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Abstract Linear programming has been widely applied to solving real world
problems. The conventional linear programming model requires the parameters to
be known constants. In the real world, however, the parameters are seldom known
exactly and have to be estimated. This chapter discusses the general interval linear
programming problems where all the parameters, including the cost coefficients,
requirement coefficients, and technological coefficients, are represented by interval
data. Since the parameters are interval-valued, the objective value is interval-valued
as well. A pair of two-level mathematical programs is formulated to calculate the
lower bound and upper bound of the objective values of the interval linear program.
The two-level mathematical programs are then transformed into one-level nonlinear
programs. Solving the pair of nonlinear programs produces the interval of the
objective values of the problem. An example illustrates the whole idea and sheds
some light on interval linear programming.
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1 Introduction

Linear programming is a mathematical modeling technique designed to optimize
the usage of limited resources. It has been widely used to solve problems in
military, industries, agriculture, economics, and even behavioral and social sciences.
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Several surveys (see, e.g., Hartley [6], Lane et al. [9]) indicate that linear
programming is the most frequently used technique in solving real world problems
among all operations research techniques. Numerous textbooks have been written
about linear programming. Most textbooks of operations research spend the largest
number of pages discussing this topic. Linear programming has become the most
important technique and the fundamental for studying other optimization techniques
in operations research.

Any linear programming problem can be expressed by the following model:

Min Z = cx

s.t. Ax = b

x ≥ 0, (1)

where x = (x j, j = 1, . . . ,n) is the vector of decision variables to be determined.
The other variables are the parameters given by the problem: c = (c j, j = 1, . . . ,n) is
vector of cost coefficients, b=(bi, i= 1, . . . ,m) is vector of requirement coefficients,
and A = ||ai j|| is the matrix of technological coefficients. The problem is to
determine the values of the decision variables under the constraints which minimize
the objective function. The optimal values of the decision variables x j, j = 1, . . . ,n
are functions of the parameters ai j,bi, and c j, i = 1, . . . ,m, j = 1, . . . ,n. When the
value of one or more of the parameters is changed, the optimal values of the decision
variables and the objective function will in general change accordingly.

Linear programming makes several assumptions regarding the parameters. The
major one is that the value assigned to each parameter is a known constant. However,
in real world applications, this assumption is seldom satisfied because linear pro-
gramming models are usually formulated to find some future course of action. The
parameter values used would be based on a prediction of future conditions which
inevitably introduces some degree of uncertainty. There are also situations where
the data cannot be collected without error. In the literature, the approaches for
solving this problem are typified by post-optimality analysis [5]. As implied by its
name, post-optimality analysis concerns how the optimal solution changes when
the value of one or more parameters is changed. It is an ex post facto analysis
after the optimal solution for a set of known parameters is solved. The technique
which deals with changing one parameter at a time is called sensitivity analysis
and the one dealing with changing several parameters simultaneously is called
parametric programming [10, 12, 14]. Another approach in this category is the
tolerance approach which focuses on simultaneous and independent variations of
the requirement coefficients and cost coefficients without affecting the optimality
of the given basis [4, 13, 15–18]. The primary objective is to find the range of the
parameters within which the current solution is still optimal.

In contrast to post-optimality analysis, which is conducted after an optimal solu-
tion is obtained, this chapter deals with the problem of finding the optimal solution
for the linear programming problem whose imprecise parameters are expressed
by intervals in an a priori manner. One approach for dealing with uncertainty in
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parameters is via stochastic programming, in which the parameters are treated as
random variables. The standard procedure is to optimize the expected value of the
objective function. Dantzig [3] discusses the case where random variables appear
only in the requirements, and Charnes et al. [1] discuss the case of random costs. The
problem becomes very complicated when all ai j,bi, and c j are random variables.
Another way to represent imprecise parameters in real world applications is by
intervals [2, 7]. The associated linear program is an interval linear program. When
the parameters have interval values, the objective function will also have an interval
value; that is, it lies in a range. Serafini [11] proposed a two-phase approach for
solving the linear program where the requirement coefficients are represented by
intervals. The method only gives a point value for the objective function. In this
chapter, we construct a pair of two-level mathematical programming models, based
on which the lower bound and upper bound of the objective values are obtained.
In other words, an interval value for the objective function of the interval linear
programming problem is derived. This result should provide the decision maker
with more information for making better decisions.

In the next section, we shall discuss the nature of interval linear programming,
followed with a two-level mathematical programming formulation for finding the
bounds of the interval objective values. Section 3 describes how to transform the
two-level mathematical program into the conventional one-level program. We then
use an example to illustrate how to apply the concept of this chapter to solve the
interval linear programming problem. Finally, we draw a conclusion and suggest
some directions for future study.

2 Problem Formulation

Before we get into the details of this chapter, a simple example helps clarify the
nature of linear programming problems with interval parameters. Consider the
following interval linear program:

Min Z = 4x1 + 3x2 (2)

s.t. x1 +[1,2]x2 = 4 (3)

[2,3]x1 + x+ 2 ≥ 6 (4)

x1,x2 ≥ 0,

where the parameters a12 and a21 are imprecise and are represented by intervals
[1–3], respectively. As a12 varies from the lower bound 1 to upper bound 2, the
feasible region defined by Constraint (3) and the nonnegativity conditions is a line
segment moving counterclockwise from AF to AG as depicted in Fig. 1.

For the second Constraint (4), as parameter a21 changes from its lower bound 2
to upper bound 3, the boundary of the feasible region represented by this constraint



66 C. Kao and S.-T. Liu

Fig. 1 Graphical solution of the example

swings clockwise from HI to HJ. Clearly, the feasible region defined by this
constraint becomes larger when a21 increases in its value. In other words, the
smallest feasible region occurs at a21 = 2 and the largest at a21 = 3. For the former,
when Constraint (3) is also considered, the feasible region is the line segment
moving continuously from AB to AC. If it is AB, then, graphically, the minimal
value of the objective function Z = 4x1 +3x2 occurs at B = (2,2), with an objective
value of 14. As the feasible region moves to AC, the minimal value decreases to
38
3 which occurs at C = ( 8

3 ,
2
3 ). Similarly, for the latter case of largest feasible

region, the feasible region is the line segment AD moving continuously to AE. The
minimal value for AD is 13, occurring at D = (1,3), and for AE it is 10, occurring
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at E = ( 8
5 ,

6
5 ). Combining these results together, we conclude that the lower bound

of the optimal objective values is 10 and the upper bound is 14. The optimal value
lies in the range of [10, 14].

This example shows that if the constraint coefficients are interval-valued,
then the objective value will lie in a range. The graphical solution method helps
derive the lower bound and upper bound of the objective values of the problem. The
lower bound is obtained in the largest feasible region of the triangle ADE while
the upper bound is obtained in the smallest feasible region of the triangle ABC. This
example is so simple that a visual inspection suffices to find the solution. For general
problems, we need to rely on some systematic solution method.

For the conventional linear program of Model (1), if one or more parameters have
interval values, then we have an interval linear program. Without loss of generality,
we assume all parameters are interval-valued since a constant can be represented by
a degenerated interval where the lower bound of the interval coincides with its upper
bound. As opposed to the conventional linear program where an unconstrained
variable can be expressed by the difference of two nonnegative variables, an
unconstrained variable in an interval linear program cannot be transformed in
this way. The reason will be clear later in the derivation of the solution method.
Therefore, the variables are separated into two groups, one nonnegative and the
other unconstrained in sign. To be consistent with the dual problem formulation,
the constraints are also separated into two groups, one of inequality type and the
other of equality type, so that the corresponding dual variables will be nonnegative
and unconstrained in sign, respectively. In this chapter, the interval linear program
is formulated as:

Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n, (5)

where ĉ j ∈ [CL
j ,C

U
j ], b̂i ∈ [BL

i ,B
U
i ], and âi j ∈ [AL

i j,A
U
i j ] are the interval counterparts

of c j, bi, and ai j, respectively. The inequality constraint of the “≤” form can be
transformed to the form of “≥” by multiplying the terms on both sides by “−1.” If
the objective function is “Max,” then it can be changed to “−Min−Z” to conform
to Model (5). Hence, (5) is a generic interval linear programming model.

Clearly, different values of ĉ j, b̂i, and âi j produce different objective values. To
find the interval of the objective values, it suffices to find the lower bound and upper
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bound of the objective values of Model (5). Denote S= {ĉ, b̂, â)|CL
j ≤ ĉ j ≤CU

j ,B
L
i ≤

b̂i ≤ BU
i ,A

L
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1,2, . . . ,n}. The values of ĉ j, b̂i, and âi j

that attain the smallest value for Z can be determined from the following two-level
mathematical programming model:

ZL = Min(ĉ,b̂,â)∈S Minx Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n, (6)

where the inner program calculates the objective value for each ĉ j, b̂i, and âi j

specified by the outer program, while the outer program determines the values of
ĉ j, b̂i, and âi j that produces the smallest objective value. The objective value is the
lower bound of the objective values for Model (5).

By the same token, to find the values of ĉ j, b̂i, and âi j that produce the largest
objective value for Z, a two-level mathematical program is formulated by replacing
the outer program of Model (6) from “Min” to “Max”:

ZU = Max(ĉ,b̂,â)∈S Minx Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign j = q+ 1, . . . ,n. (7)

The objective value ZU is the upper bound of the objective values for Model (5).
When the interval data ĉ j, b̂i, and âi j degenerate to point data c j,bi, and ai j,

respectively, the outer program of Models (6) and (7) vanishes, and Models (6)
and (7) boil down to the same conventional linear program. This shows that the two-
level mathematical program formulation of the interval linear program developed
here is a generalization of the conventional constant-parameter linear program. The
pair of two-level mathematical programs in (6) and (7) clearly express the bounds of



Linear Programming with Interval Data: A Two-Level Programming Approach 69

the objective values. However, they are not solvable in the current form. In the next
section, we discuss how to transform the two-level program into the conventional
one-level program. With the pair of one-level programs, the interval of the objective
values of the interval linear program can be obtained.

3 One-Level Transformation

3.1 Lower Bound

The previous section showed that to find the lower bound of the objective values of
an interval linear programming problem of Model (5), it suffices to solve the two-
level mathematical program of Model (6). Since both the inner program and outer
program of (6) have the same minimization operation, they can be combined into a
conventional one-level program with the constraints of the two programs considered
at the same time.

ZL = Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n (8)

This model is a nonlinear program. By separating the decision variables into
nonnegative ones and unconstrained-in-sign ones, it can be rewritten as:

ZL = Min Z =
q

∑
j=1

ĉ jx j +
n

∑
j=q+1

ĉ jx j (9)

s.t.
q

∑
j=1

âi jx j +
n

∑
j=q+1

âi jx j ≥ b̂i, i = 1, . . . , p (10)
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q

∑
j=1

âi jx j +
n

∑
j=q+1

âi jx j = b̂i, i = p+ 1, . . . ,m (11)

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n (12)

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m (13)

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n (14)

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n (15)

For nonnegative x j we have CL
j x j ≤ ĉ jx j ≤ CU

j x j as is manifested from (12). In
searching for the minimal value of the objective function, the interval parameter
ĉ j, j = 1, . . . ,q, must reach its lower bound. Consequently, we have

Min Z =
q

∑
j=1

CL
j x j +

n

∑
j=q+1

ĉ jx j.

The largest feasible region defined by the inequality constraint ∑n
j=1 âi jx j ≥ b̂i in

Models (9)–(15) appears when the interval parameter b̂i is equal to its lower bound
BL

i . We can reduce the number of nonlinear terms by using a variable transformation
technique, that is, multiplying Constraint (14) by nonnegative x j and substituting
âi jx j by ri j. Models (9)–(15) then become

ZL = Min Z =
q

∑
j=1

CL
j x j +

n

∑
j=q+1

ĉ jx j

s.t.
q

∑
j=1

ri j +
n

∑
j=q+1

âi jx j ≥ BL
i , i = 1, . . . , p

q

∑
j=1

ri j +
n

∑
j=q+1

âi jx j = b̂i, i = p+ 1, . . . ,m

CL
j ≤ ĉ j ≤CU

j , j = q+ 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = p+ 1, . . . ,m

AL
i jx j ≤ ri j ≤ AU

i jx j, i = 1, . . . ,m, j = 1, . . . ,n

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = q+ 1, . . . ,n

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n. (16)

The lower bound of the objective value, ZL , is obtained by solving this mathematical
program.
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3.2 Upper Bound

Conceptually, the upper bound of the objective value of the interval linear program
of Model (5) can be calculated from the two-level program of Model (7). However,
solving Model (7) is not as straightforward as solving Model (6) because the outer
program and inner program have different directions for optimization, viz., one
for maximization and the other for minimization. They cannot be combined into
a one-level program directly. Based on the duality theorem, the dual of a linear
program has the same optimal objective value as its primal when an optimal solution
exists. Hence, we can replace the inner program of Model (7) by its dual to form a
maximization problem:

ZU = Max(ĉ,b̂,â)∈S Maxy Z =
m

∑
i=1

b̂iyi

s.t.
m

∑
i=1

âi jyi ≤ ĉ j, j = 1, . . . ,q

m

∑
i=1

âi jyi = ĉ j, j = q+ 1, . . . ,n

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (17)

Now that both the inner program and outer program have the same maximization
operation, they can be merged into a one-level program with the constraints at the
two levels considered at the same time:

ZU = Max Z =
m

∑
i=1

b̂iyi

s.t.
m

∑
i=1

âi jyi ≤ ĉ j, j = 1, . . . ,q

m

∑
i=1

âi jyi = ĉ j, j = q+ 1, . . . ,n

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (18)
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Similar to the case of lower bound, we separate the decision variables yi into two
parts, those of nonnegative ones and unconstrained-in-sign ones:

ZU = Max Z =
p

∑
i=1

b̂iyi +
m

∑
i=p+1

b̂iyi (19)

s.t.
p

∑
i=1

âi jyi +
m

∑
i=p+1

âi jyi ≤ ĉ j, j = 1, . . . ,q (20)

p

∑
i=1

âi jyi +
m

∑
i=p+1

âi jyi = ĉ j, j = q+ 1, . . . ,n (21)

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n (22)

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m (23)

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n (24)

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (25)

Regarding the objective function, the interval parameters associated with positive
variables must be set to the upper bound to attain the maximal value. In other words,
the objective function of (19)–(25) can be replaced by

Max Z =
p

∑
i=1

BU
i yi +

m

∑
i=p+1

b̂iyi.

To find the upper bound ZU of Models (19)–(25), the interval parameters ĉ j must be
set to the values which will generate the largest feasible region. For the inequality
constraint ∑p

i=1 âi jyi +∑m
i=p+1 âi jyi ≤ ĉ j, different values of ĉ j define a series of

parallel hyperplanes. Obviously, the largest feasible region appears when ĉ j is set to
its upper bound CU

j . Thus, we have ∑p
i=1 âi jyi+∑m

i=p+1 âi jyi ≤CU
j , j = 1, . . . ,q. The

variable transformation technique, which is utilized in (9)–(15), can also be applied
to the nonlinear term âi jyi with positive yi. One can multiply Constraint (24) by yi

for i = 1, . . . , p and substitute âi jyi by si j to reduce the number of nonlinear terms.
Via the dual formulation, bound value assignment, and variable transformation,

the two-level mathematical program of Model (7) is transformed into the following
nonlinear program:

ZU = Max Z =
p

∑
i=1

BU
i yi +

m

∑
i=p+1

b̂iyi

s.t.
p

∑
i=1

si j +
m

∑
i=p+1

âi jyi ≤CU
j , j = 1, . . . ,q
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p

∑
i=1

si j +
m

∑
i=p+1

âi jyi = ĉ j, j = q+ 1, . . . ,n

CL
j ≤ ĉ j ≤CU

j , j = q+ 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = p+ 1, . . . ,m

AL
i jyi ≤ si j ≤ AU

i jyi, i = 1, . . . , p, j = 1, . . . ,n

AL
i j ≤ âi j ≤ AU

i j , i = p+ 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . , p

yi unconstrained in sign, i = p+ 1, . . . ,m (26)

The optimal solution ZU is the upper bound of the objective values of the interval
linear program. Together with ZL solved from Sect. 3.1, [ZL,ZU ] constitutes the
interval on which the objective values of the interval linear program lie.

3.3 Special Case

If a linear program has only inequality constraints and nonnegative decision
variables, then Model (5) is of the following form:

Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . ,m

x j ≥ 0, j = 1, . . . ,n (27)

Models (16) and (26) for calculating the lower bound and upper bound, respectively,
of the objective value are simplified to the following forms:

ZL = Min Z =
n

∑
j=1

CL
j x j

s.t.
n

∑
j=1

ri j ≥ BL
i , i = 1, . . . ,m

AL
i jx j ≤ ri j ≤ AU

i jx j, i = 1, . . . ,m, j = 1, . . . ,n

x j ≥ 0, j = 1, . . . ,n (28)
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ZU = Max Z =
m

∑
i=1

BU
i yi

s.t.
m

∑
i=1

si j ≤CU
j , j = 1, . . . ,n

AL
i jyi ≤ si j ≤ AU

i jyi, i = 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . ,m (29)

Since (28) and (29) are linear programs, one can calculate the lower and upper
bounds of the objective values easily.

4 An Example

Consider the following interval linear programming problem.

Min Z = (7,10)x1 +(7,9)x3 − 2x4+(−2,−1)x5+(−3,−1)x6− 10x7

s.t. x1 + 2x2 − 2x3+(1,4)x4 +(3,5)x6 +(1,2)x7 = (−6,−4)

−2x1 +(1,3)x2 − x3 +(2,3)x4 +(1,2)x5 +(1,2)x6 + 2x7 = (−1,2)

(1,3)x1 + 2x3 + 2x4 +(2,4)x5 + 2x6 − 2x7 = (6,10)

x1,x2,x4,x5,x6 ≥ 0;x3,x7 unconstrained in sign

Based on Model (16), the lower bound of the objective value ZL can be formu-
lated as:

ZL = Min 7x1 + ĉ3x3 − 2x4 − 2x5 − 3x6 − 10x7

s.t. x1 + 2x2 − 2x3+ p14 + p16 + â17x7 = b̂1

−2x1 + p22 − x3 + p24 + p25 + p26 + 2x7 = b̂2

p31 + 2x3 + 2x4 + p35 + 2x6 − 2x7 = b̂3

7 ≤ ĉ3 ≤ 9

−6 ≤ b̂1 ≤−4, −1 ≤ b̂2 ≤ 2, 6 ≤ b̂3 ≤ 10

x4 ≤ p14 ≤ 4x4, 3x6 ≤ p16 ≤ 5x6, x2 ≤ p22 ≤ 3x2, 2x4 ≤ p24 ≤ 3x4

x5 ≤ p25 ≤ 2x5, x6 ≤ p26 ≤ 2x6, x1 ≤ p31 ≤ 3x1, 2x5 ≤ p35 ≤ 4x5

1 ≤ â17 ≤ 2

x1,x2,x4,x5,x6 ≥ 0;x3,x7 unconstrained in sign



Linear Programming with Interval Data: A Two-Level Programming Approach 75

This model is a nonlinear program. By using the nonlinear programming solver
LINGO (LINDO Systems 2005), we derive ZL = −12, x∗1 = 26, x∗3 = 38, x∗7 =

46, x∗2 = x∗4 = x∗5 = x∗6 = 0, ĉ3 = 7, b̂1 =−4, b̂2 = 2, b̂3 = 10, and â17 = 1.
The upper bound of the objective value ZU , according to Model (26), can be

formulated as

ZU = Max b̂1y1 + b̂2y2 + b̂3y3

s.t. y1 − 2y2+ â31y3 ≤ 10

2y1 + â22y2 ≤ 0

−2y1 − y2 + 2y3 = ĉ3

â14y1 + â24y2 + 2y3 ≤−2

â25y2 + â35y3 ≤−1

â16y1 + â26y2 + 2y3 ≤−1

â17y1 + 2y2 − 2y3 =−10

7 ≤ ĉ3 ≤ 9

−6 ≤ b̂1 ≤−4, −1 ≤ b̂2 ≤ 2, 6 ≤ b̂3 ≤ 10

1 ≤ â31 ≤ 3, 1 ≤ â22 ≤ 3, 1 ≤ â14 ≤ 4, 2 ≤ â24 ≤ 3, 1 ≤ â25 ≤ 2

2 ≤ â35 ≤ 4, 3 ≤ â16 ≤ 5, 1 ≤ â26 ≤ 2, 1 ≤ â17 ≤ 2

y1,y2,y3 unconstrained in sign

By employing LINGO, we obtain ZU = 29.8, which occurs at y∗1 = −1.4, y∗2 =
−2.4, y∗3 = 1.9, ĉ3 = 9, b̂1 =−6, b̂2 =−1, and b̂3 = 10. The corresponding primal
solution is x∗3 = 2.6, x∗5 = 1.6, x∗7 =−0.8, and x∗1 = x∗2 = x∗4 = x∗6 = 0.

Combining these two results, we conclude that the objective values of this
interval linear program lie in the range of [−12,29.8].

5 Conclusion

Linear programming has been considered as the most powerful technique for
improving the efficiency and increasing the productivity of companies and public
organizations. To further expand its applicability, more general models are continu-
ally being developed. This chapter generalizes the conventional linear programming
of constant parameters to interval parameters. As opposed to the post-optimality
analysis which conducts an ex post facto analysis after the optimal solution for a set
of constant parameters is obtained, the interval linear programming discusses the
range of optimal objective values produced from the interval parameters, including
cost, requirement, and technology, in an a priori manner.



76 C. Kao and S.-T. Liu

The idea is to find the lower bound and upper bound of the range by employing
the two-level mathematical programming technique. Following the duality theorem,
the two-level mathematical programs are transformed into a pair of one-level
mathematical programs so that the numerical solution method can be applied.
When all interval parameters degenerate to constant parameters, the two-level
mathematical programs boil down to the conventional linear program. An example
illustrates that the proposed idea is indeed able to find the range of the objective
values of the interval linear programming problem.

For general interval linear programming problems, it is very probable that for
some range of interval parameters the problem is infeasible. Our method ignores
those infeasible values and finds the lower bound and upper bound of the feasible
solutions. It does not identify the range of values which cause infeasibility.

While this chapter develops a pair of mathematical programs which are able to
find the lower bound and upper bound of the objective values, the mathematical
programs are nonlinear which may be difficult to solve for large-scale problems.
In the future, a solution method which only involves linear program formulation is
desired to assure solvability.

Finally, interval linear programming is not just a topic for theoretical discussion.
It does have real world applications. Kao and Liu [7] used forecasted financial data,
represented in intervals, to predict the performance of Taiwan commercial banks.
Since the problem has a special structure, it can be solved easily by relying on
the linear programming technique. In a later study, Kao and Liu [8] found that the
interval data approach produces an interval objective value which is too wide to
provide useful information. The values close to the bounds, both the lower bound
and upper bound, have very small probability of occurrence. If the distributions
of the interval data are known, then the distribution of the objective values, which
is more informative for making subsequent decisions, can be obtained. Therefore,
another direction for future study is to derive the distribution of the objective values
based on the distributions of the parameters.
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