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Abstract In this paper we consider a supply chain where the purchasing behavior
of final users of the product influences the decisions that are made. We particularly
examine the effects of customers’ competition for the offered service level on the
facility location decisions. We consider two types of decision makers, the producer
who tries to provide at facilities the best level of service at minimum cost and the
customers who make their choices in order to minimize their perceived costs. We
consider first the case where customers are assigned for service to the facilities by
the producer. In such a case the producer could be considered as monopolist who
dominates and tries, through the facility location decisions, to ensure the best, at
his opinion, service level at minimum cost. Then we suppose that the customers are
involved in a Nash type game in their effort to ensure the best level of services for
themselves, i.e. we assume that they are involved in an oligopsony. In order to take
into consideration the effects of this competition to the facilities location decisions
we formulated the problem as a bilevel programming model. Next, we suppose that
there are two producers operating in the network, who constitute a duopoly. The
producers compete with each other with respect to the service level they offer in
order to attract customers. We propose a bilevel model with two leaders in order
to take into account both the competition between producers and the competition
among customers.
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1 Introduction

The location of facilities, i.e., the determination of the best places for production
facilities warehouse or intermediate distribution centers, is a key issue of the
strategic management covering the core of the supply chain planning.

Facilities Location Problem and capacity allocation to them in order to be able
to serve customer demand is one of the most traditional areas of optimization. The
basic task of all variants of facility location problems is the following: a company
wants to open up a number of facilities to serve their customers. Both the opening
of a facility at a specific location and the service of a particular customer through a
facility incurs some cost. The goal is to minimize the overall cost associated with a
specific way of opening up facilities and serving customers [7, 8].

Therefore, when creating a new facility, factors including the selection of
appropriate capacity and area of the facility deserves separate attention and should
be taken carefully.

The location of facilities affects not only the distance that users will travel to
them, but also, in connection with decisions about capacity, the time customers
spend on-site prior to their service. The conditions under which customers make
their choice of service facility are complicated, but it is generally reasonable to
assume that every customer will choose the facilities that minimize their total
transportation and waiting cost.

Mathematical models dealing with such situation (for example [12–14]) use
direct choice to assign customers to facilities, that is the assignment is done by
the system and each customer and his demand is directed to the closest facility. The
congestion in facilities is controlled by incorporating constraints in order to ensure
a desired level of waiting time or a specific number of customers. Such constraints
tend to equalize the level of congestion at different facilities, whether it is measured
by the number of users waiting or by waiting time. But empirical studies [9,10] have
shown that when customers are traveling, they select the facility that minimizes the
travel time and waiting time. It is therefore likely that a user may choose not to
travel to the nearest facility, but in another which although it is further away it is
less congested.

In this work, we examine a supply chain network where the producer wants
to determine the number of facilities and the total production capacity in order to
ensure a certain level of satisfaction to his customers while taking into account the
waiting time of customers in the system.

In the mathematical models presented initially a central coordinator, we assume
that the producer, has the ability to direct customers to distribution centers that
would be located. Particularly, we assume that we are dealing with a centralized
supply chain management. Considering the supply network as a single market, the
manufacturer can be regarded as a monopolist who dominates the market and tries,
through the location and capacity choices to ensure a certain level of service to
customers.
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Next, the mathematical models are extended to include the case where customers
are able by themselves to determine the distribution center from which to seek
satisfaction of their demand. The customer’s choice is affected by the total personal
costs incurred during the transaction process with the producer. Besides the price,
the total cost includes the transportation cost required to be paid by the customer to
ensure the product and the costs generated by the delay observed during the serving
process. Therefore, the selection of distribution center is made competitively aiming
at minimizing their personal cost. It is proven that the choices of the customers are
different from the assignments of the central coordinator when they are competing
each other for the received service levels. That is, the customers form an oligopsony.
Consequently, this competitive behavior should be taken into consideration by the
producer during his decision-making process. Assuming that customers observe the
location decisions of the producer and that he is fully informed about the events
at each distribution center, we formulate the facility location problem as bilevel
programming model.

We examine two types of decision makers who have different objectives and they
are in different levels of hierarchy. The first level, the producer (the leader), offers
at the distribution centers the best at his opinion service level, including location, at
minimum cost. The second level, the customers (the followers) make their choices
competitively (a Nash type game) aiming at minimizing their personal expenses
These two levels of hierarchy are involved in a Stackelberg game. First the leader,
determining the service level that minimise his cost. The followers react, being fully
informed about the leader’s decision. The leader knows it and takes it into account
before he announces his strategy.

The results obtained by the numerical analysis of the proposed models demon-
strate that the oligopsonistic behavior of the customers, regarding the service level,
improves the quality of the provided service at the distribution centers by imposing
adjustments to the market needs. It improves therefore market’s flexibility. This
finding opens a new research area in the study of classical oligopsonistic market
structure, which in recent decades has received a lot of criticism [15].

In the last part of this work, we assume that the distribution centers are owned
by two producers. Specifically, we assume that the producers form a duopoly which
compete for customers through the provided service levels involved in a Nash game.

Unlike the existing models in the literature dealing with competition of suppliers
in the supply chain (e.g., [18]), we formulate the problem of the competition
between suppliers for service level they offer as a bilevel problem with two
competing leaders. Due to the competitive nature of duopoly, the bilevel formulation
of the problems is more complicated compared to those with one leader. We also
demonstrate that due to the behavior and choices of competing producers the bilevel
game is significantly different from those of monopoly. The bilevel oligopoly game
formulation of the competitive location and capacity allocation is to our knowelge
proposed for the first time in the bibliography.

The rest of the paper is organized as follows: Section 2 gives a short overview of
the bilevel programming problem. We present in Sect. 3 the models dealing with
the centralized supply chain management. Particularly, the model of Sect. 3.1 is
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concerned with the case where the the producer makes the related decisions by
ignoring the competitive behavior of customers, while in the location resulting from
the model of Sect. 3.2 this behavior is taken into account directly. The comparison
of these two different models is illustrated in Sect. 3.3. In Sect. 4 we examine the
case where more than one producers are competing for the offered service level.

2 Bilevel Programming

Bilevel programming problems describe a hierarchical system involving two
decision levels with different, often conflicting, objectives [1, 17]. In the first
level, the leader controls the decision variable x. In the second level, the follower
controls the decision variable y. The corresponding loss functions φL(x,y) and
φF(x,y) describe the interaction between these two decisions variables. These two
levels of hierarchy are usually involved in a Stackelberg game. The basic idea of
this game can be described as follows:

The leader chooses the strategy x which minimizes his loss function φL(x,y)
and the follower, fully informed about the leader’s decision, reacts by choosing the
strategy which minimizes his own loss function φF(x,y). Thus, follower’s choices
depend on the leader’s choices, i.e., y= y(x). The leader, on the other hand, is aware
of the follower’ s choices and he takes this reaction into account before announcing
his strategy. The bilevel problem could be written in the following general form:

[P] minx∈X φL (x,y) (1)

s.t ϕL (x,y)≤ 0, (2)

where y(x) solves

miny∈Y φF (x,y) (3)

s.t ϕF(x,y)≤ 0, (4)

where x ∈ X ⊂ R,y ∈ Y ⊂ R and X ,Y are closed subsets and ϕL : X ×Y →
Rp, ϕF : X ×Y → Rq.

The upper level of the problem (1)–(2) is the leader’s problem, whereas the
lower level (3)–(4) corresponds to the follower’s problem The set S = {(x,y) :
x ∈ X ,y ∈ Y ,φL(x,y)≤ 0, φF(x,y)≤ 0} is called constraint set. The set Y (x) =
{y ∈ Y : φF(x,y) ≤ 0} is the feasible set of the follower for every given x ∈ X .
The set of all orthological reactions of the follower is the R(x) = {y ∈ Y : y ∈
arg minz∈Y (x) φF(z,y)}, while the set F = {x,y : (x,y) ∈ S ,y ∈ R(x)} is the set
of the feasible solution of the [BP]. A feasible point (x�,y�) ∈ F is a Stackelberg
equilibrium if φL(x�,y�)≤ φL(x,y) ∀ (x,y) ∈ F . This equilibrium point describes
the optimal leader’s strategy.
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Originally formulated as a mathematical model by Bracken and McGill [2, 3],
the [BP] has been studied extensively in the last decades due to its numerous
applications [1, 11, 16, 17].

A bilevel model can be linear, nonlinear, quadratic, etc., depending on the
problem it formulates. Consequently, various methodological approaches and algo-
rithms have been developed for its solution. Some recent application of the bilevel
programming can be found at [11, 16].

3 Optimal Facilities Location and Capacity Assignment
Under Customer Competition

In this section we assume that the producer addresses the supply chain as a
single market and therefore he may be considered as a monopolist who dominates
the market. Consequently, given the total demand of the chain, he can determine
the optimal location of distribution centers and their total capacity by applying a
combination of both the principles of the monopolistic market and the facilities
location models (see, e.g., [15] and [8], respectively).

As soon as the distribution centers are located and capacity is assigned to them,
the procurement of the customers is limited due to these decisions, since the sales
of the products to the customers is actually a capacity assignment process to these
distribution centers.

Therefore, the main problem of the supply chain management system under
consideration is to find an appropriate decision-making mechanism based on which
the location of the distribution centers will be, at individual level, advantageous for
all members of the network.

3.1 Optimal System Location

We assume that the producer tries to provide to the n customers the best, at his
opinion, service level at minimum cost. The evaluation of the offered service is
based on the delay faced by the customers at each distribution center i.

If xi j is the amount that the customer j buys from the distribution center i, then the
performance function di(xi) measures the level of service offered by the distribution
center i, where xi = ∑n

j=1 xi j.
Suppose that m is the set of potential sites for the location of the distribution

centers. We assume that the establishment of a distribution center to the candidate
site i implies a fixed location cost Fi. Furthermore, suppose further r j is the demand
of the customer j ( j = 1, . . . ,n) for the product, pi is the unit price paid by
customers at every distribution center and qi the capacity of the distribution center
i (i = 1, . . . ,m).
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The producer (the central coordinator) should choose the location of the distribu-
tion center such that the optimal benefit of the system is achieved. The aim is to find
the location of the facilities and to assign the customers to them so as to minimize
the total system cost. The mathematical model can be formulated as:

(SO−FL) min
m

∑
i=1

di(xi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j +
m

∑
i=1

Fiyi (5)

s.t
m

∑
i=1

xi j = r j, ∀ j (6)

xi ≤ yiqi, ∀i (7)

xi −
n

∑
j=1

xi j = 0, ∀i (8)

yi ∈ {0,1},∀i (9)

xi j ≥ 0, ∀i, ∀ j (10)

The objective function of problem (5) minimizes the total cost consisting of the
cost of the delay, plus the transportation and purchasing costs plus the cost involved
in setting up a distribution center. The constraints (6) ensure that the quantities
purchased by the customer j at all distribution centers meet his overall demand.
The constraints (7) impose that the total amount of the product available at each
distribution center i does not exceed its capacity. In addition, it enables that the
assignment of the customers’ demand only in sited distribution. The relations (8)
are the defining constraints of the model, ensuring the maintenance of flow in the
network.

Another important decision the producer should make is the determination
of the capacity of the distribution center. If the capacity is set at a level higher than
the demand faced by a distribution center, then the producer will bear the cost of
the capital committed to the production of this excess capacity. On the other hand,
a low level of capacity leads to an increasing service time and consequently to lost
sales since customers will be forced to seek service from other distribution center.

In the model discussed above, the capacity of a potential distribution center is
given in advance. However, the case where the capacity is not given but it must
be decided during the configuration of the system can be examined. In such a case
the performance function will depend not only on the total amount of the product
xi that the distribution center i sells but also on the decision made by the producer
concerning the level of the capacity qi i.e d(xi,qi). Essentially, this means that the
capacity assignment to a distribution center implies the location of this center, since
zero capacity implies a non-located distribution center.
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Hence, the producer should solve the following problem:

(SO−CA) min
m

∑
i=1

di(xi,qi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (11)

s.t
m

∑
i=1

xi j = r j , ∀ j (12)

xi ≤ qi, ∀i (13)

xi −
n

∑
j=1

xi j = 0, ∀i (14)

m

∑
i=1

αiqi ≤ B (15)

0 ≤ qi ≤Ui, ∀i (16)

xi j ≥ 0, ∀i, ∀ j (17)

The relations (15) impose the total amount of money spent in capacity investment to
m distribution center must not exceed the available budget B, while the constraints
(16) ensure that the capacity of the distribution center will not exceed U unit.

It is possible to add to the objective function a cost function similar to that of (5)
instead of the constraint (15), i.e., ∑m

i=1 Fi(qi) where Fi(·) are continuous function, to
depict the economies of scale produced by the different capacity assignment levels.

3.2 Bilevel Problem Formulation Under Customer Competition

The producer must take into account the reactions of customers in every decision
he takes and determine the final location of the distribution centers based on these
reactions. In other words, the producer should understand that he cannot control
the choices of the customers. Consequently he should use the Nash game, in
which the customers are involved, as an oracle in order to be able to predict their
reaction. That is, he should compute the total cost of the system based on the
reactions of the customer to every decision he makes and select the most satisfactory.

The problem can be formulated as bilevel programming model:

(BSO−FL) min[yi] ∑
m
i=1 Fiyi +∑m

i=1 di(x̄i)x̄i

+∑m
i=1 pix̄i +∑m

i=1 ∑n
j=1 ti j x̄i j (18)

s.t yi ∈ {0,1}, ∀i (19)

where [x̄i] and [x̄i j] solve
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(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)dt

+
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (20)

s.t
m

∑
i=1

xi j = r j, ∀ j (21)

xi ≤ qiyi, ∀i (22)

xi −
n

∑
j=1

xi j = 0, ∀i (23)

xi j ≥ 0 ∀i, j (24)

According to this model, the leader (producer) decides the location of distribution
centers solving the problem (18)–(19), but he does not control the variables xi and
xi j since they describe the choices of his customers. The values of the variables [x̄i]
and [x̄i j] are derived from the model (20)–(24) corresponding to an oracle. In other
words, the leader uses (20)–(24) as an oracle to discover trends / reactions of the
customers in each potential location and tries to minimize the total cost of the system
based on these discoveries.

The bilevel capacity assignment problem can be formulated analogously:

(SO−CA) min
[qi]

m

∑
i=1

di(x̄i,qi)x̄i

m

∑
i=1

pix̄i +
m

∑
i=1

n

∑
j=1

ti j x̄i j (25)

s.t
m

∑
i=1

αiqi ≤ B (26)

0 ≤ qi ≤Ui, ∀i (27)

where [x̄i] and [x̄i j] solve

(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)d(t)+

m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (28)

s.t
m

∑
i=1

xi j = r j, ∀ j (29)

xi ≤ qi, ∀i (30)

xi −
n

∑
j=1

xi j = 0, ∀i (31)

xi j ≥ 0, ∀i, j (32)
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Table 1 Parameters of the example

ti j pi qi Fi

C1 C2 C3 C4 C5

F1 15 16 15 13 17 14 2,350 950
F2 19 25 30 26 17 16 1,350 1,600
F3 27 15 21 29 16 15 1,000 1,700

r j

C1 C2 C3 C4 C5

400 500 450 600 350

According to this model, the producer determines the capacity of the distribution
centers by solving the problem (25)–(27). The customers fully informed about the
decisions of the producer, choose the distribution center which ensures them the
optimal level of service by solving the problem (28)–(32). The leader knows that
the selection of the customers is based on this criterion, and due to this reason he
uses the problem (20)–(24) as a tool to predict the trends / reactions of customers in
each potential location.

3.3 Numerical Comparison of the Models

The aim of this section is to clarify the differences in the decision-making process
that are proposed by the models (5)–(10) and (18)–(24). Furthermore, the purpose
of this section is to determine the negative results of the incorrect choice of location.
For this reason we will employ a randomly generated numerical example.

We consider the case where the producer has 3 potential sites for the establish-
ment of distribution centers that should satisfy the demand of 5 customers. These
sites differ with each other not only in the available capacity but also in the fixed
location cost.

The performance function is given by the equation:

di(xi) =
1

qi − xi
, (33)

and the total unit cost is calculated using the formula:

c̃i j(xi) = di(xi)+ xi
∂di(xi)

∂xi
+ pi + ti j. (34)

Table 1 presents all the necessary parameters.
The Problems (SO-FL) and (BSO-FL) were modeled using the mathematical

programming language AMPL and solved, after implementing a branch-and-bound
scheme, by the MINOS 5.5 solver. Figure 1 depicts the flow of customers to
distribution centers arising after the solution of the problem.
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Fig. 1 Optimal system location vs. location based on customer competition

As it is shown in Fig. 1a, when the producer is interested in minimizing the
“average” cost faced by the customers plus the location cost (i.e., when the (SO-FL)
is solved), a single distribution center is located and all customers fullfil their
demands there.

The basic question is then: Does this assignment satisfy all the customers? If we
look at the unit cost of the solution in Table 2 we observe that the assignment, for
example, of the C2 to the distribution of center F1 results to a unit cost of 30.60,
which is not the minimum that could be faced by this particular customer, since the
unit cost at the distribution center F3 is lower (30 vs. 30.6).

Figure 1b shows the optimal location when the producer solves the problems
(20)–(24) i.e., when the producer tries to identify the reaction/trends of the
customers to his location options. The optimal location of this scenario indicates
that a second distribution center must be opened and customer C2 will choose to
satisfy the maximum amount of his demand from this distribution center.

It is obvious that in terms of location cost, the solution proposed by the second
model is more expensive. So, naturally arises the question “why should the producer
take into account the behavior of the customers instead of accepting the solution of
the first model?”

By comparing the two figures we can conclude that the customer 2 has “escape”
trends in the sense that if a new distribution center will be opened (either by the
producer himself or even worse by a competitor selling the same product) then the
the larger part of the customer’s demand will be lost. In the next section, we will
examine in more detail the location decision under competition among producers.
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Table 2 Solution results of the problems (SO-FL) and (BSO-FL)

SO-FL BSO-FL
Total cost: 68,630 Total Cost: 69,051.25

Unit cost Quantity Unit cost Quantity

C11 28.60 400 28.06 400
C21 35.00 0 34.02 0
C31 42.00 0 43.06 0
C12 30.60 500 30.06 25
C22 41.00 0 40.02 0
C32 30.00 0 30.06 475
C13 29.60 450 29.057 450
C23 46.00 0 45.02 0
C33 36.00 0 37.06 0
C14 27.60 600 27.06 600
C24 42.00 0 42.02 0
C34 44.00 0 45.06 0
C15 31.60 350 31.05 350
C25 33.00 0 32.02 0
C35 31.00 0 32.06 0

4 Duopoly

In a supply chain network where there are more than one producers, none of them
has the power (monopolistic power) to direct customers to distribution centers.
Thus, as a result, the offered service level and the customer satisfaction are the
basic differentiation and discrimination components among economic units of the
same sector.

In this section we examine the impact of the producers’ competition for the
customers attraction, first to the location decisions and second of setting capacity
assignment to distribution centers. We examine a duopolistic supply chain network.
We assume that producers compete by taking part in Nash game. They try to attack
the customers’ demand by providing the optimal service level, that is the one which
minimizes the costs arising from the customers reaction to their decision.

Definition 1. A Nash equilibrium for this duopolistic game corresponds to a set of
location and capacity choices (strategies), which ensure that none of the players are
better of by unilaterally changing his strategy.

We assume further that the customers participate in a second Nash game in order
to ensure the optimal service level for themselves.

We formulate the problem as a bilevel model, where the two producers determine
the optimal location and capacity of the distribution centers, by taking into account
the choices and the requirements set by the customers for the offered service level.

The competition among the members of the supply chain has been studied
extensively in the literature [4–6, 18, 19]. The vast majority of this scientific work
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has be carried out in the framework of the classical economic theory of duopoly. The
competition takes place either by fixing the price level or by determining production
levels that maximize the profit of the producer. In addition, in all these models the
decision-making process takes place in a single level.

The competition models that will be developed in the next section refer to the
competition between two producers but can easily be extended in the case where
more than two producers participate.

4.1 Competitive Facility Location when Customers Participate
in Their Competitive Game

Let’s assume that the potential location of distribution centers i = 1, . . . ,m are
dispersed between the two producers who in turn are involved in a competition for
customer attraction through the provided service level. Let M1 and M2 (m = |M1|+
|M2|) be the nodes of the two producers, respectively. Then, under the assumption
that both producers “announce their strategies simultaneously,” we obtain a Nash
game with two players who are dealing (for K = 1,2) with the following problems:

The facility location problem of the producer 1:

(CFL1) min ∑
i∈M1

Fiyi

+ ∑
i∈M1

di(x̄i)x̄i + ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

ti j x̄i j (35)

s.t yi ∈ {0,1},∀i ∈ M1 (36)

The facility location problem of the producer 2:

(CFL2) min ∑
i∈M2

Fiyi

+ ∑
i∈M2

di(x̄i)x̄i + ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

ti j x̄i j (37)

s.t yi ∈ {0,1},∀i ∈ M2 (38)

where [x̄i] and [x̄i j] solve (20)–(24)
Let Y = {yi|yi ∈ {0,1},∀i ∈ Mk} be the feasible sets of the players for k = 1,2,

yk = [yi]i∈Mk and y =

[
y1

y2

]
. We have already mentioned the existence of optimal

solutions x̄i and x̄i j for given capacity [q̄i]. Thus, there is a function from R
m to R

m,
such that for a given ȳ it returns the unique equilibrium point [x̄i] from (20)–(24)
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and a corresponding mapping from R
m to R

m·n such that for a given ȳ it returns an
optimal transportation plan [x̄i j], which correspond to the equilibrium point [x̄i], thus
it holds that x̄i = xi(ȳ) and x̄i j = xi j(ȳ), respectively.

Hence problems (CFLk) could be formulated as a single-level problems:

(SCFLk) min
yk∈Yk

∑
i∈Mk

di(xiy),yi)xi(y)+ ∑
i∈Mk

pixi(y) (39)

+ ∑
i∈Mk

n

∑
j=1

ti jxi j(y) (40)

Each problem, (SCFLk) corresponds to player k who is involved into the Nash
game.

Similarly, we can formulate the competitive capacity assignment of these two
producers.

The problem of the first producer:

(P1) min
[qi]

∑
i∈M1

di(x̄i,qi)x̄i ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

ti j x̄i j (41)

s.t ∑
i∈M1

αiqi ≤ B, (42)

0 ≤ qi ≤Ui, ∀i ∈ M1 (43)

The problem of the second producer:

(P2) min
[qi]

∑
i∈M2

di(x̄i,qi)x̄i ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

ti j x̄i j (44)

s.t ∑
i∈M2

αiqi ≤ B, (45)

0 ≤ qi ≤Ui, ∀i ∈ M2 (46)

where [x̄i] and [x̄i j] solve (28)–(32)
Let Qk = {qi ∈R|∑i∈Mk

aiqi ≤ B, 0 ≤ qi ≤Ui, ∀i ∈ Mk} for = 1,2, the feasible

sets of the player, qk = [qi]i∈Mk and q =

[
q1

q2

]
. We have already mentioned the

existence of optimal solution x̄i and x̄i j for given capacity [q̄i]. Thus, there is a
function from R

m to R
m, such that for given q̄ it returns the unique equilibrium

point [x̄i] from (28)–(32). There is also a respective mapping forRm toRm·n such that
for a given q̄ it returns an optimal transportation plan [x̄i j] which corresponds to [x̄i].



84 A. Karakitsiou

We can then write that x̄i = xi(q̄) and x̄i j = xi j(q̄). Therefore the problem (Pk) could
be stated as single-level problems. For k = 1,2 we will have:

(SLPk) min
qk∈Qk

∑
i∈Mk

di(xi(q),qi)xi(q)+ ∑
i∈Mk

pixi(q)+ ∑
i∈Mk

n

∑
j=1

ti jxi(q) (47)

where the problem (SLPk) is faced by the player k of the Nash game.

4.2 The Impact of the Duopoly in the Service Level

In this part we extend the analysis of Sect. 3.3 in order to make inferences on
the impact of the competition of producers with respect to the service level offered.
We assume that both producers have the opportunity to locate distribution centers in
the same area, where they face exactly the same fixed location cost.

The corresponding problems were specified using the parameters listed in Table 1
and were modeled using the mathematical programming language AMPL and
solved by the MINOS 5.5 solver.

In order to be able to find the Nash equilibrium points of the game, it is useful to
transfer it into its normal bimatrix form.

It should be mentioned that a bimatrix game in strategic or normal form
formulates a non-repeatable situation where rational players choose their strategies
independently and simultaneously, having full information about the game details.
Specifically, each player knows (a) the number of the players, (b) the pure strategies
available to each player, and (c) all the possible outcomes of the game. This
knowledge is common i.e., each player knows that all other players are rational
and all players know that all players know this and so on. Since players decide
simultaneously, none of them knows the choice of others when deciding. In other
words, when a player chooses his strategy he does not know in advance and with
certainty the choices of his competitors but he can assume that his opponents, being
rational, are reasong along the same lines.

In our case the available strategies for the players are the choices for the location
or not of a distribution center in the candidate region i, i = 1,2, . . . ,8. Assuming
that the regions are listed in numerical order, Table 3 presents all the strategies for
each player where 1 means that the player k opens the corresponding distribution
center while 0 that the corresponding center do not open and so player does not pay
the fixed costs.

Table 3 The players strategies

Sk1 Sk2 Sk3 Sk4 Sk5 Sk6 Sk7 Sk8

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
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Table 4 Loss function of producer 1

S21 S22 S23 S24 S25 S26 S27 S28

S11 – 0 – – 0 0 0 0
S12 68630 33828.75 68630 53104.29 33828.75 33828.75 53104.29 33828.75
S13 – 1600 47722.5 52071.46 1600 1600 1600 1600
S14 – 16327.14 36806.27 – 16327.14 11509.86 23405.71 11509.86
S15 70230 35428.75 70230 54704.29 35428.75 35428.75 54704.29 35428.75
S16 69081.43 35528.75 69081.43 59392.99 35528.75 35528.75 59392.99 35528.75
S17 88877.73 17577.14 62351.44 63041.43 18041.29 12823.92 44773.36 12823.92
S18 70681.43 37128.75 70681.43 60962.93 37128.75 37128.75 60962.93 37128.75

Table 5 Loss function of producer 2

S21 S22 S23 S24 S25 S26 S27 S28

S11 – 68630 – – 70230 69556.4 88227.7 71156.43
S12 0 34428.75 1600 15977.14 36028.75 35528.75 17577.14 44853.75
S13 – 68630 47772.5 36806.27 70230 70330 70980 71930
S14 – 52754.29 52071.46 – 54354.29 59375.99 63041.43 61122.28
S15 0 34428.75 1600 15977.14 36028.75 36128.75 17577.14 37728.75
S16 0 34428.75 1600 11356.92 36028.75 36128.75 12926.86 42482.61
S17 0 53104.29 26464.53 23405.71 54704.29 59495.93 43223.36 61095.93
S18 0 34428.75 1600 11356.92 36028.75 36128.75 12956.92 37728.75

Tables 4 and 5 contain the solution results of the CFLk (for k = 1,2) for all pairs
of strategies, that is, they are the loss matrices of players 1 and 2, respectively. Thus,
they present the cost paid by each producer for every possible outcome of the game.
Tables 4 and 5 suggest that there are 4 Nash equilibria:

1. The pair of strategies (S11,S22) according to which only player 2 opens a
distribution center in region 1.

2. The pair of strategies (S12,S21) according to which only player 1 opens a
distribution center in region 1.

3. The pair of strategies (S13,S24) which suggests that producer 1 opens a distribu-
tion center in region 2 and producer 2 in the region 3.

4. The pair of strategies (S14,S23) which suggests that producer 1 opens a distribu-
tion center in region 3 and producer 2 in the region 2.

The Nash equilibria appear symmetrical, which is a natural result of players’
symmetry not only in strategies but also in costs functions.

Figure 2 shows all possible outcomes of the game in a Cartesian space. These
points are represented by the EV and EP. Points EP correspond to the four
Nash equilibrium points. It is evident from the Fig. 2 that no equilibrium point
is dominated by another. The indeterminacy phenomenon, often inherent to Nash
games, does not allow us to conclude directly about the actual outcome of the game.
In fact an disequilibrium is possible, if, for example, the first player persists in the
strategy S12, while the second player persist in the equilibrium S24. The pair of
strategies (S12,S24) does not correspond to an equilibrium.



86 A. Karakitsiou

Fig. 2 Set of outcomes. Points EV and EP not MP1 and MP2

Nevertheless, we can assume that in a real situation, players will focus on some
of the equilibrium point and they will ignore others. The equilibrium points in which
the players will focus their attention are referred to as focal equilibrium points.

In our case it is easy to report that points (S11,S22) and (S12,S21), where only
one player should install a single distribution center may not be focal equilibrium
point. One reason is the mere fact that a player examines where and how distribution
centers will open makes the decision of his opponent to open somewhere some
center to be almost taken. In other words, by putting himself in his opponent’s
position he will reject the possibility to allow the opening of the distribution center
only by his competitor. Indeed, by making a complete analysis of the game he
will realize that having a single distribution center does not satisfy all customers.
Additionally, he understands that there will be tendency to escape by some of them,
as we have already seen in Sect. 3.3 and is demonstrated in Fig. 1 and consequently
his competitor will take advantage of this escape. Therefore the focal equilibrium
point of the game are points (S13,S24) and (S14,S23).

According to this analysis, the first two pairs of strategies although they are
equilibrium points they will never be followed by the player. Players participate
in the game, having already decided to enter in the network. Thus the choice of
either strategy S11 of the producer 1 or the S21 of the producer 2 is not compatible
with such a decision. Consequently, under real circumstances, only the equilibrium
points (S13,S24) and (S14,S23) are possible outcomes of the game.

Observe that producers, taking into account the competition of customers with
respect to the service, will choose to operate their distribution centers in different
locations trying to attract non satisfied customers of their competitor. It should be
noted that, the equilibrium points guarantee the fulfillment of customer demand at
the minimum cost while satisfying their preferences about the service level they
receive. Table 6 confirms this finding.
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Table 6 The effect of the equilibrium point (S13,S24) and (S14,S23) to the game of the customers

Equilibrium point (S13,S24) Equilibrium point (S14,S23)

Producer 1 Producer 2 Producer 1 Producer 2

Unit cost Quantity Unit cost Quantity Unit cost Quantity Unit cost Quantity

C11 35.76 0 35.76 0 C11 35.76 0 35.76 0
C21 35.76 400 35.76 0 C21 35.76 0 35.76 400
C31 35.76 0 35.76 0 C31 35.76 0 35.76 0
C12 32.76 0 32.76 0 C12 32.76 0 32.76 0
C22 32.76 0 32.76 0 C22 32.76 0 32.76 0
C32 32.76 0 32.76 500 C32 32.76 500 32.76 0
C13 38.76 0 38.76 0 C13 38.76 0 38.76 0
C23 38.76 0 38.76 0 C23 38.76 0 38.76 0
C33 38.76 0 38.76 450 C33 38.76 450 38.76 0
C14 42.76 0 42.76 0 C14 42.76 0 42.76 0
C24 42.76 600 42.76 0 C24 42.76 0 42.76 600
C34 42.76 0 42.76 0 C34 42.76 0 42.76 0
C15 33.76 0 33.76 0 C15 33.76 0 33.76 0
C25 33.76 311 33.76 0 C25 33.76 0 33.76 311
C35 33.76 0 33.76 39 C35 33.76 39 33.76 0

The comparison of Tables 2, 4 and 5 certifies that the competitive location of
the distribution centers is, in terms of total cost, more beneficial for each producer.
No matter which of these two equilibria will be chosen the cost that each producer
is going to deal with is smaller in comparison with the total cost of the system
optimum and the cost of the monopolistic solution which takes into consideration
the competition of the customers.

However, the indeterminacy among the focal equilibrium points cannot easily
be eliminated. These two focal equilibrium are symmetric in terms of total cost
(36,806, 52071.46) and (52071.46, 36,806), respectively. As illustrated in Fig. 3
both structures of the network distribute symmetrically the customers’ demand.
Table 6 demonstrates that this distribution is a robust equilibrium for the customers’
game, since none of them wants to deviate from it. Therefore, the existence of those
loyal customer for any of the focal outcome should satisfy the competing producers.

It should be mentioned that we do not consider equilibrium in mixed strategies
although we could examine their existence using the free and open source software
Gambit [20]. The reason we ignore mixed strategies is that they may propose
expected cost for the competing producers which generally do not correspond to
an equilibrium of the customers. For the same reason we can ignore the Nash
arbitration solution. A simple analysis which takes into consideration points MP1
and MP2 in Fig. 2 can convince us. First, the point MP1 is pareto dominated by
MP2, therefore it cannot be a Nash arbitration point. On the other hand, point MP2
which represents the pair of total cost (33,315, 34,315) does not correspond to
costs (35) and (37) which are calculated for an equilibrium of customers. Such a
decision of the competitors would lead to a situation where customers would tend
to escape. The nearest point to (34,315, 34,315), which has been estimated based on
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F11 F12 F13 F21 F22 F23
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Location according to Nash equilibrium S13, S24

F11 F13F12 F21 F22 F23

1 2 3 4 5400
500 450 600

40
310

Location according to Nash equilibrium S14, S23

Fig. 3 Competitive facility location

an equilibrium of customers, is the point (33,828, 34428.75) corresponding the pair
(S12,S22) open a center, the first one. However, in a competitive environment, the
competitors should not have opportunities for such agreements.

5 Conclusion

The aim of this work was to formulate problems of facility location and capacity
assignment resulting from the competitive behavior of economic unit operating in a
supply chain network. Within this context we examined two different types of mod-
els. In the beginning we considered the case where the producer controls the overall
supply network and tries to choose the facility location and capacity allocation plan
that minimizes the total system cost. Next, we expand the formulation in order to
take into account the purchasing behavior of customers. In this case the problem is
formulated as bilevel programming problem.

In addition we proposed a bilevel problem with two leaders. This model describes
the competition between the two producers in order to attract customers through the
quality of the service they provide. The results of the analysis of a random example
indicate that the competitive location decisions proposed by the model are the most
effective since it minimizes the cost of the system as perceived by producers while
they handle of customer behavior.
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In conclusion, we could say that the competition of the producers in terms of the
service level they provide competition increases the benefit of the purchasers since
it ensures:

1. High service level
2. Low cost with declining trends.
3. Improvement of the producer flexibility and their adaptation to the market needs.
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