

In the determination of the mutual coherence function GS, we use the EHF

principle to obtain a viable expression for US(p;z), that is, the reflected sample

optical field in the mixing plane. Using (17.4), we have

USðp; zÞ ¼
ð
UBðr; zÞGðr; p; zÞdr; (17.14)

where UB(r;z) is the reflected sample field in the plane of the tissue discontinuity, r is
a two-dimensional vector in this plane transverse to the optical axis, and G(r,p;z) is
the EHF Green’s function response at p due to a point source at r, which includes the
effects of scattering in the interveningmedium. Combining (17.11) and (17.14) yields

GS p1; p2; zð Þ ¼
ð ð

UB r1; zð ÞUB r2; zð ÞG r1; p1; zð ÞG� r2; p2; zð Þh idr1dr2; (17.15)

where r1, r2 are two-dimensional vectors in this plane transverse to the optical axis.

For simplicity in notation, we omit in the following the explicit dependence of the

various quantities on z.
We next assume that the statistical properties of the bulk tissue and the tissue

discontinuity are independent and that the propagation to the tissue discontinuity is

statistically independent from the corresponding reflected propagation path. The

former seems to be a reasonable assumption for a medium like tissue. The latter

means that enhanced backscattering is neglected. Enhanced backscattering and the

criterion for neglecting it are discussed in Sect. 17.5. From these assumptions, it

follows that

UBðr1ÞU�
Bðr2ÞGðr1; p1ÞG�ðr2; p2Þ

� � ¼
UBðr1ÞU�

Bðr2Þi Gðr1; p1ÞG�ðr2; p2Þh i:� (17.16)

The first term on the right-hand side of (17.16) relates to both the mean value

over statistics of the bulk tissue in propagating from the lens plane to the tissue

discontinuity and the reflection statistics of the discontinuity. The second term

on the right-hand side of (17.16) relates to the corresponding average over

the statistics of the bulk tissue when propagating back from the discontinuity

to the mixing plane. Assuming diffuse backscattering from the tissue discontinu-

ity, we have [29, 45]

UBðr1ÞU�
Bðr2Þ

� � ¼ 4p
k2

dðr1 � r2Þ IBðr1Þh i; (17.17)
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where d(r) is the two-dimensional Dirac delta function and IB(r1) is the mean

backscattered irradiance distribution in the plane of the discontinuity. An adequate

analytic approximation for this mean backscattered irradiance distribution is

obtained by multiplying the approximate expression for the mean irradiance distri-

bution, derived in Sect. 17.2.3, by the reflection coefficient Rd. The expression,

which is valid for arbitrary values of the optical depth msz, is given by

IBðrÞh i ¼ RdPS

p
e�mSz exp �r2=w2

H

� �
w2
H

þ 1� e�mSzð Þ exp �r2=w2
S

� �
w2
S

� �
: (17.18)

The first term in the brackets on the right-hand side of (17.18) can be interpreted

to represent the attenuated distribution obtained in the absence of the inhomoge-

neities, and the corresponding second term represents a broader halo resulting from

scattering by the inhomogeneities. The quantities wH and wS are the 1/e irradiance
radii or spot sizes in the discontinuity plane in the absence and presence of

scattering, respectively, given by

w2
H ¼ w2

0 A� B

f

	 
2

þ B

kw0

	 
2

; (17.19)

w2
S ¼ w2

0 A� B

f

	 
2

þ B

kw0

	 
2

þ 2B

kr0

	 
2

: (17.20)

A and B are the ray-matrix elements for propagation from the lens plane to the

discontinuity plane. For the geometry of interest, A and B are given by A ¼ 1 and

B ¼ f ¼ d + z/n [42]. The quantity r0 appearing in (17.20) is the lateral coherence

length of a spherical wave in the lens plane due to a point source in the discontinuity

plane [29]. The lateral coherence length is discussed in detail in Ref. [10].

Combining (17.15), (17.16), and (17.17) and simplifying yield

GSðp1; p2Þ ¼
4p
k2

ð
IBðrÞh i Gðr; p1ÞG�ðr; p2Þh idr: (17.21)

Using (17.5), the second term in the integral on the right-hand side of (17.21)

may be written as

Gðr; p1ÞG�ðr;p2Þh i ¼ G0ðr; p1ÞG�
0ðr; p2ÞGptðrÞ; (17.22)

where G0(r,p) is the Huygens-Fresnel Green’s function when propagating from the

discontinuity plane to the lens plane andGpt is the mutual coherence function of a point

source located in the discontinuity plane and observed in the lens plane given by

Gpt ¼ exp½iffðp1Þ � fðp2Þg�h i: (17.23)
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The mutual coherence function Gpt contains the effects of the scattering inho-

mogeneities. Using (17.6), the Green’s function G0(r,p) is given by

G0ðr; pÞ ¼ � ik

2pBb
exp � ik

2Bb
Abr

2 � 2r � pþ Dbp
2

� �� �
; (17.24)

where Ab, Bb, and Db are the ray-matrix elements for backpropagation to the lens

plane. These quantities are given by Ab ¼ D ¼ 1, Bb ¼ B¼ d + z/n, and Db ¼ A¼ 1

[40]. In order to obtain an analytical solution, we have to use an approximate

expression for the mutual coherence function Gpt. The expression, derived in

Sect. 17.2.3, is given by

Gpt rð Þ ffi e�msz þ 1� e�mszð Þ exp �r2 r20

� �

; (17.25)

where r ¼ |p1 � p2|.
Substituting (17.10), (17.12), (17.18), (17.21), (17.22), (17.24), and (17.25) into

(17.9) and performing the indicated Gaussian integrations over p1,p2 and simpli-

fying yield

i2ðzÞ� � ¼ 2a2PRPSsb
p2



ð

e�mSz exp �r2=w2
H

� �
w2
H

þ 1� e�mSzð Þ exp �r2=w2
S

� �
w2
S

� �
dr;

(17.26)

where the effective backscattering cross section of the tissue discontinuity

sb ¼ 4pRd/k
2. It is important to note that the algebraically simple result given in

(17.26) is, strictly speaking, valid only for propagation geometries where A ¼ D, as
is obtained in the case of interest. Performing the integration over the discontinuity

plane in (17.26) and simplifying, we obtain the following expression for the mean

square heterodyne signal current

i2ðzÞ� � ¼ a2PRPSsb
pw2

H


 e�2msz þ 2e�mszð1� e�mszÞ
1þ w2

S

w2
H

þ 1� e�mszð Þ2 w
2
H

w2
S

2
4

3
5

� i2
� �

0
CðzÞ:

(17.27)

The quantity i2
� �

0
¼ a2PRPSsb=p wHð Þ2 is the mean square heterodyne signal

current in the absence of scattering, and the terms contained in the brackets are the

heterodyne efficiency factor C(z). A comparison between the analytic approxima-

tion of C(z), given in (17.27), and the exact numerical calculation is given in

Ref. [46]. Physically, C(z) can be looked upon as the reduction in the heterodyne

signal-to-noise ratio due to the scattering of the tissue. The first term in the brackets
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of (17.27) represents the contribution due to single scattering. The corresponding

third term is the multiple-scattering term, and the second term is the cross term.

Physically, the cross term is the coherent mixing of the unscattered and the

multiple-scattered light.

17.2.2.1 Dynamic Focusing: Diffuse Reflectance
When the focal plane coincides with the tissue discontinuity, that is, fA ¼ B with

A ¼ 1, we obtain from (17.19) and (17.20)

w2
H ¼ f

kw0

	 
2

;
w2
H

w2
S

¼ 1

1þ 2w0

r0ðzÞ
� �2

: (17.28)

The quantity r0(z) is the lateral coherence length of the reflected sample field in

the mixing plane. For lateral separations much less (greater) than r0(z), the field can
be considered to be mutually coherent (incoherent). Because of the diffuse back-

scattering from the tissue discontinuity, r0(z) is determined only by the propagation

back through the tissue from the tissue discontinuity to the mixing plane. As

a consequence, r0(z) is the lateral coherence length of a point source located in

the tissue discontinuity plane, as observed in the mixing plane. For the geometry of

interest, it can be shown [46] that

r0ðzÞ ¼
ffiffiffiffiffiffiffi
3

msz

s
l

pyrms
1þ ndðzÞ

z

	 

; (17.29)

where d(z) ¼ f � (z/n) and yrms � [2(1 � g)]1/2. The second term in the brackets of

(17.29) indicates that the lateral coherence length increases with increasing distance

between the tissue surface and the mixing plane.

This well-known dependence of the lateral coherence length on the position

of the scattering medium relative to the observation plane is the so-called

shower-curtain effect [29, 30]. In general, the shower-curtain effect implies

that the lateral coherence length obtained for the case when the scattering

medium is close to the radiation source is larger than for the case when the

scattering medium is close to the observation plane. Physically, this is due to the

fact that a distorted spherical wave approaches a plane wave as it further

propagates through a non-scattering medium. As a consequence, for example,

from a distance, one can see a person immediately behind a shower curtain, but

the person cannot see you. The effect is well known for light propagation

through the atmosphere as discussed by Dror et al. [30] but has been omitted

in previous theoretical OCT models [8]. However, due to the finite distance

between the focusing lens and the tissue, the effect is inevitably present in

practical OCT systems and could facilitate system optimization [46]. Finally,

the reflection characteristics of the tissue discontinuity play a vital role for the

shower-curtain effect.
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17.2.2.2 Dynamic Focusing: Specular Reflectance
If we, instead of diffuse backscattering, had a specular reflection at the tissue

discontinuity, the corresponding mutual coherence function for plane waves

would apply. Using this mutual coherence function, we have

CðzÞ ¼ e�2msz þ 1� e�2msz
� �w2

H

w2
S

� �
(17.30)

and

r0ðzÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2msz

s
l

pyrms
: (17.31)

It is obvious from (17.31) that the shower-curtain effect would not be present in

the case of specular reflection at the tissue discontinuity, in contrast to the case of

diffuse backscattering. However, it is important to note that it is diffuse backscat-

tering which actually occurs in the case of (skin) tissue.

17.2.2.3 Collimated Sample Beam
In the case of a collimated sample beam, the expressions for wH and wS in (17.19)

and (17.20) need to be rewritten:

w2
H ¼ lim

f!1
w2
0 1� d þ z

n

f

	 
2

þ d þ z
n

kw0

	 
2
" #

¼ w2
0 þ

d þ z
n

kw0

	 
2

(17.32)

w2
S ¼ lim

f!1
w2
H þ 2 d þ z

n

� �
kr0

	 
2
" #

¼ w2
0 þ

d þ z
n

kw0

	 
2

þ 2 d þ z
n

� �
kr0

	 
2

; (17.33)

where it has been used that A ¼ 1 and B ¼ d + z/n and note that now B 6¼ f. In order
to find the heterodyne efficiency factor, these expressions must be inserted in

(17.27), and moreover, the expression for r0 should be chosen in accordance with

the reflection characteristics of the probed discontinuity.

17.2.2.4 Numerical Results
The heterodyne efficiency factorC(z) is shown as a function of depth z of the tissue
discontinuity in Fig. 17.2 for typical parameters of human skin tissue with diffuse

backscattering and the shower-curtain effect included (dashed) and specular reflec-

tion (solid), respectively. For comparison, we show the case of diffuse backscat-

tering with exclusion of the shower-curtain effect (dash-dot) and the case of pure

single scattering (dotted). At shallow depths, single backscattering dominates. Due

to multiple scattering, the slope is changed and C(z) becomes almost constant for

three cases (curves 1–3). The important difference is, however, that the change of
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slope occurs at different depths. This is due to the shower-curtain effect leading

to an appreciable enhancement of C(z), and with it the heterodyne signal, which

is obtained by comparing curves 1 and 2 in Fig. 17.2. Physically, this increase in

the heterodyne signal is due to an enhanced spatial coherence of the multiple-

scattered light.

In Fig. 17.3, C(z) is shown as a function of depth z for ms ¼ 10 mm�1 and three

values of g within the range of validity of the EHF principle. The curves are

computed for the case of diffuse backscattering at the discontinuity and inclusion

of the shower-curtain effect. This figure demonstrates the degree of sensitivity of

the heterodyne efficiency factor with respect to changes in the asymmetry param-

eter. Moreover, in Fig. 17.4,C(z) is shown as a function of depth z for g¼ 0.95 and

three values of ms within the range of interest with respect to tissue [43]. The curves
are computed for the case of diffuse backscattering at the discontinuity and inclu-

sion of the shower-curtain effect. This figure demonstrates the degree of sensitivity

of the heterodyne efficiency factor with respect to changes in the scattering

coefficient.

Fig. 17.2 C(z) as a function
of z for diffuse backscattering
with the shower-curtain effect

included (curve 1) and for

specular reflection (curve 3).

Curve 2 is calculated for

diffuse backscattering without

the shower-curtain effect, and

curve 4 is the case of pure

single backscattering;

l ¼ 814 nm, ms ¼ 20 mm�1,

g ¼ 0.955 (yrms ¼ 0.3 rad),

n ¼ 1.4, f ¼ 5 mm,

w0¼ 0.5 mm (From Ref. [10])
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Fig. 17.3 C(z) as a function
of z for ms ¼ 10 mm�1 and

three values of g. The curves
are for the case of a diffuse

backscattering at the

discontinuity and inclusion of

the shower-curtain effect

(l ¼ 814 nm, n ¼ 1.4,

f ¼ 5 mm, w0 ¼ 0.5 mm)
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17.2.2.5 Choice of Scattering Function
In the present modeling of the OCT geometry, we use a Gaussian volume scattering

function [19], as discussed in Sect. 17.2.3 below. The motivation for this choice

of scattering function is the ability to obtain an accurate analytic engineering

approximation, valid for all values of the optical depth. In the case of the

Henyey-Greenstein scattering function [47], which is widely used in approximating

the angular scattering dependence of single-scattering events in some biological

media [43, 48], the corresponding analytic approximation is not as accurate as for

the case of a Gaussian scattering function. However, a numerical computation using

the exact expressions may be carried out instead. Hence, both scattering functions

may be used in the modeling of the OCT geometry presented in this chapter.

17.2.2.6 Signal-to-Noise Ratio (SNR)
Without loss of generality, an OCT system with shot-noise-limited operation is

considered in a calculation of the signal-to-noise ratio (SNR). The only significant

source of noise is the shot-noise caused by the reference beam. For a photoconductive

detector, the mean square noise power Np can then be expressed as [49]

Np ¼ 2aqeG2
caRlBwPR; (17.34)

where Rl is the resistance of the load, Gca the gain associated with the current

amplifier, and Bw the system bandwidth. The corresponding mean heterodyne

signal power S(z) is given by [50]

SðzÞ ¼ i2ðzÞ� �
G2

caRl; (17.35)

where i2ðzÞ� �
is given by (17.27). Hence, the mean signal-to-noise ratio SNR(z) is

given by

SNRðzÞ ¼ SðzÞ
Np

¼ ðSNRÞ0CðzÞ; (17.36)
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Fig. 17.4 C(z) as a function
of z for g ¼ 0.95 and three

values of ms within a range of

interest with respect to tissue.

The curves are for the case of

a diffuse backscattering at the

discontinuity and inclusion of

the shower-curtain effect

(l ¼ 814 nm, n ¼ 1.4,

f ¼ 5 mm, w0 ¼ 0.5 mm)
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where the signal-to-noise ratio in the absence of scattering (SNR)0 is given by

SNRð Þ0 ¼
�PS

2hnBw

sb
pw2

H

	 

: (17.37)

In the case of interest where the focal plane coincides with the tissue disconti-

nuity, we get the following expression for (SNR)0

SNRð Þ0 ¼
2�PS

hnBw

w0

f

	 
2

Rd; (17.38)

where it has been used that sb ¼ 4pRd/k
2.

Calculation of the Maximum Probing Depth
The maximum probing depth is of considerable interest in the characterization and

optimization of an OCT system when used for imaging in highly scattering tissue.

The maximum probing depth may be calculated by using the model presented

above. Details of the calculation are found in Ref. [27], where the calculation of

the maximum probing depth zmax is based on the minimum acceptable SNR in the

case of shot-noise-limited detection. In the calculations, a value of 3 is used as

the minimum acceptable signal-to-noise ratio, that is, SNR(zmax) ¼ 3.

An important conclusion of Ref. [27] is that, in general, zmax depends on the

focal length at small values of the scattering coefficient but is independent of the

focal length at larger values of the scattering coefficient. A similar behavior is

observed for zmax as a function of ms and the 1/e intensity radius of the sample beam

being focused. This behavior is due to multiple scattering of the light in the tissue.

At scattering coefficients found in human skin tissue [43, 51], for example, it is

concluded that the maximum probing depth is independent of the focal length

f. This is an important conclusion because the depth of focus and the lateral

resolution of the OCT system may then be chosen independently of zmax. For
example, if no scanning of the focal plane in the tissue is desirable and, therefore,

a large depth of focus has been chosen, the same maximum probing depth is

obtained as for a system with a short depth of focus where the focal plane is

scanned to keep it matched to the reference arm. This conclusion is not surprising

or contrary to assumptions already held in the field. However, the theoretical

analysis in this section provides a theoretical foundation for such statements.

Moreover, this agreement may also be taken as a further validation of the OCT

model presented here.

17.2.3 The OCT Lateral Resolution

As already discussed, the lateral resolution of an OCT system is determined by the

spot size at the depth being probed in the tissue. Therefore, we determine the mean
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irradiance distribution or the intensity pattern of the optical field as a function of the

probing depth z in the tissue. In highly scattering tissue, the mean irradiance

distribution, and with it the lateral resolution, is dependent on the scattering

properties of the tissue. The formalism presented in this chapter enables the

calculation of the lateral resolution in highly scattering tissue, which is shown

below.

For small-angle scattering, where the paraxial approximation is valid, the EHF

principle yields that the mean irradiance distribution is given by [40]

IðrÞh i ¼ k

2pB

	 
2 ð
KðrÞ exp ik

B
r � r

� �
GptðrÞd2r; (17.39)

where

KðrÞ ¼
ð
exp � ikA

B
r � P

� �
USiðPþ r=2ÞU�

SiðP� r=2Þd2P; (17.40)

and r ¼ p1 � p2. For an OCT system focusing at a depth z in the tissue, A ¼ 1 and

B ¼ f. The mutual coherence function Gpt can be expressed as [45]

Gpt ¼ expfi½fðp1Þ � fðp2Þ�gh i ¼ expf�s½1� bfðrÞ�g; (17.41)

where we have assumed that the phase f is a normally distributed zero-mean

random process. The quantity s is the phase variance, and bf(r) is the normalized

phase autocorrelation function for a point source whose origin is at the probing

depth z. It can be shown [52] that the phase variance s ¼ msz, which is equal to

the optical depth. The normalized phase autocorrelation function bf(r) is given
by [45]

bfðrÞ ¼

RL
0

dz0
R1
0

sðy; z0ÞJ0ðkpsyÞydy
RL
0

dz0
R1
0

sðy; z0Þydy
; (17.42)

J0 is the Bessel function of the first kind of order zero,

ps ¼ Bbðz0Þ
Bb

r; (17.43)

where Bb(z
0) is the B-matrix element for backpropagation from the probing depth z to

a distance z0 and s(y; z0) is the volume scattering or phase function with y being the

scattering angle. For the OCT geometry, Bb(z
0) ¼ z0/n for 0 
 z0 
 z, L ¼ d + z, and
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s(y; z0) ¼ s(y) for 0 
 z0 
 z, and zero otherwise. In this model, we use a Gaussian

volume scattering function, which in the small-angle approximation is given by

sðyÞ ¼ exp �y2=y20
� �

; (17.44)

where g ¼ cos yh i � 1� y2
� �

2= and y0 ¼ y2
� �1=2 � 2 1� gð Þ½ �1=2. Substituting

(17.43) and (17.44) into (17.42) and performing the indicated integrations yield

the following equation for the normalized phase autocorrelation function

bf rð Þ ¼
ffiffiffi
p

p
2

rf
r
erf r rf

.� �
; (17.45)

where erf(r/rf) denotes the error function and rf is the phase correlation length

given by

rf ¼ l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� gÞp 1þ nd

z

	 

: (17.46)

Hence, the mutual coherence function Gpt is given by (17.41) with bf(r) given
by (17.45). Thus, for specific values of both s and g, the mutual coherence function

is completely determined, and for a given value of the initial optical wave function

USi, numerical results for the mean irradiance can be obtained directly from (17.39).

Here, USi is given by (17.13), and we get the following equation for the mean

irradiance distribution at the probing depth z in the tissue

I rð Þh i ¼ PS

2p f kw0=ð Þ2
ð1
0

exp � x2

4

� �
xJ0 uxð ÞGpt xw0ð Þdx; (17.47)

where J0 is the Bessel function of the first kind of order zero and

u ¼ r

f kw0=
(17.48)

is a normalized transverse coordinate.

As indicated above, numerical results can readily be obtained. However, it is

useful to have an analytic approximation so that OCT system parameter studies can

be performed. Examination of (17.41) reveals for large values of the optical depth

that Gpt is nonzero for s{1 � bf(r)} less than the order unity, that is, for bf(r) near
unity. Expanding bf(r) in powers of r and retaining the first two nonzero terms

yields from (17.45) that bf(r) � 1 � r2/3(rf)
2, from which it follows that

Gpt � exp �r2=r20
� �

; s >> 1; (17.49)
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where r0 ¼ rf(3/s)
1/2. We expect that the ballistic, that is, unscattered, component

of the irradiance pattern is proportional to e�msz. Thus, we approximate the mutual

coherence function as

Gpt � e�msz þ 1� e�mszð Þ exp �r2=r20
� �

: (17.50)

Substituting (17.13) and (17.50) into (17.39) and performing the integration

yield the following approximate expression for the mean irradiance distribution at

the probing depth z in the tissue

I rð Þh i � PS

p
e�msz exp �r2 w2

H


� �
w2
H

þ 1� e�mszð Þ exp �r2 w2
S


� �
w2
S

� �
: (17.51)

The first term in the brackets on the right-hand side of (17.51) can be interpreted

to represent the attenuated distribution obtained in the absence of the inhomoge-

neities, and the corresponding second term represents a broader halo resulting from

scattering by the inhomogeneities. The quantities wH and wS are the 1/e irradiance
radii in the absence and presence of scattering, respectively, given by

w2
H ¼ w2

0 A� B

f

	 
2

þ B

kw0

	 
2

; (17.52)

w2
S ¼ w2

0 A� B

f

	 
2

þ B

kw0

	 
2

þ 2B

kr0

	 
2

: (17.53)

For the OCT system, we have

wH ¼ f

kw0

; (17.54)

wS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
H þ 2f

kr0

	 
2
s

: (17.55)

It is only in the very superficial layers of highly scattering tissue that it is possible

to achieve diffraction-limited focusing. In this region, the lateral resolution is given

by 2wH. At deeper probing depths, the lateral resolution is dependent on the

scattering properties and given by 2wS. It is seen from (17.55) and (17.29) that

the lateral resolution is degraded due to multiple scattering when the probing depth

is increased. This is illustrated in Fig. 17.5, where the intensity pattern is shown as

a function of the probing depth z in the tissue using (17.51). Finally, from (17.55)

and (17.29), it is important to note that the shower-curtain effect leads to an

increased lateral resolution.
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17.3 Advanced Monte Carlo Simulation of OCT Systems

In the previous section, the extended Huygens-Fresnel model was applied to model

a generalized OCT setup, where the OCT signal from a diffusely reflecting discon-

tinuity within the sample was found. In the following, we refer to this model as the

EHF model. Also the so-called heterodyne efficiency factor C was investigated,

which describes the degradation of the OCT signal due to scattering. The pre-

dictions from the EHF model have been demonstrated to compare well with

experiments carried out on aqueous suspensions of microspheres [10]. In this

section, we describe the derivation of a Monte Carlo (MC) model of the OCT

signal. As stated in the introduction, our motivation for applying MC simulation is

to develop a model which may serve as a numerical phantom for further theoretical

studies.

It is important to note that the MC method only describes the transport of energy

packets along straight lines and therefore the approach is incapable of describing

coherent interactions of light. These energy packets are often referred to as photon

packets or simply photons, and this is adopted here. However, it should be empha-

sized that no underlying wave equation is guiding or governing these photons.

Accordingly, any attempt to relate these to real quantum mechanical photons

should be done with great care as argued in Ref. [53] regarding a suggested

approach of including diffraction effects into MC simulations [54]. An MC photon

packet represents a fraction of the total light energy, and for some applications,

especially continuous wave, it may be useful to think of the path traveled by

a photon as one possible path in which a fraction of the power flows. A collection

of photon packets may then be perceived as constituting an intensity distribution

due to an underlying field, and it can, accordingly, seem tempting to infer behavior
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known to apply to fields upon photon packets. Consider, as an example, that one

wishes to determine whether the photon packets are able to enter an optical fiber. It

can then seem intuitively correct to restrict the access of photons impinging on the

fiber end to those which fall within the numerical aperture of the fiber. However,

such an angular restriction may not be correct, because the individual photon packet

do not carry information of the entire field and its phase distribution. It is therefore

not possible to determine whether a portion of the energy carried by a photon packet

will enter the fiber due to a mode match between the fiber mode and the field

underlying the collective intensity distribution of the photon packets. This discus-

sion is treated in greater detail in Ref. [12].

With the above discussion of MC photons in mind, it may seem futile to

investigate if MC simulation is applicable to estimate an OCT signal, which

is the result of heterodyne mixing, and thus depends upon the coherence properties

of the light. However, the problem may be reformulated to investigate whether

or not the effect of the lack of coherence information in an MC simulation may be

circumvented or at least minimized. Others [55–58] have attempted to model

similar optical geometries by interpreting the heterodyne process as a rejection

process in which the detected photons must conform to a set of criteria on position

and angle. We refer to such a set of criteria as a detection scheme. However, these

criteria were found by ad hoc considerations of the optical system, which may

easily lead to incorrect results as exemplified above. Instead a mathematical deri-

vation of the true criteria of the detection scheme will be given in this section.

In Sect. 17.3.1, the EHF principle is used to derive an expression for the

OCT signal depending on the intensity of the light only. This is obtained by

calculating the mixing of the reference and sample beams in the plane conjugate

to the discontinuity plane in the sample probed by the system. The result is

surprising, because the expression for the signal given in (17.9) depends on the

coherence properties of the light. However, it is shown that the formula used for

calculating the OCT signal in this particular plane is mathematically identical to the

result in (17.9). These results are valid for the, from a biomedical point of view,

important case of a signal arising from a diffusely reflecting discontinuity embed-

ded in a scattering sample. As a novelty, this proves the viability of MC simulation

to model the OCT technique, because it is shown that only intensity, and not field

and phase, is necessary for this case. In Sect. 17.3.2, the necessary advanced method

of simulating focused Gaussian beams in MC simulation is discussed. The results of

Sects. 17.3.1 and 17.3.2 are then combined in Sect. 17.3.3 to form an MC model of

the OCT signal. The results using this model are then compared to those of the EHF

model in Sect. 17.3.4.

17.3.1 Theoretical Considerations

The optical geometry of the sample arm is shown in Fig. 17.6, and it should be

noted that the enclosed section corresponds to the geometry used for the EHF

calculation in Sect. 17.2.2. An optical fiber end is positioned in the p-plane.

764 P.E. Andersen et al.



The fiber emits a beam, which hits the collimating lens L1. The focusing lens L2 is

positioned in the r-plane, and in this plane, the beam is a Gaussian beam with 1/e
width, w0, of the intensity. The beam is focused by L2 upon a diffusely reflecting

discontinuity positioned at the depth zf inside a scattering sample a distance d from

L2. The sample is taken to be a slab infinite in the transverse direction. The part of

the light that is reflected from the discontinuity propagates out through the sample,

through lenses L2 and L1 to the optical fiber, where it is collected. The lenses L1 and

L2 have the focal length f and are taken to be identical, perfect, and infinite in radius.
This means that the q- and p-planes are conjugate planes with magnification one.

The OCT signal is produced by the mixing of the light from the reference and

sample arms on the photodetector of the OCT system. Due to the symmetry of the

system, in Sect. 17.2.2, the EHF prediction of the mixing between signal and

reference beam was conveniently calculated at the r-plane. The mean square of

the signal current i2
� �

is given by (17.9) and rewritten according to the notation in

Fig. 17.6 to yield

i2
� � ¼ 2a2jg ðtÞj2 Re

ðð
GRðr1; r2ÞGSðr1; r2Þ dr1dr2

� �
� Cr i20

� �
; (17.56)

where GR(r1,r2) ¼ UR(r1)UR
*(r2) is the cross correlation of the scalar reference

field, GS r1; r2ð Þ ¼ US r1ð ÞUS
� r2ð Þh i is the cross correlation of the sample field, and

r1 and r2 are vectors in the r-plane (see Fig. 17.6). Cr is the heterodyne efficiency

factor (defined in (17.27); subscript r refers to it being calculated in the r-plane),
which quantifies the reduction in signal due to scattering, and i0

2
� �

is the OCT

signal current in the absence of scattering. The angle brackets denote an ensemble

averaging over both the statistical properties of the scattering medium and the

discontinuity, and the function g(t) is the normalized temporal coherence function

of the field, where t is the time difference of propagation between the two fields.

It is important to note that by using the EHF principle, the investigation is

limited to the paraxial regime as discussed above. In addition, most tissues are

highly forward scattering in the near-infrared regime in which most OCT systems

operate. It is assumed that the coherence length of the light source is short enough

that signal powers from other reflections than the probed discontinuity are negligi-

ble. On the other hand, the coherence length is assumed long enough so that

the temporal distortion of the sample field, or the path length distribution of the

reflected photons, is assumed negligible compared to the coherence length of

0-d-d- f-d-3f

q-Planer-Plane
L2L1

p-plane

n1

z
zf

2w0

n0=1

Sample

Fig. 17.6 Sample arm setup

of the OCT system. The

lenses L1 and L2 are

considered to be identical,

perfect, and have infinite

radius. The setup is

essentially a 4F system

(From Ref. [12])
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the light source. Assuming that the optical path length of the reference beam and

sample beam reflected from the discontinuity are perfectly matched, then g(t) � 1.

To obtain the best comparison with the EHF model, the MC model presented in this

section adopts this approximation.

The approximation of g(t) � 1 is a justified approximation for highly forward

scattering tissues [8]. However, it does render the EHF model unsuitable to inves-

tigate the effect of scattering on the axial resolution of an OCT system in general,

because the coherence gate due to the limited coherence length of the light source is

not incorporated. Others have suggested using MC simulation and the total optical

path length traveled by a photon packet to determine the influence of the coherence

gate [9, 58, 59]. While this may very well be a valid approach, it is clear from the

above discussion of photon packets and coherence that, how intuitively correct it may

seem, this may not be the case. However, no efforts have been published to establish

the meaning of a photon packet in such a temporal mixing of fields, so future work is

required to establish such a relation. It is the intention that the MCmodel of the OCT

signal presented in this chapter may be instrumental in such studies.

The OCT signal depends upon the lateral cross correlation of the light from the

scattering sample (see (17.27)) and the lateral coherence length r0 of the sample

field in the r-plane for a single layer in front of the discontinuity is given by (17.29).
With a nonzero lateral coherence length, r0, it is seen that the OCT signal depends

heavily upon the coherence properties of the field from the sample. As discussed

above, an MC simulation does not describe the spatial coherence properties of light,

and thus, a direct simulation of (17.56) is not possible. Like in Sect. 17.2.2, we

assume that the discontinuity is diffusely reflecting and this infers that the lateral

coherence will be zero immediately after reflection. Our motivation for envisioning

the system geometry considered in Sect. 17.2.2 as part of a 4 F setup is to obtain

a conjugate plane to the q-plane, here the p-plane (see Fig. 17.6). Through the

conjugate relation, it is given that, in the absence of scattering, the lateral coherence

length in the p-plane will also be zero. Hence, the sample field will be delta-

correlated [19], and the OCT signal will only depend upon the intensities of the

reference and sample field. In Appendix A, we show that within the paraxial

regime, the sample field is delta-correlated even in the presence of scattering. We

also show that the heterodyne efficiency factor calculated in the p-plane Cp

is mathematically identical to the heterodyne efficiency factor calculated in the

r-plane, so that

Cp ¼
i2
� �
i20
� � ¼

Ð
IRðpÞ ISðpÞh id2pÐ
IRðpÞ IS0ðpÞh id2p ¼ Cr; (17.57)

where IR is the intensity at the reference beam and IS, IS0 are the received intensities
of the sample beam with and without scattering, respectively. The quantity p is

a vector in the p-plane (see Fig. 17.6). Equation (17.57) shows the viability of

applying an MC simulation to an OCT system provided a good estimate of the

intensity distribution of the sample field is achieved. This requires a method to
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simulate a focused Gaussian beam, and a novel method for modeling such a beam

using MC simulation is reviewed in Sect. 17.3.2. Note that the identity proven in

(17.57) is only strictly valid within the approximations of the EHF principle and

thus also within the paraxial regime. However, for geometries with scattering that is

not highly forward directed, we expect coherence effects to be of even less

importance, and thus, (17.57) should at least be a good first approximation even

when the paraxial approximation is not strictly valid.

17.3.2 Modeling a Focused Gaussian Beam with Monte Carlo
Simulation

Monte Carlo models have previously been applied to model the focusing of light

beams in tissue. The motivations have been to study the distribution of absorbed

power for photodynamic therapy (PDT) [60], the performance of confocal micros-

copy [55, 56, 59], the efficiency of 1- and 2-photon excitation microscopy [57, 61],

OCT [9], and the distribution within turbid media in general [60, 62]. In the absence

of scattering, the focusing behavior of the beam is simply determined from the

initial coordinates and propagation angles of the photons being launched.

By carrying out MC simulations, one may then determine the distortion caused

by scattering and other structures. Previously, two different ways of modeling the

focusing have been employed:

Geometric-focus method: The initial position of the photon launch is found

stochastically according to the initial intensity distribution, and the photon packets

are simply directed toward the geometric focus of the beam [9, 60, 62, 63]. The

geometric-focus method is obviously only a good approximation to a Gaussian

beam for a very hard focus, but even then, the infinite photon density of the

unscattered photons at the geometric focus may pose a problem.

Spot-focus method: After the initial position has been found as in the geometric-

focus method, the photon packets are then directed toward a random position within

an area in the focal plane of the beam [55–57]. The position within the chosen spot

in the focal plane may be chosen according to different probability distributions.

If future applications of the proposed MC model involve the use of the path lengths

of the received photon packets to study the effect temporal distortion of the light

due to scattering, the stochastic nature of the photon paths may pose a problem.

We have developed a method of choosing initial coordinates and angles for the

photons so that the full 3D spatial intensity distribution of a Gaussian beam, that

is, both the correct beam waist and finite spot size at focus, is obtained. This may

be realized by utilizing the hyperbolic nature of a Gaussian beam, and we denote

this approach the hyperboloid method. It is important to notice that this method

does not require more simulation time than the two methods discussed above.

Moreover, since the photons are still launched along straight lines, the incorpo-

ration of the scheme into most MC simulation programs for light propagation

will be straightforward. Details of the hyperboloid method may be found in

Ref. [12].
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As an illustration of the performance of the hyperboloid method, the intensity

distribution of a collimated beam has been found using three different methods: MC

with the hyperboloid method, MC with the geometric-focus method (the most

commonly used method in the literature), and an integral expression (see

(17.39)). The intensity distributions found using each method are shown in

Fig. 17.7. The modeled beam is a collimated beam with 1/e intensity radius

w0 ¼ 0.4 mm, which is focused by a lens with f ¼ 4.0 mm at a depth of 1.0 mm

into a scattering medium with ms ¼ 10 mm�1 and g ¼ 0.92. The light propagation

has been simulated using 50�109 photons for two sizes of the spatial discretization

grid, Dz ¼ 4 mm, Dq ¼ 0.5 nm, and Dz ¼ 2 mm, Dq ¼ 0.25 nm. The resulting

intensity distributions have all been normalized to unity at (q,z) ¼ (0,0).

In Fig. 17.7a and b, the axial intensity distributions predicted by the geometric-

focus and the hyperboloid method are shown, respectively. The dotted curves are

Fig. 17.7 The axial focus of a beam described in the text. All distributions have been normalized

to unity for (r, z) ¼ (0, 0). (a) The axial intensity estimated using the geometric-focus method.

Dashed curve is obtained with the larger grid and dotted curve with the smaller grid (see text).

(b) Similar curves obtained with the hyperboloid method. The solid curve is the intensity

distribution obtained from the integral expression (17.39). (c) The transverse intensity distribution
(small grid) in the focal plane: dotted curve: the geometric-focus method; dashed curve: hyper-

boloid method; solid curve: the integral expression
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the results of using the small grid size, whereas the dashed curves are the results of

using the larger grid size. The solid curve in Fig. 17.7b is the result found by using

integral expression in (17.39). For the large grid size, the geometric-focus method

overestimates the peak height relative to the integral expression with a factor of 14,

whereas the hyperboloid method underestimates the peak height with a factor of

0.5. We see that when the resolution is increased, the hyperboloid method

approaches the result of the integral expression in (17.39) to a factor of 0.95,

whereas the peak height estimated by the geometric-focus method increases even

further to a factor of 41. The latter is a result of the infinite photon density of the

unscattered photons in the geometric-focus method. It is noted that the high-

resolution curve for the hyperboloid method (dotted curve in Fig. 17.7b) seems

noisier than its counterpart from the geometric-focus method (dotted curve in

Fig. 17.7a). In fact, the variance of the data used for the two curves is practically

identical but less noticeable in Fig. 17.7a due to the scale necessary to show the

peak intensity estimated by the geometric-focus method. In Fig. 17.7c, the trans-

verse intensity distribution in the focal plane estimated by the geometric-focus

method (dotted), the hyperboloid method (dashed), and the integral expression

(solid) are plotted, respectively. From Fig. 17.7a and c, we see that the geomet-

ric-focus method is an inappropriate method for estimating the detailed intensity

distribution around the focus. Figure 17.7b and c show an excellent agreement

between the hyperboloid method and the integral expression. Thus, for modeling

applications, where spatial resolution is important, as in OCT, the hyperboloid

method should be used when doing MC simulation of focused Gaussian beam.

17.3.3 Monte Carlo Simulation of the OCT Signal

In Sect. 17.3.1, we found that the heterodyne efficiency factor of the OCT

signal may be found using the knowledge of the intensity distributions of the

sample and reference fields in the p-plane (see Fig. 17.6), where the fiber end is

situated:

Cp ¼
Ð
IRðpÞ ISðpÞh id2pÐ
IRðpÞ IS0ðpÞh id2p : (17.58)

In the EHF principle, the effect of a scattering medium is treated as a random

phase distortion added to the deterministic phase of the light as it propagates

through the medium. In the derivation of (17.58) (see Sect. 17.7), it is necessary

to assume that the phase distortion added to the light propagating toward the

discontinuity is statistically independent from the phase distortion added to the

light propagating away from the discontinuity. It is important to note that this

assumption is inherently fulfilled by MC methods such as that used by the

MCML computer code [64]: A photon is traced through a dynamic medium in

the sense that the distance to the next scattering event and scattering angle is

a random variable independent upon the past of the photon. Hence, after each
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stochastic event, the photon experiences a different realization of the sample.

Therefore, an ensemble averaging over the stochastic sample in (17.58) is carried

out through a single simulation. Moreover, to also obtain an averaging in the

modeling of the diffusely reflecting discontinuity, each reflected photon must

experience a new realization of the discontinuity. Thus, we use the macroscopic

intensity distribution of a Lambertian emitter [19] to sample the reflected angle:

IrðyrÞ ¼ IT cos yr: (17.59)

Here, IT is the reflected intensity at yr ¼ 0 and yr is the reflected angle. By

following the method outlined by Prahl et al. [65] of sampling a physical quantity

using a computer-generated pseudorandom, we obtain the relations

yr ¼ arcsin ðxÞ; (17.60)

’r ¼ 2pz; (17.61)

where ’r is the azimuthal angle of the reflected photon and x and z are both random
numbers evenly distributed between 0 and 1.

Accordingly, the method of simulating the OCT signal is carried out as follows.

The MC photon packet is launched from the focusing lens in the r-plane
(see Fig. 17.6) using the new hyperboloid method described in Sect. 17.3.2.

The interfacing with specular surfaces, such as the sample surface and the propa-

gation through the scattering medium, is carried out using the MCML computer

code. When a photon packet is reflected off the diffusely reflecting discontinuity,

(17.60) and (17.61) are used to determine the direction of the photon after reflec-

tion. As a photon exits the sample after interaction with the discontinuity, its

position and angle is used to calculate its position in the p-plane after propagation
through the 4F system. To evaluate (17.58), numerically consider that the m’th
photon packet exiting the medium contributes to the intensity at the point pm in the

p-plane by the amount

IS;m / wm

Dp2
; (17.62)

where wm is the energy, or weight, carried by the photon packet and Dp2 is

a differential area around pm. Using this and (17.58), the MC estimated heterodyne

efficiency factor CMC is then given by

CMC ¼
PM
m
IRðpmÞIS;mDp2

i20
� � ¼

PM
m
IRðpmÞwm

i20
� � ; (17.63)

where IR(p) is the intensity distribution of the reference beam in the p-plane, and
it is noted that the reference beam has a Gaussian intensity distribution of width wf
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in the p-plane. The signal in the absence of scattering i20
� �

may be either

simulated or calculated. The latter is straightforward, because with the conjugate

relationship between the p- and q-plane, the intensity distribution of the

sample beam will be identical to that of the reference beam in the absence of

scattering.

Equation (17.63) reveals the important detection criterion of the MC simulation

of the OCT signal: a photon must hit the p-plane within the extent of the reference

beam. While detection schemes of previously published MC models of OCT also

incorporate that photons must hit the detector, the novelty of this detection scheme

is the analytically derived size and necessary position in the p-plane. Furthermore,

contrary to these schemes, the model does not incorporate an angular criterion that

a photon packet must fulfill in order to contribute to the signal. It may seem

counterintuitive that photon packets contribute to the desired signal without penalty

regardless of angle of incidence upon the fiber in the p-plane. However, as dem-

onstrated in Ref. [12], the inclusion of an angular criterion related to the angular

extent of the incident beam, or equivalently the numerical aperture of the fiber,

yields incorrect results.

17.3.4 Numerical Validation

17.3.4.1 Beam Geometries for Numerical Comparison
A set of beam geometries has been selected for numerical comparison between the

EHF model and the MC model. These geometries are selected so that the two

approaches are compared for different degrees of focusing and distances between

the lens L2 and the sample. The selected cases are listed in Table 17.1 and are

referred to as cases 1 through 4, respectively.

For all cases, the mean refractive index of the sample before the discontinuity

and the surroundings are assumed to be matched so that n0 ¼ n1 ¼ 1. We wish to

investigate the effect of scattering on the OCT signal. A difference in the refractive

index between the sample and the surrounding will impose a Snell’s law refraction

at the interface, which in turn imposes a focus distortion not treated in the paraxial

approximation (siny � y) and thus not described by the EHF model. Such

a distortion will be difficult to separate from the effects of scattering and is thus

omitted here. As discussed in Ref. [62], there is only a severe distortion for very

tightly focused beams.

In all cases discussed in the following, the wavelength of the light is chosen

to be 814 nm, which is one relevant wavelength for biomedical applications of

OCT. The sample is assumed to exhibit scattering described by a Gaussian scatter-

ing function (see, e.g., Chap. 13 in Ref. [32]). The motivation for this choice is

to enable comparison to analytical models of the propagation of Gaussian beams

in random media [40] and the OCT signal (see Sect. 17.2.2), which both

apply the Gaussian scattering function. The comparisons presented here are

carried out for different degrees of scattering and for two relevant values of

the asymmetry parameter in tissue [43]: very highly forward scattering (g ¼ 0.99)
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and highly forward scattering (g ¼ 0.92). The value g ¼ 0.92 was the value

of the asymmetry factor in the experiments performed to validate the EHF

model by Thrane et al. [10] With these two cases, the two approaches are

compared for a sample geometry where the paraxial approximation is well

satisfied and for a sample geometry, which is close to the limit of the paraxial

approximation. Accordingly, it is expected that the best agreement will be found

for g ¼ 0.99.

Comparison
In Fig. 17.8, C is plotted for cases 1 through 4 as a function of the scattering

coefficient ms, and for reference, the case of single backscattering, that is,

Csingle ¼ exp(�2msz), has been included.

Three important observations may be made from Fig. 17.8. Firstly, we observe

fine agreement between the MC method and the EHF model for the four cases

tested. Thus, we consider these plots as validation of the MC model. Secondly, it is

inferred that the OCT signal for high optical depths is a result of multiple-scattering

effects in agreement with Sect. 17.2.2. This is seen by comparing the single-

scattering curve to the plots of the MC and EHF. Finally, an important result of

Sect. 17.2.2 was the inclusion of the so-called shower-curtain effect [29]. It is an

effect caused by multiple scattering and thus plays an important role in calculating

the OCT signal as the optical depth increases. Omitting this effect leads to an

underestimation of the OCT signal of several orders of magnitude. Due to the fine

agreement between the EHF model (with the shower-curtain effect included) and

the MC model, we obtain the important result that the MC model inherently takes

the effect into account.

For cases where the approximation of the EHF model is well satisfied, we

attribute the observed deviation between the EHF and MC models to be caused

by coherence effects in the intensity distribution of the sample field. Apparently,

from Fig. 17.8, the lack of coherence information leads to an underestimation ofC,

but the specific cause for this has yet to be determined. C is by definition unity in

the absence of scattering, and for large optical depths, coherence effects are

expected to be negligible. Accordingly, we expect the two models to agree for

small and large values of the optical depth of the discontinuity, whereas some

deviation is to be expected in the intermediate region. As a highly forward scatter-

ing event perturbs the field only to a small degree, it is expected to distort coherence

effects less than a more isotropic scattering case. In order to plot the relative

deviation as a function of the effective distortion of the coherence, we plot the

Table 17.1 Beam geometries for the four cases

Case number f [mm] d [mm] z [mm] w0 [mm] w0/f

1 16.0 15.5 0.5 0.125 0.008

2 8 7.5 0.5 0.4 0.05

3 0.5 0.0 0.5 0.125 0.25

4 16.0 15.0 1.0 4 0.25
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ratio CEHF/CMC as a function of the transport reduced optical depth of the discon-

tinuity given by

Str ¼ mzZf ð1� gÞ: (17.64)

The relative difference between the EHF model and the MC method behaves,

qualitatively, identical as a function of str independent of beam geometry and g.
This is illustrated in Fig. 17.9 for cases 2 (g ¼ 0.92 and 0.99), 3 (g ¼ 0.92), and

4 (g ¼ 0.92), respectively. The difference between the two approaches increases as

a function of str until str � 0.5 after which it evens out. We mainly attribute this to

the coherence effects in the intensity distribution discussed above. The more abrupt

behavior of the curve for geometry 4 is attributed to a higher numerical uncertainty

Fig. 17.8 Heterodyne efficiency factors estimated using, respectively, the EHF model and

the MC method for two cases of g. (a), (b), (c), and (d) show the estimated values for geometries

1, 2, 3, and 4 in Table 17.1, respectively. The solid line and dotted line curves are the results of the
EHFmodel for g¼ 0.99 and g¼ 0.92, respectively.Dash-dot-dot and dashed curves are the results
of the MC simulations for g ¼ 0.99 and g ¼ 0.92, respectively. Diamonds (♦) and squares (■)

mark the actual data points obtained by the MC simulation method. For comparison, the

exponential reduction in signal due to scattering obtained by a single-scatter model is shown as

a dash-dot curve
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in the case, caused by a more tightly focused beam. According to the new detection

scheme, this implies that fewer photons will contribute to the signal resulting in an

increased variance.

In summary, due to the fine agreement between the results of the EHF model and

MC simulations borne out in Figs. 17.8 and 17.9, we conclude that the MC

simulation presented in this section is a viable method of simulating the heterodyne

efficiency factor of an OCT signal.

17.4 True-Reflection OCT Imaging

The interpretation of conventional OCT images may be a difficult task. One reason for

this is the fact that an OCT signal, measured at a given position in a non-absorbing

scattering medium, is a result of not only the amount of light reflected at the given

position but also the attenuation due to scattering when the light propagates through

the scattering medium. Therefore, to make images, which give a direct measure of the

amount of light reflected at a given position, thereby making interpretation of OCT

images easier, it is necessary to be able to separate reflection and scattering effects.

In this section, we present the concept of a so-called true-reflection OCT

imaging algorithm [46] based on the analytical model described in Sect. 17.2.

With this algorithm, it is possible to remove the effects of scattering from conven-

tional OCT images and create so-called true-reflection OCT images. This kind of

post-processing is similar to the correction for attenuation well known in ultrasonic

imaging. In that field, a mathematical model describing the relationship between the

received signal and the two main acoustic parameters, backscatter and attenuation,

has been considered [66]. The model has then been used to guide the derivation of

a processing technique with the aim of obtaining ultrasonic images that faithfully

represents one acoustic parameter, such as backscatter [66]. Due to the similarity

Fig. 17.9 The relative

numerical difference between

the results of the EHF model

and the MC model from

Fig. 17.8 for a representative

selection of the considered

geometries. The ratio CEHF/

CMC is plotted for case 2 and

g ¼ 0.99 with symbols (♦)
and solid curve, for case 2 and
g ¼ 0.92 with symbols (■)

and dash-dot-dot curve, for
case 3 and g ¼ 0.92 with

symbols (▼) and dashed
curve, and for case 4 and

g¼ 0.92 with symbols (�) and
dotted curve (From Ref. [12])
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between the ultrasonic case and the situation encountered in OCT, this forms

a strong basis for introducing the concept of a true-reflection OCT imaging algo-

rithm. The principle of the true-reflection OCT imaging algorithm is demonstrated

experimentally by measurements on a solid scattering phantom in Sects. 17.4.2 and

17.4.3 on a heterogeneous sample simulated by using the MC model presented in

Sect. 17.3.

17.4.1 True-Reflection OCT Imaging Algorithm

It was shown in Sect. 17.2.2 that the mean square heterodyne signal current for light

reflected at depth z in the tissue may be expressed as i2ðzÞ� � ¼ i2ðzÞ� �
0
CðzÞ, where

i2ðzÞ� �
0
is the mean square heterodyne signal current in the absence of scattering

and C(z) is the heterodyne efficiency factor, which includes all of the scattering

effects. The maximum of the envelope of the measured interference signal corre-

sponds to i2ðzÞ� �� �1=2. Thus, by dividing the envelope of the measured interference

signal with C zð Þ½ �1=2, we are able to correct for the scattering effects, that is,

compensate for attenuation, and determine the envelope that would be obtained in

the absence of scattering. It is important to note that in addition to the system

parameters l, f, and w0, knowledge about ms, yrms, and n of the scattering medium is

necessary in order to enable calculation of C zð Þ½ �1=2. However, in practice, ms and

yrms may be obtained by fitting the expression for i2ðzÞ� �� �1=2 to a measured depth

scan of the homogeneous backscattering tissue using an estimated value of n and

the appropriate system parameters. Implementing this procedure as an option in the

imaging program provides the opportunity to make what may be labeled true-
reflection OCT images.

17.4.2 Experimental Demonstration of the True-Reflection OCT
Imaging Algorithm

The principle of the true-reflection OCT imaging algorithm is demonstrated exper-

imentally by measurements on a solid scattering phantom using a conventional OCT

system comprised by a superluminescent diode with a center wavelength of 814 nm

(22.8 nm spectral bandwidth (FWHM), 1.9 mW output power), a fiber-optic Michel-

son interferometer with movable reference mirror, and a silicon photodetector. The

two system parameters f and w0 are 16 mm and 0.125 mm, respectively [67].

The solid phantom having three discontinuities, A, B, and C, with identical

reflection coefficients, is shown in Fig. 17.10. It consists of scattering microspheres

(approximate diameter size 10 mm) in a polymer. The optical parameters of the

solid phantom, that is, the asymmetry parameter, the scattering coefficient, and the

absorption coefficient, were determined by carrying out integrating sphere and

collimated transmission measurements and using the inverse adding-doubling

method [68]. It turned out that the phantom had negligible absorption.
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In the experiment, 40 longitudinal (horizontal) scans are performed across the

step as indicated in Fig. 17.10. The distance between adjacent longitudinal scans is

10 mm, and only one longitudinal scan is taken in every lateral position. The light is

reflected at the air-phantom discontinuity A (z ¼ 0.0 mm) and at the two phantom-

air discontinuities at z ¼ 2.0 mm (B) and z ¼ 5.2 mm (C), respectively, which all

give a diffuse backscattering. The backscattering from the bulk of the phantom is

negligible and cannot be detected.

The original unprocessed envelopes of the 40 longitudinal scans are shown in

Fig. 17.11 with the use of a linear palette. The orientation is similar to the
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Fig. 17.10 A schematic of

the solid phantom used in the

demonstration of the true-

reflection OCT imaging

algorithm
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Fig. 17.11 The original unprocessed envelopes of the 40 longitudinal scans (From Ref. [67])
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orientation in Fig. 17.10. For a better visualization of the effect of the true-reflection

OCT imaging algorithm, the envelopes are shown as a 3D plot. The first signal from

the right is due to light reflected at the air-phantom discontinuity A, which will be

denoted the first discontinuity in the following. The signal from the phantom-air

discontinuity B at z ¼ 2.0 mm (the second discontinuity) and the signal from the

phantom-air discontinuity C at z ¼ 5.2 mm (the third discontinuity) cannot be

distinguished in Fig. 17.11. This is due to the scattering of the light in the phantom,

which attenuates the signal.

By using the true-reflection OCT imaging algorithm described above to correct for

the scattering effects, we get the envelopes shown in Fig. 17.12. The optical param-

eters of the solid phantom, which were used in the algorithm, are ms ¼ 1.815 mm�1,

yrms ¼ 0.1096 rad (g ¼ 0.994), and n ¼ 1.5. As expected, the three signals from the

discontinuities A, B, and C are nearly equal in strength after using the algorithm.

A plausible explanation of the lateral variations of the signal is speckle [19], which is

a well-known effect in OCT [69]. In addition, variation of the signal close to the step

(see Fig. 17.10) is likely due to a partly reflection of the beam.

The experimental errors of the measured values of ms and g of the solid phantom
have been estimated to be �5 % and �1 %, respectively. Values of ms +5 % and

�5 % have been used in the algorithm, but the changes of the signal levels were
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Fig. 17.12 The result of using the true-reflection OCT imaging algorithm on an OCT image of

a solid phantom having three discontinuities (pos. A, B, and C) with identical values of their

reflection coefficients (From Ref. [67])
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very small. This is in contrast to the observation when a value of g � 1 % was used

in the algorithm, and the envelopes are shown in Fig. 17.13. Note that the maximum

signal of the second discontinuity is now slightly larger than the signal from the first

discontinuity. However, the maximum signal levels of the second and third discon-

tinuities seem to be closer to the signal level of the first discontinuity as compared to

Fig. 17.12.

Figure 17.14 shows, for comparison, the envelopes obtained if only the single-

scattering term is used in the expression for C. Due to a large overestimate

of the signal from the third discontinuity in this case, the signals from the first

and second discontinuities are too small in amplitude to be observed in Fig. 17.14.

Thus, it is obvious that the single-backscattering model is not sufficient, and

furthermore, it demonstrates the importance of taking multiple-scattering effects

into account.

The experiment demonstrates the feasibility of the new algorithm for a homo-

geneously scattering medium. However, the algorithm may be extended to cover

heterogeneously scattering media, for example, skin tissue. True-reflection OCT
images may be easier to interpret than conventional OCT images, and improved

diagnosis may be envisioned due to a better differentiation of different

tissue types.
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Fig. 17.13 The envelopes of the 40 longitudinal scans when the true-reflection OCT imaging

algorithm has been used together with a value of g � 1 % (From Ref. [67])
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17.4.3 True-Reflection OCT Imaging on an MC-Simulated
Heterogeneous Multilayered Sample

The MCmodel presented in Sect. 17.3 may be used as a numerical phantom, which,

for example, could be used to investigate the performance of the EHF model

for sample geometries difficult to produce in the laboratory or for which one or

more of the approximations made in the EHF model do not hold. It is important to

note that the predictions from the EHF model have been demonstrated to compare

well with experiments carried out on single-layered phantoms consisting of aque-

ous suspensions of microspheres [10]. In this section, we demonstrate the true-

reflection OCT imaging algorithm on a heterogeneous multilayered sample using

the MC model following the outline in Ref. [70].

Multilayered structures are at best difficult to manufacture, and the simulation of

such structures using the MCML computer code is well established. Thus, we use

the MC model to simulate the OCT signal for a two-layer sample in order to

demonstrate the true-reflection OCT imaging algorithm on a heterogeneous sample.

Through the incorporation of the ABCD matrix formalism in the EHF theory, it is

straightforward to model the OCT system applied to a multilayered sample

(see Appendix A of Ref. [10]). Thus, to demonstrate the true-reflection algorithm,

we fit the two-layer EHF expression for the OCT signal to the MC simulation,

DEPTH IN ARBITRARY UNITS

12000 10000 8000 6000 4000 2000 0
0

20

40

SCAN NO.

250

200

150

100

50

0

SI
G

N
A

L
 L

E
V

E
L

 I
N

 A
R

B
IT

R
A

R
Y

 U
N

IT
S

Fig. 17.14 The envelopes obtained by using the true-reflection OCT imaging algorithm when

only the single-scattering term is used in the expression for C (From Ref. [67])
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extract the optical properties of the two layers, and use these values of the optical

properties in the algorithm to correct for the attenuation caused by scattering.

As in the previous MC simulations in Sect. 17.3, the refractive indices of the

sample and the surroundings are matched and equal to unity. The system parame-

ters in this case are l ¼ 800 nm, w0 ¼ 0.4 mm, and f ¼ 8.0 mm. The first layer is

0.3 mm thick and has a constant scattering coefficient of ms1 ¼ 5.0 mm�1 and

g1¼ 0.99. The second layer is 0.9 mm thick and has a constant scattering coefficient

of ms2 ¼ 10.0 mm�1 and g2 ¼ 0.92. The MC simulation of the mean square

heterodyne signal current is shown as squares in Fig. 17.15. The fit of the two-

layer EHF model to the MC simulation is shown as a solid line in Fig. 17.15, and the

hereby extracted optical properties ms and g (n is not a fitting parameter) of the two

layers are shown in Table 17.2 together with the input parameters of the MC

simulation. The relatively large point separation of the MC simulation in the

z-direction makes the gap between the last point of the first layer and the first

point of the second layer rather distinct in this case.

The small percentage difference shown in Table 17.2 between the MC input

parameters and the extracted parameters demonstrates the capability of the EHF

model to extract optical properties from a heterogeneous multilayered sample, for

example, human skin. The extracted optical properties of the two layers may now

be used in the true-reflection algorithm. Thus, the MC simulation of the OCT signal
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After use of True-reflection algorithm
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Fig. 17.15 MC simulation of

the OCT signal for a two-

layer sample (squares); EHF
fit to the first and second

layers (solid line); the MC

simulation of the OCT signal

after use of the true-reflection

algorithm (triangles
connected with a dashed line)
(From Ref. [70])

Table 17.2 The input parameters of the MC simulation, together with the extracted parameters

obtained by using the EHF model, and the percentage difference

Layer no.

Input ms
[mm�1]

Fitted ms
[mm�1] Difference [%] Input g Fitted g Difference [%]

1 5.00 4.92 �1.6 0.9900 0.9834 �0.67

2 10.00 10.22 2.2 0.9200 0.8586 �6.67
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after use of the true-reflection algorithm, that is, after correction for the attenuation

caused by scattering, is shown as triangles in Fig. 17.15 connected by a dashed line.

The distinct signal levels obtained for the two different layers after using the true-

reflection algorithm strongly indicate that a better differentiation of different tissue

types may be obtained in OCT images of real tissue by using the true-reflection

algorithm. This is expected to result in an improved diagnosis.

17.5 Applications of Modeling in OCT

Extraction of optical scattering parameters from OCT images is a method to obtain

more quantitative information from these images in order to improve the diagnostics,

that is, an alternative method of functional imaging. Accordingly, one may envisage

a novel functional imagingmethodwhere, in addition to tissuemorphology, parameters

such as the scattering parameters, g and/or ms, or mean refractive index are obtained. In

the following, the viability of the suggested approach in OCT is briefly discussed.

17.5.1 Extraction of Optical Scattering Properties from Tissues

As mentioned above, attenuation compensation is widely accepted within ultrasound

[66]. Therefore, it has also been among the first attempts to improve onOCT imagery.

In fact, attenuation compensation is a method to remove the attenuation caused by

scattering in OCT images. This should improve the diagnostic capabilities due to

a better differentiation of different tissue types. Until now, there have been few

attempts to do attenuation compensation in OCT images of tissue by using the

single-scattering OCT model [71]. However, due to the fact that multiple-scattered

photons contribute to the OCT signal, the single-scattering OCT model is insufficient

for this purpose. Attenuation compensation was verified on a single-layer phantom by

using an OCT model taking multiple-scattering effects into account [67].

The optical scattering properties themselves, however, also contain information

about the tissue. For example, cell mitochondria is affected or changed in several

malignant conditions, and through these changes, the scattering changes. Con-

versely, provided that information about the scattering properties can be obtained

with good accuracy and good (high) spatial resolution, new diagnostics can be

performed. This fact is one important motivation for attempting to extract optical

scattering properties in order to improve the diagnostic potential of OCT.

By using the single-scattering OCTmodel [2], studies have been carried out with

the aim to extract only the scattering coefficient ms from OCT images of tissue. This

approach was applied in various important applications. For example, glucose

monitoring was investigated by using the single-scatter approach [72] and more

recently expanded to include phase-sensitive OCT [73]. Although these investiga-

tions are of high clinical importance, more work is still needed in this area.

Determining optical scattering properties of blood is also of high importance. Faber

et al. [74, 75] demonstrated that the optical absorption spectra of oxygenated and
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deoxygenated hemoglobin, corrected for optical scattering, may be obtained by using

spectral OCT. The underlying OCT modeling was based on a single-scattering

approach. Subsequent investigations, however, have led to the conclusion that improved

modeling needs to be developed in order to satisfactorily include multiple-scattering

effects [76]. Single-scattering-based modeling might be applicable as demonstrated by

Kodach et al. [77] showing that anisotropy and scattering parameters can be obtained

from non-absorbing samples. It should be emphasized that the values for the anisotropy

(approximately 0.35) is much different from those of biological tissues (approximately

>0.85). Accordingly the results might not be transferred to biological tissues.

An important contribution by the group of van Leeuwen has been made in

in vitro characterization of atherosclerotic plaque [78]. Although the model applied

was based on a single-scattering model, their findings provide important data on the

optical scattering coefficient of these plaques, which may influence OCT-based

diagnostics in this area.

Provided an OCT model is used that takes into account multiple scattering, both

ms and the anisotropy factor g may be extracted. Extraction for a two-layer geom-

etry has been carried out [70, 79], where both ms and g were obtained for each

(tissue) layer. In Ref. [70], MC simulations were used as numerical phantom as

discussed in detail in the previous subsection.

A number of in vitro studies have been reported. Characterization of atheroscle-

rotic plaque using a single, multiple-scattering layer model has been reported [80].

The method of extracting the optical scattering properties was verified using well-

controlled and calibrated, single-layer tissue-like phantoms. The study provided the

optical scattering properties in the 1,300-nm range for lesions in different stages

including the anisotropy parameter. Based on the extracted parameters, normal tissue

could be separated from malignant tissue. It should be noted that some discrepancies

occur between the reported values for the scattering coefficients in Refs. [80] and

[78]. Possible explanations for the differences may be due to different sample

handling and fit to different models. The results reported in both Refs. [80] and

[78] are encouraging, although further studies are required to fully establish these

criteria and thereby demonstrate the feasibility of the method in this particular area.

InRef. [11], an excellent study presented a rigorous application of theRTEmodeling

(small-angle approximation) in the extraction of optical parameters. First, the authors

verified their modeling on a well-controlled tissue-like phantom. By estimating covari-

ance and confidence regions for the extracted optical properties, they point to specific

regimes of the OCT signal decay where extraction is likely to fail. These regimes

depend on both the optical properties and sample beam geometry. Hence, their findings

provide important insight of how to optimize the OCT system for a specific application.

The authors applied their method to cervical tissue (cervical dysplasia 2–3 and leuko-

plakia). In their in vitro investigation, they demonstrated that cervical dysplasia 2–3 and

leukoplakia could be distinguished on the basis of the extracted optical scattering

properties. Hence, their excellent contribution should be an encouragement for

expanding to other clinical applications and finally in vivo applications.

Related to this work, Samatham et al. [81] develop a method for extracting

optical properties of skin samples (from a mouse) based on reflectance-mode
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confocal laser scanning microscopy. Their approach might be relevant for optical

coherence microscopy and even find applications in OCT extraction of optical

properties in vivo.
In vivo studies are sparse; however, Kn€uttel et al. [82] took the approach of

extracting optical scattering properties and refractive index aiming at relating the

effects of skin hydration to the optical properties extracted from OCT images. Their

investigation showed the applicability of the approach and the potential in derma-

tology to provide new diagnostic information.

17.6 Wigner Phase-Space Distribution Function for the OCT
Geometry

Recently, the Wigner phase-space distribution [83] for multiple light scattering in

biological media has received considerable attention. This is because it has been

suggested by numerous authors that new venues for medical imaging may be based

on coherence tomography using measurements of Wigner phase-space distributions

[23, 24, 84–86]. It has been suggested that the Wigner phase-space distribution

is particularly useful for biomedical imaging because the phase-space approach

provides maximum information, that is, both space and momentum (angular)

information, about the light being used. This section is devoted to the derivation

of a closed-form solution for the Wigner phase-space distribution function [23]

obtained directly from the EHF [37] solution for the optical field.

In all cases considered in this section, as well as in Refs. [24, 84–86], the Wigner

phase-space distribution function is positive definite, and hence, the Wigner func-

tion and the specific radiance may be used interchangeably. We are primarily

concerned with a standard OCT propagation geometry shown in Fig. 17.1, and as

such, we consider a sample beam reflected at a discontinuity giving rise to diffuse

backscattering. This section deals with the reflection geometry only; for the trans-

mission geometry, the reader is referred to Refs. [23, 85].

17.6.1 General Considerations

Consider a cw quasi-monochromatic optical wave propagating through a non-

absorbing random small-angle scattering medium, reflecting off a discontinuity

giving a diffuse reflection, and subsequently propagating back to the initial plane.

Denote the resulting optical field in the initial plane, perpendicular to the optic axis,

by U(P), where P is a two-dimensional vector in this plane. For simplicity in

notation, we omit the time dependence. The Wigner phase-space distribution,

W(P,q), may be written as [87]

WðP; qÞ ¼
ð

dp

ð2pÞ2 UðPþ p=2ÞU�ðP� p=2Þh i exp½iq � p�; (17.65)
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where angular brackets denote the ensemble average. That is, the Wigner phase-

space distribution function is a two-dimensional Fourier transform of the indicated

mutual coherence function U Pþ p=2ð ÞU�ðP� p=2Þh i and, as such, contains

the same information about the optical field as does the mutual coherence function.

The quantity q is a transverse momentum, and in the small-angle approximation, its

magnitude q can be related directly to the scattering angle simply as q¼ 2ksiny/2�
ky, where is the free-space wave number. In addition, because in the small-angle

approximation the differential element of solid angle dO ¼ 2psinydy �
2pydy ¼ 2pqdq/k2, it is easily verified that the integral of W(P,q) over all q (i.e.,

over solid angle) equals the intensity I(P), that is, jU(P)j2, at the observation point

P. Hence, to within a multiplicative constant, the Wigner phase-space distribution

is equal to the specific radiance distribution of the optical field at the observation point

of interest for those cases where the Wigner phase-space distribution is positive

definite. To be specific, the specific radiance distribution N(P,y) ¼ k2W(P,ky) in

those cases.

Here, we neglect polarization effects, bulk backscattering, and enhanced

backscattering, which is obtained very close to the optical axis. In random media

where the scattering particles are large compared to the wavelength and the index of

refraction ratio is near unity, the bulk backscatter efficiency is much smaller than

the scattering efficiency. Moreover, the scattering is primarily in the forward

direction, which is the basis of using the paraxial approximation. Therefore, the

bulk backscattering may be neglected when considering the light propagation

problem, since its contribution is small. An example of this is skin tissue

(cell sizes of 5–10-mm diameter and index of refraction ratio of 1.45/1.4 ¼ 1.04).

It is well known that a medium with random scattering inhomogeneities will

produce an amplification effect of the mean intensity in the strictly backward

direction, as compared to the corresponding intensity obtained in the homogeneous

medium [88]. This so-called enhanced backscattering is due to multichannel coher-

ence effects (i.e., interference at a source point between waves transmitted in the

forward and backward directions by the same inhomogeneities in the medium).

Additionally, because of conservation of energy, enhanced backscattering is

accompanied by a corresponding reduction in intensity in directions close to the

strictly backward direction. In general, as discussed in Ref. [88], the linear dimen-

sion of the region surrounding the strictly backward direction where enhanced

backscattering is obtained is of the order or less than the transverse intensity

correlation length, l. The corresponding reduction of intensity occurs near the

surface of a cone of angle of the order l/Z, where Z is the (one way) propagation

distance in the medium. Strictly speaking, enhanced backscattering effects are

obtained in situations where the linear dimensions of the illuminated region, a, in
the backscattering plane satisfy a2 << lZ, where l is the wavelength. When the

radiation at some point P in the observation plane results from illuminated regions

that are large compared to [lZ]½, P will not be in the strictly backscattered direction

with respect to the reflected light and, as a consequence, enhanced backscattering

will not be manifested. In all cases considered here, a >> [lZ]½ and, therefore,

enhanced backscattering effects are neglected.
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As indicated in Fig. 17.1, the signal of interest results from diffuse reflection at

the discontinuity of interest only. As discussed above, the statistics of the forward

and back propagating optical waves are assumed here to be independent. This case

has been treated in Sect. 17.2, and from (17.21) with p1,2 ¼ P � p/2, the EHF

solution for the mutual coherence function for diffuse reflection in the discontinuity

plane, and observation in the lens plane, is given by

U Pþ p 2=ð ÞU� P� p 2=ð Þh i ¼ 4p
k2

ð
dr IB rð Þh iG0 r;Pþ p 2=ð ÞG�

0 r;P� p 2=ð ÞGpt rð Þ:
(17.66)

IBðrÞh i is the mean backscattered irradiance distribution in the plane of the discon-

tinuity, Gpt(p) is the mutual coherence function of a point source located in the

discontinuity plane and observed in the lens plane, where p¼ jp1� p2j, andG0(r,p)
is the Huygens-Fresnel Green’s function for homogeneous media given, in general,

by [40]

G0 r; pð Þ ¼ � ik

2pBb
exp � ik

2Bb
Abr

2 � 2r � pþ Dbp
2

� �� �
; (17.67)

where Ab, Bb, and Db are the (real) ABCD ray-matrix elements for backpropagation

through the optical system (because we are dealing with “real” ABCD optical

systems, we tacitly assume that B 6¼ 0). To be as general as possible, we assume an

arbitrary ABCD optical system between the lens and discontinuity planes, respec-

tively. For the OCT geometry, we have Ab ¼ Db ¼ 1 and Bb ¼ d + z/n, where d is the
distance from the lens to the tissue surface, n is the mean index of refraction of the

tissue, and z is the depth of the discontinuity. In (17.66), the positive definite quantity
Gpt is the mutual coherence of a point source located in the discontinuity plane and

observed in the initial lens plane, that is, the mutual coherence function for backward

propagation through the medium. This quantity is given by [45]

GptðpÞ ¼ exp �s 1� bfðpÞ
� �� �

; (17.68)

where the optical depth s ¼ msz. The quantity ms is the bulk scattering coefficient,

and bf(p) is the normalized phase autocorrelation function of a point source whose

origin is in the discontinuity plane given by [45]

bfðpÞ ¼
Ð z
0
dz0

Ð1
0

sðy; z0ÞJ0ðkpsyÞydyÐ z
0
dz0

Ð1
0

sðy; z0Þydy ; (17.69)

J0 is the Bessel function of the first kind of order zero,

ps ¼ Bb z0ð Þ
Bb

p; (17.70)
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where Bb(z
0) is the B-matrix element for backpropagation from the discontinuity

plane to a distance z0 and s(y;z0) is interpreted as the volume scattering function as

a function of position measured from the discontinuity plane in the optical system

[40]. Strictly speaking, (17.68) applies to the case where the scattering is in the

near-forward direction and all of the scattered light being contained within the

collection solid angle of the optical system being used. For propagation in an

inhomogeneous medium where appreciable light is scattered outside of the collec-

tion solid angle, the mutual coherence function of (17.68) becomes Gpt(p) ¼ exp

{�sW� sN[1� bf(p)]}, where the subscripts N andW refer to the near-forward and

wide-angle contributions to the optical depth, respectively [23, 24, 86]. That is, the

portion of the light scattered outside of the collection solid angle thus appears much

like an effective absorption coefficient for propagation in the near-forward direc-

tion. We note that all correlation functions of interest here can be expressed directly

in terms of the spectral densities via the relation s(y)¼ 2pk4Fn(ky), where Fn is the

three-dimensional spectrum of the index of refraction inhomogeneities, and we

have omitted the functional dependence on path length for notational simplicity

[52]. For the OCT geometry, we have s(y;z0)¼ s(y) for 0
 z0 
 z, and 0 otherwise;
Bb(z

0) ¼ z0/n for 0 
 z0 
 z and Bb(z
0) ¼ z/n + z0 � z for z 
 z0 
 d + z.

In this section, it is tacitly assumed that we are dealing with a statistically

stationary and isotropic random medium. Then, it is well known that all second-

order spatial correlation functions of the optical field, such as Gpt(p), are functions
of the magnitude of the difference of the spatial coordinates and satisfy the identity

Gpt(�p) ¼ Gpt
*(p) [52].

Because the point source mutual coherence function given in (17.68) is valid for

arbitrary values of the optical depth s [52], the results given below for the Wigner

phase-space distribution function are valid in both the single- and multiple-

scattering regimes, that is, arbitrary values of s.
Substituting (17.66) and (17.67) into (17.65) and simplifying yield

W P; qð Þ ¼ 1

pB2

ð
dp

2pð Þ2 exp ip � q� kD

B
P

	 
� �
GptðpÞH pð Þ; (17.71)

where

H pð Þ ¼
ð
dr IB rð Þh i exp i

k

Bb
p � r

� �
(17.72)

is related to the Fourier transform of IB rð Þh i. In Ref. [23], it is shown that

H pð Þ ¼ RdGpt �pð ÞK �pð Þ ¼ RdG�
ptðpÞK �pð Þ; (17.73)

where Rd is the reflection coefficient of the discontinuity,

K rð Þ ¼
ð
dRUSi Rþ r 2=ð ÞU�

Si R� r 2=ð Þ exp �i
kA

B
r � R

� �
; (17.74)
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and USi(r) is the initial optical wave function. Substituting (17.73) into (17.71)

yields

W P; qð Þ ¼ Rd

pB2
b

ð
dp

2pð Þ2 GptðpÞ
�� ��2K �pð Þ exp ip � q� kDb

Bb
P

	 
� �

¼ Rd

2p2B2
b

ð1
0

dpp GptðpÞ
�� ��2KðpÞJ0 q� kDb

Bb
P

����
����p

	 

for axially symmetric USið Þ:

(17.75)

This is the required general solution for the Wigner phase-space distribution

function for diffuse reflection in the paraxial approximation. That is, for a given

initial optical wave function and a medium whose scattering function is known,

(17.75) is the solution for the Wigner phase-space distribution function, that is,

specific radiance. Note that I(P) ¼ R
W(P,q)dq ¼ RdP0/pBb

2, where P0 is the

transmitted power. As expected for diffuse reflection, the intensity in the observa-

tion plane is constant, independent of position.

17.6.1.1 Comments
For general scattering functions s(y), the integral indicated in (17.75) cannot be

obtained analytically, although numerical results can be readily obtained. However,

some general features of the Wigner phase-space distribution function can be

obtained by direct examination of the general formula. First, examination of

(17.75) reveals that, in general, the Wigner phase-space distribution attains its

maximum along the line given by P ¼ Bbq/kDb ¼ Bbu/Db. Additionally, because

Gpt(p) in (17.68) can be rewritten as

GptðpÞ ¼ e�s þ e�s exp sbfðpÞ
� �� 1

� �
; (17.76)

we can conclude, from (17.75) and (17.76), that, in general, the Wigner phase-space

distribution function consists of three terms. The square of the first term on the

right-hand side of (17.76), which corresponds to the ballistic photons, leads to an

attenuated distribution of what would be obtained in the absence of the scattering

inhomogeneities. The square of the corresponding second term represents a broader

halo resulting from multiple scattering in the medium. The third term is a cross term

between the ballistic and multiple-scattering contributions, respectively. Physi-

cally, the cross term is the coherent mixing of the unscattered and multiple-

scattered light.

Next, for sufficiently large values of the optical depth s, examination of (17.68)

reveals that Gpt is nonzero for s[1� bf(p)] less than the order unity, that is, for bf(p)
near unity. Expanding bf(p) in powers of p and retaining the first two nonzero terms

allows one to obtain asymptotic results. In the limit s>> 1, for all cases of practical

concern, the resulting width of jGpt(p)j2 is much narrower than K(p), and without

loss of generality, we may replace K(p) by its value at the origin K(0) ¼ P0, the

transmitted power (see (17.74)).

17 Optical Coherence Tomography: Advanced Modeling 787



17.6.2 Applications to Optical Coherence Tomography

It follows from the analysis in Sect. 17.2 that the signal-to-noise ratio (SNR) in
a standard OCT system can be expressed as

SNR ¼ constant
 Re

ðð
GR Pþ p 2= ;P� p 2=ð ÞGS Pþ p 2= ;P� p 2=ð ÞdPdp

� �
;

(17.77)

where denotes the real part and GR and GS are the mutual coherence functions of the

(deterministic) reference beam and sample beam in the mixing plane, respectively.

Because the Wigner phase-space distribution function and the mutual coherence

function are Fourier transform related (see (17.65)), the SNR can be rewritten as

SNR ¼ constant 
 Re

ðð
WR P;�qð ÞWS P; qð ÞdPdq

� �
; (17.78)

where WR andWS are the corresponding Wigner phase-space distribution functions

of the reference and sample beams, respectively. Equation (17.78) indicates, in

particular, that the SNR of a standard OCT system is related globally to the Wigner

phase-space distribution function of the sample beam. That is, images obtained

from standard OCT systems contain global, rather than local, information of the

Wigner phase-space distribution function of the sample beam. Improved OCT

imagery can thus only be obtained from systems that make use of the local

properties of the Wigner phase-space distribution function, rather than globally

where information is inevitably lost. Below, we derive expressions for the Wigner

phase-space distribution function of the sample beam for a standard OCT geometry

for both classes of scattering functions discussed in Ref. [23].

Consider an OCT system where the initial optical wave function (i.e., immedi-

ately following the lens) is given by

USiðrÞ ¼
ffiffiffiffiffiffiffiffi
P0

pw2
0

s
exp � r2

2

1

w2
0

þ ik

f

	 
� �
: (17.79)

For an OCT system, focusing at a tissue discontinuity at depth z, we then get the
following equation for K(r)

KðrÞ ¼ P0 exp � r2

4w2
0

� �
; (17.80)

and using (17.78), the heterodyne efficiency factor for the OCT signal for such

a system may be written as

C � SNR

SNR0

¼
Ð
K pð Þj j2 Gpt pð Þ�� ��2dpÐ

K pð Þj j2dp : (17.81)
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We now obtain analytic engineering approximations for the Wigner phase-space

distribution function, valid for all values of s, for bf that are quadratic near the

origin. Substituting (17.17) in Ref. [23] and (17.80) into (17.75) and simplifying

yield

W P; qð Þ ffi RdP04w
2
0

2pfð Þ2 e�2s exp �Q2w2
0

� �þ e�s 1� e�sð Þ ~r20
4w2

0

exp �Q2~r20
4

	 
�

þ 1� e�sð Þ2 ~r20
8w2

0

exp �Q2~r20
8

	 
� ;

(17.82)

where

1

~r20
¼ 1

r20
þ 1

4w2
0

; (17.83)

r0 ¼
ffiffiffi
3

s

r
l

pyrms

nf

z

	 

: (17.84)

Here,Q¼ |q� (k/f)P|. The first, second, and third terms on the right-hand side of

(17.82) represent the ballistic, cross, and multiple-scattering contributions to the

Wigner phase-space distribution function discussed below (17.76), respectively.

In the limit of s << 1, examination of (17.82) reveals that for P ¼ 0, the 1/e
transverse momentum width, Dq, of the Wigner phase-space distribution is given by

Dq ¼ 1/w0. Furthermore, in the limit s >> 1, Dq ¼ 2
ffiffiffi
2

p
~r�1
0 , where ~r0 ffi r0. In this

case, Dq/ z3/2 in the presence of the shower-curtain effect, which manifests itself in

the standard OCT geometry. For comparison, Dq / z1/2 in the absence of the

shower-curtain effect.

We have not been able to obtain a corresponding analytic approximation, valid

for all values of s, for the Henyey-Greenstein type of scattering function [23]. For

this case, we can only conclude that

W P; qð Þ ffi RdP0

2pfð Þ2 1� 2sð Þ exp �Q2w2
0

� �
; s << 1; (17.85)

and

W P; qð Þ ffi RdP0

p 2pfð Þ2
r0
s

� �2 1

1þ r0
s

� �2
q� k

f P
��� ���2	 
3=2

; s >> 1; (17.86)

where r0 ¼ {[lg½]/[2p(1 � g)]}[nf/z]. In the limit of s << 1, examination of

(17.85) reveals that for P ¼ 0, the 1/e transverse momentum width, Dq,
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of the Wigner phase-space distribution is given by Dq ¼ 1/w0. Furthermore, in the

limit s >> 1, it is obtained from (17.86) that Dq ¼ s/r0. In this case, Dq / z2 in the

presence of the shower-curtain effect. For comparison, Dq / z in the absence of

the shower-curtain effect.

It is important to note that for both types of scattering functions, the momen-

tum width increases with increasing depth as zg, with considerably larger values

of g being obtained in the presence of the shower-curtain effect. Furthermore,

the actual value of g is highly dependent on the details of the scattering

function [23].

As shown above, it is possible to determine the lateral coherence length of the

sample field from measurements of the Wigner phase-space distribution. As is

evident from (17.84), the lateral coherence length depends on the optical parame-

ters of the tissue, that is, n, ms, and yrms. Therefore, it is feasible to create images

based on measurements of the lateral coherence length as a function of position in

the tissue. In contrast to OCT signals used to create conventional OCT images, the

lateral coherence length is related only to the propagation of the light in the tissue,

and its magnitude is independent of the amount of light backscattered or reflected at

the probed depth.

In general, a discontinuity between two tissue layers is characterized by

a change of the scattering coefficient, the backscattering coefficient, and the

index of refraction. The relative change of the scattering coefficient and the

backscattering coefficient is markedly greater than the corresponding relative

change in the index of refraction [43]. In human skin tissue, for example, the

scattering coefficients of epidermis and dermis are 50 and 21.7 mm�1, respec-

tively, while the indices of refraction are lying in the range 1.37–1.5 [43]. On

this basis, it can be shown from the analysis above that an imaging system,

based on measurements of the lateral coherence length, may have a higher

sensitivity to changes in the scattering coefficient than the conventional OCT

system probing the corresponding change in the backscattering coefficient.

The higher sensitivity may lead to an improved contrast in the obtained

image. This model and the above discussion give more insight into the ideas

presented recently that new venues for medical imaging may be based on

coherence tomography using measurements of Wigner phase-space distributions

[23, 24, 84–86].

17.7 Appendix A

The 4F system described in Sect. 17.3.1 is inspected where we have designated

three transverse coordinate planes (see Fig. 17.6): the p-plane coinciding with the

optical fiber, the q-plane coinciding with the diffusely reflecting discontinuity

within the sample, and the r-plane coinciding with the right side of the

thin focusing lens at z ¼ �d. By applying approximations identical to those used

in Ref. [10], we now wish to show the following two statements. Firstly, that

the heterodyne efficiency factor, defined by the cross correlations of the sample
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and reference fields at the p-plane, may be written in terms of their respective

intensities only, so that

Cp ¼
i2
� �
i20
� � ¼ Ð

IRðpÞ IsðpÞh id2pÐ
IRðpÞ Is0ðpÞh id2p ; (17.A1)

where the integrals are taken over the p-plane and IR, IS pð Þh i, and IS0 pð Þh i are the
intensities of the reference, the ensemble average of the reflected light from the

discontinuity, and the ensemble average of the reflected light from the discontinuity

in the absence of scattering, respectively. Secondly, that this calculation of the

heterodyne efficiency factor C in the p-plane, Cp, is mathematically identical to

calculating C in the r-plane, Cr, as given by (17.57), so that

Cr ¼
Re

ÐÐ
GR r1; r2ð Þ GS r1; r2ð Þh idr1dr2

� �
Re

ÐÐ
GR r1; r2ð Þ GS0 r1; r2ð Þh idr1dr2

� �
¼ Re

ÐÐ
GR p1; p2ð Þ GS p1; p2ð Þh idp1dp2

� �
Re

ÐÐ
GR p1; p2ð Þ GS0 p1; p2ð Þh idp1dp2

� � ¼ Cp:

(17.A2)

To outline the derivation, the proof will be initiated by finding the field US due to

an initial field propagating from the r-plane toward the sample and reflecting off the

discontinuity. This field is then used to calculate the cross correlation

GS p1; p2ð Þh i ¼ US p1ð ÞUS
� p2ð Þh i, and it is shown that US is delta-correlated [19]

and thus the validity of (17.A1) is demonstrated. It is then demonstrated that the

obtained expression for Cp is identical to (17.81). Because we are only concerned

with the ratio C, any multiplicative constant not related to the properties of the

scattering medium is omitted.

Using the Huygens-Fresnel principle, the field at the p-plane, US, due to a field

immediately to the right of the focusing lens in the r-plane, Ur, is given by

Usðr; pÞ ¼
ð
UrðrÞGr�pðr; pÞd2r; (17.A3)

where Gr-p(r,p) is the Huygens-Fresnel Green’s function for propagation from the

r-plane to the p-plane. For a general ABCD matrix system, this Green’s function is

given by [40]

G0 r; pð Þ ¼ � ik

2pB
exp � ik

2B
Ar2 � 2r � pþ Dp2
� �� �

; (17.A4)

where A, B, and D are the matrix elements and the notation r denotes the length of

the vector r. For the propagation from r to p, A ¼ �1, B ¼ f, and D ¼ �1. The field
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at the r-plane due to a field, Uq, impinging upon the discontinuity is found using

the EHF principle

UrðrÞ ¼
ð
�ðqÞUqðqÞGf ðq; rÞ exp i’ðq; rÞ½ �d2q; (17.A5)

where Gf is the Green’s function for propagating the optical distance f given by

(17.A4) with the matrix elements A ¼ 1, B ¼ f, and D ¼ 1. ’(q,r) is the

stochastic phase added to the phase of a spherical wave propagating from q to r
due to the scattering medium, and �(q) is a complex reflection coefficient due to

the discontinuity. Calculating the cross correlation of the field US yields

Gsðp1; p2Þ ¼
ðððð

Gf ðq; rÞG�
f ðq0; r0ÞGr�pðr; p1ÞG�

r�pðr0; p2Þ

 hUqðqÞU�

qðq0Þi �ðqÞ�ðq0Þh i

 exp i’ðq; rÞ � i’ðq0; r0Þ½ �h id2rd2r0d2qd2q0;

(17.A6)

where primed variables are related to US
*, and we have assumed that the scattering

medium and the properties of the diffusely discontinuity are independent.

It should also be noted that in writing Uq qð ÞUq
� q0ð Þexp i’ q; rð Þ � i’ q0; r0ð Þ½ �� � ¼

Uq qð ÞUq
� q0ð Þ� �
 exp i’ q; rð Þ � i’ q0; r0ð Þ½ �h i, it has been assumed that the phase

distortion due to the scattering medium added to the field propagating from L2 to

the discontinuity is statistically independent of that added to the field propagating

from the discontinuity to L2. The validity of this assumption in MC simulations is

discussed in Sect. 17.3.3. Because the discontinuity is diffusely reflecting

�ðqÞ�ðq0Þh i ¼ ð4p=k2Þdðq� q0Þ, where d(r) is the two-dimensional Dirac’s delta

function [39]. This yields

Gsðp1; p2Þ ¼
ððð

Gf ðq; rÞG�
f ðq; r0ÞGr�pðr; p1ÞG�

r�pðr0; p2Þ

 IqðqÞ
� �

GPTðr� r0Þd2rd2r0d2q;
(17.A7)

where GPT is given by (17.41) and Iq is the intensity of the field Uq. The average

intensity Iq qð Þ� �
can be found from (17.39), and it is noted that the difference

vector, r, in (17.39) is independent of r and r0 in (17.A7). Now, invoking the sum

and difference coordinates R ¼ ½(r + r0) and r ¼ r�r0 and performing the

q-integration and the r-integration originating from (17.39) yield

Gsðp2; p2Þ ¼
ðð

exp � ik

2f
fp22 � p21 � r � ðp1 þ p2Þ þ 2R � ðp� p1Þg

� �

 GPTðrÞj j2Kð�rÞd2rd2R;

(17.A8)
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where we have used the relation

ð
exp½im � ðuþ vÞ�d2m ¼ ð2pÞ2dðuþ vÞ: (17.A9)

Carrying out the R-integration then yields

Gsðp2; p2Þ ¼dðp2 � p1Þ
ð
exp � ik

2f
p22 � p21 � r � ðp1 þ p2Þ

� �� �

 GPTðrÞj j2Kð�rÞd2r

(17.A10)

which shows the sample US to be delta-correlated, and thus, (17.A1) is proven.

To calculate (17.A1), we consider (17.A8) for the case p1 ¼ p2 ¼ p, which then

yields the intensity

IsðpÞh i ¼ Alens

ð
exp � ik

f
r � p

� �
GPTðrÞj2Kð�rÞd2r;�� (17.A11)

where Alens is the area of the focusing lens.

To find the OCT signal i2
� �

, we now insert (17.A11) into the numerator of

(17.A1)

i2
� � ¼ ðð

exp � ik

2f
ð�2r � pÞ

� �
GPTðrÞj j2Kð�rÞIRðpÞd2rd2p

¼
ð
GPTðrÞj j2 KðrÞj j2d2r;

(17.A12)

where we have used that the reference field impinging on the reference mirror may

be calculated using (17.39) with GPT ¼ 1 and A ¼ 1 and B ¼ f. Because the p-plane
is the conjugate plane to the plane of the reference mirror, the field here is identical

to that impinging upon the reference mirror. GPT is unity in the absence of

scattering, so it is now easy to see that C may be calculated through

Cp ¼
Ð
GPTðrÞj j2 KðrÞj j2d2rÐ

KðrÞj j2d2r : (17.A13)

Note that the integration is over the r-plane. It is seen that Cp is identical to Cr

given by (17.81). It has thus been proven that within the approximation of the EHF

principle, the heterodyne efficiency factor of the OCT system depends solely upon

the intensity distributions of the reference and sample fields in the p-plane.
Furthermore, it is straightforward to prove that this will be true for any conjugate

plane to a diffusely reflecting discontinuity plane within the sample.
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One should note that there exists an ambiguity between obtaining a delta func-

tion in (17.A10) and obtaining a finite area of the focusing lens in (17.A11). Firstly,

this area is irrelevant for the heterodyne efficiency factor, and no assumption of

a finite lens area is made in Sect. 17.2.2. Furthermore, it is easy to show that (17.

A13) is just as well obtained by inserting (17.A10) into (17.A2). Secondly,

a finite radius of the focusing lens would have yielded an Airy function in RA

(p1 � p2) instead of a delta function, where RA is the radius of aperture. Thus, if

the aperture is large, the sample fieldwill be essentially delta-correlated in the p-plane.
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