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Abstract In this chapter we consider some modifications of the Chebyshev method
that are free from second derivative and prove semilocal convergence theorems for
these modifications as well as for the Chebyshev method. These two modifications
can be considered as a generalization of some well-known iterative methods.
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1 Introduction

As is known, the higher order methods, such as Halley and Chebyshev methods play
an important role in the solution of nonlinear equations. Especially they can be used
in problems, where a quick convergence is required, such as stiff systems [11] and
bifurcation problems [13]. However, they are not used often in practice due to their
operational cost. For instance, in the iterative third-order methods, the main problem
is to evaluate the second derivative of the operator. To overcome this difficulty,
in the past years appeared many (multipoint) iterative methods [5–7, 12, 15] free
from second derivative but with the same order of convergence. As a result, the
operational cost is reduced to that of a second-order iterations, such as Newton’s
method.

In this chapter we propose some new modifications (multipoint iterations) of the
Chebyshev method which are free from second derivative (Sect. 2). In Sects. 3–5
we analyze the convergence of the Chebyshev method and its two modifications,
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respectively, by using a technique consisting of a new system of real sequences
[2,8]. In Sect. 6, we give mild convergence conditions for these methods. In the last
Sect. 7, we present numerical results.

2 Some Modifications of Chebyshev Method

We consider a nonlinear equation

F(x) = 0. (1)

Here F : Ω ⊆ X → Y is a nonlinear Frechet twice differentiable operator defined
on a convex, nonempty domain Ω , and X ,Y are Banach spaces. The well-known
Chebyshev method for solving the nonlinear equation (1) is given by [7]:

yn = xn −ΓnF(xn), Γn = F ′(xn)
−1,

xn+1 = yn − 1
2

ΓnF ′′(xn)(yn − xn)
2, n = 0,1, . . . . (2)

As in scalar cases [15] we can take next approximations

1
2

F ′′(xn)(yn − xn)
2 ≈ 1

2θ
(F ′(zn)−F ′(xn))(yn − xn),

zn = (1−θ )xn +θyn 0 < θ ≤ 1

and

1
2

F ′′(xn)(yn − xn)
2 ≈

(
1+

b
2

)
F(yn)+ bF(xn)− b

2
F(zn),

where

zn = xn +ΓnF(xn), −2 ≤ b ≤ 0.

As a consequence, we define the following new modifications:

yn = xn −ΓnF(xn)

zn = (1−θ )xn+θyn, θ ∈ (0,1]

xn+1 = yn − 1
2θ

Γn(F
′(zn)−F ′(xn))(yn − xn) (3)

and

yn = xn −ΓnF(xn)

zn = xn +ΓnF(xn),

xn+1 = yn −Γn

((
1+

b
2

)
F(yn)+ bF(xn)− b

2
F(zn)

)
,

−2 ≤ b ≤ 0. (4)
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Thus we have classes of new two-and three-point iterative processes (3) and (4). It
should be pointed out that such iterations (3) and (4) were given in [15] for functions
of one variable.

In [5, 6] it was suggested a uniparametric Halley-type iterations with free from
second derivative of the form

yn = xn −ΓnF(xn)

zn = (1−θ )xn +θyn, θ ∈ (0,1]

H(xn,yn) =
1
θ

Γn(F
′(zn)−F ′(xn))

xn+1 = yn − 1
2

H(xn,yn)

[
I+

1
2

H(xn,yn)

]−1

(yn − xn), n ≥ 0 (5)

and proved order three convergence of (5), as Halley method. If we take the
approximation [

I +
1
2

H(xn,yn)

]−1

≈ I

in (5), then (5) leads to (3). In this sense our modification (3) is easier than (5).
It also should be pointed out that the iteration (3) with θ = 1/2 and θ = 1 was
given in [7] and [1], respectively, and proven order three convergence under some
restrictions. The iterations (4) can be considered as a generalization of some well-
known iterations for function of one variable. For instance, if b=−2 the iteration (4)
leads to two-point one with third-order convergence, suggested by Kou et al. [10].
If b = 0 the iteration (4) leads to also two-point one with third-order convergence
that was suggested by Potra and Ptak [9, 12] and CL2 method [1]. From (3) and
(4) it is clear that the modification (4) is preferable to (3), especially for the system
of nonlinear equations, because in (3) the matrix-vector multiplication is needed in
each iteration.

3 Recurrence Relations

In [14] we reduced the two-dimensional cubic decreasing region into one-
dimensional region for the Chebyshev method. Now we will study the convergence
of Chebyshev method (2) in detail. We assume that Γ0 ∈ L(Y,X) exists at some
x0 ∈ Ω , where L(Y,X) is a set of bounded linear operators from Y into X . In what
follows we assume that

(c1) ‖F ′′(x)‖ ≤ M, x ∈ Ω ,

(c2) ‖y0 − x0‖= ‖Γ0F(x0)‖ ≤ η ,

(c3) ‖Γ0‖ ≤ β ,

(c4) ‖F ′′(x)−F ′′(y)‖ ≤ K‖x− y‖, x,y ∈ Ω , K > 0.
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Let us suppose that

a0 = Mβ η (6)

and define the sequence

an+1 = f (an)
2g(an)an, (7)

where

f (x) =
2

2− 2x− x2 , g(x) =
x2(4+ x)

8
d, (8)

and d = 1+2ω , ω = K
M2m

, m = minn‖Γn‖> 0. In Sect. 4, we will show that m > 0.

Lemma 1. Let f ,g be two real functions given in (8). Then
(i) f is increasing and f (x) > 1 for x ∈ (0, 1

2).
(ii) g is increasing in (0, 1

2 ).
(iii) f (γx) < f (x), g(γx)≤ γ2g(x) for x ∈ (0, 1

2) and γ ∈ (0,1).

The proof is trivial [8].

Lemma 2. Let 0 < a0 < 1
2 and f (a0)

2g(a0) < 1. Then the sequence {an} is
decreasing.

Proof. From the hypothesis we deduce that 0 < a1 < a0. Now we suppose that
0 < ak < ak−1 < · · · < a1 < a0 < 1/2. Then 0 < ak+1 < ak if and only if
f 2(ak)g(ak) < 1. Notice that f (ak) < f (a0) and g(ak) < g(a0). Consequently,
f 2(ak)g(ak)< f 2(a0)g(a0)< 1. 
�
Lemma 3. If 0 < a0 <

1
2d , then f 2(a0)g(a0)< 1.

Proof. It is easy to show that the inequality f 2(a0)g(a0)< 1 is equivalent to

ϕ(a0) = 2a4
0 +(8− d)a3

0− 4da2
0− 16a0+ 8 > 0.

Since

ϕ(0) = 8 > 0, ϕ(0.5) =
9
8
(1− d)< 0 (ϕ(0.5) = 0 when d = 1),

ϕ ′(a0) = 8a3
0 + 24a2

0− 3da2
0− 8da0− 16, ϕ ′(a0)< 0 for 0 < a0 < 0.5.

Therefore there exists

a0 <
1
2
,

such that

ϕ(a0) = 0.

We compute
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ϕ
(

1
2d

)
=

d − 1
8d4

(
64d3 − 8d2− 9d− 1

)
.

It is clear that

ϕ
(

1
2d

)
> 0

for d > 1. Thus ϕ(a0)> 0 for 0 < a0 <
1

2d . 
�
Lemma 4. Let us suppose that the hypothesis of Lemma 3 is satisfied and define
γ = a1/a0. Then
(i) γ = f (a0)

2g(a0) ∈ (0;1)

(iin) an ≤ γ3n−1
an−1 ≤ γ

3n−1
2 a0

(iiin) f (an)g(an)≤ γ3n

f (a0)
, n ≥ 0

Proof. Notice that (i) is trivial. Next we prove (iin) following an inductive
procedure. So

a1 ≤ γa0

and by Lemma 1 we have

f (a1)g(a1)< f (γa0)g(γa0)< f (a0)γ2g(a0) =
γ2 f 2(a0)g(a0)

f (a0)
=

γ3

f (a0)
,

i.e., (ii1), (iii1) are proved. If we suppose that (iin) is true, then

an+1 = f 2(an)g(an)an ≤ f 2(γ
3n−1

2 a0)g(γ
3n−1

2 a0)an

≤ f 2(a0)γ3n−1g(a0)γ
3n−1

2 a0 = γ1+ 3
2 (3

n−1)a0 = γ
3n+1−1

2 a0,

and f (an+1)g(an+1) ≤ f (a0)γ3n+1−1g(a0)

f (a0)
f (a0) =

γ3n+1

f (a0)
= Δγ3n+1

Δ = 1
f (a0)

< 1 and the proof is complete. 
�

4 Convergence Study of Chebyshev Method

In this section, we study the sequence {an} defined above and prove the convergence
of the sequence {xn} given by (2). Notice that

M‖Γ0‖‖Γ0F(x0)‖ ≤ a0

‖x1 − x0‖ ≤
(

1+
a0

2

)
‖Γ0F(x0)‖.
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Given this situation we prove following statements for n ≥ 1:

(In) ‖Γn‖= ‖F ′(xn)
−1‖ ≤ f (an−1)‖Γn−1‖

(IIn) ‖ΓnF(xn)‖ ≤ f (an−1)g(an−1)‖Γn−1F(xn−1)‖
(IIIn) M‖Γn‖‖ΓnF(xn)‖ ≤ an

(IVn) ‖xn+1 − xn‖ ≤
(

1+
an

2

)
‖ΓnF(xn)‖

(Vn) yn,xn+1 ∈ B(x0,Rη), where B(x0,Rη) =
{

x ∈ Ω : ‖x− x0‖< 1+ a0/2
1− γΔ

η
}

Assuming (
1+

a0

2

)
a0 < 1, x1 ∈ Ω ,

we have

‖I−Γ0F ′(x1)‖ ≤ ‖Γ0‖‖F ′(x0)−F ′(x1)‖ ≤ M‖Γ0‖‖x1 − x0‖ ≤
(

1+
a0

2

)
a0 < 1.

Then, by the Banach lemma, Γ1 is defined and

‖Γ1‖ ≤ ‖Γ0‖
1−‖Γ0‖‖F ′(x0)−F ′(x1)‖ ≤ 1

1− (
1+ a0

2

)
a0

‖Γ0‖= f (a0)‖Γ0‖.

On the other hand, if xn,xn−1 ∈ Ω , we will use Taylor’s formula

F(xn) = F(xn−1)+F ′(xn−1)(xn − xn−1)+
F ′′(ξn)

2
(xn − xn−1)

2, (9)

ξn = θxn +(1−θ )xn−1, θ ∈ (0,1). (10)

Taking into account (2) we obtain

xn − xn−1 =

[
I− 1

2
Γn−1F ′′(xn−1)(yn−1 − xn−1)

]
(yn−1 − xn−1). (11)

Substituting the last expression in (9) we obtain

F(xn) = −1
2

F ′′(xn−1)(yn−1 − xn−1)
2 +

1
2

F ′′(ξn)(xn − xn−1)
2

=
1
2

[
F ′′(ξn)−F ′′(xn−1)−F ′′(ξn)Γn−1F ′′(xn−1)(yn−1 − xn−1)

+
1
4

F ′′(ξn)Γ 2
n−1F ′′(xn−1)

2(yn−1 − xn−1)
2
]
(yn−1 − xn−1)

2. (12)

Then for n = 1, if x1 ∈ Ω , we have
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‖F(x1)‖ ≤ 1
2

[
K‖ξ1 − x0‖+Ma0 +

1
4

Ma2
0

]
‖Γ0F(x0)‖2. (13)

From (11) we get

‖x1 − x0‖ ≤
(

1+
a0

2

)
‖y0 − x0‖ ≤

(
1+

a0

2

)
‖Γ0F(x0)‖.

Using (10) and

‖ξ1 − x0‖= θ‖x1 − x0‖ ≤ θ
(

1+
a0

2

)
‖Γ0F(x0)‖

in (13) we obtain

‖Γ1F(x1)‖ ≤ ‖Γ1‖‖F(x1)‖

≤ 1
2

f (a0)‖Γ0‖Ma0

(
Kθ

(
1+

a0

2

) 1
M2‖Γ0‖ +

4+ a0

4

)
‖Γ0F(x0)‖2

or

‖Γ1F(x1)‖ ≤ f (a0)

2
a2

0

[
Kθ

(
1+

a0

2

) 1
M2m

+
(

1+
a0

4

)]
‖Γ0F(x0)‖

≤ f (a0)

8
a2

0(4+ a0)

(
1+

2Kθ
M2m

)
‖Γ0F(x0)‖

= f (a0)g(a0)‖Γ0F(x0)‖
and (II1) is true. To prove (III1) notice that

M1‖Γ1‖‖Γ1F(x1)‖ ≤ M f (a0)‖Γ0‖ f (a0)g(a0)‖Γ0F(x0)‖
≤ f 2(a0)g(a0)a0 = a1

and

‖x2 − x1‖ ≤ ‖y1 − x1‖+ 1
2

M‖Γ1‖‖Γ1F(x1)‖‖y1 − x1‖

≤
(

1+
a1

2

)
‖y1 − x1‖=

(
1+

a1

2

)
‖Γ1F(x1)‖, (14)

and (IV1) is true. Using

s‖x1 − x0‖ ≤ ‖y0 − x0‖+ 1
2
‖Γ0‖M‖Γ0F(x0)‖‖y0 − x0‖

≤
(

1+
a0

2

)
‖y0 − x0‖

≤
(

1+
a0

2

)
η <

1+ a0/2
1− γΔ

η = Rη
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and

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1− x0‖ ≤
(

γ
f (a0)

+ 1+
a0

2

)
η

=
(

1+
a0

2

)(
1+

Δγ
1+ a0/2

)
η <

(
1+

a0

2

)
(1+Δγ)η

<
1+ a0/2
1− γΔ

η = Rη

and (14) we have

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1− x0‖ ≤ Rη .

Thus, y1,x2 ∈B(x0,Rη) and (V1) is true. Now, following an inductive procedure and
assuming

yn,xn+1 ∈ Ω and
(

1+
an

2

)
an < 1, n ∈ N , (15)

the items (In)− (Vn) are proved.
Notice that Γn > 0 for all n = 0,1, . . .. Indeed, if Γk = 0 for some k, then due to
statement (In), we have ‖Γn‖ = 0 for all n ≥ k. As a consequence, the iteration (2),
as well as (3) and (4), terminated after kth step, i.e., the convergence of iterations
does not hold. To establish the convergence of {xn} we only have to prove that it is
a Cauchy sequence and that the above assumptions (15) are true. We note that

(
1+

an

2

)
‖ΓnF(xn)‖ ≤

(
1+

a0

2

)
f (an−1)g(an−1)‖Γn−1F(xn−1)‖

≤
(

1+
a0

2

)
‖Γ0F(x0)‖

n−1

∏
k=0

f (ak)g(ak).

As a consequence of Lemma 4 it follows that

n−1

∏
k=0

f (ak)g(ak)≤
n−1

∏
k=0

γ3k
Δ = Δ nγ1+3+32+···+3n−1

= Δ nγ
3n−1

2 .

So from Δ < 1 and γ < 1, we deduce that ∏n−1
k=0 f (ak)g(ak) converges to zero by

letting n → ∞.
We are now ready to state the main result on convergence for ().

Theorem 1. Let us assume that Γ0 = F ′(x0)
−1 ∈ L(Y,X) exists at some x0 ∈ Ω and

(c1)− (c4) are satisfied. Suppose that

0 < a0 <
1

2d
, with d = 1+ 2ω , ω =

K
M2m

. (16)
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Then if B(x0,Rη) = {x ∈ X ;‖x− x0‖ ≤ Rη} ⊆ Ω the sequence {xn} defined in (2)
and starting at x0 has at least R-order three and converges to a solution x∗ of the
Eq. (1). In that case, the solution x∗ and the iterates xn,yn belong to B(x0,Rη), and
x∗ is the only solution of Eq. (1) in B(x0,

2
Mβ −Rη)∩Ω . Furthermore, we have the

following error estimates:

‖x∗ − xn‖ ≤
(

1+
a0

2
γ

3n−1
2

)
γ

3n−1
2

Δ n

1−Δγ3n η . (17)

The proof is the same as Theorem 3.1 in [7, 8].

5 Convergence Study of Modifications of the Chebyshev
Method

The convergence of the proposed modifications (3) and (4) is studied analogously
as those of Chebyshev method. The difference is only to prove assumption (IIn)
for these methods. Therefore, we turn our attention only to the proof of assumption
(IIn). At first, we consider a modification (3). For this, if xn,yn ∈ Ω we obtain from
Taylor’s formula

F(xn) =−1
2

F ′′(ηn−1)(yn−1 − xn−1)
2 +

1
2

F ′′(ξn)(xn − xn−1)
2, (18)

where

ηn−1 = (1−w)xn−1+wzn−1,

ξn = θxn +(1−θ)xn−1, 0 < ω ,θ < 1.

According to (3) we have

xn − xn−1 =

(
I − 1

2θ
Γn−1(F

′(zn−1)−F ′(xn−1))

)
(yn−1 − xn−1).

Substituting the last expression into (18) we get

F(xn) =
1
2

(
F ′′(ξn)−F ′′(ηn−1)

)
(yn−1 − xn−1)

2

+
1
2

F ′′(ξn)

[
− 1

θ
Γn−1(F

′(zn−1)−F ′(xn−1))(yn−1 − xn−1)
2

+
1

4θ 2 Γ 2
n−1(F

′(zn−1)−F ′(xn−1))
2(yn−1 − xn−1)

2
]
. (19)
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Then, for n = 1, if y0 ∈ Ω , we have

‖F(x1)‖ ≤
[

K
2
‖ξ1 −η0‖+ M

2θ
‖Γ0‖Mθ‖y0 − x0‖

+
M

8θ 2‖Γ0‖2M2θ 2‖y0 − x0‖2
]
‖y0 − x0‖2.

Since ξ1 −η0 = θ (x1 − x0)−wθ (y0 − x0), it follows

‖ξ1 −η0‖ ≤ θ‖x1 − x0‖+wθ‖y0− x0‖ ≤
(

θ
(

1+
a0

2

)
+wθ

)
‖y0 − x0‖.

If we take θ̂ = max(θ ,wθ ), then we get the following estimate:

‖F(x1)‖ ≤
{

Kθ̂
(

1+
a0

2

) M2‖Γ0‖
M2‖Γ0‖‖Γ0F(x0)‖2 +

M2‖Γ0‖
2

‖Γ0F(x0)‖2

+
M3

8
‖Γ0‖2‖Γ0F(x0)‖3

}
‖Γ0F(x0)‖.

Therefore, we have

‖Γ1F(x1)‖ ≤ f (a0)g(a0)‖Γ0F(x0)‖, g(a0) =
a2

0(4+ a0)

8
d1 with d1 = 1+ 2.5ω .

Analogously, for the modification (4), we have

F(xn) = −1
2

[(
1+

b
2

)
F ′′(ηn−1)− b

2
F ′′(ζn−1)

]
(yn−1 − xn−1)

2

+
F ′′(ξn)

2
(xn − xn−1)

2, (20)

ξn = αxn−1 +(1−α)xn, α ∈ (0,1),

ηn−1 = θxn−1 +(1−θ )yn−1, θ ∈ (0,1),

ζn−1 = wxn−1 +(1−w)zn−1, w ∈ (0,1).

Notice that

ξn −ηn−1 = (1−θ )(xn−1 − yn−1)+ρ(xn − xn−1)

= (ρ − (1−θ ))(yn−1− xn−1)− ρ
2

Γn−1Dn(yn−1 − xn−1)
2,

ηn−1 − ζn−1 = (1−w)(xn−1 − zn−1)+λ (yn−1− xn−1)

= (1−w+λ )(yn−1− xn−1),

where ρ = 1−α, λ = 1−θ ,
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xn − xn−1 =

[
I − 1

2
Γn−1

((
1+

b
2

)
F ′′(ηn−1)− b

2
F ′′(ξn−1)

)
(yn−1 − xn−1)

]

×(yn−1 − xn−1).

Substituting the last expression into (20) we have

F(xn) =
1
2

Bn(yn − xn−1)
2 − F ′′(ξn)

2
Γn−1Dn(yn − xn−1)

3

+
F ′′(ξn)

8
Γ 2

n−1D2
n(yn−1 − xn−1)

4, (21)

where

Bn = F ′′(ξn)−F ′′(ηn−1)− b
2

(
F ′′(ηn−1)−F ′′(ξn−1)

)
,

Dn =

(
1+

b
2

)
F ′′(ηn−1)− b

2
F ′′(ξn−1).

If ξn,ηn−1,ζn−1 ∈ Ω then we have

‖Bn‖ ≤ K

[
|β − (1−θ )|− b

2
(1−w+ γ)

]
‖yn−1 − xn−1‖

+
K‖Γn−1‖β

2
M‖yn−1 − xn−1‖2,

‖Dn‖ ≤ M.

Using these expressions we get

‖ΓnF(xn)‖ ≤ f (an−1)
a2

n−1

2

{
K

M2m
d̂+

(
1+

an−1

4

)}
‖Γn−1F(xn−1)‖,

where

d̂ = |β − (1−θ )|− b
2
(1−w+ γ)+β an−1 < 3+ an−1 < 4

(
1+

an−1

4

)
,

|β − γ|< 1 0 < 1−w+ γ < 2.

Then we obtain

‖ΓnF(xn)‖ ≤ f (an−1)g(an−1)‖Γn−1F(xn−1)‖

g(an−1) =
a2

n−1(4+ an−1)

8
d2, d2 = 1+ 4ω .

For the modifications (3) and (4) the cubic convergence theorem 1 is valid, in which
d equals to 1+ 5ω and 1+ 4ω , respectively.
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It should be mentioned that in [4] was constructed a family of predictor-corrector
methods free from second derivative. But these methods, except the case A20,
require more computational cost even as compared to the modification (3).

6 Mild Convergence Conditions

In order to obtain mild convergence conditions for these methods we first consider
inexact Newton method (IN) for (1):

F ′(xk)sk = −F(xk)+ rk, (22)

xk+1 = xk + sk, k = 0,1, . . . ,x0 ∈ Ω (23)

The terms rk ∈ Rn represent the residuals of the approximate solutions sk [3, 4]. We
consider a local convergence result [3, 4]:

Theorem 2. Given ηk ≤ η < t < 1,k = 0,1, . . ., there exists ε > 0 such that for any
initial approximation x0 with ‖x0 − x∗‖ ≤ ε, the sequence of the IN iterates (22)
satisfying

‖rk‖ ≤ ηk‖F(xk)‖, k = 0,1, . . . (24)

converges to x∗.

Moreover we know that the IN converges superlinearly when ηk → 0 as k →∞. Now
we analyze the connection between the inexact Newton method and the Chebyshev
method (2) and its modifications (3) and (4). To this end we rewrite (2)–(4) in the
form (22) with

rk = F ′(xk)sk +F(xk) =−1
2

F ′′(xk)(yk − xk)
2,

rk = − 1
2θ

(F ′(zk)−F ′(xk))(yk − xk),

and

rk =−1
2

((
1+

b
2

)
F(yn)+ bF(xn)− b

2
F(zn)

)
,

respectively.

Theorem 3. Let us assume that Γ0 = F ′(x0)
−1 ∈ L (Y,X) exists at some x0 ∈ Ω ,

and the conditions (c1)–(c3) are satisfied. Suppose that 0 < a0 < 0.5. Then the
sequences {xk} given by (2), (3) and (4) converge to x∗.

Proof. We first observe that the sequence {ak} given by (7) and (8) with d = 1 is
decreasing, i.e.,
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Table 1 The number of
iterations Examples x0 NM CM MOD 1 MOD 2

(I) 1.5 7 4 5 5 5 4 4 5
(II) 2.0 5 5 3 4 4 4 4 3
(III) 1.5 6 6 3 4 4 3 3 3
(IV) 1 6 4 6 4 4 4 4 -

0 < ak+1 < ak < · · ·< a1 < a0 <
1
2
. (25)

It is easy to show that for residuals rk of all the methods (2),(3) and (4) hold the
following estimation

‖rk‖ ≤ ak

2
‖F(xk)‖,

(
ηk =

ak

2

)
. (26)

From (25) and (26) follows ηk → 0 as k → ∞. Then by Theorem 2 the methods
(2)–(4) converge to x∗. 
�
The assumptions in Theorem 3 are milder than cubic convergence condition in
Theorem 1 with d > 1.

7 Numerical Results and Discussion

Now, we give some numerical examples that confirm the theoretical results. First,
we consider the following test equations:

(I) x3 − 10 = 0,

(II) x3 + 4x2 − 10 = 0,

(III) ln(x) = 0,

(IV ) sin2 x− x2 + 1 = 0.

All computations are carried out with a double arithmetic precision, and the number
of iterations, such that ‖F(xn)‖ ≤ 1.0e− 16, is tabulated (see Table 1). We see that
the third-order MOD 1 and MOD 2 takes less iterations to converge as compared to
second-order Newton’s method (NM).

Now we consider the following systems of equations:

(V ) F(x) =

(
x2

1 − x2 + 1

x1 + cos
(π

2 x2
)
)
= 0,
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Table 2 The computational
cost of the methods Methods Evaluation of F Evaluation of F ′

NM 1 1
MOD 1 1 2
MOD 2 3 (2 when b = 0 or b = 2) 1

Table 3 The number of iterations

Examples x0 NM CM MOD 1 MOD 2

θ = 0.5 θ = 1 b =−2 b =−1 b = 0

(V) (0;0.1) 8 5 5 6 3 2 2
(VI) (0,0,0,1,1,0) 6 6 4 4 4 4 4

(VI) F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1x3 + x2x4 + x3x5 + x4x6

x1x5 + x2x6

x1 + x3 + x5 − 1

− x1 + x2 − x3 + x4 − x5 + x6

− 3x1− 2x2 − x3 + x5 + 2x6

3x1 − 2x2 + x3 − x5 + 2x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

As seen from the Tables 1–3, that the proposed modifications (MOD 1, MOD 2)
are almost always superior to these classical predecessor, the Chebyshev method
(CM), because of their convergence order is as same as CM, but these are simpler
and free from second derivative.

We also compared the computational cost of two modifications to the classical
NM (see Table 2). The numerical results showed that MOD 2 is the most effective
method especially when b =−2 or b = 0.

Conclusion

In this chapter we proposed new two families of methods which include many well-
known third-order methods as particular case. We proved third-order convergence
theorem for these modifications and as well as for Chebyshev method. The new
methods were compared by their performance to Newton’s method and Chebyshev
method, and it was observed that they show better performance than NM and CM.
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