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Preface

It is a pleasure to introduce this book entitled Optimization Theory, Decision
Making, and Operational Research Applications, of the series Springer Proceedings
in Mathematics, which contains selected, refereed Proceedings from the 1st
International Symposium and 10th Balkan Conference on Operational Research
(BALCOR 2011).

This conference is an established biennial event attended by a large number
of Operational Research (OR) scientists, instructors, and students, not only from
the Balkan countries but also usually from all over Europe. In order to promote
the conference and to attract people not only from Europe, but also from all
over the world, it was decided to extend it with the 1st International Symposium
on Operational Research in Thessaloniki. According to the number of different
countries of the participants, we believe that this goal was achieved.

The general aim of the conference is to facilitate the exchange of scientific
and technical information related to OR and to promote international cooperation
especially among the Balkan countries. The conference was co-organized by
the Branch of Macedonia-Thrace of the Hellenic Operational Research Society
(HELORS) and the University of Macedonia, Economic and Social Sciences.
It took place in the Holiday Inn Thessaloniki Hotel, Greece, 22–24 September
2011. The conference chair was Prof. Athanasios Migdalas, supported by the
seven board members of the Branch of Macedonia—Thrace of HELORS, Prof.
G. Arabatzis, Prof. C.K. Georgiadis, Dr. L. Karamitopoulos, Prof. V. Kostoglou,
Dr. J. Papathanasiou, Dr. A. Sifaleras, and Dr. E. Stiakakis. Around 110 papers
were presented in 32 streams, including combinatorial optimization, stochastic
optimization, multibojective optimization, computational operational research, par-
allel processing in OR, multicriteria decision making, data envelopment analysis,
inventory management, project management, etc. BALCOR 2011 was attended by
participants from around 20 different countries, both from the Balkans and from
France, Israel, Russia, Brazil, China, Algeria, Iran, etc.

Three plenary talks were given by eminent researchers in the field of opti-
mization. Professor Vangelis Th. Paschos opened the conference by addressing
the possible trade-off between polynomial approximation and exact computation.

vii



viii Preface

He demonstrated how to use the ideas from both fields in order to design approxi-
mation algorithms for several combinatorial problems. Professor Nenad Mladenovic
presented an overview of variable neighborhood search (VNS) meta-heuristic, and
surveyed VNS-based approaches for solving the Travelling Salesman Problem
(TSP). Finally, Prof. Leo Liberti presented theory and applications of combinatorial
methods in Euclidean distance geometry to the protein visualization problem.

Apart from the funds provided by the co-organizers, University of Macedonia,
Economic and Social Sciences, the conference attracted the sponsorship of well-
known optimization software companies, such as LINDO Systems, Inc., Banxia
Software Ltd., and Marathon Data Systems. These companies provided single-
user professional software licenses of LINGO, What’s Best, LINDO API, Frontier
Analyst, or Decision Explorer as the best paper awards. They were given to
the authors of four papers, selected by the Program Committee as these present
interesting optimization models and methods.

This volume is dedicated to the memory of Prof. Konstantinos Paparrizos who
passed away on Tuesday, December 6, just a few months after the BALCOR 2011
conference.

Professor Konstantinos Paparrizos was born in 1949 in Kozani, Greece. He
earned his B.Sc. degree with honors in Mathematics from the Aristotle University
of Thessaloniki, Greece (1972) and an M.Sc. and PhD both of them with honors in
Operations Research (Minor in Computer Science) from the Case Western Reserve
University, Cleveland OHIO, USA, in 1981 and 1983, respectively. He was a full-
time professor at the Department of Applied Informatics, University of Macedonia,
Economic and Social Sciences, Greece, Thessaloniki and also a professor in the
Hellenic Open University, since 2008.

The late Prof. K. Paparrizos was a founding member of the Branch of Macedonia-
Thrace of the Hellenic Operational Research Society. He was also a member of
INFORMS and of the International Honorary Society OMEGA RHO, Case Western
Reserve University Student Chapter. He served as a member of the Editorial Board
of the Operational Research: An International Journal and the Yugoslav Journal of
Operations Research. He also served as a member of the scientific and organizing
committee of several Balkan Conferences on Operational Research in the past, as
also in the recent BALCOR 2011 in Thessaloniki.

Professor K. Paparrizos was an established expert in the area of optimization
algorithms. His research interests included mathematical programming, linear
programming and network flows, design and analysis of algorithms, and data
structures. He had significant research contributions in the design and analysis of
exterior point simplex-type algorithms for linear and network optimization problems
and also published several papers in leading international peer-reviewed journals
(e.g., Mathematical Programming).

Thessaloniki, Greece Athanasios Migdalas
Angelo Sifaleras

Christos K. Georgiadis
Jason Papathanasiou
Emmanuil Stiakakis
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A Markov-Based Decision Model of Tax Evasion for Risk-Averse
Firms in Greece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Nikolaos D. Goumagias and Dimitrios Hristu-Varsakelis

Stochastic Decentralized Control of a Platoon of Vehicles
Based on the Inclusion Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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Moderately Exponential Approximation:
Bridging the Gap Between Exact Computation
and Polynomial Approximation

Vangelis Th. Paschos

Abstract This paper proposes a way to bring together two seemingly “foreign”
domains that are the polynomial approximation and the exact computation for NP-
hard problems. We show how one can match ideas from both areas in order to design
approximation algorithms achieving ratios unachievable in polynomial time (unless
a very unlikely complexity conjecture is confirmed) with worst-case complexity
much lower (though super-polynomial) than that of an exact computation.

1 Introduction

The two most known paradigms to come up with NP-hard problems are either
the exact computation (i.e., the computation of optimal solutions for them) or
the heuristic resolution, i.e., the development of fast algorithms that hopefully
compute near-optimal solutions. Notable part of the heuristic paradigm is the
so-called polynomial approximation where one tries to devise polynomial algo-
rithms computing feasible solutions that are close to optimal under an a priori
criterion called approximation ratio.

Both exact computation and polynomial optimization are very active areas
in theoretical computer science and combinatorial optimization. Dealing with
the former, very active research has been conducted around the development of
optimal algorithms with nontrivial worst-case complexity. As an example, let
us consider MAX INDEPENDENT SET. Any optimal algorithm can solve it with
complexity O∗(2n) (where O∗(·) is as O(·) ignoring polynomial factors), where n is
the order of G (i.e., the cardinality of V ) by exhaustively examining all the subsets
in 2V and by taking the largest among them that forms an independent set; hence,

V.Th. Paschos (�)
LAMSADE, CNRS UMR 7243 - Université Paris-Dauphine and Institut
Universitaire de France, 103, boulevard Saint-Michel, 75005 Paris, France
e-mail: paschos@lamsade.dauphine.fr

A. Migdalas et al. (eds.), Optimization Theory, Decision Making, and Operations Research
Applications, Springer Proceedings in Mathematics & Statistics 31,
DOI 10.1007/978-1-4614-5134-1_1, © Springer Science+Business Media New York 2013
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2 V.Th. Paschos

an interesting question is if we can compute a maximum independent set with
complexity O∗(γn), for γ < 2. More about such issues for several combinatorial
problems can be found in [42] and in the more recent book by Fomin and Kratsch
[29]. This area has known a renew of the researcher’s interest not only due to
numerous pessimistic results in polynomial approximation but also due to the
fantastic increase of the computational power of modern computers.

On the other hand, dealing with polynomial approximation, very intensive
research since the beginnings of 1970s has led to numerous results exhibiting
possibilities but also limits to the approximability of NP-hard problems. Such limits
are expressed as statements that a given problem cannot be approximated within a
certain approximation level (for instance, within a constant approximation ratio)
unless a very unlikely complexity condition (e.g., P = NP) holds. A very rich
landscape of the polynomial approximation area can be found in [2, 34, 39, 41].
Since the beginning of 1990s, and using the celebrated PCP theorem [1], numerous
natural hard optimization problems are proved to admit more or less pessimistic
inapproximability results. For instance, MAX INDEPENDENT SET is inapproximable
within the approximation ratio better than nε−1, unless P = NP, [43].

These two areas have remained foreign for long time and until very recently.
Researchers in any of them produced results fitting the corresponding paradigm and
without links with the other one. Staring point of this work is the idea that both
of them can be linked by mutual exchanges of tools and concepts, in order that
new results and ideas are established handling solution mechanisms of NP-hard
problems. For instance, it is interesting to efficiently approximate such problems
by devising algorithms that achieve approximation ratios that cannot be achieved in
polynomial time, with a worst-case complexity that is significantly lower (though
super-polynomial) than the complexity of a exact computation. This issue is called
moderately exponential approximation in what follows.

2 What Is Moderately Exponential Approximation?

An optimization problem Π is in NPO if the decision version of Π is in NP.
Formally, an NPO problem Π is defined as a four-tuple (I ,sol,m,opt) such that:
I is the set of instances of Π and it can be recognized in polynomial time; given
x ∈ I , sol(x) denotes the set of feasible solutions of x; for every y ∈ sol(x), |y|
is polynomial in |x|; given any x and any y whose length is polynomial in |x|, one
can decide in polynomial time if y ∈ sol(x); given x ∈ I and y ∈ sol(x), m(x,y)
denotes the value of y for x; m is polynomially computable and is commonly called
feasible value, or objective value; finally, opt∈ {max,min} denotes the optimization
goal for Π . The set of NP optimization problems forms the class NPO. Given an
instance x of an NPO problem Π = (I ,sol,m,opt), and a feasible solution y for x,
we denote by opt(x) the value of an optimal solution of x.

For an approximation algorithm A computing a feasible solution y for x with
value mA(x,y), its approximation ratio on y is defined as ρAΠ (x,y) =mA(x,y)/opt(x).
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The approximation ratio ρAΠ of A is then defined as the worst1 over any instance x ∈
I , of ρAΠ (x,y). In what follows, whenever it is understood, references to problemΠ
and/or A will be dropped.

Polynomial approximation is a very active area since the beginning of the 1970s.
The celebrated paper by Johnson [36] is considered as the startpoint of this
research program that has dominated a large part of the research conducted in
complexity theory. On the other hand, exact solution of combinatorial problems
is a natural requirement that remains in the heart of the research in combinatorial
optimization and in operational research more generally. These two approaches
are complementary in the sense that, informally, the former gives priority to fast
computation of feasible solutions against optimality, while, for the latter, priority is
given to solutions’ optimality against speed of such computation.

If the area of exact computation is in the heart of combinatorial optimization
since the beginnings of this domain, the main concerns of a large majority of
its researchers were rather about the design of clever solution algorithms (mainly
based upon tree-search procedures, dynamic programming, etc.) than the precise
estimation of their running-time. Before the middle of 1990s, when a broad
research program around such concerns has been built, fairly little research has been
dedicated to this issue.

On the other hand, numerous open questions, posed since the beginnings of
polynomial approximation as, for example, the approximation of MAX INDEPEN-
DENT SET2 within constant ratio, have received strongly negative answers with
the proof of the famous PCP theorem (carrying over a novel and fine charac-
terization of NP [1]). Similar answers, known as inapproximability or negative
results in polynomial approximation theory, have been provided for numerous other
paradigmatic optimization problems, as MIN SET COVER,3 MIN VERTEX COVER,4

MIN COLORING,5 etc. Informally, an inapproximability result is a statement that
a problem is not approximable within ratios better than some approximability level
unless something very unlikely happens in complexity theory (for example, P=NP,
or the Exponential Time Hypothesis (ETH), saying that no problem in NP can be
solved in sub-exponential time, is disproved, or . . . ). For instance, we know today
that under several more or less strong complexity hypotheses:

• MAX INDEPENDENT SET or MAX CLIQUE is inapproximable within
ratios Ω

(
n−1

)
[43]

1The min if Π is a maximization problem, the max, otherwise.
2Given a graph G(V,E), MAX INDEPENDENT SET consists of finding a set S ⊆V of maximum size
such that for any (u,v) ∈ S×S, (u,v) /∈ E.
3Given a ground set C of cardinality n and a system S = {S1, . . .,Sm} ⊂ 2C , MIN SET COVER

consists of determining a minimum size subsystem S ′ such that ∪S∈S ′S =C.
4Given a graph G(V,E), MIN VERTEX COVER consists of finding a set C ⊆ V of minimum size
such that, for every (u,v) ∈ E, either u, or v belongs to C.
5Given a graph G(V,E), MIN COLORING consists of determining a minimum-size partition of V
into independent sets.
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Fig. 1 The approximability gap for MAX INDEPENDENT SET

• MIN VERTEX COVER is inapproximable within ratio 2− ε for any fixed constant
ε < 1 [37]

• MIN SET COVER is inapproximable within ratios o(logn) [28]
• MIN INDEPENDENT DOMINATING SET is inapproximable within ratios o(n) [32]
• MIN TSP is inapproximable within better than exponential ratios, [39];
• MIN COLORING is inapproximable within ratios o(n) [43]

These results exhibit large gaps between what it is possible to do in polynomial
time and what becomes possible in exponential time. Let us take, once again, the
case of MAX INDEPENDENT SET. As mentioned above, it is proved in [43] that
this problem is inapproximable within ratio better than O(nε−1), unless P = NP
(note that any approximation algorithm trivially achieves approximation ratio O(n)
in polynomial time). We so are faced with a huge gap impossible to be bridged in
polynomial time (Fig. 1).

Hence, a natural question is how much time takes the computation of an
r-approximate solution, for r ∈ [nε−1,1[? Of course, we have a lower bound to
this time (any polynomial to the size of the instance) and also an upper bound (the
running time of exact computation). But:

• Can we devise, for some ratio r, an r-approximate algorithm with an improved
running time located somewhere between these bounds?

• Is this possible for any ratio r, i.e., can we specify a global relationship between
running time and approximation ratio?

In this paper, we try to bring answers to these questions by matching ideas
and results from exact computation and from polynomial approximation (mainly
around approximation preserving reductions). This issue has been also marginally
handled in [5] for minimum coloring and more systematically in [10]. It is handled
in [11, 20] for MIN SET COVER, in [19, 31] for MIN BANDWIDTH, in [12] for MIN

INDEPENDENT DOMINATING SET, in [8] for dominating clique problems, in [6]
mainly for STEINER TREE and for TSP, in [27] for MAX SAT, in [21] for capacitated
dominating set, . . . Moderately exponential approximation has been also handled in
[17, 18, 24], though in a different setting and with different objectives oriented
towards development of fixed-parameter algorithms (see [23] for more details about



Moderately Exponential Approximation 5

fixed parameter tractability). In the same setting, we quote the paper by Brankovic
and Fernau [15] that improves a result of [9,14] on parameterized approximation of
MIN VERTEX COVER. A different but very interesting kind of trade-off between
exact computation and polynomial time approximation is settled in [40]. Note
finally that trade-offs between approximation ratio and running time have already
been studied for polynomially solvable problems (but with practically long running
times) such as the MAX MATCHING6 problem.

In what follows in this paper, we sketch some basic techniques for moderately
exponential approximation and illustrate them on some paradigmatic combinatorial
optimization problems.

Before closing this section we give some notations that will be used later.
Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In
what follows, using notations in [42], for an integer n, we express running-time
bounds of the form p(n) ·T(n) as O∗(T (n)) by ignoring, for simplicity, polynomial
factors. We denote by T (n) the worst-case time required to solve the considered
combinatorial optimization problem with n variables. We recall (see, for instance,
[26]) that, if it is possible to bound above T (n) by a recurrence expression
of the type T (n) ≤ ∑T (n − ri) + O(p(n)), we have ∑T (n − ri) + O(p(n)) =
O∗(α(r1,r2, . . .)

n), where α(r1,r2, . . .) is the largest zero of the function f (x) =
1−∑x−ri .

Given a graph G(V,E), we denote by n the size of V , by α(G) the size of a
maximum independent set of G and by τ(G) the size of a minimum vertex cover
of G. Also, we denote by Δ(G) the maximum degree of G. Given a subset V ′
of V , G[V ′] denotes the subgraph of G induced by V ′. Sometimes, for a graph G,
we denote by V (G) its vertex-set.

3 Generating a “Small” Number of Candidate Solutions
or Exhaustively Searching a Small Part of Instance

The key idea of this technique consists of generating a “small” number of candidate
solutions for a given problem and of finally choosing the best of them for the final
solution of the problem.

For instance, assume that the problem to solve is the MAX INDEPENDENT SET,
consider a graph G(V,E) of order n and run the following algorithm:

• Generate all the
√

n-subsets (subsets of cardinality
√

n) of V
• If one of them is independent, then output it
• Otherwise output a vertex at random

6Given a graph G(V,E), a matching is a set E ′ ⊆ E that they have no common endpoints; the MAX

MATCHING problem consists of determining a matching of maximum size.
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It is easy to see that the approximation ratio of this algorithm is n−1/2. Indeed, if
algorithm’s output is done at the second item, i.e., an independent set of size

√
n

is discovered, then, since α(G) ≤ n, the approximation ratio achieved is at least√
n/n = n−1/2. On the other hand, if no independent set is found at the second step,

then α(G) ≤ √
n and the approximation ratio guaranteed in third step is at least

1/
√

n = n−1/2, impossible for polynomial algorithms according to Håstad [33].
The complexity of the algorithm above is roughly bounded above by O∗(

( n√
n

)
) =

O∗(2
√

n logn), that is subexponential and much lower than the best known exact
complexity for MAX INDEPENDENT SET that is O∗(1.2125n) (see [7, 13]).

The technique of generation of a small number of candidate solutions has also
been used in [21] for approximately solving the CAPACITATED DOMINATING SET7

problem, that is a generalization of the well-known MIN DOMINATING SET problem.
More precisely, the following theorem is proved there.

Theorem 1 ([21]). There exists an approximation algorithm for the CAPACITATED

DOMINATING SET problem that for any fixed constant c ∈ (0,1/3) runs in time
O((cc(1 − c)1−c)−1)n. For c ≤ 1/4, its approximation ratio is at most (1/4c)+ c,
while for c ≥ 1/4 its approximation ratio is at most 2− 3c.

Another technique that has given interesting results in moderately exponential
approximation is a kind of exhaustive search in a small part of the instance. Roughly
speaking, this technique consists of constructing a part (or the whole) of a solution
by exhaustive search in a “small” part of the input-instance and of completing this
solution (if necessary) by some polynomial algorithm.

Let us give an example of this technique to MIN INDEPENDENT DOMINATING

SET.8 Consider the following algorithm:

1. Compute every independent dominating set of at most size n/r
2. If such a set exist then return it
3. Otherwise, return some maximal independent set (for example, using the maxi-

mum degree greedy MAX INDEPENDENT SET-algorithm)

Note that for any r ≥ 3, it is possible to enumerate all independent dominating sets
(i.e., maximal independent sets) of size at most n/r with running time O∗(rn/r), [16].

Theorem 2 ([12]). For any r ≥ 3, it is possible to compute an r-approximation of
MIN INDEPENDENT DOMINATING SET with running time O∗(2n log2 r/r).

7Given a graph G(V,E) with each of its vertex v equipped with a number c(v) that represents
the number of the other vertices that v can dominate, a set S ⊂ V is a capacitated dominating
set if there exists a function fS : V \ S → S such that fS(v) is a neighbor of v for each v ∈ V \ S
and | f −1

S (v)| ≤ c(v); the goal of CAPACITATED DOMINATING SET is to determine a capacitated
dominating set of the smallest possible size.
8Given a graph G(V,E), MIN INDEPENDENT DOMINATING SET consists of finding the smallest
independent set of G that is maximal for the inclusion.
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4 Divide-and-Approximate

The key idea of this technique consists of splitting, in some appropriate way, the
initial instance in a series of “small” sub-instances whose sizes are functions of the
ratio that is to be achieved, of optimally solving the problem on each of them and,
finally, of “fastly” composing a solution in the initial instance by the solutions of the
sub-instances.

We illustrate this technique, once more, on MAX INDEPENDENT SET. Consider
a graph G of order n and fix a rational ρ ≤ 1 (the ratio that one wishes to achieve).
Since ρ ∈ Q, it can be written as ρ = p/q, p,q ∈ N, p ≤ q. Consider now the
following algorithm, called with parameters G and ρ and denoted by MEXPIS:

1. Arbitrarily partition G into q induced subgraphs G1, . . . ,Gq of order (except
eventually for Gq) n/q

2. Build the q subgraphs G′
1, . . .G

′
q that are unions of p consecutive subgraphs

Gi+1, . . . ,Gi+p, i = 1, . . . ,q (where of course Gq+1 = G1)
3. Optimally solve MAX INDEPENDENT SET in every G′

i, i = 1, . . . ,q
4. Output the best of the solutions computed in step 3

Theorem 3 ([9, 14]). Assume that there exists an exact algorithm A for MAX

INDEPENDENT SET with worst-case complexity O∗(γn) for some γ ∈ R, where n
is the order of the input-graph, for MAX INDEPENDENT SET. Then for any ρ ∈ Q,
ρ ≤ 1, there exists a ρ-approximation algorithm for MAX INDEPENDENT SET that
runs in time O∗(γρn).

As the basic argument of the proof of Theorem 3 in [9, 14] is based upon the
heredity of the solution, Theorem 3 holds for several hereditary properties. A graph
property π is said to be hereditary if every subgraph of G satisfies π whenever G
satisfies π . Furthermore, π is nontrivial if it is satisfied for infinitely many graphs
and it is false for infinitely many graphs. A graph-problem is said hereditary
if its feasible solutions are the subsets of vertices such that the corresponding
induced subgraph verifies some hereditary property. Under this definition, “clique,”
“planar graph,” “bipartite graph,” etc. are hereditary properties, and the problems of
determining a maximum order induced subgraph that is a clique, or a planar graph,
or a bipartite graph, or it is k-colorable, are hereditary problems. Theorem 3 applies
to all of such problems.

Note also that any improvement to the basis γ of the exponential for the running
time of the exact algorithm for MAX INDEPENDENT SET is immediately transferred
to the running time claimed by Theorem 3.

We now show that the result of Theorem 3 can be also used for approximating
MIN VERTEX COVER in a moderately exponential way. There exists a very close
and well-known relation between a vertex cover and an independent set in a
graph G(V,E), [3]: if S is an independent set of G, then the set V \ S is a vertex
cover of G. The same complementarity relation holds obviously for a maximum
independent set S∗ and the set C∗ =V \ S∗ that is a minimum vertex cover of G.
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For the moderately exponential approximation of MIN VERTEX COVER, we
use the seminal result by Nemhauser and Trotter [38] characterizing the polytope
of MAX INDEPENDENT SET (or, equivalently, of MIN VERTEX COVER). Before,
for readability, let us recall the integer linear program of MAX INDEPENDENT

SET (denoted also by is) as well as the mathematical program of its linear
programming relaxation (LP-relaxation), denoted by MAX INDEPENDENT SET-R.
Given a graph G, denoting by A its incidence matrix:

MAX INDEPENDENT SET =

⎧
⎨

⎩

max 1 · x
Ax ≤ 1
x ∈ {0,1}n

MAX INDEPENDENT SET-R =

⎧
⎨

⎩

max 1 · x
Ax ≤ 1
x ∈ (Qn)+

Obviously, solution of MAX INDEPENDENT SET-R can be done in polynomial time
by any continuous linear-programming algorithm.

Theorem 4 ([38]). The basic optimal solution of the LP-relaxation of MAX

INDEPENDENT SET is semi-integral, i.e., it assigns to the variables values
from {0,1,1/2}. Let V0, V1 and V1/2 be the subsets of V associated with 0, 1
et 1/2, respectively. There exists a maximum independent set S∗ such that V1 ⊆ S∗
and V0 ⊆ C∗ =V \ S∗.

From Theorem 4 and its proof in [38], the following corollary holds.

Corollary 1. α(G[V1/2]) ≤ |V1/2|/2 and τ(G[V1/2]) ≥ |V1/2|/2. Also, denoting
by S′ and C′ an independent set and a vertex cover of G[V1/2], S = V1 ∪ S′ is an
independent set of G and C =V \ S =V0 ∪C′ is a vertex cover of G.

The following lemma links approximabilities of MAX INDEPENDENT SET and MIN

VERTEX COVER.

Lemma 1 ([9, 14]). If MAX INDEPENDENT SET is approximable within approxi-
mation ratio ρ , then MIN VERTEX COVER is approximable within ratio 2−ρ .

Let us note that when tackling approximation of MAX INDEPENDENT SET and of
MIN VERTEX COVER, we can restrict ourselves to subgraph G[V1/2], instead of the
whole G (since the sets V0 and V1 can be computed in polynomial time).

Using Corollary 1 and Lemma 1, MIN VERTEX COVER can be approximately
solved by the following algorithm called MEXPVC:

1. Solve the LP-relaxation of MAX INDEPENDENT SET to obtain sets V1, V0,
and V1/2 (this step runs in polynomial time);

2. Set G = G[V1/2] and run MEXPIS(G,ρ);
3. Output V \ (V1 ∪MEXPIS(G,ρ)).

Combination of Theorem 3 and Lemma 1 immediately derives the following result.
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Theorem 5 ([9, 14]). For any ρ ≤ 1, Algorithm MEXPVC computes a (2 − ρ)-
approximation of MIN VERTEX COVER with running time O∗(γρn).

In other words, any approximation ratio r ∈ [1,2[ for MIN VERTEX COVER can
be attained by Algorithm MEXPVC, with complexity O∗(γ(2−r)n). This result is
improved in [9, 14].

Using divide-and-approximate, Cygan et al. [20] proposes moderately exponen-
tial approximation algorithms for MIN SET COVER (in its weighted version, where
weights are assigned on the set of S and the objective becomes to find a minimum-
weight set cover). More precisely, the following results are proved there.

Theorem 6 ([20]). Assume that there exists an exact algorithm for weighted MIN

SET COVER running in time O∗(cm) for some constant c > 1. Then, for any r > 1,
there exists an r-approximation algorithm running in O∗(cm/r).

5 Approximately Pruning the Search Tree

The most common tool used to devise exponential algorithm with nontrivial worst
case complexity consists of pruning the search tree [42]. The key idea of the
technique of approximate pruning of the search tree consists of performing a branch-
and-cut by allowing a “bounded error” in order to accelerate the algorithm, i.e., of
making the instance-size decreasing quicker than in exact computation by keeping
the produced error “small”.

Consider a simple search tree-based algorithm for solving MAX INDEPEN-
DENT SET, which consists of recursively applying the following rule (see, for
instance, [42]):

1. If Δ(G) ≤ 2, then output a maximum independent set
2. Else, branch on a vertex v with degree at least 3 as follows:

(a) Either take v and solve MAX INDEPENDENT SET in the subgraph surviving
after the removal of v and its neighbors

(b) Or do not take v, and solve MAX INDEPENDENT SET in the subgraph
surviving after the removal of v

Step 1 can be done in polynomial time. On the other hand, when branching, we have
to solve a subproblem of size either n−Δ(v)− 1 ≤ n− 4, or n− 1. This leads to a
running time T (n) ≤ T (n − 1)+ T (n − 4)+ p(n), for some polynomial p, which
comes up to T (n)≤ O∗(1.381n).

We now explain how one can get a 1/2-approximation algorithm based
upon a modification of the above algorithm, with running time much better
than O∗(1.381n). The idea is that, when a branching occurs, in case 2a an optimum
solution built via the above algorithm takes v. In this case, if we only seek a 1/2-
approximate solution, then roughly speaking, an approximation algorithm can make
an error on another vertex (not taking it in the solution while an optimal solution
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takes it). Indeed, vertex v taken in both solutions compensates “at half” this error.
So, when applying the branching, in case 2a we can remove any other vertex of the
graph. We then get a subproblem of size n − 5 instead of n − 4. More generally,
consider an edge (vi,v j) in the surviving graph (or even a clique K). Since an
optimal solution can take at most one vertex of a clique, then when branching in
case 2a, we can remove vertices vi and v j (resp., the whole clique K).

A second improvement deals with step 1. Indeed, we do not need to deal with
cases where the optimum can be polynomially reached, but with cases where a
1/2-approximate solution can be found in polynomial time. For instance, MAX

INDEPENDENT SET can be approximately solved in polynomial time within ap-
proximation ratio 5/(Δ(G)+3) [4]. Hence, if Δ(G)≤ 7, then MAX INDEPENDENT

SET is 1/2-approximable in G. This leads to the following algorithm:

1. If Δ(G) ≤ 7, then run the algorithm by Berman and Fujito [4]
2. Else, branch on a vertex v with degree at least 8 as follows:

(a) Either take v, and solve MAX INDEPENDENT SET in the subgraph surviving
after the removal of v, of its neighbors and of two other adjacent vertices
vi,v j

(b) Or do not take v, and solve the problem in the subgraph surviving after the
removal of v

It is easy to recursively verify that the algorithm above guarantees an approximation
ratio 1/2. Concerning its running time, during step 2a we remove 11 vertices
(note that if there is no edge (vi,v j) to be removed, the surviving graph is an
independent set per se); hence, T (n) ≤ T (n − 1) + T (n − 11) + p(n). This leads
to T (n) = O∗(1.185n).

Note that the above algorithm can be generalized to find a (1/k)-approxima-
tion algorithm (for any k ∈ N) in time T (n) ≤ T (n − 1) + T (n − 7k + 3)+ p(n).
Obviously, improved running times would follow from considering, for example,
either modifications of algorithms more sophisticated than the one presented in this
section or a more efficient counting technique such as the one presented in [30].

We now apply this technique to MIN SET COVER. We set Δ = |S∗|, where
S∗ = argmax{|S| : S ∈ S } and d = m+ n. Let us note that in [25], using semi-
local optimization techniques, a (1/2) + lnΔ -approximation algorithm is given.
Consider the following Algorithm MEXPSC, parameterized by the ratio q one wishes
to guarantee:

• Fix q ∈ N∗ and compute the largest integer p such that (1/2)+ lnΔ ≤ q
• While C remains uncovered do:

1. If there exists an item of C that belongs to a single subset S ∈ S , then add S
to the solution

2. If there exist two sets S,R in S such that S is included into R, then remove S
without branching

3. If all the residual subsets have cardinality at most p, then run the algorithm
by Duh and Fürer [25] in order to compute a q-approximation of the optimal
solution in the surviving instance
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4. Determine q sets S1, . . . ,Sq from S such that ∪i≤qSi has maximum cardinality
and perform the the following branching: either add every Si to the solution
(and remove ∪i≤qSi from C), or remove all of them

Theorem 7 ([11]). For any integer q ≥ 1, Algorithm MEXPSC computes with
running time O∗(αd) a q-approximation of MIN SET COVER, where α is the
solution of:

xq(2+p)− xq(1+p)− 1 = 0 (1)

and p is the largest integer such that ln p+ 1/2 ≤ q.

Corollary 2 ([11]). For any integer q ≥ 1, Algorithm MEXPSC computes a q-ap-
proximation of MIN SET COVER in O∗(2m/q).

The result of Theorem 7 is improved in several ways in [11]. Also, several
differential approximation [22] moderately exponential algorithms are given.

The same basic technique of approximately pruning the search tree, although
using more involved technical arguments is used in [19] for the BANDWIDTH

problem. The following result is proved there.

Theorem 8 ([19]). For any positive integer r, there exists a (4r−1)-approximation
algorithm for BANDWIDTH running in O∗(2n/r)-time.

6 Randomization

The results seen in Sect. 4, mainly those of Theorems 3 and 5, were of the form:
if a problem Π is solvable to optimality in time O∗(γn), for some γ > 1, then it is
approximable within ratio r in time O∗(γrn). Can we do better? In other words, is it
possible to get ratios r in time better than O∗(γrn) for problems handled by theorems
similar Theorems 3 and 5? Indeed, this is very frequently possible by randomization.
The key idea of this technique is the following:

• Randomly split the graph into subgraphs in such a way that the problem at hand
is to be solved in graphs G′

i of order r′n with r′ < r
• Compute the probability Pr[r] that |S∗ ∩ sol(G′

i)| ≥ r|S∗| (in other words, get an
r-approximation with probability Pr[r])

• Repeat splitting N(r) times so that Pr[r] → 1 (in other words, get an
r-approximation with probability ∼1 in time N(r)γr′n)

For instance, dealing with MAX INDEPENDENT SET, it can be shown that by
splitting into sub-instances of (smaller) size βn, with β < r, one can achieve
approximation ratio r by iterating the splitting a very large (exponential) number
of times.

Theorem 9 ([9, 14]). For any ρ < 1 and for any β , ρ/2 ≤ β ≤ ρ , it is possible to
find an independent set that is, with probability 1−exp(−cn) (for some constant c),
a ρ-approximation for MAX INDEPENDENT SET, with running time O∗(Knγβn),
where:
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Kn =
n
( n
βn

)

( n/2
ρn/2

)( n/2
βn−ρn/2

)

It is shown in [9, 14] that an optimal choice of β decreases the overall running time
of the derived algorithm by an exponential term.

In [9, 14], the result of Theorem 9 is further improved and extended to the case
of MIN VERTEX COVER. Also, randomization also works for MIN SET COVER (seen
in Sect. 5).

7 Final Remarks

What kind of results can be expected in the area of (sub)exponential approximation?
All the algorithms given in this paper have exponential running times when a
constant approximation ratio (unachievable in polynomial time) is seeked. On the
other hand, for several problems that are hard to approximate in polynomial time
(like MAX INDEPENDENT SET, MIN COLORING, . . . ), subexponential time can
be easily reached for ratios growing (to infinity) with the input size (this is the case of
MAX INDEPENDENT SET seen in Sect. 3). An interesting question is to determine,
for these problems, if it is possible to devise a constant approximation algorithm
working in subexponential time. An easy argument shows that this is not always
the case.

For instance, the existence of subexponential approximation algorithms (within
ratio better than 4/3) is quite improbable for MIN COLORING since it would imply
that 3-COLORING can be solved in subexponential time, contradicting so the ETH,
[35]. We conjecture that this is true for any constant ratio for MIN COLORING, and
that the same holds for MAX INDEPENDENT SET.

Anyway, the possibility of devising subexponential approximation algorithms for
NP-hard problems, achieving ratios forbidden in polynomial time or of showing
impossibility of such algorithms is an interesting open question that deserves further
investigation.

Acknowledgements Research supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability
of approximation problems. J. Assoc. Comput. Mach. 45(3), 501–555 (1998)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.:
Complexity and Approximation. Combinatorial Optimization Problems and Their Approxima-
bility Properties. Springer, Berlin (1999)



Moderately Exponential Approximation 13

3. Berge, C.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)
4. Berman, P., Fujito, T.: On the approximation properties of independent set problem in degree

3 graphs. In: Proceedings of the International Workshop on Algorithms and Data Structures,
WADS’95. LNCS, vol. 955, pp. 449–460. Springer, Berlin (1995)

5. Bjorklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions.
In: Proceedings of the FOCS’06, pp. 575–582 (2006)

6. Boria, N., Bourgeois, N., Escoffier, B., Paschos, V.Th.: Exponential approximation schemata
for some network design problems. Cahier du LAMSADE 303, LAMSADE, Université
Paris-Dauphine. Available at http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-
303. (2011)

7. Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: Fast algorithms for MAX

INDEPENDENT SET. Algorithmica vol. 62, 1–2, pp. 382–415 (2012)
8. Bourgeois, N., Della Croce, F., Escoffier, B., Paschos, V.Th.: Exact algorithms for dominating

clique problems. In: Dong, Y., Du, D.Z., Ibarra, O. (eds.) Proceedings of the International
Symposium on Algorithms and Computation, (ISAAC’09). LNCS, vol. 5878, pp. 4–13.
Springer, Berlin (2009)

9. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of combinatorial prob-
lems by moderately exponential algorithms. In: Dehne, F., Gavrilova, M., Sack, J.R., Tóth, C.D.
(eds.) Proceedings of the Algorithms and Data Structures Symposium, (WADS’09). LNCS,
vol. 5664, pp. 507–518. Springer, Berlin (2009)

10. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of MIN COLORING by
moderately exponential algorithms. Inform. Process. Lett. 109(16), 950–954 (2009)

11. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of MIN SET COVER by
moderately exponential algorithms. Theoret. Comput. Sci. 410(21–23), 2184–2195 (2009)

12. Bourgeois, N., Escoffier, B., Paschos, V.Th. Patt-Shamir B., Ekim T.: Fast algorithms for
MIN INDEPENDENT DOMINATING SET. In: Proceedings of the Colloquium on Structural
Information & Communication Complexity, (SIROCCO’10). LNCS, vol. 6058, 247–261
Spinger (2010)

13. Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: A bottom-up method and fast
algorithms for MAX INDEPENDENT SET. In: Kaplan, H. (ed.) Proceedings of the Scandinavian
Symposium and Workshops on Algorithm Theory, (SWAT’10). LNCS, vol. 6139, pp. 62–73.
Spinger, Berlin (2010)

14. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Approximation of MAX INDEPENDENT SET, MIN

VERTEX COVER and related problems by moderately exponential algorithms. Discrete Appl.
Math. 159(17), 1954–1970 (2011)

15. Brankovic, L., Fernau, H.: Combining two worlds: parameterized approximation for vertex
cover. In: Cheong, O., Chwa, K.Y., Park, K. (eds.) Proceedings of the International Symposium
on Algorithms and Computation, (ISAAC’10). LNCS, vol. 6506, pp. 390–402. Springer, Berlin
(2010)

16. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring.
Oper. Res. Lett. 32(6), 547–556 (2004)

17. Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and approx-
imability results. In: Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of the Interna-
tional Workshop on Parameterized and Exact Computation, (IWPEC’06). LNCS, vol. 4169,
pp. 96–108. Springer, Berlin (2006)

18. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bodlaender, H.L.,
Langston, M.A. (eds.) Proceedings of the International Workshop on Parameterized and Exact
Computation, (IWPEC’06). LNCS, vol. 4169, pp. 109–120. Springer, Berlin (2006)

19. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput. Sci.
411(40–42), 3701–3713 (2010)

20. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover.
Inform. Process. Lett. 109(16), 957–961 (2009)

http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-303.
http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-303.


14 V.Th. Paschos

21. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than o(2n). In:
Kaplan, H. (ed.) Proceedings of the Scandinavian Symposium and Workshops on Algorithm
Theory, (SWAT’10). LNCS, vol. 6139, pp. 74–80. Springer, Berlin (2010)

22. Demange, M., Paschos, V.Th.: On an approximation measure founded on the links between
optimization and polynomial approximation theory. Theoret. Comput. Sci. 158, 117–141
(1996)

23. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science.
Springer, New York (1999)

24. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation problems. In:
Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of the International Workshop on
Parameterized and Exact Computation, (IWPEC’06). LNCS, vol. 4169, pp. 121–129. Springer,
Berlin (2006)

25. Duh, R., Fürer, M.: Approximation of k-set cover by semi-local optimization. In: Proceedings
of the STOC’97, pp. 256–265 (1997)

26. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction.
In: Proceedings of the Symposium on Discrete Algorithms, (SODA’01), pp. 329–337 (2001)

27. Escoffier, B., Paschos, V.Th., Tourniaire, E., Manindra A., S.B. Cooper and Angsheng Li.:
Approximating MAX SAT by moderately exponential algorithms. Cahier du LAMSADE 303,
LAMSADE, Université Paris-Dauphine. Available at http://www.lamsade.dauphine.fr/sites/
default/IMG/pdf/cahier-304 Springer, LNCS, vol. 7287, 202–213 (2012)

28. Feige, U.: A threshold of lnn for approximating set cover. J. Assoc. Comput. Mach. 45,
634–652 (1998)

29. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. EATCS. Springer, Berlin (2010)
30. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination – a case study. In:

Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Proceedings of the
ICALP’05. LNCS, vol. 3580, pp. 191–203. Springer, Berlin (2005)

31. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An exponential time 2-approximation algorithm
for bandwidth. In: Proceedings of the International Workshop on Parameterized and Exact
Computation, (IWPEC’09). LNCS, vol. 5917, pp. 173–184. Springer, Berlin (2009)

32. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform.
Process. Lett. 46, 169–172 (1993)

33. Håstad, J.: Clique is hard to approximate within n1−ε . Acta Mathematica 182, 105–142 (1999)
34. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS, Boston

(1997)
35. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?

J. Comput. Syst. Sci. 63(4), 512–530 (2001)
36. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9,

256–278 (1974)
37. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2−ε . In: Proceedings

of the Annual Conference on Computational Complexity, (CCC’03), pp. 379–386 (2003)
38. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math.

Program. 8, 232–248 (1975)
39. Paschos, V.Th.: Complexité et approximation polynomiale. Hermès, Paris (2004)
40. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In:

Proceedings of the Symposium on Discrete Algorithms, (SODA’06), pp. 1–10 (2006)
41. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)
42. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Juenger, M., Reinelt,

G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka! You shrink!. LNCS, vol. 2570,
pp. 185–207. Springer, Berlin (2003)

43. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and
chromatic number. In: Proceedings of the STOC’06, pp. 681–690 (2006)

http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-304
http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-304


Multistart Branch and Bound for Large
Asymmetric Distance-Constrained Vehicle
Routing Problem

Samira Almoustafa, Said Hanafi, and Nenad Mladenović

Abstract In this chapter we revise and modify an old branch-and-bound method
for solving the asymmetric distance-constrained vehicle routing problem suggested
by Laporte et al. in 1987. It is based on reformulating distance-constrained vehicle
routing problem into a travelling salesman problem and use of assignment problem
as a lower bounding procedure. In addition, our algorithm uses the best-first strategy
and new tolerance-based branching rules. Since our method was fast but memory
consuming, it could stop before optimality is proven. Therefore we introduce the
randomness, in case of ties, in choosing the node of the search tree. If an optimal
solution is not found, we restart our procedure. In that way we get multistart branch-
and-bound method. As far as we know instances we solved exactly (up to 1,000
customers) are much larger than instances considered for other VRP models from
the recent literature. So, despite its simplicity, this proposed algorithm is capable of
solving the largest instances ever solved in the literature. Moreover, this approach is
general and may be used in solving other types of vehicle routing problems.

1 Introduction

The vehicle routing problem VRP is defined as follows: finding vehicle tours to
connect the depot to n customers with m vehicles, such that every customer is
visited exactly once; every vehicle starts and ends its tour at the depot. It is an
NP-hard problem [10, 27]. There are many kinds of VRPs. For an overview of
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VRPs variants and applications, we refer to [4, 5, 16, 17, 26, 29]. We consider in
this chapter distance-constrained VRP (DVRP) where the total travelled distance by
each vehicle in the solution is less than or equal to the maximum possible travelled
distance. If the distance from node i to node j is different from node j to node
i, we call this problem asymmetric (ADVRP) otherwise the symmetric DVRP is
defined. Surprisingly ADVRP is not studied as other types of VRPs. To the best
of our knowledge, there are a few papers discuss this problem see [20].

A variety of integer programming formulations have been proposed for VRPs,
including the so-called two- and three-index formulations, the set partitioning
formulation and various formulations based on extra variables representing the flow
of one or more commodities (see e.g. survey and formulation comparisons in [23]).
On the other hand, recent solution techniques are mostly based on branch-and-cut
or on branch-and-cut-and-price (see [4, 28] and recent survey by [5]).

Three types of algorithms are used to solve any VRP. The first type consists of
exact algorithms. It has been studied by [5, 6, 18, 19, 22], etc. This type of methods
is time-consuming. The second type consists of classical heuristics such as greedy,
local search, relaxation-based, etc. It has been also studied by many researchers,
e.g., [7,21,29]. They produce an approximate solution faster, when compared to the
first type, but without guarantees of optimality. The third type consists of heuristics
that are based on some metaheuristic rules. Such metaheuristics or framework for
building heuristics are Simulated annealing, Tabu search, Genetic algorithms [29],
Variable neighborhood search [11], etc.

In this chapter we suggest a new simple algorithm for solving ADVRP that
is based on Branch-and-Bound (B&B) method. As in [20], the ADVRP is first
transformed to the Travelling salesman problem (TSP). The lower bounds are
obtained by relaxation of subtour elimination and maximum distance constraints.
Thus the Assignment problem (AP) is solved in each node of the B&B tree. We
use the best-first-search strategy and adapted tolerance-based rules for branching.
That is, the next node in the tree is one with the smallest relaxed objective function
value. In the case of tie, we use two tie-breaking rules: (1) the last one in the list;
(2) the random one among them. We found that our B&B-based method is very
fast but memory consuming. That is why we suggested multistart B&B method
(MSBB-ADVRP). It simply uses random tie-breaking rule in selection of the next
subproblem. Computational results show that we are able to provide exact solutions
for instances with up to 1,000 nodes. The size of problems could be even larger if
more powerful computer (with larger memory) is used. As far as we know those
instances are much larger than instances considered for other similar VRP models
and exact solution approaches from the recent literature. For example, in the recent
paper by Baldacci and Mingozzi [3], several VRP problem types are studied and
sophisticated exact solution methods tested. The largest instances solved had 199
customers. Therefore, our simple algorithms are capable of solving the largest
instances ever solved in the literature.

The structure of this chapter is as follows. In Sect. 2 we present mathematical
programming formulations of ADVRP. In Sect. 3 we discuss details of deterministic
branch-and-bound method for ADVRP. In Sect. 4 we present our multistart approach
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for solving ADVRP. Section 5 contains details regarding data structure that we used
in our implementation. Computational results are provided in Sect. 6. In Sect. 7 we
give conclusion and future research directions.

2 Mathematical Programming Formulations for ADVRP

In this section we give two mathematical programming formulations of ADVRP.
The first one, so-called flow-based formulation, is used for comparison purposes
in computational results sect. The second is based on transformation of ADVRP to
asymmetric travelling salesman problem (TSP). We use its relaxation in our B&B
exact method that will be described in Sect. 3.

Let N′ = {1,2, . . . ,n− 1} denote the set of customers and V ′ = N′ ∪ {0} denote
the set of nodes where 0 is index of the depot. A set of arcs is denoted by A′, A′ =
{(i, j)∈V ′×V ′ : i �= j}. The travelled distance from customer i to customer j and the
number of vehicles are denoted by d′

i j and m, respectively. The maximum distance
allowed is denoted by Dmax. The shortest distance between customer i and customer
j is denoted by ci j. The decision binary variable xi j is defined as follows:

xi j =

{
1 if the arc (i, j) belongs to any tour;

0 otherwise.
(1)

2.1 Flow-Based Formulation

For the sake of comparison, we use another formulation of ADVRP with polynomial
number of variables and constraints, without copying depots. This is achieved by
introducing the new set of variables zi j . They present the shortest length travelled
from the depot to customer j, where i is the predecessor of j. The formulation of
ADVRP, which will be later used with CPLEX solver (CPLEX-ADVRP), is given
below [13]:

f (S) = min ∑
(i, j)∈A′

ci jxi j (2)

subject to

∑
i∈N′

xi j = 1 ∀ j ∈ N′ (3)

∑
j∈N′

xi j = 1 ∀ i ∈ N′ (4)

∑
i∈N′

xi0 = m (5)
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∑
j∈N′

x0 j = m (6)

∑
(i, j)∈A′

zi j − ∑
(i, j)∈A′

z ji − ∑
j∈V ′

ci jxi j = 0 ∀ i ∈ N′ (7)

zi j ≤ (Dmax − c j0)xi j ∀ j �= 0,∀(i, j) ∈ A′ (8)

zi j ≥ (ci j + c0i)xi j ∀ i �= 0,∀(i, j) ∈ A′ (9)

z0i = c0ix0i ∀ i ∈ N′ (10)

xi j ∈ {0,1} ∀ (i, j) ∈ A′. (11)

Obviously, there are polynomial number of variables and constraints. This model is
known as flow-based model since constraint (7) is typical flow constraint. It says
that the distance from node i to any other node j on the tour should be equal to the
difference between distance from depot to i and distance from depot to j. Constraint
(8) presents that the total distance from depot to customer j and the shortest distance
from customer j to depot directly are less than or equal to the maximum distance
allowed. In addition, according to constraint (9) the total distance from depot to
customer j should be greater than or equal to the distance from the depot to customer
i plus the distance from customer i to customer j. Constraint (10) gives the initial
value for z0i which is equal to the distance from depot to customer i. Last constraint
(11) introduces the decision variables xi j as binary variables.

2.2 TSP Formulation

The TSP formulation may be obtained by adding m− 1 copies of the depot to V ′
[22]. Now there are n+m− 1 nodes in the new augmented directed graph G(V,A),
where

V =V
′ ∪ {n,n+ 1, . . . ,n+m− 2}.

The distance matrix D is obtained from D′ by the following transformation rules,
where i, j ∈V :

di j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d′
i j if (0 ≤ i < n,0 ≤ j < n, i �= j)

d′
0 j if (i ≥ n,0 < j < n)

d′
i0 if (0 < i < n, j ≥ n)

∞ otherwise

(12)

Then the formulation of TSP [8] is given below (13)–(17) as follows:

f (S) = min ∑
(i, j)∈A

di jxi j (13)
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where xi j satisfies these conditions

∑
i

xi j = 1 ∀ j ∈V (14)

∑
j

xi j = 1 ∀ i ∈V (15)

∑
i, j∈U

xi j ≤|U | −1 ∀ U ⊂ V, |U | ≥ 2, (16)

xi j ∈ {0,1} ∀ i, j ∈ V. (17)

+ distance constraints (18)

The constraints (14) and (15) ensure that in and out degree of each node are
equal to 1. The constraint (16) eliminates subtours, where U is any subset of V . The
constraint (17) is integrality constraint. To formulate ADVRP in addition to (13)–
(17), we need to add distance constraint (18), which check that the total distance for
each tour should be less than maximum distance allowed (Dmax).

The weak point of this formulation is exponential number of constraints in (16),
since the number of subsets U is exponential. However, in our B&B method that will
be explained in the next sect., this set of constraints will be relaxed.
DVRP may be also seen as a special case of VRP with time windows constraints

[23]. In the vehicle routing problem with time windows (VRPTW), it takes a time
ti j ≥ 0 to traverse arc (i, j). When i ∈ N′, the quantity ti j includes any time required
to service i. For each i ∈ N′, service must begin within the time window [ei, li],
where 0 ≤ ei ≤ li ≤ ∞. We will also allow that each vehicle be required to leave the
depot at time e0 or afterwards, and arrives back at the depot by time l0 or earlier.
A vehicle is permitted to wait at a vertex, either before or after serving a customer.
The DVRP can be viewed as a special case of the VRPTW by setting ti j = di j, ei = d0i

and li = D− di0.

3 Branch and Bound for ADVRP

The branch and bound (B&B) is an exact method for solving integer programming
problem. It consists of enumerating all possible solutions within the so-called search
tree and pruning subtrees when better solutions than the current one (upper bound)
could not be found. B&B rules are briefly given below:

• The initial feasible solution of good quality is usually obtained by heuristic and
its objective function value is initial upper bound (UB). If the heuristic solution
is not known, then the upper bound is set to infinity (UB = ∞)

• The original problem is placed at the root of the branch-and-bound or search tree.
All other nodes represent subproblems. In solving subproblems some variables
are fixed and some constraints are ignored (relaxed), so that the lower bound is
obtained
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• The search strategy defines the way in which we choose the next node for
branching. There are three basic branching strategies: breadth first search, depth
first search and hybrid search which is also called best first search strategy. In this
chapter we implement this strategy

3.1 Lower Bounds

To apply B&B we need to have lower bounding procedure that should be applied in
each node of the search tree. Of course, there are many ways to relax model (13)–
(18). The more constraints are included, the better (higher) lower bound is obtained.
We use AP as lower bounding procedure of the TSP formulation given in (13)–(15),
(17), i.e., we relax all tour elimination and maximum distance constraints (16) and
(18). Although the quality of the lower bound is not high, the benefit is in using very
fast exact Hungarian method [15] for solving AP. Here we use its implementation
described in [12]. The complexity of AP at root node is in O(n3) [31]. Another
advantage is that the relaxed AP solution is already integer.

Proposition 1. Any feasible AP solutions for problem (13)–(15), (17) consists of a
set of cycles, i.e., a sequence of arcs starting and ending at the same vertex with the
number of arcs in each cycle ω ≥ 2.

Proof. It is clear from (14) and (15) that the degree of each vertex in S is equal to 2.
It has one incoming and one out coming arc. If the matrix D was symmetric and n
even, then those cycles would contain just 2 vertices and thereforeω = 2. However,
in all other cases, ω is obviously larger than 2: if vertex i is assigned to j, then j is
not necessary assigned to i. ��

There are three types of cycles obtained by AP relaxation:

• A served cycle—contains exactly one depot
• An unserved cycle—contains no depot
• A path—contains more than one depot

In the last case, each path may be divided into served cycles. Therefore the number
of served cycles is equal to the number of depots in the path. Subsequently, the term
tour is used to denote either a served cycle or unserved cycle or a path; the term
depot is used to denote either the original depot or a copy of the depot. A tour is
called infeasible if its total distance is larger than Dmax or if it contains no depot.

3.2 Tolerance-Based Branching Rule

Since the sets of constraints (16) and (18) are relaxed, the AP solution may have
many infeasible tours. If the tour is infeasible, it must be destroyed, i.e., one arc
should be excluded (deleted). We exclude an arc from the current infeasible solution
S by giving to it large value (∞) and then resolve AP relaxation again. Really, in the
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new solution, such an arc will not appear, since we minimize AP objective function.
There are several ways to remove an arc from S. We can try all possible removals
(one at the time) and collect all objective function values obtained from solving new
corresponding AP ’s.

However, in this chapter we use the concept of tolerance. Tolerance is one of the
sensitivity analysis techniques (for more details on sensitivity analysis, see [14,24]).
The definition of tolerance is used as a branching rule within B&B method in [30]
for solving ATSP. We first extend this idea for solving ADVRP.

The difference between the value of the objective function before and after the
exclusion of an arc in the current solution is called upper tolerance (UT) of the arc
[9]. The arc to be removed corresponds to the smallest objective function obtained.
Therefore, in our ADVRP tolerance-based B&B (TOL-ADVRP), the arc which has
the smallest upper tolerance is chosen to be excluded. Some preliminary results of
this approach has been given in [1].

Another possibility of destroying infeasible tour is to exclude the arc with the
largest cost. B&B method that uses such a branching rule we call COST-ADVRP.
However, based on extensive computational analysis, the results obtained with
COST-ADVRP were of slightly worse quality than those obtained by our
TOL-ADVRP. That was the reason why in computational analysis sect. we give
TOL-ADVRP results. In TOL-ADVRP when there are more than one subproblem
in the list of active subproblems (that have the smallest objective value) we choose
the last among them to branch next. In other words, our tie-breaking rule is
deterministic.

3.3 Algorithm

The main steps of TOL-ADVRP algorithm are given in Algorithm 2.1, where we use
the following notation:

S—the relaxed solution obtained by AP or S = {T1,T2, . . . ,TM(S)} presented as a
set of tours where M(S) is the number of tours in S
d(Tk)—the total travelled distance in a tour k where d(Tk) = ∑(i, j)∈Tk

di j

t(Tk)—the number of arcs in a tour k

f (S) = ∑M(s)
k=1 d(Tk)—the value of an optimal solution to AP

S∗—an optimal solution to ADVRP
L—the list of active subproblems (or unfathomed nodes in a search tree), it is
updated during the execution of the code
LB—the lower bound. It is the smallest value of the objective function to AP
among those in L
UB—the upper bound value to ADVRP
APcnt—counts the number of nodes in B&B tree (how many times AP subroutine
is called)
Maxnodes—the maximum number of nodes allowed in B&B tree. In order to
prevent termination with no memory message, we use it as stopping condition.
Here we set Maxnodes = 100,000
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Algorithm 2.1: (TOL-ADVRP) algorithm with tolerance-based branching
ProcedureTOL-ADVRP(n,m,Dmax ,D,Maxnodes,β ,S∗, ind);
UB ← m×Dmax, APcnt ← 1, set iteration counter i ← 1;1
Solve AP to get its solution S = {Tl |l = 1, . . .,M};2
L = {1}- the list contains the root node;3
Calculate d(Tl) for every tour of Tl ∈ S;4
if (S feasible) then (S∗ = S is an optimal solution; ind=1; stop);5
while (APcnt < Maxnodes) do

Branching. Choose subproblem bi ∈ L with the smallest value of the objective function;6
in the case of tie, choose one from the list with respect to β value;
Best first. Find the ratio d(Tk)/t(Tk) for every infeasible tour k = 1, ..,M′ where M′ is7
the number of infeasible tours and choose the tour k∗ with the largest ratio;
Tolerance (expanding search tree). Calculate upper tolerances for all arcs in this k∗8
tour by solving t(Tk∗ ) times AP problem to get solutions Sr where r = 1, . . . , t(Tk∗).
Expand search tree with those t(Tk∗ ) subproblems and update APcnt as:
APcnt = APcnt + t(Tk∗);
Feasibility check. Check feasibility of all new (expanded) nodes;9
Update. Update UB (if necessary), and L based on the current UB value as:10
L ←{r| f (Sr)<UB}\∪{b j | j = 1, .., i} where Sr are infeasible solutions;
Optimality conditions. If (L = /0 and UB �= m×Dmax) then (S∗ is the optimal solution11
where f (S∗) =UB; ind=1; stop). Otherwise, If (L = /0 and UB = m×Dmax) then (there
is no feasible solution; ind=4; stop);
i = i+1;12

end
Termination. If (UB �= m×D) then (S is the new incumbent; ind =2; return), otherwise (no13
memory; ind=3; return) ;

β—the type of tie-breaking rule that has two values:

β =

{
0 deterministic (last in L)
1 at random

ind—the variable that covers all possible outputs of the algorithm. The basic
algorithm may stop with the following outputs:

ind =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 an optimal solution S∗ is found ;

2 feasible solution S is found but not proven as optimal;

3 no feasible solution is found (lack of memory);

4 there is no feasible solution of the problem at all.

Here we explain some of the steps of algorithm TOL-ADVRP: At the root node
we find solution S by solving AP problem. Then we calculate the total distance for
every tour of S and check the feasibility of the solution. If it is feasible, then the
optimal solution exists and the program stops. Otherwise, we repeat the following
steps until the memory limit is reached:
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• Branching. Choose the subproblem bi ∈ L with the smallest value of the objective
function where i denoted to the iteration. In the case when more than one
subproblem has the smallest value, the choice is made according to value of β .
If β = 0 we choose last subproblem in
the list L; otherwise choose one randomly to develop further. This second option
will be used after in our multistart method.

• Best first. Find the ratio between the total distance d(Tk) and the number of arcs
in the chosen subproblem t(Tk) for every infeasible tour. Choose the tour with
the largest ratio to branch.

• Tolerance (expanding search tree). Calculate upper tolerances for all arcs in this
tour as follows: Exclude in turn one arc from this tour by putting∞ in the distance
matrix. Find AP solution to those subproblems. Check feasibility for each new
subproblem. If this subproblem produces a feasible solution S, and its value is
smaller than UB then update the value of the upper bound (UB = f (S)). Find the
difference between the value of the objective function before and after excluding
the arc. This gives the value of upper tolerance (UT ) to this arc. Note that the
value of the counter APcnt is increased by the number of arcs in the chosen tour:

APcnt = APcnt + t(Tk∗)

• Check feasibility. Check feasibility of the solution at every new subproblem
which the program generates,

• Update. If a feasible solution is found and its value is smaller than current
upper bound, then update the value of upper bound, update the list of active
subproblems by removing the subproblems that have value greater than the
value of upper bound and by adding the new expanded subproblems that has
value smaller than UB as follows:

L ←{r| f (Sr)<UB}\∪{b j| j = 1, ..., i}
Note Sr is infeasible solutions.

• Optimality conditions. Check if L = /0 and UB is updated then stop with the
value of optimal solution f (S∗) = UB (ind= 1). Otherwise, if L = /0 and UB is
not updated, stop with the message that no feasible solution exists (ind= 4),

• Termination. When there in no memory we get two possible outputs: If UB is
updated, then S∗ is returned as a feasible but not proved as optimal solution
(ind= 2). Otherwise, a feasible solution has not been found, but that does not
mean the feasible solution does not exist (ind= 3).

Proposition 2. Algorithm TOL-ADVRP finds an optimal solution to ADVRP or
proves that such a solution does not exist.

Proof. It is enough to show that our B&B algorithm enumerates all possible VRP
tours with m vehicles (assuming that Dmax =∞ and there is no memory restriction).
Really, our enumeration is based on eliminating arcs by giving them value ∞ (in
step 8 in Algorithm 2.1). It is followed by solving lower bounding AP problem.
AP provides a solution S as a set of cycles (Proposition 1). Clearly the set of all
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Table 1 Original distance matrix for ADVRP with n = 8 and m = 2

0 1 2 3 4 5 6 7

0 ∞ 2 11 10 8 7 6 5
1 6 ∞ 1 8 8 4 6 7
2 5 12 ∞ 11 8 12 3 11
3 11 9 10 ∞ 1 9 8 10
4 11 11 9 4 ∞ 2 10 9
5 12 8 5 2 11 ∞ 11 9
6 10 11 12 10 9 12 ∞ 3
7 7 10 10 10 6 3 1 ∞

Table 2 New distance matrix

0 1 2 3 4 5 6 7 8

0 ∞ 2 11 10 8 7 6 5 ∞
1 6 ∞ 1 8 8 4 6 7 6
2 5 12 ∞ 11 8 12 3 11 5
3 11 9 10 ∞ 1 9 8 10 11
4 11 11 9 4 ∞ 2 10 9 11
5 12 8 5 2 11 ∞ 11 9 12
6 10 11 12 10 9 12 ∞ 3 10
7 7 10 10 10 6 3 1 ∞ 7
8 ∞ 2 11 10 8 7 6 5 ∞

solutions generated with our method contains all possible cycles with m vehicles.
On the other hand, the set of all feasible ADVRP tours are the subset of all this
generated set. Therefore, our TOL-ADVRP enumerates all feasible tours. ��

3.4 Illustrative Example

The example from Table 1 is taken from [2], where the number of customers is n= 8
and the number of vehicles is m = 2. The location of the first customer is considered
as a depot.

In matrix D the first row represents the distances from the depot to all other
customers. The first column represents the distances from each customer to the
depot, and all other entries represent distances between the remaining customers.
To solve this problem, we have to add m− 1 = 2− 1 = 1 copy of a depot. Table 2
illustrates the new distance matrix after adding the last row and the last column
according to the new distance function (see Sect. 2), where 0 and 8 represent two
depots for this problem. We will consider 2 problems with this dataset with 2
different values of Dmax. First value of Dmax(1) is ∞, which produce as output the
longest tour LT in the optimal solution, then the second value of maximum distance
allowed Dmax(2) is chosen to be 0.90 × LT . In addition, we will denote by fb(i, j)
the value of AP at the subproblem b with d(i, j) = ∞;



Multistart Branch and Bound 25

0

0

0

16
6

T1

a: Solution at Root  Node

b: Solution at Node 2 d: Solution at Node 4

c: Solution at Node 3

T1

T1

T4

T2

T2

T2
T3

T1

T2

T3

T323

T3

7

3

5

5

17
21

8

54

5
6

4

7

2

8
3

5

3

4

4

1

2

6
8

8

7

4

1

1

1

8 8

6

4
45

3

7

8
8

0

2 2
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LB solution at the root node of B&B tree, obtained by solving AP, is given in
Fig. 1a. Each depot label is written inside a squared box and the total distance is
written inside each tour. The value of the objective function to the relaxed problem
at the root node, obtained by solving AP, is f1 = 29 (see Fig. 1a).

Problem 1 (Dmax(1) = ∞). We consider the problem with Dmax = ∞. we set
APcnt = 1, L = {1}, i = 1, and b1 = 1. Clearly, initial value of UB = m×Dmax =∞.

Iteration 1. It can be seen from Fig. 1a that we obtain solution S with three tours:
one of them is infeasible, because it does not contain depot. Therefore this solution
S is not feasible.

The program will check the total distance for all tours in the solution at the
root node d(Tm) = {d(T1),d(T2),d(T3)} = {16,8,5}. Since only the last tour T3

is infeasible, there is one possible subtour for branching. The number of arcs in T3

is equal to 3 (t(T3) = 3) and its total distance is equal to 5 (d(T3) = 5).
The value of upper tolerance for every arc {(5,3),(3,4),(4,5)} in the chosen

tour T3 is calculated as follows:

1. Arc (5,3): Exclude this arc from the solution by putting that its length is equal to
∞ instead of its original value d(5,3) = 2 in the new distance matrix (Table 2).
Then find the solution of AP with d(5,3) = ∞. This solution is not feasible for
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ADVRP (Fig. 1b) because there is at least one infeasible tour (in fact there are two
infeasible tours T3,T4). The value of the optimal AP solution for the new distance
matrix at node 2 in the search tree is f2 = f 1(5,3) = 34. The upper tolerance
value (UT) for the arc (5,3) in the optimal solution S is calculated as:

UT (5,3) = f 1(5,3)− f1 = 34− 29= 5

2. Arc (3,4): First restore d(5,3) into its previous value 2. By excluding an arc

(3,4) as before, we get f3 = f 1(3,4) = 35. The solution at node 3 is also not
feasible for ADVRP since it contains one infeasible tour T3 (Fig. 1c). The value
of the upper tolerance value for arc (3,4) is:

UT (3,4) = f 1(3,4)− f1 = 35− 29= 6

3. Arc (4,5): As before restore d(3,4) into its previous value 1. Excluding an arc

(4,5) produces f4 = f 1(4,5) = 33 (Fig. 1d). The solution at node 4 is not a
feasible solution because it contains one infeasible tour T3. The value of upper
tolerance for arc (4,5) is:

UT (4,5) = f 1(4,5)− f1 = 33− 29= 4

The value of APcnt = 1+3 = 4. No need to update UB since no feasible solution
is found, while we need to update L. The list of active subproblems L = {2,3,4}.

Iteration 2. The smallest upper tolerance is at node b2 = 4. Therefore, the arc (4,5)
is excluded and LB = f4 = 33. We start now from subproblem 4, which gives an
infeasible solution (Fig. 1d). Among 3 tours in that solution S only one is infeasible.
It has two arcs. Thus, in this case, the two new subproblems are generated by the
program:

f5 = f 4(7,6) = 34 (feasible solution : d(T1) = 26, d(T2) = 8)

f6 = f 4(6,7) = 37 (infeasible solution).

Update the value of upper bound UB (UB = 34) and the list of active subproblems
(L = /0) and the counter APcnt = 6. So the optimal solution is found at node 5 in
the search tree (Fig. 2b). In this small example, the total number of subproblems
generated in the search tree is 6.

Problem 2 (Dmax(2) === 23). The longest tour in the optimal solution is 26, we use
this value to get new value to Dmax where Dmax = 0.9×26= 23.4. We will consider
only the integral part of this number so that the new value of maximum distance
allowed is Dmax = 23. We update the value of Dmax, and we run the same example.

Iteration 1. It will be the same as iteration 1 in problem 1, i.e., L = {2,3,4}.
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Fig. 2 TOL-ADVRP tree

Iteration 2. In this iteration we have L = {2,3,5,6}. Moreover we have two nodes
(node 2 and node 5) that have the same smallest value 34 (Fig. 2b). Therefore,
according to tie-breaking rule for TOL-ADVRP, we have to choose the last node
to branch next (b3 = 5). When we branch at node 5, we find first feasible solution at
node 9, so we update UB = 37, APcnt = 12, L = {2,3,7,10,12}.

Iteration 3. In this iteration we have 3 nodes (2, 7 and 12) that have the same
smallest value 34 (Fig. 2c), we have to choose the last node to branch next i.e.,
b4 = 12, etc.

At the end, after generating 58 subproblems (APcnt = 58) we get optimal
solution value 37.

4 Multistart Method

As mention earlier, motivation for developing multistart B&B method for solving
ADVRP is based on the fact that TOL-ADVRP is very fast but requires a lot of
computer memory. It usually stops after a few seconds reaching the maximum
number of nodes visited in the search tree. The main idea of (MSBB-ADVRP) is
to introduce random selection of the next subproblem among those with the same
(smallest) objective function value. This random choice may cause the generation
of smaller search tree. Therefore, if we reach the maximum number of subproblems
allowed, we restart exact B&B method hoping that in the next attempt we will get
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Algorithm 2.2: Algorithm of Multistart B&B (MSBB-ADVRP)
ProcedureMSBB-ADVRP(n,m,Dmax ,D,Maxnodes,β ,ntrail,Sbest);
fbest ← ∞, β ← 1;1
for i = 1 to ntrail do2

TOL-ADVRP(n,m,Dmax ,D,Maxnodes,β ,S∗, ind);3
if (ind = 1) then4

Sbest = S∗, stop ;5

end
if (ind = 4) then6

stop ;7

end
if (1 < ind < 4) then8

if ( f (S∗)< fbest ) then9
Sbest = S∗, fbest = f (S∗);10

end
end

end

an optimal solution. For that reason we rerun TOL-ADVRP (with β = 1) many
times until an optimal solution is found or infeasibility is proven. Therefore, the
(MSBB-ADVRP) may be summarized as follows (see Algorithm 2.2):

1. Re-run each instance given number of times (ntrail—a parameter); stop when
an optimal solution is found (ind = 1) or infeasibility of the problem instance is
proved (ind = 4). This will increase the chance to find an optimal solution or at
least improve the value of the best feasible solution found so far

2. Choose randomly one subproblem from the list of active subproblems (L) as
follows:

• Generate uniform random number α ∈ [0,1]
• Find the number of nodes in the list (ns) which has value equal to the smallest

objective function value in this list
• Find k ∈ [1,ns] as k = 1+ ns∗α
• Branch on the node corresponding to kth position in the list ns

4.1 Algorithm

4.2 Illustrative Example

We now present our MSBB-ADVRP on the same example from the previous sect.
We do not consider Problem 1, since there were no ties.

Problem 2. We run the example with Dmax(2) = 23. In the first iteration both
programs do the same because we have only one smallest value in L (see Fig. 2a).
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At the second iteration two nodes 2 and 5 have the same smallest value of 34
(Fig. 2b). So, there are two options. Suppose we randomly choose node 5. Then
we get the solution as given at Fig. 2c. In the third iteration we have the number
of subproblems with the same value is equal to 3 (ns = 3). So we need to choose
one k among three nodes: 2, 7 or 12 where k = 1+ 3α . Assume that α = 0.4, then
k = 2 and the second node (7) is chosen for branching. This step is repeated at each
iteration until the optimal solution is found.

5 An Efficient Implementation: Data Structure

The most important task in implementation of TOL-ADVRP is to keep track of
excluded arcs (a,b) during complete enumeration within B&B tree. Left-hand side
arcs (a) are stored in the first matrix A and the right-hand side arcs (b) are stored
in the second matrix B. Those matrices are expanded during the execution of the
code. Each row of A and B represents a node in the search tree. Thus, we always
start with A = [−1] and B = [−1] since there are no excluded arcs at the root node.
Note that we use symbol (−1) to denote a dummy vertex. Each time some arc is
excluded (its value set to ∞ and AP solved again), new row in both matrices are
added, containing end points of excluded arc. In addition, each iteration brings a
new column, where rows from previous iteration are filled with dummy vertices.
Of course based on best-first-search criterion and tie-breaking rule, new rows of A
and B (in new iteration) will keep track of excluded parent vertices from previous
iterations. We will now present our data structure on the same example from the
previous sect. At the root node we have A = [−1], B = [−1] (see Fig. 3).

At the first iteration we have 3 new nodes in the search tree, or 3 possible arcs
to be excluded (see Fig. 2a). So we add 3 more rows to our matrices A and B. Thus,
we have only one column and 4 rows in both matrices. At node 2 we exclude arc
(5,3). So we put 5 in the row 2 of A, and 3 in the row 2 of B. The same is done for
other two nodes (see Fig. 3: First iteration). Node 4 is chosen to branch since the AB
solution, after excluding arc (4, 5), was the smallest. So we copy all the numbers
from both matrices of node 4 and put them as initial values to all sons of node 4.

The sons of each parent node have identical rows except the last value. The
number of values in each row which is not equal (−1) represents the number of
excluded arcs in this node. We use temporary vector (V ) to save the values of
excluded arcs in the node before we solve AP.

In the second iteration we have 2 more nodes. We add two rows to both matrices
(exclude two arcs from some nodes) and one column. According to our example we
choose node 4 to branch. The new two nodes will copy the information from the row
of node 4. Then it will add the new arc that was excluded in each case (see Fig. 3:
Second iteration). For the root node all the row contains (−1), and for nodes (2,3,4)
we put (−1) in the second column because we have excluded only one arc for them.
Each time we increase the dimension of both matrix we have to put (−1) for all the
previous nodes in the new columns.
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In the third iteration of branching we choose to branch on node 5. This will
produce 6 new nodes. So we need to add 6 rows and one more column to both
matrices (see Fig. 4: Third iteration).
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6 Computational Results

Computers: All experiments were implemented under windows XP and on
intel(R) Core(TM)2 CPU 6600@2.40GHz, with 3.24 GB of RAM. The code is
written in C++ language. Some parts of the code are taken from.

Test Instances. A full asymmetric distance matrices are generated at random using
uniform distribution to generate integer numbers between 1 and 100. The generator
for random test instances needs the following input data:

n—the size of distance matrix
γ—the parameter that controls the degree of symmetry in the distance matrix,
γ ∈ [0,1]: 0 means completely random and asymmetric; 1 means completely
symmetric; 0.5 means 50% symmetric, etc.
seed—the random number: when n ≤ 200, four different seeds were chosen
to generate four different distance matrices for each combination of (n,m).
However, only one distance matrix is generated in case: 200 < n ≤ 1,000

In addition, the shortest distances between each two customers are calculated to
get input matrix C. Test instances are divided into two groups: small size (with n =
40,60, ...,200) and large size (with n = 240,280, . . . ,1,000). For each n belonging
to the small set, two different types of instances are generated, based on the different
number of vehicles: m1 = n/20 and m2 = n/10. For instances belonging to the large
set, we use only m1. In addition, for each distance matrix we consider 3 problems
with 3 different values of Dmax (see Sect. 3.4). First value of Dmax is ∞, then we use
this formulae to obtain new value of Dmax:

Dmax(i) = 0.90×LT(i− 1),

where i ∈ {2,3}, and LT (i− 1) is the longest tour in the optimal solution when the
value of maximum distance allowed is Dmax(i−1). Thus, the total number of instances
is 257. All test instances used in this chapter can be found on the web site www.mi.
sanu.ac.rs/~nenad/advrp/ as well as the code for generator coded in C++.

Methods Compared. In this chapter we compare three methods to find an optimal
solution to ADVRP: MSBB-ADVRP, TOL-ADVRP, CPLEX-ADVRP. In all our
experiments reported below, we run MSBB-ADVRP only two times. We note that
increasing the number of restarts might improve chances to find an optimal solution,
but with the cost of larger CPU time. In CPLEX-ADVRP the process will continue
until an optimal solution is found or the time limit is reached. We choose the time
limit to be 10,800 s (3 h) for all test instances.

Comparison. Tables 3–5 contain summary results to all 257 test instances from
n = 40 up to n = 1,000 customers with Dmax(1) = ∞, Dmax(2) = 0.90×LT(1), and
Dmax(3) = 0.90×LT(2), respectively. Detailed results for all three methods may be
found on our web site www.mi.sanu.ac.rs/~nenad/advrp/. The rows in all tables give
the following characteristics:

www.mi.sanu.ac.rs/~nenad/advrp/
www.mi.sanu.ac.rs/~nenad/advrp/
www.mi.sanu.ac.rs/~nenad/advrp/
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1. � Opt (ind = 1)—how many times each program finds an optimal solution
2. � Feas (ind = 2)—how many times feasible (but not optimal) solutions have been

found. It presented as a(b) where a ( or b) is the number of times the feasible
solutions (or the same value as optimal) has been found

3. � No Mem (ind = 3)—how many times feasible solutions are not found because
of lack of memory

4. � No Feas (ind = 4)—how many instances with proven infeasibility are detected
5. Total time—the total time spent only for instances where the optimal solutions

are found
6. Average time—the average time for instances which an optimal solution was

found, where (Average time = Total time/� Opt)

The numerical analysis identifies:

1. The most effective method on average is our Multistart Branch and Bound for
ADVRP (MSBB-ADVRP). For 92 instances in the first stage (with Dmax(1) =
∞), the rate of success is 100% for TOL-ADVRP, 80% for CPLEX-ADVRP and
100% for MSBB-ADVRP. For the second stage (with Dmax(2) = 0.90× LT (1))
the rate of success is 69%, 78% and 79% for TOL-ADVRP, CPLEX-ADVRP and
MSBB-ADVRP, respectively. Finally, in the third stage (with Dmax(3) = 0.90×
LT (2)) the rate of success for the three programs TOL-ADVRP, CPLEX-ADVRP
and MSBB-ADVRP is 55%, 71% and 75%, respectively.

2. Regarding efficiency, it can be seen that TOL-ADVRP and MSBB-ADVRP
are much faster than CPLEX-ADVRP. The MSBB-ADVRP is more efficient
than TOL-ADVRP for solving instances in the first two stages (total time for
TOL-ADVRP in the first two stages are 4.61 and 959.53 s, and for MSBB-ADVRP
are 4.31 and 262.14 s), while the opposite holds for the third stage (1302.76 s
for TOL-ADVRP, and 1826.47 s for MSBB-ADVRP). However in that stage the
number of instances solved exactly by MSBB-ADVRP and TOL-ADVRP is 55
and 40, respectively;

3. When compare small and large test instances, it can be concluded that the CPLEX
is most effective for small instances in the second stage 100% of test instances
are solved (Table 4) and in the third stage 96.23% of test instances are solved
(Table 5). However, for large test instances, MSBB-ADVRP is the most effective
(100% for the first and the second stage, 95% for the third stage);

4. Regarding average time for small instances, the most efficient method is
TOL-ADVRP (0.01, 0.30 and 1.62 s in the first, the second and the third stage),
while for large instances MSBB-ADVRP is the most efficient: it takes 0.18, 6.02,
and 85.28 s in the first, the second and the third stage, respectively. However, the
most efficient on average is MSBB-ADVRP.
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7 Conclusions

We consider ADVRP and suggest exact algorithms for solving it. They are based on
Assignment problem relaxation, as first time proposed by [20]. In order to rebuild
feasibility, we branch by using tolerance criterion. We found that our simple method
is fast but it has the memory consumption problem. Therefore we introduce the
new method based on randomness in choosing the next node in the branch and
bound tree.

Computational experiments show that with our multistart approach we are able
to solve at least 75% of instances in all stages with up to 1,000 customers. It appears
that MSBB-ADVRP on average needs 0.04 s for the first stage, 3.59 s for the second
stage and 33.20 s for the third stage, while CPLEX needs on average 346.79, 724.93,
1055.81 s for the first, the second and the third stage, respectively. In summary, the
results of experiments emphasize that using MSBB-ADVRP provides good solutions
in reasonable computational time. Moreover, as far as we know, we are able to
exactly solve problems with larger dimension than previous methods from the
literature. For example the largest problem solved by CPLEX has n= 360 customers,
while we are able to solve exactly with n = 1,000 customers. It is interesting to
note that the dimension of problems solved by our methods depends on available
memory of the computer used. Thus, our approach may be used in the future using
new computers having larger memory.

We are working currently to improve the running computational times of the
algorithm by trying to develop a good heuristic such as Variable Neighborhood
Search [11,25], and to use it as initial upper bound. Another possibility is to improve
lower bounds that we do not explore in this chapter by adding more constraints to the
assignment problem or to relax some of them using Lagrangian multipliers. Such an
approach does not use advantage provided by fast Hungarian method and could be
research topic for the future work. Although we implement our B&B-based method
on DVRP problem, the method is quite general and may be adapted for solving other
VRP variants.
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On a Relationship Between Graph Realizability
and Distance Matrix Completion

Leo Liberti and Carlile Lavor

Abstract We consider a certain subclass of Henneberg-type edge-weighted graphs
which is related to protein structure, and discuss an algorithmic relationship between
the DISTANCE GEOMETRY PROBLEM and the EUCLIDEAN DISTANCE MATRIX

COMPLETION PROBLEM.

1 Introduction

The structure of proteins is strongly related to its function. Efforts for finding
the three-dimensional structure of proteins include minimization of a potential
energy function and exploitation of known chemical properties such as inter-atomic
distances [29]. Such distances may be known because they refer to covalent bonds
and angles, or because they can be found using Nuclear Magnetic Resonance
(NMR) [4]. In this paper we focus on finding the protein structure using distance
information only.

2 The Distance Geometry Problem

We employ an abstract generalized model of this problem, whereby we look for the
realization in RK of a weighted simple undirected graph G = (V,E,d), where we
assume, to avoid the trivial case, that n = |V | > K. In the case of proteins, K = 3,
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V represents the set of atoms, E represents the set of atom pairs for which a distance
is available, and d : E → R+ is the edge weight function encoding the distances.
Given a positive integer K and a weighted simple undirected graph G = (V,E,d),
the DISTANCE GEOMETRY PROBLEM (DGP) asks whether there exists a realization
x : V → RK such that:

∀{u,v} ∈ E ‖xu − xv‖2 = d2
uv, (1)

where the norm is assumed to be the Euclidean norm. In order to fix an orthogonal
frame of reference and to avoid translations and rotations, we assume that a subset
V0 = {v1, . . . ,vK} ⊆ V and a partial realization x′ : V0 → RK are also given as part
of the input. The DGP is also called the graph realization problem. Realizations
satisfying (1) are called valid. Once a valid realization is found, distances between
all pairs of vertices (not just those in E) can be determined. Formally, this extends
d : E → R+ to a function d̄ : V ×V → R+. The values of the function d̄ can be
arranged into a square Euclidean distance matrix on the point set X = {xv | v ∈
V} ⊆ RK . The pair (X , d̄) is known as a distance space [1].

3 The Euclidean Distance Matrix Completion Problem

In the EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEM (EDMCP) [8],
the input is a partial square symmetric matrix A (i.e. a symmetric matrix where
certain entries are missing) and the output is a pair (Ā,K) where Ā is a symmetric
completion of A, and K ∈ N such that: (a) Ā is a Euclidean distance matrix in RK

and (b) K is minimum possible. We consider here a variant of the EDMCP, which
we call EDMCPK , where K is actually given as part of the input and the output
certificate for YES instances only consists of the completion matrix Ā of the partial
matrix A as a Euclidean distance matrix (Ā is also called a valid completion of A).
It is easy to see that the EDMCPK is strongly related to the DGP: if x is a valid
realization of G, then the partial distance matrix can be completed in polynomial
time, and if Ā is a valid completion of A, then the corresponding DGP graph is a
clique, whose realization in RK can be found in polynomial time [3].

This mapping in the output parallels a mapping in the input data. A partial
square symmetric matrix A = (auv) with missing components indexed by the set
Ē of unordered index pairs {u,v} encodes the weighted simple undirected graph
G = (V,E,a) where V is the set of row/column indices, E is the complement of Ē
with respect to the set of all unordered pairs of V , and the edge weight a maps {u,v}
to auv. Conversely, a weighted simple undirected graph G=(V,E,a) can be encoded
in a partial square symmetric matrix A where the {u,v}th component is auv for all
{u,v} ∈ E and the other components are missing. We formalize this correspondence
by setting M (G) = A for a graph G and its corresponding partial matrix A, and
G (A) = G for a partial matrix A and its corresponding graph G. It is trivial to see
that M and G are inverse operators.
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4 Rigidity and Henneberg type graphs

The DGP refers to a field of study which is known as Distance Geometry (DG).
DG was formally started in the 1930s, when Menger found how to decide whether
a given square matrix encodes a distance matrix using Cayley determinants [19].
Blumenthal then extended Menger’s findings to a well-developed theory [1], and
re-christened Cayley determinants “Cayley–Menger determinants.” The study of
realizations of graphs in the plane and in space, however, dates much further back.
The ancient Greeks were concerned with finding all polyhedra in space, for example.
Statics, which is necessary to ensure that buildings will not collapse under the action
of external forces, has existed ever since man got tired of being rained on and
decided to build himself a roof. Realizations of graphs in space from the point of
view of statics are known as “bar-and-joint frameworks.” Several important results
on the rigidity of such frameworks date from the end of the nineteenth century
[2, 28]. Henneberg [6] was the first to formalize an iterative procedure for verifying
whether such frameworks are rigid. In particular, one of his two “steps” (known as
Henneberg type I step [7, 30]) can be paraphrased (and generalized) as follows: if
there is an order on V such that the first K vertices have a known realization, and
such that every subsequent vertex is adjacent to at least K predecessors, then the
graph almost certainly has a rigid realization in RK . This idea was already present in
the works of Saviotti [27], as testified by the two-dimensional case shown in Fig. 1.

The set of Henneberg type I graphs gives rise to a subset of DGP instances known
as the DISCRETIZABLE DGP (DDGP) [21].

In the above paragraph we used the term “rigid framework” and “almost
certainly” intuitively. These can be formally defined as follows. A framework is
a pair (G,x) where G is a graph and x is a valid realization; a flexing of a framework
is a continuous map p from [0,1] to the set of all realizations of V such that p(0) = x,
p(t) satisfies (1) for all t ∈ [0,1], and p(t) is not an isometry of x for all t ∈ (0,1].
A framework is rigid if it has no flexing. As for “almost certainly rigid,” this means
that the set of realizations which are not rigid has Lebesgue measure 0 in the set of
all possible realizations.

If the Henneberg type I order is not explicitly given, it may not be immediately
obvious how to find one. The problem of finding a Henneberg type I order is defined
in [9] as the DISCRETIZATION VERTEX ORDER PROBLEM (DVOP). There is an
exponential algorithm O(nK+3) for solving the DVOP, which is polynomial for
fixed K. Implementations for K = 3 are very fast and can successfully be used as a
preprocessing step to solving the DDGP.

Fig. 1 Figure 30 in [27]
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5 Branch-and-Prune

For almost all edge weightings, Henneberg type I graphs can have finitely many
different valid realizations whose corresponding distance spaces are incongruent.
With a slight abuse of notation, we call two different valid realizations with
incongruent distance spaces incongruent realizations. If vertex v has exactly K
adjacent predecessors, then xv is at the intersection P of K spheres in RK . The
cardinality of P is in {0,1,2} as long as the position of the K adjacent predecessors
of v affinely spans a (K − 1)-dimensional subspace of RK . The case |P|= 0 occurs
when the edge weighting is such that G has no realization in RK . The case |P| = 1
only occurs when the subgraph induced by v and its K adjacent predecessors defines
a flat simplex in RK . Since the set of flat simplices have Lebesgue measure 0 in the
set of all simplices, this is a case which can be ignored almost all the time. The
remaining case is |P|= 2, shown for K = 3 in Fig. 2.

Thus, one can find all incongruent realizations of a Henneberg type I graph G by
the following method:

(a) place the first K vertices arbitrarily (this essentially fixes the reference system
up to reflection);

(b) place the vth vertex in the Henneberg type I order in one of the points in P;
(c) for each position xv for v in P, recursively call Step (b) with v replaced by v+1.

In the worst case (i.e. whenever |P| is always 2 and there are no other edges but
those that define the Henneberg type I step), this gives rise to a full binary search
tree after level K, which amounts to 2n−K different realizations, 2n−K−1 of which
are incongruent, the other 2n−K−1 being their reflection through the first K vertices
[11, Thm. 2]. We let X be the set of all realizations found by this method.

We remark that the recursive call at Step (c) may occur fewer than twice
whenever vertex v has more than K adjacent predecessors, as the intersection
of more than K spheres in RK almost always has either 0 or 1 point. Thus,
vertices with more than K adjacent predecessors are used to “prune out” certain

Fig. 2 General case for the
intersection P of three
spheres in R3
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Algorithm 3.1: BP(v, x̄, X)
Require: A vertex v ∈V � [K], a partial realization x̄ = (x1, . . .,xv−1), a set X .
1: P =

⋂

u∈N(v)
u<v

Sx̄
uv

2: for p ∈ P do
3: x ← (x̄, p)
4: if ρ(v) = n then
5: X ← X ∪{x}
6: else
7: BP(v+1, x, X)
8: end if
9: end for

branches of the binary search tree. This is why the corresponding algorithm is called
Branch-and-Prune (BP) [10, 17]. The BP algorithm was originally only defined
for immediate predecessors [11], but was henceforth extended to work in several
different situations: for Henneberg type I graphs [21], for certain types of interval-
weighted graphs related to proteins [12, 15, 20], and for the purpose of overcoming
a technical limitation of NMR machinery, which generally only provides reliable
distance measures for pairs of hydrogen atoms [13,14,16,22]. A publically available
BP implementation is described in [25]. The current computational state-of-the-art
for the BP algorithm is attained with a parallel BP implementation [23, 24], which
can realize a protein backbone of 104 atoms in R3 in just over 10s of CPU time on
a cluster of 8 nodes.

Step (b) of the BP algorithm is formalized in Algorithm 3.1. It takes as input a
vertex v of rank ρ(v)>K, a partial realization x̄ on the predecessors of v and a set X
which will contain all the valid realizations at the end of the execution. We identify
for convenience V with the set [n] = {1, . . . ,n} of vertex ranks, we denote the set of
vertices adjacent to v by N(v), and we use Sx̄

uv to denote the sphere centered at x̄u

with radius duv. The BP algorithm starts with the call BP(K + 1, x′, /0), where x′ is
the (given) realization of the first K vertices.

It was shown in [18, Lemma 3.4] that the BP algorithm finds all incongruent
solutions of the DDGP, and in [18, Prop. 3.5] that for almost all instances, no two
distinct search tree nodes at a given level v will be such that one node has two
subnodes and the other node only one.

5.1 Partial reflections

What do incongruent realizations of G look like? Partition the edges of G in those
edges which ensure the existence of a Henneberg type I order (which we call
discretization edges) and all the other edges (which we call pruning edges). Let
X̄ be the set of all realizations of the subgraph of G defined by the discretization
edges. Then, by definition, |X̄ |= 2n−K . A partial reflection of x ∈ X̄ with respect to
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a vertex v > K is a map π : (V � [K])× X̄ → X̄ such that πv = Iv ×Rn−v
v,x , where Rv,x

is the reflection operator through the hyperplane defined by xv−K , . . . ,xv−1; in other
words, πv(x) = (x1, . . . ,xv−1,Rv,x(xv), . . . ,Rv,x(xn)). As remarked in [5, Sect. 2.1],
partial reflections are also maps X → X (a proof of this is found in [18, Thm. 4.9]).
A strong converse is also true for DDGP instances where each vertex is adjacent
to at least K immediate predecessors (such instances are collectively known as the
DISCRETIZABLE MOLECULAR DGP in general dimensions, or KDMDGP, see [11]
for the case with K = 3), namely, that for any distinct x,y ∈ X there is a composition
ρ of partial reflections such that y = ρ(x) [18, Thm. 5.4].

6 BP in distance space

As remarked in [26], the completion in R3 of a distance (sub)matrix with the
following structure:

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 d12 d13 d14 δ
d21 0 d23 d24 d25

d31 d32 0 d34 d35

d41 d42 d43 0 d45

δ d52 d53 d54 0

⎞

⎟
⎟
⎟
⎟⎟
⎠

(2)

can be carried out in constant time by solving a quadratic system in the unknown δ
derived from setting the Cayley–Menger determinant [9, (9)] of the distance space
(X ,d) to zero, where X = {x1, . . . ,x5} and d is given by (2). This is because, for
general K, the Cayley–Menger determinant is proportional to the K-volume of the
simplex on K + 1 points, which is the (unique, up to rotations and translations)
realization of the weighted 5-clique defined by a full distance matrix. Since a
simplex on 5 points embedded in R3 necessarily has 4-volume equal to zero, it
suffices to set the Cayley–Menger determinant of (2) to zero to obtain a quadratic
equation in δ . We denote the pair {u,v} indexing the unknown distance δ by U(D),
the Cayley–Menger determinant of a matrix D by CM(D), and the corresponding
quadratic equation in δ by CM(D,δ ) = 0. This equation has real solutions only if (2)
is a Euclidean distance matrix. Furthermore, if it has real solutions at all, it almost
always has two distinct solutions δ 1,δ 2. These are two valid values for the missing
distance d15. This observation trivially extends to general K, where we consider a
K+2 point simplex realization of a weighted near-clique on K+2 vertices with one
missing edge.

6.1 The main idea

We consider a Henneberg type I graph G and a partial embedding x̄ for the subgraph
G[[K]] of G induced by the set [K] of the first K vertices. The DDGP order on V



Graph Realizability and Matrix Completion 45

Fig. 3 On the left: a near clique on 5 vertices with one missing edge (dotted line). On the right: its
two possible realizations in R3 for a given feasible edge weighting (distance values for the missing
edge shown in red)

guarantees that the vertex of rank K + 1 has K adjacent predecessors, hence it is
adjacent to all the vertices of rank v ∈ [K]. Thus, G[[K +1]] is a full (K +1)-clique.
Consider now vertex vK+2: the Henneberg type I order guarantees that vK+2 has at
least K adjacent predecessors. If it has K + 1, then G′[[K + 2]] is the full (K + 2)-
clique. Otherwise G′[[K + 2]] is a near-clique on K + 2 vertices with one missing
edge (say {u,K+2} for some u ∈ [K+1]). We can therefore use the Cayley–Menger
determinant to compute two possible values for du,K+2, as discussed above. Because
the Henneberg type I order always guarantees at least K adjacent predecessors, this
procedure can be generalized to vertices of any rank v in V � [K], and so it defines
a recursive algorithm which branches whenever a distance can be assigned two
different values, simply continues to the next rank whenever the subgraph induced
by the current K + 2 vertices is a full clique, and prunes all branches whenever
the partial distance matrix defined on the current K + 2 vertices has no Euclidean
completion.

In general, this procedure holds for realizations in RK whenever there is a vertex
order such that each next vertex v is adjacent to K predecessors: thus we can define
a subgraph containing v and K + 1 predecessors consisting of two (K + 1) cliques
whose intersection is a K-clique (i.e., a near-clique with one missing edge). There
are in general two possible realizations in RK for such subgraphs, as shown in Fig. 3.

6.2 Formalization and properties

Algorithm 3.2 formalizes such a recursive algorithm. It takes as input a vertex v
of rank greater than K + 1, a partial matrix A and a set A which will eventually
contain all the possible completion of the partial matrix given as the problem
input. For a given partial matrix A, a vertex v of G (A) and an integer � ≤ K, let
A�

v be the �× � symmetric submatrix of A including row and column v that has
fewest missing components. Whenever AK+2

v has no missing elements, the equation
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Algorithm 3.2: dBP(v, A, A )
Require: A vertex v ∈V � [K+1], a partial matrix A, a set A .
1: P = {δ | CM(AK+2

v ,δ ) = 0}
2: for δ ∈ P do
3: {u,v} ← U(AK+2

v )
4: duv ← δ
5: if A is complete then
6: A ← A ∪{A}
7: else
8: dBP(v+1, A, A )
9: end if

10: end for

CM(AK+2
v ,δ ) = 0 is either a tautology if AK+2

v is a Euclidean distance matrix, or
unsatisfiable in R otherwise. In the first case, we define it to have δ = duv as a
solution, where u is the smallest row/column index of AK+2

v . In the second case, we
define it to have no solutions.

Lemma 1. In Step 1 of Algorithm 3.2, AK+2
v always has at most one missing

distance involving v.

Proof. At level v of Algorithm 3.2, all distances for {u,w} for u,w < v are known
by the induction hypothesis. The induction starts because either d1,K+1 is part of
the input partial matrix, or, if not, by calling BP(K + 1, x̄,∅) just for level K + 1,
without recursion: then the distance d1,K+1 can be computed. By the Henneberg type
I order, v is adjacent to at least K predecessors, so that the densest (K+2)× (K+2)
symmetric submatrix of A involving row and column v must be such that all other
rows/columns are indexed by as many adjacent predecessors of v as possible. Since
there are at most K + 1 such adjacent predecessors, there is at most one missing
distance in AK+2

v , and it involves v. If A can be completed to a Euclidean distance
matrix, then the missing distance is assigned a feasible value in Step 4. This
completes the induction step.

Corollary 1. In Step 3 of Algorithm 3.2, U is well defined.

Theorem 1. At the end of Algorithm 3.2, A contains all possible completions of
the input partial matrix.

Proof. By contradiction, if not then there must be a recursive call when there is
a γ ∈ R+ such that duv = γ yields a partial matrix which can be completed to a
Euclidean distance matrix, but γ �∈ P. But by Lemma 1 this would mean that the
quadratic equation CM(AK+2

v ,δ ) = 0 in δ has more than two solutions, which is
impossible.
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6.3 A dual Branch-and-Prune

The resemblance of Algorithms 3.1 and 3.2 is such that it is very easy to assign
dual meanings to the original (otherwise known as primal) BP algorithms. As was
made clear in Sect. 3, weighted graphs and partial symmetric matrices are dual to
each other through the inverse mappings M and G . Whereas in the primal BP we
decide realizations of the graph, in the dual BP we decide the completions of partial
matrices, so realizations and distance matrix completions are dual to each other.
The primal BP decides on points xv ∈ RK to assign to the next vertex v, whereas
the dual BP decides on distances δ to assign to the next missing distance incident
to v and to a predecessor of v; there are at most two choices of xv as there are at
most two choices for δ ; only one choice of xv is available whenever v is adjacent
to strictly more than K predecessor, and the same happens for δ ; finally, no choices
for xv are available in case the current partial realization cannot be extended to a
full realization of the graph, as well as no choices for δ are available in case the
current partial matrix cannot be completed to a Euclidean distance matrix. This
means that weighted edges and points in Euclidean space are dual to each other.
The same vertex order can be used by both the primal and the dual BP (so the order
is self-dual).

There is one clear difference between primal and dual BP: namely, that the dual
BP needs an initial (K + 1)-clique, whereas the primal BP only needs an initial
K-clique. This difference also has a dual interpretation: a complete Euclidean
distance matrix corresponds to two (rather than one) realizations, one the reflection
of the other through the hyperplane defined by the first K points.
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Effect Oriented Planning of Joint Attacks

Nils-Hassan Quttineh, Torbjörn Larsson, Kristian Lundberg,
and Kaj Holmberg

Abstract We consider tactical planning of a military operation on a large target
scene where a number of specific targets of interest are positioned, using a given
number of resources which can be, for example, fighter aircraft, unmanned aerial
vehicles, or missiles. The targets could be radar stations or other surveillance
equipment, with or without defensive capabilities, which the attacker wishes to
destroy. Further, some of the targets are defended, by, for example, Surface-to-Air
Missile units, and this defense capability can be used to protect also other targets.
The attacker has knowledge about the positions of all the targets and also a reward
associated with each target. We consider the problem of the attacker, who has the
objective to maximize the expected outcome of a joint attack against the enemy.

The decisions that can be taken by the attacker concern the allocation of the
resources to the targets and what tactics to use against each target. We present
a mathematical model for the attacker’s problem. The model is similar to a
generalized assignment problem, but with a complex objective function that makes
it intractable for large problem instances. We present approximate models that can
be used to provide upper and lower bounds on the optimal value, and also provide
heuristic solution approaches that are able to successfully provide near-optimal
solutions to a number of scenarios.

1 Introduction

Effect-Based Operations (EBO) is a military concept which emerged during the
1991 Gulf war for the planning and conduct of operations combining military and
non-military methods to achieve a particular effect. The doctrine was developed
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to take advantage of advancements in weaponry and tactics, from an emerging
understanding that attacking a second-order target may have first order conse-
quences for a variety of objectives. The Commander’s intent can be satisfied with a
minimum of collateral damage or risk to own forces, but EBO planning is complex
and hard since it embraces political factors as well as economic.

Despite its complexity, this is not an impossible task. We have been dealing with
these challenges on an ad hoc basis throughout history, but we can now use modern
technologies and process thinking to provide all ingredients of successful effect-
based operations.

A network-centric system is a system-of-systems concept where a number of
actors are attached to each other in a network sharing information in an adaptable
and interoperable manner. Obviously networking enables an enormous rise in
accessible information and the intrinsic challenge is the development of systems
and functions to shape this information into guidance and control of a variety of
operations with multiple objectives. For example, Yost and Washburn [6] present
an optimization methodology for finding a correct balance between weapons and
attack damage assessment sensors.

The above-mentioned pinpoints the trend in military operational planning, also
at the Swedish military arena. In our case we can use this paradigm shift to put
functional and algorithmic requirements on planning of air-to-ground missions.
This leads to adaptation to new doctrines of command and control and to a tool
that contains the most of planning experience implemented by planning specialist
personnel in cooperation with algorithm experts. Mission performance can be driven
to its limits with a model-based planning, which simultaneously keeps control of
both objective and system performance, which is probably the most cost effective
way to gain performance.

1.1 Network Centric Framework

In a network centric framework, a resource is not an entity tightly coupled to a
sluggish hierarchical organization but a resource with own intelligence to offer
specific effects to a variety of effect customers. Our work does not embrace the
full meaning of EBO but is guided by quantifying and responding to effect requests
and hence becoming a true entity of a network centric system. In order to understand
the paradigm shift in EBO planning or network centric planning, Fig. 1 shows the
principles of future effect-based operations.

Initially an effect must be achieved in order to answer what to do. Thereafter
possible systems are considered and how these systems could manage to do it. The
last issue of the effect chain is to decide the resource allocation. As can be noticed,
resource owners are considered in the later planning stages, which is quite a change
from traditional planning.

Obviously there are two dimensions in the effect chain, the mission-conduction
and the resource owner dimensions. The resource owner dimension keeps and
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Assets (Resource owner)

Competence

Capability

Effectforms

Desired Effect

Target Area

"Who is doing it"

"How to do it"

"What System"

"What to do"

Fig. 1 The effect chain
including an EBO principle
of a split up of the planning
process into stages from the
target to allocation of
individual platforms

conducts resource supply chains as well as allocation schemes and schedules. The
mission-conduction states individual missions and how they shall be implemented.

In order to fulfill requirements on future EBO planning systems, effort must be
put on scalable model-based algorithms which promote an easy workflow and a high
speed planning performance. Each scenario shall be individually stated by the set
of input data, but planning shall always be performed via implemented tactics and
knowledge of actual resource performance and mission pattern.

1.2 Mission Planning

An air-to-ground mission planning system is modular and contains a planning
system and weapon systems, hosted by a variety of carriers such as unmanned aerial
vehicles or fighter aircraft. In order to perform effect oriented planning in line with
Fig. 1 we transform the planning process according to Fig. 2, where each platform
is separated into carrier and weapon performance and tactics producing a certain
effect which can be matched with the effect customers needs.

Initially we maximize system effect in the target area by optimally allocating
the number of weapons to suppress enemy defense and destroy vital targets.
A target area can consist of different ground-based targets and sheltering air defense
units. Each target has a specific value which indicates its importance. The effect-
oriented weapon allocation of the target area is followed by a search for appropriate
platforms, where platform location and scheduling parameters are considered.
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Route Planning Carrier Platform

Target Area

Desired Effect

Fig. 2 A resource, a fighter
with weapon system, has a
relationship between route
planning, type of weapon and
a setup of tactics which forms
the final effect

Each platform must further have a route to the firing position, including tactical
features such as hiding and a limited exposure of radar cross section during the
flight phase.

These planning aspects are coupled, but with an acceptable loss of generality
the effect planning task can be separated from the platform in order to start an
overall planning process. Our work addresses a model-based approach to rapidly
calculate weapon allocation to optimize system effect in an hostile ground-based
target area. Early work on a similar problem was done by Miercort and Soland in
[4], but they consider a less complicated model without intricate dependencies. In a
recent paper by Kwon et al. [3], a new weapon-target allocation problem is presented
together with a branch-and-price algorithm for solving it. In contrast, Kaminer and
Ben-Asher present a model in [2] for maximizing the effectiveness of a defense.

1.3 Paper Overview

In Sect. 2 we describe the problem at hand, which is basically a weapon-targeting
problem, together with some basic concepts that will be used throughout the paper.
Section 3 gives a generic mathematical model for the problem. It is straightforward
with only simple linear constraints, but comes with a difficult objective function.
This section also gives optimistic and pessimistic models that can be used to find
upper and lower bounds on the optimal objective value.

In order to use the generic model and solve realistic scenarios, it is necessary to
specify how to evaluate a given situation, and especially how the defenders act in
different situations. One possible way to do this is presented in Sect. 4.

Section 5 looks into different heuristic approaches, who cannot guarantee
optimality but find high quality solutions for larger scenarios within the reasonable
time frames. Section 6 contains results for these heuristics. Finally, in Sect. 7, we
present some remarks and conclusions together with suggestions on future work.
This paper is based on material that can be found in [5].
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2 The Joint Attack Problem

Imagine a large open area, like a desert, where a number of enemy targets are
positioned. These can be radar stations or other surveillance equipment, which
the attacker wishes to destroy. The targets are, however, guarded by defenders,
like Surface-to-Air Missile (SAM) units. The defenders are also considered to be
potential targets for the attack, since the destruction of defenders can improve upon
the overall outcome of the attack.

The positions of all targets, both those with and without defense, are known.
The set of targets is denoted S, and the subset S̄ denotes the targets with defensive
capabilities, which are defined by radii of defense and armament. Each target s ∈ S
is given a specified reward rs, where important targets have higher values.

The attacker’s problem is to maximize the expected outcome of a simultaneous
attack against the enemy, using at most R identical resources, like aircraft or
unmanned aerial vehicles. Each target should be assigned an attack plan which
specifies the number of resources to be used against it, and also from which
directions.

As illustrated in Fig. 3, some targets do not have a defensive system of their
own, but depends on the defense of others. Also, the radius of defense for different
defenders might overlap. A defender will always protect itself primarily, and then
engage resources passing by inside its radius of defense towards other targets.

2.1 Tactics and Angles of Attack

If a target s is attacked, it is done so by a tactic t chosen from a set of tactics, T .
In real life there are numerous possible tactics for an attack, but we limit ourselves
to tactics using at most 3 resources, as described graphically in Fig. 4. The idea

Fig. 3 A possible attack
scenario. Some targets, here
shown in black, are air
defense units. The other
targets are radar stations or
similar surveillance units who
are valuable to destroy
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Fig. 4 A graphical description of the 5 tactics considered

behind these tactics is to overload the defensive system of a single defender. This is
done either by sending multiple resources from one direction (see tactics 1–3), or
by attacking from multiple and evenly spread directions (see tactics 4–5).

Each tactic t has its own features, such as the number of resources needed, nt , and
the number of attacking directions involved, denoted Vt . The number of resources
that is launched from each of the angles Vt is denoted by mt . Each tactic gives rise to
a probability of success, for each of the nt resources, against a single target s. This
probability is denoted pst and might vary between the targets, depending on their
respective defensive capabilities.

We consider a coarse angle discretization (every 30◦), defining a set V of angles.
Each tactic t ∈ T is associated with a reference angle of attack, w, which defines
from which direction the attack is launched. For tactics which involve more than
one angle of attack (i.e. Vt > 1), multiple angles w might give rise to exactly the
same attack, since we consider evenly spread angles. To avoid such symmetries, we
introduce a subset Wst which contains all reference angles w to be used together with
tactic t against target s.

For tactics involving multiple angles, we define

wj = w+( j− 1) · 2π
Vt

, j = 1, . . . ,Vt .

We also introduce the concept of an engagement path (s,v), which is the line
emanating from target s at angle v. In total, there are |S| · |V | different engagement
paths. For a certain tactic and angle, though, only a few of these paths will be used.
If there is at least one resource on the path, we call it an active path.

In the following, a reference angle of attack is always denoted w and defined by
the set Wst , whereas an angle v refers to an individual angle in V used for general
discussions involving engagement paths (s,v).
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2.2 The Objective

The essence of the attacker’s problem is to decide for each target s which tactic t
that shall be used (if any) and specify a reference angle of attack w. We therefore
introduce the binary variable

zstw =

{
1 if target s is attacked using tactic t from angle w,
0 otherwise.

These decisions, at most one for each target s, are defined as an attack plan z. Let
pkill

stw(z) be the probability of successfully incapacitating target s when attacked by
tactic t from reference angle w. As will be clear from the upcoming analysis, this
probability depends on the overall attack plan z, which is a complicating fact.

The probability for a resource to survive the defense of a defender i ∈ S̄ which
it passes by on its way towards the target s on path (s,v) is denoted pisv(z), and it
depends on what tactics are used against the other targets. Whenever an engagement
path (s,v) does not intersect the area of defense for target i, pisv(z) = 1 holds.

The success of an attack against a certain target depends on the following.

1. The number of resources used against the target (nt =Vt ·mt).
2. The target’s ability to defend itself against incoming resources (pst).
3. The probability of successfully surviving the defense of every other target which

the resource pass by on its way towards the target (pisw j ).

For a given target s, tactic t and angle of attack w, the probability of successfully
eliminating target s is

pkill
stw(z) = 1−

Vt

∏
j=1

[
1− pst ∏

i∈S̄\{s}
pisw j (z)

]mt
. (1)

The probability of success for a tactic t and angle w against a target s generally
depends on which tactics are applied against every other target, that is, the whole
attack plan, which means that the probabilities pisw j are related to each other. This
dependence is the core difficulty of the attacker’s problem.

The objective is to maximize the expected total reward of the attack, found by
multiplying the probability of success of an attack against a target with its reward.
Since we want to optimize the total reward of the attack, these expected values
should be added. The objective then becomes

max ∑
s∈S

[

∑
t∈T
∑

w∈Wst

pkill
stw(z) · zstw

]
· rs.

For each target s ∈ S, at most one of the decision variables zstw, t ∈ T , w ∈ Wst ,
takes the value one, since it is attacked at most once.
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3 Mathematical Models

We here give a generic model for the joint attack problem and two approximate
models that can be used to find upper and lower bounds on the optimal value.

3.1 A Generic Model

As stressed above, the probability pisv(z) depends in general on the whole attack
plan z, but in the generic model we make no assumptions on the exact nature of this
dependence.

max ∑
s∈S

[

∑
t∈T
∑

w∈Wst

pkill
stw(z) · zstw

]
· rs [GENERIC]

s.t. ∑
s
∑
t
∑

w∈Wst

nt · zstw ≤ R (i)

∑
t
∑

w∈Wst

zstw ≤ 1, s ∈ S (ii)

zstw ∈ {0,1}, s ∈ S, t ∈ T,w ∈Wst

It is not necessary to attack all targets. Depending on the rewards specified for
the targets, it might be optimal not to do so. Constraint (i) states that we cannot use
more resources than we have. Constraint (ii) makes sure that each target is attacked
at most once. Both constraints are linear, but the objective is in general nonlinear,
non-convex and non-separable.

3.2 Optimistic Model

It is possible to construct two auxiliary problems that provide upper and lower
bounds, respectively, on the optimal value of the generic problem. We analyze the
expression for pkill

stw(z), under two specific assumptions.
Assume that no target will shoot against resources passing by towards other

targets, but just against resources targeting themselves. This means that pisv(z) = 1
would hold for all targets s ∈ S̄, and that pkill

stw(z) would collapse into the quantity

Pst = 1−
Vt

∏
j=1

[
1− pst ∏

i∈S̄\{s}
1
]mt

= 1− (1− pst)
nt .

Now the probabilities of success no longer depend on the overall attack plan z.
Further, since this expression does not depend on the angle w anymore, we only
have to decide which tactic t to use against each target s, if any tactic at all.
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We then obtain the optimistic model

max ∑
s
∑
t

rs ·Pst · zst [OPTIMISTIC]

s.t. ∑
s
∑
t

nt · zst ≤ R (i)

∑
t

zst ≤ 1, s ∈ S (ii)

zst ∈ {0,1}, s ∈ S, t ∈ T.

Solutions to the optimistic model give upper bounds to the original problem, since
the values of all coefficients in the objective function are systematically increased.
Even more, this is a valid upper bound for all choices of discretization V .

The solution found is also a feasible solution in the original problem, if
complemented with an arbitrary reference angle of attack for each tactic used. This
means that we can easily calculate a true objective value and also get a lower bound.
This bound is only valid for the considered discretization V though.

3.3 Pessimistic Model

In contrast to the assumption made above, we now assume that each target will
shoot against all resources passing by, on their paths towards other targets, and with
its full defensive capability. Denote by p̃isv the resulting probability of surviving the
defense from another target. This probability is clearly a pessimistic estimate of the
true probability of surviving the defense from this target.

If pisv(z) = p̃isv would always hold, then pkill
stw(z) would become the quantity

Pstw = 1−
Vt

∏
j=1

[

1− pst ∏
i∈S̄\{s}

p̃isw j

]mt

,

and we then obtain the pessimistic model

max ∑
s
∑

t
∑

w∈Wst

rs ·Pstw · zstw [PESSIMISTIC]

s.t. ∑
s
∑

t
∑

w∈Wst

nt · zstw ≤ R (i)

∑
t
∑

w∈Wst

zstw ≤ 1, s ∈ S (ii)

zstw ∈ {0,1}, s ∈ S, t ∈ T,w ∈Wst .

The values of p̃isv might of course be too pessimistic, and hence the solution
could provide poor lower bounds on the optimal value of the generic model.
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Hopefully, though, the structure of the solution (the attack plan z) is close to the
optimal one, and by evaluating the true objective one can find a better pessimistic
bound.

4 Simulation Details

In order to fully specify the generic model presented in Sect. 3.1, one needs to
describe how the probability pisv(z) depends on the attack plan z. It is obviously
a hard task to model a real-life situation. We will here give the assumptions used in
our simulation study.

We will analyze the different factors that affect pisv(z), that is, the probability for
a resource to survive the defense from another target as it passes by toward its own
target, and how it depends on z. To do this, we look into the details of the defensive
systems of the targets and define their rules of engagement.

4.1 Specifications of the Defensive System

Since we consider the problem of the attacker, we need to specify a set of determin-
istic engagement rules for the defenders. Each target with defensive capability is
assumed to have a specified number of defensive channels, such as cannons or anti-
missile systems. It will primarily defend itself, and any residual defensive channels
will be used to defend the other targets, by engaging resources passing by inside its
radius of defense. We make the following assumptions for each defender i ∈ S̄.

1. The defender will primarily defend itself.
2. If there are Di > 0 residual defensive channels, then they will be evenly allocated

against the active engagement paths that pass by the target.
3. At most Fi channels might be used against a single engagement path.
4. At most Gi different engagement paths might be engaged.
5. All defensive channels should be used if there is something to shoot at.
6. If there are more active paths than defensive channels, one defensive channel is

allocated to each path as long as possible with respect to a ranking defined by the
distances to the target.

Given an attack plan z, we let auxiliary variables uisv(z) describe how many
defensive channels that should be allocated against the resources on each active path
(s,v) passing by. The values of these variables will comply with the above rules.

Specifically, the number of resources on each path, denoted Nsv, affects the prob-
ability of success for each of these resources. We define K = maxt∈T{nt : Vt = 1}
to be the maximum number of resources travelling on a single engagement path.
Hence, Nsv is in the range k = 0, . . . ,K.
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Fig. 5 To the left, an illustration of how the distance between a target and the active engagement
path is measured. To the right, an example of how the design parameters βik and θik affect the
probability pk

isv

We further define the parameter disv to be the orthogonal distance between a
target i ∈ S̄ and the engagement path (s,v). For other targets with positions inside
the area of defense of target i, the distance to the mid-point of this path is used.
This is illustrated in Fig. 5. Each active path is given a rank number, where the path
closest to target i gets the highest rank, the second closest path gets the second rank,
and so on. Closest path refers to the smallest distance disv and is thus relative to
the target i. This ranking will be used when the defenders cannot engage all paths
passing by, but need to prioritize.

4.2 Specification of the Objective

The probability for a resource to survive as it passes by target i ∈ S̄ towards target
s ∈ S on path (s,v) is a function of the distance disv and the number of resources Nsv

on the path, which are both a direct consequence of the attack plan z. The obvious
way to model this dependence would be to demand values for all such combinations
as input data, but this is practically impossible. We instead introduce an analytic
expression, based on both disv and Nsv.

Let pk
isv be the probability for a resource to successfully pass by one defensive

channel of target i. These probabilities are derived from the values of pst , for tactics
t ∈ T where all k = nt resources are sent from the same angle (Vt = 1). Since this is
only relevant for targets in S̄, we denote this pik for all i ∈ S̄ and k = 1, . . . ,K.

pk
isv = 1−

(
1− disv

ρi

)βik

· (1−θik · pik)

Here, ρi is the radius of defense, while βik and θik are design parameters that model
the defensive capacities of target i against different numbers of resources k.
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The rightmost plot in Fig. 5 shows the probability pk
isv on the y-axis as a function

of the distance disv on the x-axis. Here, the probability pik = 0.7 is used, and the
solid line corresponds to parameter values βik = 1 and θik = 1. The dash-dotted
line is obtained when the value of θik is changed to 0.95. The two dashed curves
correspond to the values of 1.5 and 2, respectively, for parameter βik. In all, this
expression for pk

isv shows a reasonable behaviour. For disv = 0, its value becomes
θik · pik and for disv = ρi the probability becomes 1. For distances in-between, the
parameter βik is used to model the effectiveness of the defensive system of target i.

Now finally, the probability for a resource to survive as it passes by target i ∈ S̄
towards target s ∈ S on path (s,v), given the attack plan z, is

pisv(z) =
K

∏
k=1

(
pk

isv

)uk
isv
.

Here, the auxiliary variable uk
isv equals uisv(z) if k = Nsv and zero otherwise. Since

uisv(z), and thus also uk
isv, might be greater than one the probability of success

decreases with the number of defensive channels assigned to the engagement path.
This is realistic as the defensive channels can be seen as independent, and the
probability for a resource to survive two channels should be the probability of
surviving them both. The general formula (1) now becomes

pkill
stw(z) = 1−

Vt

∏
j=1

[
1− pst ∏

i∈S̄\{s}

K

∏
k=1

(
pk

isw j

)uk
isw j

]mt
.

The values of the variables uk
isv are dependent on the entire attack plan z. Once

their values are known, it is, however, straightforward to evaluate the objective of
the generic model.

4.3 An Illustrative Example

Consider a single defender i, as illustrated in Fig. 6. We name all paths (s,v)
intersecting the area of defense in accordance with their rank, that is, the path with
rank 1 is named path 1, and so on. Notice that one of the engagement paths never
intersects the area of defense, and it is therefore never considered when the residual
defensive channels are assigned. We assume that at most 3 channels might be used
against a single engagement path (i.e., Fi = 3).

Assume first that at most 4 different engagement paths might be engaged
(i.e., Gi = 4), and that there are 5 residual defensive channels (i.e., Di = 5). Consider
the case where all four paths passing by target i are active (i.e., Bi = 4), that is, at
least one resource is following each path. Under the given assumptions, all paths
should be engaged and first each path gets one defensive channel locked against it.
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Fig. 6 A situation where multiple engagement paths intersect the area of defense for a target i

The remaining channel is assigned to the path closest to the target, which is path 1.
The variables uisv here take the values ui1 = 2, ui2 = 1, ui3 = 1 and ui4 = 1.

In the case that Bi or Gi decreases to 3, target i can only engage 3 engagement
paths. For Bi = 4 and Gi = 3, the path most far away will no longer be engaged. The
residual defensive channels are then distributed as follows: ui1 = 2, ui2 = 2, ui3 = 1
and ui4 = 0. If Bi = 3 and Gi = 3 (or 4), then only three engagement paths are active.
Depending on which path that is not active, the other paths are assigned defensive
channels like before, with respect to rank. Assume that, for example, path 2 is not
active, in which case we get: ui1 = 2, ui2 = 0, ui3 = 2 and ui4 = 1.

Finally, if Bi < 2, all defensive channels cannot be assigned to an engagement
path, since Fi = 3. With only one (or none) active path, at most Bi ·Fi ≤ 1 · 3 = 3
channels could be assigned. For example, if only path 3 is active, we obtain: ui1 = 0,
ui2 = 0, ui3 = 3 and ui4 = 0.

5 Heuristic Solution Methods

A problem like this, with only a few constraints (one attack per target and shared
resources) and a non-convex objective function, is well suited for meta-heuristics.
Throughout this section, we base our work on the following assumptions:

1. The number of available resources is limited, that is, it is not possible to use the
maximal number of resources against every target.

2. It is optimal to use all available resources.

The first assumption is reasonable, since otherwise the problem is reduced to
choosing between tactics 3 and 5, either assigning all resources on the same path
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or splitting them on three different paths. (One would, however, still need to figure
out the optimal combination of tactics and angle of attack for each target, and this
would be a non-trivial problem.) The second assumption is very reasonable and
simplifies the work of defining neighbourhoods and setting up heuristic schemes.

5.1 Local Search

Given a feasible solution to the generic model, z, found by some heuristic scheme,
one could try to improve it locally, that is, to perform a local search.

For this problem, where a solution z states which tactic t and angle w to be used
for each target s, it is straightforward to test all feasible angles w ∈ Wst for the
assigned tactic t, one target at a time, and save the best improvement (if any). Then,
if an improvement is made, one can repeat the same process again (since one target
is now attacked from a different angle, and further improvements might be possible)
until the process converges.

At the same time as one tests all angles, one can also switch between the tactics
that use the same number of resources, hence conserving the overall usage of
resources (assumed to be at its upper limit).

A limitation of this local search procedure is that the allocation of resources to
targets is never changed. Even so, this procedure has proven to be an effective tool
for finding good solutions, for almost any starting solution, as long as the allocation
of resources to targets is close to the optimal one.

5.2 A Constructive Heuristic

An intuitive strategy is to iteratively augment a partial solution, adding one extra
resource in each iteration. It seems plausible that the optimal solution using, say, 8
resources is close to the optimal solution for 7 resources.

Provided a feasible solution using k ≥ 0 resources, denoted zk, we seek a solution
zk+1. This is done by considering one target at a time, adding one resource if not K =
3 resources are already in use for this target, and then performing a local search. The
best such augmentation, over all targets, is saved and returned as the new solution
zk+1. The augmentation with one resource at a time is repeated until the available
number of resources is reached. The cost of the heuristic will increase with respect
to the number of targets, since it performs one local search per target.

Note that this constructive heuristic can be applied to any feasible starting
solution. Further, if the initial solution is near-optimal for k resources, then it is
likely that the augmented solution is also near-optimal, but now for k+1 resources.

As a bonus, this approach will generate Pareto-like solutions, stating the
expected outcome of an attack for different numbers of resources, which also yields
marginal values for additional resources with respect to the expected outcome.
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This information is useful when choosing the number of resources to use for an
attack. As will be seen in the forthcoming results, the gain in expected outcome of
an additional resource decreases as a function of the number of resources already
in use.

5.3 Simulated Annealing

A popular meta-heuristic, which is easy to implement, is simulated annealing. The
basic idea, which makes it a meta-heuristic and not a local search method, is to
accept solutions which are non-improving in order to escape local optima. This is
done by chance, and the probability to accept a non-improving value is related to
the change in objective value from the current solution to the new one.

Also, in order to assure finding a local optimum, the probability of accepting
worse solutions decreases over time. This is done by a temperature parameter, which
decreases as the iterations goes by. A simulated annealing approach is successfully
used for a weapon-target allocation problem in [1].

In order to apply a simulated annealing approach, we need to define a neighbor-
hood for a solution z. Under the assumptions stated above, all we need is to work
with feasible attack plans z that use all available resources. Hence we define five
neighborhoods of an attack plan z, denoted Nk(z), in the following ways.

1. The angle of attack w is changed for one target s and tactic t in the attack plan,
that is, zstw → zstw̄.

2. The tactic against one target is changed by switching between one angle and
multiple angles, that is, zstw → zst̄w̃. If necessary, the reference angle w is
adjusted. For example, instead of two resources attacking from the same angle,
they attack from different angles. Notice that the number of resources involved
in the attack is still the same though.

3. Pick two targets at random and switch their tactics and angle of attack. For
example, variables zs1t1w1 and zs2t2w2 become zs1t2w2 and zs2t1w1 instead.

4. Pick two targets at random and exchange their angle of attack. For example,
variables zs1t1w1 and zs2t2w2 become zs1t1w2 and zs2t2w1 instead.

5. Pick two targets at random, which do not use the same number of resources,
and change to new tactics which increase/decrease the number of resources used,
respectively. For example, one target is changed to be attacked by two resources
instead of one, while another target is attacked by two resources instead of three.

The use of multiple neighborhoods provides diversity to the search, and by
repeatedly changing between them all feasible solutions can be reached. Notice
that neighborhood N5 is crucial, since without it the number of resources allocated
against each target would remain fixed to that of the initial solution throughout the
search.

The implemented simulated annealing heuristic consists of outer and inner
iterations. At the end of each outer iteration the temperature is decreased
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(from the initial temperature 0.9 and with the cooling factor 0.7). In each outer
iteration, we cycle once through the different neighborhoods, according to the
sequence {5,2,1,3,4,1,5,2,1}. For each of these, we perform 100 evaluations of
neighbors. During the search, we keep track of the overall best found solution.

6 Numerical Experiments

The optimistic and pessimistic models presented in Sects. 3.2 and 3.3, respectively,
are easily solved using a linear integer programming solver, in our case CPLEX.
They provide upper and lower bounds on the true optimal value, and these are
found in fractions of a second. In order to improve the lower bound, the pessimistic
solution provided by the solver is simply evaluated using the true objective function.
This step improves the bound significantly and is also instant. Moreover, if a local
search, as described above, is performed from the pessimistic solution, an even
better solution can be found. This is fairly inexpensive and improves the bound
in most cases.

The constructive heuristic is initiated with the locally improved pessimistic
solution obtained for k = 2 resources. It is then applied to find a solution with
the available number of resources. The procedure should generate near-optimal
solutions to the cost of at most one application of the local search procedure for
each target and each new resource.

The simulated annealing method is applied as described in Sect. 5.3. This is a
fairly time-consuming method, but is likely to produce the solutions of best quality.

6.1 Case 105

The test case, called Case 105, includes 2 targets with defense and 5 other targets,
which are positioned as shown in Fig. 7. One unit step in the picture corresponds to
1 km. The targets with defense are positioned 10 km apart, and each of them has a
defensive radius of 10 km. The distances between the targets are 300–500 m. When
modelling the problem, a coarse angle discretization of 12 angles is used.

We define three different reward settings for the targets. In setting I, rs = 0 for
s ∈ S̄ and rs = 1 for s ∈ S \ S̄, that is, there is no reward for the defenders and the
same reward for every other target. Although this setting does not reward the targets
with defense, it might still be optimal to attack the defenders in order to reduce their
defensive capabilities and thus increase the overall reward of the attack. In reward
setting II, rs = 1 for s ∈ S̄ and rs = 2 for s ∈ S \ S̄, so that the defenders are also
considered valuable but only second to the other targets. In setting III, rs = 1 for
s ∈ S̄ and rs = 5 for s ∈ S \ S̄, which differentiates the two types of targets more.
Below, we present and analyze the result for the different reward settings.
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Fig. 7 Test case 105, with 2 defenders and 5 other targets

6.2 Results for Case 105

In Fig. 8 we see a graphical representation of the best found solution for Case 105
with reward setting III and 14 resources available. Both defenders, numbers 1 and 2,
are attacked by tactic 5 which means 3 resources from different directions. Targets 5
and 6 are attacked using tactic 4, where 2 resources attack from opposite directions.
Target 3 is attacked using tactic 2, that is, 2 resources from the same direction,
indicated by the dashed line. Finally, targets 4 and 7 are attacked by single resources.

The solutions are not always intuitive at first glance. For example, one of the
attack paths toward target 1 intersects the defensive area of target 2 for a long
distance, and vice versa. Is it not better to attack with all 3 resources from the
same angle and avoid the defense of the other defenders? The explanation is logical.
Consider the resource attacking defender 1. By travelling inside the defensive area of
defender 2, some of the defender’s defensive capability will be allocated against this
resource. As one of three resources taking part of the attack against target 1, the total
expected probability of success will be quite high even though this specific resource
faces great danger. In this way, the defensive capabilities available for target 1 to use
against other resources are reduced, and the overall expected outcome will gain.

Figure 9 shows a graphical representation of the best found solution for the same
case but with 17 resources available. The objective value is improved somewhat.

The use of reward setting I (i.e. reward 0 for defenders and reward 1 for other
targets), render the result seen in Fig. 10. The x-axis represents the number of
resources available and the y-axis the corresponding objective values.

The two outer dash-dotted lines represent the upper and lower bounds,
respectively, found by CPLEX, where the pessimistic solutions have been evaluated
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Fig. 8 Test case 105, with 2 defenders and 5 other targets. Best solution for 14 resources
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Fig. 9 Test case 105, with 2 defenders and 5 other targets. Best solution for 17 resources
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Fig. 10 Results for test case 105 with reward setting I

using the true objective function. The single dots represent the pessimistic values
given by CPLEX. The dashed line with dots is the locally improved pessimistic
solutions. We can see that the improvement is substantial for most numbers of
resouces. The dash-dotted line with squares shows the best found solutions from
the simulated annealing heuristic. The solid line with circles shows the result of
the constructive heuristic. These solutions are in general the best ones found, but
sometimes simulated annealing solutions are equally good.

For reward settings II and III, a similar behavior can be observed in Figs. 11 and
12, respectively. Obviously, the objective values differ due to the different reward
settings, but the overall trend is the same.

We conclude this section with some remarks. The behavior is very similar for
the different reward settings. The optimistic and pessimistic bounds are not tight
for 5–10 resources, but a local search from the pessimistic solution improves the
situation. For Case 105, with only 7 targets, using more than around 15 resources is
not very interesting, and, as can be seen in the graphs, the optimistic and pessimistic
bounds are then tight.

The simulated annealing algorithm performs very well and provides solutions
comparable with the constructive heuristic approach, but it requires comparably
long time even for a moderate number of resources. Mostly, the constructive
heuristic finds the best found solution, and it is beaten by the simulated annealing
method on only single occasions, but it requires even more time than the latter
algorithm when considering many resources.
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Fig. 11 Results for test case 105 with reward setting II
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Fig. 12 Results for test case 105 with reward setting III
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Table 1 Normalized mean objective values for each method

Resources

Method 5 10 15 20 25 30

Opt. CPLEX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Pess. exact 0.6702 0.7691 0.8399 0.8894 0.9209 0.9463
Pess. local 0.6893 0.8300 0.9023 0.9522 0.9737 0.9834
Constr. heur. 0.6999 0.8599 0.9382 0.9852 0.9941 0.9988
Sim. ann. 0.6845 0.8545 0.9369 0.9840 0.9918 0.9940

Best values are in boldface and second best values are emphasized

6.3 Results for Larger Instances

In addition to Case 105, a number of different cases have been studied. These ranges
from 7 to 21 targets. Case 105 is a good representative for all of them, with respect to
the behavior of the heuristic solution approaches. In Table 1, we give mean objective
values for 12 different cases, with a varying number of resources. Here, the objective
values are normalized with respect to the optimistic value found for each case.

For larger instances, with 10–20 targets, the quality of the optimistic and
pessimistic bounds are not as good as for smaller instances. We suspect that the
pessimistic bound is tight for up to 10 resources, and that the strength of the
optimistic bound improves with an increasing number of resources. For instances
where 10–20 resources are available, none of the bounds seems to be tight.

The constructive heuristic is the most stable of all solution methods, providing
high quality solutions for all different scenarios and reward settings. The simulated
annealing method is also very successful. Because of the long calculation times
required for a single run of the simulated annealing method, it is only competitive
with the constructive heuristic approach when seeking a single solution for a specific
and quite large number of resources. Otherwise, the constructive heuristic provides
both better calculation times and solution quality, with the important extra feature
of providing a range of solutions, one for each number of resources. In all, the
constructive heuristic is the clear winner.

7 Conclusions and Future Work

We have introduced and defined a mission planning problem. A generic mathe-
matical model of the problem is presented, and the complex objective function
is analyzed in detail. The generic model can be approximated in order to derive
optimistic and pessimistic models. Such models are an important tool since they
provide upper and lower bounds on the optimal value, hence limiting the uncertainty
of the quality of solutions.

However, in order to solve problem instances of realistic sizes, it is necessary
to use heuristic methods. We have proposed a constructive heuristic method and
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a simulated annealing heuristic to solve this difficult problem. The methods were
tested on a set of problem instances, and the results are very promising. The
constructive heuristic method has good solution times, while solution times are
relatively long for the simulated annealing algorithm.

All methods are generic and can handle different scenarios for the defender’s
strategy. It is sufficient to provide a black-box function to call whenever the
objective needs to be evaluated. Hence, if the assumptions in Sect. 4 are inadequate,
or needs to be modified in any way, the given framework will still be applicable.

This paper has focused on the development of a planning system only considering
target scene parameters such as target location and defense system description, and
how the defense reacts upon attack. Resource performance is certainly included in
the analysis but just in the sense of a static set-up of effect-on-target as a function
of tactics, and the ability to survive in a surface-to-air defense system environment.
This approach complies with future command and control doctrines which promote
a separation of effect planning and resource allocation planning.

To extend the mission scope we can include planning aspects of the platform.
Route planning can be conducted in a flexible way with its own objectives to
conclude the overall mission success. Obvious aspects are minimizing radar cross
section exposure during route phase, and minimize time to target, that is, to explore
hiding possibilities or by clever surveillance tactics during the cruise phase. An
obvious continuation from our work within this paper is to investigate the coupling
between route and effect planning. If this is solved properly, a large step is taken to
control and comprise vital aspects of ground attack planning.

Further, firing platforms must not be given in advance, instead maximizing the
effect of the target area can be the driver to find the best platforms from a larger set.
Based on this fact, future work could address at least two obvious scenarios. The
first is when the target scene is known and there is a predefined number of platforms
where route planning is included in the overall mission. A second scenario is to
consider when several platforms are available. In this case we must allocate good
firing units from a set of platforms but also decide firing position and route planning.
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Abstract In this paper we consider a supply chain where the purchasing behavior
of final users of the product influences the decisions that are made. We particularly
examine the effects of customers’ competition for the offered service level on the
facility location decisions. We consider two types of decision makers, the producer
who tries to provide at facilities the best level of service at minimum cost and the
customers who make their choices in order to minimize their perceived costs. We
consider first the case where customers are assigned for service to the facilities by
the producer. In such a case the producer could be considered as monopolist who
dominates and tries, through the facility location decisions, to ensure the best, at
his opinion, service level at minimum cost. Then we suppose that the customers are
involved in a Nash type game in their effort to ensure the best level of services for
themselves, i.e. we assume that they are involved in an oligopsony. In order to take
into consideration the effects of this competition to the facilities location decisions
we formulated the problem as a bilevel programming model. Next, we suppose that
there are two producers operating in the network, who constitute a duopoly. The
producers compete with each other with respect to the service level they offer in
order to attract customers. We propose a bilevel model with two leaders in order
to take into account both the competition between producers and the competition
among customers.
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1 Introduction

The location of facilities, i.e., the determination of the best places for production
facilities warehouse or intermediate distribution centers, is a key issue of the
strategic management covering the core of the supply chain planning.

Facilities Location Problem and capacity allocation to them in order to be able
to serve customer demand is one of the most traditional areas of optimization. The
basic task of all variants of facility location problems is the following: a company
wants to open up a number of facilities to serve their customers. Both the opening
of a facility at a specific location and the service of a particular customer through a
facility incurs some cost. The goal is to minimize the overall cost associated with a
specific way of opening up facilities and serving customers [7, 8].

Therefore, when creating a new facility, factors including the selection of
appropriate capacity and area of the facility deserves separate attention and should
be taken carefully.

The location of facilities affects not only the distance that users will travel to
them, but also, in connection with decisions about capacity, the time customers
spend on-site prior to their service. The conditions under which customers make
their choice of service facility are complicated, but it is generally reasonable to
assume that every customer will choose the facilities that minimize their total
transportation and waiting cost.

Mathematical models dealing with such situation (for example [12–14]) use
direct choice to assign customers to facilities, that is the assignment is done by
the system and each customer and his demand is directed to the closest facility. The
congestion in facilities is controlled by incorporating constraints in order to ensure
a desired level of waiting time or a specific number of customers. Such constraints
tend to equalize the level of congestion at different facilities, whether it is measured
by the number of users waiting or by waiting time. But empirical studies [9,10] have
shown that when customers are traveling, they select the facility that minimizes the
travel time and waiting time. It is therefore likely that a user may choose not to
travel to the nearest facility, but in another which although it is further away it is
less congested.

In this work, we examine a supply chain network where the producer wants
to determine the number of facilities and the total production capacity in order to
ensure a certain level of satisfaction to his customers while taking into account the
waiting time of customers in the system.

In the mathematical models presented initially a central coordinator, we assume
that the producer, has the ability to direct customers to distribution centers that
would be located. Particularly, we assume that we are dealing with a centralized
supply chain management. Considering the supply network as a single market, the
manufacturer can be regarded as a monopolist who dominates the market and tries,
through the location and capacity choices to ensure a certain level of service to
customers.
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Next, the mathematical models are extended to include the case where customers
are able by themselves to determine the distribution center from which to seek
satisfaction of their demand. The customer’s choice is affected by the total personal
costs incurred during the transaction process with the producer. Besides the price,
the total cost includes the transportation cost required to be paid by the customer to
ensure the product and the costs generated by the delay observed during the serving
process. Therefore, the selection of distribution center is made competitively aiming
at minimizing their personal cost. It is proven that the choices of the customers are
different from the assignments of the central coordinator when they are competing
each other for the received service levels. That is, the customers form an oligopsony.
Consequently, this competitive behavior should be taken into consideration by the
producer during his decision-making process. Assuming that customers observe the
location decisions of the producer and that he is fully informed about the events
at each distribution center, we formulate the facility location problem as bilevel
programming model.

We examine two types of decision makers who have different objectives and they
are in different levels of hierarchy. The first level, the producer (the leader), offers
at the distribution centers the best at his opinion service level, including location, at
minimum cost. The second level, the customers (the followers) make their choices
competitively (a Nash type game) aiming at minimizing their personal expenses
These two levels of hierarchy are involved in a Stackelberg game. First the leader,
determining the service level that minimise his cost. The followers react, being fully
informed about the leader’s decision. The leader knows it and takes it into account
before he announces his strategy.

The results obtained by the numerical analysis of the proposed models demon-
strate that the oligopsonistic behavior of the customers, regarding the service level,
improves the quality of the provided service at the distribution centers by imposing
adjustments to the market needs. It improves therefore market’s flexibility. This
finding opens a new research area in the study of classical oligopsonistic market
structure, which in recent decades has received a lot of criticism [15].

In the last part of this work, we assume that the distribution centers are owned
by two producers. Specifically, we assume that the producers form a duopoly which
compete for customers through the provided service levels involved in a Nash game.

Unlike the existing models in the literature dealing with competition of suppliers
in the supply chain (e.g., [18]), we formulate the problem of the competition
between suppliers for service level they offer as a bilevel problem with two
competing leaders. Due to the competitive nature of duopoly, the bilevel formulation
of the problems is more complicated compared to those with one leader. We also
demonstrate that due to the behavior and choices of competing producers the bilevel
game is significantly different from those of monopoly. The bilevel oligopoly game
formulation of the competitive location and capacity allocation is to our knowelge
proposed for the first time in the bibliography.

The rest of the paper is organized as follows: Section 2 gives a short overview of
the bilevel programming problem. We present in Sect. 3 the models dealing with
the centralized supply chain management. Particularly, the model of Sect. 3.1 is
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concerned with the case where the the producer makes the related decisions by
ignoring the competitive behavior of customers, while in the location resulting from
the model of Sect. 3.2 this behavior is taken into account directly. The comparison
of these two different models is illustrated in Sect. 3.3. In Sect. 4 we examine the
case where more than one producers are competing for the offered service level.

2 Bilevel Programming

Bilevel programming problems describe a hierarchical system involving two
decision levels with different, often conflicting, objectives [1, 17]. In the first
level, the leader controls the decision variable x. In the second level, the follower
controls the decision variable y. The corresponding loss functions φL(x,y) and
φF(x,y) describe the interaction between these two decisions variables. These two
levels of hierarchy are usually involved in a Stackelberg game. The basic idea of
this game can be described as follows:

The leader chooses the strategy x which minimizes his loss function φL(x,y)
and the follower, fully informed about the leader’s decision, reacts by choosing the
strategy which minimizes his own loss function φF(x,y). Thus, follower’s choices
depend on the leader’s choices, i.e., y= y(x). The leader, on the other hand, is aware
of the follower’ s choices and he takes this reaction into account before announcing
his strategy. The bilevel problem could be written in the following general form:

[P] minx∈X φL (x,y) (1)

s.t ϕL (x,y)≤ 0, (2)

where y(x) solves

miny∈Y φF (x,y) (3)

s.t ϕF(x,y)≤ 0, (4)

where x ∈ X ⊂ R,y ∈ Y ⊂ R and X ,Y are closed subsets and ϕL : X ×Y →
Rp, ϕF : X ×Y → Rq.

The upper level of the problem (1)–(2) is the leader’s problem, whereas the
lower level (3)–(4) corresponds to the follower’s problem The set S = {(x,y) :
x ∈ X ,y ∈ Y ,φL(x,y)≤ 0, φF(x,y)≤ 0} is called constraint set. The set Y (x) =
{y ∈ Y : φF(x,y) ≤ 0} is the feasible set of the follower for every given x ∈ X .
The set of all orthological reactions of the follower is the R(x) = {y ∈ Y : y ∈
arg minz∈Y (x) φF(z,y)}, while the set F = {x,y : (x,y) ∈ S ,y ∈ R(x)} is the set
of the feasible solution of the [BP]. A feasible point (x�,y�) ∈ F is a Stackelberg
equilibrium if φL(x�,y�)≤ φL(x,y) ∀ (x,y) ∈ F . This equilibrium point describes
the optimal leader’s strategy.
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Originally formulated as a mathematical model by Bracken and McGill [2, 3],
the [BP] has been studied extensively in the last decades due to its numerous
applications [1, 11, 16, 17].

A bilevel model can be linear, nonlinear, quadratic, etc., depending on the
problem it formulates. Consequently, various methodological approaches and algo-
rithms have been developed for its solution. Some recent application of the bilevel
programming can be found at [11, 16].

3 Optimal Facilities Location and Capacity Assignment
Under Customer Competition

In this section we assume that the producer addresses the supply chain as a
single market and therefore he may be considered as a monopolist who dominates
the market. Consequently, given the total demand of the chain, he can determine
the optimal location of distribution centers and their total capacity by applying a
combination of both the principles of the monopolistic market and the facilities
location models (see, e.g., [15] and [8], respectively).

As soon as the distribution centers are located and capacity is assigned to them,
the procurement of the customers is limited due to these decisions, since the sales
of the products to the customers is actually a capacity assignment process to these
distribution centers.

Therefore, the main problem of the supply chain management system under
consideration is to find an appropriate decision-making mechanism based on which
the location of the distribution centers will be, at individual level, advantageous for
all members of the network.

3.1 Optimal System Location

We assume that the producer tries to provide to the n customers the best, at his
opinion, service level at minimum cost. The evaluation of the offered service is
based on the delay faced by the customers at each distribution center i.

If xi j is the amount that the customer j buys from the distribution center i, then the
performance function di(xi) measures the level of service offered by the distribution
center i, where xi = ∑n

j=1 xi j.
Suppose that m is the set of potential sites for the location of the distribution

centers. We assume that the establishment of a distribution center to the candidate
site i implies a fixed location cost Fi. Furthermore, suppose further r j is the demand
of the customer j ( j = 1, . . . ,n) for the product, pi is the unit price paid by
customers at every distribution center and qi the capacity of the distribution center
i (i = 1, . . . ,m).
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The producer (the central coordinator) should choose the location of the distribu-
tion center such that the optimal benefit of the system is achieved. The aim is to find
the location of the facilities and to assign the customers to them so as to minimize
the total system cost. The mathematical model can be formulated as:

(SO−FL) min
m

∑
i=1

di(xi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j +
m

∑
i=1

Fiyi (5)

s.t
m

∑
i=1

xi j = r j, ∀ j (6)

xi ≤ yiqi, ∀i (7)

xi −
n

∑
j=1

xi j = 0, ∀i (8)

yi ∈ {0,1},∀i (9)

xi j ≥ 0, ∀i, ∀ j (10)

The objective function of problem (5) minimizes the total cost consisting of the
cost of the delay, plus the transportation and purchasing costs plus the cost involved
in setting up a distribution center. The constraints (6) ensure that the quantities
purchased by the customer j at all distribution centers meet his overall demand.
The constraints (7) impose that the total amount of the product available at each
distribution center i does not exceed its capacity. In addition, it enables that the
assignment of the customers’ demand only in sited distribution. The relations (8)
are the defining constraints of the model, ensuring the maintenance of flow in the
network.

Another important decision the producer should make is the determination
of the capacity of the distribution center. If the capacity is set at a level higher than
the demand faced by a distribution center, then the producer will bear the cost of
the capital committed to the production of this excess capacity. On the other hand,
a low level of capacity leads to an increasing service time and consequently to lost
sales since customers will be forced to seek service from other distribution center.

In the model discussed above, the capacity of a potential distribution center is
given in advance. However, the case where the capacity is not given but it must
be decided during the configuration of the system can be examined. In such a case
the performance function will depend not only on the total amount of the product
xi that the distribution center i sells but also on the decision made by the producer
concerning the level of the capacity qi i.e d(xi,qi). Essentially, this means that the
capacity assignment to a distribution center implies the location of this center, since
zero capacity implies a non-located distribution center.
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Hence, the producer should solve the following problem:

(SO−CA) min
m

∑
i=1

di(xi,qi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (11)

s.t
m

∑
i=1

xi j = r j , ∀ j (12)

xi ≤ qi, ∀i (13)

xi −
n

∑
j=1

xi j = 0, ∀i (14)

m

∑
i=1

αiqi ≤ B (15)

0 ≤ qi ≤ Ui, ∀i (16)

xi j ≥ 0, ∀i, ∀ j (17)

The relations (15) impose the total amount of money spent in capacity investment to
m distribution center must not exceed the available budget B, while the constraints
(16) ensure that the capacity of the distribution center will not exceed U unit.

It is possible to add to the objective function a cost function similar to that of (5)
instead of the constraint (15), i.e.,∑m

i=1 Fi(qi) where Fi(·) are continuous function, to
depict the economies of scale produced by the different capacity assignment levels.

3.2 Bilevel Problem Formulation Under Customer Competition

The producer must take into account the reactions of customers in every decision
he takes and determine the final location of the distribution centers based on these
reactions. In other words, the producer should understand that he cannot control
the choices of the customers. Consequently he should use the Nash game, in
which the customers are involved, as an oracle in order to be able to predict their
reaction. That is, he should compute the total cost of the system based on the
reactions of the customer to every decision he makes and select the most satisfactory.

The problem can be formulated as bilevel programming model:

(BSO−FL) min[yi]∑
m
i=1 Fiyi +∑m

i=1 di(x̄i)x̄i

+∑m
i=1 pix̄i +∑m

i=1∑
n
j=1 ti j x̄i j (18)

s.t yi ∈ {0,1}, ∀i (19)

where [x̄i] and [x̄i j] solve
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(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)dt

+
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (20)

s.t
m

∑
i=1

xi j = r j, ∀ j (21)

xi ≤ qiyi, ∀i (22)

xi −
n

∑
j=1

xi j = 0, ∀i (23)

xi j ≥ 0 ∀i, j (24)

According to this model, the leader (producer) decides the location of distribution
centers solving the problem (18)–(19), but he does not control the variables xi and
xi j since they describe the choices of his customers. The values of the variables [x̄i]
and [x̄i j] are derived from the model (20)–(24) corresponding to an oracle. In other
words, the leader uses (20)–(24) as an oracle to discover trends / reactions of the
customers in each potential location and tries to minimize the total cost of the system
based on these discoveries.

The bilevel capacity assignment problem can be formulated analogously:

(SO−CA) min
[qi]

m

∑
i=1

di(x̄i,qi)x̄i

m

∑
i=1

pix̄i +
m

∑
i=1

n

∑
j=1

ti j x̄i j (25)

s.t
m

∑
i=1
αiqi ≤ B (26)

0 ≤ qi ≤ Ui, ∀i (27)

where [x̄i] and [x̄i j] solve

(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)d(t)+

m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

ti jxi j (28)

s.t
m

∑
i=1

xi j = r j, ∀ j (29)

xi ≤ qi, ∀i (30)

xi −
n

∑
j=1

xi j = 0, ∀i (31)

xi j ≥ 0, ∀i, j (32)
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Table 1 Parameters of the example

ti j pi qi Fi

C1 C2 C3 C4 C5

F1 15 16 15 13 17 14 2,350 950
F2 19 25 30 26 17 16 1,350 1,600
F3 27 15 21 29 16 15 1,000 1,700

r j

C1 C2 C3 C4 C5

400 500 450 600 350

According to this model, the producer determines the capacity of the distribution
centers by solving the problem (25)–(27). The customers fully informed about the
decisions of the producer, choose the distribution center which ensures them the
optimal level of service by solving the problem (28)–(32). The leader knows that
the selection of the customers is based on this criterion, and due to this reason he
uses the problem (20)–(24) as a tool to predict the trends / reactions of customers in
each potential location.

3.3 Numerical Comparison of the Models

The aim of this section is to clarify the differences in the decision-making process
that are proposed by the models (5)–(10) and (18)–(24). Furthermore, the purpose
of this section is to determine the negative results of the incorrect choice of location.
For this reason we will employ a randomly generated numerical example.

We consider the case where the producer has 3 potential sites for the establish-
ment of distribution centers that should satisfy the demand of 5 customers. These
sites differ with each other not only in the available capacity but also in the fixed
location cost.

The performance function is given by the equation:

di(xi) =
1

qi − xi
, (33)

and the total unit cost is calculated using the formula:

c̃i j(xi) = di(xi)+ xi
∂di(xi)

∂xi
+ pi + ti j. (34)

Table 1 presents all the necessary parameters.
The Problems (SO-FL) and (BSO-FL) were modeled using the mathematical

programming language AMPL and solved, after implementing a branch-and-bound
scheme, by the MINOS 5.5 solver. Figure 1 depicts the flow of customers to
distribution centers arising after the solution of the problem.
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Fig. 1 Optimal system location vs. location based on customer competition

As it is shown in Fig. 1a, when the producer is interested in minimizing the
“average” cost faced by the customers plus the location cost (i.e., when the (SO-FL)
is solved), a single distribution center is located and all customers fullfil their
demands there.

The basic question is then: Does this assignment satisfy all the customers? If we
look at the unit cost of the solution in Table 2 we observe that the assignment, for
example, of the C2 to the distribution of center F1 results to a unit cost of 30.60,
which is not the minimum that could be faced by this particular customer, since the
unit cost at the distribution center F3 is lower (30 vs. 30.6).

Figure 1b shows the optimal location when the producer solves the problems
(20)–(24) i.e., when the producer tries to identify the reaction/trends of the
customers to his location options. The optimal location of this scenario indicates
that a second distribution center must be opened and customer C2 will choose to
satisfy the maximum amount of his demand from this distribution center.

It is obvious that in terms of location cost, the solution proposed by the second
model is more expensive. So, naturally arises the question “why should the producer
take into account the behavior of the customers instead of accepting the solution of
the first model?”

By comparing the two figures we can conclude that the customer 2 has “escape”
trends in the sense that if a new distribution center will be opened (either by the
producer himself or even worse by a competitor selling the same product) then the
the larger part of the customer’s demand will be lost. In the next section, we will
examine in more detail the location decision under competition among producers.
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Table 2 Solution results of the problems (SO-FL) and (BSO-FL)

SO-FL BSO-FL
Total cost: 68,630 Total Cost: 69,051.25

Unit cost Quantity Unit cost Quantity

C11 28.60 400 28.06 400
C21 35.00 0 34.02 0
C31 42.00 0 43.06 0
C12 30.60 500 30.06 25
C22 41.00 0 40.02 0
C32 30.00 0 30.06 475
C13 29.60 450 29.057 450
C23 46.00 0 45.02 0
C33 36.00 0 37.06 0
C14 27.60 600 27.06 600
C24 42.00 0 42.02 0
C34 44.00 0 45.06 0
C15 31.60 350 31.05 350
C25 33.00 0 32.02 0
C35 31.00 0 32.06 0

4 Duopoly

In a supply chain network where there are more than one producers, none of them
has the power (monopolistic power) to direct customers to distribution centers.
Thus, as a result, the offered service level and the customer satisfaction are the
basic differentiation and discrimination components among economic units of the
same sector.

In this section we examine the impact of the producers’ competition for the
customers attraction, first to the location decisions and second of setting capacity
assignment to distribution centers. We examine a duopolistic supply chain network.
We assume that producers compete by taking part in Nash game. They try to attack
the customers’ demand by providing the optimal service level, that is the one which
minimizes the costs arising from the customers reaction to their decision.

Definition 1. A Nash equilibrium for this duopolistic game corresponds to a set of
location and capacity choices (strategies), which ensure that none of the players are
better of by unilaterally changing his strategy.

We assume further that the customers participate in a second Nash game in order
to ensure the optimal service level for themselves.

We formulate the problem as a bilevel model, where the two producers determine
the optimal location and capacity of the distribution centers, by taking into account
the choices and the requirements set by the customers for the offered service level.

The competition among the members of the supply chain has been studied
extensively in the literature [4–6, 18, 19]. The vast majority of this scientific work
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has be carried out in the framework of the classical economic theory of duopoly. The
competition takes place either by fixing the price level or by determining production
levels that maximize the profit of the producer. In addition, in all these models the
decision-making process takes place in a single level.

The competition models that will be developed in the next section refer to the
competition between two producers but can easily be extended in the case where
more than two producers participate.

4.1 Competitive Facility Location when Customers Participate
in Their Competitive Game

Let’s assume that the potential location of distribution centers i = 1, . . . ,m are
dispersed between the two producers who in turn are involved in a competition for
customer attraction through the provided service level. Let M1 and M2 (m = |M1|+
|M2|) be the nodes of the two producers, respectively. Then, under the assumption
that both producers “announce their strategies simultaneously,” we obtain a Nash
game with two players who are dealing (for K = 1,2) with the following problems:

The facility location problem of the producer 1:

(CFL1) min ∑
i∈M1

Fiyi

+ ∑
i∈M1

di(x̄i)x̄i + ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

ti j x̄i j (35)

s.t yi ∈ {0,1},∀i ∈ M1 (36)

The facility location problem of the producer 2:

(CFL2) min ∑
i∈M2

Fiyi

+ ∑
i∈M2

di(x̄i)x̄i + ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

ti j x̄i j (37)

s.t yi ∈ {0,1},∀i ∈ M2 (38)

where [x̄i] and [x̄i j] solve (20)–(24)
Let Y = {yi|yi ∈ {0,1},∀i ∈ Mk} be the feasible sets of the players for k = 1,2,

yk = [yi]i∈Mk and y =

[
y1

y2

]
. We have already mentioned the existence of optimal

solutions x̄i and x̄i j for given capacity [q̄i]. Thus, there is a function from Rm to Rm,
such that for a given ȳ it returns the unique equilibrium point [x̄i] from (20)–(24)
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and a corresponding mapping from Rm to Rm·n such that for a given ȳ it returns an
optimal transportation plan [x̄i j], which correspond to the equilibrium point [x̄i], thus
it holds that x̄i = xi(ȳ) and x̄i j = xi j(ȳ), respectively.

Hence problems (CFLk) could be formulated as a single-level problems:

(SCFLk) min
yk∈Yk

∑
i∈Mk

di(xiy),yi)xi(y)+ ∑
i∈Mk

pixi(y) (39)

+ ∑
i∈Mk

n

∑
j=1

ti jxi j(y) (40)

Each problem, (SCFLk) corresponds to player k who is involved into the Nash
game.

Similarly, we can formulate the competitive capacity assignment of these two
producers.

The problem of the first producer:

(P1) min
[qi]

∑
i∈M1

di(x̄i,qi)x̄i ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

ti j x̄i j (41)

s.t ∑
i∈M1

αiqi ≤ B, (42)

0 ≤ qi ≤ Ui, ∀i ∈ M1 (43)

The problem of the second producer:

(P2) min
[qi]

∑
i∈M2

di(x̄i,qi)x̄i ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

ti j x̄i j (44)

s.t ∑
i∈M2

αiqi ≤ B, (45)

0 ≤ qi ≤ Ui, ∀i ∈ M2 (46)

where [x̄i] and [x̄i j] solve (28)–(32)
Let Qk = {qi ∈R|∑i∈Mk

aiqi ≤ B, 0 ≤ qi ≤ Ui, ∀i ∈ Mk} for = 1,2, the feasible

sets of the player, qk = [qi]i∈Mk and q =

[
q1

q2

]
. We have already mentioned the

existence of optimal solution x̄i and x̄i j for given capacity [q̄i]. Thus, there is a
function from Rm to Rm, such that for given q̄ it returns the unique equilibrium
point [x̄i] from (28)–(32). There is also a respective mapping forRm toRm·n such that
for a given q̄ it returns an optimal transportation plan [x̄i j] which corresponds to [x̄i].
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We can then write that x̄i = xi(q̄) and x̄i j = xi j(q̄). Therefore the problem (Pk) could
be stated as single-level problems. For k = 1,2 we will have:

(SLPk) min
qk∈Qk

∑
i∈Mk

di(xi(q),qi)xi(q)+ ∑
i∈Mk

pixi(q)+ ∑
i∈Mk

n

∑
j=1

ti jxi(q) (47)

where the problem (SLPk) is faced by the player k of the Nash game.

4.2 The Impact of the Duopoly in the Service Level

In this part we extend the analysis of Sect. 3.3 in order to make inferences on
the impact of the competition of producers with respect to the service level offered.
We assume that both producers have the opportunity to locate distribution centers in
the same area, where they face exactly the same fixed location cost.

The corresponding problems were specified using the parameters listed in Table 1
and were modeled using the mathematical programming language AMPL and
solved by the MINOS 5.5 solver.

In order to be able to find the Nash equilibrium points of the game, it is useful to
transfer it into its normal bimatrix form.

It should be mentioned that a bimatrix game in strategic or normal form
formulates a non-repeatable situation where rational players choose their strategies
independently and simultaneously, having full information about the game details.
Specifically, each player knows (a) the number of the players, (b) the pure strategies
available to each player, and (c) all the possible outcomes of the game. This
knowledge is common i.e., each player knows that all other players are rational
and all players know that all players know this and so on. Since players decide
simultaneously, none of them knows the choice of others when deciding. In other
words, when a player chooses his strategy he does not know in advance and with
certainty the choices of his competitors but he can assume that his opponents, being
rational, are reasong along the same lines.

In our case the available strategies for the players are the choices for the location
or not of a distribution center in the candidate region i, i = 1,2, . . . ,8. Assuming
that the regions are listed in numerical order, Table 3 presents all the strategies for
each player where 1 means that the player k opens the corresponding distribution
center while 0 that the corresponding center do not open and so player does not pay
the fixed costs.

Table 3 The players strategies

Sk1 Sk2 Sk3 Sk4 Sk5 Sk6 Sk7 Sk8

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
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Table 4 Loss function of producer 1

S21 S22 S23 S24 S25 S26 S27 S28

S11 – 0 – – 0 0 0 0
S12 68630 33828.75 68630 53104.29 33828.75 33828.75 53104.29 33828.75
S13 – 1600 47722.5 52071.46 1600 1600 1600 1600
S14 – 16327.14 36806.27 – 16327.14 11509.86 23405.71 11509.86
S15 70230 35428.75 70230 54704.29 35428.75 35428.75 54704.29 35428.75
S16 69081.43 35528.75 69081.43 59392.99 35528.75 35528.75 59392.99 35528.75
S17 88877.73 17577.14 62351.44 63041.43 18041.29 12823.92 44773.36 12823.92
S18 70681.43 37128.75 70681.43 60962.93 37128.75 37128.75 60962.93 37128.75

Table 5 Loss function of producer 2

S21 S22 S23 S24 S25 S26 S27 S28

S11 – 68630 – – 70230 69556.4 88227.7 71156.43
S12 0 34428.75 1600 15977.14 36028.75 35528.75 17577.14 44853.75
S13 – 68630 47772.5 36806.27 70230 70330 70980 71930
S14 – 52754.29 52071.46 – 54354.29 59375.99 63041.43 61122.28
S15 0 34428.75 1600 15977.14 36028.75 36128.75 17577.14 37728.75
S16 0 34428.75 1600 11356.92 36028.75 36128.75 12926.86 42482.61
S17 0 53104.29 26464.53 23405.71 54704.29 59495.93 43223.36 61095.93
S18 0 34428.75 1600 11356.92 36028.75 36128.75 12956.92 37728.75

Tables 4 and 5 contain the solution results of the CFLk (for k = 1,2) for all pairs
of strategies, that is, they are the loss matrices of players 1 and 2, respectively. Thus,
they present the cost paid by each producer for every possible outcome of the game.
Tables 4 and 5 suggest that there are 4 Nash equilibria:

1. The pair of strategies (S11,S22) according to which only player 2 opens a
distribution center in region 1.

2. The pair of strategies (S12,S21) according to which only player 1 opens a
distribution center in region 1.

3. The pair of strategies (S13,S24) which suggests that producer 1 opens a distribu-
tion center in region 2 and producer 2 in the region 3.

4. The pair of strategies (S14,S23) which suggests that producer 1 opens a distribu-
tion center in region 3 and producer 2 in the region 2.

The Nash equilibria appear symmetrical, which is a natural result of players’
symmetry not only in strategies but also in costs functions.

Figure 2 shows all possible outcomes of the game in a Cartesian space. These
points are represented by the EV and EP. Points EP correspond to the four
Nash equilibrium points. It is evident from the Fig. 2 that no equilibrium point
is dominated by another. The indeterminacy phenomenon, often inherent to Nash
games, does not allow us to conclude directly about the actual outcome of the game.
In fact an disequilibrium is possible, if, for example, the first player persists in the
strategy S12, while the second player persist in the equilibrium S24. The pair of
strategies (S12,S24) does not correspond to an equilibrium.
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Fig. 2 Set of outcomes. Points EV and EP not MP1 and MP2

Nevertheless, we can assume that in a real situation, players will focus on some
of the equilibrium point and they will ignore others. The equilibrium points in which
the players will focus their attention are referred to as focal equilibrium points.

In our case it is easy to report that points (S11,S22) and (S12,S21), where only
one player should install a single distribution center may not be focal equilibrium
point. One reason is the mere fact that a player examines where and how distribution
centers will open makes the decision of his opponent to open somewhere some
center to be almost taken. In other words, by putting himself in his opponent’s
position he will reject the possibility to allow the opening of the distribution center
only by his competitor. Indeed, by making a complete analysis of the game he
will realize that having a single distribution center does not satisfy all customers.
Additionally, he understands that there will be tendency to escape by some of them,
as we have already seen in Sect. 3.3 and is demonstrated in Fig. 1 and consequently
his competitor will take advantage of this escape. Therefore the focal equilibrium
point of the game are points (S13,S24) and (S14,S23).

According to this analysis, the first two pairs of strategies although they are
equilibrium points they will never be followed by the player. Players participate
in the game, having already decided to enter in the network. Thus the choice of
either strategy S11 of the producer 1 or the S21 of the producer 2 is not compatible
with such a decision. Consequently, under real circumstances, only the equilibrium
points (S13,S24) and (S14,S23) are possible outcomes of the game.

Observe that producers, taking into account the competition of customers with
respect to the service, will choose to operate their distribution centers in different
locations trying to attract non satisfied customers of their competitor. It should be
noted that, the equilibrium points guarantee the fulfillment of customer demand at
the minimum cost while satisfying their preferences about the service level they
receive. Table 6 confirms this finding.
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Table 6 The effect of the equilibrium point (S13,S24) and (S14,S23) to the game of the customers

Equilibrium point (S13,S24) Equilibrium point (S14,S23)

Producer 1 Producer 2 Producer 1 Producer 2

Unit cost Quantity Unit cost Quantity Unit cost Quantity Unit cost Quantity

C11 35.76 0 35.76 0 C11 35.76 0 35.76 0
C21 35.76 400 35.76 0 C21 35.76 0 35.76 400
C31 35.76 0 35.76 0 C31 35.76 0 35.76 0
C12 32.76 0 32.76 0 C12 32.76 0 32.76 0
C22 32.76 0 32.76 0 C22 32.76 0 32.76 0
C32 32.76 0 32.76 500 C32 32.76 500 32.76 0
C13 38.76 0 38.76 0 C13 38.76 0 38.76 0
C23 38.76 0 38.76 0 C23 38.76 0 38.76 0
C33 38.76 0 38.76 450 C33 38.76 450 38.76 0
C14 42.76 0 42.76 0 C14 42.76 0 42.76 0
C24 42.76 600 42.76 0 C24 42.76 0 42.76 600
C34 42.76 0 42.76 0 C34 42.76 0 42.76 0
C15 33.76 0 33.76 0 C15 33.76 0 33.76 0
C25 33.76 311 33.76 0 C25 33.76 0 33.76 311
C35 33.76 0 33.76 39 C35 33.76 39 33.76 0

The comparison of Tables 2, 4 and 5 certifies that the competitive location of
the distribution centers is, in terms of total cost, more beneficial for each producer.
No matter which of these two equilibria will be chosen the cost that each producer
is going to deal with is smaller in comparison with the total cost of the system
optimum and the cost of the monopolistic solution which takes into consideration
the competition of the customers.

However, the indeterminacy among the focal equilibrium points cannot easily
be eliminated. These two focal equilibrium are symmetric in terms of total cost
(36,806, 52071.46) and (52071.46, 36,806), respectively. As illustrated in Fig. 3
both structures of the network distribute symmetrically the customers’ demand.
Table 6 demonstrates that this distribution is a robust equilibrium for the customers’
game, since none of them wants to deviate from it. Therefore, the existence of those
loyal customer for any of the focal outcome should satisfy the competing producers.

It should be mentioned that we do not consider equilibrium in mixed strategies
although we could examine their existence using the free and open source software
Gambit [20]. The reason we ignore mixed strategies is that they may propose
expected cost for the competing producers which generally do not correspond to
an equilibrium of the customers. For the same reason we can ignore the Nash
arbitration solution. A simple analysis which takes into consideration points MP1
and MP2 in Fig. 2 can convince us. First, the point MP1 is pareto dominated by
MP2, therefore it cannot be a Nash arbitration point. On the other hand, point MP2
which represents the pair of total cost (33,315, 34,315) does not correspond to
costs (35) and (37) which are calculated for an equilibrium of customers. Such a
decision of the competitors would lead to a situation where customers would tend
to escape. The nearest point to (34,315, 34,315), which has been estimated based on
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Fig. 3 Competitive facility location

an equilibrium of customers, is the point (33,828, 34428.75) corresponding the pair
(S12,S22) open a center, the first one. However, in a competitive environment, the
competitors should not have opportunities for such agreements.

5 Conclusion

The aim of this work was to formulate problems of facility location and capacity
assignment resulting from the competitive behavior of economic unit operating in a
supply chain network. Within this context we examined two different types of mod-
els. In the beginning we considered the case where the producer controls the overall
supply network and tries to choose the facility location and capacity allocation plan
that minimizes the total system cost. Next, we expand the formulation in order to
take into account the purchasing behavior of customers. In this case the problem is
formulated as bilevel programming problem.

In addition we proposed a bilevel problem with two leaders. This model describes
the competition between the two producers in order to attract customers through the
quality of the service they provide. The results of the analysis of a random example
indicate that the competitive location decisions proposed by the model are the most
effective since it minimizes the cost of the system as perceived by producers while
they handle of customer behavior.
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In conclusion, we could say that the competition of the producers in terms of the
service level they provide competition increases the benefit of the purchasers since
it ensures:

1. High service level
2. Low cost with declining trends.
3. Improvement of the producer flexibility and their adaptation to the market needs.
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A Hybrid Particle Swarm Optimization
Algorithm for the Permutation Flowshop
Scheduling Problem

Yannis Marinakis and Magdalene Marinaki

Abstract This paper introduces a new hybrid algorithmic nature inspired approach
based on Particle Swarm Optimization, for successfully solving one of the most
computationally complex problems, the Permutation Flowshop Scheduling Prob-
lem. The Permutation Flowshop Scheduling Problem (PFSP) belongs to the class of
combinatorial optimization problems characterized as NP-hard and, thus, heuristic
and metaheuristic techniques have been used in order to find high quality solutions
in reasonable computational time. The proposed algorithm for the solution of the
PFSP, the Hybrid Particle Swarm Optimization (HybPSO), combines a Particle
Swarm Optimization (PSO) Algorithm, the Variable Neighborhood Search (VNS)
Strategy and a Path Relinking (PR) Strategy. In order to test the effectiveness and
the efficiency of the proposed method we use a set of benchmark instances of
different sizes.

Key words Permutation flowshop scheduling problem • Particle swarm
optimization • Variable neighborhood search • Path relinking

1 Introduction

Particle swarm optimization (PSO) is a population-based swarm intelligence
algorithm that was originally proposed by Kennedy and Eberhart [14]. PSO
simulates the social behavior of social organisms by using the physical movements
of the individuals in the swarm. Its mechanism enhances and adapts to the global and
local exploration. Most applications of PSO have concentrated on the optimization
in continuous space but in the last years the PSO algorithm is used also in discrete
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optimization problems. Recent complete surveys for the PSO can be found in
[1, 2, 24]. The PSO is a very popular optimization method and its wide use, mainly
during the last years, is due to the number of advantages that this method has,
compared to other optimization methods. Some of the key advantages are that
this method does not need the calculation of derivatives that the knowledge of
good solutions is retained by all particles and that particles in the swarm share
information between them. PSO is less sensitive to the nature of the objective
function, can be used for stochastic objective functions and can easily escape from
local minima. Concerning its implementation, PSO can easily be programmed, has
few parameters to regulate and the assessment of the optimum is independent of the
initial solution.

In this paper, we would like to develop a competitive Nature Inspired method
based on PSO for the solution of the Permutation Flowshop Scheduling Problem
(PFSP) and to test its efficiency. Thus, in this paper, we demonstrate how a nature
inspired intelligent technique, the PSO [14] and two metaheuristic techniques,
the Variable Neighborhood Search (VNS) [11] and the Path Relinking (PR) [8] can
be incorporated in a hybrid scheme in order to give very good results for the PFSP.
The VNS is used to improve the solution of each particle and, as it is desired, to keep
the computational time as low as possible while the PR strategy is used in order to
improve the solution of the best particle in each iteration.

The rest of the paper is organized as follows: In the next section a descrip-
tion of the PFSP is presented. In the third section the proposed algorithm, the
Hybrid Particle Swarm Optimization (HybPSO) is presented and analyzed in detail.
Computational results are presented and analyzed in the fourth section while in the
last section conclusions and future research are given.

2 The Permutation Flowshop Scheduling Problem

The flowshop scheduling problem proposed by Johnson [13] is an important
scheduling problem [23] and has been extensively studied. In a flowshop scheduling
problem there is a set of n jobs, tasks or items to be processed in a set of m machines
or processors in the same order, i.e. first in machine 1, then on machine 2 and so on
until machine m. At any time, each job can be processed on at most one machine
and each machine can process at most one job. Also, once a job is processed on
a machine, it cannot be terminated before completion. The objective is to find a
sequence for the processing of the jobs in the machines so that a given criterion is
optimized. No preemption is allowed, i.e. the processing of a job i on a machine
j cannot be interrupted. All jobs are independent and are available for processing
at time 0. The set-up times of the jobs on machines are negligible and therefore
can be ignored. The machines are continuously available. In the literature, the most
common criterion is the minimization of the makespan (Cmax), i.e the minimization
of the maximum completion time.
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The makespan problem for flow shops has been the most studied by far in the
literature. This is partly because:

• Makespan is a simple and useful criterion for heavily loaded shops when
long-term utilization should be maximized

• Makespan is the only objective function simple enough to have available some
analytic results for multi-machine problems and to make some branch-and-bound
methods practical for medium-sized problems

The minimization of the makespan objective is to a certain extent equivalent to the
maximization of the utilization of the machines. The models, however, tend to be
of such complexity that makespan results are already relatively hard to obtain. Even
harder to analyze are the flow time and the due-date-related objectives.

In the permutation flowshop scheduling problem (PFSP) [22, 28], solutions are
represented by the permutation of n jobs, i.e., π = {π1,π2, . . . ,πn}. Each job is
composed of m operations, and every operation is performed by a different machine.
Thus, given the processing time p jk for the job j on the machine k (these times are
fixed, known in advance and non-negative), the PFSP is to find the best permutation
of jobs π∗ = π∗

1 ,π
∗
2 , . . . ,π

∗
n to be processed on each machine subject to the makespan

criterion. Let C(π j,m) denote the completion time of the job π j on the machine m.
Then, given the job permutation π , the completion time for the n-job, m-machine
problem is calculated as follows:

C(π1,1) = pπ1,1 (1)

C(π j,1) = C(π j−1,1)+ pπ j,1, j = 2, . . . ,n (2)

C(π1,k) = C(π1,k− 1)+ pπ1,k,k = 2, . . . ,m (3)

C(π j,k) = max{C(π j−1,k),C(π j ,k− 1)+ pπ j,k}, (4)

j = 2, . . . ,n,k = 2, . . . ,m

So, the makespan of a permutation π can be formally defined as the completion
time of the last job πn on the last machine m, i.e.:

Cmax(π) = C(πn,m). (5)

Therefore, the PFSP with the makespan criterion is to find the optimal permuta-
tion π∗ in the set of all permutationsΠ such that:

Cmax(π∗)≤ C(πn,m) for each permutation π belonging to Π . (6)

The computational complexity of the PFSP has been proved to be NP-hard by
[7,27]. Due to this fact, the solution procedure for the PFSP is often either heuristic
or metaheuristic. A number of heuristic and metaheuristic algorithms have been
developed in the past for this problem. Some recent works are presented in the
following. In [29] an iterated greedy algorithm is used for the permutation flowshop
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scheduling problem. In [35] cooperative metaheuristic methods are proposed for the
permutation flowshop scheduling problem. A hybrid metaheuristic that comprises
three components, an initial population generation method based on a greedy
randomized constructive heuristic, a genetic algorithm for solution evolution, and
a variable neighborhood search to improve the population is used in [39] for the
permutation flowshop scheduling problems. A tabu search technique with a specific
neighborhood definition which employs a block of jobs notion is used for the
permutation flowshop scheduling problem in [21]. In [9] a tabu search algorithm
is presented for the permutation flowshop problem. In [33] an algorithm that
hybridizes the genetic algorithm and a local search scheme that combines two local
search methods, the Insertion Search and the Insertion Search with Cut-and-Repair,
is used for solving the permutation flowshop scheduling problem. An algorithm
that hybridizes the genetic algorithm and the tabu search is used for solving the
permutation flowshop scheduling problem in [34]. In [3] a self-guided genetic
algorithm is used for the permutation flowshop scheduling problem. In [30] genetic
algorithms are used for solving the permutation flow shop scheduling problem. In
[22] a discrete differential evolution algorithm is used for the permutation flowshop
scheduling problem. In [16] a discrete version of particle swarm optimization is
used for the flowshop scheduling problem. A hybrid alternate two phases PSO
algorithm which combines the PSO with genetic operators and annealing strategy is
proposed in [38] to solve the flowshop scheduling problem. In [18] a particle swarm
optimization-based memetic algorithm is proposed for the permutation flowshop
scheduling problem. An algorithm that combines the particle swarm optimization
algorithm with genetic operators is proposed in [37] for the flowshop scheduling
problem. A particle swarm optimization algorithm applied for permutation flowshop
scheduling is used in [15]. In [6] an ant-colony algorithm has been developed in
order to solve the flowshop scheduling problem. Two ant-colony optimization algo-
rithms are proposed and analyzed for solving the permutation flowshop scheduling
problem in [25, 26]. A hybrid discrete artificial bee colony algorithm is presented
in [19] for the solution of the permutation flowshop scheduling problem. More
analytical reviews of approaches applied for the solution of the flowshop scheduling
problem are given in [10, 28].

3 Hybrid Particle Swarm Optimization Algorithm

3.1 General Description

In this paper, a hybrid PSO (HybPSO) algorithm is used for the solution of the
PFSP. In PSO algorithm, initially a set of particles is created randomly where each
particle corresponds to a possible solution. Each particle has a position in the space
of solutions and moves with a given velocity. One of the key issues in designing
a successful PSO for the Permutation Flowshop Scheduling Problem is to find a
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suitable mapping between PFSP solutions and particles in PSO. Each particle is
recorded via the permutation π of jobs. For example, if we have a particle (solution)
with ten jobs, a possible permutation representation is the following:

2 3 8 5 4 10 9 6 1 7

As the calculation of the velocity of each particle is performed by (7) (see
below), the above-mentioned representation should be transformed appropriately.
We transform each element of the solution into a floating point in the interval (0,1],
calculate the velocities and the positions of all particles and, then, convert back the
particles’ positions into the integer domain using relative position indexing [17].

The position of each particle is represented by a d-dimensional vector in problem
space xi = (xi1,xi2, . . . ,xid), i = 1,2, . . . ,N (N is the population size and n is
the number of the vector’s dimension), and its performance is evaluated on the
predefined fitness function. The velocity vi j represents the changes that will be
made to move the particle from one position to another. Where the particle will
move depends on the dynamic interaction of its own experience and the experience
of the whole swarm. There are three possible directions that a particle can follow:
to follow its own path, to move towards the best position it had during the iterations
(pbesti j) or to move to the best particle’s position (gbest j). The velocity and position
equations are updated as follows (constriction PSO) [4]:

vi j(t + 1) = χ(vi j(t)+ c1rand1(pbesti j − xi j(t))+ c2rand2(gbest j − xi j(t))) (7)

and

xi j(t + 1) = xi j(t)+ vi j(t + 1) (8)

where

χ =
2

|2− c−√
c2 − 4c| and c = c1 + c2,c > 4 (9)

t is the iterations’ counter, c1 and c2 are the acceleration coefficients, rand1 and
rand2 are two random variables in the interval (0, 1). A local search strategy based
on the Variable Neighborhood Search (VNS) algorithm [11] is applied in each
particle in the swarm in order to improve the solutions produced from the particle
swarm optimization algorithm. Finally, a path relinking strategy [8] with starting
solution the best particle and target solution one of the other particles of the swarm
is applied. During the path relinking procedure, if a better solution than the current
best solution is found, then the current best solution is replaced by this solution
(see Sect. 3.3). In each iteration of the algorithm the optimal solution of the whole
swarm and the optimal solution of each particle are kept. The algorithm stops when
a maximum number of iterations have been reached. A pseudocode of the proposed
algorithm is presented in the following.
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Initialization
Select the number of Swarms
Select the number of Particles for each swarm
Generate the initial population
Evaluate the fitness function of each particle
Apply Variable Neighborhood Search in each particle
Keep Optimum particle of the whole swarm
Keep Optimum solution of each particle
Main Phase
Do until the maximum number of generations has not been reached:

Calculate the velocity of each particle
Evaluate the new fitness function of each particle
Apply Variable Neighborhood Search in each particle
Update the best solution of each particle
Update the best particle
Apply a Path Relinking strategy in the best particle
if a new best solution is found then

Update the best particle
endif

Enddo
Return the best particle (the best solution).

3.2 Variable Neighborhood Search

A variable neighborhood search (VNS) [11] algorithm is applied in order to
optimize the particles. The basic idea of the method is the successive search in a
number of neighborhoods of a solution. With the term neighborhood it is meant
different number of local search algorithms. The search is applied either with
random or with a more systematical manner in order to escape the solution from
a local minimum. This method takes advantage of the fact that different local search
algorithms will lead to different local minimums. In this paper, the VNS algorithm
is used with the following way. Initially, the number of local search algorithms
is selected. The local search strategies for the Permutation Flowshop Scheduling
Problem are the 2-opt, 3-opt, 1–0 insert, 1–1 interchange and threshold accepted [5]
neighborhoods.

As we do not want to increase the complexity of the algorithm, it is decided
to apply in each particle one local search combination of algorithms per iteration.
For this reason, a VNS operator CVNS is selected that controls which local search
algorithm is applied. The CVNS value is compared with the output of a random
number generator, randi(0,1). If the random number is less or equal to the CVNS,
then the first local search algorithm is used. Then, if the random number is less or
equal to the 2 ∗CVNS, then the second local search algorithm is used, and so on.
As we would like to have not only simple local search algorithms but also their
combinations we select ten local search algorithms, the five previously mentioned
methods and five combinations (2-opt and 3-opt, 2-opt and 1–1 interchange, 2-opt
and 1–0 insert, 3-opt and 1–0 insert and, finally, 2-opt, 1–1 interchange, 3-opt and
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1–0 insert). Finally if the local search algorithm is stuck in a local optimum a
dynamic iterated local search [20] is applied periodically. Thus, the CVNS operator
is set equal to 0.1.

3.3 Path Relinking

This approach generates new solutions by exploring trajectories that connect high-
quality solutions—by starting from one of these solutions, called the starting
solution and generating a path in the neighborhood space that leads towards the other
solution, called the target solution [8]. The roles of starting and target solutions can
be interchangeable. In one case, the worst among the two solutions plays the role
of the starting solution and the other plays the role of the target solution. In another
case, the roles are changing. There is the possibility the two paths to simultaneously
be explored. In the proposed algorithm, after the completion of an iteration, a path
relinking algorithm is applied for exploring trajectories between the best particle and
a number of other particles of the swarm. In this algorithm the best particle plays
the role of the starting solution and in each iteration the other random particles play
the role of target solutions. We are using random particles for the target solutions in
order to give to the best particle more exploration abilities by combining not only
the best particle with its neighbor particles but also with equal probabilities with
all the particles in the swarm. If a better solution than the current best solution is
found, then the current best solution is replaced by this solution.

4 Results and Discussion

The algorithm was implemented in Fortran 90 and was compiled using the Lahey
f95 compiler on a Intel Core 2 DUO CPU T9550 at 2.66 GHz, running Suse Linux
9.1. The algorithm was tested on the 90 benchmark instances of Taillard [31].
In these instances there are different sets having 20, 50, and 100 jobs and 5, 10, or 20
machines. There are 10 problems inside every size set. In total there are 9 sets and
these are: 20 × 5 (i.e., 20 jobs and 5 machines), 20 × 10, 20 × 20, 50 × 5, 50 × 10,
50 × 20, 100 × 5, 100 × 10 and 100× 20. The parameters of the proposed algorithm
are selected after thorough testing. A number of different alternative values were
tested and the ones selected are those that gave the best computational results
concerning both the quality of the solution and the computational time needed to
achieve this solution. The selected parameters are: number of particles equal to 50,
number of generations equal to 1,000, c1 = c2 = 2.05 and the number of local search
iterations is equal to 20. The efficiency of the HybPSO algorithm is measured by
the quality of the produced solutions. The quality is given in terms of the relative

deviation from the best known solution, that is ω =
(cHybPSO−cBKS)

cBKS
%, where cHybPSO

denotes the cost of the solution found by HybPSO and cBKS is the cost of the
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best known solution. In Table 1 for everyone of the 9 sets we have averaged the
quality of the 10 corresponding instances. There are a number of heuristic and
metaheuristic algorithms that have been applied for the finding of the makespan
in a PFSP. Table 1 presents the average quality of the solutions of the proposed
algorithm (HybPSO) and the average quality of other 12 algorithms from the
literature. The first one is the most important heuristic algorithm, the NEHT which
is the classic NEH algorithm together with the improvement that was presented by
Taillard [31]. A Simple Genetic Algorithm (SGA) [3], a Mining Genetic Algorithm
[3], an Artificial Chromosome with Genetic Algorithms [3], a Self-Guided Genetic
Algorithm (SGGA) [3], three versions of Particle Swarm Optimization algorithms
(PSO1) [32], (CPSO) [12] and (PSO2) [16], a Discrete Differential Evolution (DDE)
algorithm [22], a hybridization of Genetic Algorithm with Variable Neighborhood
Search (GA-VNS) [39] and an Ant Colony Optimization algorithm (ACS) [36] are
given.

From Table 1, a number of important conclusions about HybPSO are derived.
First of all, the algorithm finds the optimum in the first set in all instances. This
happens only in one more algorithm, in the GA-VNS. Both algorithms have as
local search phase a Variable Neighborhood Search algorithm which lead us to the
conclusion that the combination of a population-based algorithm (like PSO in the
proposed algorithm and a genetic algorithm in GA-VNS) with a very strong local
search technique like VNS increases both the exploration and exploitation abilities
of the algorithm. The algorithm performs better in 10 out of the 12 other algorithms
used for the comparisons. As it was expected, the algorithm performs better than
the only heuristic algorithm, the NEHT. The algorithms that can deal with only
discrete values in the representation of the solutions have in general advantage
from the algorithms that use transformations from continuous to discrete values
and vice versa. Thus, a genetic algorithm should have an advantage when compared
with a Particle Swarm Optimization algorithm. However, in this NP-hard problem
studied in this paper, the proposed algorithm performs better than the 5 out of
6 versions of the genetic algorithms that are used in the comparisons (only GA-
VNS performs better). When the proposed algorithm is compared with the other
PSO algorithms and the DDE algorithm, it performs better. This fact shows that
the proposed implementation of PSO is very efficient for the solution of this kind
of problems. Finally, the comparison with the Ant Colony Optimization algorithm
shows that these two algorithms perform equally well to the selected instances as
in five sets the proposed algorithm performs better while for the other four sets the
ACS algorithm gives better results.

5 Conclusions

In this paper, a new algorithm based on the Particle Swarm Optimization for
the solution of the Permutation Flowshop Scheduling Problem is presented. This
algorithm is a hybridization of the Particle Swarm Optimization algorithm with
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the Variable Neighborhood Search algorithm and with the Path Relinking Strategy.
As a number of different variants of the Particle Swarm Optimization algorithm
have been published, mainly using a different equation for the calculation of the
velocities, we used the constriction Particle Swarm Optimization. Another issue that
we have to deal with was the fact that the PSO algorithm is suitable for continuous
optimization problems. Thus, it was a challenge to find an effective transformation
of the solutions of PSO in discrete values without losing information from this
procedure. The algorithm was tested in 90 benchmark instances that are usually used
in the literature and gave very good results. This fact demonstrates the efficiency
of the algorithm when it is used for the solution of an NP-hard problem, like
PFSP. In the future, this algorithm will be used for the solution of other NP-hard
combinatorial optimization problems.
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20. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics,
vol. 57. Operations Research and Management Science, pp. 321–353. Kluwer, Boston (2002)

21. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop
problem. Eur. J. Oper. Res. 91, 160–175 (1996)

22. Pan, Q.K., Tasgetiren, M.F., Liang, Y.C.: A discrete differential evolution algorithm for the
permutation flowshop scheduling problem. Comp. Ind. Eng. 55, 795–816 (2008)

23. Pinedo, M.: Scheduling. Theory, Algorithms, and Systems. Prentice Hall, Englewood Cliffs
(1995)

24. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. An overview. Swarm Intell.
1, 33–57 (2007)

25. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to
minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)

26. Rajendran, C., Ziegler, H.: Two ant-colony algorithms for minimizing total flowtime in
permutation flowshops. Comp. Ind. Eng. 48(4), 789–797 (2005)

27. Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity, and Com-
putations. Nijhoff, The Hague (1976)

28. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop
heuristics. Eur. J. Oper. Res. 165, 479–494 (2005)
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Optimization Over Stochastic Integer
Efficient Set

Djamal Chaabane and Fatma Mebrek

Abstract In this paper we study the problem of optimizing a linear function
over an integer efficient solution set of a Multiple objective Stochastic Integer
Linear Programming problem (MOSILP). Once the problem is converted into
a deterministic one by adapting the 2-levels recourse approach, a new pivoting
technique is applied to generate an optimal efficient solution without having to
enumerate all of them. This method combines two techniques, the L-Shaped method
and the combined method developed in [Kall, Stochastic Linear Programming
(1976)]. A detailed didactic example is given to illustrate different steps of our
algorithm.

Key words Multi-objective programming • Stochastic programming • 2-levels
recourse model • Efficient solutions

1 Introduction

In real life problems the fundamental assumption for multi-objective linear pro-
gramming that the problem entries—except for the variables x—known as fixed data
does not often happen. This is probably the case that some parameters are taken as
estimates from some statistical samples or we know that they are random variables
from the model design. These situations can be modeled by linear programming
problems whose objectives and constraints depend on uncertain parameters. The
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presence of these two aspects, namely, multiple objective and stochastic leads
to a multiple objective stochastic linear programming (MOSLP). Few methods
are proposed in the literature and most of them are using the techniques of goal
programming (interactive) and the stochastic programming. In this context, we cite
some methods: PROTRADE [5], PROMISE [13] in the continuous case and the
discrete, STRANGE-MOMIX Method [11, 12] and search and cut technique [1, 2].

In many situations, the decision maker faces a large number of different efficient
solutions and the selection of his/her preferred solutions becomes a very hard task,
a way of assessing some preferred solution is by optimizing a function (utility
function written as a function of decision variables), particularly linear, over the
efficient set, an appropriate approach that has been used by many authors (see [3,4])
in continues and discrete case, respectively.

We focus on solving MOSLP problem in presence of integer decision variables.
We therefore propose a technique that combines L-Shaped method [7] and a method
that consists of optimizing an arbitrary linear function over the whole set of discrete
deterministic efficient solutions of Multiple Objective Integer Linear Programming
(MOILP) problem without enumerate explicitly all non-dominated solutions. We
follow the notations used by Peter Kall and Janos Mayer [8]. Given a Multiple
Objective Integer Stochastic Linear Programming problem (MOISLP):

(PSC)

⎧
⎪⎪⎨

⎪⎪⎩

“min′′ Zk =Ckx; k = 1..K
s.t. Ax = b

T x = h
x ∈ N

(1)

where x is the decision vector variable of dimension (n × 1). Ck,T,h are random
matrices of dimensions (1× n),(m1 × n) and (m1 × 1), respectively, with a known
joint probability distribution which is not influenced by the choice of the decision x
and defined on a probability space (Ω ,Ξ ,P). We assume that A, b are fixed known
integer data (deterministic) of dimensions (m × n) and (m× 1), respectively. Our
main purpose is to solve the following problem:

(PE(SC))

{
minφ(x) = dx
s.t. x ∈ E(PSC)

(2)

where d is a random line vector of dimension n and E (PSC) is the solution set of
(PSC) problem, without having to enumerate all the elements of E (PSC).

In the next section we introduce the associate deterministic problem, we show
some basic results concerning the L-shaped decomposition method. In Sect. 3, we
give some important results that deal with optimization over efficient set. Section 4
presents the proposed method illustrated by a didactic example, and finally we
conclude by suggesting some other issues.
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2 Passage to Deterministic Equivalent Problem of MOISLP

A mono-criteria stochastic linear programming problem does not have meaning
since some of the parameters are not well known at the moment the decision maker
has to take decision about the values of the variables, the sense of the optimization
cannot be preserved. In addition when many criteria are to be taken all together at
the same time the task becomes extremely difficult. We suppose some probability
space (Ω ,Ξ ,P) that defines the probabilistic aspect of random parameters in our
problem. The decision on x has to be taken before the realization of the random
variables is known. But consequently, after the observation of the random variables
realization, it may turn out that Tx �= h, i.e. x lies out of the admissibility region.
In this case, it may be necessary to compensate for the deficiency, i.e. for h−T x,
after its observation. This can be done by the introduction of recourse defining the
constraints Wy = h − T x,y ≥ 0. We suppose a fixed recourse matrix W and the
recourse costs is taken as linear function q′y. Obviously we want to achieve this
compensation with minimal costs. Hence the recourse problem is defined by:

(P1)

⎧
⎨

⎩

Q(x;T,h) = minq′y
s.t. Wy = h−Tx

y ≥ 0
(3)

The expectation value of the kth criterion is Z̃k = E (Zk + Q(x,ξ )); k = 1, . . . ,K
and the deterministic multiple objective integer linear programming problem with
the main problem can be stated as follows:

(P)

⎧
⎨

⎩

“min′′ Z̃k = E(Zk +Q(x;T,h)) k = 1, ..,K
s.t. Ax = b

x ∈ N

(4)

(PE)

{
min φ̃ = E(d)x
s.t. x ∈ E (PSC)

(5)

The relaxed problem can be stated as follows:

(PR)

{
min φ̃ = E(φ(x)+Q(x;T,h))
s.t. x ∈ D = {x ∈ Rn|Ax = b,x ∈ N} (6)

We suppose that the penalties qr = q(ξ r) of the constraint violations are given. Here

a recourse function Q(x,ξ r) is added to each criterion Z(r)
k for scenario r and the

corresponding penalty is given by:

Q(x,ξ r) = min
z

{
(qr)t z|W (ξ r)z = h(ξ r)−T (ξ r)x;z ≥ 0

}
. (7)
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3 Theoretical Results

In this section we present two sets of most important results. The first set concerns
the feasibility and optimality tests as was introduced in L-shaped technique (see
[7,9]) and the second set contains some basic definitions and results in multiple ob-
jective integer linear programming theory and optimization over efficient solutions
set [3, 10].

3.1 Feasibility Test

We use the dual problem of (7) stated below to test whether a given solution x0 will
yield feasible second-stage problems for all possible realizations of ξ .

(Ftest )

⎧
⎨

⎩

max π t (h(ξ r)−T(ξ r)x)
s.t. π tW ≤ (qr)t

π ∈ R

(8)

According to Farkas’s lemma
{

z|Wz = h(ξ r)−T (ξ r)x0, z ≥ 0
} �= ∅ if and

only if:

utW ≤ 0 implies ut [h(ξ r)−T (ξ r)x0] ≤ 0

Therefore, Q(x0,ξ r) is infeasible if and only if P= {π |π tW ≤ (qr)t} has an extreme
ray u such that ut

[
h(ξ r)−T (ξ r)x0

]
> 0.

To check out for feasibility of the second stage-problems, we solve the following
problem:

(FDual)

⎧
⎪⎪⎨

⎪⎪⎩

max ut
(
h(ξ r)−T (ξ r)x0

)

s.t. utW ≤ 0
‖u‖1 ≤ 1
u ∈ R

(9)

The constraints ‖u‖1 ≤ 1 bounds the value of u.
In case where ut

r

[
h(ξ r)−T (ξ r)x0

]
> 0 for some ξ r; r ∈ {1, . . . ,R} and ur is an

optimal solution of problem (9); We add feasibility cut:

ut
r

[
h(ξ r)−T (ξ r)x0

] ≤ 0 (10)

3.2 Optimality Test

Resolution of the problem (P′
R) permit to test the optimality of a given solution x0

with penalty θ
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(
P′

R

)

⎧
⎪⎪⎨

⎪⎪⎩

min φ̃ = E(φ)+θ ;
s.t. x ∈ D = S∩Z

θ ≥ Q(x)
θ ∈ R+

(11)

where S = {x ∈ Rn|Ax = b,ut
rT (ξ r)x ≥ ut

rh(ξ r) ,r = 1, . . . ,R,x ≥ 0} and

θ ≥ Q(x) (12)

is the optimality cut.
S = {x ∈R|Ãx= b̃,x ≥ 0} is a non-empty, compact polyhedron in Rn and Q(x) =

E(Q(x,ξ )) =
R

∑
r=1

prQ(x,ξ r) =
R

∑
r=1

pr(qr)t zr.

We solve problem (P′
R) and we obtain a feasible solution. Efficiency and non-

dominance are defined as follows:

Definition 1. A point x ∈ S is an efficient solution for problem (P) if and only if
there is no x ∈ S such that z̃i(x)≤ z̃i(x) for all i ∈ Im = {1,2, . . . ,K} and z̃i(x)< z̃i(x)
for at least one i ∈ Im .

Otherwise, x is not efficient and the corresponding vector (z̃1(x), z̃2(x), . . . , z̃p(x))
is said to be dominated. The set of efficient solutions is denoted by E (P).

The next theorem provides another characterization of an efficient solution that is
integrated as a test-procedure in our method.

Theorem 1. Let x0 be an arbitrary element of the region D; x0 ∈ E (P) if and only
if the optimal value of the objective functionΨ (ψ ,x) is null in the following integer
linear programming problem:

(
P
(
x0))

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Ψ(ψ1, . . . ,ψK ,x1, . . . ,xn) =
K
∑

i=1
ψi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1

c̃i
jx j +ψi =

n

∑
j=1

c̃i
jx

0
j ∀i ∈ {1, . . . ,K}

x = (x1, . . . ,xn) ∈ D
ψi : are real nonnegative integer variables
for all i ∈ {1, . . . ,K}
c̃i

j : is the jth component of row vector

c̃i in problem (P)

(13)

The proof of the theorem is omitted; it can be found in [1]. Its utilization
guarantees that the feasible solution is either efficient or otherwise provides an
efficient solution for problem (P). Once an efficient solution is generated and added
to the current list where the expected objective E (φ(x)) is evaluated, new constraints
over the feasible set D of the relaxed problem (PR) are imposed, discarding from
further consideration not only efficient solutions generated previously, but also any
other feasible solutions with dominated objectives vectors. The algorithm terminates
when the current feasible space becomes empty.
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Assuming that all coefficients of matrix C are integers. Afterwards, at iteration k,
using Sylva and Crema’s idea, see [10], the feasible set D is reduced gradually by
eliminating all dominated solutions by Cx̂k. The resolution of the following problem
enables us to perform this elimination.

(P�
R)≡ min

{

dx,x ∈ D−
�⋃

s=1

Ds

}

where Ds = {x,x ∈ Zn
+,Cx ≤ Cxs} and {Cxs}�s=1 are non-dominated criteria solu-

tions of (P) obtained at iterations 1,2, . . . , �, respectively.

D−
�⋃

s=1

Ds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cix ≤ (cixs − 1)ys
i +Mi(1− ys

i),

i = 1, . . . ,K;s = 1, . . . , �;
ys

i ∈ {0,1}; i = 1, . . . ,K;s = 1,2, . . . , �
K

∑
i=1

ys
i ≥ 1; s = 1, . . . , �

x ∈ D

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(14)

Mi is an upper bound for any feasible value of the ith objective function. The
associate variables ys

i , i = 1, . . . ,K of x̂s and additional constraints are added to
impose an improvement on at least objective function. Note that when ys

i = 0, the
constraint is not restrictive and when ys

i = 1, a strict improvement is forced in the
ith objective function evaluated at x̂s.

4 The Method

In this section we give two descriptions of our technique. One is purely technique
and the second describes informally different integrated steps that yield to a solution
of problem (PE(SC)) stated in (2). Initially, we solve the relaxed problem (PR)
associated with problem (PSC), its feasible set is defined by deterministic constraints
of problem (MOILP) without any feasibility or optimality cut. The obtained
optimal solution x∗ passes through three tests, feasibility, optimality, and efficiency,
respectively. The efficient solution x� issued from the efficiency test is considered as
a first efficient solution; we initialize Xopt := x� and φopt := dx�.

We solve the problem (P�
R) ≡ min{E(d)x;x ∈ D−

�⋃

s=1

Ds}. The obtained optimal

solution, x�, produces a minimum value of the criterion φ̃ in the reduced domain.
The process continue in this manner until the current feasible space becomes empty
or φ̃l ≥ φ̃opt. The technical presentation of the proposed method is outlined in the
following algorithm:
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5 The Algorithm

Algorithm 1: Optimizing a Linear Function over Integer Efficient Set
Input Data
↓ K,m,m1,n,n1 : The dimensions of the problem;
↓ S,Pr : Number of scenarios and their probability vector;
↓ A(m×n) , b(m×1) : Deterministic constraints parameters;

↓ T(m1×n) (sc),h(m1×1) (sc)∀sc ∈ {1, · · · ,S}: Stochastic constraints parameters;

↓ d(1×n)(sc), ∀sc ∈ {1, · · · ,S}: Stochastic main criterion vector;

↓ Cr(K×n)(sc), ∀sc ∈ {1, · · · ,S}: Stochastic criteria matrix;

↓ W(m1×n1)
: a fixed recourse matrix; q′

(1×n1)
: the penalties of the constraint violations;

Output
↑ Xopt : optimal solution of the problem (PE );

↑ E
(
φ̃opt

)
: optimal value of criterion φ̃ ;

Initialization E

(
φ̃opt

)
←+∞, �← 1, End ← f alse, θ ← −∞ and D1 ← D;

Solve the deterministic relaxed problem
(

P�R(D�)
)

;

↑ x0 ,↑E
(
z0

)
= Pb_relaxed (↓ d,↓ A,↓ b);

if the problem does not have a feasible solution then
problem (P) is not feasible: Terminate;

else
while End=false do

Let x� be an optimal solution of
(

P�R(D�)
)

Feasibility and Optimality Test
for sc ← 1 to S do

Feasibility← f alse;
while Feasibility �= true do

Solve problem (Fdual ) (9);

β ← ut
[
h (ξr )−T (ξr )x�

]
;

if β > 0 then
D� = D� ∪{ feasibility cut (10) }
Solve

(
P�R(D�)

)

Let x� be an optimal solution
else

Feasibility← true;
end

end
end
Q ← 0
for sc ← 1 to S do

Solve problem (Ftest ) (8);

Q ← Q+Pr×Q
(

x� ; sc
)

;

end
while θ < Q do

D�
opt = D� ∪{Optimality constraint (12)};

Solve
(

P�R(D�)
)

, let x� be an optimal solution with a penalty value θ ;

end
EFFICIENCY TEST
Solve

(
P
(

x�
))

;Ψ is the optimal solution criteria;

ifΨ �= 0 then
x� is not efficient;

x� an optimal solution of
(

P
(

x�
))

is efficient;

Feasibility and Optimality Test for the solution x� ;

Xopt ← x� , φopt ← φ̃(x�);
�← �+1;

else
x� is an efficient solution;
Xopt = x� , φ̃opt = φ̃ (x�);
�← �+1;

end

D� ← D� −
�−1⋃

s=1
Ds and Solve

(
P�R(D�)

)
;

if D� =∅ Or φ̃(xl )≥ φ̃opt then
Xopt is an optimal efficient solution with value φ̃opt ;
Terminate; End ← true;

else
End ← f alse;

end
end

end
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6 Didactic Example

Consider the following multiple objective integer linear programming stochastic
problem:

Scenario 1

(Psc1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“max′′ Z1 = 9x1 + 3x2

“max′′ Z2 = 3x1 + 5x2

D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x1 + 5x2 ≤ 23
4x1 + x2 ≤ 31
x1 − x2 ≤ 4

−x1 − 3x2 ≤ −8
−3x1 − x2 ≤ −8

6x1 − 5x2 ≤ 21
10x1 + 3x2 ≥ 30

x1 , x2 ∈ Z∗
+

(PEsc1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxφ1(x) = −5x1 + 4x2

s.t.

D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x1 + 5x2 ≤ 23
4x1 + x2 ≤ 31
x1 − x2 ≤ 4

−x1 − 3x2 ≤ −8
−3x1 − x2 ≤ −8

6x1 − 5x2 ≤ 21
10x1 + 3x2 ≥ 30

x1 , x2 ∈ Z∗
+

q′
1 =(1 0 6 2) ; P1 =

1
3

Scenario 2

(Psc2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“max′′ Z1 = −3x1 + 3x2

“max′′ Z2 = −6x1 − 4x2

D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x1 + 5x2 ≤ 23
4x1 + x2 ≤ 31
x1 − x2 ≤ 4

−x1 − 3x2 ≤ −8
−3x1 − x2 ≤ −8

4x1 + x2 ≥ 12
5x1 − 1x2 ≤ 20
x1 , x2 ∈ Z∗

+

(PEsc2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxφ2(x) = 4x1 − 8x2

s.t.

D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x1 + 5x2 ≤ 23
4x1 + x2 ≤ 31
x1 − x2 ≤ 4

−x1 − 3x2 ≤−8
−3x1 − x2 ≤−8

4x1 + x2 ≤ 12
5x1 − x2 ≥ 20
x1 , x2 ∈ Z∗

+

q′
2 = (5 3 2 1) ; P2 =

2
3

The recourse matrix and the deterministic constraints matrices are given for both
scenarios by:

W =

(−2 −1 2 1
3 2 −5 −6

)
A=

⎛

⎜
⎜
⎜
⎜⎜
⎝

−2 5
4 1
1 −1

−1 −3
−3 −1

⎞

⎟
⎟
⎟
⎟⎟
⎠

b =

⎛

⎜
⎜
⎜
⎜⎜
⎝

23
31
4

−8
−8

⎞

⎟
⎟
⎟
⎟⎟
⎠

The stochastic constraints matrices are given for both scenarios by:

T 1 =

(
6 −5

10 3

)
h1 =

(
21
30

)
; T 2 =

(
4 1
5 −1

)
h2 =

(
12
20

)
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x1

x2
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Fig. 1 Decision space

The deterministic multiple objective integer linear programming problem

(P)

⎧
⎨

⎩

“max′′ E(z1) = x1 + 3x2

“max′′ E(z2) = −3x1 − x2

s.t. x ∈ D
(15)

where

D = {x ∈ Rn|− 2x1 + 5x2 ≤ 23, 4x1 + x2 ≤ 31, x1 − x2 ≤ 4,−x1 − 3x2 ≤ −8,

−3x1 − x2 ≤ −8, x1,x2 ∈N}

The main deterministic relaxed problem is defined by:

(PR)

{
maxE(φ) = x1 − 4x2

s.t. x ∈ D
(16)

Step 0: l = 0, φopt =−∞, H0 = D
Step 1: The relaxed problem (PR) is solved.

(P0
R)

{
minE(φ) = x1 − 4x2

s.t. x ∈ H0

Initial iteration

• Lower bounds of the objective functions are M1 = 0, M2 =−25;
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First iteration
We solve the relaxed problem (P0

R)≡ max{φ̃ |x ∈ D}
An optimal solution is x1 = (5 1)′ (Fig. 1). Let z1 =Cx1 = (8 −16)′ its image in the
outcome space criteria. φ̃sup = dx1 = 1.
Step 2: feasibility test

h1 −T 1x0 =

(
21
30

)
–

(
6 −5

10 3

)(
5
1

)
=

(−4
−23

)

h2 −T 2x0 =

(
12
20

)
–

(
4 1
5 −1

)(
5
1

)
=

(−9
−4

)

(Pu1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max −4u1
1 − 23u1

2
s.t. −2u1

1 + 3u1
2 ≤ 0

−1u1
1 + 2u1

2 ≤ 0
2u1

1 − 5u1
2 ≤ 0

u1
1 − 6u1

2 ≤ 0
u1

1 + u1
2 ≤ 1

u1
1 , u1

2 ∈ R

, maximum is at:

(
u1

1
u1

2

)
=

(
0
0

)

(Pu2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max −9u2
1 − 4u2

2
s.t. −2u2

1 + 3u2
2 ≤ 0

−u2
1 + 2u2

2 ≤ 0
2u2

1 − 5u2
2 ≤ 0

u2
1 − 6u2

2 ≤ 0
u2

1 + u2
2 ≤ 1

u2
1 , u2

2 ∈ R

, maximum is at:

(
u2

1
u2

2

)
=

(
0
0

)

u1 = u2 = 0. The solution is feasible for both first and second scenario.

Optimality test of x0 = (5 1)t

(P(π1))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max −4π1
1 − 23π1

2
s.t. −2π1

1 + 3π1
2 ≤ 1

−π1
1 + 2π1

2 ≤ 0
2π1

1 − 5π1
2 ≤ 6

π1
1 − 6π1

2 ≤ 2
π1

1 , π1
2 ∈ R

, maximum is at:

(
π1

1
π1

2

)
=

( −1
−0.5

)

(P(π2))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max −9π2
1 − 4π2

2
s.t. −2π2

1 + 3π2
2 ≤ 5

−π2
1 + 2π2

2 ≤ 3
2π2

1 − 5π2
2 ≤ 2

π2
1 − 6π2

2 ≤ 1
π2

1 , π2
2 ∈ R

, maximum is at:

(
π2

1
π2

2

)
=

(−3.67
−0.78

)
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Penalty value at (5 1)t

Q(x,sc1) = π1
[
h1 −T 1x0

]
= 31

2 ,

Q(x,sc2) = π2
[
h2 −T 2x0

]
= 36.11,

Q(x) = P1Q(x,sc1)+P2Q(x,sc2) =
1
3
( 31

2 )+
2
3
(36.11) = 29.24

We test the efficiency of x0 by solving the problem

(P(x0))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maxΨ = ψ1 + ψ2

s.t. x ∈ H(0)

x1 + 3x2 − ψ1 = 8
−3x1 − x2 − ψ2 = −16

x1 , x2 ∈ N ,ψ1 , ψ2 ∈ R+

We obtain maxΨ = 16 �= 0; indicating that x0 is not efficient but x0 = (1 5)t

produced by this program is an efficient, corresponding to φ̃(x0) =−19.
The equivalent efficient solutions program

(P(x0))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min φ̃ = x1 − 4x2

s.t. x ∈ H(0)

x1 + 3x2 = 16
−3x1 − x2 = −8

x1 , x2 ∈ N

An optimal solution is x0. We test its feasibility as above,

(
u1

1
u1

2

)
=

( 5
7
2
7

)
;

(
u2

1
u2

2

)
=

( 2
3
1
3

)

ut
1

[
h1 −T 1x0

]
=

(
5
7

2
7

)
(

28
−15

)
= 110

7

x0 is not feasible for first scenario. We construct the feasible constraint,
ut

1

[
h1 −T 1x0

]
> 0, then we work out the feasibility cut as

(
5
7

2
7

)(
6 −5

10 3

)(
x1

x2

)
≥

(
5
7

2
7

)(
21
30

)
=

165
7

⇐⇒ 50x1 − 19x2 ≥ 165;

The cut is added to the first problem(P0
R)

(P01
R )

{
max φ̃ = x1 − 4x2

s.t. x ∈ H(01)

where H(01) = H0 ∩{x ∈ Nn|50x1 − 19x2 ≥ 165}
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We get a new integer solution x01 = (5 1)t ; we test its feasibility

h1 −T 1x01 =

(
21
30

)
−

(
6 −5

10 3

)(
5
1

)
=

( −4
−23

)

h2 −T 2x01 =

(
12
20

)
−

(
4 1
5 −1

)(
5
1

)
=

(−13
−4

)

u1 = u2 = 0. The solution is feasible for both first and second scenario.
The penalty of x01 = (5 1) is found by solving (Pπ1) and (Pπ2) gives:

maximum is at:

(
π1

1
π1

2

)
=

( −1
−0.5

)

maximum is at:

(
π2

1
π2

2

)
=

(−3.67
−0.78

)

Q(x,sc1) = π1
[
h1 −T 1x1

]
= 15.5,

Q(x,sc2) = π2
[
h2 −T 2x1

]
= 36.11

Q(x) = P1Q(x,sc1)+P2Q(x,sc2) =
1
3
(15.5)+

2
3
(36.11) = 29.24

θ = Q(x) = 29.24. Then x01 = (5 1)t is an optimal feasible solution.
φ̃opt =−∞, φ̃ (x01) = 1 > φ̃opt,Xopt = (5 1)t , φ̃opt = 1
� := �+ 1 = 1 and we solve problem (P1

R)

(P1
R)

{
max φ̃ = x1 − 4x2

s.t. x ∈ H(1) (17)

where

H(1) = H(01)∩

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 + 3x2 − 9y1
1 ≥ 0 , −3x1 − 1x2 − 10y1

2 ≥ −25

y1
1 ≤ 1, y2

1 ≤ 1

y1
1 + y1

2 ≥ 1

y1
1, y1

2 ∈ N

An optimal solution is x1 = (6 2)t , φ̃(x1) =−2, φ̃(x1)< φ̃opt.

φ̃(x1) =−2 < φ̃opt. The algorithm terminates with xopt = (5 1)t and φ̃opt = 1.
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7 Conclusion

We have presented an exact method that optimizes a linear function over an integer
efficient solutions set in stochastic environment. We achieve this objective by
combining two techniques : one uses L-shaped method and the second explores
progressively the admissible region going through only efficient solutions that
ameliorates the main linear criteria; then the domain is being reduced consequently
until it becomes empty. The problem with deterministic parameters is known to
be very hard, resolving it under uncertainty becomes harder. As far as we know,
the problem has not been yet studied in the literature, we suggest development of
new benchmarks in order to make a rational comparative study. Concerning the
complexity, as we are obliged to transform the stochastic problem into deterministic
one, the problem remains very hard as was stated in deterministic case by N.C.
Guyen [6].
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Open-Pit Mining with Uncertainty:
A Conditional Value-at-Risk Approach

Henry Amankwah, Torbjörn Larsson, and Björn Textorius

Abstract The selection of a mine design is based on estimating net present values
of all possible, technically feasible mine plans so as to select the one with the
maximum value. It is a hard task to know with certainty the quantity and quality of
ore in the ground. This geological uncertainty and also the future market behavior of
metal prices and foreign exchange rates, which are always uncertain, make mining
a high risk business.

Value-at-Risk (VaR) is a measure that is used in financial decisions to minimize
the loss caused by inadequate monitoring of risk. This measure does, however, have
certain drawbacks such as lack of consistency, nonconvexity, and nondifferentiabil-
ity. Rockafellar and Uryasev [J. Risk 2, 21–41 (2000)] introduce the Conditional
Value-at-Risk (CVaR) measure as an alternative to the VaR measure. The CVaR
measure gives rise to a convex optimization problem.

An optimization model that maximizes expected return while minimizing risk
is important for the mining sector as this will help make better decisions on the
blocks of ore to mine at a particular point in time. We present a CVaR approach to
the uncertainty involved in open-pit mining. We formulate investment and design
models for the open-pit mine and also give a nested pit scheduling model based
on CVaR. Several numerical results based on our models are presented by using
scenarios from simulated geological and market uncertainties.
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1 Introduction

Open-pit mining is a surface mining operation whereby ore, or waste, is excavated
from the surface of the land. In the process of digging the surface of the land,
a deeper and deeper pit is formed until the mining operation ends. The entire
mining volume is usually partitioned into regular three-dimensional blocks. By
using information from drill holes the mining industry is able to estimate the value
of each block of the orebody in the ground. Before the mining operation begins, it is
desirable to determine the ultimate pit contour that maximizes the net present value.
We also have to know the order in which to mine the blocks of the orebody over the
lifetime of the mine. Thus, the pit design and mine scheduling are important tasks to
the mining industry. Another aspect of importance in the mining evaluation process
is the consideration of uncertainty and risk. Further, the aspect of uncertainty and
risk is becoming increasingly important, simply because the best high-grade and
low-cost orebodies in the world have already been mined [16], so that the orebodies
to be mined in the future require more cautious evaluations and planning with
respect to the trade-off between expected return and risk.

Mine projects are complex businesses that demand a constant assessment of
risk. This is because the value of a mine project is typically influenced by many
underlying economic and physical uncertainties, such as metal prices, metal grades,
costs, schedules, quantities and environmental issues, among others, which are
not known with certainty [13]. In the prefeasibility stage of a mining project,
the geology and ore distribution in the mineral deposit are estimated from the
information derived from the exploration drilling samples. Since the information
obtained from the samples is not representative of the entire (3-D) ore deposit,
the geology of the ore deposit represents one of the most critical sources of
technical and financial uncertainty in a mine operation. One consequence of this
lack of information is the misclassification of resources, where economic ore can be
dispatched to the waste dump and non-economic ore can be sent to processing.

The selection of a mine design is based on estimating net present values of
all possible, technically feasible mine plans so as to select the one with the
maximum value. However, mine planners cannot know with certainty the quantity
and quality of ore in the ground. This, Abdel Sabour et al. [1] termed the geological
uncertainty. It is recognized among practitioners that mining is a high risk business
and the geological uncertainty is a major source of risk. There are other sources of
uncertainties. The future market behavior of metal prices and foreign exchange rates
are impossible to be known with certainty, and therefore, they are also sources of
risks affecting mine project profitability. Abdel Sabour et al. use the term market
uncertainty for these sources of risks and classify them as the second major source
of risk. The existence of uncertainties can lead to a high probability that the actual
cash flows throughout the lifetime of the mining project will be different from those
expected. An optimization model that maximizes expected return while minimizing
risk is therefore important for the mining sector as this will help make better
decisions on the blocks of ore to mine at a particular point in time.
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One of the standard procedures to deal with uncertainty and risk in the mining
industry is to perform the evaluation process at different scenarios for the project
key variables [1]. A popular approach to deal with risk is to apply conventional
Monte Carlo simulation, in which case a distribution for the mine value is obtained
rather than a single expected value. From this distribution, the risk associated with
a long-term production scheduling can be explored by defining the range for the
expected value at a certain degree of confidence [1].

Dimitrakopoulos et al. [4] are the first to introduce the integration of geological
uncertainty into open-pit mine planning [1]. They are of the view that geological
uncertainty as an element in key parameters of open-pit mining projects can be
quantified by conditional simulation combined with open-pit optimization studies.
They further claim that having an accurate assessment of uncertainty arising from
grade variability in the ore reserve allows risk in a mining project to be quantified
and considered in decision-making processes. In their opinion, further integration
of uncertainty in the optimization process is needed to enhance the interaction and
efficacy of open-pit optimization and risk assessment.

It has therefore become necessary for the mining industry to explore decision
support for minimizing risk while maximizing expected returns. In a paper presented
at a symposium in Chile in 2009, Lai et al. [8] pointed out that Value-at-Risk (VaR)
has been used by banks and financial institutions to minimize financial loss caused
by inadequate monitoring of risk. This, they say, is a method which is particularly
effective in assessing risk of investments with large loss potential. In simple terms,
VaR is the maximum likely loss incurred over a specified period of time at a
given confidence level. The chosen confidence level depends on the purpose of the
exercise and the risk tolerance level of management. The focus of their research
is on the development of a VaR method for the open-pit mine slope stability risk
assessment. To ensure that the impacts of major slope failures are fully accounted
for, failure costs are included in the mining schedule to estimate their effect on the
rate of return for a given project. They demonstrate how VaR could be used to assess
the economic risk and return associated with different pit slope designs.

We will in this paper introduce the Conditional Value-at-Risk (CVaR) measure
[14] as a tool for taking both geological and market uncertainty into account in
the planning of open-pit mining. In order to introduce the reader to the CVaR
concept, we will below outline how it is motivated and used in an easily described
application, namely portfolio optimization under uncertainty, as described by Lim
et al. [11].

Measure of risk plays a critical role in the optimization of portfolios under
the presence of uncertainties. Among various risk criteria, the CVaR is a popular
measurement of risk representing the percentile of the loss distribution with a
specified confidence level [11]. Let α ∈ (0,1) denote the confidence level and
f (x,y) a loss function associated with a portfolio x (a vector indicating the fraction
of instrument of some available budget in each of n financial instruments) and an
instrument price (or return) vector y ∈ Rn. [It should be noted that f (x,y)< 0 means
a positive return.] Then, the VaR function ζ (x,α) is given by the smallest number
satisfying Φ(x,ζ (x,α)) = α , where Φ(x,ζ ) is the probability that the loss f (x,y)
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does not exceed a threshold value ζ , that is, Φ(x,ζ ) = Pr[ f (x,y) ≤ ζ ]. So, for any
portfolio x ∈ Rn and any given confidence level α , VaR is interpreted as the value of
ζ such that the probability of the loss not exceeding ζ is α .

The VaR measure has drawbacks, among them is lack of consistency. This is
because it is not subadditive, which means that the risk of a portfolio can be higher
than the sum of the risks of its individual components. Furthermore, in practice, the
VaR measure is nonconvex and nondifferentiable, and hence, it is difficult to find a
global minimum [11]. Criticisms of the VaR approach resulted in new proposals for
ways to measure risk in portfolios.

Rockafellar and Uryasev [14] introduce the CVaR measure as an alternative to
VaR, since the CVaR gives rise to a convex problem. The CVaR measure is further
developed in [15]. It is considered to be more consistent than the VaR, and it is
defined as the mean loss by which the VaR is exceeded [3]. In other words, the
CVaR is the conditional expected loss of a portfolio at a confidence level, given that
the loss to be accounted for exceeds or equals the VaR. By definition, the VaR at a
given confidence level is never higher than the corresponding CVaR. Andersson et
al. and Mansini et al. [2, 12], also support the use of CVaR over VaR. Other names
for CVaR are mean excess loss, mean shortfall, or tail VaR.

For continuous distributions, CVaR is the conditional expected loss given that the
loss exceeds VaR. That is, CVaR is given by

Φα(x) = (1−α)−1
∫

f (x,y)>ζ (x,α)
f (x,y)p(y)dy, (1)

where p(y) is a probability density function of y. To avoid complications caused
by an implicitly defined function ζ (x,α), Rockafellar and Uryasev [14] give an
alternative function,

Fα(x,ζ ) = ζ +(1−α)−1
∫

f (x,y)>ζ
[ f (x,y)− ζ ]p(y)dy, (2)

for which they show that minimizing Fα(x,ζ ) with respect to (x,ζ ) yields the
minimum CVaR and its solution.

When applied to portfolio optimization, xi is the portion of the total investment
that is made in a certain security. If the probability distribution of y is not available
we can exploit price scenarios, which can be obtained from past price data. Assume
that every price data is equally likely (for example, from random sampling from a
joint price distribution). For a given price data y j, j = 1, . . . ,J, we can approximate
Fα(x,ζ ) by

F̃α(x,ζ ) = ζ +[(1−α)J]−1
J

∑
j=1

max
{

f j(x)− ζ , 0
}
, (3)

with f j(x) ≡ f (x,y j). The function F̃α(x,ζ ) is convex when each f j(x) is convex,
and nondifferentiable at the points where f j(x)− ζ = 0 hold. A portfolio that
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approximately minimizes CVaR is found by minimizing F̃α(x,ζ ) over the set of
feasible compositions of the portfolio.

The purpose of our study is to formulate optimization models that can be
used to maximize expected profit while minimizing risk in the open-pit mining
industry. Section 2 is mainly devoted to our problem formulations. In this section,
we formulate investment and design models for the open-pit mine and also give a
nested pit contour model based on CVaR. Several numerical examples based on our
models are presented in Sect. 3, where we use scenarios from simulated geological
and market uncertainties. We give a conclusion in the last section.

2 Problem Formulation

The following notations will be used.

Vo = Set of blocks containing ore.
Vw = Set of waste blocks.
V = Set of all blocks that can be mined (i.e., V =Vo ∪Vw).
Vs = Top layer of blocks (Vs ⊂ V ).
A = Set of pairs (i, j) of blocks such that block j is a neighboring block to i

that must be removed before block i can be mined.
Mi = Stochastic variable describing metal content in block i ∈ Vo.
μi = Expected metal content (expectation of Mi).
P = Stochastic variable describing metal price.
π = Expected metal price (expectation of P).
K = Investment cost plus required return on investment.
ci = Cost of mining and processing block i.
Q = Upper bound on CVaR.
G = Lower bound on expected variable profit (i.e., expected profit

excluding K).
α = Confidence level (0 < α < 1).
J = Number of scenarios.
v = [(1−α)J]−1.

y j
i = Metal content in block i ∈ Vo for scenario j ∈ J.

p j = Metal price for scenario j ∈ J.

The decision variables of the optimization models are

xo =

{
1 if any mining is made,

0 otherwise,
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and

xi =

{
1 if block i is mined,

0 otherwise,
i ∈ V.

In the ideal situation, the metal content and the price of the metal are known in
advance, but we study the case when they are both considered to be uncertain. If
P is considered to be known, we have only geological uncertainty, while if Mi is
considered to be known, we have only price uncertainty. The cost for mining and
processing each block, ci, is assumed to be known in advance. (The models to be
presented can, however, if needed, also include uncertainty in mining costs.)

The optimization model for maximizing expected profit (see, e.g., [5, 6]) is
given by

maximize ∑
i∈Vo

πμixi −∑
i∈V

cixi

subject to

xi ≤ x j, (i, j) ∈ A

xi ∈ {0,1}, i ∈V.

(4)

The first term in the objective function is the expected revenue derived from the ore
blocks and the second term is the mining cost for all the blocks that are mined.
The precedence constraints capture both the pit slope and the immediate block
precedence restrictions.

2.1 A CVaR Open-Pit Investment Model

In this section, we propose two CVaR open-pit investment models. These models
will enable us to decide whether or not to carry out the mining process. The starting
point is the model below, which can be used to determine the maximum expected
variable profit that can be made.

maximize ∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi −Kxo

subject to

xi ≤ x j, (i, j) ∈ A

xi ≤ xo, i ∈ Vs

xi ∈ {0,1}, i ∈V

xo ∈ {0,1}

(5)

Note that the role of the variable xo, and also of the entire model, is only to indicate
whether any mining at all is made, or not, given that the investment cost plus
required return on investment is K. We will below construct corresponding models,
for the case when the metal contents and prices are described by scenarios.
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Introducing the linear loss function

f j(x) = Kxo − ∑
i∈Vo

(
p jy j

i − ci

)
xi + ∑

i∈Vw

cixi, (6)

which is obtained for a certain mining decision, given that scenario j occurs, an
open-pit investment model that approximately minimizes CVaR is given by the
following nondifferentiable optimization problem, cf. (3).

minimize ζ + v
J

∑
j=1

max

{

Kxo − ∑
i∈Vo

(
p jy j

i − ci

)
xi + ∑

i∈Vw

cixi − ζ , 0

}

subject to

xi ≤ x j, (i, j) ∈ A

xi ≤ xo, i ∈Vs

xi ∈ {0,1}, i ∈ V

xo ∈ {0,1}

(7)

Here, ζ is the VaR. (Strictly speaking, the objective value obtained here is an
approximation of the true value of the CVaR, because a finite number of scenarios
is used. For simplicity, we will, however, anyway refer to the value obtained as
CVaR.) By introducing an auxiliary variable vector z ∈ RJ

+, Problem (7) can be
reformulated as the linear problem

minimize ζ + v
J

∑
j=1

z j

subject to

z j ≥ Kxo − ∑
i∈Vo

(
p jy j

i − ci

)
xi + ∑

i∈Vw

cixi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ≤ xo, i ∈Vs

xi ∈ {0,1}, i ∈ V

xo ∈ {0,1}
z j ≥ 0, j = 1, . . . ,J.

(8)

Typically, there is a conflict between profit and risk. Carneiro et al. [3] argue that
in many cases it is better to maximize returns with risk constraints. This supports
the proposal of Krokhmal et al. [7] that, instead of minimizing CVaR, it is better to
maximize expected returns and specify a maximum level of risk. In this regard, the
mathematical formulation that represents the uncertainties using J scenarios in the
case of open-pit mining is given as
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maximize ∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi −Kxo

subject to

ζ + v
J

∑
j=1

z j ≤ Qxo

z j ≥ Kxo − ∑
i∈Vo

(
p jy j

i − ci

)
xi + ∑

i∈Vw

cixi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ≤ xo, i ∈Vs

xi ∈ {0,1}, i ∈ V

xo ∈ {0,1}
z j ≥ 0, j = 1, . . . ,J.

(9)

At an optimal solution (x∗,ζ ∗,z∗) to Problem (9), CVaR is at most Qx∗o. Note that
the higher the value of z∗j , the higher impact of scenario j on the CVaR.

2.2 A CVaR Open-Pit Design Model

We now assume that the overall decision to mine has been taken, and turn to the
issue of designing an optimal pit in the presence of uncertainty. To this extent, we
introduce the alternative loss function

f j(x) =−∑
i∈Vo

p j
(

y j
i − μi

)
xi, (10)

which has the interpretation of loss incurred by scenario j relative to the expected
revenue. This gives rise to the CVaR open-pit design model

maximize ∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi

subject to

ζ + v
J

∑
j=1

z j ≤ Q

zj ≥−∑
i∈Vo

p j
(

y j
i − μi

)
xi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ∈ {0,1}, i ∈ V

zj ≥ 0, j = 1, . . . ,J,

(11)
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which amounts to maximizing variable profit while imposing a limit on risk. To
determine the number of scenarios that will be enough to include in Problem (11)
in order to find a pit design that is likely to be the one that is indeed optimal, the
following formulation will be used.

minimize ζ + v
J

∑
j=1

z j

subject to

∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi ≥ G

zj ≥−∑
i∈Vo

p j
(

y j
i − μi

)
xi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ∈ {0,1}, i ∈ V

zj ≥ 0, j = 1, . . . ,J

(12)

We can alternatively use a weighted objective, where we maximize the expected
variable profit and at the same time minimize the CVaR, that is,

maximize λ

(

∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi

)

− (1−λ )
(

ζ + v
J

∑
j=1

z j

)

subject to

z j ≥ −∑
i∈Vo

p j
(

y j
i − μi

)
xi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ∈ {0,1}, i ∈ V

zj ≥ 0, j = 1, . . . ,J,

(13)

where 0 < λ < 1. By varying the value of this parameter, we can then study the
trade off between the two objectives: maximizing the expected variable profit and
minimizing the CVaR.

Suppose we solve Problem (13), for some value of λ , and get an optimal solution
x(λ ). One can then calculate the corresponding expected variable profit and CVaR,
which we refer to as G(λ ) and Q(λ ), respectively. By observing that the objective
function in (13) can alternatively be stated as

maximize

(

∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi

)

− 1−λ
λ

(

ζ + v
J

∑
j=1

z j

)

(14)
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or

minimize ζ + v
J

∑
j=1

z j − λ
1−λ

(

∑
i∈Vo

(πμi − ci)xi − ∑
i∈Vw

cixi

)

, (15)

and interpreting −(1 − λ )/λ and −λ/(1 − λ ) as Lagrangian multipliers for the
CVaR constraint in (11) and the expected profit constraint in (12), respectively, it
follows from Everett’s theorem (e.g., [9, p. 402]) that x(λ ) solves Problem (11)
with Q = Q(λ ), and that x(λ ) solves Problem (12) with G = G(λ ).

2.3 Nested Pit Contours Based on the CVaR Concept

We finally turn to the problem of creating nested pit contours, in a way similar to that
proposed by Lerchs and Grossmann [10]. The importance of these nested contours
lies in that they provide an approximate mining schedule.

In order to produce nested pit contours we create artificial costs by adding a
parameter γ ∈ R+ to the costs ci, i ∈ V , in the objective of Problem (13). The
resulting formulation is given below, where ε is a positive number and sufficiently
small. An increase in γ will increase the total cost and by so doing less blocks will
be mined. The parameter γ can be viewed as a penalty, as in Lerchs and Grossmann
[10]. The reason for having the second term in the objective function is to make
the value of the CVaR well defined. For a given confidence level, α , we can then
determine the blocks to be mined for a range of values of γ and obtain the expected
profit and the CVaR for this range.

maximize

(

∑
i∈Vo

[πμi − (ci + γ)]xi − ∑
i∈Vw

cixi

)

− ε
(

ζ + v
J

∑
j=1

z j

)

subject to

z j ≥ −∑
i∈Vo

p j
(

y j
i − μi

)
xi − ζ , j = 1, . . . ,J

xi ≤ x j, (i, j) ∈ A

xi ∈ {0,1}, i ∈V

zj ≥ 0, j = 1, . . . ,J

(16)

3 Numerical Study

This section is devoted to numerical study of the models. The numerical results
were obtained using the AMPL modelling language and the CPLEX solver, with all
the scenarios being generated from MATLAB. The computational times for solving
the models range between a second and 30 s, with the observation that the time
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Fig. 1 A 2-D pit model
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Fig. 2 Optimal pit for the 2-D pit model in Fig. 1

decreases with an increase in the value of the confidence level, α , and increases
with an increase in the number of scenarios, J.

3.1 Test Problem

We have carried out the numerical study using the 2-D pit with 88 blocks shown
in Fig. 1. Each cell of the pit represents a block with a given expected revenue, the
value on top, while the number at the bottom is the block index. This pit model is
the same as that of Lerchs and Grossmann [10], with the interpretation that the cost
for mining and processing each block is 4 (i.e., ci = 4, for all i ∈ V ). The optimal
contour for this pit is shown in Fig. 2, with a maximum profit of 108.
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The numerical study is based on simulations of geological and price uncertain-
ties, obtained from randomly generated scenarios. For creating a scenario, j, of
geological uncertainty, the metal content of each ore block i ∈ Vo, y j

i , is drawn
from a uniform distribution over the range of ±10% of the expected metal content,
μi. (Since the ore block revenues in Fig. 1 correspond to metal contents times a
metal price, the geological scenarios reduce to making independent perturbations of
the ore block revenues with at most ±10%.) The waste blocks, Vw, were excluded
because each of these blocks has zero expected revenue and, moreover, such blocks
are not processed since they are not expected to contain any valuable ore. For the
case of price uncertainty, a natural assumption is to use the log-normal distribution
to generate scenarios for the metal price P. Therefore, each price scenario, p j, is
drawn from a log-normal distribution, with expectation one and variance 0.002.
(Each price scenario clearly reduces to multiplying each of the block revenues in
Fig. 1 with a common log-normally distributed random number.)

We will in the numerical study consider geological and price uncertainty
separately, in order to investigate if they have different characteristics and because
they together span any kind of combined uncertainty.

3.2 Number of Scenarios Needed

Problem (8), with xo = 1, was solved with 9,000 scenarios of the simulated
geological uncertainty, for K = 102 and for α = 0.98, 0.95, and 0.90. The result
of CVaR against the number of scenarios is given in Fig. 3. For all numbers of
scenarios, we shall here mine all the 36 blocks shown in Fig. 2. It is realized that
we need at least 2,000 scenarios to guarantee a stable result for this instance of
data. The same problem was solved using 9,000 scenarios of the simulated price
uncertainty, for K = 100. A similar graph shown in Fig. 4 gives an indication that
we need at least 1,000 scenarios to ensure stability for such data. It was observed in
this case that for any number of scenarios, when α = 0.90 we shall mine all the 36
blocks, while we shall mine only 25 blocks when α = 0.98. However, the situation
was different when α = 0.95. For this case, all the 36 blocks, as above, are mined
when the number of scenarios J < 500, while 25 blocks are mined when J ≥ 500.
Figure 5 depicts the pit with 25 blocks being mined. The total expected profit for
this pit (including the investment cost plus required return on investment, K) is 4.

To find the number of scenarios that will be enough to give a reliable result in
Problem (11), we solved Problem (12) with 9,000 scenarios each, of the simulated
geological uncertainty and the simulated price uncertainty, for K = 100 and for
α = 0.98, 0.95, and 0.90. About 1,000 scenarios will be enough in both cases, as
can be seen in Figs. 6 and 7. For this choice of K, only 25 blocks are mined in both
cases for all numbers of scenarios, except that for some values of J < 100, all the
36 blocks are mined when the simulated geological uncertainty was used.
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Fig. 3 CVaR against the number of scenarios of the simulated geological uncertainty, for K = 102
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Fig. 4 CVaR against the number of scenarios of the simulated price uncertainty, for K = 100
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Fig. 5 A pit of 25 blocks being mined
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Fig. 6 CVaR against the number of scenarios of the simulated geological uncertainty, for K = 100

3.3 Results for the Investment Model

By using 3,000 scenarios of the simulated geological uncertainty in Problem (8), the
breakpoints of K were found for different values of α . A breakpoint here refers to
the transition between the cases x∗o = 0 and x∗o = 1, that is, between no mining and
mining. The result is given in Fig. 8. When the value of K is below or exactly on the
curve we shall mine all the 36 blocks, while no block is mined when the K value is
above the curve. The result shows that a higher value of α implies that one will be
avoiding risk, as expected.
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Fig. 7 CVaR against the number of scenarios of the simulated price uncertainty, for K = 100
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Fig. 8 Breakpoints of K against α

The same number of scenarios of the simulated geological uncertainty was then
used in Problem (9) to find the breakpoints of K, while varying Q for a fixed α .
Figure 9 is the outcome for α = 0.99, 0.98, 0.95, 0.90, 0.85, and 0.80. The linear
relations are a consequence of the linearity of Problem (9). For each value of α ,
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Fig. 9 Breakpoints of K against Q for 3,000 scenarios of geological uncertainty

a breakpoint indicates the value of K at which we shall either mine all the 36
blocks or mine nothing. Using 2,000 scenarios of the simulated price uncertainty in
Problem (9) and varying Q in a similar manner, for α = 0.99, 0.95, 0.90, and 0.80,
gives the result shown in Fig. 10. It should be noted that there are actually six lines
in this figure. The situation here is rather interesting, in terms of the breakpoints
and the number of blocks mined, for a given value of α . When α = 0.80 and 0.90
there is a single breakpoint for a given Q and we shall mine either all the 36 blocks
or mine nothing. When α = 0.99, we have two cases called 0.99a and 0.99b, with
two different respective breakpoints of K. In the case 0.99a we shall mine either
25 blocks or nothing, while we shall mine either 36 or 25 blocks in the case 0.99b.
When α = 0.95 the situation was found to be similar to that of α = 0.99, except that
the two lines are very close in the figure. This shows how sensitive the situation is
for this value of α . Here also, we shall mine either 25 blocks or nothing in the case
0.95a, while in the case 0.95b either 36 or 25 blocks shall be mined.

In Fig. 11, we give the breakpoints of K against different values of α , for a fixed
value of Q. The result is obtained by solving Problem (9) using 3,000 scenarios of
the simulated geological uncertainty. In all cases, we shall mine either all the 36
blocks or mine nothing. When a value of K is below or on a curve then 36 blocks
are mined while no block is mined when the value of K is above a curve, for a
given Q. Using 2,000 scenarios of the simulated price uncertainty, Problem (9) is
then solved with different values of α and a fixed value of Q. The result, as shown
in Fig. 12, gives different curves for each of the values of Q. Further, each of these
curves ends with two different curves (a lower and an upper curve) for α ≥ 0.95.
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Fig. 10 Breakpoints of K against Q for 2,000 scenarios of price uncertainty
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Fig. 11 Breakpoints of K against α for 3,000 scenarios of geological uncertainty

For 0.80 ≤ α < 0.95 we have a single curve and we shall mine either 36 blocks or
mine nothing, depending, respectively, on whether K is below or on the curve or K is
strictly above the curve. For each of the two curves for α ≥ 0.95, when K is below
or on each of the lower curves (labelled with the letter b in the legend), we shall
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Fig. 12 Breakpoints of K against α for 2,000 scenarios of price uncertainty

mine all the 36 blocks, while we shall mine 25 blocks when K is above the lower
curve, and for each of the upper curves we shall mine either 25 blocks or nothing,
depending, respectively, on whether K is below or on the curve or K is strictly above
the curve. These observations are clearly consistent with the behavior illustrated in
Fig. 10.

3.4 Results for the Design Model

The 3,000 scenarios of the simulated geological uncertainty are used in Prob-
lem (11) for different values of α and varying Q. The results are given in Fig. 13.
The same experiment was made for different α values for the 2,000 scenarios of the
simulated price uncertainty and the results are shown in Fig. 14.

Figures 15 and 16 show Pareto optimal solutions of Problem (13) for different
values of α . By using the 3,000 scenarios of the simulated geological uncertainty
and 0.043 ≤ λ ≤ 0.2101, we obtained the results in Fig. 15. Figure 16 is the
results from the same problem by using the 2,000 scenarios of the simulated price
uncertainty. In this case, 0.075 ≤ λ ≤ 0.6. For the expected variable profits of 24,
44, 56, 72, 92, 104, and 108, the number of blocks mined is, respectively, 2, 4, 6,
9, 16, 25, and 36. As can be expected, the conditional value-at-risk depends on the
confidence level—the higher the confidence level, the higher the conditional value-
at-risk. In other words, the expected variable profit is higher for a lower confidence
level, as one is then more willing to accept that a loss might occur.
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Fig. 13 Expected variable profit against Q for 3,000 scenarios of geological uncertainty

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Q

E
xp

ec
te

d 
pr

of
it

 

 

alpha = 0.80
alpha = 0.95
alpha = 0.99

Fig. 14 Expected variable profit against Q for 2,000 scenarios of price uncertainty
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Fig. 15 CVaR against expected variable profit for 3,000 scenarios of geological uncertainty
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Table 1 Blocks mined for pit contours and corresponding expected variable profits

Contour Number of Additional Cumulative expected
number blocks mined blocks mined variable profit

0 0 0
1 2 77,76 24
2 4 75,59 44
3 9 78,79,60,61,45 72
4 16 80,74,62,58,46,44,32 92
5 25 81,82,63,64,47,48,33,34,22 104
6 36 83,73,65,57,49,43,35,31,23,21,13 108

Table 2 Interval of γ for the contours and corresponding CVaR for different values of α for 3,000
scenarios of the simulated geological uncertainty

α = 0.99 α = 0.95 α = 0.80

Contour # Interval of γ CVaR Interval of γ CVaR Interval of γ CVaR

0 >11.980 0.00 >11.980 0.00 >11.990 0.00
1 9.993–11.980 3.20 9.996–11.980 2.81 9.998–11.990 1.90
2 6.996–9.993 4.72 6.997–9.996 3.70 6.998–9.998 2.50
3 4.998–6.996 6.59 4.998–6.997 5.08 4.999–6.998 3.39
4 2.997–4.998 7.43 2.998–4.998 5.97 2.999–4.999 4.09
5 0.998–2.997 8.72 0.998–2.998 6.90 0.999–2.999 4.72
6 0.000–0.998 9.73 0.000–0.998 7.78 0.000–0.999 5.33

Table 3 Interval of γ for the contours and corresponding CVaR for different values of α for 3,000
scenarios of the simulated price uncertainty

α = 0.99 α = 0.95 α = 0.80

Contour # Interval of γ CVaR Interval of γ CVaR Interval of γ CVaR

0 >11.983 0.00 >11.986 0.00 >11.990 0.00
1 9.986–11.983 3.37 9.986–11.986 2.70 9.992–11.990 1.88
2 6.988–9.986 6.32 6.990–9.986 5.06 6.993–9.992 3.52
3 4.988–6.988 11.37 4.990–6.990 9.11 4.993–6.993 6.34
4 2.988–4.988 16.43 2.990–4.990 13.16 2.993–4.993 9.15
5 0.988–2.988 21.49 0.989–2.990 17.21 0.993–2.993 11.97
6 0.000–0.988 26.54 0.000–0.989 21.25 0.000–0.993 14.78

3.5 Results for the Nested Pit Contours

By varying the parameter γ , using a fixed value of ε = 0.01 and 3,000 scenarios
each, of the simulated geological uncertainty and the simulated price uncertainty,
Problem (16) is solved for different values of the confidence level α . In Table 1, we
present the order in which the pit contours are generated, as well as the expected
variable profit for each contour. Tables 2 and 3 show, respectively, the trend for the
CVaR and the intervals of γ for corresponding contours.

The results from these tables enable the decision maker to know the order in
which the blocks are to be mined, and they also show how the expected variable
profit and CVaR change for this mining schedule.
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4 Conclusion

We have presented optimization models for open-pit mining planning where
uncertainty with respect to both geology and future market prices can be taken into
account by means of the conditional value-at-risk measure. This measure was first
applied in the field of financial planning, but has a rather natural and immediate
application also to the planning situation under consideration here. The models
presented comprise three stages of the mining planning process: the investment
decision, the pit design, and the mining sequence.

The models have been verified through numerical experiments on a small-
scale example problem for which uncertainty is simulated by means of randomly
generated scenarios. The overall characteristics of the results are consistent with
what could be expected, considering the properties of the optimization problems
studied and the aims of the models. A somewhat unexpected result is that as much
as thousands of scenarios are needed to simulate the uncertainty, in order to obtain
reliable solutions to the models, even though the example problem is small scale.

An obvious direction for continued evaluation of the presented models and
research would be applications to realistic instances of open-pit mining. Due to the
large scales of such instances and the large numbers of scenarios needed to describe
the uncertainty, this will most certainly necessitate the development of specialized
solution methods, by exploiting the very special structures of our models.
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Incidence Graphs of Bipartite G-Graphs

Cerasela Tanasescu, Ruxandra Marinescu-Ghemeci, and Alain Bretto

Abstract Defining graphs from groups is a widely studied area motivated, for
example, by communication networks. The most popular graphs defined by a
group are Cayley graphs. G-graphs correspond to an alternative construction. After
recalling the main properties of these graphs and their motivation, we propose a
characterization result. With the help of this result, we show that the incidence graph
of a symmetric bipartite G-graph is also a G-graph and we give a proof that, with
some constraints, if the incidence graph of a symmetric bipartite graph is G-graph,
the graph is also a G-graph. Using these results, we give an alternative proof for the
fact that mesh of d-ary trees are G-graphs.

1 Introduction

A recent studied family of graphs constructed from groups are G-graphs. These
graphs, introduced in [2], have also, like Cayley graphs, highly regular properties.
In particular, because the algorithm for constructing the G-graphs is simple, it
appears as a useful tool to construct new symmetric and semisymmetric graphs [3].
Moreover, thanks to G-graphs, some upper bounds in the cage graphs problem were
improved ([4], see also [7]). One interesting direction is studying the G-graphs
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properties and providing characterization theorems for G-graphs. In the following
sections, we propose such characterization and study the incidence graphs of
G-graphs. Based on the results obtained we present an alternative proof of the fact
that mesh of d-ary trees are G-graphs.

2 Definitions

2.1 Group Definitions

Let (G, ·,e) be a finite group [8], where e denotes the identity element of G. If no
ambiguity occurs we denote the group by G.

For simplicity we denote g ·g = g2 and we define gk with g ∈ G by gk = gk−1 ·g.
“·” denotes a canonical operation for a group. The operation can be sometimes

denoted differently, as in (Z/nZ,+). Also, if the operation between two elements
g1,g2 of a group can be easily revealed by the context, we will write g1g2 instead of
g1 ·g2.

We will use notation G′ ≤ G if G′ is a subgroup of G.

Cyclic group. For every g in G we define the order of g, denoted by o(g), as the
smallest positive integer k such that gk = e. The set (g) = {e,g,g2, . . . ,go(g)−1} with
the corresponding operation forms a subgroup of G, called the cyclic group of g.

Independent elements. Let g1,g2, . . . ,gk be k elements in G. g1,g2, . . . ,gk are
called independent elements in G if and only if, for any two distinct elements gi,g j,
if gp

i = gk
j for some positive integer p,k, then gp

i = gk
j = e.

Left and Right Cosets. If H is a fixed subgroup of a group G and x ∈ G, the subset
Hx = {hx|h ∈ H} is called right coset of H containing x. The key property of cosets
is that, for any x,y ∈ G, Hx = Hy or Hx∩ Hy = /0. The cosets of H yield thus a
partition of G and we can find a subset T of G such that, for any x ∈ G there is
exactly one element t ∈ T for which t ∈ Hx, that is,

G =
⋃

t∈T

Ht.

Such set T is called a right transversal for H in G.
The notions of left coset and left transversal are defined analogously.

Semi-direct-product of groups. We define a (left) group action of G on a set X as
a binary function from G×X to X , (g,x)→ g · x satisfying conditions: e · x = x for

every x ∈ X and g ·
(

g
′ · x

)
=

(
g ·g′) · x for all g, g

′ ∈ G and x ∈ X . The action is

transitive if for every x,y ∈ X , there exists g ∈ G such that g · x = y.
For x ∈ X we define the stabilizer subgroup of x as the set of all elements in G

that let x invariant: StabGx = {g : g · x = x}.
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Let (H, ·) and (Q, ·) be two groups and ϕ : Q×H −→ H an action of Q on H.
The semi-direct product of H and Q by ϕ , denoted H �ϕ Q, is defined as the group

with underlying set H ×Q and the operation: (h,q) · (h′,q′) =
(

h ·ϕ(q,h′),q ·q′)
.

2.2 Graphs Definitions

In this paper, graphs are undirected, simple, without loops. Specifically, we define
an undirected graph Γ = (V ;E) by the vertex set V and the edge set E . For a vertex
x ∈ V we call the neighborhood of x, the set N(x) of vertices in V adjacent to x.

Intersection graph. An Intersection graph is an undirected graph obtained from a
family of sets Si, i = 0,1,2, . . . by creating a vertex vi for each set Si, and connecting
two distinct vertices by an edge whenever the corresponding two sets Si and S j have
a nonempty intersection:

∣
∣Si ∩S j

∣
∣ ≥ 1.

Equitable partition. Given a graph Γ = (V ;E) and a partition of its vertex set π =⋃
1≤i≤r Ci, we say that π is an equitable partition if and only if for all 1 ≤ i �= j ≤ r

there exists bi j such that ∀x ∈ Ci we have
∣
∣N(x)∩Cj

∣
∣ = bi j. The edges between

Ci and Cj induce a semiregular bipartite graph. All vertices from Ci have the same
degree, as well as vertices from Cj.

Graph isomorphism. Let Γ1 =(V1;E1) and Γ2 = (V2;E2) be two graphs. An
isomorphism from Γ1 to Γ2 is a bijection f : V1 −→ V2 such that xy ∈ E1 if and
only if f (x) f (y) ∈ E2.

An isomorphism from Γ to itself is called automorphism of Γ . The identity
automorphism will be denoted by id.
Aut(Γ ) denotes the group of automorphisms of a graph Γ under composition law.

Orbit partition. For a graph Γ = (V ;E), let H ≤ Aut(Γ ) be a subgroup of
its automorphisms group. We define an equivalence relation on V regarding H
as follows: for any u and v in V , u is in relation with v if and only if there exists
h ∈ H such as h(u) = v. An orbit is an equivalence class. The orbit partition of V
regarding H is the partition of V associated whith this relation.

Incidence Graph. The Incidence graph of a simple graph Γ = (V ;E) is the graph
IΓ = (IV =V ∪E; IE) where IE = {ab : a = xy ∈ E,b = x or b = y,b ∈V}.

3 G-Graphs Characterization

3.1 G-Graphs Definition

Definition. Consider G a finite group, with e the neutral element. Let S be a
nonempty subset of G. The right G-graph, Φ(G;S), is the intersection graph of
the right cosets of the cyclic groups (s), s ∈ S.
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By this definition, we constructΦ(G;S) = (V ;E) in the following way:

1. The vertices of Φ(G;S) are V =
⋃

s∈S Vs where Vs = {(s)x : x ∈ Ts} and Ts is a
right transversal for (s) in G.

2. For (s)x,(t)y ∈V , there exists an edge between (s)x and (t)y if and only if |(s)x ∩
(t)y| ≥ 1.

Remark. If s and t are independents, we have |(s)x ∩ (t)y| ≤ 1.

We denote S = {s1,s2, . . . ,sk}. Then V =
⋃k

i=1 Vsi .
We assume S is a set of independent elements.

Lemma 1. Φ(G;S) is a |S|-partite graph and this partition is an equitable parti-
tion. Every vertex from a class Vsi of the partition has the degree (|S|− 1)o(si).

Proof. Vs1 ,Vs2 , . . . ,Vsk is aΦ(G;S) partition. For any i ∈ {1,2, . . . ,k}, we have Vsi =
{(si)x|x ∈ Tsi}, where Tsi is a right transversal for (si), and cosets (si)x, for x ∈ Tsi

form a partition of G.
Let i, j be two distinct indices from {1,2, . . . ,k}.
Let a be an element of a coset (si)x, x ∈ Tsi . Then there exists an unique y ∈ Ts j

such that a ∈ (s j)y. Hence each element of coset (si)x induces an edge in Φ(G;S)
from vertex (si)x to a vertex from Vj. But coset (si)x has o(si) elements, hence in
the G-graph we have |N((si)x)∩Vj| = o(si). It follows that every two classes Vi

and Vj induce a semiregular graph, hence V =
⋃k

i=1 Vsi is an equitable partition. We
immediately deduce that the degree of the vertex (si)x is o(si)(k− 1). ��
Remark. If S = {s1,s2} and o(s1) = o(s2) = p, the G-graph Φ(G;S) is called
symmetric bipartite, since it is bipartite and p-regular (all the vertices have
degree p).

Short list of classical graphs which are identified as G-graphs [5]

1. Bipartite complete graphs Kn,k (G = Zn ×Zk,S = {(1,0),(0,1)})
2. The cuboctahedral graph

(
G = (Z2)

3,S = {(1,0,0),(0,1,0),(0,0,1)})
3. The square (G is the Klein’s group, G =< {e,a,b,ab}|a2 = b2 = e,ab = ba >

and S = {a,b})
4. The Heawood’s graph (

〈
a,b | a7 = b3 = e,ab = baa

〉
,S = {b,ba})

5. The Pappus graph
(
G =

〈
a,b,c | a3 = b3 = c3 = e,ab = ba,ac = ca,bc = cba

〉
,

S = {b,c})

3.2 G-Graph Characterization

Lemma 2. Let Φ1(G;S) = (V1;E1) and Φ2(G;S) = (V2;E2) be the right and left
G-graphs of G. These two graphs are isomorphic.

Proof. For every s ∈ S the sets of left and right cosets of the cyclic group (s) have
the same cardinality. If Ts is a left transversal of (s) in G, then T−1

s = {t−1, t ∈ Ts}
is a right transversal of (s) in G.
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Consider the application f : V1 → V2 such that f ((s)x) = x−1(s). It is easy to
see that f is well defined, since if (s)x = (s)y, then x−1(s) = y−1(s) and f is a
bijection. Moreover, there exists an edge between (si)x and (s j)y if and only if

there exist α and β such as sαi x = sβj y or, equivalent, (sαi x)−1 = (sβj y)−1, hence

x−1so(si)−α
i = y−1s

o(s j)−β
j . But this relation holds if and only if there exists an edge

between the vertices x−1(si) and y−1(s j). It follows that (si)x(s j)y ∈ E1 if and only
if x−1(si)y−1(s j) ∈ E2 hence f is an isomorphism. ��

LetΦ(G;S) = (V ;E) be a G-graph. For any g ∈ G we can associate the morphism
δg :V −→V , defined by δg((s)x) = (s)xg. Using these notions we have the following
Theorem.

Theorem 1. Let Φ(G;S) = (V ;E) be a G-graph.

(1) δg is an automorphism of Φ(G;S) and δg(Vs) =Vs for every s ∈ S.
(2) δG = {δg,g ∈ G} form a group under the composition law, and Vsi for any fixed

si is an orbit regarding δG.
(3) Settle si and s j in S. For every x,u ∈ Vsi , y,v ∈ Vs j with xy,uv ∈ E, there exists

g ∈ G such that δg(x) = u and δg(y) = v.
(4) For every (s)x ∈ V with s ∈ S, StabδG

(s)x is a cyclic group of order o(s),
generated by δx−1sx.

Proof. (1) We will prove that δg is an automorphism of Φ(G;S).

• We have

δg(Vs) = {δg((s)x)|x ∈ G}= {(s)xg|x ∈ G}= {(s)x|x ∈ G}=Vs,

since G = {x|x ∈ G}= {xg|x ∈ G}.
It follows that δg(Vs) =Vs for every s ∈ S, hence δg is a bijection.

• δg is a morphism. Indeed, we have (s)x(t)y ∈ E if and only if there exist i
and j such as six = t jy, which is equivalent to sixg = t jyg. Hence (s)x(t)y is
in E if and only if (s)xg(t)yg is in E .

It follows that δg is in Aut (Φ(G;S)), for every g ∈ G.
(2) δG = {δg,g ∈ G} forms a group under the composition law, since we have:

• δg1 ◦ δg2 = δg1g2 ,∀g1,g2 ∈ G
• δg ◦ δe = δe ◦ δg = δg,∀g ∈ G
• (δg1 ◦ δg2)◦ δg3 = δ(g1g2)g3

= δg1(g2g3) = δg1 ◦ (δg2 ◦ δg3),∀g1,g2,g3 ∈ G
• δg ◦ δg−1 = e

At (1) we proved that δg(Vs) =Vs for every s ∈ S and g ∈ G, hence Vs is an orbit
regarding the group δG.

(3) Let x = (si)a and u = (si)b. Since xy ∈ E , it follows that there exists q such
that y = (s j)s

q
i a. Similarly, since uv ∈ E , there exists k such that v = (s j)sk

i b.

Consider now g = a−1sk−q
i b ∈ G. We have:
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δg(y) = (s j)s
q
i ag = (s j)s

k
i b = v

δg(x) = (si)ag = (si)s
k−q
i b = (si)b = u.

(4) From definition, for every (s)x ∈ V with s ∈ S,

StabδG
(s)x = {δg,δg((s)x) = (s)x}.

We have δg ∈ StabδG
(s)x if and only if δg((s)x) = (s)xg = (s)x. Thus

δg ∈ StabδG
(s)x if and only if there exist q,r such that sqxg = srx, hence

g = x−1sr−qx. It follows that StabδG
(s)x = {δx−1spx, p = 1, . . . ,o(s)}. Then

StabδG
(s)x is generated by δx−1sx, hence it is a cyclic group of order o(s). ��

Theorem 2. Characterization of a G-graph. Let Γ = (V ;E) be a graph. Then Γ is
a G-graphΦ(G;S), with S an independent set of elements, if and only if there exists
H a subgroup of Aut(Γ ) such that, by denoting V1, . . . ,Vk the orbit partition of V
regarding H, there exists a clique x1, . . . ,xk in Γ , with xi ∈ Vi, where

(1) StabHxi, i∈{1, . . . ,k} are cyclic groups and StabHxi∩StabHx j = {id} for every
i �= j

(2) |N(xi)∩Vj|= |StabHxi|, for every i �= j ∈ {1, . . . ,k}.

Proof. “⇐=” Suppose there exist H and clique {x1, . . . ,xk} satisfying the two
properties. Denote by σi a generator for StabHxi: StabHxi = (σi). Consider the
G-graph Φ(H;{σ1, . . . ,σk}) = (W ;E). Since StabHxi ∩ StabHx j = {id} for every
i �= j, it follows that σ1, . . . ,σk are independent elements. We will prove that Γ is
isomorphic to Φ(H;{σ1, . . . ,σk}).

We define the map ϕ : W −→V , ϕ((σi)a) = a−1(xi), for every (σi)a ∈ W .
ϕ is well defined since, if we have (σi)a = (σi)b, then there exists p such that

b = σ p
i a or, equivalent, b−1 = a−1σ−p

i . Since σ−p
i ∈ StabHxi, we obtain b−1(xi) =

a−1(xi).
ϕ is surjective. Indeed, let x ∈V . Then there exists i ∈ {1, . . . ,k} such that x ∈Vi.

But, since Vi is an orbit of V regarding H and xi ∈ Vi, there exists a ∈ H such that
a(xi) = x. It follows that x = ϕ((σi)a−1).
ϕ is injective: if ϕ((σi)a) = ϕ((σ j)b) then a−1(xi) = b−1(x j). It follows

that i = j, since xi ∈ Vi and V1, . . . ,Vk is an orbit partition regarding H. We obtain
a−1(xi) = b−1(xi), hence ba−1 ∈ StabHxi = (σi). Then there exists l such that
ba−1 = σ l

i and thus (σi)b = (σi)σ l
i a = (σi)a.

Suppose now that (σi)a(σ j)b ∈ F . Then i �= j and there exist p, l such that σ p
i a=

σ l
jb. It follows that b = σ−l

j σ
p
i a, hence b−1 = a−1σ−p

i σ l
j . But xix j ∈ E and a−1σ−p

i

is an automorphism, so a−1σ−p
i (xi)a−1σ−p

i (x j)∈ E . Since σ l
j ∈ StabHx j and σ−p

i ∈
StabHxi, a−1(xi)a−1σ−p

i σ l
j(x j) ∈ E , hence a−1(xi)b−1(x j) ∈ E .

Conversely, suppose a−1(xi)b−1(x j) ∈ E . From property (2) we have: |N(xi)∩
Vj| = |StabHxi| = o(σi) and since σi and σ j are independent, it follows that
N(xi)∩Vj = {σ l

i (x j), l = 1, . . . ,o(σi)} (and these elements are distinct). So there
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exists l ∈ {1, . . . ,o(σi)} such that ab−1(x j) = σ l
i (x j), hence σ−l

i ab−1 ∈ StabHx j.
Then σ−l

i ab−1 = σ p
j for some p ∈ {1, . . . ,o(σ j)}. We obtain σ−l

i a = σ p
j b, hence

(σi)a(σ j)b ∈ F .
“=⇒” Suppose now that Γ is a G-graph Φ(G;{s1, . . . ,sk}), with V =

⋃k
i=1 Vsi .

Using Theorem 1, we consider H = δG ≤ Aut(Γ ). The orbit partition regarding
H is V =

⋃k
i=1 Vsi . StabH(si)e is a cyclic group of order o(si). {(s1)e, . . . ,(sk)e} is a

clique, since e∈ (si)e∩(s j)e for every i �= j ∈{1, . . . ,k}. Moreover, |N((si)e)∩Vj|=
o(si) = |StabH(si)e|. ��

4 Incidence Graphs of G-Graphs

Let Γ = (V ;E) be a simple graph with all vertices of degree at least 3, and IΓ =
(IV =V ∪E; IE) be its incidence graph [9]. LetΨ : Aut(Γ ) −→ Aut(IΓ ),Ψ( f ) �→ h
such that: h(x) = f (x) for all x ∈ V , h(xy) = f (x) f (y) for all xy ∈ E .

Lemma 3. Ψ is a group isomorphism.

Proof. (a) Ψ is well defined, since xy ∈ E if and only if f (x) f (y) ∈ E .
(b) We prove thatΨ is an isomorphism.

Let f1 and f2 ∈ Aut(Γ ). We haveΨ( f1)◦Ψ( f2) = h1◦h2. It follows thatΨ( f1)◦
Ψ( f2) =Ψ( f1 ◦ f2), henceΨ is a morphism.
Let f1 and f2 in Aut(Γ ) such asΨ( f1) =Ψ( f2). Then for every x ∈ V we have
f1(x) = f2(x), hence f1 = f2, soΨ is injective.
Settle h in Aut(IΓ ). Let f = h|V . Since all vertices from V have degree at least
3 in IΓ and all vertices from E have degree 2 in IΓ , it follows that f (V ) ⊆ V
and h(E) ⊆ E . But, since f is injective, we obtain f (V ) = V , so f is bijective.
Also, application h|E : E −→ E is a bijection.
We will prove that f is a morphism.
Let xy ∈ E . Then f (x)h(xy) ∈ IE and f (y)h(xy) ∈ IE . Since f (x) �= f (y),
it means that f (x) f (y) ∈ E .
Suppose now that f (x) f (y) ∈ E . Then there exist x′y′ ∈ E such that h(x′y′) =
f (x) f (y). But x′(x′y′) ∈ IE and y′(x′y′) ∈ IE . It follows that f (x′) f (y′) =
h(x′y′) = f (x) f (y), hence {x,y}= {x′,y′} and so xy ∈ E .

In conclusion f ∈ Aut(Γ ), hence Ψ is surjective. It follows that Ψ is an isomor-
phism. ��

Let Γ = Φ(G;S) = (V ;E) be a G-graph and S = {s1,s2} a generating set for G
with o(s1) = o(s2) = p ≥ 3. Since |S|= 2, Φ(G;S) is bipartite; let V =V1 ∪V2.

Next we assume that s1 and s2 are independent elements and there exists f an
automorphism of G that swaps the two elements contained in S: f (s1) = s2 and
f (s2) = s1.

Proposition 1. Automorphism f is of order 2.
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Proof. Let a ∈ G; then a =∏n
k=1 sλk

1 sμk
2 . We have

f 2(a) = f ( f (a)) = f

(

f

(
n

∏
k=1

sλk
1 sμk

2

))

= f

(
n

∏
k=1

sλk
2 sμk

1

)

=
n

∏
k=1

sλk
1 sμk

2 = a.

It follows that the order of f is two. ��
In order to prove the main result of this section, we define an automorphism

τ : V −→ V such that τ((si)x) = ( f (si)) f (x), for si ∈ S,x ∈ G. It is obvious that
τ ∈ Aut(Γ ). From the definition it is easy to see that the order of τ is 2.

Let G∗ = {δg,g ∈ G}∪{δg ◦ τ,g ∈ G}= δG ∪δGτ ⊆ Aut(Γ )

Lemma 4. G∗ is a subgroup of Aut(Γ ).

Proof. We will prove that G∗ is a group. Since δG is a subgroup of Aut(Γ ), it suffices
to prove that, for any g1,g2 ∈ G, automorphisms (δg1 ◦ τ)−1, (δg1 ◦ τ) ◦ δg2 and
(δg1 ◦ τ)◦ (δg2 ◦ τ) are in G∗.

(δg1 ◦ τ)−1 = τ−1 ◦ δg−1
1

= τ ◦ δg−1
1

, since τ is of order 2

Let (s)x ∈ V . We have

(τ ◦ δg−1
1
)((s)x) = τ((s)xg−1

1 ) = ( f (s)) f (x) f (g−1
1 ) = δ f (g−1

1 )(τ((s)x)),

hence (δg1 ◦ τ)−1 = τ ◦ δg−1
1

= δ f (g−1
1 )

◦ τ ∈ G∗.

Then (δg1 ◦ τ)◦ δg2 = δg1 ◦ (τ ◦ δg2) = δg1 ◦ δ f (g2) ◦ τ = δ f (g2)g1
◦ τ ∈ G∗

Also (δg1 ◦ τ)◦ (δg2 ◦ τ) = δ f (g2)g1
◦ τ ◦ τ = δ f (g2)g1

∈ G∗. ��
Let H be the following group: H =Ψ(G∗).

Theorem 3. Incidence Graph. Let G be a group having a generating set S =
{s1,s2} such that s1 and s2 are independent elements of G with o(s1) = o(s2) =
p ≥ 3, and an automorphism f that swaps the two elements contained in S. Let
Γ = Φ(G;S) = (V ;E) be a G-graph and IΓ = (IV = V ∪E; IE) be the incidence
graph of Γ . Then IΓ is a G-graph, IΓ =Φ(H;S′) with S′ = {s′1,s

′
2} and o(s

′
1) = p,

o(s
′
2) = 2.

Proof. We shall prove that the group H =Ψ (G∗)⊆ Aut(IΓ ) satisfies all conditions
from Theorem 2- G-graph characterization.

Step 1. First we will prove that the partition IV =V ∪E is the orbit partition of IV
regarding H.
Let x,y ∈ V be two vertices of graph Γ =Φ(G;S). There are two possibilities:

• Both x and y are in the same partition (for example) V1. From Theorem 1 there
exists g ∈ V1 such as δg(x) = y.
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• x and y are in different partitions; assume x ∈ V1 and y ∈ V2. Since x ∈ V1, then
x′ = τ(x) belongs to V2 and there exists δg2 ∈ δG such that δg2(x

′) = y.We obtain
(δg2 ◦ τ)(x) = δg2(τ(x)) = y.

Hence G∗ acts transitively on all V . As Ψ is an isomorphism, H =Ψ(G∗) acts
transitively on V .

By Theorem 1 it follows that G∗ acts transitively on E , and since G∗ is isomorphic
with H =Ψ(G∗), H acts transitively on V and on E . In conclusion the orbit partition
of IV regarding H is IV =V ∪E .

Step 2. We consider a clique with 2 elements in IΓ as follows.

Let x1 = (s1)e ∈ V and x2 = (s1)e(s2)e ∈ E . Then {x1,x2} is a clique with 2
elements in IΓ .

Step 3. We will show that conditions (1) and (2) from the characterization theorem
are verified.

Since τ(V1) = V2 and τ(V2) = V1, it follows that StabG∗x1 = StabδG
x1. But,

from Theorem 1, StabδG
x1 is a cyclic group of order p. It follows that StabHx1 =

Ψ(StabG∗x1) is a cyclic group of order p = o(s1). But since p is the degree of x1 in
Γ , it follows that in IΓ we have |N(x1)∩E|= p = |StabHx1|.

Let h ∈ StabHx2 = StabH(s1)e(s2)e. Then either h ∈ StabδG
(s1)e∩ StabδG

(s2)e
or (h = δg ◦ τ with h((s1)e) = (s2)e and h((s2)e) = (s1)e).

But StabδG
(s1)e∩StabδG

(s2)e = {id} so it remains to consider only the second
situation. We have h = δg ◦ τ . Then

h((s1)e) = δg(τ((s1)e)) = (s2)g = (s2)e

and, similarly,

h((s2)e) = δg(τ((s2)e)) = (s1)g = (s1)e.

It follows that there exist p, l such that g = sp
1 = sq

2. Since s1 and s2 are
independent elements, it follows that g = e, hence h = τ , which has order 2.

Thus StabH(s1)e(s2)e is a cyclic group of order 2, and, since in IΓ we have

N((s1)e(s2)e) = {(s1)e,(s2)e},

then

|N((s1)e(s2)e)∩V |= 2 = |StabH(s1)e(s2)e|.

Moreover, since τ /∈ StabG∗x1, it follows that StabHx1 ∩StabHx2 = {id}.
To conclude, we have shown that H satisfy for IΓ all the conditions of

Theorem 2- G-graph characterization. So IΓ is a G-graph. ��
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5 Mesh of d-ary Tree

Next, we are only interested in the mesh of d-ary trees in one dimension, MT (d,1).
Let B an alphabet of d letters. We denote by |u| the length of the word u. The

mesh of d-ary trees MT (d,1) is the graph with the vertex set V = {(u,v);(|u| = 1
and |v|< 1) or (|v|= 1 and |u| ≤ 1)}, and [(u,v),(u′,v′)] ∈ E(MT (d,1)) if and only
if |u|= 1 ,u = u′ and v = v′λ or |v|= 1, v = v′ and u = u′λ with λ ∈ B.

More precisely, if we consider B = Zd = {0,1, . . . ,d − 1} and denote by e the
empty word, we can describe the vertex set of MT (d,1) as

V = {(e, i)|i ∈ B}∪{(i,e)|i ∈ B}∪{(i, j)|i, j ∈ B}

and the edge set as

E = {[(u,e),(u,v)]|u,v ∈ B}∪{[(e,v),(u,v)]|u,v ∈ B}.

The key properties of meshes of d-tree graphs are as follows:

• Number of vertices Nv = d (d + 2)

• Number of edges Ne = 2d( d2−1
d−1 − 1) = 2d2

• Diameter D = 4
• The mesh of d-ary trees is not a Cayley graph
• The mesh of d-ary trees is not vertex-transitive

These graphs are very important in interconnection networks [1].
The following diagrams show MT (3,1) and MT (4,1) (Fig. 1).

In the sequel we consider n,k ≥ 2. Let Cn ×Ck be the product of two cyclic groups.
Such a product is generated by two elements, a and b, with an = bk = 1. More
precisely, Cn ×Ck is the group with description 〈a,b | an = 1,bk = 1,ab = ba〉.
In [5] the following was shown:

Fig. 1 MT (3,1) and MT (4,1)
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Proposition 2. For S = {a,b}, the G-graph Φ(Cn ×Ck,S) of the product of two
cyclic groups, is the complete bipartite graph Kn,k.

It follows that for n = k and S = {s1 = (1,0),s2 = (0,1)} the graph Φ(Zn ×Zn,S)
is a complete bipartite graph with degree equal to n.

From the definitions of MT (n,1) and Kn,n it is easy to see that the following
result holds.

Corollary 1. MT (n,1) is the incidence graph of Kn,n.

Corollary 2. The graph MT (n,1), for n ≥ 3, is a G-graph.

Remark. A direct proof for Corollary 2 can be found in [6].
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A Tight Bound on the Worst-Case Number
of Comparisons for Floyd’s Heap Construction
Algorithm

Ioannis Paparrizos

Abstract In this paper a tight bound on the worst-case number of comparisons for
Floyd’s well-known heap construction algorithm is derived.1 It is shown that at most
2n− 2μ(n)−σ(n) comparisons are executed in the worst case, where μ(n) is the
number of ones and σ(n) is the number of zeros after the last one in the binary
representation of the number of keys n.

Key words Algorithm analysis • Worst case complexity • Data structures
• Heaps

1 Introduction

Floyd’s heap construction algorithm [3] proposed in 1964 as an improvement of the
construction phase of the classical heapsort algorithm introduced earlier that year by
Williams [9] in order to develop an efficient in-place general sorting algorithm. The
importance of heaps in representing priority queues and speeding up an amazing
variety of algorithms is well documented in the literature. Moreover, the classical
heapsort algorithm and, hence, Floyd’s heap construction algorithm as part of it is
contained and analyzed in each textbook discussing algorithm analysis, see [1] and
[2] for example.
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bound on the worst-case number of comparisons for Floyd’s heap construction algorithm (2011)].
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Floyd’s algorithm is optimal as long as complexity is expressed in terms of sets
of functions described via the asymptotic symbols O, Θ , and Ω . Indeed, its linear
complexityΘ(n), both in the worst and best case, cannot be improved as each object
must be examined at least once. However, it is an established tradition to analyze
algorithms solving comparison-based problem by counting mainly comparisons,
see, for example, Knuth [5] who states that the theoretical study of comparison
counting gives us a good deal of useful insight into the nature of sorting processes.

Despite the overwhelming attention received by the computer community in
the more than 45 years of its life, a tight bound on the worst-case number of
comparisons holding for all values of n, is, to our knowledge, still unknown. Kruskal
et al. [6] showed that 2n− 2�log(n+ 1)� is a tight bound on the worst-case number
of comparisons, if n = 2k − 1, where k is a positive integer, and, to our knowledge,
this is the only value of n for which a tight upper bound has been reported in the
literature.

Schaffer [8] showed that n−�log(n+ 1)�+λ (n), where λ (n) is the number of
zeros in the binary representation of n, is the sum of heights of sub-trees rooted
at internal nodes of a complete binary tree, see also [4] for an interesting geometric
approach to the same problem. Using this result we show that 2n−2μ(n)−σ(n) is a
tight bound on the worst-case number of comparisons for Floyd’s heap construction
algorithm. Here, μ(n) is the number of ones and σ(n) is the number of zeros after
the last (right most) one in the binary representation of the number of keys n.

2 Floyd’s Heap Construction Algorithm

A maximum heap is an array H the elements of which satisfy the property:

H(�i/2 )≥ H(i), i = 2,3, . . . ,n. (1)

Relation (1) will be referred to as the heap property. A minimum heap is similarly
defined; just reverse the inequality sign in (1) from ≥ to ≤. When we simply say a
heap we will always mean a maximum heap. A nice property of heaps is that they
can be represented by a complete binary tree. Recall that a complete binary tree is
a binary tree in which the root lies in level zero and all the levels except the last
one contain the maximum possible number of nodes. In addition, the nodes at the
last level are positioned as far to the left as possible. If n = 2k − 1, the last level
�logn = k−1 contains the maximum possible number 2k −1 of nodes. In this case
the complete binary tree is called per f ect. The distinguished path, introduced in
[5], of a complete binary tree that connects the root node 1 with the last leaf node n,
will play an important role in deriving our results. It is well known, see for example
[5], that the nodes of the distinguished path correspond to the digits of the binary
expression of n. Figure 1 illustrates a complete binary tree, its distinguished path
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Fig. 1 A complete binary tree, its distinguished path (dashed edges), a special path (thick edges)
and the leftmost path (dotted edges). The numbers by the nodes of the distinguished path are the
digits of the binary expression (11001) of n = 25

and the corresponding binary expression of n. In terms of binary trees the heap
property is stated as follows:

The value of a child is smaller than or equal to the value of its parent.

It is easily verified that the value of the root is the largest value. Also, each sub-
tree Tj of the complete binary tree representing a heap is also a heap and, hence,
the value H( j) is the largest value among those that correspond to the nodes of Tj.
A sub-array H(i : n) for which the heap property is satisfied by each node j the
parent of which is an element of H(i : n), is also called a heap. Here the expression
j : n denotes the sequence of indices j, j+ 1, j+ 2, . . . ,n.

An almost heap is a sub-array H(i : n) all nodes of which satisfy the heap
property except possibly node i. If key H(i) violates the heap property, then
H(i)< max{H(2i),H(2i+ 1)}.

The main procedure of Floyd’s heap construction algorithm, called in this paper
heapdown, works as follows. It is applied to an almost heap H( j : n) and converts
it into a heap. In particular, if m = H( j) satisfies the heap property H( j) ≥
max{H(2 j),H(2 j+ 1)} and, hence, H( j : n) is a heap, the algorithm does nothing.
Otherwise, it swaps key m = H( j) with the maximum child key H( jmax). Then, it
considers the child jmax which currently contains key m, and repeats the procedure
until the heap property is restored. Algorithm 1 shows a formal description of the
algorithm.
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Algorithm 1: HEAPDOWN(H(i. . . n))
while 2i+1 ≤ n do

k = 2i
if H(k) < H(k+1) then

k = k+1
end if
if H(i)< H(k) then

swap(H(i),H(k))
i = k

else
return H(i . . .n)

end if
end while
if 2i = n and H(i)< H(n) then

swap(H(i),H(n))
return H(i . . .n)

end if

Algorithm 2: FLOYD-BUILDHEAP(H)
for i = �n/2 to 1 step -1 do

heapdown(H(i. . . n))
end for
return H

Floyd’s heap construction algorithm, called Floyd—buildheap procedure in this
paper, applies procedure heapdown to the sequence of almost heaps

H(�n/2 : n),H(�n/2 − 1 : n), . . . ,H(1 : n). (2)

As the sub-array H(�n/2 +1 : n) consists of leafs and, therefore, it is a heap and
procedure heapdown converts an almost heap to a heap, the correctness of procedure
Floyd—buildheap is easily shown.

When procedure heapdown is applied to the almost heap H( j : n) key m = H( j)
moves down one level per iteration. In general, two comparisons are executed per
level, one comparison to find the maximum child and one to determine whether key
m should be interchanged with the maximum child key. However, there is a case in
which just one comparison is executed. This happens when key m is positioned at
node �n/2 and n is even. Then, internal node n/2 has just one child, the last node n,
and therefore no comparison is needed to find the maximum child. We will see in the
next section, when we will investigate the worst case of procedure Floyd-buildheap,
that this situation happens quite often, if n is even. Procedure FLOYD-BUILDHEAP
describes formally Floyd’s algorithm.
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3 A Tight Bound on the Worst-Case Number of Comparisons

It is well known that the number of interchanges performed by Floyd’s heap
construction algorithm is bounded above by the sum t(n) of heights of sub-trees
rooted at the internal nodes of a complete binary tree. Schaffer [8] showed that:

t(n) = n−�log(n+ 1)�+λ (n), (3)

where λ (n) is the number of zeros in the binary representation of n. For the sake of
completeness of the presentation we provide a short proof based on the geometric
idea described in [4]. We associate a special path with each internal node of
the binary tree. The special path connects a node, say j, with a leaf of the subtree
Tj rooted at node j. The first edge of the special path is a right edge and all the
remaining edges are left edges, see Fig. 1. In particular, the nodes of the special
path are j,2 j + 1,22 j + 2,23 j + 22, . . . ,2k j + 2k−1. Observe now that the edges of
all special paths cover all the edges of the binary tree exactly ones except the �logn 
edges of the leftmost path, see Fig. 1. As no two special paths contain a common
edge, the number of edges of all special paths is n− 1−�logn .

The lengths of special paths are closely related to the heights of the sub-trees.
Recall that the length of a path is the number of edges it contains. Denote by sp( j)
the special path corresponding to node j. If internal node j does not belong in the
distinguished path, then length(sp( j)) = h(Tj). If internal node j belongs in the
distinguished path and the right edge ( j,2 j + 1) is an edge of the distinguished
path, then length(sp( j)) = h(Tj). In that case the first edge of sp( j) belongs in the
distinguished path and the digit of the binary expression of n corresponding to node
j is 1. If internal node j belongs in the distinguished path and the left edge ( j,2 j)
is an edge of the distinguished path, then h(Tj) = length(sp( j))+ 1. In that case
the first edge of sp( j) does not belong to the distinguished path and the digit of
the binary expression of n corresponding to node j is 0. Summing up all heights of
internal nodes we get

t(n) = n− 1−�logn +λ (n) = n−�log(n+ 1)�+λ (n). (4)

In computing, our tight bound on the worst-case number of comparisons, two
cases must be considered, n even and n odd. We first take care of the case n is odd.

Lemma 1. Let n be odd. Then the maximum number of comparisons executed by
Floyd’s heap construction algorithm is

2t(n) = 2(n−�log(n+ 1)�+λ (n)). (5)

Proof. If n is odd, each internal node has exactly two children and, hence, each key
swap corresponds to two key comparisons. Therefore 2t(n) is an upper bound on
the number of comparisons. �
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We show now that this bound is tight. To this end we construct a special worst-
case array H. In particular H satisfies the following properties

1. The elements of H are the n distinct keys 1,2, . . . ,n.
2. The nodes in the distinguished path are assigned the �log(n+ 1)� largest keys.

In particular, the nodes in levels 0,1,2, . . . , log(n) are assigned the keys n−�log
(n+ 1)�+ 1,n−�log(n+ 1)�+ 2, . . .,n, respectively.

3. If j is a node not belonging in the distinguished path, sub-tree Tj is a minimum
heap.

Apply now procedure Floyd-buildheap to the array H described previously.
When procedure heapdown is called on the almost heap H( j : n) and j is not a
node of the distinguished path, key m = H( j) will move all the way down to the
bottom level of sub-tree Tj. This is so because key m is the smallest among the
keys corresponding to nodes of the sub-tree rooted at node j, see property 3. Also,
two comparisons are executed per level. When procedure heapdown is applied to
an almost heap H( j : n), where j is a node of the distinguished path, key m = h( j)
will follow the distinguished path all the way down to the bottom level taking the
position of leaf node n, see property 2. Again, two comparisons are executed per
level and, hence, the number 2n− 2�log(n+ 1)�+ 2λ (n) is a tight bound on the
worst-case number of comparisons. �

Next lemma takes care of the case n even.

Lemma 2. If n is even the exact worst case number of comparisons for Floyd’s
heap construction algorithm is

2(n−�log(n+ 1)�+λ (n))−σ(n), (6)

where σ(n) is the number of zeros after the last one in the binary representation
of n.

Proof. Let (bmbm−1 . . .b2b1b0) be the binary representation of n. Let also
bkbk−1 . . .b2b1b0 be the last k + 1 digits of the binary representation of n such
that bk = 1 and bk−1 = bk−2 = · · ·= b1 = b0 = 0. �

As n is even b0 = 0 and, hence, k ≥ 1. Consider now an internal node of height
j ≤ k lying at the distinguished path. It is easily verified, using inductively the well-
known property ��n/2 /a = �n/a2 of the floor function, that the index at that
node is �n/2 j . When procedure Floyd-buildheap calls procedure heapdown on the
almost heap H(�n/2 j : n) key m = H(�n/2 j ) will move down the levels either
following the distinguished path or moving to the right of it at some point. This is
so because all the edges (n,�n/2 ),(�n/2 ,�n/22 ), . . . , (�n/2 j−1 ,�n/2 j ) of the
distinguished path are left edges. In the former case at most 2 j − 1 comparisons
are executed and this happens when key H(�n/2 j ) is placed either at the bottom
level or at the level next to bottom. In the latter case at most 2( j− 1) comparisons
are executed. Hence for each node of the distinguished path at height j = 1,2, . . . ,k
the maximum number of comparisons is one less than 2 times the height of the
sub-tree rooted at that node. For all the remaining internal nodes i the maximum
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Fig. 2 Partition of the nodes of a complete binary tree into sets A,B,C,D

number of comparisons is 2h(Ti), where h(Ti) is the height of the sub-tree rooted at
node i. As the number of internal nodes of the distinguished path at heights 1,2, . . . ,k
is σ(n), the previous arguments show that the number

2(n−�log(n+ 1)�+λ (n))−σ(n) (7)

is an upper bound on the number of comparisons for procedure Floyd-buildheap.
We describe now an array H on which procedure Floyd-buildheap executes

exactly 2(n − �log(n + 1)�+ λ (n))− σ(n) comparisons, thus showing that this
number is a tight upper bound for n even. In order to describe the structure of the
worst-case example H we partition the nodes of the complete binary tree into 4 sets
A,B,C,D. Set A contains all the nodes on the left side of the distinguished path. Set
D contains all nodes lying on the right side of the distinguished path. Set C contains
the nodes of the distinguished path of height j = 0,1,2, . . . ,k and set B contains all
the remaining nodes of the distinguished path. Figure 2 illustrates a complete binary
tree and the sets of nodes A,B,C,D.

The structure of array H is described in the following properties:

1. The elements of H are the n distinct keys 1,2, . . . ,n.
2. If i, j,k, l are nodes belonging to the sets A,B,C,D, respectively, then

H(i)> H( j)> H(k)> H(l). (8)
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Fig. 3 A worst-case complete binary tree for Lemma 2. It is n = 44, k = 2, |A| = 23, |B| = 3,
|C| = 3,|D|= 15. The number inside node j is the key H( j)

3. The keys in the distinguished path that belong to the set B are in increasing order
from the top to the bottom. The keys in the distinguished path that belong to the
set C are in increasing order from the top to the bottom.

4. If j is a node not belonging to the distinguished path, the sub-tree Tj is a
minimum heap.

Although there are more than one way to assign the keys 1,2, . . . ,n to the
elements of H so that properties (2)–(4) are satisfied, an easy way to do that is
as follows. Place the |A| largest keys to the sub-trees on the left of the distinguished
path so that each sub-tree is a minimum heap. The symbol |A| denotes the number
of elements of set A. Obviously |A| is the number of nodes on the left of the
distinguished path. Place in increasing order from top to bottom levels the next
|B| largest elements at the nodes of the distinguished path that belong to the set B.
Also, place in increasing order from top to down levels the next |C| largest elements
at the nodes of the distinguished path that belong to the set C. Obviously |B|+ |C|=
1+ �log(n) = �log(n+ 1)�. Finally, place the remaining |D| smallest keys, i.e, the
keys 1,2, . . . , |B| at the sub-trees right to the distinguished path so that each sub-tree
is a minimum heap. Figure 3 illustrates such a worst-case example for n = 44.

Apply now procedure Floyd-buildheap on the array H described previously.
Let H( j : n), j = �n/2 ,�n/2 − 1, . . . ,1 be the almost heap on which procedure
heapdown is applied to after it is called by procedure Floyd-buildheap. If j is not
a node at the distinguished path, key H( j), because of property (4), will move
all the way down to the bottom level of sub-tree Tj and 2h(Tj) comparisons
will be executed. If j is a node of the distinguished path belonging to set C,
key H( j), because of properties (2)–(4), will follow the distinguished path never
making a right turn. In this case, key H( j) will be placed at node n executing
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2h(Tj)−1 comparisons. Finally, if node j belongs in set B, key H( j) will definitely
make a left turn before reaching the node �n/2k of the distinguished path, see
properties (2) and (3). Then it will move all the way down to bottom level executing
2 comparisons per level. Again 2h(Tj) comparisons are executed.

Summing up the comparisons for all the calls of procedure heapdown we see that
the total number of comparisons is as stated in the Lemma. �

Observe that the array H described in the previous Lemma is not a minimum
heap. In particular the sub-trees rooted at nodes of the distinguished path are not
minimum heaps.

Theorem 1. The number 2n−2μ(n)−σ(n), where μ(n) is the number of ones and
σ(n) is the number of zeros after the last one in the binary representation of n, is a
tight bound on the worst-case number of comparisons for Floyd’s heap construction
algorithm.

Proof. If n is odd, then b0 = 1 and, hence, σ(n) = 0. Combining Lemmas 1 and 2
we see that a tight bound on the worst-case number of comparisons is the number
2[n −�log(n+ 1)�+ λ (n)]−σ(n) = 2[n − (λ (n)+ μ(n))+ λ (n)]−σ(n) = 2n −
2μ(n)−σ(n). �

4 Conclusion

Deriving worst case tight upper bound examples for an algorithm implies that the
worst-case complexity of the algorithm cannot be improved. We derived our worst-
case examples by the use of simple geometric ideas. As the binary trees and heaps
are involved in many other algorithms for which worst-case tight examples are not
known, we hope that our results will contribute in solving those problems.
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implementation focuses on the reduction of the time taken to perform the basis
inverse, due to the fact that the total computational effort of an iteration of simplex
type algorithms is dominated by this computation. This inverse does not have to be
computed from scratch at any iteration. In this paper, we compute the basis inverse
with two well-known updating schemes: (1) The Product Form of the Inverse (PFI)
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paper presents a computational study that shows the speedup among the serial
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1 Introduction

Linear Programming (LP) is the process of minimizing or maximizing a linear
objective function z = ∑n

i=1 ci · xi subject to a number of linear equality and
inequality constraints. Several methods are available for solving LPs, among which
the simplex algorithm is the most widely used. We assume that the problem is in its
general form. Formulating the linear problem, we can describe it as shown in (LP1).

min cTx

subject to Ax = b (LP1)

x ≥ 0

where A ∈ Rm×n, (c,x) ∈ Rn, b ∈ Rm, and T denotes transposition. Without loss of
generality we assume that A has full rank, rank(A) =m, where (m< n). The simplex
method searches for an optimal solution by moving from one feasible solution to
another, along the edges of the feasible region. The dual problem associated with
the linear problem in (LP1) is shown in (DP).

min bTw

subject to ATw+ s = c (DP)

s ≥ 0

where w ∈ Rm and s ∈ Rn. As in the solution of any large-scale mathematical system,
the computational time for large LPs is a major concern. Parallel programming
is a good practice for solving computationally intensive problems in operations
research. The application of parallel processing for LP has been introduced in
the early 1970s. However, only since the beginning of the 1980s attempts have
been made to develop parallel implementations. A lot of architectural features have
been used in practice. Preliminary parallel approaches were developed for network
optimization, direct search methods, and global optimization. A growing number of
optimization problems demand parallel computing capabilities. Any performance
improvement in the parallelization of the revised simplex would be of great interest.

One of the earliest parallel tableau simplex methods on a small-scale distributed
memory Multiple-Instruction Multiple-Data (MIMD) machines is the one intro-
duced by Finkel [8]. Stunkel [28] implemented both the tableau and the revised
simplex method on a 16-processor Intel hypercube computer, achieving a speedup
of between 8 and 12 for small problems from the Netlib set [9]. Helgason,
Kennington, and Zaki [16] proposed an algorithm to implement the revised simplex
using sparse matrices methods on shared memory MIMD computer. Furthermore,
Shu and Wu [26] and Shu [25] parallelized the explicit inverse and the LU
decomposition of the basis simplex algorithms. Hall and McKinnon [12, 15] have
implemented two parallel schemes for the revised simplex method. The first of
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Hall and McKinnon’s parallel revised simplex implementations was ASYNPLEX
[12]. In this implementation one processor is devoted to the basis inversion and the
remaining processors perform simplex iterations. ASYNPLEX was implemented
on a Cray T3D, achieving a speedup of between 2.5 and 4.8 for four modest
Netlib problems. The second of Hall and McKinnon’s parallel revised simplex
implementations was PARSMI [15]. PARSMI was tested on modest problems from
the Netlib set, resulting in a speedup of between 1.7 and 1.9. Hall [13] implemented
a variant of PARSMI on a 8-processor shared memory Sun Fire E15k, leading in a
speedup of between 1.8 and 3.

Simplex algorithms for general LPs on Single Instruction Multiple Data (SIMD)
have been reported by [1]. Luo and Reijns [20] presented an implementation of the
revised simplex method, achieving a speedup of more than 12, when solving modest
Netlib problems on 16 transputers. Eckstein et al. [7] implemented a parallelization
of standard and revised simplex method in a CM2 machine. Lentini et al. [19]
worked on the standard simplex method with the tableau stored as a sparse matrix,
resulting in a speedup of between 0.5 and 2.7, when solving medium-sized Netlib
problems on four transputers. Thomadakis and Liu [29] worked on the standard
simplex method on MasPar MP-1 and MP-2 machines, achieving a speedup of
up to three, when solving large randomly generated problems. Badr et al. [2]
implemented a dense standard simplex method on eight computers, leading in a
speedup of five when solving small random dense LPs. Yarmish and Slyke [30]
presented a distributed implementation of the standard simplex method that is not
affected by problem density and their implementation outperformed revised method
at density slightly above 10% when using 7 processors. Mamalis et al. [21] proposed
a parallel implementation framework of the standard full tableau simplex using
a column and a row distribution scheme. Their implementation tested on a linux-
cluster of eight Xeon processors and the results showed that the column distribution
scheme performs quite better than the row distribution scheme. Previous attempts
to develop simplex implementations with the aim of exploiting high performance
computing architectures are reviewed by Hall [14]. Finally, computational results
for parallelizing the network simplex method are reported in [3, 6, 24].

The use of GPUs for general purpose computations is a quite recent topic, which
was applied to linear programming. Greeff [10] implemented the revised simplex
method on a GPU using OpenGL and Cg and was able to achieve a speedup of up to
11.4 over an identical CPU implementation. Jung and O’Leary [18] and Owens et
al. [23] also presented an implementation using Cg and OpenGL. Spampinato and
Elster [27] proposed a GPU implementation of the revised simplex method, based
on the CUDA architecture and achieved a speedup of up to 2.5. Recently, Bieling,
Peschlow and Martini [5] also presented an implementation of the revised simplex
algorithm and achieved a speedup of up to 10.

This paper presents a parallelization of the revised simplex algorithm on a shared
memory multiprocessor architecture. The focus of this parallelization is on the basis
inverse. The structure of the paper is as follows. In Sect. 2, the revised simplex
algorithm is described and presented. In Sect. 3, two methods that have been widely
used for basis inversion are analyzed. Section 4 presents the parallel revised simplex
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algorithm and Sect. 5 gives the computational results. Finally, the conclusions of this
paper are outlined in Sect. 6.

2 Revised Simplex Algorithm

The linear problem in (LP1) can be written as shown in (LP2).

min cT
BxB + cT

NxN

subject to ABxB +ANxN = b (LP2)

xB,xN ≥ 0

In (LP2), AB is a m × m non-singular sub-matrix of A, called basic matrix or
basis. The columns of A which belong to subset B are called basic and those which
belong to N are called non-basic. The solution xB = (AB)

−1b,xN = 0 is called a
basic solution. A solution x = (xB,xN) is feasible iff x > 0. Otherwise, (LP2) is
infeasible. The solution of (DP) is computed by the relation s = c− ATw, where
w = (cB)

T (AB)
−1 are the simplex multipliers and s are the dual slack variables. The

basis AB is dual feasible iff s ≥ 0.
In each iteration, simplex algorithm interchanges a column of matrix AB with a

column of matrix AN and constructs a new basis AB. Any iteration of simplex type
algorithms is relatively expensive. The total work of an iteration of simplex type
algorithms is dominated by the determination of the basis inverse. This inverse,
however, does not have to be computed from scratch during each iteration. Simplex
type algorithms maintain a factorization of basis and update this factorization in
each iteration. There are several schemes for updating basis inverse. Two well-
known schemes are (1) the Product Form of the Inverse (PFI) and (2) a Modification
of the Product Form of the Inverse, developed by Benhamadou [4]. These methods,
in order to compute the new basis, use only information about the entering and
leaving variables along with the current basis. A formal description of the revised
simplex algorithm is given in Table 1.

3 Methods Used for Basis Inversion

The revised simplex algorithm differs from the original method. The former uses the
same recursion relations to transform only the inverse of the basis in each iteration.
It has been implemented to reduce the computation time of the basis inversion and
is particularly effective for sparse linear problems. In this section, we will review
two methods that have been widely used for basis inversion: (1) the Product Form
of the Inverse and (2) a Modification of the Product Form of the Inverse.
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Table 1 Revised simplex algorithm

Step 0. (Initialization).
Start with a feasible partition (AB,AN). Compute (AB)

−1 and vectors xB, w and sN .
Step 1. (Test of optimality).
if sN ≥ 0 then STOP. The linear problem is optimal.
else

Choose the index l of the entering variable using a pivoting rule.
Variable xl enters the basis.

Step 2. (Minimum ratio test).
Compute the pivot column hl = (AB)

−1Al .
if hl ≤ 0 then STOP. The linear problem is unbounded.
else

Choose the leaving variable xB[r] = xk using the following relation:

xB[r] =
xB[r]
hil

= min
{

xB[i]
hil

: hil < 0
}

Step 3. (Pivoting).
Swap indices k and l. Update the new basis inverse (AB)

−1, using PFI or MPFI.
Go to Step 1.

3.1 Product Form of the Inverse

The PFI scheme, in order to compute the new basis, uses information only about the
entering and leaving variables along with the current basis. The new basis inverse
can be updated at any iteration using the (1).

(AB)
−1 = (ABE)−1 = E−1(AB)

−1 (1)

where E−1 is the inverse of the eta-matrix and can be computed by (2).

E−1 = I − 1
hrl

(hl − el)eT
l =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

1 −h1l
. . .

...
1/hrl

...
. . .

−hml/hrl 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

(2)

If the current basis inverse is computed using regular multiplication, then the
complexity of the PFI isΘ

(
m3

)
.

3.2 A Modification of Product Form of the Inverse

MPFI updating scheme has been presented by Benhamadou [4]. The key idea is that
the current basis inverse (AB)

−1 can be computed from the previous inverse (AB)
−1

using a simple outer product of two vectors and one matrix addition, as shown in (3).
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(AB)
−1 =

(
ABr.

)−1
+ v⊗ (ABr.)

−1 (3)

The updating scheme of the inverse is shown in (4).

(AB)
−1 :

∣
∣
∣∣br1 · · · brr · · · brm

∣
∣
∣∣

(AB)
−1 =

∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

b11 · · · b1m
...

. . .
...

0 0 0
...

. . .
...

bm1 · · · bmm

∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

+

∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣

− h1l
hrl
...

− 1
hrl
...

− hml
hrl

∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣

(4)

The outer product requires m2 multiplications and the addition of two matrices
requires m2 additions. The total cost of the above method is 2m2 operations
(multiplications and additions). Hence, the complexity isΘ(m2).

4 Parallel Revised Simplex Algorithm

The parallelization of all the individual steps of the revised simplex algorithm is
limited and very hard to achieve. However, it is also essential for any algorithm to
perform basis inverse in parallel with simplex iterations, otherwise basis inverse
will become the dominant step and limit the possible speedup. Our parallel
implementation focuses on the reduction of the time taken to perform the basis
inverse. The basis inversion is done with the Product Form of the Inverse and
a Modification of the Product Form of the Inverse, as described in the previous
section.

Both methods take as input the previous basis inverse (AB)
−1, the pivot column

(hl), the index of the leaving variable (k) and the number of the constraints (m).
The most time-consuming step of PFI scheme is the matrix multiplication of

(1). Our parallel algorithm uses the block matrix multiplication algorithm for this
step. This algorithm suggests a recursive divide-and-conquer solution, as described
in [11, 17]. This method has significant potential for parallel implementations,
especially on shared memory implementations. Block size plays important role on
the total performance of the block matrix multiplication. In order to choose the
suitable value in our implementation, we have experimented with this parameter
and found that the appropriate block size is 16 when using 4 cores.

Let us assume that we have p processors. Table 2 shows the steps that we used to
compute the new basis inverse (AB)

−1 with the PFI scheme. Table 3 shows the steps
that we used to compute the new basis inverse (AB)

−1 with the MPFI scheme.
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Table 2 Parallel PFI

Step 0.
Compute the column vector:

v =
[
− h1l

hrl
· · · 1

hrl
· · · − hml

hrl

]T

Each processor computes in parallel m/p elements of v.
Step 1.
Replace the rth column of an identity matrix with the column vector v. Each processor assigns

in parallel m/p elements to the identity matrix. This matrix is the inverse of the Eta-matrix.
Step 2.
Compute the new basis inverse using (1) with block matrix multiplication. Each processor

will compute m/p rows of the new basis.

Table 3 Parallel MPFI

Step 0.
Compute the column vector:

v =
[
− h1l

hrl
· · · 1

hrl
· · · − hml

hrl

]T

Each processor computes in parallel m/p elements of v.
Step 1. (The following steps are computed in parallel)

Step 1.1. Compute the outer product v⊗ (ABr )
−1 with block matrix multiplication.

Step 1.2. Copy matrix (AB)
−1 to matrix (AB)

−1. Set the rth row of (AB)
−1 equal to zero.

Each processor computes in parallel m/p rows of (AB)
−1.

Step 2.
Compute the new basis inverse using relation (3). Each processor computes in parallel m/p

rows of the new basis.

5 Computational Experiments

In this section we report the computational results of running our implementations
on a set of LPs available through Netlib. The three most usual approaches to
analyzing algorithms are (1) worst-case analysis, (2) average-case analysis, and (3)
experimental analysis. Computational studies have been proven useful tools in order
to examine the practical efficiency of an algorithm or even compare algorithms by
using the same problem sets. The computational comparison has been performed on
a quad-processor Intel Xeon 3.2 GHz with 2 Gbyte of main memory running under
Ubuntu 10.10 64-bit and performed on GCC 4.5.2. In the following computational
results all reported CPU times were measured in seconds. The algorithms have been
implemented using C++ and OpenMP using the techniques discussed in Sect. 4. In
all LPs from the Netlib collection, the parallel versions of the simplex algorithm
converge to the same solution.
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Table 4 Statistics of the benchmarks

Problem Constraints Variables Non-zeros A Sparsity A (%)

agg 488 163 2,410 3.03
agg2 516 302 4,284 2.75
agg3 516 302 4,300 2.76
bandm 305 472 2,494 1.73
brandy 220 249 2,148 3.92
e226 223 282 2,578 4.10
fffff800 524 854 6,227 1.39
israel 174 142 2,269 9.18
lotfi 153 308 1,078 2.29
sc105 105 103 280 2.59
sc205 205 203 551 1.32
scfxm1 330 457 2,589 1.72
scfxm2 660 914 5,183 0.86
scfxm3 990 1,371 7,777 0.57
scrs8 490 1,169 3,182 0.56
share1b 117 225 1,151 4.37
share2b 96 79 694 9.15
ship04l 402 2,118 6,332 0.74
ship04s 402 1,458 4,352 0.74
ship08l 778 4,283 12,802 0.38
ship08s 778 2,387 7,114 0.38
ship12l 1,151 5,427 16,170 0.26
ship12s 1,151 2,763 8,178 0.26
stocfor1 117 111 447 3.44
klein2 477 54 4,585 17.80
klein3 994 88 12,107 13.84
Average 474.96 1,044.84 4,754.88

5.1 Problem Instances

The test set used in our experiments were the Netlib set of LPs. The Netlib library is
a well-known suite containing many real-world LPs. Ordóñez and Freund [22] have
shown that 71% of the Netlib LPs are ill-conditioned.

Below there are some useful information about the data set, which was used in the
computational study. The first column of Table 4 includes the name of the problem,
the second the number of constraints, the third the number of variables, the fourth
the nonzero elements of matrix A and the fifth the density of the coefficient matrix
A. Let nnz(A) denote the number of nonzeros in the matrix A. The density of matrix
A is defined as the ratio of the nnz(A) to the total number of its elements.

All LPs have been presolved. The purpose of the presolve analysis is to improve
linear problem’s numerical properties and computational characteristics. The last
row of each table shows the average value of each column.
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Table 6 Basis inverse and total time of the serial and parallel
implementations

Speedup

PFI MPFI

Problem Basis inverse Total Basis inverse Total

agg 1.86 1.38 2.02 1.37
agg2 1.96 1.43 1.83 1.35
agg3 1.77 1.39 1.77 1.33
bandm 1.20 1.07 1.21 1.09
brandy 1.25 1.11 1.39 1.15
e226 1.36 1.18 1.62 1.24
fffff800 1.18 1.10 1.13 1.07
israel 1.55 1.17 1.40 1.26
lotfi 1.32 1.09 1.38 1.18
sc105 8.00 1.29 1.50 1.17
sc205 1.38 1.23 2.55 1.52
scfxm1 1.17 1.13 1.19 1.10
scfxm2 1.17 1.06 1.14 1.07
scfxm3 1.19 1.09 1.15 1.05
scrs8 1.17 1.10 1.18 1.11
share1b 1.36 1.16 1.13 1.13
share2b 5.00 1.10 1.33 1.11
ship04l 1.17 1.06 1.17 1.06
ship04s 1.14 1.08 1.26 1.05
ship08l 1.13 1.03 1.19 1.05
ship08s 1.14 1.05 1.20 1.03
ship12l 1.20 1.06 1.19 1.05
ship12s 1.32 1.02 1.25 1.07
stocfor1 2.00 1.00 1.50 1.25
klein2 1.76 1.30 1.79 1.27
klein3 1.80 1.27 1.97 1.25
Average 1.79 1.15 1.44 1.17

5.2 Computational Results

The algorithms described in Sect. 4 have been experimentally implemented. Table 5
presents the results from the execution of the serial and parallel implementations of
the above-mentioned updating schemes. For each implementation, the table shows
the CPU time for the basis inverse and the total CPU time.

In order to show more clearly the superiority of parallel implementations over
the serial ones, we provide Table 6. Table 6 presents the speedup obtained by the
parallel implementations regarding the CPU time for the basis inverse and the total
CPU time, for both PFI and MPFI schemes. We now plot the ratios taken from
Table 6 in Fig. 1. The total time is in logarithmic scale.

From the above results, we observe: (1) the MPFI scheme is in most problems
faster than PFI both in serial and in parallel implementation, (2) using PFI scheme,



Parallel Revised Simplex using OpenMP 173
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Speedup PFI Basis inverse
Speedup PFI Total
Speedup MPFI Basis inverse
Speedup MPFI Total

7

6

5

4

3

2

1

0

ag
g
ag

g2
ag

g3

ba
nd

m

br
an

dy
e2

26

fff
ff8

00
isr

ae
l

lot
fi

sc
10

5

sc
20

5

sc
fxm

1

sc
fxm

2

sc
fxm

3
sc

rs
8

sh
ar

e1
b

sh
ar

e2
b

sh
ip0

4l

sh
ip0

4s

sh
ip0

8l

sh
ip0

8s

sh
ip1

2l

sh
ip1

2s

sto
cfo

r1

kle
in2

kle
in3To

ta
l

Ave
ra

ge

Fig. 1 Basis inverse and total time of the serial and parallel implementations

the speedup gained from the parallelization is of average 1.79 for the time of basis
inverse and 1.15 for total time, and (3) using MPFI scheme, the speedup is of average
1.44 for the time of basis inverse and 1.17 for total time. Super-linear speedup for
problems sc105 and share2b sometimes occurs due to a reduction in processor idle
time when using multiple threads.

Notice that the speedup is above the ideal one due to the control flow. Revised
simplex algorithm includes many steps that present data-dependency relations,
which can affect the speedup. Two of these steps are the choice of the entering
and leaving variables.

6 Conclusions

A parallel implementation for the revised simplex algorithm has been described
in this paper. Some preliminary computational results on Netlib problems have
reported a speedup of average 1.79 and 1.44 regarding the basis inverse procedure,
using PFI and MPFI updating schemes, respectively. These results could be further
improved by performance optimization. In future work, we plan to implement our
parallel algorithm combining the Message Passing Interface (MPI) and OpenMP
programming models to exploit parallelism beyond a single level. Furthermore,
we intend to port our algorithm to a GPU implementation based on the CUDA
architecture.
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Maximum Induced Matchings in Grids

Ruxandra Marinescu-Ghemeci

Abstract An induced matching in a graph is a matching such that no two edges are
joined by an edge of G. For a connected graph G, denote by iμ(G) the maximum
cardinality of an induced matching in G. In this paper we study the proble of finding
a maximum induced matching in grid graphs with n lines and m columns—Gn,m,
and determine the exact value for iμ(Gn,m) when n or m are even.

1 Introduction

Let G = (V,E) be a connected graph. A matching in G is a subset of edges
M ⊆ E such that no two edges of M are adjacent. A matching M in G is called
induced if no two edges of M are joined by an edge of G. Denote by iμ(G) the
maximum cardinality of an induced matching in G. A maximum induced matching
in G is an induced matching with iμ(G) edges [2, 11]. The problem of finding a
maximum induced matching of a graph (MIM) was introduced as a variation of
the maximum matching problem, motivated by the “risk-free” marriage problem.
Induced matchings have many applications, for example in networking [1, 7] and
discrete mathematics [6]. MIM is proved to be NP-hard [2, 11] and it remains NP-
hard even for bipartite graphs of maximum degree 3 [9, 10], line graphs [8], and for
k-regular bipartite graph for any k ≥ 3 [5].

Denote by Gn,m the grid graph with n lines and m columns. It is known that MIM
in subgrids is NP-hard [1]. In this paper we study the maximum induced problem in
grids and determine the exact value for iμ(Gn,m) when n or m are even. In the terms
of covering a chessboard with domino pieces, the problem of finding iμ(Gn,m) can
be formulated as follows: given a n×m chessboard, how many domino pieces can
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be placed on the chessboard such that each domino piece covers exactly two squares
and two pieces placed on the chessboard can touch only in corners (not on edges).

2 Maximum Induced Matching in Grids

Let Gn,m be the grid graph with n lines and m columns and M a matching in Gn,m.
A vertex v ∈ V is called M-saturated if v ∈ V (M) and M-unsaturated otherwise.
If H is an induced subgraph in Gn,m, we denote by sM(H) = |V (M)∩V (H)| the
number of M-saturated vertices of H. Also, we denote by sμ(Gn,m) the maximum
number of vertices that can be saturated in a subgrid isomorphic to Gn,m of a grid
by an induced matching of the grid:

sμ(Gn,m) = max{sM(H)| H ∼= Gn,m subgrid inagridGp,q,

M induced matching inGp,q}.

Then sμ(Gn,m) = sμ(Gm,n) and iμ(Gm,n) = iμ(Gn,m)≤
⌊

sμ(Gn,m)
2

⌋
.

Let H1, . . . ,Hp be subgraphs in Gn,m. We say that (H1, . . . ,Hp) is a partition of
Gn,m if the subgraphs are vertex-disjoint and V (Gn,m) =

⋃p
i=1 V (Hi).

Partition (H1, . . . ,Hp) is called a (k1Gn1,m1 ,k2Gn2,m2 , . . . ,kqGnq,mq)-partition of
Gn,m if ki subgraphs from partition are isomorphic to Gni,mi , for 1 ≤ i ≤ q.

Lemma 1. The following properties hold:

(a) sμ(G3,3) = 5 and equality holds only for two configurations (modulo a
rotation), shown in Fig. 1a.

(b) sμ(G3,1) = 2; (c) sμ(G3,2) = 4; (d) sμ(G3,4) = 6; (e) sμ(G2,2) = 2.

Proof. As illustrated in Fig. 1, we have sμ(G3,3) ≥ 5, sμ(G3,1) ≥ 2, sμ(G3,2)≥ 4,
sμ(G3,4) ≥ 6, sμ(G2,2) ≥ 2. The reverse inequalities can be easily proved by
carefully analyzing all the situations that can occur, based on the remark that if
u,v,w are 3 distinct vertices such that uv and vw are edges, then at most 2 of them
can be saturated by an induced matching. ��
Theorem 1. Let m,n ≥ 2 be two positive integers, with m even. Then

a b c d e

type 1 type 2

Fig. 1 All possible configurations for sμ(Gn,m), with Gn,m ∈ {G3,3,G3,1,G3,2,G3,4,G2,2}



Maximum Induced Matchings in Grids 179

a b

c

Fig. 2 Configurations for sμ(Gn,m), with m even

sμ(Gn,m) =

⎧
⎪⎨

⎪⎩

mn+ 2
2

, i f n isodd and m= 4k+ 2

mn
2
, otherwise

and iμ(Gn,m) =
⌈mn

4

⌉
.

Proof. We have iμ(Gn,m)≤ sμ(Gn,m)
2 .

Case 1. If n is even, then we consider a (mn
4 G2,2)-partition of Gn,m (for example

see Fig. 2a). Using Lemma 1 for every subgraph H ∼= G2,2 from the partition we
obtain sμ(Gn,m)≤ 2 · mn

4 = mn
2 . The matching M′ described in Fig. 2a is an induced

matching in Gn,m which saturates mn
2 vertices, so iμ(Gn,m) =

sμ(Gn,m)
2 = mn

4 .

Case 2. If n is odd and m = 4k there exists a (m
4 G3,4,

m(n−3)
4 G2,2)-partition of Gn,m

(for example Fig. 2b). Then from Lemma 1 for subgraphs isomorphic to G2,2 and

G3,4, we have sμ(Gn,m) ≤ 6 · m
4 + 2 · m(n−3)

4 = mn
2 . The matching M′ described in

Fig. 2b is an induced matching which saturates mn
2 vertices, hence again we obtain

iμ(Gn,m) =
sμ(Gn,m)

2 = mn
4 .
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a b

x

Fig. 3 Configurations for sμ(G3,m), with m odd

Case 3. If n is odd and m = 4k+2, then we consider a (m−2
4 G3,4,G3,2,

m(n−3)
4 G2,2)-

partition of Gn,m (for example Fig. 2c). Using again Lemma 1 we have sμ(Gn,m)≤
6 · m−2

4 +4+2 · m(n−3)
4 = mn+2

2 . An induced matching which saturates mn+2
2 vertices

is described in Fig. 2c, hence in this case we have iμ(Gn,m) =
sμ(Gn,m)

2 = mn+2
4 =⌈

mn
4

⌉
. ��

Theorem 2. If m ≥ 3 is an odd positive integer, then

sμ(G3,m) =
3m+ 1

2
and iμ(G3,m) =

⎧
⎪⎨

⎪⎩

3(m− 1)+ 2
4

, i f m = 4k+ 3

3(m− 1)
4

+ 1, otherwise.

Proof. If m = 4k + 1, then there exists a (m−1
4 G3,4,G3,1)-partition of G3,m (for

example see Fig. 3a). By Lemma 1 it follows that sμ(G3,m) ≤ 6 · m−1
4 + 2 = 3m+1

2 .

An induced matching in G3,m that saturates 3m+1
2 vertices is described in Fig. 3a.

We obtain iμ(G3,m) =
sμ(G3,m)

2 = 3m+1
4 .

If m = 4k+3, then we consider a (m−3
4 G3,4,G3,3)-partition of G3,m (for example

see Fig. 3b). Again, by Lemma 1, it follows that an induced matching in a grid can
saturate at most 6 · m−3

4 + 5 = 3m+1
2 vertices of a subgrid isomorphic to G3,m. Since

this bound is odd and a matching in a graph saturates an even number of vertices,

it follows that iμ(G3,m) ≤ sμ(G3,m)−1
2 ≤ 3m−1

4 . An induced matching in G3,m that
saturates 3m−1

2 vertices is described in Fig. 3b. Moreover, if we consider G3,m as
subgrid in a grid, this matching can be easily extended such that vertex x is also
saturated. Hence we obtain sμ(G3,m) =

3m+1
2 and iμ(G3,m) =

3m−1
4 . ��

Theorem 3. Let n,m be two odd integers with m ≥ n ≥ 5. Then

iμ(Gn,m)≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n(m− 1)
4

+ 1 if m = 4k+ 1

n(m− 1)+ 2
4

if m = 4k+ 3 and n < m+5
2

n(m− 1)+ 2
4

+ 1 if m = 4k+ 3 and m+5
2 ≤ n.
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a b

Fig. 4 Maximum induced matchings in Gn,m, with m,n odd

Proof. If m = 4k+1, let M be the matching described in Fig. 4a. By considering the
(m−1

4 G3,4,G3,1,
(n−3)(m−3)

4 G2,2,
n−3

2 G2,3)-partition of Gn,m suggested in the figure, it
is easy to see that the number of M-saturated vertices is

sM(Gn,m) = 6 · m− 1
4

+ 2+ 2 · m− 3
2

· n− 3
2

+ 2 · n− 3
2

=
n(m− 1)+ 4

2

Hence iμ(Gn,m)≥ |M|= sM(Gn,m)

2
=

n(m− 1)
4

+ 1.

Assume now that m = 4k + 3. If n < m+5
2 , let M be the matching described

in Fig. 4b. By considering the (m−3
4 G3,4,G3,2,

(n−3)(m−3)
4 G2,2,

n−3
2 G2,3)-partition of

Gn,m suggested in the figure, we obtain that the number of M-saturated vertices is

sM(Gn,m) = 6 · m− 3
4

+ 4+ 2 · n− 3
2

+ 2 · m− 3
2

· n− 3
2

=
n(m− 1)+ 2

2

Hence iμ(Gn,m)≥ |M|= sM(Gn,m)

2
=

n(m− 1)+ 2
4

.

If n ≥ ⌈
m+5

2

⌉
let M be the matching described in Fig. 5. By considering the

(G m+5
2
,(n− m+5

2 −1)G2,m,G1,m)-partition of Gn,m shown in figure and counting the

number of saturated vertices from each subgraph of partition we obtain

|M| = sM(Gn,m)

2
=

(m− 1)(m+ 5)
8

+ 1+
1
2

(
n− m+ 5

2
− 1

)
m− 1

2
+

m+ 1
4

=
n(m− 1)+ 6

4
. ��

Theorem 4. Let m ≥ 5 be an odd positive integer. Then
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Fig. 5 Maximum induced matchings in Gn,m, with m = 4k+3 and n ≥ (m+5)/2

(a) sμ(G5,m) =
5m+ 1

2
and iμ(G5,m) =

{
5(m−1)+2

4 , i f m = 4k+ 3
5(m−1)

4 + 1, otherwise.

(b) If m = 4k+ 1 then sμ(G7,m) =
7m− 1

2
and iμ(G7,m) =

7(m− 1)
4

+ 1.

(c) If m = 4k + 3 then sμ(G7,m) =
7m+ 3

2
, iμ(G7,7) = 12 and

7(m− 1)+ 2
4

≤ iμ(G7,m)≤ 7(m− 1)+ 2
4

+ 1.

Proof. Let G=Gp,q be a grid and M an induced matching in G. Let H be a subgraph
isomorphic to Gn,m in G. Denote by yi

j the vertex from line i and column j in H and
by Gi:s

j:k the subgrid induced in H by vertices ya
b with i ≤ a ≤ s, j ≤ b ≤ k.

(a) Let n = 5. We consider two (G2,m,G3,m)-partitions of H: first partition
determined by subgraphs H1 = G1:2

1:m
∼= G2,m induced by the first two lines, and

H2 = G3:5
1:m

∼= G3,m induced by the remaining 3 lines, and second determined by
subgraphs H ′

1 = G4:5
1:m

∼= G2,m induced by the last two lines, and H ′
2 = G1:3

1:m
∼= G3,m.

We have sM(H) ≤ sM(H1)+ sM(H2). By Theorems 1 and 2, sM(H1) ≤ m+ 1 and
sM(H2)≤ 3m+1

2 .

Case 1. m = 4k+ 1
Consider first m = 5.
Assume that sM(H1) = m + 1 = 6 and sM(H2) =

3m+1
2 = 8. We consider the

(G2,2,G2,3)-partition of H1 determined by G1:2
1:2 and G1:2

3:5. In order to have sM(H1) =
6 = sμ(G2,5), we must have sM(G1:2

3:5) = sμ(G2,3) = 4 and sM(G1:2
1:2) = sμ(G2,2) =

2. It follows that y1
3y2

3,y
1
5y2

5 ∈ M and then y1
1y2

1 ∈ M. Moreover, since sM(G3:5
1:4) ≤

sμ(G3,4) = 6 and sM(G3:5
5:5) ≤ sμ(G3,1) = 2, in order to have sM(H2) = 8 we must

have sM(G3:5
1:4) = 6 and sM(G3:5

5:5) = 2. It follows that y4
5y5

5 ∈ M. But then vertices
y3

1,y
3
3,y

4
4,y

5
4 are unsaturated, and it is easy to see that in this situation sM(G3:5

1:4)< 6,
contradiction.
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Fig. 6 A configuration for sμ(G5,m), with m = 4k+1

It follows that sM(H)≤ sM(H1)+ sM(H2)−1 = 13 and then sμ(G5,5)≤ 13. The
matching illustrated in Fig. 6 saturates 13 vertices in a subgrid isomorphic to G5,5,
hence sμ(G5,5) = 13.

If m > 5, since m− 5 is even, by Theorem 1 we have

sμ(G5,m)≤ sμ(G5,5)+ sμ(G5,m−5) = 13+
5(m− 5)

2
=

5m+ 1
2

.

As illustrated in Fig. 6 there exists an induced matching which saturates 5m+1
2

vertices (having only vertical edges), hence sμ(G5,m) =
5m+1

2 .

Then we also have iμ(G5,m)≤
⌊

sμ(G5,m)
2

⌋
=

⌊ 5m+1
4

⌋
= 5m−1

4 . By Theorem 3 we

obtain iμ(G5,m)≥ 5(m−1)
4 + 1 = 5m−1

4 , hence iμ(G5,m) =
5m−1

4 .

Case 2. m = 4k+ 3
Consider first m = 7.
We will prove that sM(H) ≤ 18 and determine the configurations for which

equality holds.
If sM(H1) < 7 or (sM(H1) = 7 and sM(H2) < 11), then sM(H) ≤ 17. Then it

suffices to consider the following situations.

2.a. sM(H1) = m+ 1 = 8 or sM(H ′
1) = 8.

By symmetry, it suffices to assume sM(H1) = 8. Considering a (2G2,2,G2,3)-
partition of H1, as in previous case, it follows that we must have y1

1y2
1,y

1
3y2

3,y
1
5y2

5,
y1

7y2
7 ∈ M.
Assume sM(H2) =

3m+1
2 = 11. Since sM(G3:5

1:3) ≤ sμ(G3,3) = 5 and sM(G3:5
4:7) ≤

sμ(G3,4) = 6, in order to have sM(H2) = 11 we must have sM(G3:5
1:3) = 5. That is

impossible since vertices y3
1,y

3
3 are unsaturated (Lemma 1).

It follows that sM(H2)≤ 10, hence sM(H)≤ 18. Moreover, if we have sM(H2) =
10, then we must have sM(G3:5

1:3) = 4 and sM(G3:5
4:7) = 6 and this is possible only in

situation illustrated in Fig. 7 (c1).
2.b. sM(H1) = sM(H ′

1) = 7, sM(H2) = sM(H ′
2) = 11.
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(c1)

(c3) (c4)

(c2)

Fig. 7 Configurations for sμ(G5,7)

Considering (G3,3,G3,4) partitions of H2 and H ′
2, by Lemma 1 and Theorem 2

it follows that sM(G3:5
1:3) = 5 and sM(G3:5

4:7) = 6. By symmetry, using similar argu-
ments, we obtain sM(G3:5

5:7) = sM(G1:3
1:3) = sM(G1:3

5:7) = 5 and sM(G3:5
1:4) = sM(G1:3

4:7) =
sM(G1:3

1:4) = 6.
Moreover, by Theorem 2 we have sM(G1:5

1:3) ≤ 8, hence sM(G1:2
1:3) = 3. Using the

same arguments we obtain that sM(G1:2
5:7) = sM(G4:5

1:3) = sM(G4:5
5:7) = 3. It follows that

sM(G4:5
3:3) = sM(G1:2

3:3) = sM(H1)− 6 = 1 and sM(G3:3
1:3) = sM(G3:3

5:7) = 2.

Then y1
3y2

3,y
4
3y5

3,y
1
5y2

5,y
4
5y5

5 /∈ M. Moreover, since subgrids G3:5
1:3,G

3:5
5:7,G

1:3
1:3,G

1:3
5:7

are isomorphic to G3,3, by Lemma 1, there exist only two types of configurations
possible for each of these subgrids (modulo a rotation), as shown in Fig. 1a. It is easy
to see that not all configurations can be of type 2 (since y1

3y2
3,y

4
3y5

3,y
1
5y2

5,y
4
5y5

5 /∈ M).
Then, by symmetry, it suffices to consider the situations when G3:5

1:3 has a configu-
ration of type 1. By a simple analysis of these situations, it follows that there are
only 3 possible configurations for edges of M such that the determined number of
saturated vertices are reached, shown in Fig. 7 (c2), (c3), (c4).

In all situations we obtain that sM(H)≤ 18, hence sμ(G5,7)≤ 18.
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Fig. 8 A configuration for sμ(G5,m), with m = 4k+3

Assume now that m > 7. Then, since m− 5 is even, using Theorem 1 we obtain

sμ(G5,m)≤ sμ(G5,7)+ sμ(G5,m−7) = 18+
5(m− 7)

2
=

5m+ 1
2

.

As illustrated in Fig. 6 there exists an induced matching which saturates 5m+1
2

vertices, hence sμ(G5,m) =
5m+1

2 .
If H = G (i.e. p = 5 and q = m), we have

sM(H)≤ sM(G1:5
1:7)+ sM(G1:5

8:m)≤ 18+ sμ(G5,m−7) =
5m+ 1

2
,

and equality can hold only if configuration (c4) occurs for G1:5
1:7 and sM(G1:5

8:m) =
5(m−7)

2 .
But, if we consider partitions of G1:5

8:m into subgrids isomorphic to G2,2 and G3,4,
as shown in Fig. 8, then each subgrid isomorphic to G2,2 must have 2 saturated
vertices and each subgrid isomorphic to G3,4 must have 6 saturated vertices.
It follows that all edges of M must be horizontal and then sM(G1:2

m−1:m) < 2,
contradiction. Hence sM(H) ≤ 5m+1

2 − 1 = 5m−1
2 . If M is a maximum induced

matching in G we obtain iμ(G5,m) ≤
⌊

sM(H)
2

⌋
≤ ⌊ 5m−1

4

⌋
= 5m−3

4 . From Theorem 3

we have that iμ(G5,m)≥ 5m−3
4 , hence equality holds.

(b) If n = 7 and m = 4k + 1 ≥ 7, then consider G1
∼= G1:7

1:5 and G2
∼= G1:7

6:m a
(G7,5,G7,m−5)-partition of G7,m. Since m−5 is a multiple of 4, sM(G)≤ sμ(G7,5)+

sμ(G7,m−5) = 18+ 7(m−5)
2 and it is easy to see that equality holds for a matching

with all edges horizontal, as suggested for m= 5 (Fig. 8). If H =G equality can hold
only if configuration (c1) (rotated) occurs for G1 and sM(G2) =

7(m−5)
2 . Using the

same arguments as for n = p = 5, if we consider a partition of G2 into subgrids
isomorphic to G2,2 and G3,4, then each subgrid isomorphic to G2,2 must have
2 saturated vertices and each subgrid isomorphic to G3,4 must have 6 saturated
vertices. It follows that all edges of M must be horizontal and then sM(G1:2

m−1:m)< 2,
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contradiction. Hence sM(G) ≤ 17+ 7(m−5)
2 = 7m−1

2 . Then iμ(G7,m) ≤ ⌊ 7m−1
4

⌋
=

7m−3
4 . By Theorem 3 we have iμ(G7,m) ≥ 7(m−1)

4 + 1 = 7m−3
4 , hence iμ(G7,m) =

7m−3
4 , for m = 4k+ 1.

If m = 4k+ 3, using similar arguments, we obtain sμ(G7,m) = 18+ 7(m−5)+2
2 =

7m+3
2 and iμ(G7,m)≤

⌊
sμ(G7,m)−1

2

⌋
= 7m−1

4 . By Theorem 3, the result follows. ��
Theorem 5. Let n,m ≥ 2 be two odd integers. Then

iμ(Gn,m)≤
⌊

nm+ 1
4

⌋
.

Proof. If n = 4k+ 3, consider a (G3,m,
n−3

4 G4,m)-partition of Gn,m.

Then iμ(Gn,m) ≤ sμ(G3,m)
2 + n−3

4 · sμ(G4,m)
2 . By Theorems 2 and 1 we obtain

iμ(Gn,m)≤ 3m+1
4 + n−3

4 · 4m
4 = nm+1

4 .

If n = 4k + 1, consider a (G5,m,
n−5

4 G4,m)-partition of Gn,m. Then iμ(Gn,m) ≤
sμ(G5,m)

2 + n−5
4 · 4m

4 , and by Theorems 4 and 1 we obtain iμ(Gn,m) ≤ 5m+1
4 + n−5

4 ·
4m
4 = nm+1

4 . ��
Conjecture 1. The lower bounds from Theorem 3 are actually the exact values for
iμ(Gn,m).

As I reminded at the beginning of these paper, MIM in NP-hard in general
and also for classes with some given properties. But there are graphs for which
polynomial-time algorithms were developed [3, 7, 9], such as interval graphs, trees
[7], weakly chordal graphs [4], graphs of bounded clique-width [8], hypercubes [5].
It is interesting then to refine the boundary line between hard and easy cases for
MIM problem.

This is one motivation to study whether if MIM in grids is polynomial and the
existence of polynomial algorithms for other families of graphs, such as Cayley
graph (hypercubes and grids on a tours are Cayley graphs) or classes of bipartite
graphs. Thus, a more particular conjecture is as well interesting.

Conjecture 2. There exists a polynomial time algorithm for the problem of finding
a maximum induced matching in grids.

Also, it is important to find good approximation algorithms for MIM in the cases
of graphs for which this problem is known to be NP-hard, such as subgrids. For
example, it is not known if there exist PTAS in subgrids.
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3 Conclusion

The main results obtained for iμ(Gn,m), where 2 ≤ n ≤ m are summarized in the
table below.

m even m = 4k+1 m = 4k+3

n even mn
4

⌈
mn
4

⌉ ⌈
mn
4

⌉

n = 3
⌈

mn
4

⌉ 3(m−1)
4 +1 3(m−1)+2

4

n = 5
⌈

mn
4

⌉ 5(m−1)
4 +1 5(m−1)+2

4

n = 7
⌈

mn
4

⌉ 7(m−1)
4 +1 ∈

{
7(m−1)+2

4 , 7(m−1)+2
4 +1

}

n ≥ 9 odd, n < m+5
2

⌈
mn
4

⌉ ≥ n(m−1)
4 +1 ≥ n(m−1)+2

4

n ≥ 9 odd, n ≥ m+5
2

⌈
mn
4

⌉ ≥ n(m−1)
4 +1 ≥ n(m−1)+2

4 +1
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Determining the Minimum Number
of Warehouses and their Space-Size for Storing
Compatible Items

Dimitra Alexiou and Stefanos Katsavounis

Abstract We present an exact procedure for determining the smallest number
of necessary warehouses and their space-size for storing compatible items. The
required floor space housing of every item is known. The method developed
here refers to store compatible items in the same warehouse in order to diminish
the maximum necessary space-size of every warehouse and consequently to the
determination of the minimum number of needed warehouses. The problem is
formulated in the context of graph theory. Compatible items stored in the same
warehouse are the elements of a color class of a specific coloring of a weighted
conflict graph G= (V,E,W ), where the vertices of V represent the items to be stored
and all couples of non-compatible items define the edge set E . The elements of W
are the numbers assigned to the vertices of V that express the required storing space
of every corresponding item. That is the problem is reduced to find a coloring of G
that correspond to an optimal solution.

1 Introduction

The problem of avoiding the storing of non-compatible items in the same warehouse
occurs in diverse practical situations related to the inventory.

This eventuality arises when the warehousing of a particular set of items can
cause their deterioration, or be a fire hazard, as well as for reasons of organizational
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scheduling as it is the case, for example, in the construction industry where the time
interval for the removal or for the storing of each item is closely estimated.

The warehouse storing policies are directly related to the well-known bin-
packing problem, see [2,9]. Nevertheless, limited studies appear in the literature that
take into account the simultaneous housing of only compatible items, the methods
in [1, 5–7] are approximation procedures, while an exact approach is given in [8]
based on a set covering formulation. In this paper we develop an exact method that
finds the smallest size as well as the minimum number of needed warehouses.

The problem is formulated in the context of graph theory. A conflict weighted
graph G = (V,E,W ) is stated, the vertices of which represent the items to be stored,
while all couples of non-compatible items are the elements of edge set E . To every
vertex vi ∈V = {v1,v2, . . . ,vn} corresponds to a number wi ∈W = {w1,w2, . . . ,wn}
that expresses the storing space required for the item associated with vi.

An independent set of G is a subset of V so that no two elements of V
are adjacent. Conclusively, a subset of compatible items allowable to be stored
simultaneously in the same warehouse corresponds to a subset S ⊂ V of the conflict
graph G for which Γ(S) ∩ S = /0 where Γ(S) =

⋃

v∈S
Γ(v),Γ(v) denote the set of

adjacent vertices of vertex v. Thereby our problem turns out to partition the elements
of V into the smallest number L of independent sets Si ⊂V , that is, to determine the
sets of family

P = {S1,S2, . . . ,SL} such that:

L = min{K} and for i, j ∈ {1,2, . . . ,K} it holds that

Si ∩S j = /0, i �= j ∧ Γ(Si)∩Si = /0 ∧
K⋃

i=1

Si =V (1)

An assignment of k colors to the vertices of a graph G so that no two adjacent nodes
share the same color is a k-coloring of G. The smallest number of colors needed to
color G is its chromatic number x(G). The vertices assigned the same color evidently
form an independent set and constitute a color class, thus the compatible items
stored in the same warehouse at the same time correspond to a color class of the
conflict graph G.

The proposed problem is dealt within the framework of coloring graph G taking
into account the relationships that implicate the parameters involved.

A coloring can be represented by the set family P = {S1,S2, . . . ,SL} where every
set Si, i = 1,2, . . . ,L denotes a color class. Following, a natural number is assigned
to every vertex, so the elements of a color class are expressed by the corresponding
numbers.

The next section deals with the development of the proposed algorithm AGC
(Alternative Graph Coloring) that determines the families P with the smallest
number L of color classes Si, i = 1,2, . . . ,L that concurrently satisfy relation 1.
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2 Algorithm AGC

Algorithm AGC is an implicit enumeration backtracking algorithm that generates
the entire alternative non-isomorphic k-colorings of a graph. The inclusion of an
optimality test produces the non-isomorphic x(G) colorings of G. Two colorings of
G are said to be isomorphic if they contain exactly the same color classes.

Example:
The x(G) =3-colorings P1,P2, and P3 of graph G shown in Fig. 1 are non-

isomorphic, while coloring P4 is isomorphic to P1.

2.1 Algorithm: General Description

Before outlining the basic operations of AGC some necessary notations are
introduced.

SL = {sL1 ,sL2 , . . . ,sLnL
} with sLj < sLj+1 , j ∈ {1,2, . . . ,nL − 1} is a generated

independent set representing a color class in a lexicographic order, L = {1,2, . . . ,m}
where L is the number of distinct colors used and sL1 is the smallest vertex of class
SL . Clearly L is the number of color classes and Si∩S j = /0, i �= j, i, j ∈ {1,2, . . . ,L}.

F : contains the colored vertices i.e., F =
⋃m

i=1 Si and F̄ =V −F

1 2

3 4

5

1

1

1

1

2 2

3

3

3

2

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1

1

2

2 3

3

3

1

1

2

Fig. 1 3-colorings example
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Γ̄(y) = {y1,y2, . . . ,yny},yi < yi+1, i ∈ {1,2, ..,ny − 1} represents the nonadjacent
vertices of vertex y that are greater than y, i.e. yi /∈ Γ(y),yi > y, i ∈ {1,2, . . . ,ny}

nL: The number of colored vertices that belong to the same color class L.
MNL: The smallest number of used colors in a coloring found so far by the

algorithmic process.
k: Number of distinct colorings Pk generated so far.

2.1.1 Branching

The starting stage in order to generate a color class SL consists of placing in
SL the smallest uncolored vertex. Let v be the latest vertex inserted in SL. The
process augments SL repeatedly by a vertex y greater than v, where y is the smallest
uncolored non-adjacent vertex to v as well as to any element of Si and which has not
been used to extend SL in a previous branching phase, namely, Si = {i1, i2, . . . , ik} ⊆
SL is augmented by vertex ik+1, where

ik+1 = min{y ∈ (Γ̄(ik)∩Si ∩ F̄), and y not used in a previous phase to augment SL}

At that particular instant the vertices used in an earlier stage to extend SL and not
currently in SL are uncolored due to a backtracking operation, these vertices will be
contained in a subsequent generated color class. The process of extending SL ends
when one of the two following cases appears.

1. All vertices of G are colored
If the current coloring contains a smaller number of the MNL color classes
previously retained, then AGC sets k ← 1, then the last generated coloring
represents P1 and the process passes to the backtracking operation, otherwise it
sets k ← k+ 1 and the current coloring is retained representing the family set Pk.

2. If such a vertex does not exist
The algorithm goes on to form the next color class. In the case where the number
L of the currently generated color classes exceeds the corresponding number
MNL retained so far, the procedure passes to the backtracking operations.

2.1.2 Backtracking

The backtracking operation is performed when one of the two following cases arises.

• The procedure attains the instance in order to form a new color class, SL+1 with
L+ 1 > MNL.

• A new L-coloring PK with L = MNL is detected.

In the occurrence of either of the two cases above, the un-coloring of all vertices
in the last color class SL is actuated and the procedure backtracks from the last vertex
sLnL

inserted in L ← L− 1, if L < 1 the algorithm ends.
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2.2 Formal Statement of Algorithm AGC

FV : The number of colored vertices
h(sLi): The position in Γ̄(sLi−1) of vertex sLi ∈ SL for i > 1, and h(sL1) = 0. The
vertices in the preceding positions h(sLj ) < h(sLi) in Γ(sLi−1) have been used in a
previous stage so as to extend SL.
Γ̄h(y)(y): Contains the vertices of Γ̄(y) placed in positions h(y) + 1,h(y) +
2, . . . ,h(y)+ ny

Γ̄h(y)(y) = {yh(y)+1,yh(y)+2, . . . ,yh(y)+ny} ⊂ Γ̄(y)

Bool ← 1
While Bool = 1

Let v be the smallest uncolored vertex v /∈ F
L ← L+ 1{ next color class }
If L ≤ MNL then { coloring number optimality test }

nL ← 1,sL1 ← v,SL = {sL1},F ← F + {v},FV ← FV + 1
If FV = N then

CALL COL, CALL BACK
else

DO
L ← L− 1: CALL BACK

LOOP
endif

endif
DO

CALL CHECK { extend SL if possible }
if Bool = 1 then

EXIT DO
endif
FV ← FV + 1,nL ← nL + 1,SL ← SL + {y},F ← F + {y}
if FV = N then

CALL COL, CALL BACK
endif

LOOP
END While

BACK {Backtracking}
DO i = 1,n

F ← F −{sLi}
LOOP
FV ← FV − nL

DO
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L ← L− 1
if L < 1 then

CALL W RT {yield result and STOP}
endif
y ← sLnL

,F ← F −{y},FV ← FV − 1,nL ← nL − 1,y ← sLnL
LOOP While nL = 0

Return

CHECK {independency test}
r ← snL−1

if SL ∩{y} �= /0,∀y ∈ {Γ̄h(r)(r)− F̄}
Bool ← 1

else
let q be the smallest index for which SL ∩{y}= /0,yq ∈ Γ̄h(r)(r)
y ← yhq ,h(y)← q

endif
Return

COL { store a new coloring Pk }
If L < MNL then

k ← 0,MNL ← L
endif
k ← k+ 1,Pk ← {S1,S2, ..,Sl}

Return

3 Number and Size of Warehouses

Without loss of the generality it is assumed that all used warehouses are the same
size. The housing of compatible items in the minimum number of warehouses
generally leads to numerous disparate housing systems, since every distinct housing
method corresponds to a discrete k-coloring P of the conflict graph G, where
k is the smallest possible number of warehouses needed. Apparently k is the
chromatic number x(G) of G when no restriction is given to warehouse size. To
a specific coloring class SL = {sL1 ,sL2 , . . . ,sLnL

} we associate the class-capacity
WS(L) =

⋃nL
i=1 wLi ,wLi ∈ W is the required storing space of a specific item, as

mentioned in the introduction. We state the coloring-capacity WC(Pq) to be the
greatest class-capacity of a color class {Sq

1,S
q
2, . . . ,S

q
L} = Pq. That is WC(Pq) =

max{WS(Sq
i )}, i ∈ [1,L].

Since it is assumed that all warehouses are the same size, the selected warehouse
with the minimum size is derived from coloring Popt with the smallest coloring-
capacity among the non-isomorphic colorings, therefore,

WC(Popt) = min{WC(Pi)}, i ∈ [1,k]
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Table 1 Coloring classes and coloring-capacities

P L SL wLi , i ∈ [1,nL] W S(L) WC(P) WC(Popt)

1 S1
1 = {1,4} {12,10} 22 22 22

P1 2 S1
2 = {2,3} {15,6} 21

3 S1
3 = {5} {20} 20

1 S2
1 = {1,4} {12,10} 22

P2 2 S2
2 = {2} {15} 15

3 S2
3 = {3,5} {6,20} 26 26

1 S3
1 = {1,5} {12,20} 32 32

P3 2 S3
2 = {2,3} {15,6} 21

3 S3
3 = {4} {10} 10

Next a small example of the above conceptions on the graph in Fig. 1 is shown
in Table 1, where the sizes of the storing surface of the associated items are the
elements of W .

W = {12,15,6,10,20} that is w1 = 12,w2 = 15,w3 = 6,w4 = 10,w5 = 20

The optimal coloring is Popt = P1 = {{1,4},{2,3},{5}} that corresponds to a
minimum warehouse size of WC(Popt) = 22.

It is observed that the warehouse sizes (class-capacity) that correspond to an
optimal coloring lead to a uniform distribution; this is an added advantage that
concerns the decrement of the unused warehouse space U(Pi) of a coloring Pi. In
the short example, the unused space for each generated distinct coloring can easily
be deduced from Table 1 as follows

U(P1) = (22− 22)+ (22− 21)+(22−20)= 3,

U(P2) = (26− 22)+ (26− 15)+(26−26)= 15, and

U(P3) = (32− 32)+ (32− 21)+(32−10)= 33

In all the above it was assumed that there were no restrictions concerning the size
of the warehouses. In real life situations, however, the case may arise that, for the
given conflict graph G, the size of the available warehouses is smaller than those
obtained by the corresponding WC(Popt). In this eventuality, clearly the smallest
number of warehouses needed is greater than the chromatic number x(G).

A size optimality test concerning the magnitude of class-capacity WS(L) is
incorporated in AGC during the extension phase of a color class SL preventing
the inclusion of an item in a coloring class SL. The procedure, thus, advances to
the backtracking operations whenever its associated capacity WS(L) reaches the
situation of being greater than a given surface space restriction, say SPR. A more
illustrative example in given in graph G of Fig. 2, where the numbers in italic near
the vertices represent the space needed for storing the corresponding items.
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Fig. 2 4-colorings example

The chromatic number of G is x(G) = 3 and there are 14 distinct 3-colorings
of G, therefore there exist 14 different ways for storing all items without any
restrictions on the sizes of the warehouses, under this assumption the optimal
solution concerning the warehouses size is the coloring

Popt = {S1 = {1,6,7,9},S2 = {2,5},S3 = {3,4,8}}⇒
WC(Popt) = max{WS(S1) = 49,WS(S2) = 46,WS(S3) = 45}= 49

The worst solution is the coloring Pw = {S1 = {1,7},S2 = {2,5},S3 =
{3,4,6,8,9}} with

WC(Pw) = max{S1 = 17,S2 = 46,S3 = 77}= 77

Let SPR = 48 be the maximum warehouse space capacity. In this case there exist
114 distinct 4 colorings of G for which WC(Pi)≤ 48, i = 1,2, . . . ,114 and

Popt = {S1 = {1,6,7},S2 = {2,4},S3 = {3,8},S4 = {5,9}}
WC(Popt) = max{WS(S1) = 36,WS(S2) = 31,WS(S3) = 35,WS(S4) = 38}}= 38

The worst solution is the coloring

Pw = {S1 = {1},S2 = {2,5},S3 = {3,8,9},S4 = {4,6,7}}
WC(Pw) = max{WS(S1) = 9,WS(S2) = 46,WS(S3) = 48,WS(S4) = 37}}= 48

It is important to observe the uniform storing distribution in the optimal solution
of the items in the warehouses. Also to note that the algorithm works exclusively
with the colorings that may lead to an optimal solution due to the size optimality
test on class-capacity W S(L) and of course does not generate all 114 distinct 4-
colorings.
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4 Conclusions

Inventory management is needed in diverse types of enterprises. The problem
of concurrently determining the minimum number and size of the warehouses
necessary for storing distinct items is evidently a meaningful task.

In the previous sections, a new method was presented in order to confront the
problem where a subset of couples of non-compatible items must not be stored
simultaneously in the same warehouse.

The problem is modeled in the context of graph theory, more specifically, the
procedure developed is a depth-first branch and bound technique controlled by
feasibility and optimality tests seeking an optimal solution among the distinct
coloring of a conflict weighted graph G.

Although the problem is classified as NP-Hard, see [3,4] the density of a conflict
graph related to compatible items is in general low enough permitting the successful
application of the proposed algorithm to problems of which the size are met in real-
world situations.
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Duality for Multiple Objective Fractional
Programming with Generalized Type-I
Univexity

Ioan M. Stancu-Minasian and Andreea Mădălina Stancu

Abstract In this paper, a multiobjective fractional subset programming problem
(Problem (P)) is considered. A new class of (F ,b,φ ,ρ ,θ )-type-I univex function is
introduced and a general dual model for (P) is presented. Based on these functions,
weak, strong and converse duality theorems are derived. Almost all results presented
in the literature were obtained under the assumption that the function F is sublinear
in the third argument. Here, our results hold assuming only the convexity of this one.

1 Introduction

In this paper, we shall present a semiparametric dual model for the following
multiobjective fractional subset programming problem

min ϕ(S) =
(

F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)
Gp(S)

)
(P)

subject to

Hj(S)� 0, j ∈ q = {1,2, . . . ,q}, S ∈ An,

where An is the n-fold product of the σ -algebra A of subsets of a given set X , Fi :
An → R, Gi : An → R, i ∈ p = {1,2, . . . , p}, and Hj : An → R, j ∈ q, such that for
each i ∈ p, Gi(S) > 0, for all S ∈ P . We denoted by P = {S ∈ An : Hj(S) �
0, j ∈ q} the set of all feasible solutions for (P).
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For any vectors x,y ∈ Rn, we use the following conventions:x < y iff xi < yi, i ∈
n= {1,2, . . .n}; x � y iff xi � yi, i ∈ n= {1,2, . . .n}; x ≤ y iff x � y, but x �= y; x � y
means the negation of x ≤ y.

Definition 1. A feasible solution S0 ∈ P is said to be an efficient solution to (P) if
there is no other S ∈ P such that

(
F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)
Gp(S)

)
≤

(
F1(S0)

G1(S0)
,

F2(S0)

G2(S0)
, . . . ,

Fp(S0)

Gp(S0)

)
.

Following the introduction of the notion of convexity for set functions by Morris
[8] and its extension for n-set functions by Corley [4], various generalizations of
convexity for set and n-set functions were proposed in Lee [5], Lin [6], Preda [9,11],
Stancu-Minasian and Preda [15], Zalmai [17, 18]. More precisely, quasiconvexity
and pseudoconvexity for set functions were defined in Lee [5], and in Lin [6]
for n-set functions, (F ,ρ)-convexity in Preda [9, 10], (ρ ,b)-vexity in Preda [11],
(F ,α,ρ ,θ )-V -convexity in Zalmai [17], (F ,b,φ ,ρ ,θ )-univexity in Zalmai [18]
and (F ,ρ ,σ ,θ )-V -type-I in Mishra [7]. Also, in Bector et al. [2], some types
of generalized convexity and optimality and duality results for a multiobjective
programming problem involving n-set functions were given. For more information
about fractional programming problems, the reader may consult the recently
research bibliography compiled by Stancu-Minasian [14].

For formulating and proving various duality results, we shall introduce the class
of generalized convex n-set functions called (F ,b,φ ,ρ ,θ )-type-I univex functions.
Until now, F was assumed to be a sublinear function in the third argument. In our
approach, we suppose that F is a convex function in the third argument. The idea of
replacing a sublinear function with a convex function in certain types of sufficiency
and duality results is not new (see, for instance Bătătorescu et al. [1], Chinchuluun
et al. [3], Preda et al. [12, 13] and Yuan et al. [16]).

2 Definitions and Preliminaries

Let (X ,A,μ) be a finite atomless measure space with L1(X ,A,μ) separable, and let
d be the pseudometric on An defined by

d(R,S) :=

[
n

∑
k=1

μ2 (RkΔSk)

]1/2

,

where R = (R1,. . . ,Rn), S = (S1,. . . ,Sn) ∈ An and Δ stands for the symmetric
difference. Thus, (An,d) is a pseudometric space.

For h ∈ L1(X ,A,μ) and T ∈ A, the integral
∫

T
hdμ is denoted by 〈h,χT 〉, where

χT ∈ L∞(X ,A,μ) is the indicator (characteristic) function of T .
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Definition 2. [8] A function F : A →R is said to be differentiable at S∗ ∈ A if there
exist DF(S∗) ∈ L1(X ,A,μ), called the derivative of F at S∗, and VF : A× A → R

such that

F(S) = F(S∗)+ 〈DF(S∗),χS − χS∗〉+VF(S,S
∗)

for each S ∈ A, where VF(S,S∗) is o(d(S,S∗)), that is, limd(S,S∗)→0
VF(S,S∗)
d(S,S∗)

= 0.

Definition 3. [4] A function G : An → R is said to have a partial derivative at
S∗ = (S∗

1, . . . ,S
∗
n) ∈ An with respect to its ith argument if the function F(Si) =

G(S∗
1,. . . ,S∗

i−1,Si,S∗
i+1,. . . ,S∗

n) has derivative DF(S∗
i ), i ∈ n = {1,2, . . . ,n}.

We define DiG(S∗) = DF(S∗
i ) and write DG(S∗) = (D1G(S∗),. . . ,DnG(S∗)).

Definition 4. [4] A function G : An → R is said to be differentiable at S∗, if there
exist DG(S∗) and WG : An ×An →R such that

G(S) = G(S∗) + ∑n
i=1

〈
DiG(S∗),χSi − χS∗i

〉
+ WG(S,S∗), where WG(S,S∗) is

o(d(S,S∗)) for all S ∈ An.

In the following we consider F : An×An×R→R. Also consider F : An →R and
G : An →R to type-I the differentiable functions. The definitions below generalizes
two definitions of Zalmai [18].

Let ρi and ρ j real numbers and let ρ = (ρi,ρ j) , i ∈ I, j ∈ J.

Definition 5. A pair (Fi,G j) (i ∈ I, j ∈ J) is said to be (F ,b,φ ,ρ ,θ )-pseudo quasi
univex type-I at S∗ ∈ An according to the partition {I,J} if there exist a function
b : An ×An →R+, a function θ : An ×An → An ×An such that S �= S∗ =⇒ θ (S,S∗) �=
(0,0) , a function φ : R → R, and real numbers ρ such that for all S ∈ An the
implications

F (S,S∗;b(S,S∗)DFi(S
∗))�−ρid

2(θ (S,S∗)) =⇒ φ (Fi(S)−Fi(S
∗))� 0, i ∈ I (1)

and

φ(−G j(S
∗))� 0 ⇒ F (S,S∗;b(S,S∗)DG j(S

∗))�−ρ jd
2(θ (S,S∗)), j ∈ J (2)

do hold.

If the second (implied) inequality in (1) is strict (S �= S∗), then we say that
(Fi,G j) is (F ,b,φ ,ρ ,θ )-strictly pseudo quasi univex type-I at S∗ ∈ An according to
the partition {I,J} .
Definition 6. A pair (Fi,G j) (i ∈ I, j ∈ J) is said to be (F ,b,φ ,ρ ,θ )-quasi pseudo
univex type-I at S∗ ∈ An according to the partition {I,J} if there exist a function
b : An ×An →R+, a function θ : An ×An → An ×An such that S �= S∗ =⇒ θ (S,S∗) �=
(0,0) , a function φ : R → R, and real numbers ρ such that for all S ∈ An the
implications

φ (Fi(S)−Fi(S
∗))� 0 ⇒ F (S,S∗;b(S,S∗)DFi(S

∗))�−ρid
2(θ (S,S∗)), i ∈ I (3)
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and

F (S,S∗;b(S,S∗)DG j(S
∗))�−ρ jd

2(θ (S,S∗)) =⇒ φ (−G j(S
∗))� 0, j ∈ J (4)

do hold.

If the first (implied) inequality in (3) is strict (S �= S∗), and the second (implied)
inequality in (4) is strict (S �= S∗) , then we say that (Fi,G j) is (F ,b,φ ,ρ ,θ )-
prestrictly quasi strictly pseudo univex type-I at S∗ ∈ An according to the partition
{I,J} .
Definition 7. A pair (Fi,G j)(i ∈ I, j ∈ J) is said to be (F ,b,φ ,ρ ,θ )-quasi quasi
univex type-I at S∗ ∈ An according to the partition {I,J} if there exist a function
b : An ×An →R+, a function θ : An ×An → An ×An such that S �= S∗ =⇒ θ (S,S∗) �=
(0,0) , a function φ : R → R, and real numbers ρ such that for all S ∈ An the
implications

φ (Fi(S)−Fi(S
∗))� 0 ⇒ F (S,S∗;b(S,S∗)DFi(S

∗))�−ρid
2(θ (S,S∗)), i ∈ I (5)

and

φ(−G j(S
∗))� 0 ⇒ F (S,S∗;b(S,S∗)DG j(S

∗))�−ρ jd
2(θ (S,S∗)), j ∈ J (6)

do hold.

If the first (implied) inequality in (5) is strict (S �= S∗), then we say that (Fi,G j)
is (F ,b,φ ,ρ ,θ )-prestrictly quasi quasi univex type-I at S∗ ∈ An according to the
partition {I,J} .
Definition 8. A pair (Fi,G j) (i ∈ I, j ∈ J) is said to be (F ,b,φ ,ρ ,θ )-pseudo
pseudo univex type-I at S∗ ∈ An according to the partition {I,J} if there exist
a function b : An × An → R+, a function θ : An × An → An × An such that
S �= S∗ =⇒ θ (S,S∗) �= (0,0) , a function φ : R → R, and real numbers ρ such
that for all S ∈ An the implications

F (S,S∗;b(S,S∗)DFi(S
∗))�−ρid

2(θ (S,S∗)) =⇒ φ (Fi(S)−Fi(S
∗))� 0, i ∈ I (7)

and

F (S,S∗;b(S,S∗)DG j(S
∗))�−ρ jd

2(θ (S,S∗)) =⇒ φ (−G j(S
∗))� 0, j ∈ J (8)

do hold.

If the second (implied) inequality in (7) and (8) is strict (S �= S∗), then we say
that (Fi,G j) is (F ,b,φ ,ρ ,θ )-strictly pseudo strictly pseudo univex type-I at S∗ ∈ An

according to the partition {I,J} .
In [17], Zalmai state for Problem (P) the following necessary conditions for

efficiency.
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Theorem 1. Assume that Fi, Gi, i ∈ p, and Hj, j ∈ q, are differentiable at S∗ ∈ An,

and that for each i ∈ p, there exists Ŝi ∈ An such that

Hj(S
∗)+

n

∑
k=1

〈
DkHj(S

∗),χŜk
− χS∗k

〉
< 0, j ∈ q,

and for each l ∈ p\{i},
n

∑
k=1

〈
Gi(S

∗)DkFl(S
∗)−Fi(S

∗)DkGl(S
∗),χŜk

− χS∗k

〉
< 0.

If S∗ is an efficient solution to (P), then there exist u∗ ∈ U = {u ∈
Rp : u > 0,∑p

i=1ui = 1} and v∗ ∈ R
q
+ such that

n

∑
k=1

〈
p

∑
i=1

u∗
i [Gi(S

∗)DkFi(S
∗)−Fi(S

∗)DkGi(S
∗)]+

q

∑
j=1

v∗jDkHj(S
∗),χSk − χS∗k

〉

� 0,

We for all S ∈ An, v∗jHj(S∗) = 0, j ∈ q. We denoted by R
q
+ the positive orthant of

the q-dimensional space Rq, i.e. Rq
+ = {x = (x1,...,xq) ∈ Rq : x j � 0, j ∈ q}.

We shall call an efficient solution S∗ to (P) satisfying the first two conditions for
some Ŝi, i ∈ p, a regular efficient solution.

3 A Zalmai’s Semiparametric Duality Model

In this section we present a general duality model for (P). Here we use two partitions
of the index sets q and, respectively, p.

Let {I0, I1, . . . , Ik} be a partition of the index set p and {J0,J1, . . . ,Jm} be a
partition of the index set q such that K = {0,1, . . . ,k} ⊂ M = {0,1, . . . ,m}, and let
the functionΩt(S, ·,u,v) : An →R be defined for fixed S,u and v, and t ∈ K by

Ωt(S,T,u,v) =∑
i∈It

ui [Fi(S)Gi(T )−Fi(T )Gi(S)]+ ∑
j∈Jt

v jHj(T )

We associate with the problem (P) the dual problem

maxδ (T,u,v) =
(

F1(T )
G1(T )

,
F2(T )
G2(T )

, . . . ,
Fp(T )
Gp(T )

)
(D)
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subject to

F

(

S,T ;b(S,T )

{
p

∑
i=1

ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+
q

∑
j=1

v jDHj(T )

})

� 0,

∀S ∈ An (9)

∑
j∈Jt

v jHj(T )� 0, t ∈ M, T ∈ An, u ∈ U, v ∈ R
q
+. (10)

In the following we consider F (S,T ; ·) : Ln
1(X ,A,μ)→R a convex function and

Λt(·,v∗) : An →R, Λt(T,v∗) = ∑ j∈Jt v
∗
jHj(T ), t ∈ M.

Theorem 2. (Weak duality). Let S and (T,u,v) be arbitrary feasible solutions to (P)
and (D), respectively, and assume that any one of the following sets of hypotheses
is satisfied:

(a) (i) (2kΩt(·,T,u,v); 2(m− k)Λt(·,v)) is (F ,b,φt ,ρt ,θ )-strictly pseudo quasi
univex type-I at the point T , according to the partition {K,M\K} , φt is
increasing and φt(0) = 0 for each t ∈ M;

(ii)
1
k∑t∈K

ρt + ∑
t∈M\K

ρt

m− k
� 0;

(b) (i) (2kΩt(·,T,u,v); 2(m− k)Λt(·,v)) is (F ,b,φt ,ρt ,θ )- prestrictly quasi
strictly pseudo univex type-I at the point T , according to the
partition{K,M\K} , φt is increasing and φt(0) = 0 for each t ∈ M;

(ii)
1
k∑t∈K

ρt + ∑
t∈M\K

ρt

m− k
� 0;

(c) (i) (2kΩt(·,T,u,v);2(m− k)Λt(·,v)) is (F ,b,φt ,ρt ,θ )-prestrictly quasi
quasi univex-type-I at the point T , according to the partition{K,M\K},φt

is increasing and φt(0) = 0 for each t ∈ M;

(ii)
1
k∑t∈K

ρt + ∑
t∈M\K

ρt

m− k
> 0;

(d) (i) (3k1Ωt(·,T,u,v); 3(m− k)Λt(·,v)) is (F ,b,φt ,ρt ,θ )-strictly pseudo
quasi univex-type-I at the point T according to the partition{K1,M\K} ,
(3k2Ωt(·,T,u,v) ; 3(m− k)Λt(·,v) is (F ,b,φt ,ρt ,θ )-prestrictly quasi
quasi univex type-I at the point T according to the partition{K2,M\K} , φt

is increasing and φt(0) = 0 for each t ∈ M, where {K1,K2} is a partition
of K, K1 �= /0, k1 = |K1| and K2 �= /0, k2 = |K2| ;

(ii)
1
k1
∑

t∈K1

ρt +
1
k2
∑

t∈K2

ρt + ∑
t∈M\K

ρt

m− k
� 0;

(e) (i) (3kΩt(·,T,u,v);3(m1 − k1)Λt(·,v)) is (F ,b,φt ,ρt ,θ )-prestrictly quasi
strictly pseudo univex-type-I at the point T , according to the partition
{K,(M\K)1} , (3kΩt(·,T,u,v);3(m2 − k2)Λt(·,v)) is (F ,b,φt ,ρt ,θ )-
prestrictly quasi quasi univex-type-I at the point T , according to the
partition{K,(M\K)2} ,φt is increasing and φt(0)= 0,for each t ∈M, where
{(M\K)1 ,(M\K)2} is a partition of M\K, (M\K)1 �= /0, m1 = |(M\K1)|
and (M\K)2 �= /0, m2 = |(M\K)2| ;
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(ii)
1
k∑t∈K

ρt + ∑
t∈(M\K)1

ρt

m1 − k1
+ ∑

t∈(M\K)2

ρt

m2 − k2
� 0;

(f) (i) (4k1Ωt(·,T,u,v);4(m1 − k1) Λt(·,v)) is (F ,b,φt ,ρt ,θ )-strictly pseudo
strictly pseudo univex-type-I at the point T , according to the
partition {K1,(M\K)1} , (4k2Ωt(·,u,v);4(m2 − k2)Λt(·,v)) is
(F ,b,φt ,ρt ,θ )-prestrictly quasi quasi univex-type-I at the point T,
according to the partition {K2,(M\K)2} ,φt is increasing and φt(0) = 0
for each t ∈ M, where {K1,K2} is a partition of K, K1 �= /0, k1 = |K1| and
K2 �= /0, k2 = |K2| ;{(M\K)1 ,(M\K)2} is a partition of M\K, (M\K)1 �= /0,
m1 = |(M\K1)| and (M\K)2 �= /0, m2 = |(M\K)2| ;

(ii)
1
k1
∑

t∈K1

ρt +
1
k2
∑

t∈K2

ρt + ∑
t∈(M\K)1

ρt

m1 − k1
+ ∑

t∈(M\K)2

ρt

m2 − k2
� 0;

(iii) K1 �= /0 or (M\K)1 �= /0 or

1
k1
∑

t∈K1

ρt +
1
k2
∑

t∈K2

ρt + ∑
t∈(M\K)1

ρt

m1 − k1
+ ∑

t∈(M\K)2

ρt

m2 − k2
> 0.

Then ϕ(S)� δ (T,u,v).

Proof. (a) Suppose to the contrary that ϕ(S)≤ δ (T,u,v). This implies that

Gi(T )Fi(S)−Fi(T )Gi(S)� 0, (11)

for each i ∈ p, with strict inequality for at least one subscript l ∈ p.
From the inequalities (10), (11), nonnegativity of u and primal feasibility of S we

deduce that

2kΩt(S,T,u,v)� 2kΩt(T,T,u,v) for each t ∈ K,

with strict inequality holding for at least one t ∈ K since u > 0.
It follows from the properties of φt (φt is increasing and φt(0) = 0), that for each

t ∈ M,

φt (2kΩt(S,T,u,v)− 2kΩt(T,T,u,v))� 0, (12)

Since for each t ∈ M\K,

0 � 2(m− k)Λt(T,v),

it follows from the properties of φt that

φt (−2(m− k)Λt(T,v))� 0. (13)
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From (12) and (13) and assumption (i), we deduce that

F

(

S,T ;2kb(S,T )

{

∑
i∈It

ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+ ∑
j∈Jt

v jDHj(T )

})

<−ρtd
2(θ (S,T )), t ∈ K. (14)

and

F (S,T ;b(S,T )2(m− k)∑
j∈Jt

v jDHj(T )�−ρtd
2(θ (S,T )), t ∈ M\K. (15)

From (14), summing after t ∈ K we obtain

∑
t∈K

F

(

S,T ;kb(S,T )

{

∑
i∈It

2ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+∑
j∈Jt

2v jDHj(T )

})

<−∑
t∈K

ρt d
2(θ (S,T )).

But from the convexity of F (S,T ; ·) we have

F

(

S,T ;b(S,T )

{

∑
t∈K
∑
i∈It

2ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+ ∑
t∈K
∑
j∈Jt

2v jDHj(T )

})

= F

(

S,T ;b(S,T )
1
k ∑t∈K

2k

{

∑
i∈It

ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+ ∑
j∈Jt

v jDHj(T )

})

� 1
k ∑t∈K

F

(

S,T ;b(S,T )2k

{

∑
i∈It

ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+ ∑
j∈Jt

v jDHj(T )

})

<−1
k ∑t∈K

ρtd2(θ (S,T )),

i.e.

F

(

S,T ;b(S,T )

{

∑
t∈K
∑
i∈It

2ui [Gi(T )DFi(T )−Fi(T )DGi(T )]+∑
t∈K
∑
j∈Jt

2v jDHj(T )

})

<−1
k ∑t∈K

ρtd2(θ (S,T )). (16)
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From (15), summing after t ∈ M\K we obtain

∑
t∈M\K

F (S,T ;b(S,T )2(m− k)∑
j∈Jt

v jDHj(T )�− ∑
t∈M\K

ρt d
2(θ (S,T ))

But from the convexity of F (S,T ; ·) we have

F (S,T ;b(S,T )2 ∑
t∈M\K

∑
j∈Jt

v jDHj(T ))

= F (S,T ;b(S,T ) ∑
t∈M\K

1
m− k

2(m− k)∑
j∈Jt

v jDHj(T ))

� 1
m− k ∑t∈M\K

F (S,T ;b(S,T )2(m− k)∑
j∈Jt

v jDHj(T ))

�− ∑
t∈M\K

ρt

m− k
d2(θ (S,T )),

i.e.

F (S,T ;b(S,T )2 ∑
t∈M\K

∑
j∈Jt

v jDHj(T ))�− ∑
t∈M\K

ρt

m− k
d2(θ (S,T )) (17)

Now, using (9), the convexity of F (S,T ; ·) ,(16) and (17), we obtain

0 � F

(

S,T ;b(S,T )

{

∑
t∈K
∑
i∈It

2ui [Gi(T )DFi(T )−Fi(T )DGi(T )]

+∑
t∈K
∑
j∈Jt

2v jDHj(T )

})

+F (S,T ;b(S,T )2 ∑
t∈M\K

∑
j∈Jt

v jDHj(T ))

< −1
k∑t∈K

ρtd
2(θ (S,T ))− ∑

t∈M\K

ρt

m− k
d2(θ (S,T ))

= −
(

1
k∑t∈K

ρt + ∑
t∈M\K

ρt

m− k

)

d2(θ (S,T ))

which contradicts (a) (iii). Therefore, we conclude that ϕ(S)� δ (T,u,v).
The proofs of (b)–(f) can be obtained following similar arguments to that of part

(a) and Zalmai [18]. ��
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Theorem 3. (Strong duality). Let S∗ ∈ P be a regular efficient solution of (P), let

F (S,S∗;DF(S∗)) = ∑n
k=1

〈
DkF(S∗),χSk − χS∗k

〉
for any differentiable function F :

An → R and S ∈ An, and assume that any one of the sets of hypotheses specified in
Theorem 2 holds for all feasible solutions of (D). Then there exist u∗ ∈ U and v∗ ∈
R

q
+ such that (S∗,u∗,v∗) is an efficient solution of (D) and ϕ(S∗) = δ (S∗,u∗,v∗) .

Proof. By Theorem 1 there exist u∗ ∈ U and v∗ ∈ R
q
+ such that (S∗,u∗,v∗) is a

feasible solution of (D) and ϕ(S∗) = δ (S∗,u∗,v∗). That (S∗,u∗,v∗) is efficient for
(D) follows from the corresponding parts of Theorem 2 . ��
Remark 1. Using the previous Theorems 2 and 3 and techniques from [9] and [17],
we can obtain also a converse duality result.

4 Conclusions

In this paper, we have introduced a new class of generalized (F ,b,φ ,ρ ,θ )-type-I
univex functions. Based on these functions a semiparametric dual model for
a multiobjective fractional subset programming problem was introduced. Weak,
strong and converse duality theorems were derived.
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A Markov-Based Decision Model of Tax Evasion
for Risk-Averse Firms in Greece

Nikolaos D. Goumagias and Dimitrios Hristu-Varsakelis

Abstract We develop a Markov-based optimization model that captures the process
via which a risk-averse firm in Greece decides whether to engage in tax evasion.
The firm seeks to maximize the expected utility of its wealth, the latter viewed
as a function of the portion of profits which the firm attempts to conceal from
the government. Our model takes into account the basic features of the Greek tax
system, including random audits and tax penalties applied when the audit reveals
any wrongdoing. The proposed model is used to (1) show that the parameters
currently in place are conducive to tax evasion and (2) “chart” the problem’s
parameter space in order to identify “virtuous” combinations (from the point of
view of the government), and obtain a relationship between audit probability, tax
penalty and likelihood of the firm engaging in tax evasion.

Key words Markov Chains • Optimization • Taxation • Greece

1 Introduction

Greece is currently under severe economic stress, facing perhaps its most serious
crisis in its modern history. The government’s plan for coping with the country’s
high debt and budget deficits has included a “rescue package” backed by the ECB
and the IMF, combined with a series of austerity measures. One of the most talked-
about and widely agreed-upon measures—for which, however, there has been little
in the way of implementation—has to do with combating tax evasion, which is
openly acknowledged as a sizeable drain on the country’s finances, as well as one of
its most persistent problems. The purpose of this paper is to explore a Markov-based
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optimization model which may be used to (1) investigate the expected behavior of
Greek firms1 with respect to tax evasion and (2) test candidate tax policies before
they are implemented.

In this work we are interested in obtaining a simple and adaptable optimization
model that captures the salient features of the Greek tax system and can be used
as a decision support tool by the government, as the latter seeks a framework that
neither rewards “cheating” nor penalizes firms any more than is necessary to curb
tax evasion. We adopt the perspective of a “representative” firm, which is assumed
to act selfishly in order to optimize its wealth via tax evasion, by leaving some of its
profits unreported. The firm can be viewed as choosing to allocate its profits between
two assets (as in [1]). One is risk-free and involves the firm declaring its profit and
paying the proper tax, meaning that it ends up with a somewhat lower wealth as a
result. The other asset is risky: profit is concealed (zero tax payed); however, the
firm’s wealth may be reduced in the future (more than if it had behaved honestly)
if the firm is audited. In these circumstances, a risk-averse self-interested firm is
expected to maximize the expected utility of its wealth by choosing to conceal
some fraction of its profits. We wish to find the optimal allocation which the firm
will adopt, as a function of its risk aversion level and the parameters of the tax
system (audit probability and tax penalty). Furthermore, we would like to identify
alternative tax parameters which could lead to higher government revenues by
eliminating or reducing the incentive for tax evasion. Towards that end, we “chart”
the parameter space and compute a surface which quantifies the firm’s incentive to
cheat (i.e., its optimal percentage of profits to conceal). The proposed model allows
us to estimate the relative efficiency of the tax penalty and audit probability as tax
evasion deterrents under different levels of risk aversion.

The remainder of this paper is structured as follows. After a brief literature
review, we give a brief description of the Greek tax system in Sect. 2 and formulate
a corresponding Markov-based model from the point of view of a risk-averse firm
that would like to increase its net wealth by evading taxes but is worried about tax
penalties in the event of an audit. We describe the objective function the firm seeks to
optimize and discuss our choice of model parameters. Section 3 presents the firm’s
optimal strategy together with numerical results on its expected behavior and offers
a brief discussion of the relevant policy implications.

1.1 Related Work

The approach adopted here is to examine the problem of optimal tax evasion (and by
extension, optimal taxation) from the perspective of a self-interested firm. To the
best of our knowledge, most of the optimization models aimed at taxation have
adopted a macroeconomic viewpoint. Early work on begins with [1] who proposed

1The word “firms” refers to incorporated entities in Greece, operating according to the general
accounting principles commonly known in Europe as S.A.—Société Anonyme).
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the portfolio allocation idea used in this work, but optimized a macroeconomic
equilibrium-based model. Subsequent work [2], concentrated on the effects of
increased probability of detection, or of tax rates [4]. For an optimal control
viewpoint on taxation, see [13]. The criteria based on which tax evasion decisions
are made are discussed in [5]. Some authors, e.g., [7, 8] addressed the morality of
taxpayers and auditors as variables, or investigated the idea of bonuses to auditors
that reveal tax evasion [11].

The model in [15] captured the trade-off between fines and audit probabilities
while proposing different treatment for risk-neutral versus risk-averse firms. Other
work relevant to our setting includes [14] and [3] who applied Bedford’s law to
tax evasion and other types of financial fraud. With respect to Greece in particular,
the tax evasion literature (e.g., [12] and [16]) provides some good theoretical and
empirical discussion but no rigorous analysis with respect to how tax policy should
be shaped. A recent exception is [9].

2 Model Description

We proceed to give a brief description of the Greek tax system, leading to the
formulation of an optimization problem which the firm is faced with each year.

2.1 The Greek Tax System for Firms

In Greece, firms report their profits at the end of each fiscal year, and pay a tax
rate of 24%. Typically, the government does not have adequate information on
the firm’s true profits, which may be manipulated through a variety of methods.
Two of the most often used include (1) manipulation of financial statements to
under-report income and (2) invoices (often issued by another, usually short-lived
firm) that document supposed expenses and are used to offset profits. To discourage
“cheating,” firms are subject to random audits, and there are monetary penalties
which apply for unreported profits.

A tax audit can reveal a firm’s true profit but is costly and resource-intensive.
When an audit occurs, it can cover up to a 5-year period in the past, meaning
that the government retains the right to audit a tax statement for up to 5 years
from its submission. After that 5-year window, any unreported profit, unpaid tax,
etc., is essentially capitalized by the firm. Although there are no official data
published on the number of audits performed each year, information obtained from
the press and tax professionals suggests that the probability of a firm being audited
is approximately 5%, with the distibution being skewed towards firms which are
approaching the 5-year mark (and therefore a past tax statement which is about to
go beyond the reach of the audit process).
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When an audit does reveal tax evasion, the penalties imposed depend on the
amount of unreported income, and the time elapsed since the offense occurred.
The total cost to the firm is the tax originally due on the unreported income, plus a
2% monthly penalty on that tax. Thus, “older” tax evasion decisions are potentially
more costly than recent ones. The total penalty amount is subject to a 2/3 discount if
the firm agrees to pay promptly once the evasion is discovered. Finally, the penalty
amount cannot exceed twice the original tax owed.

The above is, of course, not an exhaustive description of the Greek tax code,
but does include the features which are most germane. Some aspects, such as VAT
payments (collected via an independent mechanism) are not considered here, but
could be incorporated into the model at later stages.

2.2 The Model

We will describe the possible tax status of the firm in any given year via a Markov
chain which evolves on a set S with S = {A,N1, . . . ,N4}. States in S are labeled
as follows:

• A: the firm is being audited,
• Nj: the firm’s last audit was j = 1, . . . ,4 years ago.

These labels will be used mainly to facilitate the discussion below. Otherwise,
for notational convenience, we will refer to states in S by integer, in order of
appearance (i.e., A → 1,. . . ,N4 → 5).

Let F be the firm’s annual profit. Each year, k, the firm decides the fraction uk ∈
[0,1] of its profit to conceal (thereby declaring to the government only (1− uk)F),
and then transitions to a new state in S , with probabilities ai j = P(sk = i|sk−1 = j),
where the indices i and j indicate the ith and jth states in S . Here, we have assumed
that the transition probabilities are independent of the firm’s actions and that the
annual profit is constant. These assumptions can be removed, but we will not take
up the issue here, mainly because of space considerations.

Based on the discussion of Sect. 2.1, we can express the Markov chain as
xk+1 = Axk, where xk is the state’s probability distribution at time k. The stochastic
matrix A = [ai j] is not written down here, but can be easily read off from the
transition diagram shown in Fig. 1, where p denotes the overall audit probability
(i.e., the fraction of tax returns that the government is able to audit each year).
There is little-to-none official data on p; we estimate its value at p = 0.05 (and its
distribution among states as per Fig. 1), based on reports in the Greek financial
press and discussions with individuals familiar with the inner workings of the tax
authority and audit mechanism in Greece. As the transition diagram indicates, the
probability of an audit is heavily skewed towards firms in the last (N4) state; there,
the firm has been unaudited for 4 years and is about to file its fifth consecutive tax
statement. Therefore, if it is not audited in the next time period, the oldest of these
five statements will go beyond the reach of any future audits.
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Fig. 1 Markov transition diagram for our simplified model of the Greek tax system as it pertains
to firms. The overall probability of a tax audit each year is p, distributed so that 80% of audits
involve firms with at least one tax statement whose 5-year statute of limitations is about to elapse

The firm allocates its yearly profits between two “assets,” as discussed in Sect. 1.
One is a risky asset, R( j), which corresponds to concealing profit when being at
the jth state. The payoff in that case is that the firm gets to keep more of its profit
(since it pays no tax on the amount concealed), at a risk of being audited sometime
in the next five time periods, in which case it will have to pay the tax back, plus
a penalty. The alternative to R is the risk-free asset, S whose payoff is the firm’s
after-tax profit, i.e., S = F(1− r), where r = 0.24 is the tax rate. The firm then has
a portfolio whose worth at time k depends on the allocation of profits between the
two assets:

W (uk, j) = (1− uk)S+ ukR( j) (1)

We note that R (and thus W ) depends on the state j = 1, . . . ,5 in which the firm is
at when making its decision, because (the probability distribution of) the number of
years that will pass until the firm is audited depends on its initial state j.

Based on our description of the Greek tax system, we can specify the risky asset’s
return rate as follows:

R( j) =

{
F(1− γnr(1+ 3/5nβ )) the firm is audited in year k+ n, n ≤ 5
F no audit before year k+ 6.

(2)

Notice that R( j) (and thus W (uk, j)) is a random variable whose value depends on
when the next audit will occur. In (2), γ ∈ [0,1] is a discount coefficient, used to
capture the present value of any tax and penalties the firm might pay in the future.
The term −Fγnr corresponds to the tax the firm will pay for every percentage of its
profit it is found to have concealed, while −Fγnβ3/5 is the penalty rate.
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3 Optimal Firm Behavior

We can now proceed with computing the behavior expected of the firm. We will
assume that the latter acts according to a constant relative risk aversion utility
function:

U (x) =
x1−λ

1−λ , (3)

where λ is the “average” firm’s risk aversion coefficient. The firm’s objective is then
to select the fraction of profit, uk, that it will attempt to hide from the government at
time k, in order to maximize the expected utility of its portfolio:

max
u

{E(U(W (u, j)))} , j = 1,2, . . . ,5. (4)

where for simplicity we have dropped the subscript k in u, and the expectation
in (4) is taken with respect to the probability distribution on the number of years
{1,2, . . . ,5,∞} from the time the firm makes a decision until the next audit occurs
(either within 5 years, or never). This is essentially the distribution of first passage
probabilities from each state j of our Markov chain, to the first (audit) state in
precisely n steps.

f (n)1 j = p(sk+n = 1|sk = j,sk+i �= 1 for i = 1, . . . ,n− 1).

It is well known that for finite n, the f (n)i j can be computed by solving the
following upper-triangular system of algebraic equations:

a(n)i j =
n

∑
r=1

f (r)i j a(n−r)
ii (5)

where a(k)i j denotes the (i, j)th element the Markov transition matrix after it is raised

to the kth power, Ak. Consequently (4) leads to the firm’s optimal policy:

u∗( j) = argmax
u

{
5

∑
n=1

f (n)1 j U ((1− u)(1− r)F+ u(1− γnr(1+ 3/5nβ ))F)

+

(

1−
5

∑
n=1

f (n)1 j

)

U ((1− u)(1− r)F+ uF)

}

. (6)

It must be noted that in the last equation it is possible for the argument of U(·)
to be negative when, for example, u and the penalty coefficient β are sufficiently
high (e.g., the penalty is so high that it exceeds the firm’s annual profit). This can
be dealt with in various ways, but perhaps the simplest one is to notice that there is
always a choice of u that results in positive wealth (namely u = 0). Thus, since U is
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continuous and the firm presumably prefers positive wealth to negative wealth we
can simply restrict the maximization in (6) to the range of values for u that result in
W (u, j)> 0.

3.1 Charting the (p,ˇ) Parameter Space

We obtained first-order optimality conditions from (6), and solved them for a range
of tax penalty and audit probability values to obtain the firm’s optimal tax evasion
level in each case. Before examining the firm’s behavior, we explain some of
our assumptions and justify the parameter ranges that we consider meaningful to
explore.

3.2 Parameter Selection

The discount coefficient γ in (6) was based on an assumed interest rate of 3%, i.e.,
γ = 1/(1+ 0.03) = 0.9709. In order to isolate the effect of tax-penalties and audit
probabilities on firm behavior, the tax rate r was be kept fixed at its current levels.
However, our model can easily be used to examine the effects of changing the tax
rate as well.

The firm’s profit, F , was estimated based on published data from the Greek
Secretariat of Information Systems [10] which indicates that in 2009, the average
firm declared approximately e75,700. The true F is, of course, known only to
the firm itself. Studies on tax evasion estimate Greece’s “hidden economy” at 25–
40%, of what is documented, depending on the assumptions used (see, for example
[6, 12]), implying a true average profit in the range of 95,000–106,000.

Regarding the range of values for the fraction of profit, u ∈ [0,1], which
may be hidden, it may be practically impossible for a firm to claim zero profits
by overstating expenses and/or hiding income. At least some income will be
documented, and the firm may be under pressure to show profits for shareholders
or capital markets. To account for this, u could be interpreted in a “marginal” sense,
i.e., viewed as the fraction of profits that can be concealed; alternatively, one could
apply (6) by replacing F with the portion of profits that are concealable and thus at
stake in the portfolio. Assuming that F = 100,000 and that the firm has the option
of hiding 30–40% of that amount, the risk aversion coefficient λ that results in the
level of tax evasion estimated in the literature must be in the range of 0–12.

The figures estimated above are clearly approximations. Nevertheless, what is
presented here could serve as the basis for a decision support model at the hands
of official entities which are in a position to have more precise knowledge of the
required parameters and can thus “tune” the model appropriately. In the following,
we chart the firm’s tax evasion behavior for λ = 0 and λ = 6.
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Fig. 2 Tax evasion for a risk-neutral firm. Dark area: the firm conceals as much profit as possible
(u∗ = 1). White area: it is optimal for the firm to disclose all profit (u∗ = 0). The non-smoothness
of the boundary is due to discretization

3.3 Risk-Neutral Firm (�=0)

We computed the firm’s optimal decision u∗ in the (β , p) space when λ = 0, i.e.,
U is linear and the firm is risk-neutral. Linearity makes the firm’s behavior simple
to describe, because the solution of (6) is either u = 0 or u = 0. Figure 2 illustrates
the resulting mapping assuming the firm is in the first (audit) state (i.e., u∗(1)).
The situation is qualitatively similar when the firm is in the other four states.

We observe is a kind of boundary in the p-vs-β space, below which the firm
always attempts to hide as much profit as possible ((u∗ = 1, black region). On the
other hand, it is best for the firm to disclose all profit (u∗ = 0) at points above
the boundary. Notice the very high tax penalty coefficients required to “induce”
honest behavior. At the current p = 0.05 audit probability, the tax penalty needs
to be approximately 10, which, after the 2/5 discount is applied corresponds to a
net tax penalty rate of 600% per annum on unpaid taxes, a rate significantly higher
than the baseline 24%. This suggests that tax penalties may be ineffective without
the backup of an effective audit mechanism. Finally, a tax penalty rate lower than
β = 0.6 is ineffective in eliminating tax evasion for a risk neutral firm, even for
unrealistically high audit probabilities (up to almost 50%).
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Fig. 3 Tax evasion mapping for a risk-averse firm (λ = 6) assuming the firm is deciding
immediately after an audit. Gray levels represent tax evasion between 0% (dark) and 100% (bright)

Fig. 4 Top view of figure on the left, focusing on audit probabilities between 0.005 and 0.1. Gray
levels represent tax evasion between 0% (white) and 100% (black)

3.4 Risk-Averse Firm (�=6)

When the firm is risk averse, its decisions regarding tax evasion are no longer “all-
or-nothing.” Figures 3 and 4 illustrate the u∗(1) vs. p vs. b surface in the region β ∈
[0,5] and p ∈ [0.005,0.5]. Other values of λ generate surfaces of similar geometry.

In Fig. 4 the surface is viewed along the u∗ axis, with values of u∗ encoded in
the gray levels, and we have zoomed into the region β ∈ [0,5] and p ∈ [0.005,0.1].
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The range for p is of practical interest because in the case of audits, for example,
a high p is not easy to implement (mode audits require hiring of new personnel,
training, etc.). Inspection of the surface for the λ = 6 case at higher magnification
reveals that the current set of parameters (p = 0.05,β = 0.24) is rather ineffective,
and that in order to significantly curb tax evasion (say at under 10%) the tax penalty
coefficient needs to be raised, from the current β = 0.24 to approximately β = 1.5
when p = 0.01, and to β = 0.9 when p = 0.05.

4 Conclusions

We described a Markov-based optimization model for capturing the process by
which a risk-averse firm in Greece decides to what degree it will engage in tax
evasion. Each year, the firm acts so as to maximize the expected utility of its wealth,
based on the first passage probabilities of transitioning to an “audit” state before the
statute of limitations on its decision expires. Our model captures the basic features
of the Greek tax system, in which a firm is either audited or accumulates up to
five unaudited tax statements, and audits can cover up to 5 years in the past. Some
of the model’s parameters (tax penalties, tax rates, average firm profit) were set
based on government reports, while others (audit probabilities, firm’s risk aversion)
were estimated implicitly from publicly available data and estimates on Greece’s
hidden economy. The proposed model was used to “chart” the audit probability vs.
tax penalty space in order to compute the expected level of tax evasion in which
the firm engages. Such charts were produced here for an “average” firm, but could
easily be tailored to specific sectors or even individual firms.

The work presented here can be viewed as a basic tool for informing tax policy
by elucidating the firm’s expected behavior under different scenarios. Opportunities
for future work include revisiting the problem where the “average” firm considered
in our analysis is replaced by a population of firms with a given distribution for
their risk aversion, and augmenting the model to include additional aspects of the
tax system, such as VAT payments and closure.
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Stochastic Decentralized Control of a Platoon
of Vehicles Based on the Inclusion Principle

Srdjan S. Stanković, Milorad J. Stanojević, and Dragoslav D. Šiljak

Abstract In this paper the Stochastic Inclusion Principle is applied to decentralized
Linear Quadratic Gaussian (LQG) suboptimal longitudinal control design of a
platoon of automotive vehicles. Starting from a stochastic linearized platoon state
model, input/state overlapping subsystems are identified and extracted after an
adequate expansion. An algorithm for approximate LQG optimization of these sub-
systems is developed in accordance with their hierarchical lower-block-triangular
(LBT) structure. Vehicle controllers obtained after contraction, which leaves the
local Kalman filters uncontracted, provide high performance tracking and noise
immunity. Simulation results illustrate characteristic properties of the proposed
algorithm.

1 Introduction

The problem of design of automated highway systems (AHS) has attracted a
considerable attention among researchers, e.g. [2, 12]. AHS control architecture
proposed in [2,12,19] is based on the introduction of a notion of platoons, groups of
vehicles following the leading vehicle with small intra-platoon separation. Control
of platoons has been studied from different viewpoints [7, 8, 18]. Main theoretical
contributions are related to the stability problem [7, 18]. It has been shown that
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an efficient decentralized control law can be formulated when each individual
vehicle is supplied with data representing its acceleration, velocity, and position
of the preceding vehicle, as well as the references for velocity, acceleration, and
inter-vehicle separation [8]. However, tuning of the local proportional regulator
parameters has been based, apparently, on the arguments related to relative stability,
without taking into account optimality in any predefined sense, structural and
signal uncertainties and possibilities to improve the performance by introducing
dynamics into the regulator. In [15, 17] a systematic procedure for the design of
decentralized overlapping platoon controller on the basis of LQ optimization [4]
has been described. In [11] this procedure is applied within the context of output
feedback design by introducing reduced order observers.

In this paper a generalization of the approach in [11, 15, 17] to the stochastic
case is presented. Namely, Stochastic Inclusion Principle [14, 16] is applied to the
design of decentralized Linear Quadratic Gaussian (LQG) suboptimal longitudinal
control of a platoon of vehicles, taking into account uncertainty resulting from the
influence of the environment and measuring devices. The first part of the paper
contains the results related to platoon modelling, formulated in accordance with
[2,8,12,17,19], taking into account stochastic disturbances and measurement noise.
A linearized stochastic state model for a string of moving vehicles is derived on the
basis of [5, 8, 15]. Each vehicle is described by a state model, with accelerations,
velocities, and distances to preceding vehicles as state variables. In the second part
an outline of the theory of the Stochastic Inclusion Principle is presented. It is
shown that a suitable expansion of the obtained platoon model which possesses
the overlapping structure enables formal extraction of “subsystems” for which
local quadratic performance indices can be formulated. Having in mind both the
subsystem model structure and the available data set [8], an optimization technique
resembling to the methodology for deriving Linear Quadratic (LQ) suboptimal
control for systems with the hierarchical lower-block-triangular (LBT) structure
proposed in [4, 6, 9, 17] is developed and presented in the third part of the paper.
Each subsystem controller contains a specific Kalman type estimator, together with
the corresponding state feedback gain. Contraction to the original space provides
a decentralized controller for the whole platoon, leaving all local state estimators
uncontracted. Experimental results are given in order to illustrate main properties of
the proposed methodology.

2 Model Formulation

It will be adopted in this paper that ith automotive vehicle in a close formation
platoon consisting of n vehicles can be represented by the following dynamic model:

ḋi = vi−1 − vi, v̇i = ai,

ai = f i
a(yi − ki

1v2
i − ki

2 − ei), ẏi = f i
j(αi(ui − yi)), (1)
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where di = xi−1 − xi is the distance between two consecutive vehicles, xi−1 and xi

represent their positions, vi, ai and ẏi are velocity, acceleration and jerk, respectively,
f i
a(.) and f i

j(.) are static nonlinearities of saturation type, αi represents the inverse
time-constant of the basic vehicle dynamics, ki

1 and ki
2 are the constants defining

rolling resistance, ui is the corresponding control input, while ei represents the
white random noise force input with variance re

i , resulting from wind gusts and road
roughness. A slightly modified version of (1) is taken in [8, 15] as the basic model
of individual vehicles in a platoon. There are several possibilities for constructing
linearized models in the state-space form, depending on the choice of state variables,
e.g. [5, 8, 12, 15, 17]. A convenient form follows directly from (1). Supposing, for
the sake of simplicity, that n = 3 and that all the vehicles have the same models, we
obtain

⎡

⎣
Ẋ1

Ẋ2

Ẋ3

⎤

⎦ =

⎡

⎣
Av 0 0
Ad Av 0
0 Ad Av

⎤

⎦

⎡

⎣
X1

X2

X3

⎤

⎦

+

⎡

⎣
Bv 0 0
0 Bv 0
0 0 Bv

⎤

⎦

⎡

⎣
u1

u2

u3

⎤

⎦+

⎡

⎣
Ge 0 0
0 Ge 0
0 0 Ge

⎤

⎦

⎡

⎣
e1

e2

e3

⎤

⎦ , (2)

where XT
i = [di vi ai] (x0 = 0 in d1) and

Av =

⎡

⎣
0 −1 0
0 0 1
0 0 −α

⎤

⎦ , Ad =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦ ,

BT
v =

[
0 0 α

]
, GT

e =
[

0 1 0
]
.

Control design for (2) can, obviously, be based on various methodologies.
However, any attempt to formulate a globally optimal control law for the entire
platoon is faced with the problem that control of each vehicle depends, in general,
on the states of all the remaining vehicles. Permissible control strategies should
essentially be decentralized, having in mind the supposed information structure [8],
i.e. the local control ui is to be calculated on the basis of the noisy measurements
of the local vehicle state variables {di,vi,ai}, together with the noisy information
about the velocity and acceleration of the preceding vehicle {vi−1,ai−1}, which is
assumed to be transmitted by appropriate communication channels. Each vehicle
is also supplied with the information about the spacing, velocity, and acceleration
reference command {dr,vr,ar}. The theory of large-scale systems abounds with
methodologies for both decentralized design of complex control structures and
decentralized design of completely decentralized control structures, e.g. [13,15,17].
One of the elegant and powerful methodologies is based on the Stochastic Inclusion
Principle [3, 14, 16].
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3 Stochastic Inclusion Principle

3.1 General Aspects

Consider a pair (S, S̃) of linear stochastic continuous-time dynamic systems repre-
sented by

S : dx = Axdt +Budt+Γ dξ , dz =Cxdt + dη

S̃ : dx̃ = Ãx̃dt + B̃ũdt + Γ̃ dξ̃ , dz̃ = C̃x̃dt + dη̃ (3)

where x(t0) = x0 and x̃(t0) = x̃0. The first equations in (3) are Ito stochastic
differential equations describing the evolution of state vectors x(t) ∈ Rn and x̃(t) ∈
Rñ of S and S̃, respectively, driven by control inputs u(t) ∈ Rm and ũ(t) ∈ Rm̃ (it is
straightforward to connect model (2) with model (3)). Stochastic disturbances are
modelled by Wiener processes ξ (t)∈ Rr and ξ̃ (t)∈ Rr̃ with incremental covariances
Rξdt and Rξ̃dt, respectively. The second equations are the observation equations,

where η(t) ∈ Rq and η̃(t) ∈ Rq̃ are Wiener processes with incremental covariances
Rηdt and Rη̃dt, respectively. Vectors x0 and x̃0 are assumed to be Gaussian with
means m0 and m̃0, and covariances R0 and R̃0, respectively. It is assumed that
ξ (t),η(t) and x0, as well as ξ̃ (t), η̃(t) and x̃0 are mutually independent. Matrices
A,B,Γ ,C, Ã, B̃,Γ̃ and C̃ are assumed to be constant. The basic assumption is that
n ≤ ñ, p ≤ p̃ and q ≤ q̃.

In general, for a stochastic process α(t) we shall denote the mean by mα(t) and
covariance by Rα(t1, t2). If α(t) = T β (t) (∀t ≥ t0), where α(t) and β (t) are nα - and
nβ -dimensional stochastic processes, respectively, and T a full rank matrix, we shall
say that α(t) is a strong (strict) expansion of β (t), i.e. α(t) =Es[β (t);T ], if nα > nβ ,
and that α(t) is a strong (strict) contraction of β (t), i.e. α(t) = Cs[β (t);T ], if
nα < nβ . If, for the same processes, mα(t) = T mβ (t) and Rα(t1, t2) = T Rβ (t1, t2)T

T

(∀t, t1, t2 ≥ t0), we shall say that α(t) is a weak expansion of β (t), i.e. α(t) =
Ew[β (t);T ] if nα > nβ , and a weak contraction, i.e. α(t) =Cw[β (t);T ], if nα < nβ .

Definition 1. The system S̃ includes the system S if there exists a quadruplet of full
rank matrices {Un×ñ,Vñ×n, Rp̃×p, Sq×q̃} satisfying UV = In, such that for any x0 and
u(t) in S the conditions x̃0 =Ew[x0;V ] and ũ(t)=Es[u(t);R] imply x(t)=Cw[x̃(t);U ]
and z(t) =Cw[z̃(t);S] (∀t ≥ t0).

The expansion S̃ contains all necessary information about S expressed in terms
of second-order statistics, having in mind the Gauss-Markov properties of x(t), x̃(t),
z(t) and z̃(t). Weak contractions/expansions are related to the states and outputs, and
strong contractions/expansions to control inputs.

Restriction and aggregation represent two important special cases of inclusion.
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Definition 2. The system S is a restriction (type c, according to [16]) of the
system S̃ if there exists a full rank matrix Vñ×n such that for any x0 the con-
ditions x̃0 = Ew[x0;V ] and u(t) = Cs[ũ(t);Q] imply x̃(t) = Ew[x(t);V ] and z̃(t) =
Ew[z(t);T ] (∀t ≥ t0).

Theorem 1. The system S is a restriction (type c) of S̃ if there exist full rank
matrices V,Q and T such that

ÃV =VA, VΓRξΓ TV T = Γ̃Rξ̃ Γ̃
T,

B̃ =VBQ, C̃V = TC, T RηT T = Rη̃ . (4)

Definition 3. The system S is an aggregation (type c) of S̃ if there exist
a triplet of full rank matrices (U,R,S) such that for any x̃0 and u(t) the
conditions x0 = Cw[x̃0;U ] and ũ(t) = Es[u(t);R] imply x(t) = Cw[x̃(t);U ] and
z(t) =Cw[z̃(t);S] (∀t ≥ t0).

Theorem 2. The system S is an aggregation (type c) of S̃ if there exist full rank
matrices U,R and S such that

UÃ = AU, ΓRξΓ T =UΓ̃Rξ̃ Γ̃
TUT,

UB̃R = B, SC̃ =CU, SRη̃ST = Rη . (5)

3.2 Inclusion of Estimators

Consider time-invariant estimators E and Ẽ for S and S̃, respectively,

E : dw = Fwdt +Gudt+Ldz

Ẽ : dw̃ = F̃w̃dt + G̃ũdt + L̃dz̃, (6)

where w(t) ∈ Rs and w̃(t) ∈ Rs̃ are the estimator outputs satisfying s ≤ s̃. State
models for Se = (S,E) and S̃e = (S̃, Ẽ) are, respectively,

Se : dX = AeXdt +Beudt +Γ edΞ

S̃e : dX̃ = ÃeX̃dt + B̃eũdt + Γ̃ edΞ̃ , (7)

where X = [xTwT]T, X̃ = [x̃Tw̃T]T Ξ = [ξTηT]T, Ξ̃ = [ξ̃Tη̃T]T

Ae =

[
A 0
LC F

]
, Be =

[
B
G

]
, Γ e =

[
Γ 0
0 L

]
;
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matrices Ãe, B̃e and Γ̃ e are defined analogously. It will be assumed that X0 = X(t0)
and X̃0 = X̃(t0) are Gaussian with means M0 and M̃0 and covariances RX

0 and RX̃
0 ,

respectively.

Definition 4. The pair (S̃, Ẽ) includes the pair (S,E) if S̃ includes S, and there
exists a pair of full rank matrices (Ds×s̃,Es̃×s) satisfying DE = Is, such that for
any given X0 and u(t) the conditions X̃0 = Ew[X0;V ∗] and ũ(t) = Es[u(t);R] imply
X(t) =Cw[X̃(t);U∗] (∀t ≥ t0), where U∗ = diag{U,D} and V ∗ = diag{V,E}.

Theorem 3. The pair (S,E) is a restriction (type c) of the pair (S̃, Ẽ) if the
conditions of Theorem 1 are satisfied, together with F̃E = EF, where E is a full
rank matrix, and G̃ = EGQ, L̃T = EL.

Theorem 4. The pair (S,E) is an aggregation (type c) of the pair (S̃, Ẽ) if the
conditions of Theorem 2 are satisfied, together with DF̃ = FD, where D is a full
rank matrix, and DG̃R = G, DL̃ = LS.

3.3 Contractibility of Dynamic Controllers

Let Sf = (S,E,F) and S̃f = (S̃, Ẽ, F̃), where F and F̃ are feedback mappings added
to the pairs (S,E) and (S̃, Ẽ)

F : u = Kw+ v; F̃ : ũ = K̃w̃+ ṽ (8)

where K and K̃ are constant matrices, and v and ṽ reference signals. Obviously,
we have

Sf : dX = A∗Xdt +B∗vdt +Γ ∗dΞ

S̃f : dX̃ = Ã∗X̃dt + B̃∗ṽdt + Γ̃ ∗dΞ̃ (9)

where

A∗ =
[

A BK
LC F +GK

]
, B∗ =

[
B
G

]
, Γ ∗ =

[
Γ 0
0 L

]
;

matrices Ã∗, B̃∗ and Γ̃ ∗ are defined analogously.

Definition 5. We say that the dynamic controller (Ẽ, F̃) for S̃ is contractible to the
dynamic controller (E,F) for S if S̃f includes Sf in the sense of Definition 1.

Theorem 5. The controller (Ẽ, F̃) is contractible to the controller (E,F) when
(S,E) is a restriction (type c) of (S̃, Ẽ) and the condition K = QK̃E is satisfied.

Theorem 6. The controller (Ẽ, F̃) is contractible to the controller (E,F) when
(S,E) is an aggregation (type c) of (S̃, Ẽ) and the condition K̃ = RKD is satisfied.
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The above results show that K can be obtained for any given K̃ in the case of
restriction, while L can be obtained from any given L̃ in the case of aggregation.
When F = A−LC,G = B,D =U and E =V the corresponding explicit contraction
mappings are L =UL̃T and K = QK̃V [10].

3.4 Inclusion of Performance Indices

Consider the following pair of steady-state performance indices for S and S̃,
respectively,

J(u) = lim
T→∞

1
T

E{
∫ T

0
(xTWxx+ uTWuu)dt}

J̃(ũ) = lim
T→∞

1
T

E{
∫ T

0
(x̃TW̃xx̃+ ũTW̃uũ)dt} (10)

where the matrices Wx, Wu, W̃x, and W̃u are symmetric and positive semidefinite.

Definition 6. The pair (S̃, J̃) includes the pair (S,J) in sense of the optimal
feedback control law if the controller (Ẽ∗, F̃∗) minimizing J̃ includes the controller
(E∗,F∗) minimizing J and

J(E∗,F∗) = J̃(Ẽ∗, F̃∗). (11)

Theorem 7. If S is a restriction (type c) of S̃, then the pair (S̃, J̃) includes the pair
(S,J) in the sense of the optimal feedback control law if

V TMxV = 0, W−1
u = QW̃−1

u QT, (12)

where Mx is obtained from W̃ =UTWxU +Mx.

If S is an aggregation (type c) of S̃, the pair (S̃, J̃) includes the pair (S,J) if

W̃x =UTWxU ; W−1
u = QW̃−1

u QT. (13)

If S is a restriction of S̃, it follows that the optimal feedback gain matrix is
contractible to the original space by K = QK̃V .

3.5 Overlapping Decentralized Control

The essence of the application of the above exposed inclusion principle to the
decentralized control design of systems with the overlapping structure S, lies in
the application of such an expansion which results into S̃ in which subsystems of
S appear as disjoint, e.g. [10, 13, 14, 16, 17]. For example, if S is defined by (3),
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where A = [Ai j], B = [Bi j], C = [Ci j],Γ = diag{Γ1, Γ2, Γ3}, Rξ = diag{Rξ ,1, Rξ ,2,
Rξ ,3} and Rη = diag{Rη,1, Rη,2, Rη,3}, (i, j = 1,2,3), then we can consider,
under certain conditions concerning submatrices A13,A31 ,B13,B31, C13 and C31 in
A,B and C, that it is composed of two overlapping subsystems S̃1 and S̃2 defined
by system matrices Ã1 = [Ai j], B̃1 = [Bi j], C̃1 = [Ci j ], Γ̃ 1 = diag{Γ1, Γ2}, R̃1

ξ =

diag{Rξ ,1, Rξ ,2}, R̃1
η = diag{Rη,1, Rη,2}, (i, j = 1,2) and Ã2 = [A jk], B̃2 = [B jk],

C̃2 = [Cjk], Γ̃ 2 = diag{Γ2, Γ3}, R̃2
ξ = diag{Rξ ,2, Rξ ,3}, R̃2

η = diag{Rη,2, Rη,3},
( j,k = 2,3), respectively. After performing an appropriate expansion and extracting
the corresponding subsystems from S, we shall look for decentralized dynamic
controllers (Ẽ1, F̃1) and (Ẽ2, F̃2), characterized, in the case of local LQG optimal
control, by the gain pairs (L̃1, K̃1) and (L̃2, K̃2), which, after being contracted back
to the original space, result into a suboptimal controller (E, F) for S.

In the above context the main point is to find such pairs of matrices (U,V ),(Q,R)
and (S,T ) which enable an expansion with satisfactory decoupling effects, as well
as a direct contraction to the original space. We shall consider different restriction
and aggregation relations between S and S̃ obtained by using these matrices in two
characteristic forms, e.g.:

V1 =

⎡

⎢
⎢
⎣

I 0 0
0 I 0
0 I 0
0 0 I

⎤

⎥
⎥
⎦ , U1 =

⎡

⎣
I 0 0 0
0 β I (1−β )I 0
0 0 0 I

⎤

⎦ (14)

and V2 = UT
1 , U2 = V T

1 , where β is a scalar satisfying 0 < β < 1; matrices R
and T are analogous to V , while Q and S are analogous to U . Starting from
matrices A,B,C,Γ ,Rξ ,Rη , matrices Ã, B̃,C̃,Γ̃ ,Rξ̃ ,Rη̃ can be obtained by choosing

e.g. matrix MA in Ã = VAU +MA, matrix MB in B̃ = VBQ +MB, matrix MC in
C̃ = TCU +MC, etc. For example, conditions for both restriction and aggregation
are satisfied for the following matrix Ã, obtained by using (U1,V1):

Ã =

⎡

⎢
⎢
⎣

A11 βA12 (1−β )A12 A13

A21 A22 0 A23

A21 0 A22 A23

A31 βA32 (1−β )A32 A33

⎤

⎥
⎥
⎦ .

After expansion, the dynamic controller for the resulting S̃ is designed by optimizing
in the LQG sense separately S̃1 and S̃2, obtained by cutting Ã adequately (as well
as the remaining matrices in S̃). The resulting estimator and feedback gain matrices
L̃1, L̃2, K̃1 and K̃2 give L̃D = diag{L̃1, L̃2} and K̃D = diag{K̃1, K̃2}, defining the
overall controller (Ẽ, F̃) for S̃. The global performance index J̃ for S̃ is constructed
by using weighting matrices W̃x = diag{W̃1

x , W̃ 2
x } and W̃u = diag{W̃1

u , W̃ 2
u }, where

the local weighting matrices W̃ 1
x , W̃ 2

x , W̃ 1
u , W̃ 2

u are chosen in accordance with (10),
in order to satisfy inclusion of the performance indices J̃ and J. Contraction to the
original space is done by L = UL̃T and K = QK̃V after an eventual modification
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of either L̃D or K̃D aimed at satisfying contractibility conditions (UL̃ = UL̃TS or
QK̃ = QK̃VU), having in mind that in the case of restriction we can never have a
block-diagonal L̃, and in the case of aggregation a block-diagonal K̃. The resulting
controller (E,F) is suboptimal with the suboptimality degree μ , i.e. μ−1J∗ = J,
where J∗ is the minimal value of J corresponding to the globally optimal controller
in the original space.

4 Decentralized LQG Suboptimal Platoon Control

Following the above exposed line of thought, a decentralized LQG suboptimal
control strategy will be developed by considering a platoon of vehicles as a
concatenation of overlapping “subsystems.” The ith subsystem is defined by the
following state model (see [15, 17] for the deterministic case)

ξ̇i =

[
AL 0
Ād Av

]
ξi +

[
BL 0
0 Bv

][
ui−1

ui

]
+

[
GL 0
0 Ge

][
ei−1

ei

]
(15)

where

AL =

[
0 −1
0 −α

]
, ĀT

d =

[
1 0 0
0 0 0

]

BT
L =

[
0 α

]
, GT

L =
[

1 0
]

and ξT
i = [vi−1 ai−1 di vi ai]. According to (2), the overlapping part in the state

matrix is, obviously, AL with both the preceding and the following subsystems.
Having in mind the formalism of the Inclusion Principle, the above subsystems can
be extracted from the basic model by expanding the state using a matrix V , which
has, for two subsystems, the form (14), with appropriate dimensions (generalization
to n vehicles is straightforward). The above “subsystems” can hardly be given
any precise physical interpretation; notice, however, that, formally, the noisy state
vectors of the subsystems are supposed to be available in each vehicle [8]. The
subsystems are not only state overlapping, but also input overlapping (they have one
input in common), so that the input expansion is needed, as well; the corresponding
transformation matrix R has the form analogous to V . As ui is essentially the
physical control signal in the ith vehicle, then ui−1 in the corresponding subsystem
could be considered to represent, together with the corresponding part of the
subsystem dynamics, the preceding part of the platoon, as viewed by ith vehicle
(for the second vehicle in the platoon this is exactly the leading vehicle dynamics).
Therefore, ui depends on the entire subsystem state, and ui−1 only on the part of the
subsystem state vector overlapping with the preceding subsystem. After expansion,
the subsystems in the platoon model appear as disjoint. Application of the LQG
methodology based on the definition of local performance indices leads to local state
feedback control (depending on the appropriate sets of measurements). Contraction
to the original space provides a physically implementable control law.
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As the leading vehicle dynamics represents formally a part of each subsystem, we
shall describe the proposed control strategy consecutively, starting from the leading
vehicle.

4.1 Leading Vehicle Control

The leading vehicle is supplied with the reference command and uses its own state
vector for control design. Formally, if the leading vehicle model is represented by

ẊL = ALXL +BLu1 +GLe1 (16)

where XT
L = [v1 a1], then the optimal feedback control law using noisy

measurements Y T
L = [v1 + nv

1 a1 + na
1] (where nv

1 and na
1 are mutually independent

white noise terms with variances rv
1 and ra

1, respectively) should be found from the
condition for the minimum of the performance index

JL = E{
∫ ∞

t0
[(XL −X1r)

TQL(XL −X1r)+RLu2
1]dt} (17)

where XT
1r = [vr ar] is a time-varying reference supplied to the first vehicle, known

entirely in advance, and QL ≥ 0 and RL > 0 are the corresponding weights. This
is, in fact, an LQG optimal tracking problem, which can be solved in the following
way [1]:

u1 =−K1X̂L −M1X1r

K1 = R−1
L BT

LPL

M1 = R−1
L BT

L(AL −BLK1)
−T QL

PLAL +AT
LPL −PLBLR−1

L BT
LPL +QL = 0 (18)

where X̂L is obtained by the locally optimal Kalman filter obtained from (16). This
control law is suboptimal, since the feedforward block is reduced to a constant
matrix; this is, however, a very reasonable solution, having in mind characteristic
forms of the reference command signals. A priori choice of the criterion weights
can provide different tracking properties. Notice that the static steady-state error
reduces to zero, having in mind that AL is singular [1].

4.2 General Subsystem Control

Control of the second vehicle assumes that the leading vehicle control is appro-
priately designed. Consequently, control design for the general subsystem model
(15) can be decomposed into two parts: first, ui−1 is found and the corresponding
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regulator is implemented and, second, ui is found for the resulting system by using
the complete feedback starting from the noisy state measurements. According to
(18), we have

ui−1 =−K1[v̂i−1âi−1]
T −M1X1r. (19)

After implementing (19), one comes to the following subsystem model

ξ̇i =

[
AL −BLK1 0

Ād Av

]
ξi +

[
0
Bv

]
ui

+

[
GL 0
0 Ge

][
ei−1

ei

]
+

[
K1

0

]
εi−1 +

[−M1

0

]
X1r (20)

where εi−1 is the estimation error for [v̂i−1âi−1]
T obtained by the Kalman filter

belonging to leading vehicle control law. Now, ui is found from (20) by minimizing

Ji = E{
∫ ∞

t0
[(ξi −X2r)

TQi(ξi −X2r)+Riu
2
i ]dt} (21)

where Qi ≥ 0 and Ri > 0, while XT
2r = [dr vr ar] is the complete set of reference

commands. The state weighting matrix is assumed to have the following specific
form, coming out basically from the regulator structure adopted in [8]:

Qi =

⎡

⎢
⎢
⎢⎢
⎢
⎣

p1 0 0 −p1 0
0 p2 0 0 −p2

0 0 q33 0 0
−p1 0 0 q44 + p1 0

0 −p2 0 0 q55 + p2

⎤

⎥
⎥
⎥⎥
⎥
⎦

(22)

In (22), q33 influences the spacing reference tracking, p1 and p2 influence tracking
of the velocity and acceleration of the preceding vehicle, respectively, while q44

and q55 influence velocity and acceleration reference tracking. The problem posed
belongs to the class of LQG optimal tracking problems with a priori known
disturbances [1]. An approximately optimal solution, in the sense that all the gains
are assumed to be constant, is given by

ui =−K2X̂i −M2X2r −M3X1r

K2 = R−1
i BT

i P2

M2 = R−1
i BT

i (Ai −BiK2)
−T Qi

M3 = R−1
i BT

i (Ai −BiK2)
−T P2BM

P2Ai +AT
i P2 −P2BiR

−1
i BT

i P2 +Qi = 0 (23)
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where

Ai =

[
AL −BLK1 0

Ād Av

]

BT
i =

[
0 Bv

]

BT
M =

[−M1 0
]
.

X̂i represents the estimate of the subsystem state obtained by using the Kalman filter
derived from (20), taking into account specific properties of the input disturbance.
Notice that one disturbance term in (20) comes out from the first optimization step,
i.e. from the optimal tracking problem solved by ui−1. Consequently, M2 represents
the feedforward gain for the complete reference X2r, while M3 compensates the
effects of the disturbance.

The state feedback gain KT
i = [KT

1 KT
2 ] has the LBT structure, in accordance

with the information supposed to be locally available. The overall feedforward gain
matrix Mi, which can be obtained simply from M1, M2 and M3, multiplies essentially
X2r, since X1r is a subset of X2r. It is important to notice that the steady-state error
is again zero for constant references.

4.3 Platoon Control

Local regulators formulated for the subsystems are to be contracted to the original
space before implementation. The state feedback gains are obtained by using the
transformation matrix Q analogous to U with β = 0.5, i.e. after contraction, one
gets KM = QK̃iV . The feedforward gains multiplying the reference signals are not
contracted in accordance with the Inclusion Principle, since they are out of the
feedback loop. The estimator gains are not contracted, as well, having in mind that
all the local subsystem estimators remain uncontracted in the original system state
space; formally, D = E = I in terms of the inclusion of the estimators. The main
additional requirement is here to keep the steady-state error at zero. It can be easily
shown that the structure of M2 and M3 in (23) is such that the only nonzero elements
are M51

2 and M51
3 ; the only nonzero element in M1 in (18) is M31

1 . It is possible
to show that the required modification aimed at reducing the steady-state error to
zero is to increment M51

3 in (23) by ΔM51
3 = −(A32

K M31
1 + A35

K M51
3 )/A35

K , where
AK = (Ai − BiKM)−1 and KT

M = 0.5(KT
2 + [0 0 0 KT

1 ]). The corresponding overall
feedforward gain Mi (multiplying X2r) contains only three nonzero elements: M32

i =
M31

1 , M51
i =M51

2 and M52
i =M51

3 . The overall platoon tracks the command reference
in a suboptimal way in the LQG sense, preserving the predefined information
structure and ensuring the correct steady-state regime. Note that reduced order
observers have been applied in [11], within the deterministic context.
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5 Experimental Results

Numerous simulations have been undertaken; the platoon has been assumed to obey
the nonlinear model (1) and control has been generated according to the described
algorithm. Attention has been focused on the choice of the weights in (17) and
(22) and noise influence. Figures 1 and 2 give time histories for a platoon of eight
vehicles, containing velocities and inter-vehicle spacings; the first velocity and
spacing plots correspond to a direct application of LQ feedback (not containing the
estimators [17]), while the second plots are obtained by using the whole proposed
LQG suboptimal algorithm, including the local Kalman filters. Figure 1 corresponds
to the parameter α = 2, and Fig. 2 to α = 10. The remaining design parameters have
been QL = diag{200,10}, RL = 10, p1 = 100, p2 = 50, q33 = 500, q44 = 300, q55 =
10, Ri = 10, so that we obtained the following feedback and feedforward gains:
K1 = [17.3205 4.3217], K2 = [−9.3869 − 1.6108 − 22.3607 21.8018 4.9121],
M31

1 = 34.6410, M51
2 = 24.8298, M51

3 = −44.7214 (for α = 2) and K1 =
[4.4721 0.7103], K2 = [−4.0615 − 1.2581 − 7.0711 6.7287 1.2909], M31

1 =
44.7214, M51

2 = 26.6721, M51
3 = −70.7107 (for α = 10). Tracking capabilities

and noise immunity of the proposed algorithm are obvious, compared to the results
obtainable by using the LQ methodology directly, illustrated by the responses (a)
and (c) in both Figs. 1 and 2 [15, 17]. Responses (b) and (d) are obtained by the
proposed algorithm; they are faster for α = 10. Also, comparison with the results
presented in [8] shows a substantial advantage of the proposed approach. It is to
be noted that it is important to make decision about the relative importance of
tracking the preceding vehicle velocity and the reference command, as well as
about the weight of tracking the desired inter-vehicle spacing. The choice of the
control weights influences the jerk level, which is important having especially in
mind the introduced nonlinearities. In Fig. 3 a part of a real spacing measurement
signal is represented, together with one typical autocorrelation function, providing
parameters necessary for tuning the applied Kalman filters (the authors are grateful
to the staff of the PATH Program, University of Berkeley, for providing real
experimental data).

6 Conclusion

In this paper the Stochastic Inclusion Principle has been applied to LQG suboptimal
control of a platoon of automotive vehicles. Identification of input/state overlapping
stochastic subsystems and their extraction by an appropriate expansion have led
to approximate LQG optimization, adapted to the LBT structure of the subsytem
model. Simulation results show a high efficiency of the proposed algorithm, from
the point of view of both tracking precision and noise immunity. One of the main
problems for further investigations is the tracking precision in the case of long
platoons.
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Fig. 1 α = 2; Velocities: (a) LQ, (b) Proposed algorithm; Spacings: (c) LQ, (d) Proposed
algorithm
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algorithm
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Fig. 3 Real measurement signal and its autocorrelation function
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Homogeneous and Non-homogeneous
Algorithms

Ioannis Paparrizos

Abstract Motivated by recent best case analyses for some sorting algorithms and
based on the type of complexity we partition the algorithms into two classes:
homogeneous and non-homogeneous algorithms.1 Although both classes contain
algorithms with worst and best cases, homogeneous algorithms behave uniformly
on all instances. This partition clarifies in a completely mathematical way the previ-
ously mentioned terms and reveals that in classifying an algorithm as homogeneous
or not best case analysis is equally important with worst case analysis.

Key words Algorithm analysis • Algorithm complexity • Algorithm classifica-
tion

1 Introduction

In the 1970s and 1980s a lot of discussion was going on regarding the right use of
the asymptotic symbols O, Θ and Ω used to analyze algorithms and compare
their theoretical efficiency. Some researchers use these symbols to denote the
rate of growth of functions and others to denote sets of functions; see relevant
comments in [3, 10, 13]. Following the approach of using the asymptotic symbols
as sets of functions we partition the class of algorithms into two non-empty
subclasses: homogeneous and non-homogeneous algorithms. Both classes are wide.
They contain iterative and recursive algorithms. Although both classes contain

1This paper was also presented at local proceedings of PCI’09 [Paparrizos, Homogeneous and
Non-Homogeneous Algorithms (2009)].
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algorithms with worst and best cases, homogeneous algorithms behave uniformly on
all instances of the problem being solved. The partition clarifies in a completely
mathematical way the terms of algorithm, worst and best case complexity, the only
difference between them being the sets of instances they referred to.

This classification of algorithms was triggered by recent theoretical result
concerning best case analysis of some heapsort algorithms [2, 4–8, 20] and [21].
Also, computational results indicate that best case analysis might have practical
value too, see, for example, [7] and [21]. Our results indicate that in order to classify
an algorithm as homogeneous or not the complexity of the exact, up to a set of
functions defined by the asymptotic symbol Θ , best case and worst case must be
computed. When the classification is accomplished the analysis of the complexity
of the algorithm is complete, indicating, from a theoretical point of view, that best
case analysis is equally important with the worst-case analysis.

The term inhomogeneity has been used by Nadel [17] who characterizes the
imprecision of an analysis of an algorithm in terms of the difference ΔC = cw − cb

between the worst and best case complexity, where C is a proper measure of
complexity. In particular, for the sorting problem, C is the number of comparisons.
Using various combinations of disorder parameters, Nadel [17] partitions the set
of instances in big, medium, small, tiny and singleton subclasses and computes
the inhomogeneity in each subclass. Other relevant results for other problems are
presented in [11, 14–16, 18]. Our approach is different in the sense that the set of
algorithms is partitioned and not the set of instances of the problem.

In the next section we formally describe the two classes of algorithms. Some
details regarding the algorithm classification are presented in Sect. 3. Recursive and
divide and conquer homogeneous and non-homogeneous algorithms are discussed
and some side results are also presented in the last section.

2 Description of the Two Classes

We derive our results using the Random Access Machine (RAM) model in
which every elementary operation such as addition, subtraction, multiplication, and
division of two numbers, comparison of two numbers, reading and writing a number
in the memory, calling a function, etc., is executed in constant time. It is well known
that all constant functions belong to the setΘ(1). Recall thatΘ(g(n)) denotes a set
of functions defined as follows:

Definition 1. Given a function g(n) we denote byΘ(g(n)) the set of functions t(n)
for which there exists constants a > 0 and b > 0 and a positive integer n0 such that

bg(n)≤ t(n)≤ ag(n) (1)

for every n ≥ n0.
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All functions used in this paper denote time and therefore they are positive.
The argument n denotes the dimension of the problem and, hence, it is a positive
integer.

The sets of functions O(g(n)) and Ω(g(n)) are similarly defined. Simply, in the
definition of O(g(n)) the left inequality of (1) is missing, while in the definition of
Ω(g(n)) the right one. Observe thatΘ(g(n)) is strictly contained in the sets O(g(n))
and Ω(g(n)). As a result the assumption that the basic operations are executed
in Θ(1) time (instead of O(1) or Ω(1) time) provides a more precise algorithm
analysis.

It is well known that the symbol Θ considered as a binary relation between
functions, is reflexive, symmetric and transitive and therefore it partitions the set
of functions into disjoined classes. In other words, if f (n) and g(n) are two different
functions, then eitherΘ( f (n)) =Θ(g(n)) orΘ( f (n))∩Θ(g(n)) =#. In particular
the following two results are well known.

Theorem 1. If f (n) ∈Θ(g(n)), thenΘ( f (n)) =Θ(g(n)).

Theorem 2. The setsΘ(1) andΘ(n) are disjoint.

Given a computational problem we denote the set of instances of dimension n
by I(n). Consider now an algorithm A solving the problem under consideration.
The time taken by algorithm A to solve instance i of dimension n is denoted by
tA(i,n). In algorithm analysis we try to describe in a nice way the set of time
functions

S = {tA(i,n) : i ∈ I(n)}
One way to do this is via the sets of functions defined by the asymptotic symbols

O,Θ , Ω . We are completely satisfied if we can determine a function g(n) such that

S ⊆Θ(g(n)). (2)

Once again, observe that we use the set Θ(g(n)) which is strictly contained in
the sets O(g(n)) andΩ(g(n)), and therefore the description of set S is more precise.
This preference though leads us naturally to the following definition.

Definition 2. An algorithm is homogeneous if there exists a function g(n) such that
relation (2) holds. Otherwise, the algorithm is non-homogeneous.

Theorem 3. The class of algorithms is partitioned into two non-empty and
disjoined subclasses, the subclasses of homogeneous and non-homogeneous
algorithms.

Proof. Let U be the class of all algorithms, H the class of homogeneous and NH
the class of non-homogeneous algorithms. It is obvious from Definition 2 that

H ∩NH =# and H ∪NH =U.

It remains to show that H �= # and NH �= #. This proof is done by providing a
simple algorithm for each class.
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Algorithm 1: MIN

1: a ← T (1)
2: for j = 2 → n do
3: if T ( j)< a then
4: a ← T ( j)
5: end if
6: end for

Firstly, consider the problem of finding the smallest among n given numbers
stored as elements of an array T .

The algorithm min (Algorithm 1) solves this problem and is homogeneous.
Indeed assuming that an element of an array is reached in constant time Θ(1) in
the computational model of constant times, it is easy to conclude that

tmin(i,n) ∈Θ(n)

for every instance i ∈ I(n). Hence, algorithm min is homogeneous and H �=#.
Secondly, consider the following problem. Given an array T of n elements sorted

in increasing order, i.e.

T ( j) ≤ T ( j+ 1) for i = 1,2, . . . ,n− 1

and a number x, sort all elements of T and the number x in increasing order. This
problem is solved by the algorithm insert (Algorithm 2).

Denote by ib the instance T = [1,2,3, . . . ,n−1,n] and x = n+1. When algorithm
insert is applied on instance ib, the while loop is executed once and hence,

tinsert(ib,n) ∈Θ(1). (3)

Denote now by iw the instance T = [1,2,3, . . . ,n − 1,n] and x = 0. When
algorithm insert is applied on instance iw, the while loop is executed Θ(n) times
and therefore

tinsert(iw,n) ∈Θ(n). (4)

This is so because the first two assignments of the pseudo code insert are executed
in Θ(1) time and each execution of the while loop takesΘ(1) time. We show now
that there is no function g(n) such that relation (2) holds. This in turn shows that
algorithm insert is non-homogeneous. Suppose, on the contrary, that such a function
g(n) does exist. By relation (2) we conclude that

tinsert(ib,n) ∈Θ(g(n)) and tinsert(iw,n) ∈Θ(g(n)). (5)

By Theorem 1 and relations (3) and (4) we conclude that

Θ(tinsert(ib,n)) =Θ(1) andΘ(tinsert(iw,n)) =Θ(n). (6)
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Algorithm 2: INSERT

1: j ← n
2: T (n+1)← x
3: while j ≥ 1 and T ( j)> T ( j+1) do
4: temp ← T ( j)
5: T ( j)← T ( j+1)
6: T ( j+1)← temp
7: j ← j −1
8: end while

Combining Theorem 1 and relations (5) we conclude that

Θ(tinsert(ib,n)) =Θ(tinsert(iw,n)) =Θ(g(n)) (7)

Finally, from relations (6) and (7) we conclude that Θ(1) = Θ(n), which
contradicts Theorem 2. This completes the proof of the Theorem.

In the proof of Theorem 3 we used two simple algorithms to show that the
classes of homogeneous and non-homogeneous algorithms are non-empty. In fact
both classes are wide and include recursive and iterative algorithms. The class
of non-homogeneous algorithms includes plenty of iterative algorithms. The great
majority of recursive and divide and conquer algorithms are homogeneous. Among
the exceptions is the well-known recursive sorting algorithm quick sort [12] and
Euclid’s algorithm for computing the greatest common divisor of two numbers.

3 Algorithm Classification

The instances ib and iw used in Theorem 3 are the well-known best and worst cases,
respectively. We call ib minimum time instance and iw maximum time instance. More
precisely, we give the following definition.

Definition 3. An instance i is a minimum (maximum) time instance for an algorithm
A, if the total number of elementary operations executed when algorithm A is applied
on it is the minimum (maximum) possible.

The analysis so far and particularly algorithm min used in the proof of Theorem 3
might mislead someone to conclude that homogeneous algorithms do not contain
minimum and maximum time instances. This is not correct. A striking example of an
iterative homogeneous algorithm containing minimum and maximum time instances
is the well-known Floyd’s classical algorithm [9] for building an initial heap. A heap
is a data structure introduced in [22] to develop an efficient general iterative sorting
algorithm known today as heapsort. A recursive homogeneous algorithm containing
worst and best cases is the well-known algorithm in [1], which computes order
statistics in linear time.
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Some algorithms are obviously homogeneous. If this is not clear for a new
algorithm with unknown complexity, using Definition 3 we can set

Sb = { ib : ib ∈ I(n) is a minimum time instance},
Sw = { iw : iw ∈ I(n) is a maximum time instance}.

In the worst (best) case analysis of an algorithm we try to determine a setΘ(g(n))
(Θ( f (n))) containing the set Sw (Sb) and say that the worst (best) case complexity
of the algorithm is Θ(g(n)) (Θ( f (n))). Observe the similarities among the worst
and best case complexities of a non-homogeneous algorithm and the complexity of
a homogeneous algorithm. In particular, the only difference is the set of instances
on which they are referred to. Therefore, all these complexities should be described
by sets of the formΘ(g(n)).

It is now of interest to determine the complexity of a non-homogeneous
algorithm, i.e, to find a set of functions including set S. Since a set of the form
Θ(g(n)) does not exist, we generalize Definition 1 as follows.

Definition 4. Given two (proper) functions f (n) and g(n) we denote by
Θ( f (n),g(n)) the set of functions t(n) for which there exist constants a > 0 and
b > 0 and a positive integer n0 such that

b f (n)≤ t(n)≤ ag(n)

for n ≥ n0.

It is easy to see thatΘ( f (n),g(n)) =Ω( f (n))∩O(g(n)). It is also easy to see that
the sets Θ(0,∞) = Ω(0) = O(∞) include always set S. However, in order to be as
precise as possible, we are always looking for a minimal set containing set S. In the
case of non-homogeneous algorithms we are seeking the minimal setΘ( f (n),g(n))
containing set S. Obviously, the set Θ( f (n),g(n)) is minimal if there exist worst
and best case instances iw and ib such that t(iw,n) ∈Θ(g(n)) and t(ib,n)∈Θ( f (n)),
respectively. Recall that the set Θ(1,n) describing the complexity of algorithm
insert in Theorem 3 is minimal. Observe also that the classification of an algorithm
as homogeneous or not is not possible unless the set Θ( f (n),g(n)) describing its
complexity is minimal. As the setΘ( f (n),g(n)) is described by best and worst case
complexities, both complexities are equally important from the theoretical point of
view.

4 Additional Results and Discussion

We mentioned earlier that homogeneous algorithms contain worst and best cases.
Hence, the average complexity of a homogeneous algorithm is easily defined.
Clearly, the mean time of the algorithm on a random instance is,

t(n) =
∑i∈I(n) t(i,n)

|I(n)|
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where |I(n)| denotes the number of elements of set I(n). If the complexity of
the homogeneous algorithm is Θ(g(n)), it is natural to expect that t(n) ∈Θ(g(n)).
Indeed, this is the case.

Theorem 4. The average complexity of a homogeneous algorithm of complexity
Θ(g(n)), is alsoΘ(g(n)).

Proof. Let t(n) be the expected time to solve a random instance. Then

t(n) =
∑i∈I(n) t(i,n)

|I(n)| ∈ ∑i∈I(n)Θ(g(n))

|I(n)| =
|I(n)|Θ(g(n))

|I(n)| =Θ(g(n))

and the proof is complete. ��
Observe that this result is independent of the distribution of the instances.
So far we focused our attention on iterative algorithms. Recursive algorithm

can be homogeneous and non-homogeneous too. But how recursive homogeneous
and non-homogeneous algorithms look like? A recursive or divide and conquer
algorithm makes a fixed number of calls to itself. Therefore, if each call is made on
a problem with fixed dimension, the algorithm is homogeneous provided the work
required to solve all subproblems dominates the remaining work. On the contrary, if
the dimensions of the subproblems on which calls are made are not fixed and depend
on the instance, the algorithm might very well be non-homogeneous. Recall that
this is the case for the algorithm quicksort [12]. A recursive or divide and conquer
algorithm can be non-homogeneous if the number of calls to subproblems is not
fixed and depends on the instance. This is the case for Euclid’s algorithm computing
the greatest common divisor.
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Service Quality Evaluation in the Tourism
Industry: A SWOT Analysis Approach
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Abstract The quality evaluation of the provided tourism services constitutes the
most important issue for the viability of this particular sector and the improvement
of the total tourism product. This paper presents the results of a tourist satisfaction
survey that took place in the island of Mykonos during the period of May–
September 2009. The final sample consists of 1,026 questionnaires that were dis-
tributed to Greek and foreign tourists during their departure from the island (harbor
and airport). The main objective of this paper is to evaluate tourists’ satisfaction
and identify the strong and the weak points of the tourism services offered. These
results may help the development of a strategic plan for the quality improvement of
the overall tourism product. Beyond descriptive statistical techniques, the analysis
of the collected data is based on the multicriteria method MUSA. The method is
able to combine satisfaction importance and performance results and provides a
SWOT (Strengths-Weaknesses-Opportunities-Threats) analysis for the whole set of
the tourist satisfaction criteria. The presented analytical results reveal that the main
strong points of the offered tourist product are the fame and the natural beauties
of the island, as well as the high level of expenses. On the other hand, the most
important weak points concern the small duration of stay, as well as the low level
of satisfaction in specific service quality criteria (local transports, information, and
environment).
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1 Introduction

The tourism industry constitutes one of the most important sectors in many
local economies in Greece, mainly not only because of its constant increasing
contribution to the income of these regions but also due to the opportunities offered
for further growth [14]. The importance of tourism sector is presented in the work
of Naisbitt [17], who emphasizes that the world economy in the current century will
be dominated by three sectors: information technology, telecommunications, and
tourism.

Modern business organizations consider service quality as the most reliable
source of market information. Service quality is considered as the main determinant
of customer satisfaction, which in turn influences purchase intentions [4, 29]. The
importance of service quality evaluation through customer satisfaction measurement
is reinforced by the necessity of adopting a “continuous improvement” philosophy
and understanding customer perceptions (e.g., needs, expectations).

Generally, the main reasons for measuring customer satisfaction are summarized
in the following [8]:

• Customer satisfaction constitutes the most reliable market information. This
way, a business organization is able to evaluate its current position against
competition, and design its future plans accordingly.

• A large number of customers avoid expressing their complaints or their dissatis-
faction from the product or service provided, either due to a particular attitude or
because they are not sure that the company will perform any corrective action.

• Customer satisfaction measurement is able to identify potential market
opportunities.

• The main principles of continuous improvement require the development of a
specific customer satisfaction measurement process. This way, any improvement
action is based on standards that take into account customer expectations and
needs.

• Customer satisfaction measurement may help business organizations to under-
stand customer behavior, and in particular to identify and analyze customer
expectations, needs, and desires.

• The application of a customer satisfaction measurement program may reveal
potential differences in the service quality perceptions between the customer and
the management of the business organization.

The necessity of customer satisfaction measurement in the tourism industry is
justified by the importance of the tourism sector for local economies and the intense
competition among alternative tourism destinations that is evident in recent years.
Furthermore, tourism sector is heavily influenced by significant external factors
from the global economic environment, and it is, therefore, necessary to improve the
quality of the services offered in order to gain competitive advantages and increase
tourist loyalty levels.
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However, tourist satisfaction from a destination area is a general and ambiguous
notion, since tourism goods and services should be treated as a subset of goods
and services in general. For this reason, as noted by Yuksel [37], a large number
of researchers have studied components of experiences, which contribute to tourist
satisfaction within different tourism and hospitality contexts (e.g., guest satisfaction
with hotels and restaurant services, satisfaction with destination services, satisfac-
tion with recreational services, satisfaction with tours or cruise travel). As suggested
by Pizam et al. [24], tourist satisfaction is the result of the interaction between the
tourist’s experience at the destination area and the expectations she/he had about
that destination. This confirmation/disconfirmation approach is rather common in
tourist satisfaction research [2].

The HOLSAT model is a characteristic approach used to evaluate satisfaction
from a particular destination [31]. The model is based on the disconfirmatory
paradigm outlined before and adopts the philosophy of the SERVQUAL model
[20–22]. The main results of the HOLSAT model focus on the difference between
“expectation” and “experience” scores for each attribute, which gives a quantitative
measure of the level of satisfaction shown by the vacationers [32]. Other research
efforts in tourism management combine the disconfirmation paradigm with addi-
tional quality improvement tools, like QFD, Kano’s model, etc. [23].

Despite the context and the multivariate nature of tourist satisfaction measure-
ment, Multiple Criteria Decision Analysis (MCDA) has not been widely applied
in evaluating service quality in the tourism industry. Rozman et al. [26] applied
the DEX method, which combines traditional MCDA approaches and elements of
expert systems and machine learning, in order to assess tourist farm service quality.
An AHP model, combined with fuzzy TOPSIS, was applied by Hsu et al. [13] in a
preference analysis for tourist choice of destination in Taiwan. The MUSA method
has also been applied by Arabatzis and Grigoroudis [1] in order to examine the level
of satisfaction of the visitors of the National Park of Dadia-Lefkimi-Souflion area.

The main objective of this paper is to present an application of an MCDA
approach in tourist satisfaction measurement from a destination area. The presented
tourist satisfaction survey took place in the island of Mykonos (Greece). Moreover,
the presented study aims to demonstrate how a SWOT analysis approach may be
applied in the context of tourism management.

The island of Mykonos is located in the Central Aegean Sea and is part of the
group of islands known as the Cyclades. It is a well-known international tourist
resort, which has experienced rapid tourist development during the last 30 years.
Beyond the touristic characteristics of a traditional Greek destination (e.g., beaches,
climate, archaeological sites), Mykonos is the most cosmopolitan Greek island. It
attracts numerous celebrities and its name is connected with nightlife. These unique
characteristics affect visitors’ expectations and should be considered in the tourist
satisfaction analysis.

The paper is organized into four more sections. Section 2 briefly presents
the adopted methodology, including the development of the MUSA method and
proposed gap analysis approach. The main results of the tourist satisfaction survey
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are presented in Sect. 3, giving emphasis on the determination of the strong and
weak point of the services offered. Finally, Sect. 4 summarizes some concluding
remarks.

2 Methodology

2.1 MUSA Method

The MUSA (MUlticriteria Satisfaction Analysis) method is a multicriteria prefer-
ence disaggregation approach, which provides quantitative measures of customer
satisfaction considering the qualitative form of customers’ judgments [6, 28]. The
main objective of the MUSA method is the aggregation of individual judgments
into a collective value function, assuming that client’s global satisfaction depends
on a set of n criteria or variables representing service characteristic dimensions.
This set of criteria is denoted as X = {X1,X2, . . . ,Xn}, where a particular criterion i
is represented as a monotonic variable Xi.

The MUSA method infers an additive collective value function Y ∗ and a set of
partial satisfaction functions X∗

i , given customer’s global satisfaction Y and partial
satisfaction Xi according to criterion i (ordinal scaling). The main objective of the
method is to achieve the maximum consistency between the value function Y ∗ and
the customers’ judgments Y . Based on the modeling of preference disaggregation
approach, the ordinal regression equation becomes as follows:

Ỹ ∗ =
n

∑
i=1

biX
∗
i −σ++σ− with

n

∑
i=1

bi = 1

where Ỹ ∗ is the estimation of Y ∗, bi is the weight of the ith criterion, n is the
number of criteria, and σ+, σ− are the overestimation and the underestimation
errors, respectively.

The most important results provided by the MUSA method are the estimated
global and partial value functions, the criteria weights, and the average satisfaction,
demanding, and improvement indices. In particular, regarding performance and
importance results, the following should be noted:

• Criteria weights: They represent the relative importance of the assessed sat-
isfaction dimensions. Their properties are also determined in the context of
multicriteria analysis (e.g., the weights are value trade-offs among the criteria).
The decision whether a satisfaction dimension is considered important by the
customers is also based on the number of assessed criteria.

• Average satisfaction indices: They indicate the level of customers satisfaction in
a range of 0–100%. They can be considered as the basic performance norms,
since the average satisfaction indices are basically the mean value of the global
and partial value functions.
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• Average demanding indices: These indices are calculated according to the shape
of global and partial value functions, which indicate customers’ demanding level.
They represent the average deviation of the estimated value functions from a
“normal” (linear) function. The average global and partial demanding indices,
D and Di, respectively, are normalized in the interval [−1, 1] and the following
cases hold:

– Neutral customers (D or Di ∈ [−0.33,+0.33]): Their value function has an
approximately linear shape. This means that the more satisfied they express to
be, the higher the percentage of their fulfilled expectations is.

– Demanding customers (D or Di ∈ [+0.33,+1.00]): Their value function is
convex. This means that they are not really satisfied, unless they receive the
best quality level.

– Non-demanding customers (D or Di ∈ [−1.00,−0.33]): Their value function
is concave. This means that they express satisfaction although only a small
portion of their expectations is fulfilled.

These indices are used in customer behavior analysis, but they may also indicate
the extent of company’s improvement efforts: the higher the value of the
demanding index, the more the satisfaction level should be improved in order
to fulfill customers’ expectations.

• Average improvement indices: They represent the improvement efforts and they
depend on the importance of satisfaction criteria and their contribution to
dissatisfaction as well. These indices are normalized in the interval [0,1], and
they indicate the improvement margins on a specific criterion.

Detailed presentation of the mathematical development of the MUSA method
may be found in [6, 8, 28], while several applications to business organizations can
be found in the literature [7, 9, 10, 16, 25, 28].

2.2 SWOT Analysis

SWOT analysis is widely used in management science to identify strengths,
weaknesses, opportunities, and threats when studying a particular product/service
or an entire company/organization. In service quality literature, SWOT analysis
appears either as gap analysis or as performance-importance comparison [8]. In
both cases, the main objective is to identify the quality gap of the service offered,
i.e., identify the gap between what customers want and what customers get.

The MUSA method, using the previously described results, provides additional
diagrams that may help in determining improvement actions. In particular, action
diagrams are developed by combining weights and average satisfaction indices.
These diagrams indicate the strong and the weak points of customer satisfaction,
and define the required improvement efforts. Each of these diagrams is divided into
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Fig. 1 Action diagram [8]

four quadrants, according to performance (high/low) and importance (high/low),
which are used to classify actions (Fig. 1):

• Status quo (low performance and low importance): Generally, no action is
required.

• Leverage opportunity (high performance/high importance): These areas can be
used as advantage against competition.

• Transfer resources (high performance/low importance): Company’s resources
may be better used elsewhere.

• Action opportunity (low performance/high importance): These are the criteria
that need attention.

These diagrams are similar to SWOT maps, since status quo quadrant refers
to threats, leverage opportunity quadrant refers to strengths, transfer resources
corresponds to opportunities, and action opportunity quadrant corresponds to
weaknesses. In addition, they appear in the service quality literature as importance-
performance analysis [5, 18] or gap analysis [12, 34, 36]. Similar gap analysis tools
have been widely used in tourism research, mainly for the evaluation of hotel
and restaurant services and facilities [14, 19], and the measurement of visitors
satisfaction [11, 27, 30, 35].

MUSA provides also another type of diagrams, the improvement diagrams,
which take into account customers’ demanding level and are used in order to rank
improvement priorities (Fig. 2). Similar to the previous ones, each of these diagrams
is divided into four quadrants according to the demanding level (high/low), and
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Fig. 2 Improvement diagram [8]

the effectiveness (high/low) of the considered satisfaction dimensions. Given a
particular improvement diagram, the first priority should be given to satisfaction
criteria having large improvement margins while requiring small effort and the last
priority should be given to satisfaction dimensions with low dissatisfaction levels
that need substantial effort to improve. All the remaining satisfaction dimensions
having either a low demanding index or a high improvement index should be
considered as second priorities.

3 Survey and Results

3.1 Satisfaction Criteria and Questionnaire

The most important phase in the implementation of the MUSA model is the
assessment of the set of satisfaction criteria and the definition of the value hierarchy.
Based on the previous applications of the MUSA method and customer satisfaction
surveys in the tourism sector [1, 14, 24, 33, 37], the following set of satisfaction
criteria was developed for this survey:

1. Accommodation: This criterion includes all the characteristics of accommodation
such as the offered service, the facilities, the staff, the prices, etc.
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2. Food/Cuisine: This criterion refers to the local cuisine and the food offered inside
or outside the accommodation facilities. It includes the food quality, the variety
of dishes, the environment (decoration, aesthetics), the provided services, the
prices, etc.

3. Natural environment: This criterion concerns the natural environment, the
climatic conditions, as well as the local architecture.

4. Urban environment: This criterion relates to the urban environment and the
infrastructures of the island. It includes the cleanliness in public spaces, the noise
pollution, the roads and the traffic conditions, the available parking, etc.

5. Hospitality: This criterion relates to the hospitality, behavior, and friendliness of
the locals.

6. Information: The information available to tourists though desks, kiosks, signs,
and maps is included in this criterion.

7. Entertainment/Recreation: This criterion refers to the entertainment/recreation
choices offered to tourists during their stay. It includes the available choices,
the offered services, the venues, the prices, etc.

8. Transportation (from and to island): This particular criterion concerns the
transportation from and to the island. It includes all the characteristics of the
provided services in the island’s port and airport.

9. Local transportation means: This last criterion concerns the local transportation
means, i.e. the bus and taxi services, rented cars, etc. It includes all the
characteristics of the provided services (availability, service from personnel,
prices, etc.).

The final questionnaire was developed based on the aforementioned satisfaction
criteria, for which tourists were asked to express their satisfaction using a 5-point
Likert-type ordinal scale (dissatisfied, somehow dissatisfied, neither satisfied nor
dissatisfied, somehow satisfied, satisfied). The first part of the questionnaire in-
cluded questions about the tourist’s personal characteristics (sex, age, income,
purpose of trip). The second part was devoted to travel information (number and
period of previous visits, alternative destination examined, reasons for choosing
the island, sources of information), while the third part included questions about
accommodation, length of stay, and expenses. The fourth part of the questionnaire
concerned the satisfaction criteria, while the fifth and last part of the questionnaire
contained loyalty-related questions.

3.2 Sample and Tourists’ Profile

The final sample consisted of 1,026 questionnaires that were distributed to Greek
and foreign tourists during their departure from the island (harbor and airport). The
questionnaires were collected through personal interviews during summer 2009.

In order to formulate a customer profile, tourist’s characteristics were studied.
The sample was almost equally distributed between males and females (male 46.5%,
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Fig. 3 Nationality groups

female 53.5%). In addition, the majority of the visitors were less than 40 years old
(74.8%), while the group of older visitors was very small (less than 4% were older
than 60 years).

Thirty one percent of the sample were Greek tourists, while the remaining 69%
was constituted of foreign visitors mainly from the USA, Australia, Italy, Spain,
Canada, and Brazil. Figure 3 shows that the distribution of the sample in the different
nationalities was relatively high. Generally, beyond the Greek tourists, there was no
other nationality group larger than approximately 10% of the sample, while almost
50 different nationality groups were identified in the final sample. Furthermore, it
seems that the length of stay was relatively low, since the majority of tourists spent
1−3 nights in the island (almost 55%). As shown in Fig. 4, only 8% of the sample
stayed more than 1 week in the island.

Additional analyses regarding other tourists’ personal characteristics were also
performed in order to develop a complete profile for the visitors (see more details
in [33]). However, it seems that the most characteristic tourists’ segments with
distinguished preferences and behavior are formulated based on the nationality
(Greek and foreign visitors).

3.3 Satisfaction Analysis

The results of the MUSA method reveal that the tourists give particular importance
in the criterion of entertainment/recreation (weight 18.53%), while the importance
of urban environment and transportation criteria is relatively lower (less than
10%). Moreover, it seems that generally, the visitors are relatively satisfied from
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Fig. 4 Length of stay
(number of nights spent)

Table 1 Average satisfaction indices and criteria weights

Satisfaction criteria Weight (%)
Average satisfaction
index (%)

Accommodation 10.49 82.85
Food/cuisine 10.90 80.87
Natural environment 11.11 89.11
Urban environment 09.13 72.61
Hospitality 10.12 80.19
Information 11.11 77.87
Entertainment/recreation 18.53 90.49
Transportation (airport/harbor) 09.90 80.48
Local transportation means 08.70 68.55
Overall satisfaction 86.40

their vacations in the island, since the estimated overall average satisfaction index
is 86.40%. Although this overall satisfaction level is relatively high, significant
improvement margins still exist.

Regarding the detailed satisfaction criteria, as Table 1 indicates, there are
important differences regarding tourist satisfaction level. In particular, the results
of Table 1 reveal the following:

1. Tourists seem to be quite satisfied by the criteria of entertainment/recreation and
natural environment (the average satisfaction indices are approximately 90%),
which are also the most important satisfaction dimensions.

2. In contrast, the level of tourist satisfaction is quite low regarding the criteria of
environment, information, and local transportation (average satisfaction indices
70–78%).
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Fig. 5 Action diagram for the tourist satisfaction criteria

3. The rest of criteria present a medium level of satisfaction (80–83%), which is
relatively lower than the average total satisfaction index.

Figure 5 displays the action diagram for the whole sample, which is used in
order to develop a SWOT analysis map. This diagram indicates that the criterion
of entertainment/recreation is the strongest point of the offered tourist product.
Visitors are particularly satisfied by this characteristic, which they also consider very
important. In addition, there are no satisfaction criteria in the action opportunity area
(high importance and low satisfaction/performance), thus, no critical characteristics
exist requiring for direct improvement actions. The criteria of urban environment
(cleanliness in public spaces, roads, noise pollution, parking, etc.) and the local
transportation means are the main threats of the tourist product, since they present
a relatively low satisfaction level. They are currently considered as a threat and not
as a weak point because of their lower importance. For the rest of the satisfaction
criteria, the categorization is not easy, since they present a relatively medium
satisfaction and importance level. However, it seems that the natural environment
is a potentially strong point, while the information criterion is a potentially
critical characteristic. In general, it seems that there is no “gap” regarding tourist
satisfaction (i.e., what tourists want and what tourists get), since visitors seem to
be more satisfied by those characteristics that they consider as important. These
findings are consistent with the results from previous studies (see, for example, [3]).

Similarly, Fig. 6 displays the improvement diagram for the whole sample.
This diagram takes into account the demanding level of tourists, as well as the
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Fig. 6 Improvement diagram for the tourist satisfaction criteria

effectiveness of potential improvement actions. The most important results of Fig. 6
reveal the following:

1. Improvement actions should be focused firstly to information and food/cuisine,
which are the most important satisfaction criteria with the lowest performance
(see also Fig. 5).

2. The second priority should concern the improvement of the urban environment
and the local transportation means, which have a relatively lower performance.
Alternatively, further improvement action may concern the natural environment
and the entertainment/recreation criteria.

3.4 Statistical Analyses

This section presents the results of additional statistical analyses in selected
variables of the questionnaire. The results are based on a series of correlation
analyses (i.e., chi-square tests), which have been used for identifying particular
tourist clusters with distinctive preferences and expectations in relation to the
total set.

Based on the results of Table 2, it seems that previous visit is related to
nationality. In particular, the Greek tourists are the most loyal visitors, while there
are many visitors from North and Central Europe, who had already visited the island.
The 80−95% of the remaining nationalities was visiting the island for the first time.
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Table 2 Results of chi-square tests for tourist characteristics

Variables Chi-square df p-level

Previous visit Nationality 298.353 7 0.000
Income 12.458 3 0.006
Age 007.526 3 0.057

Alternative destinations Nationality 41.497 7 0.000
Age 10.912 3 0.012
Income 005.173 3 0.160
Previous visit 14.378 1 0.000

Length of stay Nationality 252.472 28 0.000
Age 24.185 12 0.019
Income 20.428 12 0.059
Previous visit 57.296 4 0.000

Expenses Nationality 78.479 21 0.000
Age 15.751 9 0.072
Income 59.879 9 0.000
Previous visit 26.485 3 0.000

Overall satisfaction Age 17.473 12 0.133
Income 24.458 12 0.018
Previous visit 16.712 4 0.002
Length of stay 33.228 16 0.009
Expenses 19.218 12 0.083

Some nationalities appear more loyal regarding the examination of alternative
destinations (Table 2). In particular, Greeks, and Asians, in general, do not examine
alternative destinations when deciding their holidays. Similarly, visitors over 60
years appear more loyal, since they do not examine other alternatives when choosing
their holiday destination. Generally, there is no strong relation between income and
examination of alternative destinations. Moreover, as expected, the tourists who had
already visited the island were more loyal, regarding this particular characteristic.

Similarly, the length of stay is related to nationality (Table 2). Additional
analyses indicated that tourists who stayed more days on the island were mostly
Italians, Greeks and visitors from North and Central Europe. In contrast, Asians and
Australians-New Zealanders were the tourists with the smallest length of stay. Age
and length of stay do not seem to be strongly related, although the older tourists
segment (more than 40 years old) affects the overall average length of stay of the
whole sample, which appears rather low. Furthermore, there does not seem to be
any strong relation between income and length of stay. On the contrary, a previous
visit to the island significantly affects the duration of stay, since repeated visitors
stay more days.

As Table 2 indicates, there is no significant relation between the level of expenses
and the age of tourists. Moreover, nationality appears to affect the amount of
expenses that tourists spent (except for tickets and accommodations), since the
highest expenses are made by European tourists (Italy, North, and Central Europe).
In contrast, the amount of expenditures is related to the annual family income of
visitors, while repeated visitors seem to spend more, as expected.
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Finally, the chi-square tests between overall satisfaction and several tourist
characteristics are presented in Table 2. The results of these tests indicate that
there is no strong relation between overall satisfaction and age or expenses. On the
other hand, repeated tourists appear more satisfied, while a negative relation appears
between overall satisfaction and income or length of stay. These results constitute a
significant threat for the tourism services of the island.

Additional analyses, based on cross-tables, study the relation between nationality
and reasons for choosing the island. The main reasons for Greeks and Italians
include “service quality” and “entertainment-recreation,” while “climate-natural
beauty,” “historical-archaeological monuments,” and “relaxation” do not seem to
play an important role. On the other hand, Europeans seem to choose the island
for its “climate-natural beauties,” “service quality,” and “historical-architectural
monuments,” while “value for money” does not seem important. The reputation
of the island seems to play an important role for groups originating from the
outermost countries (North America, Australia, New Zealand, Asia, and Latin
America). In general, it seems that there is no relation between age of income
and reasons for choosing the island, although monuments and price/value appear
important for the older and the younger tourists, respectively. Finally, repeated
tourists give importance to service quality and entertainment, while first-time
visitors give relatively greater emphasis on the historical-archaeological monuments
and the fame of the island.

Regarding the sources of information, there is a clear grouping among Greek and
foreign tourists. The Greek visitors prefer to collect information either from past
personal experience, or from other media (magazines, newspapers, TV). Internet and
tourist offices (tour operators) do not constitute a preferred source of information
for this group. The opposite is observed in the case of foreign tourists. In addition,
younger tourists prefer Internet from friends/relatives, while older visitors prefer
personal experiences and tourist offices as sources of information.

Table 3 presents the chi-square tests regarding several loyalty measures included
in the questionnaire. These tests indicate that the intention to repeat the visit is
negatively related to age and previous visit, and positively related to expenses.

Similarly, the intention to recommend the island to friends/relatives is strongly
related to age, income, and expenses (Table 3). In contrast, repeated visitors or
tourists who stay longer do not seem to be more loyal according to this variable.

Table 3 shows that the confirmation of expectations is not related to the expenses
or the length of stay, while repeated tourists, in general, think that their holidays
were better or somehow better than expected. In addition a weak relation may be
observed between the confirmation of expectations and age or income.

Finally, it should be emphasized that overall satisfaction is strongly related to
all three loyalty measures (revisit intention, recommendation, and confirmation of
expectations), fact that is consistent with the relative literature (see, for example,
[8, 34]).

Consequently, it seems that nationality is the major discriminant variable that
assesses the distinguished tourist segments. This is confirmed by several other
studies, which emphasize that tourist perceptions of a destination or hospitality
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Table 3 Results of chi-square tests for loyalty measures

Variables Chi-square df p-level

Revisit intention Age 027.594 12 0.006
Income 012.736 12 0.389
Previous visit 039.220 04 0.000
Length of stay 021.976 16 0.144
Expenses 028.834 12 0.004
Overall satisfaction 283.812 16 0.000

Recommendation Age 030.407 12 0.002
Income 039.847 12 0.000
Previous visit 006.504 04 0.165
Length of stay 017.373 16 0.362
Expenses 027.042 12 0.008
Overall satisfaction 627.969 16 0.000

Confirmation of expectations Age 023.809 12 0.022
Income 025.522 12 0.013
Previous visit 034.365 04 0.000
Length of stay 017.371 16 0.362
Expenses 019.139 12 0.085
Overall satisfaction 508.674 16 0.000

businesses may vary according to the countries of origin (see, for example, [15]).
These results are justified by the different languages, food consumption, and
other national cultural differences (including values, ideas, attitudes, or symbols),
and they can be used in the decision-making process of destination management
regarding positioning and market segmentation strategies.

4 Conclusions

This paper presents an application of the multicriteria method MUSA for the
service quality evaluation in the tourism industry. The results are based on a tourist
satisfaction survey that took place in the island of Mykonos aiming at evaluating the
tourists’ satisfaction and identifying the strong and the weak points of the offered
tourism services.

Combining satisfaction importance and performance results and taking into
account additional results (tourist profiling, potential tourist segments, etc.) the
study showed that it is possible to perform a SWOT analysis for the totally offered
tourism product. In this context, the SWOT analysis revealed the following:

• The strong points (competitive advantages) of the total tourism product are the
fame and the natural environment (natural beauties, climate, local architecture)
of the island. The visitors seem to be loyal (it is more likely to revisit the island
and/or suggest it to friends/relatives), and their expenses during their vacations
are relatively high.
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• The short period of stay on the island is the most important weak point of the
tourism product. Another weak point concerns the relatively low satisfaction that
is observed in specific characteristics such as the urban environment and the local
transportation means.

• The most important threats include the intense competition from other Greek
islands, as well as the high level of expectations created by the fame of the island.
Another potential threat is the low satisfaction of repeated visitors.

• The opportunities concern the historical-archaeological monuments and the
quality of provided services. These characteristics are not considered important
by tourists, although they can be the competitive advantages of the island, due to
their high performance.

The presented study may also reveal the advantages of the MCDA approaches
in tourist satisfaction evaluation problems. In particular, the results provided by
the MUSA method are able to give a complete set of tourist/customer behavior
information. These results may help destination management organizations to
analyze the problem of tourist satisfaction evaluation and determine potential
improvement actions. Moreover, it should be emphasized that the MUSA method
fully respects the qualitative form of input information (i.e., tourists’ judgments on
the defined satisfaction criteria). This way, the ordinal variables are not arbitrary
quantified (this quantification is rather an output of the method).

Consequently, the MUSA method provides an important alternative for studying
service quality gaps and performing SWOT analysis. Following service quality
literature, SWOT analysis in the MUSA method is performed using a series of action
(performance-importance) diagrams, which are able to analyze tourist perceptions
and determine the strong and weak points of a destination.

References

1. Arabatzis, G., Grigoroudis, E.: Visitors’ satisfaction, perceptions and gap analysis: the case of
Dadia-Lefkimi-Souflion National park. Forest Pol. Econ. 12(3), 163–172 (2010)

2. Bowen, D., Clarke, J.: Reflections on tourist satisfaction research: past, present and future. J.
Vacation Market. 8(4), 297–308 (2002)

3. Buhalis, D.: Tourism in Greece: strategic analysis and challenges. Curr. Issues Tourism 4(5),
440–480 (2001)

4. De Ruyter, J.C., Bloemer, J.M.A., Peters, P.: Merging service quality and service satisfaction:
An empirical test of an integrative framework. J. Econ. Psychol. 18(4), 387–406 (1997)

5. Dutka, A.: AMA Handbook of Customer Satisfaction: A Complete Guide to Research,
Planning and Implementation. NTC Business Books, Illinois (1995)

6. Grigoroudis, E., Siskos, Y.: Preference disaggregation for measuring and analysing customer
satisfaction: the MUSA method. Eur. J. Oper. Res. 143(1), 148–170 (2002)

7. Grigoroudis, E., Siskos, Y.: A survey of customer satisfaction barometers: results from the
transportation-communications sector. Eur. J. Oper. Res. 152(2), 334–353 (2004)

8. Grigoroudis, E., Siskos, Y.: Customer Satisfaction Evaluation: Methods for Measuring and
Implementing Service Quality. Springer, New York (2010)



Service Quality Evaluation in the Tourism Industry 265

9. Grigoroudis, E., Siskos, Y., Saurais, O.: TELOS: a customer satisfaction evaluation software.
Comp. Oper. Res. 27(7–8), 799–817 (2000)

10. Grigoroudis, E., Politis, Y., Siskos, Y. Satisfaction benchmarking and customer classification:
an application to the branches of a banking organization. Int. Trans. Opera. Res. 9(5), 599–618
(2002)

11. Hanim, N., Salleh, M., Othman, R.: Importance-satisfaction analysis for Tioman Island Marine
Park, MPRA paper, 22679, Munich University Library (2010)

12. Hill, N.: Handbook of Customer Satisfaction Measurement. Gower Publishing, Hampshire
(1996)

13. Hsu, T.-K., Tsai, Y.-F., Wu, H.-H.: The preference analysis for tourist choice of destination:
A case study of Taiwan. Tourism Manag. 30(2), 288–297 (2009)

14. Karakitsiou, A., Mavrommati, A., Migdalas, A., Tsiakali, K.: Customer satisfaction evaluation
in the tourism industry: the case of Chania. Found. Comput. Decis. Sci. 32(2), 111–124 (2007)

15. Kozak, M.: Comparative assessment of tourist satisfaction with destinations across two
nationalities. Tourism Manag. 22(4), 391–401 (2001)

16. Mihelis, G., Grigoroudis, E., Siskos, Y., Politis, Y., Malandrakis, Y.: Customer satisfaction
measurement in the private bank sector. Eur. J. Oper. Res. 130(2), 347–360 (2001)

17. Naisbitt, J.: Global Paradox. Nicholas Brealey Publishing, London (1995)
18. Naumann, E., Giel, K.: Customer Satisfaction Measurement and Management. Thomson

Executive Press, Cincinnati (1995)
19. Oh, H.: Revisiting importance-performance analysis. Tourism Manag. 22(6), 617–627 (2001)
20. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A conceptual model of service quality and its

implications for future research. J. Market. 49(4), 41–50 (1985)
21. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: SERVQUAL: a multiple item scale for measur-

ing consumer perceptions of service quality. J. Retailing 64(1), 14–40 (1988)
22. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: Refinement and reassessment of the

SERVQUAL scale. J. Retailing 67(4), 420–450 (1991)
23. Pawitra, T.A., Tan, K.C.: Tourist satisfaction in Singapore: a perspective from Indonesian

tourists. Manag. Serv. Qual. 13(5), 399–411 (2003)
24. Pizam, A., Neumann, Y., Reichel, A.: Dimensions of tourist satisfaction with a destination area.

Ann. Tourism Res. 5(3), 314–322 (1978)
25. Politis, Y., Siskos, Y.: Multicriteria methodology for the evaluation of a Greek engineering

department. Eur. J. Oper. Res. 156(1), 223–240 (2004)
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Correcting Certain Estimation Methods
for the Generalized Pareto Distribution

Jelena Jocković

Abstract Generalized Pareto distributions (GPD) are widely used for modeling
excesses over high thresholds. When its shape parameter is positive, the GPD
has a finite upper bound that is a function of the distribution parameters. A well-
known problem when estimating GPD parameters is inconsistency with the sample
data, which is that one or more sample observations exceed the estimated upper
bound. This paper proposes a new, general technique to overcome the inconsistency
problem and improve performance of the existing GPD estimation methods.
The technique is successfully applied to method-of-moments and method-of-
probability-weighted-moments estimates, and, due to its flexibility, can be also
applied to other estimation methods and distributions.

Key words Generalized Pareto distribution • Feasible estimates • Method of
moments • Method of probability weighted moments

1 Introduction

The generalized Pareto distribution with shape parameter γ and scale parameter
σ (denoted GPD(γ,σ)) is the distribution of a random variable X defined by
X = σ(1− e−γY )/γ , where Y is a random variable with the standard exponential
distribution. GPD(γ,σ) has the following cumulative distribution function
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Fγ,σ (x) =

{
1− (

1− γ
σ x

) 1
γ , γ �= 0 , σ > 0

1− exp
(− x

σ
)
, γ = 0 , σ > 0 .

(1)

The range is
{

0 ≤ x <+∞ , γ ≤ 0

0 ≤ x ≤ σ
γ , γ > 0 .

(2)

Many well-known probability distributions belong to GPD family. For example,
GPD(0,σ ) is reduced to the exponential distribution with mean equal to σ ,
GPD(1,σ ) is the uniform U [0,σ ] distribution and for γ < 0, GPD reduces to the
Pareto distribution.

Generalized Pareto distributions are the only continuous distribution functions
that are stable with respect to excess over threshold operations (POT-stable).
Precisely, if a random variable X has a GPD(γ,σ) distribution, then the conditional
distribution of X −u given X > u is GPD(γ,σ−γu) [3,5,19]. POT-stability has a key
role in the POT-approach to modeling extremes, which is based on fitting the GPD
to the distribution of the excesses over a sufficiently high threshold. POT-framework
was introduced through papers Balkema and de Haan [2] and Pickands [15]. It has
numerous applications in hydrology [4, 17], insurance and finance [9, 17], ecology
[4], and other fields.

During the last 30 years, several research papers have been dedicated to the
problem of estimating GPD parameters and quantiles (see [3, 4, 8, 10–12, 14, 16]).
A general review of this subject, which still attracts considerable attention, is given
in [5]. Recent contributions to the field are given in [13, 19].

The present article proposes a correction technique for two-parameter GPD
estimation methods, in cases when these methods are infeasible, i.e. when the
estimated range fails to contain all observations. It is applied to method of moments
(MOM) and method of probability weighted moments (PWM), which are known to
suffer from the inconsistency problem. Performance of these corrected methods is
evaluated under the simulation study, and a real data example is provided.

The paper is organized as follows: definitions and main properties of MOM and
PWM estimation methods are given in Sect. 2, proposed corrections are derived in
Sect. 3, simulation results are given in Sect. 4, an application to real data in Sect. 5,
and conclusions in Sect. 6.

2 Estimating GPD Parameters and Quantiles

Method of moments and method of probability weighted moments are among the
simplest and the most traditional methods for estimating GPD parameters and
quantiles, as well as univariate distribution parameters in general.
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2.1 Method of Moments

Moments of the two-parameter GPD(γ,σ) random variable X are defined as

E

[(
1− γ X

σ

)r]
=

1
1+ rγ

, 1+ rγ > 0 , (3)

which leads to

E (Xr) = r!
σ r

(−γ)r+1

Γ
(
− 1
γ − r

)

Γ
(

1− 1
γ

) , γ >−1
r
, (4)

with Γ (·) being the Gamma function. From (4) follows that the mean value and
variance of the GPD(γ,σ ) are

E(X) =
σ

1+ γ
, γ >−1 , (5)

and

VaR(X) =
σ2

(1+ γ)2(1+ 2γ)
, γ >−1

2
. (6)

Let x1,x2, . . . ,xn be a random sample from GPD(γ,σ) and let x and s2 be the
sample mean and sample variance, respectively. MOM estimates for the parameters
(γ,σ ), defined by Hosking and Wallis [11], are obtained by replacing (5) and (6)
with their sample equivalents as follows:

γ̂MOM =
1
2

(
x2

s2 − 1

)
and σ̂MOM =

1
2

x

(
x2

s2 + 1

)
. (7)

MOM estimates (γ̂MOM, σ̂MOM) exist if γ > −0.5. According to [11], they are
asymptotically normal for γ >−0.25.

2.2 Method of Probability Weighted Moments

Probability weighted moments of a random variable X with cumulative distribution
function F are given by

Mp,r,s = E[X p(F(X))r(1−F(X))s] , p,r,s ∈ R . (8)
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In case of the two-parameter GPD(γ,σ) random variable X , there are simpler
relations, given by

M1,0,s = E[X(1−F(X))s] =
σ

(s+ 1)(s+ 1+ γ)
, γ >−1 , s = 0,1,2, . . . (9)

Let x1:n ≤ x2:n ≤ ·· · ≤ xn:n be a sorted random sample from GPD(γ,σ) and let

ak =
1
n

n

∑
j=1

(1− p j:n)
kx j:n with p j:n =

j− 0.35
n

. (10)

PWM estimates for γ and σ , introduced by Greenwood et al. [10], obtained by
substituting experessions (9) with their sample equivalents (10), are

γ̂PWM =
a0

a0 − 2a1
− 2 and σ̂PWM =

2a0a1

a0 − 2a1
. (11)

According to [10, 11], estimates (γ̂PWM, σ̂PWM) are consistent and asymptotically
normal for γ >−0.5.

2.3 Estimating GPD Quantiles

A problem that is closely related to fitting the GPD to data is estimating quantiles of
the distribution. Quantiles of the GPD(γ,σ), given in terms of the parameters, are

x(F) =

⎧
⎨

⎩

σ
γ
(1− (1−F)γ ), γ �= 0

−σ log(1−F), γ = 0 .
(12)

A quantile estimator, x̂(F) is obtained by substituting estimators for shape and scale
parameters, γ̂ and σ̂ , in (12).

3 Inconsistency with the Data and Correction Techniques

When γ > 0, the right endpoint of the support of GPD is σ/γ, i.e. depending on its
shape and scale parameters. GPD estimation methods sometimes produce estimates
which are inconsistent with the observed data, i.e. one or more sample observations
exceed the estimated right endpoint. This problem occurs very often for MOM
and PWM estimation methods, as pointed out by Dupuis [6]. The problem is also
addressed in [3], and a detailed simulation study is given in [1]. Despite the existence
of new and efficient estimation techniques, improving these two methods is valuable
for their simplicity and computational speed.
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A special type of inconsistency occurs when the estimated shape parameter is
negative and there is a reason to believe (visual methods, some prior information that
has become available, the nature of the problem itself . . . ) that it is really positive.

A way to overcome the infeasibility of MOM and PWM methods by introducing
a simple auxiliary constraint is proposed in [8]. Shape parameters obtained in this
way are always feasible and more efficient (in terms of bias and root mean squared
error (RMSE)) than the original methods. The correction technique proposed in the
present paper starts from a similar idea. However, it is more general (can be also
applied to other estimation methods and other distributions) and can reduce the bias
and RMSE of the shape and the scale parameter at the same time, which was not the
case with the technique proposed in [8].

3.1 Proposed Corrections

Let x1:n ≤ x2:n ≤ ·· · ≤ xn:n be a sorted random sample from the GPD, whose
parameters need to be estimated. Let γ̂ and σ̂ be the shape and scale parameter
estimates obtained with a given estimation method, and suppose that inconsistency
exists, i.e. γ̂ > 0 and xn:n > σ̂/γ̂. The goal is to find estimates for the scale and shape
parameter, σ̃ and γ̃ , such that σ̃/γ̃ ≥ xn:n.
Estimates γ̃ and σ̃ are defined as

σ̃ = σ̂ +α p , γ̃ = γ̂− (1−α)p , α ∈ R . (13)

If the condition

γ̂− (1−α)p > 0 (14)

holds, then from the inequality

σ̂ +α p
γ̂− (1−α)p

≥ xn:n , (15)

follows

p ≥ xn:nγ̂− σ̂
α+(1−α)xn:n

, if α+(1−α)xn:n > 0 , (16a)

p ≤ xn:nγ̂− σ̂
α+(1−α)xn:n

, if α+(1−α)xn:n < 0 . (16b)

Taking

p =
xn:nγ̂− σ̂

α+(1−α)xn:n
(17)

solves the inconsistency problem in both cases.
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Inequality (14), with p given by (17), holds for any γ̂ > 0, if

αγ̂+(1−α)σ̂ > 0 , (18)

which is the condition for the proposed correction to be valid.
Condition (18) holds for

α ∈
(
− σ̂

| σ̂ − γ̂ | ,
σ̂

| σ̂ − γ̂ |
)

, γ̂ �= σ̂ . (19)

In case γ̂ < 0 (“falsely” negative shape parameter) corrected estimates have the same
form.

Intuitively, the purpose of the parameter α is to control which of the estimates
(γ̂ or σ̂ ) will be changed “more”. “Natural” choices for α belong to the interval
[0,1]. However, it was demonstrated (see Sect. 4) that some other choices from the
interval (19) produce estimates with smaller bias and RMSE.

It is also possible to introduce another parameter, β , indicating the level of the
correction, i.e. how far the largest observation will be from the newly estimated right
endpoint. In that case, corrected estimates satisfy the equality

σ̃
γ̃
=

σ̂ +α p
γ̂− (1−α)p

= βxn:n , with β ≥ 1 . (20)

The overall estimates of the scale and shape parameter are now given by

σ̃ =

{
σ̂ +α p , if xn:nγ̂− σ̂ > 0 and γ̂ > 0 , or γ̂ < 0

σ̂ , otherwise ,
(21a)

γ̃ =

{
γ̂− (1−α)p, if xn:nγ̂− σ̂ > 0 and γ̂ > 0, or γ̂ < 0

γ̂, otherwise ,
(21b)

with

p =
β γ̂xn:n − σ̂

α+(1−α)βxn:n
, and β ≥ 1 . (22)

The condition γ̂ < 0 is optional. If it is removed, negative estimates of the shape
parameter will not be corrected.
Some properties of the corrected estimates are:

1. If α = 0, the scale parameter is estimated with the original (uncorrected) method
and the inconsistency is removed. For β = 1 this is the hybrid estimator proposed
in [8].

2. If α = 1, the shape parameter is estimated with the original method and
inconsistency is removed.

3. If xn:nγ̂ − σ̂ < 0 (there is no inconsistency), the correction is not applied. Both
parameters are estimated with the original method.
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4 Simulation Results

In order to find adequate α values from the interval (19) for correcting MOM and
PWM estimation methods, parameter α was defined as

α =

⎧
⎨

⎩
iσ̂ , γ̂ = σ̂
max

{
iσ̂ , j σ̂

|σ̂−γ̂|
}
, γ̂ �= σ̂ ,

(23)

with i, j ∈ {−1,−0.9,−0.8, . . .,0.8,0.9,1}, and γ̂, σ̂ being the estimates obtained
with the original MOM or PWM methods. The term iσ̂ is added to penalize against
very large absolute values of α in cases when σ̂ is close to γ̂ . Parameter β is defined
to be in [1,2].

After performing a large number of Monte Carlo experiments with simulated
GPD data, it was noticed that acceptable α values are obtained for i, j ≤ 0. They
decrease both bias and RMSE of parameter estimates. Furthermore, they perform
well even for extremely small, or extremely large values of σ . Values of β in the
range [1,1.5] seem to work good.

This part of the study is not included in the text, for space-saving purposes. In
the second stage, a detailed simulation study was performed for particular α and β
choices. Parameter α is defined as

α =

⎧
⎨

⎩
−0.5σ̂ , γ̂ = σ̂
max

{
−0.5σ̂ ,− 0.9σ̂

|σ̂−γ̂|
}
, γ̂ �= σ̂ ,

(24)

which was obtained by randomly choosing (i, j) pair from the acceptable range.

4.1 Simulation Study for Particular α and β Choices

For checking the performance of the proposed corrections for MOM and PWM
estimation methods, 1,000 samples from GPD(γ,σ) are generated, for each
combination (n,γ,σ ,β ) of sample sizes n∈ {15,50,100}, distribution para-
meters γ ∈ {0.2,0.4,0.6,0.8,1,2}, σ ∈ {0.1,0.2,0.4,0.6,0.8,1,2,5,10,20}, and
β ∈ {1,1.01,1.5}. Parameter α is defined as in (24). The original MOM and PWM
estimates are compared with corrected methods for the following properties: shape
parameter bias and RMSE, scale parameter bias and RMSE, bias and RMSE of
99% and 99.9% quantiles (scaled by the true values of quantiles being estimated),
and number of datasets where the inconsistency occured.

Simulation results can be summarized as follows:

1. Number of datasets where inconsistency occurred (out of 1,000), obtained in this
study (see Table 1), is in agreement with the results reported in [1, 3, 8].
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Table 1 Number of datasets where inconsistency occurred for MOM and PWM
methods

MOM MOM MOM
γ n 15 PWM 50 PWM 100 PWM

0.2 87 (134) 106 (209) 34 (49) 94 (109) 45 (7) 86 (37)
0.4 129 (44) 136 (102) 163 (1) 201 (16) 166 (0) 206 (0)
0.6 228 (11) 240 (32) 306 (0) 325 (0) 302 (0) 322 (0)
0.8 283 (2) 249 (16) 352 (0) 352 (0) 382 (0) 381 (0)
1 339 (0) 291 (3) 395 (0) 377 (0) 444 (0) 437 (0)
2 438 (0) 301 (0) 473 (0) 400 (0) 507 (0) 465 (0)

Number of datasets where negative shape parameter estimates are obtained is given in
the parentheses

2. All the estimates obtained with corrected MOM and PWM methods are feasible
with the data, i.e. the inconsistency is completely removed.

3. For both corrected methods, the RMSE of shape and scale parameters decreased,
comparing to original methods. For most of the samples (the only exception are
samples from GPD(2,σ)), the bias also decreased.

4. For both corrected methods, the RMSE of 99% and 99.9% quantiles decreases,
comparing to original methods. In some experiments, the bias also decreased, in
others, slightly increased. Therefore, corrected methods compete well with the
original methods in case of estimating high quantiles.

5. The most significant decrease in the bias and the RMSE for all parameter
estimates is obtained for sample of size n = 15.

Results obtained for σ = 1 (chosen because that case is commonly presented in
the literature) and β = 1.01 are summarized in Tables 1–4. The other simulation
results lead to the same conclusions stated above and are available on request. All
computations in this work are performed using MATLAB�, release 2007a.

Performance of the corrected estimator proposed in the present paper is also
compared to the performance of the hybrid estimator proposed in [8]. The relative
performances of the two methods, precisely, the ratios of absolute biases and
RMSE’s of shape, scale and quantiles estimates for newly proposed and hybrid
method, are given in Table 5. In cases when the ratio is less than 1 newly corrected
method outperforms the hybrid method, and in cases when the ratio is greater than
1 hybrid method works better.

5 An Example-Fish River Data

In the paper [1] authors provided a hydrological example, showing how both
MOM and PWM methods produce infeasible estimates. The data consists of 42
observations (flows of the Fish River, Canada, registered during the period 1981–
1999), below a suitably chosen threshold.
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Table 2 Bias (RMSE) obtained when estimating shape and scale parameters

n γ 1 2 3 4

Shape par.
15 0.2 0.1(0.35) 0.09(0.32) 0.08(0.38) 0.06(0.34)

0.4 0.1(0.43) 0.07(0.34) 0.08(0.43) 0.05(0.36)
0.6 0.1(0.53) 0.05(0.40) 0.07(0.49) 0.02(0.41)
0.8 0.16(0.65) 0.06(0.45) 0.1(0.56) 0.03(0.45)
1 0.12(0.72) −0.01(0.47) 0.04(0.58) −0.03(0.47)
2 0.46(1.97) −0.31(0.77) 0.09(1.09) −0.19(0.79)

50 0.2 0.03(0.16) 0.02(0.15) 0.02(0.19) 0.01(0.17)
0.4 0.02(0.17) 0.01(0.16) 0.02(0.20) 0(0.17)
0.6 0.02(0.23) −0.01(0.18) 0.01(0.24) −0.02(0.20)
0.8 0.03(0.28) −0.02(0.21) 0.02(0.28) −0.03(0.22)
1 0.05(0.34) −0.02(0.25) 0.03(0.32) −0.02(0.25)
2 0.1(0.72) −0.23(0.43) 0.02(0.57) −0.15(0.41)

100 0.2 0.01(0.10) 0.01(0.10) 0.01(0.12) 0.01(0.11)
0.4 0.01(0.12) 0(0.11) 0.01(0.14) 0(0.12)
0.6 0(0.14) −0.02(0.12) 0(0.16) −0.03(0.13)
0.8 0.01(0.19) −0.02(0.15) 0.01(0.19) −0.03(0.15)
1 0.02(0.23) −0.03(0.17) 0.01(0.23) −0.04(0.18)
2 0.06(0.47) −0.16(0.31) 0.02(0.39) −0.11(0.29)

Scale par.
15 0.2 0.1(0.44) 0.1(0.43) 0.09(0.46) 0.08(0.44)

0.4 0.09(0.46) 0.08(0.42) 0.08(0.45) 0.06(0.42)
0.6 0.09(0.49) 0.06(0.42) 0.07(0.45) 0.05(0.41)
0.8 0.13(0.55) 0.08(0.44) 0.1(0.48) 0.06(0.42)
1 0.09(0.52) 0.03(0.39) 0.05(0.44) 0.01(0.38)
2 0.21(0.86) −0.12(0.36) 0.06(0.50) −0.05(0.37)

50 0.2 0.03(0.21) 0.03(0.20) 0.02(0.22) 0.02(0.22)
0.04 0.02(0.20) 0.02(0.19) 0.02(0.21) 0.01(0.20)
0.6 0.02(0.22) 0.01(0.21) 0.02(0.23) 0(0.21)
0.8 0.03(0.23) 0.01(0.21) 0.02(0.23) 0(0.21)
1 0.04(0.25) 0.01(0.21) 0.03(0.24) 0.01(0.21)
2 0.04(0.31) −0.09(0.19) 0.02(0.25) −0.05(0.19)

100 0.2 0.01(0.14) 0.01(0.14) 0.01(0.15) 0.01(0.15)
0.4 0.01(0.15) 0.01(0.14) 0.01(0.15) 0(0.15)
0.6 0(0.14) −0.01(0.14) 0(0.15) −0.01(0.14)
0.8 0.01(0.16) 0(0.14) 0.01(0.16) 0(0.14)
1 0.01(0.17) 0(0.15) 0.01(0.16) −0.01(0.15)
2 0.02(0.20) −0.06(0.14) 0.01(0.17) −0.04(0.13)

Negative estimates of the shape parameter are not corrected. Methods: 1-MOM,
2-corrected MOM, 3-PWM, 4-corrected PWM

Sorted data, in days, are:

{7, 7, 9, 9, 11, 12, 15, 17, 18, 20, 20, 22, 22, 24, 28, 29, 30, 31, 31, 32, 34, 34, 35,
41, 41, 47, 49, 53, 57, 59, 59, 60, 62, 68, 72, 74, 76, 78, 79, 92, 101, 111}.
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Table 3 Bias (RMSE) obtained for 99% and 99.9%-quantile estimation

n γ 1 2 3 4

99% q.
15 0.2 (3.01) −0.03(0.29) −0.03(0.29) 0.02(0.36) 0.03(0.36)

0.4 (2.10) −0.02(0.24) −0.01(0.23) 0.02(0.30) 0.03(0.29)
0.6 (1.56) 0.01(0.21) 0.03(0.20) 0.04(0.26) 0.06(0.25)
0.8 (1.22) 0.02(0.19) 0.04(0.17) 0.04(0.22) 0.06(0.21)
1 (0.99) 0.04(0.18) 0.06(0.16) 0.06(0.20) 0.08(0.19)
2 (0.50) 0.03(0.13) 0.07(0.12) 0.05(0.13) 0.07(0.12)

50 0.2 (3.01) −0.01(0.16) −0.01(0.16) 0.01(0.20) 0.02(0.19)
0.4 (2.10) −0.01(0.13) 0(0.12) 0(0.16) 0.02(0.14)
0.6 (1.56) 0.01(0.11) 0.03(0.10) 0.02(0.14) 0.04(0.12)
0.8 (1.22) 0.01(0.10) 0.03(0.08) 0.01(0.12) 0.04(0.10)
1 (0.99) 0.01(0.09) 0.03(0.07) 0.01(0.09) 0.04(0.08)
2 (0.50) 0.01(0.06) 0.03(0.05) 0.02(0.05) 0.03(0.05)

100 0.2 (3.01) −0.01(0.11) 0(0.11) 0(0.14) 0.01(0.13)
0.4 (2.10) 0(0.09) 0.01(0.08) 0.01(0.11) 0.02(0.10)
0.6 (1.56) 0.01(0.08) 0.02(0.07) 0.01(0.09) 0.03(0.08)
0.8 (1.22) 0(0.07) 0.02(0.06) 0.01(0.08) 0.03(0.06)
1 (0.99) 0.01(0.07) 0.03(0.05) 0.01(0.07) 0.03(0.06)
2 (0.50) 0(0.04) 0.02(0.03) 0.01(0.03) 0.02(0.03)

99.9% q.
15 0.2 (3.74) 0.02(0.45) 0.03(0.45) 0.17(0.76) 0.18(0.76)

0.4 (2.34) 0.04(0.36) 0.05(0.35) 0.13(0.56) 0.14(0.55)
0.6 (1.64) 0.07(0.34) 0.09(0.33) 0.14(0.50) 0.16(0.49)
0.8 (1.25) 0.06(0.27) 0.08(0.26) 0.14(0.37) 0.12(0.36)
1 (1.00) 0.07(0.25) 0.10(0.24) 0.11(0.32) 0.13(0.32)
2 (0.50) 0.04(0.15) 0.07(0.14) 0.06(0.15) 0.07(0.15)

50 0.2 (3.74) 0.01(0.25) 0.01(0.25) 0.06(0.35) 0.07(0.34)
0.4 (2.34) 0.01(0.19) 0.02(0.18) 0.04(0.26) 0.05(0.25)
0.6 (1.64) 0.02(0.16) 0.04(0.15) 0.04(0.20) 0.06(0.19)
0.8 (1.25) 0.02(0.13) 0.05(0.12) 0.03(0.15) 0.05(0.14)
1 (1.00) 0.02(0.11) 0.05(0.09) 0.03(0.12) 0.05(0.11)
2 (0.50) 0.01(0.07) 0.03(0.06) 0.02(0.05) 0.03(0.05)

100 0.2 (3.74) 0(0.16) 0(0.16) 0.02(0.22) 0.03(0.22)
0.4 (2.34) 0.01(0.13) 0.02(0.12) 0.02(0.17) 0.03(0.16)
0.6 (1.64) 0.02(0.11) 0.03(0.10) 0.03(0.13) 0.05(0.12)
0.8 (1.25) 0.01(0.09) 0.03(0.07) 0.01(0.10) 0.04(0.09)
1 (1.00) 0.01(0.08) 0.03(0.06) 0.02(0.08) 0.04(0.07)
2 (0.50) 0(0.04) 0.02(0.03) 0.01(0.03) 0.02(0.03)

The true values of the quantiles being estimated given in the parentheses. Negative estimates
of the shape parameters are not corrected. Methods: 1-MOM, 2-corrected MOM, 3-PWM,
4-corrected PWM

In the present study, GPD parameters and quantiles for this dataset are estimated
with the following methods: MOM, PWM, and corrected MOM and PWM. For
comparison, estimates obtained with ML and EPM, methods that normally do not
suffer from inconsistency problem, are also provided.
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Table 4 Bias (RMSE) obtained when estimating shape and scale parameters in cases
when negative estimates of the shape parameter are obtained

n γ 1 2 3 4

Shape par.
15 0.2 0.1(0.34) 0.14(0.27) 0.08(0.37) 0.16(0.30)

0.4 0.09(0.40) 0.08(0.32) 0.07(0.41) 0.08(0.32)
0.6 0.11(0.52) 0.05(0.38) 0.08(0.48) 0.04(0.37)
0.8 0.13(0.64) 0.04(0.45) 0.08(0.56) 0.02(0.44)
1 0.12(0.69) −0.01(0.46) 0.04(0.57) −0.03(0.46)

50 0.2 0.02(0.15) 0.03(0.14) 0.02(0.18) 0.04(0.14)
0.4 0.03(0.18) 0.01(0.15) 0.02(0.20) 0.01(0.17)

100 0.2 0.02(0.11) 0.02(0.10) 0.01(0.13) 0.02(0.11)
Scale par.

15 0.2 0.11(0.44) 0.11(0.42) 0.09(0.46) 0.11(0.43)
0.4 0.09(0.45) 0.08(0.41) 0.08(0.45) 0.07(0.41)
0.6 0.1(0.49) 0.07(0.42) 0.07(0.45) 0.05(0.41)
0.8 0.12(0.54) 0.07(0.44) 0.08(0.48) 0.05(0.42)
1 0.09(0.50) 0.03(0.38) 0.05(0.42) 0.02(0.37)

50 0.2 0.02(0.20) 0.02(0.20) 0.02(0.22) 0.02(0.21)
0.4 0.02(0.20) 0.02(0.20) 0.02(0.22) 0.01(0.20)

100 0.2 0.02(0.15) 0.01(0.15) 0.01(0.16) 0.01(0.15)

Negative estimates are corrected. Methods: 1-MOM, 2-corrected MOM, 3-PWM,
4-corrected PWM

For checking the goodness of fit, the following error definitions were used:

ASAE = n−1
n

∑
i=1

|xi:n − x̂i:n|
xn:n − x1:n

, x̂i:n = σ̂(1− (1− pi:n)
γ̂ )/γ̂ , pi:n =

i
n+ 1

, (25)

and

SSQ =
n

∑
i=1

(Fγ̂,σ̂ (xi:n)− F̂(xi:n))
2 , (26)

with F̂ being the empirical distribution function. Results are summarized in Table 6
and indicate very good agreement between both corrected methods and ML method,
which is considered best for this dataset (according to [1]).

In this example, RMSE (scaled square root of the values given in the last row
of the Table 6) of the newly obtained fit is a bit greater than the RMSE obtained
when using original MOM and PWM. This is probably due to the fact that there is
some contamination in the data that is not incorporated into GPD model. However,
corrected MOM and PWM are more adequate in this case, since they are feasible
with the sample data.
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Table 5 Ratio of the performance of corrected estimates (corr.) to hybrid estimates
proposed by Dupuis and Tsao (hyb.): absolute bias corr./absolute bias hib. (RMSE
corr./RMSE hyb.)

n γ MOM PWM MOM PWM

Shape par. Scale par.
15 0.2 0.96 (0.97) 0.92 (0.97) 0.94 (0.97) 0.88 (0.97)

0.4 0.86 (0.94) 0.71 (0.95) 0.83 (0.94) 0.75 (0.94)
0.6 0.57 (0.90) 0.11 (0.93) 0.66 (0.89) 0.58 (0.92)
0.8 0.09 (0.83) 6.61 (0.91) 0.46 (0.82) 0.38 (0.89)
1 0.41 (0.75) 13.22 (0.88) 0.21 (0.72) 0.16 (0.87)
2 1.03 (0.42) 29.67 (0.75) 0.63 (0.39) 1.62 (0.73)

50 0.2 0.96 (0.99) 0.77 (0.98) 0.93 (0.99) 0.72 (0.97)
0.4 0.26 (0.97) 1.88 (0.96) 0.60 (0.96) 0.16 (0.95)
0.6 2.51 (0.93) 1.64 (0.94) 0.09 (0.92) 0.61 (0.92)
0.8 2.47 (0.90) 1.74 (0.92) 0.31 (0.89) 1.42 (0.90)
1 3.21 (0.87) 1.95 (0.90) 0.57 (0.85) 2.16 (0.89)
2 8.41 (0.66) 7.12 (0.75) 2.69 (0.61) 7.70 (0.72)

100 0.2 0.97 (0.99) 0.83 (0.98) 0.95 (0.99) 0.82 (0.98)
0.4 0.25 (0.97) 2.76 (0.96) 0.68 (0.96) 0.47 (0.95)
0.6 3.14 (0.93) 1.95 (0.94) 0.29 (0.93) 0.04 (0.92)
0.8 2.96 (0.91) 2.14 (0.92) 0.05 (0.89) 0.34 (0.90)
1 4.00 (0.88) 2.55 (0.90) 0.28 (0.86) 0.65 (0.88)
2 6.80 (0.73) 50.71 (0.78) 2.18 (0.69) 2.93 (0.76)

99% q. 99.9% q.
15 0.2 0.99 (1.00) 0.10 (0.58) 0.11 (1.33) 1.00 (1.00)

0.4 1.11 (1.00) 0.28 (0.66) 1.32 (1.40) 1.01 (1.00)
0.6 1.03 (1.00) 0.48 (0.71) 4.83 (1.37) 1.01 (1.00)
0.8 1.03 (1.00) 0.65 (0.76) 1.80 (1.31) 1.01 (1.00)
1 1.04 (1.00) 0.78 (0.79) 1.39 (1.26) 1.02 (1.00)
2 1.05 (1.00) 0.96 (0.84) 1.14 (1.19) 1.04 (1.00)

50 0.2 0.99 (1.00) 0.06 (0.47) 0.06 (0.99) 1.01 (1.00)
0.4 1.05 (1.00) 0.20 (0.58) 0.44 (1.21) 1.02 (1.00)
0.6 1.06 (0.99) 0.41 (0.68) 4.12 (1.33) 1.03 (1.00)
0.8 1.07 (0.99) 0.63 (0.76) 2.56 (1.28) 1.05 (1.00)
1 1.09 (0.99) 0.80 (0.82) 1.56 (1.21) 1.07 (1.00)
2 1.15 (1.01) 1.00 (0.83) 1.32 (1.22) 1.14 (1.01)

100 0.2 0.97 (1.00) 0.04 (0.40) 0.03 (0.78) 1.01 (1.00)
0.4 1.06 (0.99) 0.15 (0.52) 0.24 (1.01) 1.03 (1.00)
0.6 1.09 (0.99) 0.36 (0.64) 1.37 (1.25) 1.07 (0.99)
0.8 1.12 (0.99) 0.59 (0.74) 4.87 (1.29) 1.10 (0.99)
1 1.14 (1.00) 0.79 (0.81) 1.84 (1.22) 1.12 (1.00)
2 1.25 (1.02) 1.06 (0.82) 1.49 (1.27) 1.26 (1.02)
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Table 6 The Fish river data: shape (γ̂), scale (σ̂ ) and quantile estimates, estimated
upper bound (σ̂/γ̂), number of observations that exceeded the estimated upper
bound (d), errors (ASAE, SSQ)

MOM
(Orig.)

MOM
(Corr.)

PWM
(Orig.)

PWM
(Corr.) EPM ML

γ̂ 0.705 0.643 0.754 0.661 0.486 0.560
σ̂ 72.092 72.063 74.170 74.125 64.309 65.451
99% q. 98.294 106.301 95.313 106.773 118.146 108.041
99,9% q. 101.490 110.788 97.828 110.946 127.631 114.472
σ̂/γ̂ 102.275 112.110 98.366 112.110 132.226 116.918
d 1 0 3 0 0 0

ASAE 0.030 0.034 0.031 0.038 0.030 0.027
SSQ 0.275 0.327 0.287 0.367 0.284 0.246

6 Conclusions and Future Work

The most traditional estimation methods for the generalized Pareto distributions are
MOM, PWM and maximum likelihood method (ML). However, all of these methods
have problems: MOM and PWM may be inconsistent with the sample data, and
ML method often suffers from convergence problems and inefficiency when applied
to small samples [5, 11, 13]. For these reasons, several new estimation techniques
were proposed, including Bayesian methods (a recent review is given in [5]), robust
methods [7,12,14], EPM method [3], GPWM [16] and many others. Some recently
proposed estimation methods combine several different approaches, for example,
ML and Bayesian approach [19], or ML and moment technique [18].

All methods have advantages and disadvantages. For example, robust procedures
show good performance and outperform the ML method in cases of contaminated
samples, but fail to provide good results in cases with no contamination [12, 13].
Robust and/or likelihood-based techniques usually do not suffer from inconsistency
problems, but are much more computationally intensive and sometimes inefficient
in small samples [13].

The present paper proposed a way to overcome the infeasibility of GPD
estimation methods by introducing a whole new class of estimates, which are all
feasible, obtained by correcting the original ones. In case of MOM and PWM
estimation methods, simulation experiments demonstrated that corrected shape and
scale parameter estimates have smaller bias (in most cases) and RMSE (in all cases)
than the estimates obtained with the original methods. The new technique is equally
acceptable for estimating high quantiles as the original MOM and PWM.

There are several possibilities for continuing this work.
The technique considered here may be applied to other estimation methods

suffering from inconsistency of any type (for example, GPWM [16], according to
the study presented in [1]). It can be done by obtaining plausible values for α and β
through a simulation study, and then applying this completely determined procedure
to real data.
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It is also possible to obtain estimates with desired special properties, by
combining this procedure with other estimation techniques (such as ML), or using
optimization methods. On the other hand, this technique can be also applied to
other distributions with finite bound(s) that depend on parameters, for example
generalized extreme value distribution.
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Consistent Sequences of Tests Defined by Bans

Alexander Grusho and Elena Timonina

Abstract Finite probability spaces are important in such problems of operation
research as data mining, computer simulation, network and computer security, cryp-
tography and many others. We consider complexity of testing a simple hypothesis
H0,n against complex alternative H1,n in finite models. The way to make calculation
of tests simpler is to build critical sets dependent on smallest bans (the shortest
vectors, which have probability zero). We prove necessary and sufficient conditions
when consistent sequence of statistical tests exists and all critical sets of the tests
are defined by smallest bans. Existence of such sequences of tests is equivalent to
existence of strictly consistent sequence of tests.

1 Introduction

The concept of consistent sequences of statistical tests (CST) has been defined for
the first time in the work of Wald and Wolfowitz [1] in 1940. Despite long time
since that work not many works have been devoted to a problem of existence of CST
though nonexistence of CST means impossibility of reliable detection of necessary
property by statistical techniques. For the first time this important property of
nonexistence of CST has been pointed by Hoeffding [2].

Let’s review some results devoted to CST existence. In the work of Schmetterer
[3] dependency between CST and consistent estimations was found. Using these
dependencies Schmerkotte [4] proved necessary and sufficient conditions of CST
existence for a wide class of probability spaces. To prove these results Schmerkotte
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[4] used a topology generated by metrics on the space of parameters. Earlier this
method was also used by Pfanzagl [5]. In the works [6, 7] we considered sequences
of finite probability spaces. It helped to prove similar necessary and sufficient
conditions of CST existence without topological structures on space of parameters.

Finite probability spaces are often used as models for description of data mining
and computer simulation problems, computer security problems, cryptography and
many others.

Stochastic models for finite spaces should be considered from two points of
view. From the first point of view it is necessary to consider the productivity for
application. From the second point of view it is necessary to consider complexity of
calculation. We consider a sequence of finite probability spaces, indexed by natural
numbers. For each positive integer n we consider the statistical problem of testing a
simple hypothesis H0,n against a complex alternative H1,n. Each criterion is defined
by a critical set Sn. Sn consists of all elementary events that lead to the acceptance
of H1,n.

Besides CST existence we consider complexity of calculation of statistical
criterions in discrete probability spaces. Any sequence of criteria is defined by
the sequence of critical sets. In finite spaces critical sets are finite. In the discrete
mathematics for any subset of finite set it is defined a complexity of calculation of
membership function for the critical set. Thus complexity of a statistical criterion is
defined. Considering sequences of criteria it is possible to speak about asymptotic
complexity. In our previous work [8], it has been shown that by changing the time
scale it is possible to construct for every CST another CST with asymptotically
better computational complexity. Such simplification has been named fictitious and
later it has been proved that in a class of monotone sequences of critical sets (in some
sense) property of fictitious simplification is impossible.

In finite spaces we searched for tests with minimal complexity of an algorithm
for calculation that data belongs to Sn. In previous studies [9, 10] we introduced
a definition of a ban for a probability measure on a finite space. A ban means a
sequence which has probability zero in a finite space. We have shown that the notion
of bans is convenient because it allows to determine the critical set in the simplest
way for calculation [9]. Then we have proved necessary and sufficient condition for
the existence of a consistent sequence of tests, where all critical sets are defined by
bans [10].

Here we generalize the main results of [10] for a sequence of different finite
spaces and prove some properties of bans. An interesting result is that the existence
of strictly consistent sequence of tests [11] means that we can choose the critical
sets defined by bans.

The article is structured as follows. Section 2 introduces definitions and exam-
ples. Section 3 defines the necessary and sufficient conditions for the case when
the critical sets may be defined in terms of bans. In Sect. 4 we analyze the specific
properties of bans and prove that the existence of a strictly consistent sequence of
tests means that the critical sets can be chosen depending on the bans. In Conclusion
we discuss unsolved problems.
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2 Mathematical Models and Examples

Let Xi, i = 1,2, . . . ,n,. . . , be a sequence of finite sets,∏n
i=1 Xi be a Cartesian product

of Xi, i = 1,2, . . . ,n, X∞ be a set of all sequences where ith element belongs to
Xi. Define A be a σ -algebra on X∞, generated by cylindrical sets. A is also
Borel σ -algebra in Tichonof product X∞, where Xi, i = 1,2, . . . ,n,. . . , has a discrete
topology [12].

On (X∞, A ) a probability measure P0 is defined. Assume P0,n is a project of P0 on
the first n coordinates of sequences from X∞. It is clear that for every Bn ⊆∏n

i=1 Xi

P0,n(Bn) = P0(Bn ×X∞
n ),

where X∞
n =∏∞

i=n+1 Xi. Let D0,n be a support of measure P0,n:

D0,n =

{

xn ∈
n

∏
i=1

Xi, P0,n(xn)> 0

}

.

Denote Δ0,n = D0,n ×X∞
n . The sequence Δ0,n, n = 1,2, . . . , is nonincreasing and

Δ0 = lim
n→∞

Δ0,n =
∞⋂

n=1

Δ0,n.

The set Δ0 is closed and it is a support of P0.
We also have a set of probability measures {Pθ , θ ∈Θ} on (X∞, A ). Then as

before we define Pθ ,n, Dθ ,n, Δθ ,n, Δθ .
If ω(k) ∈ ∏k

i=1 Xi, then ω̃(k−1) is obtained from ω(k) by dropping the last
coordinate.

Definition 1. Ban in measure P0,n is a vector ω(k) ∈∏k
i=1 Xi, k ≤ n, such that

P0,n

(

ω(k)×
n

∏
i=k+1

Xi

)

= 0.

If P0,k−1(ω̃(k−1))> 0, then ω(k) is the smallest ban.

If ω(k) is a ban in P0,n, then for every k ≤ s ≤ n and for every sequence ω(s)

starting with ω(k) we have

P0,s(ω(s)) = 0. (1)

In fact , if P0,k(ω(k)) = 0, then P0(ω(k)×X∞
k ) = 0 and

P0

(

ω(k)×
s

∏
i=k+1

Xi ×X∞
s

)

= 0.
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It follows that

P0,s

(
ω(s)

)
= P0

(
ω(s)×X∞

s

)
≤ P0

(

ω(k)×
s

∏
i=k+1

Xi ×X∞
s

)

= 0.

If there exists ω(n) ∈ ∏n
i=1 Xi such that P0,n(ω(n)) = 0, then there exists the

smallest ban. If P0,n−1(ω̃(n−1))> 0, then the assertion is proved.
Otherwise P0,n−1(ω̃(n−1)) = 0 and we can repeat the previous arguments. It

follows that for every n the set D0,n, D0,n �= /0, is uniquely determined by least bans
in such sense that all elements of D0,n are obtained by all possible extensions of
smallest bans to the length n. If Sn is a critical set for testing H0,n against H1,n and
all vectors in Sn have probability zero in P0,n then Sn is defined by some smallest
bans.

We give examples of bans for certain probability distributions.

Example 1. Let Xi = {0, 1} , i = 1,2, . . . , ω0 = (1,1, . . .) ∈ X∞, P0(ω0) = 1. Then,
for each n the set of the smallest bans consists of the vectors

An =

⎧
⎨

⎩
ω(1)

1 = (0), ω(2)
1 = (10), . . . , ω(n)

1 = (1 . . .1︸ ︷︷ ︸
n−1

0)

⎫
⎬

⎭
.

These smallest bans define the set of 2n − 1 vectors ω(n) of length n, for which
P0,n(ω(n)) = 0.

As alternatives let’s take a family of Bernoulli schemes of length n with a
probability of unity p = θ , 0 < θ < 1.

By definition a critical set Sn of criterion is defined by bans if it includes all the
extensions of the length n of some set of smallest bans. For the set Sn there exists a
simple algorithm for computing the membership function for Sn. This algorithm
calculates for each smallest ban its presence in the initial section of the vector,
resulting in a statistical experiment.

Let us take a specific value θ = 1
2 and construct likelihood ratio test. Likelihood

ratio function is

L(ω(n)) =
1

2nI(ω(n) = ω(n)
0 )

.

It is clear that for every c > 1
2n

P0,n(L(ω(n))≥ c) = 0.

The power of criterion is equal

P1
2 ,n

(L(ω (n))≥ c) =
2n − 1

2n = 1− 1
2n .
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Let’s compare the likelihood ratio test with the criterion, the critical set Sn of
which is determined by the bans

P0,n(Sn) = 0, P1
2 ,n

(Sn) = 1− 1
2n .

We compare the average number of steps for both criteria. When H1,n is true then the

average number of steps to the first deviation from ω(n)
0 equals to 2

[
1− n( 1

2)
n−1

]
.

However, the average number of operations to calculate the likelihood ratio is
fixed and equals to n. In the case of optimization for function calculation I(ω(n) =

ω(n)
0 ) we obtain the previous estimation. Thus we have shown that the criterion

defined by bans may possess the same best characteristics as the likelihood ratio
test, but can be calculated with the same complexity or easier.

Example 2. Again, let X = {0,1}, i = 1,2, . . .. Consider a simple homogeneous
Markov chain with transition matrix

(
p 1− p
q 1− q

)

and nondegenerate initial distribution. When q = 1 any smallest ban is defined
by the first appearance of combination (1,1) in a vector.

Note that in the presence of this vector in any fragment of ω(n) imply that
P0,n(ω(n)) = 0.

In this case a criterion for testing the hypothesis

H0 : 0 < p < 1,q = 1,

against the alternative
H1 : 0 < p < 1,0 < q < 1,

can be calculated only on the basis of the values of the ban. Algorithm for computing
the data membership in the critical set is defined by an algorithm of a search for the
ban in the observed sequence.

3 Conditions for the Existence of Consistent Sequences
of Tests Depending on the Ban

Definition 2. Sequence of tests with critical sets Sn is called consistent (CST)
[13] if

P0,n(Sn)−→ 0, n → ∞,

and for every θ ∈Θ
Pθ ,n(Sn)−→ 1, n → ∞.
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Remind that the supports of P0 and Pθ can be defined by the equalities

Δ0 = lim
n→∞

Δ0,n, Δ0,n = D0,n ×X∞
n ,

Δθ = lim
n→∞

Δθ ,n, Δθ ,n = Dθ ,n ×X∞
n ,

and for every set Bn ⊆∏n
i=1 Xi, θ ∈Θ , we have

Pθ ,n(Bn) = Pθ (Bn ×X∞
n ).

Theorem 1. There exists CST for which all critical sets are defined by bans iff for
every θ ∈Θ

Pθ (Δ0) = 0.

Proof. Let in CST for each n the critical set Sn is defined by bans. Then Sn ⊆ D0,n.
Denote Σn = Sn ×X∞

n . Then for each n

(
D0,n ×X∞

n

)⋂
Δ0,n = /0.

The sequence of sets Δ0,n does not increase and, consequently, for each n

(
D0,n ×X∞

n

)⋂
Δ0 = /0.

The sequence Δ0,n = D0,n ×X∞
n , so

Λ = lim
n→∞

Δ0,n =
∞⋃

n=1

Δ0,n.

Clearly, Λ
⋂
Δ0 = /0. From the condition of consistency it follows that for every

θ ∈Θ
lim
n→∞

Pθ (Σn) = 1.

Then

lim
n→∞

Pθ (Δ 0,n) = Pθ (Λ) = 1.

If there is a measurable set A ⊆ Δ0 such that Pθ (A) > 0, then it follows from
Λ

⋂
A = /0 that

Pθ (Λ
⋃

A) = Pθ (Λ)+Pθ (A)> 1.

Then for every θ ∈Θ we see that the probability Pθ (Δ0) = 0.
Consider the D0,n and Dθ ,n. By definition Pθ ,n(Dθ ,n) = 1 and assume that a set

of bans for the sequence P0,n is not empty. We put

Sn = D0,n, Σn = Sn ×X∞
n .
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For all n the probability P0,n(Sn) = 0. Sequence Σn does not decrease, and denote
its limit by Σ . By the total probability formula we have

Pθ (Δθ ) = Pθ (Δθ
⋂
Σ)+Pθ(Δθ

⋂
Σ).

From the construction of critical sets

Σ =
∞⋃

n=1

Δ0,n = Δ0.

In addition, we have

Pθ (Δθ
⋂
Σ) = Pθ (Δθ

⋂
Δ0) = Pθ (Δ0)−Pθ(Δθ

⋂
Δ0).

On the right side of this equality the first probability is equal to 0 by the condition
of the theorem, and the second is equal to 0, by definition Δθ . It follows that
Pθ (Δθ

⋂
Σ) = 1. Therefore, Pθ (Σ) = 1. Hence, we find that

lim
n→∞

Pθ (Σn) = 1.

This proves that the constructed sequence of tests is consistent.
It remains to show that in the conditions of the theorem the set of bans cannot

be empty. Assume the contrary. Then for each n the set D0,n = /0. This implies that
for every n the set D0,n =∏n

i=1 Xi. Passing to the limit we get that Δ0 = X∞. This
contradicts the condition that for every θ ∈Θ the probability Pθ (Δ0) = 0. �

4 Properties of the Bans

It is easy to see that the smallest bans in ∏n
i=1 Xi form a prefix code. In fact, any

smallest ban cannot be part of another smallest ban by (1). This means that if |Xi|=
m then the lengths of smallest bans must satisfy an analogue of Kraft inequality [14].

We use the same idea to prove the following equations.

Theorem 2. Let νh, h = 1;n, be the number of the smallest bans of length h for
P0,n. Then, for all h, h = 1;n, |Xi|= mi, i = 1;n, we have

ν1

h

∏
i=2

mi +ν2

h

∏
i=3

mi + · · ·+νh−1mh +νh + |D0,h|=
h

∏
i=1

mi. (2)

Proof. It is clear that for h= 1 and for every pointω(1) of X1 we have P0,1(ω(1)) = 0
or P0,1(ω(1)) > 0. In the first case the point belongs to the smallest bans and in the
second case it belongs to D0,1. Then ν1 + |D0,1| = m1. When h ≤ n the number of
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vectors of the length h is equal to ∏h
i=1 mi. If there is the smallest ban ω(k)

n , k < h,
of the length k, then the number of vectors which have probability zero and begin
with ω(k) equals to ∏h

i=k+1 mi. If the total number of the smallest bans of the length
k equals to νk, then at the length h we have νk∏h

i=k+1 mi vectors of probability zero
and which have in the beginning some smallest ban of the length k. Then summing
all together we get

ν1

h

∏
i=2

mi +ν2

h

∏
i=3

mi + · · ·+νh−1mh +νh + |D0,h|=
h

∏
i=1

mi.
��

In the case mi = m for all i we have

ν1mn−1 + · · ·+νn−1m+νn + |D0,n|= mn

for all n = 1,2, . . ..
In [11, 15] we introduced and studied the notion of strictly consistent sequence

of tests for Xi = X , i = 1,2, . . ..

Definition 3. The sequence of tests with critical sets Sn, n = 1,2, . . . , is called
strictly consistent (SCST) [11] iff

P0,n(Sn)−→ 0, n → ∞,

and for every θ ∈Θ
Pθ ,n(Sn)−→ 1, n → ∞.

and

S̄n ×X∞ ⊇ S̄n+1 ×X∞,

where

Sn = Xn \ Sn, n = 1,2 . . .

In our model the sequence of tests Sn, n = 1,2, . . . , is strictly consistent if it is
consistent and the sequence Sn ×X∞

n is not decreasing.

Theorem 3. Strictly consistent sequence of tests exists iff there is a CST for which
all critical sets are defined by smallest bans.

Proof. Assume that there exists CST determined by smallest bans. If the set of all
smallest bans is finite, then according to (2), starting with some h all νh equal to 0.
Let it be for all h ≥ h0. We have

ν1

h

∏
i=2

mi + · · ·+νh0

h

∏
i=h0+1

mi + |D0,h|=
h

∏
i=1

mi,
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so

h

∏
i=h0+1

mi

(

ν1

h0

∏
i=2

mi + · · ·+νh0 + |D0,h0 |
)

−|D0,h0|
h

∏
i=h0+1

mi + |D0,h|=
h

∏
i=1

mi.

Then
h

∏
i=1

mi −|D0,h0|
h0+1

∏
i=1

mi + |D0,h|=
h

∏
i=1

mi.

It means that

D0,h = D0,h0 ×
h0+1

∏
i=1

Xi,

and Δ0 = Δ0,h0 ×X∞
h0
.

By the theorem 1 Pθ (Δ0) = 0 for all θ . It follows that Pθ (D0,h0 × X∞
h0
) = 1 for

all θ . Then

Sn = D0,h0 ×
n

∏
i=h0+1

Xi, n ≥ h0,

satisfy equations P0,n(Sn) = 0 and Pθ ,n(Sn) = 1. This sequence of tests is CST. It is
clear that Sn ×X∞

n is not decreasing sequence of sets. We can also define Si, i < h0,
as projections of Sh0 to the first coordinates in ∏i

k=1 Xk. Then this sequence satisfies
definition of strictly CST.

Let the set of smallest bans is countable. We have P0,n(D0,n) = 0 for all n =
1,2, . . .. According to the theorem 1

lim(D0,n ×X∞
n ) = Δ0,

and for every θ ∈Θ
lim
n→∞

Pθ (D0,n ×X∞
n ) = 1.

That means that the sequence of tests with critical sets Sn = D0,n is CST.
All smallest bans in D0,h are also in D0,h+1, h = 1,2 . . .. Then all conditions of

SCST are fulfilled for tests with critical sets Sn, n = 1,2, . . ..
Let SCST exists with critical sets Sn and Sn ×X∞

n is an open set. Then

lim
n→∞

(Sn ×X∞
n ) = S

is an open set and P0(S) = 0. That means that there exists a closed set S and
P0(S) = 1.

It follows from CST that ∀θ ∈Θ , Pθ (S) = 0. The set Δ0 is the support of P0. By
the definition it is intersection of all closed sets D with P0(D) = 1. It follows that
Δ0 ⊆ S. Then ∀θ ∈Θ , Pθ (Δ0)≤ Pθ (S) = 0. Now we use the theorem 1 to conclude
that there exists CST defined by the smallest bans. �
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5 Consistent Sequences of Tests for Finite Markov Chains

Let all measures be finite homogeneous Markov chains which are defined by initial

positive distributions P0, Pθ and matrixes P0 =
∥
∥
∥P0

i j

∥
∥
∥, Pθ =

∥
∥
∥Pθi j

∥
∥
∥, We say that Pθi j

contradicts P0
i j if P0

i j = 0 but Pθi j > 0.

Theorem 4. There exists CST for which all critical sets are defined by bans iff
for every θ ∈ Θ and every ergodic class P0 there exists (i j) in it for whichPθi j

contradicts P0
i j.

6 Conclusion

An open question in ban theory is detection of bans in P0. It is a simple problem in
homogeneous Markov chains but sometimes the problem may be hard.

Here is an example. Let X be an alphabet, A∗ be a set of all finite words in
alphabet X . Ã is a rich language Ã ⊆ A∗, A∞ is a set of the infinite texts in Ã and An

are projections of A∞ to the first n coordinates. Let P0,n(ω(n)) > 0 if ω(n)
0 ∈ An and

P0,n(ω(n)) = 0 if ω(n)
0 /∈ An. To determine all smallest bans here we should calculate

that the word belongs to the language. It is not difficult to build a language in which
such a problem is hard.

The idea to search bans by statistical methods seems to be perspective. Here the
problem consists of appearing of a false ban, and the possibility of acceptance of
the false decision connected with it. It is obvious that theory transferring onto this
case will need some additional restrictions on probability measures.

Other direction of researches is generalization of a considered approach onto a
case of a complex zero hypothesis.

In practical sense the offered approach is convenient for applying in systems of
consecutive control. Really, in the considered case the probability of acceptance of
an alternative hypothesis when the zero hypothesis is true, is equal to zero. It means
an absence of false alarms in the monitoring system.

There are some other open problems. Nevertheless when we find some bans it is
much easier to solve statistical problems.
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Impact Assessment Through Collaborative Asset
Modeling: The STORM-RM Approach

Theodoros Ntouskas, Panayiotis Kotzanikolaou, and Nineta Polemi

Abstract Existing Risk Management (RM) methodologies are mainly expert
driven and require a large number of interviews with the security experts, which
makes rather inefficient to take into account the knowledge from all the organi-
zation’s participants. In this paper we extend the STORM-RM multi-criteria group
decision-making methodology. More specifically, we propose specific asset and user
models, which make use of the AHP multi-criteria decision-making methodology
in order to identify the organization’s assets and calculate their potential security
impacts.

Key words Impact assessment • Asset modeling • AHP • Multi-criteria decision
making

1 Introduction

Existing information risk management (RM) methodologies (e.g. OCTAVE [12],
CRAMM [4], EBIOS [6], ISO-15408-1 [7], Mehari [10], MAGERIT [9], Austrian
IT Security Handbook [2], BSI-Standard 100-3 [3], Dutch A & K Analysis [5]) are
mainly expert driven. Although the input required for the risk assessment is based
on information provided by selected participants from the organization hosting the
Information System in question (such as users, technical personnel and managers),
usually information gathering is a time- and resource-consuming process, which
requires the active involvement of security experts in various interviews.
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In a previous work [11] a new risk management methodology, the STORM-RM
methodology was proposed. The STORM-RM methodology treats information risk
management as collaborative decision-making problem, by combining the Analytic
Hierarchy Process (AHP) [14] in various phases of the risk assessment, with well-
known security management standards (ISO27001 [8] and AS/NZS 4360 [1]). The
main goal of STORM-RM is to provide a user-driven methodology and to reduce the
active involvement of security experts in the various phases of an assessment. Since
risk assessment is a complicated process depending on multiple criteria, designing
a user-driven methodology requires the design of well-defined procedures that will
enable the collaboration between the various participants. In our previous work [11]
the main phases and steps of the STORM-RM methodology were presented. Here
we specifically define the first phase of methodology, the Cartography phase, by
defining models for the representation of the dependencies between participating
users (User Group model) and assets (Asset Group model). We also define in detail
the calculation of the impact values for each asset required in the Impact Assessment
phase, based on the User and Asset Group models.

The rest of the paper is organized as follows: Section 2 defines in detail
the STORM-RM Organization Cartography Phase and its basic steps. Section 3
presents the STORM-RM Impact Assessment Phase and the functions that handle
the opinions of various organization’s participants and finally, and Sect. 4 draws
conclusions and directions for further research.

2 The STORM-RM Organization Cartography Phase

In contrast to decision-maker-driven methodologies, the STORM-RM methodology
is user driven. The various participants (users) of the organization will collaborate,
in order to evaluate the information security risks of the organization. However,
the collaboration of multiple users with different organization views and different
knowledge on ICT security issues introduces increased complexity and high
uncertainty on the accuracy of the results. It would be a rather strong and unrealistic
assumption to expect that the users will understand all the steps of a risk assessment
methodology, the required level of precision and abstraction in their expected
input and finally they will successfully coordinate their participation in the risk
assessment.

The goal of this phase is to reduce the complexity of the risk assessment
and minimize the involvement of each participant, only to those phases of the
methodology and those systems of the organization that they are expected to
understand. Since not all the opinions of all the participants in the risk assessment
are equally important, this step of the methodology also aims to define the proper
weights of the various actors for each phase of the risk assessment.

In order to minimize the involvement of the participants to the most appropriate
phases of the risk assessment, the STORM-RM Cartography phase defines models
that capture the roles between the various participants, the relation between the



Impact Assessment Through Collaborative Asset Modeling 295

various assets and more importantly, the relations between the participants and
the assets of the system. Once the relations between users and assets are defined,
then the participants will only be involved into those steps of each phase of the
methodology (impact, threat and vulnerability analysis), where their opinions will
be the most beneficial. Bellow, we will first describe the basic structures used
to describe these relations, mainly the User Group Model and the Asset Group
Model. These models are pre-defined by the STORM-RM methodology and are
utilized during the Cartography phase. Then, we will describe the basic steps that
are executed during the Cartography phase, which include the assignment of users
and assets to inter-related groups.

We note that the initial steps of the Cartography phase are executed under the co-
ordination of the Security Officer of the organization. Then, the organization will
be able to run the rest of the phases in a user self-driven approach, according to the
decisions taken during this phase.

2.1 Modeling Users and Assets in STORM-RM

In order to model the roles of the participants as well as their relation with particular
assets, the STORM-RM cartography phase defines the User Group Model and the
Asset Group Model, as described below.

2.1.1 User Group Model

The User Group model is used in order to categorize the users of the organization (at
least the ones participating in the risk assessment) into a group which will determine
the role of the user to all the phases of the analysis. The STORM-RM User Group
Model defines two levels of user groups, as shown in Fig. 1.

Note that although the STORM-RM pre-defines the above model, it is possible
to modify this according to the specific details of the organization running the
assessment. For example, the Application administrators sub-group can be further
divided into different sub-groups for different end-user applications. In the same
way, the Organization Users can be further divided into multiple groups, according
to the different end-user services provided by the organization; or the External Users
can be omitted, if this sub-group is not applicable for a particular organization. The
proposed model, however, covers a wide range of organizations.

2.1.2 Asset Group Model

The Asset Group Model is an abstract model used in order to categorize all the ICT
assets of the organization and capture their dependencies, as shown in Fig. 2. These
dependencies will be used in the following phases of the methodology.
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Fig. 1 The user group model of the STORM-RM methodology

Fig. 2 The asset group model of the STORM-RM methodology
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Fig. 3 The basic steps of the Cartography phase and their participants

The STORM-RM methodology defines as a key element of the asset model,
the Electronic Services of the organization. Since all the ICT assets are used as
supporting tools for the Electronic Services, it is natural to assume that all the ICT
assets will support one or more Electronic Services. The STORM-RM methodology
defines the Asset Group model in three levels. Each Electronic Service is provided
by a combination of users, data and IT Systems (Level 0). We use the abstraction
of a System in our model, in order to represent the combination of one or more
hardware and software ICT assets (Level 1). These in turn can be further analyzed
in various sub-types of ICT assets (Level 2). For example, the hardware assets can
be divided into servers, workstations, network equipment, etc. The output data of
this Asset Group Model can be later used in order to capture the dependencies
between business-wise impacts and IT systems. Finally, it also includes the users
that are linked with a particular electronic service. These users can be members of
various groups in the User Group model. In this way it will be possible to find the
appropriate actors to participate in the following phases of the risk assessment, for
each particular asset.

2.2 Identifying the Users and Assets of the Organization

Based on the User Group and the Asset Group models defined in the STORM-
RM method, in the Cartography phase the key users of the organization that will
participate in the risk assessment, as well as the assets of the organizations will be
identified. Figure 3 describes the basic steps of the Organization Cartography phase,
along with the participants involved in each step.

2.2.1 Assigning the Organization Users to User Groups

During this step, the Security Officer will assign the users of the organization to one
of the sub-groups defined in the User Group model. It is not necessary to assign all
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the organization users to one of the categories and it is possible to assign only those
key users that will participate in the risk assessment process. An advantage of the
STORM-RM methodology is that it is not necessary to identify all the participants
at the beginning (although a proper selection will reduce the time needed to perform
the assessment). If in a later phase the Security Officer realizes that one or more key
users have not been utilized in the assessment, it is possible to assign these users at
a later time and consider their answers in the risk assessment. In this case, the risk
will be re-evaluated to take into consideration the additional information.

2.2.2 Linking the Organization Assets to Asset Groups

During this step, the various participants (already assigned to the User Groups) will
collaborate in order to link the information assets to Asset Groups. This is executed
in three sub-steps:

1. In the first sub-step, the participants belonging to the Management group are
responsible to identify the Electronic Services belonging to the areas of their
responsibility, as well as the key users which are involved in each Electronic
Service. Although managers are not aware of the specific implementation details,
they have an overall view of their electronic services and key personnel related
with these e-services.

2. After the Electronic Services and the key users of each service have been
identified, the end users who have been assigned to each electronic service will
identify the required Data that are related to each electronic service. Again, the
end users belonging to each business unit will be the most appropriate to identify
the above assets, since they consist part of their everyday work.

3. Finally, after the electronic services have been identified, the Technical Ex-
perts (administrators) will identify the Systems (with details for their Hard-
ware/Software assets) which are related to the provision of each electronic
service. Although the administrators may not be aware of the business view
of each electronic service, they will be aware of the technical details related
to the provision of each electronic service. Note that if the hardware assets of
the organization are hosted in more than one location, information related to the
physical location of each hardware asset will also be provided in this step.

At the end of this phase, the assets that will be assessed and the users of the
organization will be mapped to Asset Groups, based on the Asset Group model
described in Fig. 2.

3 The STORM-RM Impact Assessment Phase

As in the Cartography phase, in order to minimize the involvement of the partici-
pants, each participant will only assess the impact of those assets of the organization
that he is familiar with. In addition, in order to increase the accuracy of the impact
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Fig. 4 AHP model for the selection of opinion weights for the Impact assessment of data assets

assessment, the STORM-RM methodology enables the participation of various
users in the assessment of each asset. According to the User Group of each
participant, a different view of each asset will be considered.

3.1 Assigning and Weighting User Groups to Asset Categories

Each asset will be assessed for the impact caused due to the violation of a security
property. The Data assets are assessed for their possible unavailability, disclosure
and modification, while the Systems are evaluated for their significance for the
provision of electronic services to which they are connected. It is important to
mention that the H/W and S/W assets will not be assessed for their security
importance and their Impact value will derived from the Impact value of the System
that they are connected to according to the Asset Model (Fig. 2).

So in order to reduce the complexity derived from the involvement of different
users with different views, the Impact Assessment phase utilizes the AHP [14]
methodology. For each asset category the STORM-RM [11] defines which User
Groups will participate in the impact assessment and what is the weight of each
User Group involved.

3.1.1 Data Assets

The opinions of the related Managers (P1), Security Team (P2) and End Users (P3)
are considered. Their weights are based on the AHP methodology (Fig. 4) taking
into account different criteria such as Knowledge of Business Goals, Knowledge of
Business Risks, Understanding the Business values of Data.

Considering that the opinions of the Managers are three times more important
than the opinions of the other participants, since the manager will be aware of the
business impacts of the loss of security of a Data asset, and consequently of the
related electronic service, Table 1 shows the results of the pairwise comparison with
respect to the criterion C3: Understanding the Business value of Data. However, the
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Table 1 Pairwise comparison matrix for the alternatives (Participants
P1,P2,P3) with respect to criterion C3

C3: Understanding the
business value of data P1 P2 P3 Weights

P1 : Management (Related
with the e-services)

1 3 3 0.600

P2 : Security team 1/3 1 1 0.200
P3 : End users (of the

particular e-services.
1/3 1 1 0.200

Consistency ratio: 0.00

Table 2 Final results (opinion weights for the impact assessment of
data assets) shown as normalised priorities

Criteria C1 C2 C3

Criteria priorities 0.333 0.333 0.333 Weights

P1 : Management (Related
with the e-services)

0.574 0.685 0.600 0.620

P2 : Security Team 0.286 0.179 0.200 0.222
P3 : End users (of the

particular e-services.
0.140 0.136 0.200 0.159

Fig. 5 AHP model for the selection of opinion weights for the impact assessment of systems

opinions of the End-Users related to the particular electronic service should also be
considered, as well as the opinion of the security team who has an overall view of
the organization. The final opinion weights are shown in Table 2.

3.1.2 Systems

In a similar way, the opinions of the Technical Experts, IT Manager and Secu-
rity Team are considered for the Systems taking into account different criteria
(e.g. Knowledge of IT Goals, Knowledge of IT Risks, Understanding the Business
value of Systems) as shown in Fig. 5 and their weights of participation are shown in
Table 3.
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Table 3 Final results (opinion weights for the impact assessment of
Systems) shown as normalised priorities

Criteria C1 C2 C3

Criteria priorities 0.333 0.333 0.333 Weights

P1 : Technical experts (Related
with the H/W - S/W)

0.480 0.501 0.405 0.462

P2 : IT manager 0.405 0.310 0.480 0.398
P3 : Security team 0.115 0.189 0.115 0.140

3.2 Calculating the Impact of Each Asset

After the participation and the weights of each User Group have been assigned
for each asset category of Level 0 (i.e. Data Assets or Systems) and the involved
participants have provided their opinions, the impact of each asset should be
evaluated.

Each participant is asked through dynamically generated questionnaires, to
provide his opinion for the possible impact(s) of each asset he has been assigned to
in the previous phase. The data assets are assessed for their impact due to possible
unavailability (Iun(A)), disclosure (Idis(A)) and modification (Imod(A)).

The use of the System abstraction in the asset group model will be exploited
in order to minimize the burden of the impact assessment phase for the H/W and
S/W assets. Instead of performing a time consuming impact assessment for each
H/W and S/W asset, we will only define a Correlation Factor CF for each System
defined within an Electronic Service.

These different ways of the calculation of the Impact values of Data Assets and
Systems (and as a result of H/W and S/W) are described in detail below.

3.2.1 Calculating the Impact of Each Data Asset

The impact scale and the possible consequences asked in this phase are based on
STORM-RM scale [11] (1 = Very Low, 2 = Low, 3 = Medium, 4 = High, 5 = Very
High consequences). Since multiple users from different User Groups will provide
their opinion, the final Impact value for each Data asset, is evaluated as follows.

Let G j, j ∈ [1,m] denote the jth User Group and let Uj,i denote the ith user
of the User Group j. We assume that each Data asset A may have one or more
Impact values, according to its category. Without loss of generality, we examine the
unavailability impact of an asset A.

Since in the STORM-RM, the impact of an asset is based on the opinions of
various users belonging to different groups, the impact value of Data asset A shall
consider the opinion of each related User Group. We denote as opGj (Iun(A)) the
opinion of the User Group G j for the impact value regarding the unavailability of
the Data asset A.
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In turn, the value opGj(Iun(A)) is computed, based on the opinions of each
participating user belonging to the User Group G j. We denote the view of a user
Uj,i for the Impact value of the Data asset A as opUj,i(Iun(A)). Since a user may have
a different opinion for the unavailability impact of a Data asset, we consider that
opUj,i(Iun(A)) is the maximum reply of the user Uj,i, for all the possible examined
consequences. For example, if Uj,i assesses that the unavailability of the asset A will
have a value equal to 4 for the consequence type ‘loss of reputation’ and a value
equal to 5 for the consequence ‘economic loss’, then opUj,i(Iun(A)) =max(4,5) = 5.
Based on the user opinions, the group opinion of the User Group G j for the
unavailability impact of the Data asset A is computed as:

opGj (Iun(A)) =
n

∑
i=1

opUj,i(Iun(A))

n
. (1)

Let wj denote the weight of the User Group G j (as computed in Sect. 3.1). Then
the estimated unavailability impact of the Data asset A is computed as:

I(A) =
m

∑
j=1

wj ·opGj(I(A)). (2)

3.2.2 Calculating the Impact of Each System

In order to calculate the Impact value of each System and as a result of all
the connected assets (i.e. H/W and S/W assets based on the Asset Model), the
STORM-RM methodology defines the Correlation Factor (CF) which expresses
the correlation between the System and the Electronic service(s) that it supports.
More specifically we define three different CF values between a System (S) and an
Electronic Service (E):

• The unavailability correlation factor (CFun(S,E)) : This implies the correlation
between the unavailability impact caused to the electronic service E, due to the
unavailability caused to one or more H/W or S/W assets of the system S.

• The disclosure correlation factor (CFdis(S,E)) : This implies the correlation
between the disclosure impact caused to the electronic service E, due to the
disclosure caused to one or more H/W or S/W assets of the system S

• The modification correlation factor (CFmod(S,E)) : This implies the correlation
between the modification impact caused to the electronic service E, due to the
modification caused to one or more H/W or S/W assets of the system S.

The appropriate users define values for these CF of each System that he has been
assigned to in the previous phase (Cartography Phase). In particular, the users define
the percentage of significance (1 = Very Low (or correlation nearly 0%), 2 = Low
(or correlation nearly 25%), 3 = Medium (or correlation nearly 50%), 4 = High
(or correlation nearly 75%), 5 = Very High (or correlation nearly 100%)) of each
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System for the availability (CFun(S,E)), confidentiality (CFdis(S,E)) and integrity
(CFmod(S,E)) of the correlated Electronic Service (s). The calculation of the group
and final CF values of each System are performed with the same way with the
calculation of Impact values of Data assets (as it described in Sect. 3.2.1). The assets
of Level 3 (i.e. H/W and S/W assets) that are connected with each System (S) inherit
these CF values as their Impact values for possible unavailability, disclosure and
modification.

3.3 Implied Values and Finalization

Based on the previous step, the impact values of all the assets have been evaluated.
However, these values are isolated and do not consider the interdependencies
between the different assets. In this step the impact evaluation of each asset is
finalized based on the interdependencies between the assets. In this way the indirect
implied impacts of each asset are calculated. The implied asset values are computed
based on the following rules (applied in the particular order):

Implied values. If the unavailability of an asset implies the unavailability on
another asset, then the worst case will be considered for the unavailability impact of
the asset in question. For example, if the unavailability impact for a data asset has
been evaluated as 4.8 and the unavailability of an electronic service that depends on
this data asset has been evaluated as 5, then the final unavailability impact of the
data asset will be 5.

Assets belonging to multiple asset groups. If an asset belongs to more than one
Asset Groups, then the procedure described in Sect. 3.2 will have been performed
more than one time for the particular asset. In this case, the worst impact value(s) of
the particular asset will be considered as the final impact value(s).

4 Conclusions

Risk management methodologies should take into consideration the views of
many users with different roles, in order to increase the accuracy of the results.
This, however, increases the complexity of the risk assessment process, turning it
into an expert-driven process. In this paper we have presented the STORM-RM
methodology which attempts to reduce this complexity, by properly applying the
AHP methodology in the organization cartography and impact assessment phases.
In this way, the roles and the weights of the participants are fully defined and in
this way the risk assessment is shifted to a more user-driven process. In order to
fully exploit the advantages of multi-criteria approach such as the AHP, we plan to
consider its applicability in the rest of the phases of the STORM-RM, such as the
threat/vulnerability assessment and countermeasures selection. The STORM-RM
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methodology will be implemented as service at the S-PORT system [13] and will be
tested by three Greek commercial Ports (Piraeus Port Authority S.A., Thessaloniki
Port Authority S.A, Municipal Port Fund Mykonos).
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Testing the Homoskedasticity/Heteroskedasticity
of the Errors Using the White Test: Pattern
Classification by k-Variances and Informational
Criteria

Daniel Ciuiu

Abstract In this paper we will test the homoskedasticity/heteroskedasticity of the
errors for a linear regression model using the White homoskedasticity test. In the
case of heteroskedasticity we use the k-variance algorithm to classify the data such
that all the classes are homoskedastic. The informational criteria analogues to the
Akaike and Schwartz criteria are used to choose the best classification.

Key words Homoskedasticity • k-variance • Informational criteria

1 Introduction

Consider n points in Rk+1, X (1), . . . ,X (n), where X (i) =
(

X (i)
1 ,X (i)

2 , . . . ,X (i)
k ,Yi

)
. The

equation of the regression hyper-plane, used in [1] to classify patterns, is (see [7])

H : Y = A0 +
k

∑
i=1

AiXi such that (1)

n

∑
i=1

u2
i is minimum, (1’)
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where the residues ui are given by the formula

ui = Yi −A0 −
k

∑
j=1

A jX
(i)
j . (1”)

For the estimation of Ai from (1) we have to solve the following linear system
(see [7]):

k

∑
j=0

Xi ·Xj ·A j = Xi ·Y , i = 0,k, (2)

where X0 ·Xi = Xi and X2
0 = 1.

The polynomial model is in fact the multilinear model (1) with the explanatory
variables X1 = X , X2 = X2 and so on (see [2]).

For the obtained estimators of Ai using (2) and for the residues ui we have the
following assumptions (see [4, 10]):

1. The estimators of Ai are linear.
2. The estimators of ui have the expectation 0 and the same variance (homoskedas-

ticity).
3. The estimators of ui are normal.
4. The random variables ui are independent.

From the above assumptions and from Gauss—Markov theorem, we obtain the
following properties (see [4, 10]):

1. The estimators of Ai are consistent.
2. The estimators of Ai are unbiased.
3. The estimators of Ai have the minimum variance.
4. The estimators of Ai have the maximum likelihood.

Denoting by VT the total variance of the resulting variable Y , by VTM the total
variance explained by the model, and by VT R the total variance of the residues we
obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

VT =
n
∑

t=1

(
Yt −Y

)2

VTM =
n
∑

t=1

(
Ŷt −Y

)2

VTR =
n
∑

t=1
u2

t

, (3)

where Ŷt = Â0+∑k
i=1 ÂiXi;t , and Âi is the estimator of Ai by the less squares method.

We know (see [4, 10]) that if the regression contains the term A0 and the
parameters Ai are estimated by the less squares method then

V T =VTM+VTR. (3’)
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The coefficient of determination is

R2 =
VT M
VT

= 1− VT R
VT

. (4)

Remark 1. If we divide VT and VT R from 3 by n we obtain the variance of the
resulting variable Y , respectively, the variance of the residues. If we use these
substitutions we obtain R2 = 1− Var(u)

Var(Y ) .

This is used in our C++ program, where we also use 1
n ·X ′X instead of X ′X and

1
n ·X ′Y instead of X ′Y (see (2) and [4]). If we denote by Â the estimator of the linear
regression coefficients, the variance of the residues is computed using the formula
(see [4, 10])

Var(u) = Var(Y )− 2
n
· Â′X ′Y +

1
n
· Â′X ′XÂ. (5)

To compute Var(Y ) we compute, in our C++ program, 1
n ·X ′X by adding a new

component (having the index k+1) to X : the values of Y . The second moment of Y
is the component k+ 1,k+ 1 of the matrix, and X ′Y from [4] and [10] divided by n
is the last column of the obtained matrix with the first k elements.

A test for the homoscedasticity of the errors is the White test (see [4, 10]). For
this test we consider the following linear regression:

u2 = α0 +α1Z1 + · · ·+αpZp, (6)

where the explanatory variables Z1, Z2,. . . , Zp are as follows.
If the number of explanatory variables in (1) is 1 and we denote by X = X1, the

above explanatory variables are Z1 = X and Z2 = X2, and p = 2.
If k = 2, the above explanatory variables are Z1 = X1, Z2 = X2, Z3 = X2

1 , Z4 = X2
2

and Z5 = X1 ·X2, and p = 5.
If k > 3, but small enough we have (see [4, 10]) the above explanatory variables

Z1 = X1, Z2 = X2,. . . , Zk = Xk, Zk+1 = X2
1 , Zk+2 = X2

2 ,. . . , Z2k = X2
k , Z2k+1 = X1 ·

X2,. . . , Z2k+C2
k
= Xk−1 ·Xk, and p = 2k+C2

k (as for k = 3).
If k > 3, but large enough we have the above explanatory variables Z1 = X1,

Z2 = X2,. . . , Zk = Xk, Zk+1 = X2
1 , Zk+2 = X2

2 ,. . . , Z2k = X2
k , and p = 2 · k (as for

k = 2).
Next we take into account that n · R2 has the distribution χ2

p, where R2 is the
coefficient of determination for the regression (6) (see [4,10]). Therefore we accept
the homoskedasticity if n ·R2 < χ2

p;ε (ε is the first degree error of the test).
An informational criterion for (1) is the Akaike criterion, AIC (see [4]):

AIC =
VT R

n
· e 2(k+1)

n =

n
∑

t=1
u2

t

n
· e 2(k+1)

n , (7)
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or, in logarithmic expression,

lnAIC = ln

⎛

⎜
⎜
⎝

n
∑

t=1
u2

t

n

⎞

⎟
⎟
⎠+

2(k+ 1)
n

. (7’)

Another informational criterion for (1) is the Schwartz criterion, BIC:

BIC =
VT R

n
·n k+1

n =

n
∑

t=1
u2

t

n
·n k+1

n , (8)

or, in logarithmic expression,

lnBIC = ln

⎛

⎜
⎜
⎝

n
∑

t=1
u2

t

n

⎞

⎟
⎟
⎠+

k+ 1
n

· lnn. (8’)

For the ARMAp,q models these criteria are as follows (see [6]). The Akaike
criterion is

AIC =−2lnLz

(
β̂ , σ̂2

a

)
+ 2(p+ q), (9)

where β̂ is the vector of estimated parameters, σ̂2
a is the estimation of the variance

of the corresponding white noice at , and Lz

(
β̂ , σ̂2

a

)
is the maximum likelihood.

The Schwartz criterion is

BIC = (n− p− q)ln
nσ̂2

a

n− p− q
+ n ln

(
1+ ln

√
2π

)

+ (p+ q)ln
n
(
σ̂2

z − σ̂2
a

)

p+ q
, (10)

where σ̂2
z is the sample variance of the initial time series zt .

Apparently these criteria are different in the time series case, but we can
approximate them by

{
AIC ≈ n ln σ̂2

a + 2(p+ q)

BIC ≈ MDL = n ln σ̂2
a +(p+ q)lnn

, (11)

where MDL is the Minimum Description Length of Rissanen (see [6]).
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Comparing the formulae of informational criteria in the case of linear regression
and of the time series, it is pointed out in [2] that

{
AIC = α+ 2 ·npar

BIC = α+ npar · lnm
, (12)

where npar is the number of the estimated parameters and m is the number of degrees
of freedom if we do not take into account the constraints (in the case of regression
the number of degrees of freedom is n− k − 1, and in the case of time series this
number is n− p− q).

For the Goldfeld—Quandt homoskedasticity test we obtain the Akaike criterion
(see [2])

AIC =−2ln(1− ε− f rstat f max)+ 2 ·nrcls · (k+ 1), (13)

and the Schwartz criterion BIC

BIC =−2ln(1− ε− f rstat f max)+ nrcls · (k+ 1) · ln(n1 + n2) , (14)

where f rstat f max is the maximum cumulative distribution function applied to the
involved Snedecor—Fisher statistics for the Goldfeld—Quandt test with the error ε ,
nrcls is the number of classes, k is the number of explanatory variables, and ni are
from the Goldfeld—Quandt test on the class for which f rstat f max is obtained.

In the next section we will present a similar approach where we use the White
homoskedasticity test instead of Goldfeld—Quandt homoskedasticity test.

2 Informational Criteria and Classification

Suppose now we have n points in Rk+1: k explanatory variables and one resulting
variable. Consider also nrcls classes in which we classify the n points (for only one
class we have nrcls = 1). Denoting by p the number of explanatory variables in the
regression of u2 we take into account that m in the case of linear regression is n, i.e.
the size of available data. Therefore we define the informational criteria in the case
of White test when all the nrcls classes are homoskedastic as

AIC =−2ln
(
χ2

p;ε −max nR2)+ 2 ·nrcls · p, and (15)

BIC =−2ln
(
χ2

p;ε −max nR2)+ nrcls · p · ln n, (16)

where max nR2 is the maximum of the values ni ·R2
i , obtained for the nrcls classes

(i is the index of the class).
As in [2], after we have computed the value of the informational criterion, we

compute the maximum number of classes. In the case of Akaike informational
criterion, the maximum number of classes is
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max nrcls =
AIC+ 2ln

(
χ2

p;ε
)

2 · p
. (17)

In the case of Schwartz informational criterion, the maximum number of
classes is

max nrcls =
BIC+ 2ln

(
χ2

p;ε
)

p · lnn
. (17’)

Even when the only one class containing all the n points is homoskedastic we
compute the informational criteria and we check to see if for another classification
(in more classes) we obtain a smaller value of the information criterion. In both cases
(homoskedasticity, respectively, heteroskedasticity) we choose the classification
with all the classes homoskedastic, and with the minimum value of the informational
criterion.

To compute χ2
p;ε by a numerical method we have to solve the Cauchy problem

{
y′ (x) = 1

hp(y)

y(x0) = y0
, (18)

where hp is the pdf of the χ2
p distribution. The values of x0 and y0 are chosen such

that Hp (y0) = x0 (Hp is the cdf of the χ2
p distribution) as follows. First we have to

avoid for p ≥ 3 zero at denominator. For this we find first the linear regression of
the centil χ2

p;0.1 in terms of p:

χ2
p;0.1 = 1.6 · p+ 4.5. (19)

After this we take y0 = 1.6 · p+ 4.5 and we compute

x0 =

y0∫

0

hp (t)dt (19’)

by a numeric method. The method used in our C ++ program may be one of
the rectangle method, the trapezoid method or the Simpson method (see [5]). The
method to solve the Cauchy problem can be the Euler method, the modified Euler
method or the Runge—Kutta method. In our examples we will use the most precise
methods, i.e. the Simpson method to compute the integral, respectively, the Runge—
Kutta method to solve the Cauchy problem (see [5]). Of course, we have to compute
χ2

p;ε = y(1− ε).
To compute the value of χ2

p;ε for p ≥ 3 by the Monte Carlo method we simulate
10000 random variables having the distribution χ2

p. Once we order these values
ascending we take χ2

p;ε to be the value from the position equal to the integer part of
10000 ·(1− ε). In our C++ program we can generate the involved normal variables
using the central limit method, the Box—Muler method, or the Butcher 1 method
(see [9]). We choose in examples the Box—Muler method, because it is the most
rapid.
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If the number of explanatory variables is k = 1 we have p = 2. In this case we
take into account that the distribution χ2

2 coincide with the exponential distribution
with λ = 0.5. Therefore χ2

2;ε =−2lnε .
The k-means algorithm (see [3]) is an algorithm to classify n points in k classes

as follows.

1. First k points are allocated each to different classes.
2. Next n− k points are allocated to the class with the nearest gravity center. The

gravity center of this class is recomputed.
3. All the points are checked in order to see whether another class has the gravity

center closer than that of the current class. In this case the point is moved to the
closest class, and we recompute the gravity centers of the involved classes. The
algorithm ends when no point is moved.

In the above algorithm the distance between the point and the class is considered
the distance between the point and the gravity center of the class. In [1] another
distance is considered: the residue of the linear regression corresponding to the class.

But heteroskedasticity is not produced by expectation, or by the residues. It is
produced by the variance of the residues. Therefore we consider (in our algorithm,
and in our C++ program) as distance the absolute value of the difference between
the square of the residue and the variance of the residues of the class.

Therefore the k-variances algorithm is as follows:

1. First nrcls · (p+ 2) points are allocated to different classes as follows. First p+2
to class 1, next p+ 2 to class 2 and so on.

2. Next n − nrcls · (p+ 2) points are allocated to the class with the minimum
distance between the square of the residue (corresponding to the class) and the
variance of residues for the class. We recompute the variance of the residues for
this class.

3. All the points are checked to see whether for some other class the mentioned
distance is less. Once we find the best class, we move the point and we recompute
the variances of the residues for the involved classes. The algorithm ends when
no point is moved.

After we have found the best classification of the n points into nrcls classes, we
check if all these classes are homoskedastic. In the affirmative case we compute the
value of the involved informational criterion, and the maximum number of classes
using (17) or (17’).

3 Applications

Example 1. Consider the resulting variable Y representing the interest rates applied
by banks on loans, and the explanatory variable X representing the reference
interest. The monthly data are from January 2006 to December 2010, according



312 D. Ciuiu

to The Statistical Section of National Bank of Romania, June and December 2007
and 2008, and December 2006, 2009 and 2010. They are introduced in Table 3,
Appendix.

The results of our C ++ program for the linear regression are presented in
Table 1. The first column contains the number of classes (starting with the case of
the lack of the classification, where this number is one), the second column contains
the linear regressions for each class and the third one contains the variance of the
residues for these regressions. The fourths column contains the linear regressions of
u2 from (6), the fifths column contains the corresponding values of n ·R2, and the
sixths column contains “Yes” if the class is homoskedastic, and “No” in the contrary
case.

The values n ·R2 from the fifths column in the above table must be compared
with χ2

p;ε , with p = 2, because we are in the case of linear regression. When we
compute the centil χ2

2;0.05 we take into account that the χ2
2 distribution is identical to

exponential distribution with λ = 0.5, as we have mentioned in section 2. Denoting
by α the above value χ2

2;0.05, we obtain from F (α) = 1− e−0.5α = 0.95 the value
α =−2ln(0.05) = 5.99146.

For a classification having at least one heteroskedastic class (including the case
of only one heteroskedastic class, as in Table 1) we can not apply formulae (17)
and (17’) to compute the maximum number of classes. In this case, regardless the
number of considered classes, the maximum number of classes is such that each
class has at least four points, in order to have not degenerative regression in (6).
Therefore this number is the upper integer part of n

4 , i.e. 15 = 60
4 , and it remains

the same until we find a classification with all nrcls homoskedastic (in the case of
Table 1 we have nrcls = 2).

As we can see in the above table, comparing the values of n ·R2 with the above
centil, we have both classes with homoskedastic errors in the case of two classes.
The first class (23 months) is from October 2008 to August 2010, i.e. during the
world economic crisis. The other class (the second one: 37 months) is from January
2006 to September 2008, and from September 2010 to December 2010.

The values of the informational criteria are AIC = 4.7607, respectively, BIC =
13.13808, and the recomputed maximum number of classes using (17) and (17’) is
two. Therefore we have not to check the classification in three or more classes.

Because in this example we have considered only one explanatory variable (the
reference interest) we can also consider the parabolic model Y = a0 + a1X + a2X2.
We obtain the regression Y = 22.21213 − 2.78566X + 0.22209X2, and n · R2 =
7.93794. The centil χ2

4;0.05 is 9.48773 estimated by the Runge—Kutta method,
9.60415 estimated by the Monte Carlo method, considering AIC as informational
criterion, respectively, 9.49132 estimated by the Monte Carlo method, considering
BIC as informational criterion. Therefore the only one class is homoskedastic, and
we proceed to compute the AIC and BIC informational criteria.

The value of AIC informational criterion is 7.12377 in the case of Runge—
Kutta method, respectively, 6.9789 in the case of Monte Carlo method. The
value of BIC informational criterion is 15.50114 in the case of Runge—Kutta
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method, respectively, 15.49651 in the case of Monte Carlo method. Applying the
formulae (17) and (17’), we obtain the maximum number of classes one in all
the four above cases. Therefore we need no classification in more classes for the
parabolic model.

Example 2. Consider the resulting variable Y representing the non-government
loans, and the explanatory variables X1 representing the interest rates applied by
banks on loans, and X2 representing the CPI (Consumer Price Index). The monthly
data are from January 2006 to December 2010, according to The Statistical Section
of National Bank of Romania, June and December 2007 and 2008, and December
2006, 2009 and 2010. They are introduced in Table 3, Appendix.

The results of our C ++ program for the linear regression are presented in
Table 2. The columns in this table are the same as in Table 1, except for the last
column which was omitted due to lack of space.

The centil χ2
5;0.05 that is compared to the values of ni ·R2

i from the above table
is 11.0704 if we use the Runge—Kutta method, 11.1691 if we use the Monte
Carlo method, we generate the normal variables by the Box—Muler method and
we choose AIC as informational criterion, and 11.13233 if we use the Monte Carlo
method, we generate the normal variables by the Box—Muler method and we
choose BIC as informational criterion.

The first classification with all classes homoskedastic is that with four classes, as
above. This classification is as follows. First class contains 8 months from January
to May 2006 and from April to June 2008, the second class contains 11 months
from August 2006 to April 2007, December 2008 and June 2009, and the third class
contains 19 months from June to July 2006, from May 2007 to March 2008, from
July to August 2008, October 2008 and from January to March 2009. The fourths
class contains the main period of the economic crisis in Romania: September and
November 2008, from April to May 2009 and from July 2009 to December 2010.

The values of AIC criterion are 43.87938 in the case of Runge—Kutta method
and 42.83391 in the case of Monte Carlo method. The values of BIC criterion are
85.76628 in the case of Runge—Kutta method and 85.0498 in the case of Monte
Carlo method. The obtained maximum number of classes using (17) and (17’) is
four in all the above cases. Therefore we need no classification in more than four
classes for the above multilinear model.

4 Conclusions

The main idea for conception of informational criteria like Akaike and Schwartz
is to build criteria increasing on the errors of the model, but, in the same time,
increasing on the number of parameters. It is obvious that we obtain lower errors of
the model by increasing the number of parameters, but, sometimes this number can
make the time to estimate the parameters become prohibitively.
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In the case of the Goldfeld—Quandt homoskedasticity test a natural order is
obtained for the n points, and the classification was reduced to the separation of the
classes (see [2]). But, in the present paper case (the White homoskedasticity test),
no natural order is obtained. Therefore we have to use algorithms like those used in
artificial inteligence. For instance we use the proposed k-variances algorithm from
section 2.

In the case of Example 1 we notice that in the period of the world economic crisis
the coefficient of X and the variance of the residues are greater than in the other
period: 0.9398 and 0.2095, respectively, 0.463 and 0.06613. In the case of the
coefficient of X (the reference interest) the information about the evolution of the
USA economic crisis was incompleted. Therefore the banks had to take into account
more the signals from the central bank in their credit policy. We notice also that the
coefficient of X during the economic crisis is closed to those from the case of only
one heteroskedastic class (0.87154).

For this example we can use two methods to avoid the heteroskedasticity: to
increase the degree of the polynomial (the parabolic model is homoskedastic) and
to increase the number of classes (k-variance classification algorithm).

In Example 2 we notice that the coefficient of X1 (the interest rates applied by
banks on loans) is negative only for the fourths class. This can be explained by the
fact that the credits were given very easy (as those only with the ID card). The first
two classes have big coefficients for X1: 223.74643 and 24.51834. These classes
contain the majority of the year 2006, before Romania joined EU. In this period
many Romanians made household credits even they did not need really a home:
they have bought flats hopping they could sell them to EU citisens in 2007.

In both examples from previous section we notice that the first classification
with all the classes homoskedastic is also optimal from the point of view of
an informational criterion as AIC or BIC. Theoreticaly, it is possible (because
lim
x→0

lnx = −∞) to obtain a classification with all classes homoskedastic that would

require increasing the number of classes. We need only a value of ni ·R2
i less than

the involved χ2 centil, but closed to it. An open problem is to find economic data
having this property.
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Table 3 The reference interest, the non-government credit (billions lei), the interest rates
applied by banks on loans and the CPI from January 2007 to December 2010

Month/year
Reference
interest

Non-government
credit

Interest rates applied
by banks on loans CPI

January/2006 7.5 61.627 14 1.03
February/2006 7.5 62.4039 14 0.24
March/2006 8.47 65.6752 14 0.21
April/2006 8.5 68.1239 14 0.42
May/2006 8.5 72.3104 14 0.6
June/2006 8.5 76.4558 14 0.15
July/2006 8.50 79.4007 14 0.11
August/2006 8.75 82.1613 14 −0.07
September/2006 8.75 85.2889 14 0.05
October/2006 8.75 89.0168 14 0.21
November/2006 8.75 91.9023 14 1.09
December/2006 8.75 93.2834 14 0.74
January/2007 8.75 92.4949 13.68 4.01
February/2007 8.75 95.4817 13.72 3.81
March/2007 8.08 98.9642 13.68 3.66
April/2007 8 102.6061 14 3.77
May/2007 7.5 106.4999 13.68 3.81
June/2007 7.25 109.0313 13.28 3.8
July/2007 7.25 114.6615 13.14 3.99
August/2007 6.1 122.0958 12.97 4.96
September/2007 6.48 129.0622 12.92 6.03
October/2007 6.87 133.3196 13.02 6.84
November/2007 7 141.1176 13.04 6.67
December/2007 7.5 148.1807 13.05 6.57
January/2008 7.5 154.2675 13.16 7.26
February/2008 8 158.3409 13.49 7.97
March/2008 9 164.6068 13.75 8.63
April/2008 9.03 168.7341 14.36 8.62
May/2008 9.5 171.8343 14.4 8.46
June/2008 9.75 178.1803 14.4 8.61
July/2008 9.75 178.6922 14.6 9.04
August/2008 10 183.6299 14.9 8.02
September/2008 10.25 194.1741 15.29 7.3
October/2008 10.25 193.0636 16.67 7.39
November/2008 10.25 195.131 17.45 6.74
December/2008 10.25 198.0557 17.47 6.3
January/2009 10.25 206.4357 17.87 6.71
February/2009 10.25 206.8901 18.11 6.89
March/2009 10.14 202.617 18.15 6.71
April/2009 10.07 200.5538 18.08 6.45
May/2009 10.02 199.0795 17.73 5.95
June/2009 9.71 198.0563 17.46 5.86
July/2009 9.5 197.9049 17 5.06

(continued)
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Table 3 (continued)

Month/year
Reference
interest

Non-government
credit

Interest rates applied
by banks on loans CPI

August/2009 9 198.6828 16.68 4.96
September/2009 8.53 198.9147 16.5 4.94
October/2009 8.5 201.2144 16.6 4.3
November/2009 8 200.8716 16.57 4.65
December/2009 8 199.8871 16.58 4.74
January/2010 8 199.285 16.3 5.2
February/2010 7.5 199.1671 15.6 4.49
March/2010 7.25 199.4041 14.99 4.2
April/2010 7 200.3224 14.23 4.28
May/2010 6.5 203.1121 14.26 4.42
June/2010 6.25 210.8089 13.9 4.38
July/2010 6.25 206.6989 13.89 7.14
August/2010 6.25 207.6677 13.59 7.58
September/2010 6.25 207.9305 13.42 7.77
October/2010 6.25 206.8363 13.18 7.88
November/2010 6.25 207.9248 12.93 7.73
December/2010 6.25 209.298 12.66 7.96
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www.bnr.ro


An Innovative Decision Making e-key
Application For the Identification of Fish Species
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Abstract The most important tool for ichthyologists, as well as biologists, fishery
biologists and other relevant scientists is an identification key, that is an information
system providing them the capability to identify specimens accurately or to find
information on correct names, biology and distribution of species. Dichotomous
identification keys organize fishes based on their similarities and differences. This
research work focuses on the development and implementation of a new innovative
information system which is able to identify correctly fish species. The developed
system is a fully interactive fish identification e-key which can be used in both
forms; locally and remotely via Internet, and more specifically the Telnet service.
This new dichotomous classification e-key provides the capability to identify any
species in a compact and easy-to-use environment which gives the user excellent
operation capabilities and complete information about all included fish species.
Moreover, the application provides the capability to search for a sporadic fish
species and to show a list which includes all the fish species that exist to the
application’s database until that time.
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1 Introduction

There are about 28,000 living species of fishes which makes very difficult their
correct classification [9]. The identification of the various fish species is based on
morphometric characters (measurable structures such as fin length, head length,
etc.), meristic characters (countable structures such as number of scales in the lateral
line, number of vertebrae, etc.), anatomical characters of the skeleton and the soft
anatomy or characters that include any fixed, describable differences among taxa
such as color (presence of stripes, spots) photophores (number and position) and
sexually dimorphic structures [1, 9].

To classify different species a dichotomous identification key is used, which is
an extremely important tool in science. The primary aims of an identification key
are to enable species to be identified correctly and to summarize what is known on
their biology and geographical distribution. In order to identify a fish with the use
of a dichotomous key, the user works through a series of questions and illustrations
which eventually lead him to the species matching best the characteristics he has set.

Systematics (or taxonomy) is the biological science responsible for the clas-
sification of living organisms in a hierarchically organized system representing
the evolutionary kinship of the various systematic groups. In classification, the
use of morphological, anatomical, physiological and other characteristics is made
to decide the existing relationships [1]. The basic systematic unit (taxon) is the
species followed (in ascending order) by the genus, family, order, class, superclass,
subphylum and the phylum.

Like other animals and plants, fishes are known by common names and scientific
names. While common names differ from country to country, scientific names are
universal. Aristotle was the first to classify the animals known in his days, but the
first generally acknowledged scientific classification of animals and plants was by
Carl Linnaeus who introduced the binomial system, in which every species was
given two Latin or Greek names. Since the scientific name consists of two parts, the
first italicized word, with the initial letter capitalized, is the genus while the second
italicized word is the specific (species) name.

The existing identification keys are divided into two categories: (1) printed keys
and (2) electronic keys (e-keys). The former are printed in the form of a book and
they mostly still keep this form so far. Nevertheless, e-keys have been developed
in recent years. Examples of printed identification keys are books dealing with
fishes from the Mediterranean Sea [7, 13], Atlantic Ocean [2, 6, 12], Indian and
Pacific Ocean [3–5] and Greek seas [10]. The main disadvantage of the printed
identification keys is that it is easy to make a few wrong decisions when navigating
through the test. So, when someone is deadlocked or makes a wrong selection, it is
not easy to go to a previous selection (family, suborder, etc.) because there is not an
area that shows the history of the selections. In a case like this, the reader has to find
the previous selections that he made and the page in which they were. Furthermore,
when the selections are too many, it leads to confusion for the reader. Also, it must
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be mentioned the case where new dichotomous keys must be created and printed
which will be used to identify new organisms (fish species) that will appear in the
area in the future.

For this reason, fish identification keys evolved as e-keys. There are many
examples of fish identification e-keys because, as technology boomed, several
keys of this type were developed to facilitate ichthyologists, students or persons
who needed such tools. All fish identification e-keys are based on printed keys
(books). No new keys have been created, but the book contents have been digitized.
Some examples of identification keys in World Wide Web are in FishBase [8] per
Food and Agriculture Organization (FAO) area, per order or per family or quick
identification by image and also identification by morphometrics. An important tool
is the Marine Species Identification Portal (http://species-identification.org) while
the Fish Identification Site (http://svrsh2.kahaku.go.jp/fishis) helps to identify fishes
utilizing countable characters such as numbers of fin rays, scales, pores, gill rakers,
body rings and vertebrae. Other identification e-keys are for specific state in the USA
(www.theanglingchannel.com/fish-identification-encyclopedia-resources.html) like
the Identification Key to Native Freshwater Fishes of Peninsular Florida (www.
flmnh.ufl.edu/fish/southflorida/everglades/marshes/fishkeyedu.html). The common
feature of these keys is that they are web applications. This means that they are
uploaded as webpages into a web site and when someone wants to use them, he just
has to visit the specific website.

There are few mobile applications for iPad, iPod and iPhone (http://itunes.
apple.com/us/genre/ios/id36?mt=8) to identify fish species. The Marine Fishes -
Identification Guide is based on the book entitled Marine Fishes of Brazil - A
Practical Identification Guide and is limited on a specific number (200) of marine
fish species from Brazil. In the application Fish, the number of fishes is very limited,
since it is a Fish Guide reporting only a part of the common fish swimming in
streams, lakes and rivers across the North Woods, US. In the application FishID -
Know every fish, fish every spot and spot the best catch, appear only eight saltwater
fishes. There are also other mobile fish-related applications for iPhone and iPad
that are not identification keys. The Sharks Magazine contains information on
sharks, MarineLife - Genus trait Handbook on marine life species, Fish Alkhaleej
on common fish in Arabian countries, Fish Complete Reference and Fishes of the
World - eFishesW information on fish species and Marine Fish Encyclopedia on
common marine aquarium fish.

The available Android applications (https://market.android.com/) are fewer in
number than the iTunes ones. None of them gives the ability for the species iden-
tification. Some give the description and illustrations for the most common fishes
(e.g. North American Fish Guide, FL SW Fishing Regulations, Saltwater Pocket
Fisherman, The Pocket Fisherman-Freshwater edition). Other Android applications
are useful only for fishing on where and how to catch fish, such as My Fishing
Advisor, Fishing Status, Tide Prediction, Fishing Calendar and Fish Cast 2012.

A dichotomous key is a tool that allows the user to determine the identity (specific
name) of a fish. These keys consist of a series of “either or” choices that lead the
user to the correct name. “Dichotomous” means “divided into two parts”. Therefore,
dichotomous keys always give two choices in each step.

(http://species-identification.org)
(http://svrsh2.kahaku.go.jp/fishis)
(www.theanglingchannel.com/fish-identification-encyclopedia-resources.html)
(www.flmnh.ufl.edu/fish/southflorida/everglades/marshes/fishkeyedu.html)
(www.flmnh.ufl.edu/fish/southflorida/everglades/marshes/fishkeyedu.html)
(http://itunes.apple.com/us/genre/ios/id36?mt=8)
(http://itunes.apple.com/us/genre/ios/id36?mt=8)
(https://market.android.com/)


322 G. Minos et al.

Technically, there are two types of e-keys. The more simple e-keys (with static
content) are developed with HyperText Markup Language (HTML) and contain a
set of information which is stored and divided into a number of pages. These pages
compose a webpage. The above set of information is about key’s selections, data
on fish species, fish images and all the necessary information which compose a
fish identification key. A simple e-key is not flexible because it does not provide
updating capabilities (with which the user can add new fish species). Furthermore, a
simple key lacks proper organization because it does not contain any database which
can provide organized information storage. The more complex e-keys are developed
under both HTML and a scripting language. The scripting language is usually either
PHP (Hypertext Pre Processor) or ASP (Active Server Pages). By using a scripting
language the developer is able to create a webpage with dynamic content, ensuring
also that all the necessary for the operation of the e-key information is being stored
into a database. This e-key does not simply show to the user a set of information
which is divided into a number of webpages, but every time the user makes a
selection, a set of information is being recovered from the database to be shown to
the browser. As e-keys of this type are using databases, they could provide updating
capabilities. An extensive literature review of the existing fish identification e-keys
revealed that there are no e-keys providing complete and correct update capability.

The information system that has been designed and developed in the present work
constitutes the first fish identification e-key for all the Mediterranean fish species of
the Greek seas. The designed system is fully interactive with the user and can be
used in both forms; locally and remotely via the World Wide Web. As the informa-
tion system constitutes a desktop application, it provides an easy and user-friendly
environment which gives the user multifaceted fish identification capabilities and an
effective search function for all included fish species. Furthermore, its navigation
function is a strong and useful advantage. Finally, its additional function which
shows information about the fish systematic taxonomy is innovative.

2 Methodology

The information system has been developed with the Java object-oriented program-
ming language. The system was necessary to have a database to connect to, so that
to recover from this all necessary data and also to present this data as information
to the end user. The database includes full information about every level of the fish
systematic taxonomy, as well as images of every one of the 511 existing fish species.
The Relational Database Management System (RDBMS) that was used to manage
the database of the information system is MySQL. It was selected in order to provide
to the information system the capability to connect to a single database, common to
all users as it is uploaded to a Web Server. The above feature is usual for MySQL and
it does not exist in all other RDBMSs, either they are free or not. MySQL can also
be used locally at the personal computer of a user. In this case, each user’s personal
computer takes Web Server’s role. So, each personal computer keeps the database
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Fig. 1 Information system’s database structure through an ER diagram

stored in it. Regarding the fish information included in the new information system,
all data and images of the main relevant published identification keys [10, 11] were
digitized and transferred.

Figure 1 presents the structure of the database through an Entity-Relationship
(ER) diagram. The diagram includes the main table containing information about all
possible selections of the user, as well as all the other tables with the corresponding
information. These tables have direct link with the main table, as every level of
the fish systematic taxonomy hierarchy participates in the fish identification key
selections.

A relevant class diagram is illustrated in Fig. 2. This diagram belongs to the
object-oriented programming diagrams and generally reflects the structure of a
system. It contains all the existing system units, called classes, and the connections
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Fig. 2 Information system’s structure through a class diagram

among them. These connections present the existing relations of dependence and
use among the classes. The main properties and methods have been included in
the presentation of the most significant classes, in order to present the elements
composing such a unit.

Figure 3 illustrates the overall flow control of the information system through an
activity diagram, presenting the software process as a flow of work through a series
of actions. The diagram represents graphically the workflows of stepwise activities
and actions with support for choice, iteration and concurrency. The activity diagram
depicts all the main application’s processes and the choices the user can make
while using the information system. More specifically, it depicts all the activities
(rounded rectangles), the control flows between them (arrows), the decision and
merge nodes (diamonds), the object node (rectangle), the initial node (filled circle)
and the activity final node (filled circle with border).

Two programming tools have been used for the development of the information
system: Netbeans IDE 6.9.1 for the programming part, and MySQL Workbench
5.2.31 CE for database design and management. Apart from the above basic tools, a
Java library was also used. This library is the Ganymed SSH-2 for Java library and
was used in order to support the development of the information system. This library
implements the SSH-2 network protocol and gives to a Java program the capability
to connect with an SSH Server.
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Fig. 3 Information system’s overall flow of control through an activity diagram

3 The Developed Information System

The information system provides the user the capability to identify a fish species
by making some selections relevant to species’ external morphology. When starting
the application the user has to choose one of the two databases (local or online) and
type a password. After that, the main menu of the e-key appears at the upper part of
the screen (Fig. 4).

The screen is divided into three horizontal parts. The upper part and the bottom
part are static. Conversely, the central part is dynamic. In the upper part of the screen
there are application’s two main functions: (1) the Show all species function and (2)
the Search species function. The bottom part constitutes a status bar which contains
information about the connected database and a bar which informs the user about
the progress of a specific search procedure.

The central part of the e-key (Fig. 4) consists of the following sections: (1) the
table at the center which contains the texts of the current dichotomous selection
and two relevant actions, to confirm the selection or to return to the beginning,
(2) the area below the table which shows more information to help user’s selection,
(3) the navigation at the left side and (4) the area at the right side which shows
more information about the current level in which user is based on his selections.
The upper section of the center part (above the table) contains a title which informs
the user about the application’s function that is being executed at that time.

If the user intends to use the fish identification function, he has to select one of
the two selections in the central part (area 1) and press the button Confirm your table
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Fig. 4 Main screen of the fish identification e-key

selection. Anytime he wants to return to the selections in the start of the key, he can
just press the button Return to beginning. Every time the user makes a selection, he
can read its full description (area 2). Also, when it is necessary, this area shows an
image which describes optically user’s selection. Furthermore, every user’s selection
is being recorded in the navigation list (area 3), so that he can anytime go back to
a previous step. This list is very useful, as it presents the whole route till the final
successful fish identification.

The left selection of the upper part (area 1—Show all species) leads to a table
including all the fish species that are stored at the selected database until that time.
This area also contains two selections (More information about the species and
Back to e-key). The former requires the selection of a row from the fishes’ table
and presents all the stored information about the selected species including names,
picture, description and geographical distribution (Fig. 5). The latter restores the fish
identification screen at the central part of the screen.

4 The User Interface

The information system’s user interface has been designed with the aim to be
simple and friendly in its use. It has been designed to correspond fully to the
needs of an ichthyologist without significant experience in the use of computers.
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Fig. 5 Fish identification - Window with species information

In the design phase of the system, emphasis has been given to the segregation of
the main screen into distinguished parts enabling the user to see all the information
he needs in a well legible way. Additionally, the use of titled buttons corresponding
to the various operations enables the user to perform them immediately and very
easily.

In the user’s interface section, concerning the main operation of the identification
of a fish species, the main window has been separated in four horizontal parts
(Fig. 2). The first part contains the three main operations (show, search and insertion)
in order to be continuously available to the user. The second part informs the user
about the current operation, as well as for relevant useful information. The third
horizontal part changes according to the selected operation, presenting to the user
either his search results or his selections for the specification of a certain species.
The last part is the system’s status bar informing the user about technical issues of
the application. All the operations are supported by corresponding buttons and full
navigation capabilities.

The developed information system has been tested extensively through succes-
sive pilot trials with 10 users. Users’ feedback was satisfactory as the information
system covered their needs. It is worth noting that most users appreciated the
navigation operation and noted that it has been proved very useful and easy to use.
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5 Conclusions and Further Research

The developed information system constitutes the most modern and functional fish
identification e-key, compared with the existing e-keys and mobile applications for
iPad, iPod, iPhone and Android. Both its additional functions and its innovation
make it special. It provides the user with multiple search and fish identification
capabilities. The fish species search can be performed either by searching by
the species name, or by applying the selection procedure through dichotomous
questions. In this procedure the user reads the selection’s description and sees a
photo, so that he can make the selection that matches more the external features
of the species he is looking for. Furthermore, the information system is a desktop
application which can be installed on any personal computer. This feature makes it
functionally faster than other respective web applications. Also, its search capability
gives very fast results, as well as an organized and detailed presentation of fish
species information. The navigation function, which is being enabled every time a
user is trying to identify a species, is a strong and useful advantage. Finally, it is
worth mentioning the additional function which presents information about the fish
systematic taxonomy.

Some proposed issues for further relevant research are the following: (1) Con-
version of the information system to a mobile application for use by mobile phones,
smart phones or tablets with touchscreen utilizing popular operating systems, such
as iOS (iPhone, iPad), Android or Windows Phone, (2) Application’s extension to
a wider geographical area (Mediterranean Sea, Atlantic Ocean, etc.) and/or to a
specific fish fauna (e.g. fishes in fresh waters), and (3) the most innovative new
feature would be the addition of updating capabilities which will allow users to
add to the existing database new fish species. Current research of the authors of
the present article focuses on the requirement analysis and implementation of this
specific issue.
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Abstract Recently, El Ghami et al. [Journal of Computational and Applied
Mathematics, May, 2011, doi:10.1016/j.cam.2011.05.036.] investigated a new
kernel function which differs from the self-regular kernel functions. The kernel
function has a trigonometric Barrier Term. In this paper we generalize the analysis
presented in the above paper for P∗(κ) Linear Complementarity Problems (LCPs).
It is shown that the interior-point methods based on this function for large-update
methods, the iteration bound is improved significantly. For small-update interior
point methods the iteration bound is the best currently known bound for primal-
dual interior point methods. The analysis for LCPs deviates significantly from the
analysis for linear optimization. Several new tools and techniques are derived in
this paper.

Key words Interior-point • Kernel function • Primal-dual method • Large
update, Small update • Linear complementarity problem

1 Introduction

In this paper we consider the following linear complementarity problem:

s = Mx+ q,

xs = 0,

x,s ≥ 0, (1)
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where M ∈ Rn×n is a P∗(κ) matrix and q,x,s are vectors of Rn, and xs denotes
the componentwise product (Hadamard product) of vectors x and s. Linear com-
plementarity problems have many applications in mathematical programming and
equilibrium problems. Indeed, it is known that by exploiting the first-order opti-
mality conditions of the optimization problem, any differentiable convex quadratic
program can be formulated into a monotone linear complementarity problem, i.e.
P∗(0) LCP, and vice versa [16]. Variational inequality problems are widely used in
the study of equilibrium in economics, transportation planning, and game theory,
and have a close connection to the LCPs. The reader can refer to Sect. 5.9 in [5] for
the basic theory, algorithms, and applications.

The primal-dual IPM for linear optimization (LO) problems was first introduced
in [9, 12] and extended to various class of problems, e.g., [3, 14]. Kojima et al. [9]
and Monteiro et al. [12] first proved the polynomial computational complexity of
the algorithm for LO problem independently, and since then many other algorithms
have been developed based on the primal-dual strategy. Kojima et al. [10] proved
the existence of the central path for any P∗(κ) LCP, generalized the primal-dual
interior-point algorithm in [9] to P∗(κ) LCP and proved the same complexity
results. Miao [11] extended the Mizuno-Todd-Ye predictor-corrector method to
P∗(κ) LCPs. His algorithm uses the l2-neighborhood of the central path and has
O((1+κ)

√
nL) iteration complexity. Illés and Nagy [8] give a version of the

Mizuno-Todd-Ye predictor-corrector interior point algorithm for the P∗(κ) LCP and

show that the complexity of the algorithm is O
(
(1+κ)

3
2
√

nL
)
. They choose τ and

τ ′ neighborhood parameters in such a way that at each iteration a predictor step is
followed by one corrector step. For larger value of κ the values of τ and τ ′ decrease
fast, therefore the constant in the complexity results is increasing.

Most of the polynomial-time interior point algorithms for LO are based on the
use of the logarithmic barrier function [9,15]. Peng et al. [14] introduced self-regular
barrier functions for primal-dual interior-point methods (IPMs) for LO, semidefinite
optimization (SDO), second order cone optimization (SOCO) and also extended to
P∗(κ) LCPs. Recently in [2, 7] the authors proposed a new primal-dual IPM for
LO based on a new class of kernel functions which are not logarithmic and not
necessarily self-regular barrier functions.

In this paper we propose a new large-update primal-dual IPM which generalizes
the results obtained in [7] to P∗(κ) LCPs. We use a new search direction based
on kernel functions which are neither logarithmic nor self-regular barrier. The new
analysis which is derived in this paper is different from the one used in early papers
[8, 10, 11, 14]. Furthermore, our analysis provides a simpler way to analyze primal
dual IPMs.

We use the following notational conventions. Throughout the paper, ‖·‖ denotes
the 2-norm of a vector. The nonnegative orthant and positive orthant are denoted as
Rn
+ and Rn

++, respectively. If z ∈ Rn
+ and f : R+ → R+, then f (z) denotes the vector

in Rn
+ whose ith component is f (zi), with 1 ≤ i ≤ n. Finally, for x ∈ Rn, X = diag(x)

is the diagonal matrix from vector x, and J = {1,2, . . . ,n} is the index set.
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This paper is organized as follows. In Sect. 2 we recall basic concepts and
the notion of the central path. In Sect. 3 we review known results relevant for the
development of the analysis. Section 4 contains new results to compute the feasible
step size and the study of the amount of decrease of the proximity function during an
inner iteration. Section 5 combines the results from Sect. 3 and the derived results in
Sect. 4 to show the bound for the total number of iterations of the algorithm. Finally,
concluding remarks are given in Sect. 6.

2 Preliminaries

In this section we introduce the definition of P∗(κ) matrix and its proprieties [10].

Definition 1. Let Y be an open convex subset of Rn and κ ≥ 0. A matrix M ∈ Rn×n

is called a P∗(κ)-matrix on Y if and only if

(1+ 4κ) ∑
i∈J+(x)

xi (Mx)i + ∑
i∈J−(x)

xi (Mx)i ≥ 0,

for all x ∈Y , where

J+(x) = {i ∈ J : xi (Mx)i ≥ 0} and J−(x) = {i ∈ J : xi (Mx)i < 0} .
Further, M is called a P∗-matrix if it is a P∗(κ)-matrix for some κ ≥ 0.

Note that the class of P∗-matrices is the union of all P∗(κ)-matrices for κ ≥ 0,
and contains the class of positive semi-definite matrices, i.e. symmetric matrices
M satisfying ∑i∈J xi(Mx)i ≥ 0 for all x ∈ Rn, by choosing κ = 0. The class of P∗
matrices also contains matrices with all positive principal minors. In the following
we recall some results which are essential in our analysis.

Proposition 1 (Lemma 4.1 in [10]). If M ∈ Rn×n is a P∗ matrix, then

M′ =
(−M I

S X

)

is a nonsingular matrix for any positive diagonal matrices X, S ∈ Rn×n.

We use the following corollary of Proposition 1 to prove that the modified
Newton system has a unique solution.

Corollary 1. Let M ∈ Rn×n be a P∗ matrix and x, s ∈ Rn
++. Then for all a ∈ Rn the

system

−M&x+&s = 0,

S&x+X&s = a,

has a unique solution (&x,&s).
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The basic idea of primal-dual interior-point methods is to replace the second
equation in (1) by the nonlinear equation xs = μe, where e is the all-one vector, and
μ > 0. Thus we have the following parameterized system:

s = Mx+ q,

xs = μe,

x ≥ 0, s ≥ 0, (2)

where μ > 0. We assume that there exists strictly positive x and s that satisfy (1).
Since M is a P∗(κ) matrix and (1) is strictly feasible, then the parameterized

system (2) has a unique solution (x(μ),s(μ)) for each μ > 0. (x(μ),s(μ)) is called
μ-center of (2), the set of μ-centers (μ > 0) defines a homotopy path, which is
called the central path of (2). If μ → 0 the limit of the central path exists. This limit
satisfies the complementarity condition and belongs to the solution set of (1) [10].

Let (x,s) be a strictly feasible point and μ > 0. We define the vector

v :=
√

xs
μ
. (3)

Note that the pair (x,s) coincides with the μ-center (x(μ),s(μ)) if and only if v = e.
Let Ψ(v) be a smooth, strictly convex function defined for all v > 0, which is
minimal at v = e, withΨ (e) = 0. Following [1,2,4,6,14] we define search directions
Δx, Δs by

−MΔx+Δs = 0,

sΔx+ xΔs = −μv∇Ψ(v). (4)

Since M is a P∗ matrix, the system (4) uniquely defines (Δx,Δs) for any x > 0 and
s > 0. Note that Δx = 0, Δs = 0, if and only if v = e, because the right-hand sides
in (4) vanish if and only if ∇Ψ (v) = 0, and this occurs if and only if v = e.

Let (x,s) be a strictly feasible point. We define the vector p by

p :=

√
x
s
. (5)

Introducing the following notations

M̄ := PMP and P := diag(p),V := diag(v) where v =
√

xs
μ
, (6)

and

dx :=
vΔx

x
, ds :=

vΔs
s

, (7)
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Algorithm 24.1: Generic Primal-Dual Algorithm for LCP
Input:

a proximity functionΨ(v);
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a barrier update parameter θ , 0 < θ < 1;

begin
x := x0; s := s0; μ := μ0;
while nμ ≥ εdo
begin
μ := (1−θ )μ ;
whileΨ(v) > τdo
begin

Solve (Δx,Δs) from (4)
x := x+αΔx;
s := s+αΔs;
v :=

√
xs
μ ;

end
end

end

system (4) can be reformulated as

−M̄dx + ds = 0,

dx + ds = −∇Ψ(v).
(8)

From the solution dx and ds, the vectors Δx and Δs can be computed from (7).
Note that the vectors dx and ds are not orthogonal. So our analysis in this paper

will deviate significantly from the analysis used for LO in [7].
The algorithm considered in this paper is described in Fig. 24.1.
The inner while loop in the algorithm is called inner iteration and the outer while

loop outer iteration. So each outer iteration consists of an update of the barrier
parameter and a sequence of one or more inner iterations. We assume that (1) is
strictly feasible, and the starting point

(
x0,s0

)
is strictly feasible for (1). Choose

τ and v0 =
√

x0s0

μ0 initial strictly feasible point such that Ψ
(
v0

) ≤ τ where τ is

threshold value in Fig. 24.1. We then decrease μ to μ := (1 − θ )μ , for some θ ∈
(0,1). In general this will increase the value of Ψ (v) above τ . To get this value
smaller again, and coming closer to the current μ-center, we solve the scaled search
directions from (8), and unscaled these directions by using (4). By choosing an
appropriate step size α , we move along the search direction, and construct a new
pair (x+,s+) with

x+ = x+α&x s+ = s+α&s. (9)



336 M.E. Ghami

Table 1 Examples of kernel functions studied in early paper [6] with complexity results.

i Kernel functions ψi Large-update Small-update

1 t2−1
2 − logt O

(
(1+2κ)n log n

ε
)

O
(
(1+2κ)

√
n log n

ε
)

2 t2−1
2 + t1−q−1

q(q−1) − q−1
q (t −1) O

(
(1+2κ)qn

q+1
2q log n

ε

)
O

(
(1+2κ)q

√
n log n

ε
)

3 1
2

(
t − 1

t

)2
O

(
(1+2κ)n

2
3 log n

ε

)
O

(
(1+2κ)

√
n log n

ε
)

4 t2−1
2 + e

1
t −1 −1 O

(
(1+2κ)

√
n log2 n log n

ε
)

O
(
(1+2κ)

√
n log n

ε
)

5 t2−1
2 − ∫ t

1 e
1
ξ −1

dξ O
(
(1+2κ)

√
n log2 n log n

ε
)

O
(
(1+2κ)

√
n log n

ε
)

6 t2−1
2 + t1−q−1

q−1 , q > 1 O

(
(1+2κ)qn

q+1
2q log n

ε

)
O

(
(1+2κ)q2√n log n

ε
)

7 t −1+ t1−q−1
q−1 , q > 1 O

(
qn log n

ε
)

O
(
(1+2κ)q2√n log n

ε
)

If necessary, we repeat the procedure until we find iterates such thatΨ (v) no longer
exceed the threshold value τ , which means that the iterates are in a small enough
neighborhood of (x(μ),s(μ)). Then μ is again reduced by the factor 1−θ and we
apply the same procedure targeting at the new μ-centers. This process is repeated
until μ is small enough, i.e. until nμ ≤ ε . At this stage we have found an ε-solution
of (1). Just as in the LO case, the parameters τ,θ , and the step size α should be
chosen in such a way that the algorithm is ‘optimized’ in the sense that the number of
iterations required by the algorithm is as small as possible. Obviously, the resulting
iteration bound will depend on the kernel function underlying the algorithm, and
our main task becomes to find a kernel function that minimizes the iteration bound.

Table 1 gives some examples of kernel functions that have been analyzed in [6]
with the complexity results for the corresponding algorithms.

The aim of this paper is to investigate a new kernel function studied first in linear
optimization case in [7], namely

ψ(t) =
t2 − 1

2
+

6
π

tan(h(t)) , with h(t) =
π (1− t)

4t + 2
, (10)

and to show that the interior-point methods for linear complementarity based on
these function have favorable complexity results.

Note that the growth term of our kernel function is quadratic as all kernel
functions in Table 1. However, this function (10) deviates from all other kernel
functions [6] since its barrier term is trigonometric as 6

π tan π(1−t)
4t+2 . In order to study

the new kernel function, several new arguments had to be developed for the analysis.

3 Properties of the New Proximity Function

This section is started by technical lemma, and then some properties of the new
kernel function introduced in this paper are derived.
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3.1 Some Technical Results

The first three derivatives of ψ are given by

ψ ′(t) = t +
6h′(t)
π

(
1+ tan2(h(t))

)
, (11)

ψ
′′
(t) = 1+

6
π

(
1+ tan2(h(t))

)(
h′′(t)+ 2h′(t)2 tan(h(t))

)
. (12)

ψ
′′′
(t) =

6
π

(
1+ tan2(h(t))

)
k(t), (13)

with

k(t) := 6h′′(t)h′(t) tan(h(t))+ h′′′(t)+ 2h′(t)3 (3tan2(h(t))+ 1
)
. (14)

The next lemma serves to prove that the new kernel function (10) is eligible.

Lemma 1 (Lemma 2 in [7]). Let ψ be as defined in (10) and t > 0. Then,

ψ ′′(t) > 1, (15a)

tψ ′′(t)+ψ ′(t) > 0, (15b)

tψ ′′(t)−ψ ′(t) > 0, (15c)

and ψ ′′′(t) < 0. (15d)

It follows that ψ(1) = ψ ′(1) = 0 and ψ ′′(t) ≥ 0, proving that ψ is defined
by ψ ′′(t).

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ . (16)

The second property (15b) in Lemma 1 is related to Definition 2.1.1 and Lemma
2.1.2 in [14]. This property is equivalent to convexity of the composed function z �→
ψ(ez) and this holds if and only if ψ(

√
t1t2) ≤ 1

2 (ψ(t1)+ψ(t2)) for any t1, t2 ≥ 0.
Following [1], we therefore say that ψ is exponentially convex, or shortly, e-convex,
whenever t > 0.

Lemma 2. Let ψ be as defined in (10), one has

ψ(t)<
1
2
ψ ′′(1)(t − 1)2 , if t > 1.

Proof. By Taylor’s theorem and ψ(1) = ψ ′(1) = 0, we obtain

ψ(t) =
1
2
ψ ′′(1)(t − 1)2 +

1
6
ψ ′′′(ξ )(ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ ′′′(ξ )< 0, the lemma follows. �
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Lemma 3. Let ψ be as defined in (10), one has

tψ ′(t)≥ ψ(t), if t ≥ 1.

Proof. Defining g(t) := tψ ′(t)−ψ(t) one has g(1) = 0 and g′(t) = tψ ′′(t) ≥ 0.
Hence g(t)≥ 0 and the lemma follows. �

Following [2], we now introduce a norm-based proximity measure δ (v),
according to

δ (v) :=
1
2
‖ψ ′(v)‖ = 1

2

√
n

∑
i=1

ψ ′(vi)2 =
1
2
‖dx + ds‖ , (17)

in terms ofΨ (v). SinceΨ(v) is strictly convex and attains its minimal value zero at
v = e, we have

Ψ (v) = 0 ⇔ δ (v) = 0 ⇔ v = e.

3.2 Relations Between Proximity Measure and Norm-Based
Proximity Measure

For the analysis of the algorithm in Sect. 4 we need to establish relations between
Ψ(v) and δ (v). A crucial observation is that the inverse function of ψ(t), for t ≥ 1,
plays an important role in this relation.

The next theorem, which is one of main results in [2], gives a lower bound on
δ (v) in term ofΨ(v). This is due to the fact that ψ(t) satisfies (15d). The theorem
is a special case of Theorem 4.9 in [2], and is therefore stated without proof.

We denote by ρ : [0,∞) → [1,∞) and ρ : [0,∞) → (0,1] the inverse functions of
ψ(t) for t ≥ 1, and − 1

2ψ
′(t) for t ≤ 1, respectively. In other words

s = ψ(t) ⇔ t = ρ(s), t ≥ 1, (18)

s =−1
2
ψ ′(t) ⇔ t = ρ(s), t ≤ 1. (19)

Theorem 1 (Theorem 4.9 in [2]). Let ρ be as defined in (18). One has

δ (v)≥ 1
2
ψ ′ (ρ (Ψ(v))) .

Corollary 2. Let ρ be as defined in (18). Thus we have

δ (v)≥ Ψ(v)
2ρ (Ψ(v))

.
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Proof. Using Theorem 1, i.e., δ (v)≥ 1
2ψ

′(ρ(Ψ(v))), we obtain from Lemma 3

δ (v)≥ ψ (ρ(Ψ(v)))
2ρ (Ψ(v))

=
Ψ(v)

2ρ (Ψ(v))
.

This proves the corollary. �

Theorem 2. IfΨ (v)≥ 1, then

δ (v)≥ 1
6
Ψ

1
2 . (20)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t from

ψ(t) =
t2 − 1

2
+

6
π

tan
π (1− t)

4t + 2
= s, t ≥ 1.

We derive an upper bound for t, as this suffices for our goal. One has from (16) and
ψ ′′(t)≥ 1,

s = ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ ≥

∫ t

1

∫ ξ

1
dζdξ =

1
2
(t − 1)2,

which implies

t = ρ (s)≤ 1+
√

2s. (21)

Assuming s ≥ 1, we get t = ρ (s)≤√
s+

√
2s ≤ 3s

1
2 . Omitting the argument v, and

assumingΨ(v)≥ 1, we have ρ(Ψ(v))≤ 3Ψ(v)
1
2 . Now, using Corollary 2, we have

δ (v)≥ Ψ(v)
2ρ (Ψ (v))

≥ 1
6
Ψ(v)

1
2 .

This proves the lemma. �

Note that ifΨ(v)≥ 1, substitution in (20) gives

δ (v)≥ 1
6
. (22)

3.3 Growth Behavior of the Barrier Function

Note that at the start of each outer iteration of the algorithm, just before the update
of μ with the factor 1−θ , we haveΨ(v)≤ τ. Due to the update of μ the vector v is
divided by the factor

√
1−θ , with 0 < θ < 1, which in general leads to an increase



340 M.E. Ghami

in the value ofΨ(v). Then, during the subsequent inner iterations,Ψ(v) decreases
until it passes the threshold τ again. Hence, during the course of the algorithm the
largest values ofΨ(v) occur just after the updates of μ . In this section we derive an
estimate for the effect of a μ-update on the value ofΨ (v). We start with an important
theorem which is valid for all kernel functions ψ(t) that are strictly convex (15a),
and satisfies (15c).

Theorem 3 (Theorem 3.2 in [2]). Let ρ : [0,∞)→ [1,∞) be the inverse function of
ψ on [0,∞). Then for any positive vector v and any β > 1 we have:

Ψ (βv)≤ nψ
(
βρ

(
Ψ(v)

n

))
. (23)

Corollary 3. Let 0 < θ < 1 and v+ = v√
1−θ . Then

Ψ (v+)≤ nψ

⎛

⎝
ρ
(
Ψ (v)

n

)

√
1−θ

⎞

⎠ . (24)

Proof. Substitution of β = 1√
1−θ into (23), the corollary is proved. �

Suppose that the barrier update parameter θ and threshold value τ are given.
According to the algorithm, at the start of each outer iteration we haveΨ(v) ≤ τ.
By Theorem 3, after each μ-update the growth ofΨ(v) is limited by (24). Therefore
we define

L = L(n,θ ,τ) := nψ

(
ρ
( τ

n

)

√
1−θ

)

. (25)

Obviously, L is an upper bound ofΨ(v+), the value ofΨ(v) after the μ-update.

4 Analysis of the Algorithm

In this section, we show how to compute a feasible step size α of a Newton step with
the decrease of the barrier function. Since dx and ds are not orthogonal the analysis
in this paper is different from that of LO case. After a damped step, with step size
α , using (3) and (7) we have

x+ = x+αΔx =
x
v
(v+αdx) , s+ = s+αΔs =

s
v
(v+αds) .

Thus we obtain

v2
+ =

x+s+
μ

= (v+αdx)(v+αds) . (26)
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In the sequel we use the following notation:

ν := min
i∈J

vi, δ := δ (v), σ+ := ∑
i∈J+

dxidsi , σ− :=− ∑
i∈J−

dxidsi . (27)

Since M is a P∗(κ) matrix, we have

(1+ 4κ) ∑
i∈J+

Δxi(MΔx)i + ∑
i∈J−

Δxi(MΔs)i ≥ 0,

where J+ = {i ∈ J : Δxi(MΔx)i ≥ 0} , J− = J − J+. Using the first equation in (4)
we have for Δx ∈ Rn, MΔx = Δs, and

(1+ 4κ) ∑
i∈J+

ΔxiΔsi + ∑
i∈J−

ΔxiΔsi ≥ 0.

From (7) it follows that dxds =
v2ΔxΔ s

xs = ΔxΔ s
μ with μ > 0, and

(1+ 4κ) ∑
i∈J+

dxidsi + ∑
i∈J−

dxidsi = (1+ 4κ)σ+−σ− ≥ 0. (28)

The next lemma gives an upper bound of σ+ and σ−

Lemma 4. One has

σ+ ≤ δ 2, and σ− ≤ (1+ 4κ)δ 2.

Proof. By definition of σ+, σ− and δ , we have

σ+ = ∑
i∈J+

dxidsi ≤
1
4 ∑i∈J+

(dxi + dsi)
2 ≤ 1

4∑i∈J
(dxi + dsi)

2 =
1
4
‖dxi + dsi‖2 = δ 2.

Since M is a P∗(κ) matrix, using (28), we get

(1+ 4κ)σ+−σ− ≥ 0.

Thus

σ− ≤ (1+ 4κ)σ+ ≤ (1+ 4κ)δ 2.

This proves the lemma. �

The following lemma gives an upper bound for ‖dx‖ and ‖ds‖.

Lemma 5. One has

n

∑
i=1

(
d2

xi
+ d2

si

)≤ 4(1+ 2κ)δ 2, ‖dx‖ ≤ 2
√

1+ 2κ δ , and ‖ds‖ ≤ 2
√

1+ 2κ δ .
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Proof. From the definitions (17) and (27), we have

δ =
1
2
‖dx + ds‖ , and ∑

j∈J
dxidsi = σ+−σ−,

then

2δ = ‖dx + ds‖=
√

n

∑
i=1

(dxi + dsi)
2 =

√
n

∑
i=1

(
d2

xi
+ d2

si

)
+ 2(σ+−σ−).

Using (28), and Lemma 4, we get

2δ ≥
√

n

∑
i=1

(
d2

xi
+ d2

si

)
+ 2

(
1

1+ 4κ
σ− −σ−

)
=

√
n

∑
i=1

(
d2

xi
+ d2

si

)− 8κ
1+ 4κ

σ−.

Then, we get

4δ 2 +
8κ

1+ 4κ
σ− ≥

n

∑
i=1

(
d2

xi
+ d2

si

)
.

Using again Lemma 4, we have

4(1+ 2κ)δ 2 ≥ 4δ 2 +
8κ

1+ 4κ
σ− ≥

n

∑
i=1

(
d2

xi
+ d2

si

)
.

Thus

‖dx‖ ≤
√

n

∑
i=1

(
d2

xi
+ d2

si

) ≤ 2
√

1+ 2κ δ .

Using the same argument, we can prove that

‖ds‖ ≤ 2
√

1+ 2κ δ .

Thus the lemma follows. �

Our aim is to find an upper bound for

f (α) :=Ψ (v+)−Ψ (v) :=Ψ
(√

(v+αdx) (v+αds)
)
−Ψ (v) ,

whereΨ : Rn → R is given by

Ψ(v) =
n

∑
i=1
ψ(vi). (29)
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To do this, the next four technical lemmas are needed. It is clear that f (α) is not
necessarily convex in α . To simplify the analysis we use a convex upper bound for
f (α). Such a bound is obtained by using that ψ(t) satisfies the condition (15b).
Hence, ψ(t) is e-convex. This implies

Ψ (v+) =Ψ
(√

(v+αdx) (v+αds)
)
≤ 1

2
[Ψ (v+αdx)+Ψ (v+αds)] .

Thus we have f (α) ≤ f1(α), where

f1(α) :=
1
2
[Ψ (v+αdx)+Ψ (v+αds)]−Ψ (v)

is a convex function ofα , sinceΨ(v) is convex. Obviously, f (0)= f1(0)= 0.Taking
the derivative of f1(α) to α , we get

f ′1(α) =
1
2

n

∑
i=1

(
ψ ′ (vi +αdxi)dxi +ψ ′ (vi +αdsi)dsi

)
.

This gives, using last equation in (8) and (17),

f ′1(0) =
1
2
∇Ψ (v)T (dx + ds) =−1

2
∇Ψ (v)T∇Ψ(v) =−2δ (v)2. (30)

Differentiating once more, we obtain

f ′′1 (α) =
1
2

n

∑
i=1

(
ψ ′′ (vi +αdxi)dx

2
i +ψ

′′ (vi +αdsi)ds
2
i

)
. (31)

From this stage on we can apply word-by-word the same arguments as in [6] to
obtain the following results that are therefore stated without proof.

The following lemma gives an upper bound of f1(α) in terms of δ and ψ ′′ (t).

Lemma 6 (Lemma 4.3 in [6]). One has

f ′′1 (α)≤ 2(1+ 2κ)δ 2ψ ′′
(
ν− 2α

√
1+ 2κ δ

)
.

Putting

δκ :=
√

1+ 2κ δ , (32)

we have

f ′′1 (α)≤ 2δ 2
κ ψ

′′ (ν− 2αδκ) , (33)

Since f1(α) is convex, we will have f ′1(α) ≤ 0 for all α less than or equal to
the value where f1(α) is minimal, and vice versa. In this respect the next result
is important.
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Lemma 7 (Lemma 4.4 in [6]). One has f ′1(α)≤ 0 if α satisfies the inequality

−ψ ′ (ν− 2αδκ)+ψ ′ (ν)≤ 2δκ
(1+ 2κ)

. (34)

The next lemma uses the inverse function ρ : [0,∞)→ (0,1] of − 1
2ψ

′(t) for t ∈
(0,1], as defined in (19).

Lemma 8 (Lemma 4.5 in [6]). The largest value of the step size α satisfying (33)
is given by

ᾱ :=
1

2δκ

[
ρ (δ )−ρ

(
1+

√
1+ 2κ

1+ 2κ
δκ

)]
. (35)

Moreover

ᾱ ≥ 1

(1+ 2κ)ψ ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) . (36)

For future use we define

α̃ :=
1

(1+ 2κ)ψ ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) , (37)

as the default step size. By Lemma 8 this step α̃ satisfies (34). By (36) we have
ᾱ ≥ α̃ . We recall without proof the following lemma from [13].

Lemma 9 (Lemma 3.12 in [13]). Let h(t) be a twice differentiable convex function
with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t)
is increasing for t ∈ [0, t∗], then

h(t)≤ th′(0)
2

, 0 ≤ t ≤ t∗.

Lemma 10. If the step size α satisfies (34), then

f (α) ≤ −α δ 2. (38)

Proof. Let h(α) be defined by

h(α) :=−2αδ 2 +αδκψ ′ (ν)− 1
2
ψ (ν)+

1
2
ψ (ν− 2αδκ) .

Then

h(0) = f1(0) = 0, h′(0) = f ′1(0) =−2δ 2, h′′(α) = 2δ 2
κ ψ

′′ (ν− 2αδκ) .
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Due to Lemma 6, f ′′1 (α) ≤ h′′(α). As a consequence, f ′1(α) ≤ h′(α) and f1(α) ≤
h(α). Taking α ≤ ᾱ , with ᾱ as defined in Lemma 8, we have

h′(α) = −2δ 2 + 2δ 2
κ

∫ α

0
ψ ′′ (ν− 2ξδκ) dξ

= −2δ 2 − δκ
(
ψ ′ (ν− 2αδκ)−ψ ′ (ν)

) ≤ 0.

Since h′′(α) is increasing in α , using Lemma 9, we may write

f1(α)≤ h(α)≤ 1
2
αh′(0) =−αδ 2.

Since f (α) ≤ f1(α), the proof is complete. �

Theorem 4. Let ρ be defined in (19) and α̃ in (37). Then

f (α̃)≤− δ 2

(1+ 2κ)ψ ′′
(
ρ
(

1+
√

1+2κ√
1+2κ δ

)) ≤ − δ
1
2

2593(1+ 2κ)
, (39)

Proof. By combining (36) in Lemma 8 and results in Lemma 10, using also (32).
Thus the first inequality in (39) follows.

To obtain the inverse function t = ρ(s) of − 1
2ψ

′(t) for t ∈ (0,1], we need to solve

t from the equation −
(

t + 6h′(t)
π

(
1+ tan2(h(t))

))
= 2s. This implies

1+ tan2(h(t)) =
−π

6h′(t)
(2s+ t) =

2π (2t + 1)2

18π
(2s+ t)≤ 2s+ 1 for t ≤ 1.

Hence, putting t = ρ
(

1+
√

1+2κ√
1+2κ δ

)
, which is equivalent to

2(1+
√

1+2κ)√
1+2κ δ =−ψ ′(t).

Using that 1+
√

1+2κ√
1+2κ ≤ 2 for all κ ≥ 0, we get

tan(h(t))≤ 2
√
δ . (40)

By (40), thus we have

α̃ =
1

(1+ 2κ)ψ ′′
(
ρ
(

1+
√

1+2κ√
1+2κ δ

))

=
1

(1+ 2κ)
(
1+ 6

π (1+ tan2(h(t)))(h′′(t)+ 2h′(t)2 tan(h(t)))
)

≥ 1

(1+ 2κ)
(

1+ 6
π (1+ 4δ )

(
h′′(t)+ 4h′(t)2

√
δ
)) .
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Since h′′(t) = 6π
(2t+1)3 ≤ 6π , and h′(t)2 = 9π2

4(2t+1)4 ≤ 9π2

4 for all 0 ≤ t ≤ 1. Then we

have

α̃ ≥ 1

(1+ 2κ)
(

1+ 6
π (1+ 4δ )

(
6π+ 9π2

√
δ
))

=
1

(1+ 2κ)
(

1+ 18(1+ 4δ )
(

2+ 3π
√
δ
)) .

Also using (22) (i.e., 6δ ≥ 1) we get,

α̃ ≥ 1

(1+ 2κ)
(
(6δ )

3
2 + 18(6δ + 4δ )

(
2
√

6δ + 3π
√
δ
))

=
1

(1+ 2κ)
((

6
3
2 + 180

(
2
√

6+ 3π
))
δ

3
2

) ≥ 1

2593(1+ 2κ)δ
3
2

.

Hence

f (α̃)≤ − δ 2

2593(1+ 2κ)δ 3
2

=− δ
1
2

2593(1+ 2κ)
.

Thus, the theorem follows. �

Substitution in (20) gives

f (α̃)≤ − δ 1
2

2593(1+ 2κ)
≤ − Ψ 1

4

2593
√

6(1+ 2κ)
≤ − Ψ 1

4

6532(1+ 2κ)
.

5 Iteration Complexity

In this section we derive the complexity bounds for large-update methods and small-
update methods.

5.1 Upper Bound for the Total Number of Iterations

Let K denote the number of inner iterations. An upper bound for the total number
of iterations is obtained by multiplying (the upper bound for) the number K by the
number of barrier parameter updates, which is bounded above by 1

θ log n
ε (cf. [15]

Lemma II.17, page 116).
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Lemma 11 (Proposition 2.2 in [13]). Let t0, t1, . . . , tK be a sequence of positive
numbers such that

tk+1 ≤ tk −κt1−γ
k , k = 0,1, . . . ,K − 1,

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊

tγ0
κγ

⌋
.

Lemma 12. If K denotes the number of inner iterations, we have

K ≤ 26128(1+ 2κ)
3

Ψ
3
4

0 ≤ 8710(1+ 2κ)Ψ
3
4

0 .

Proof. The definition of K impliesΨK−1 > τ andΨK ≤ τ and

Ψk+1 ≤Ψk −κ (Ψk)
1−γ , k = 0,1, . . . ,K − 1,

with κ = 1
6532(1+2κ) and γ = 3

4 . Application of Lemma 11, with tk =Ψk yields the
desired inequality. �

Using ψ0 ≤ L, where the number L is as given in (25), and Lemma 12 we obtain the
following upper bound on the total number of iterations:

8710(1+ 2κ)L
3
4

θ
log

n
ε
. (41)

5.2 Large-Update

We just established that (41) is an upper bound for the total number of iterations,
using

ψ(t) =
t2 − 1

2
+

6
π

tan
π (1− t)

4t + 2
≤ t2 − 1

2
, for t ≥ 1,

and (21), by substitution in (25) we obtain

L ≤ n

(
ρ( τn )√

1−θ

)2

− 1

2
≤ n

2(1−θ )
(
θ + 2

√
2
τ
n
+

2τ
n

)
=

(
θn+ 2

√
2τn+ 2τ

)

2(1−θ ) .

Using (41), thus the total number of iterations is bounded above by

K
θ

log
n
ε
≤ 8710(1+ 2κ)

θ
(

2(1−θ ) 3
4

)
(
θn+ 2

√
2τn+ 2τ

) 3
4

log
n
ε
.
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A large-update methods uses τ = O(n) and θ = Θ(1). The right-hand side

expression is then O
(
(1+ 2κ)n

3
4 log n

ε

)
, as easily may be verified.

5.3 Small-Update Methods

For small-update methods one has τ = O(1) and θ = Θ
(

1√
n

)
. Using Lemma 2,

with ψ ′′(1) = 2π+9
9 , we then obtain

L ≤ n(2π+ 9)
18

(
ρ
( τ

n

)

√
1−θ − 1

)2

.

Using (21), then

L ≤ n(2π+ 9)
18

⎛

⎝
1+

√
2τ
n√

1−θ − 1

⎞

⎠

2

.

Using 1 −√
1−θ = θ

1+
√

1−θ ≤ θ , this leads to L ≤ (2π+9)
18(1−θ)

(
θ
√

n+
√

2τ
)2
. We

conclude that the total number of iterations is bounded above by

K
θ

log
n
ε
≤ 8710(1+ 2κ)(2π+ 9)

3
4

θ (18(1−θ )) 3
4

(
θ
√

n+
√

2τ
) 3

2
log

n
ε
.

Thus, the right-hand side expression is then O
(
(1+ 2κ)

√
n log n

ε
)
.

6 Concluding Remarks

In this paper we extended the results obtained for kernel-function-based IPMs in [7]
for LO to P∗(κ) linear complementarity problems. The observation that the vectors
dx and ds are not in general orthogonal implies that the analysis in [7] does not
hold. The analysis in this paper is new and different from the one using for LO.
Several new tools and techniques are derived in this paper. The proposed function
has a trigonometric barrier term but the function is not logarithmic and not self-
regular. We proved that the iteration bound of a large-update interior-point method

based on the kernel function considered in this paper is O
(
(1+ 2κ)n

3
4 log n

ε

)
,

which improves the classical iteration complexity with a factor n
1
4 . For small-update

methods we obtain the best known iteration bound, namely O
(
(1+ 2κ)

√
n log n

ε
)
.
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The resulting iteration bounds for P∗(κ) linear complementarity problems
depend on the parameter κ . For κ = 0, the iteration bounds are the same as the
bounds that were obtained in [7] for linear optimization.
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Abstract In this paper, we propose an approximation algorithm for solving the
three depots Hamiltonian path problem (3DHPP). The problem studied can be
viewed as a variant of the well-known Hamiltonian path problem with multiple
depots (cf., Demange [Mathématiques et Informatique, Gazette, 102 (2004)] and
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also guarantees a ratio r < 2 in the general metric case. The proposed algorithm
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1 Introduction

The multiple traveling salesman problem (MTSP) is a generalization of the well
known traveling salesman problem (TSP), in which there are m salesmen who
start from and terminate to the depot (cf. [6]). The multi-depots TSP is a also a
generalization of the TSP. It is well-known that the TSP has received important
attention by the OR and CS communities; on the other hand, the study of the
generalized multi depots and other variants of the problem remains limited. In this
paper, we address the three depots Hamiltonian path problem, namely 3DHPP,
which can be viewed as a variant of the well-known Hamiltonian path problem
with multiple depots (cf., [3]). For the 3DHPP, we show the existence of a 3

2 -
approximation algorithm for a broad family of metric cases. The proposed algorithm
is mainly based on extending the construction scheme already used by Rathinam
et al. [7]. The aforementioned result is established when costs are symmetric and
they satisfy the triangle inequality.

Let D = {d1,d2,d3} be the set of vertices representing the three distinct depots,
U = {1,2,3, . . . ,n} be the set of vertices denoting n destinations such that n ≥ 2 and
V = D

⋃
U . The edge (i, j) joining vertices i and j has a cost Ci j ∈ Q+, where Q+

denotes the set of all positive rational numbers. Assume that all costs are symmetric
(i.e., ∀ (i, j) ∈ V, Ci j =C ji) and that they satisfy the following triangle inequality:
Cik ≤Ci j +Cjk, ∀ (i, j,k) ∈ V . A path for salesman l may be denoted by an ordered
sequence of vertices Pl = (dl ,vl

1,v
l
2, . . . ,v

l
kl
), where l = 1,2,3 and kl represents the

number of vertices visited by the lth salesman and ∀ j ∈ {1, . . . ,kl}, vl j ∈U . The cost
of the path Pl traveled by the lth salesman is defined as follows:

C(Pl) =

{
C(dl ,vl

1)+∑
kl−1
j=1 C(vl

j,v
l
j+1) if kl > 0

0 otherwise, when l = 1,2,3.

The objective of the problem is to find the paths P1, P2, and P3 such that:

1. Each destination of U is visited exactly once by any salesman,
2. Each salesman visits at least one destination, and
3. The sum of the costs corresponding to the salesman, i.e.,∑3

l=1 C(Pl), is minimum.

For the rest of the paper, we shall denote the studied problem by 3DHPP, for
3-Depots Hamiltonian Path Problem. The remainder of the paper is organized as
follows: first, in Sect. 2 we discuss the main steps of the approach used for tailoring
the approximation algorithm for the 3DHPP. In Sect. 3 an example is given in order
to illustrate the main steps of the proposed algorithm. Finally, the main results is
announced in Sect. 4 for which the sketch of the proof is given along the example.
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2 An Approximation Algorithm for the 3DHPP

Herein, we will show that 3DHPP has an approximation algorithm, when the
following steps are used. Indeed, the proposed algorithm can be viewed as a five-
step algorithm in which a series of decomposition, construction, and reconstructions
are applied. These steps are described as follows:

1. Find a minimum cost constrained forest, namely F , such that, there are three trees
in the forest, where

(a) Each tree is characterized by its depot.
(b) The degree of each depot is equal to 1.

Notice that the number of odd-degree, the set of destination vertices in each tree,
is odd.

Let E(F) be the edges in the constrained forest and Oi, for i = 1,2,3, be the
odd-degree (i.e., the destination vertices in the ith tree of F).

2. Let consider (V0,E(V0)) be a graph defined as follows:

(a) V0 denotes the set of the odd-degree destination vertices of F ,
(b) E(V0) contains the edges lying any two vertices in V0.

Note that, because |O1|, |O2| and |O3| are odd, then

|V0|= |O1|+ |O2|+ |O3| is odd.

Now, find a partial matching M, i.e., a set of edges E(M) ⊆ E(V0) whose

cardinality is equal to |V0|−3
2 , which also matches |V0| − 3 vertices in V0. Of

course, such a matching realizes the partial matching with a minimum cost.
Hence, let m1, m2 and m3 denote the three destination vertices that are note
matched.

3. Add the edges of the minimum cost, associated with the partial matching
provided by step (2) to the minimum cost constrained forest obtained by step
(1), and connect both depots vertices d1 and d2 by using an edge whose cost is
equal to zero cost, and also the destinations m2 and m3.

Consider the following new provided multigraph:

Gn = (V,E(M)
⋃

E(F)
⋃

{(d1,d2,d3)}).
We can observe that the degree of each vertex of Gn is even except for the two
vertices m1 and d3.

4. Find an Eulerian path, namely E in Gn, such that the path starts from the vertex
m1, terminates with the vertex d3 and visits each of the edges in Gn exactly once.

5. Apply a shortcut phase of the edges in the Eulerian path to get a Hamiltonian
path such that each vertex in V is visited exactly once. After such a shortcutting
phase, let’s denote the obtained Hamiltonian path as follows:

Esc = (m1, . . . ,d1,d2, . . . ,m2,m3, . . . ,d3).
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Then, the sequence of destinations which is:

(a) To assign to the second salesman the subsequence of the provided Hamilto-
nian path which starts from d2 and terminates at m2.

(b) To assign to the first salesman the reverse of the remaining subsequence of
the provided Hamiltonian path which starts from d1 and terminates at m1.

(c) To assign to the third salesman the reverse of the remaining subsequence of
the Hamiltonian path which has d3 as the starting vertex and m3 its terminal
vertex.

is the returned solution by the algorithm.

3 Example

In this section, we show how the different steps of the algorithm can be applied in
order to construct the final solution for the approximation algorithm.

Indeed, according to the first step, Fig. 1 can show how the three trees can be
computed and how each one of these trees can be relied to the depot vertex, i.e.,
d1, d2, and d3, respectively.

d1

1

2

3

5

4

d2

8

7 9

6 10

d3

13 14

1512

11

Fig. 1 Step 1:(b) The odd-degree destination vertices |V0|= |O1
⋃

O2
⋃

O3|= 9

Of course, we can observe that such a forest (noted F) is a minimum cost
constrained one. We also can remark that the construction respects the conditions
(a) and (b) of step 1.

2

3

5

m1

6 10

m2

11

m3

Fig. 2 A minimum cost partial matching of cardinality equal to |V0|−3
2 = 3
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We recall that step 2 serves to find a partial matching of a special cardinality.
Indeed, Fig. 2 illustrates such a partial matching satisfying the cardinality of 3 fixed
at step 2.

d1

1

2

3

5

4

d2

m1

7 9

6 10

d3

m2 14

m312

11

Fig. 3 Step 3 and 4: Add the edges of M to F. Also add a zero cost edges (d1,d2) and (m2,m3);
Eulerian path={m1,7,6,5,4,2,3,2,1,d1,d2,m1,9,10,11,12,m2,m3,14,m2,d3}

Following both steps 3 and 4, we can observe (cf. Fig. 3) how we use the adding-
phase in order to get the Eulerian path, namely E.

d1

1

2

3

5

4

d2

m1

7 9

6 10

d3

m2 14

m312

11

Fig. 4 Step 5: Shortcut the edges of the Eulerian path to find a Hamiltonian path
={m1,7,6,5,4,2,3,1,d1,d2,9,10,11,12,m2,m3,14,d3}

By applying the shortcutting phase of step 5, we can observe the result (cf. Fig. 4)
the new Hamiltonien path, namely H, provided from the previously Eulerian path E.

Finally, according to the last three points of step 5, which corresponds to the
removing phase, Fig. 5 illustrates the final solution provided by the algorithm.

Theorem 1. The algorithm achieves a 3
2 approximation for a three-depot Hamil-

tonian path problem (3DHPP)for a broad family of instances where the costs are
symmetric and satisfy the triangle inequality, with complexity O(n3) steps.

Proof. (a) Show that the algorithm is of complexity O(n3):
In the algorithm, we seek a forest, a matching, Eulerian path and Hamiltonian

path.
The complexity of the algorithm is dominated by two steps: finding a forest

of minimum cost and finding a partial matching of the minimum cost.
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d1

1

2

3

5

4

d2

m1

7 9

6 10

d3

m2 14

m312

11

Fig. 5 Step 5: Remove the zero cost edges to find the paths for the 3
salesmen:{d1 ,1,3,2,4,5,6,7,m1}, {d2,9,10,11,12,m2},{d3,14,m3}

Finding a forest can be seen as a problem of intersection of two matroids.
Ended to see this:

Let V be the set of all vertices: V = n+ 3, and E be the set of edges joining
any two vertices of V. Let F1 a family of subsets such that each F ∈ F1: the graph
G = (V,F1) is acyclic and there is no path connecting depots in G. M1 = (E,F1)
is a graphic matroid.

Consider F2 to be a family of subsets of E such that for every F ∈ F2, the
degree of each depot in G = (V,E) is at most 1 and the number of edges joining
every two destinations in G is at most n−3. M2 = (E,F2) is a partition matroid
[2, 5].

If one considers each basic element I ∈ F1
⋂

F2, it is easy to see that it satisfies
contains the following properties:

• I is acyclic.
• I does not contain a path joining deposits.
• The degree of each deposit is at most 1 and the number of edges joining two

destinations is at most n− 3.

I contains n edges, so these properties mean that every depot is of degree 1,
and the problem of minimum cost of forest can be seen as a problem of
intersection of two matroids M1 and M2, thus it can be found in O(n3) using
the algorithm Brezovec [1]

In step 2, we look for a partial matching of the minimum cost, this can be
solved in O(n3) by applying some classic matching algorithm, for instance the
algorithm of Edmonds [4]

The complexity of step (4) and (5) is O(n), respectively, hence the complex-
ity of the algorithm is O(n3).

(b) We now show that the approximation ratio of this algorithm is 3
2 for a broad

family of metric instances.
It is clear that the solution S produced by the algorithm is bounded by the sum of

the cost(F) and cost(M) because the algorithm determines a forest of minimum cost
and a minimum cost matching, then applies shortcuts of the edges in the Eulerian
path:
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cost(S)≤ cost(F)+ cost(M).
We know that cost(F) ≤ cost(opt), it is then enough to show that the cost(M) is
bounded by cost(opt).

The idea of proof is to show that any optimal solution of 3DHPP consists of at
least two partial pairwise disjoint matchings of cardinality |V0|−3

2 for the vertices
of V0.
To see this, consider any optimal solution of the 3DHPP. In this solution, there are
three pairwise disjoint paths P∗

1 , P∗
2 and P∗

3 corresponding to salesman 1, 2, and 3,
respectively.

We define zl = {v : v ∈V0,v ∈ P∗
l } for l = 1,2,3. Every vertex of zl is a destination

visited by the lth salesman in the optimal solution that also is an odd degree vertex
of the minimum cost spanning forest found by the algorithm.

Note that z1
⋂

z2
⋂

z3 = /0, z1
⋃

z2
⋃

z3 =V0 and |z1|+ |z2|+ |z3|= |V0| is odd.
Shortcut the edges in the optimal solution such that the paths P1, P2 and P3 are only
incident on the vertex present in z1,z2,and z3. We now show that it is possible to
decompose the set of edges present in paths into two disjoint set of matchings edges
as follows:

Case 1. Z(P(d1)) odd, Z(P(d2)) = Z(P(d3)) = 0

The chain that connects the vertices of Z(P(d1)) in order of their occurrence to
P(d1) is the cost or less for P(d1) So at cost (opt) it can be decomposed into two
matchings that leave three vertices of Z(P(d1)) non-paired as follows:
Let Z(P(d1)) = {u1,u2, . . . ,u2p+1}, |P(d1)| = 2p+ 1 ≥ 5; in this case we consider
the following decomposition:
E1 = {(u2,u3),(u4,u5), . . . ,(u2p−4,u2p−3),(u2p−2,u2p−1)}. E1 does not cover the
vertices u1, u2p and u2p+1.
E2 = {(u3,u4),(u5,u6), . . . ,(u2p−1,u2p)}, E2 does not cover the vertices u1, u2 and
u2p+1.

E1 and E2 are two disjoint matchings of cardinality |V0|−3
2 , each cost less than the

cost (M).

Case 2. Z(P(d1)) odd, Z(P(d2)) even not bold Z(P(d3)) = 0

Same decomposition in two matchings that leave one vertex of Z(P(d1)) uncoupled
and two of Z(P(d2)).
Let Z(P(d1)) = {u1,u2, . . . ,u2p+1}, Z(P(d2)) = {v1,v2, . . . ,v2k}; in this case we
consider two disjoint sets E1, E2 with:
E1 = {(u1,u2)(u3,u4), . . . ,(u2p−1,u2p)}⋃{(v2,v3)(v4,v5), . . . ,(v2k−2,v2k−1)} E1

does not cover the vertices u2p+1,v1 and v2k.
E2 = {(u2,u3)(u4,u5), . . . ,(u2p,u2p+1)}⋃{(v2,v3)(v4,v5), . . . ,(v2k−2,v2k−1)},
E2 does not cover the vertices u1, v1 and v2k.
E1 and E2 are two disjoint matchings of cardinality |V0|−3

2 , so each one costs less
than the cost (M).

Case 3. Z(P(d1)) is odd, Z(P(d2)) and Z(P(d3)) are even
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Same decomposition in two matchings: one that leaves one vertex of Z(P(d1))
uncoupled and no Z(P(d2)) and the other leaves a Z(P(d1)) and two Z(P(d2))

Let Z(P(d1)) = {u1,u2, . . . ,u2p+1}, Z(P(d2)) = {v1,v2, . . . ,v2k} and
Z(P(d3)) = {w1,w2, . . . ,w2r}; in this case we consider two disjoint sets E1, E2 with:

E1 = {(u1,u2)(u3u4), . . . ,(u2p−1,u2p)}⋃{(v1,v2)(v3,v4), . . . ,(v2k−1,v2k)}⋃

{(w2,w3)(w4,5), . . . ,(w2r−2,w2r−1)}.
E1 does not cover the vertices u2p+1, w1, and w2r.

E2 = {(u2,u3)(u4u5), . . . ,(u2p,u2p+1)}⋃{(v2,v3)(v4v5), . . . ,(v2k−2,v2k−1)}⋃

{(w1,w2),(w3,4), . . . ,(w2r−1,w2r)}.
E2 does not cover the vertices u1, v1, and v2k.
E1 and E2 are two disjoint matchings of cardinality |V0|−3

2 , each cost less than the
cost (M).

Case 4. Z(P(d1)), Z(P(d2)) and Z(P(d3)) are odd

Same decomposition in two matchings, each one leaving a vertex not coupled to
each Z(P(di)).

Let Z(P(d1)) = {u1,u2, . . . ,u2p+1}, Z(P(d2)) = {v1,v2, . . . ,v2k+1} and
Z(P(d3)) = {w1,w2, . . . ,w2r+1}, in this case we consider two disjoint sets E1,
E2 with:
E1 = {(u1,u2),(u3,u4), . . . ,(u2p−1,u2p)}⋃{(v1,v2)(v3,v4), . . . ,(v2k−1,v2k)}⋃

{(w1,w2)(w3,4), . . . ,(ww2r−1,w2r)}.
E1 does not cover the vertices u2p+1, v2k+1 and w2r+1.

E2 = {(u2,u3),(u3,u4), . . . ,(u2p,u2p+1)}⋃{(v2,v3)(v4,v5), . . . ,(v2k,v2k+1)}⋃

{(w2,w3)(w4,5), . . . ,(w2r,w2r+1)}.
E2 does not cover the vertices u1, v1 and w1.
E1 and E2 are two disjoint matchings of cardinality |V0|−3

2 , each cost less than the
cost (M).

Hence, C(S)≤ 3
2C(opt).

This analysis applies to nearly all metric instance of 3DHPP that can be input of
the algorithm of Sect. 2, except for the case where the multigraph Gn consists of two
connected components, one with no destination vertices of odd degree and a second
with three uncoupled odd degree destination vertices. In this case, we should add
one more edge to couple two among these vertices. It is straightforward to see that,
even in this case, the added edge can never be of cost such that the returned solution
is ≥ 2 times the cost of the optimal.

4 Conclusion

To our knowledge, there is no approximation algorithm better than 2 for metric
3DHPP. Herein, we propose an algorithm which admits an approximation ratio of 3

2
for a broad family of metric cases and guarantees a ratio r < 2 in the general metric
case.
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