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Abstract A multimethod algorithm for solving optimal control problems is
implemented in the form of parallel optimization processes with the choice of the
best approximation. The multimethod algorithm based on a sequence of different
methods is to provide fast convergence to an optimal solution. Such a technology
allows one to take into account some particularities of the problem at all stages of
its solving and improve the efficiency of optimal control search.
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1 Introduction

The technology of finding the numerical solution to the applied optimal control
problems is based on universal software which has a well-developed interface and a
rich arsenal of optimization methods. Such software allows one to take into account
specific features of the problem under consideration by making the use of diverse
algorithms of improvement at different stages of iteration process. Application of
several numerical methods for solving a single optimization problem was suggested
in many publications oriented to the software development [1–3, 6, 7, 11].

Principal difficulty in applying the multimethod algorithm lies in the fact that
at each stage of the problem-solving process one has information about efficiency
of the method applied at the present moment. To determine the efficiency of any
optimization method at some stage of searching for solution to the given problems
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it is necessary to perform one or several iterations. Therefore, to choose the method
which is more appropriate for the given stage of problem solving, the operation of
switching from one method to another is usually repeated.

Also, it is necessary to know about switching times. But this information can be
easily obtained by tracking the current method measuring parameters characterizing
its convergence.

Thus, the principal problem of the multimethod technology is the choice of
method which allows one to continue effectively the optimization process from the
moment when convergence of current method was impaired.

Modern operational systems provide a solution to the given problem by organiz-
ing parallel computational flows for simultaneous computation by several methods.
In each flow, one can realize iterative process of one method from a collection
of methods. Thus, a single problem can be solved by several methods. With the
multiprocessor technology on hand, of course, it is convenient to use individual
processor for accomplishing iteration of each method.

After finding the next approximation, each method is considered, for instance,
evaluating an increment of the functional. More effective method is taken to
continue the optimization. Next, the approximation obtained by this method is
transferred to other methods as initial data to perform next iteration. Starting from
this approximation, one or several iterations are again performed by all methods.
Out of the obtained approximations again we take the one in which the functional
has a smaller value.

Continue iterative process until the optimum criterion is met for the obtained
approximation. After that we find an approximation solution to the problem under
consideration. In this case the solution is found by the multimethod algorithm
consisting of a sequence of steps of different methods attached to optimization
process to accelerate its convergence. The advantage of the multimethod algorithm
in comparison with each method separately lies in its greater adequacy in application
to concrete problem. At each stage of searching for solution, the multimethod
algorithm makes the use of optimization method which is more suitable in terms of
specific features of a given problem (e.g., the ravines of function, specific character,
and the structure of constraints).

In the graphic, the decrease in the functional I(u), in iterations of the multimethod
algorithm, is shown by the broken line which consists of the graphics of separate
methods. Figure 1 shows the multimethod algorithm operation in the case, when
two methods M1 and M2 are used. The graphics given show the decrease in the
functional in the iterations of the methods M1 and M2. The graphic of decrease
in the functional in the iterations of the multimethod algorithm is the curve ABC.
It is constructed by using two graphics corresponding to the methods M1 and
M2. Namely, the region BC is obtained by parallel translation of the region EL.
According to this figure, the zero value of functional is achieved in k1 iterations of
the method M1, while the use of the methods M1 and M2 requires k2 iterations.

The multimethod algorithm works, up to the k̄th iteration, by the method M1
(the curve AB) and then by the method M2 (the curve BC). The reason is that
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Fig. 1 Graphics of decrease of functional on the iterations of the methods M1, M2 and multi-
method algorithm

beginning with the k̄th iteration, the velocity of decrease in the functional during
the use of the method M2 is higher. As a result, zero value of functional is achieved
by the multimethod algorithm using k∗ iterations. This is considerably less than in
the case where the methods M1 and M2 are used individually.

2 Parallel Computations in the First-Order Methods

By different criteria for choosing the closest optimization method and also
organizing in different ways parallel computations on the method’s iterations,
several different combinations of algorithms can be obtained to solve a single
problem. Moreover, it is possible to construct the multimethod algorithms that
do not contain repeated computations in the iterations of different optimization
methods. For example, in the methods of gradient type [4, 13], laborious
computations of the gradient, requiring an integration of the adjoint system, should
be performed only once; then, the obtained gradient should be used in the iterative
formulas of all methods. In this case, computational expenditures at one step of
multi-flow algorithm are considerably reduced. Moreover, realization of the step
by any of the methods is accomplished by using the same approximately obtained
values. Then all optimization algorithms are applied as if to the one and the same
approximate model. Thus, the criterion of new approximation is defined only by
the optimization methods. Otherwise, because of computational errors, the same
parameters used to estimate convergence of the methods may have different values
which can lead to improper choice of the best method.
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Let us consider an optimal control problem provided by the conditions in the
form of equalities at the right trajectory end. The controlled process is described by
the system

ẋ = f (x,u, t), x(t0) = x0, t ∈ T = [t0, t1], x(t) ∈R
n, u(t) ∈R

r (1)

with terminal conditions

I j(u) = ϕ j(x(t1)) = 0, j = 1,m (2)

and with phase constraints

Ji(u, t) = gi(x, t) = 0, i = 1,s, t ∈ T. (3)

The control is constrained through

u(t) ∈U, (4)

where U is a bounded closed set in R
r. Vector functions f (x,u, t) are assumed to be

differentiable w.r.t. to x and u and continuous w.r.t. t; ϕ j(x), j = 1,m are assumed
to be continuously differentiable w.r.t. x functions.

It is required to find the control among controls fulfilled by (3), such that provides
the validity of conditions (2), for controlled process (1) and, on the other hand,
provides the minimum of the functional

I0(u) = ϕ0(x(t1)), (5)

where ϕ0(x) is continuously differentiable function.
The gradients of functionals I j(u), j = 0,m in terms of the functions

H j(ψ j,x,u, t) = ψ ′
j(t) f (x,u, t) and adjoint system

ψ̇ j =− fx(x,u, t)
′ψ j(t), ψ j(t1) =−ψ j

x (x(t1))

are given by the formula

∇I j(u) =−H j
u(ψ j,x,u, t), j = 1,m. (6)

For each t ∈T one can calculate in much the same way the gradients Jj(u, t), j = 1,s:

∇Jj(u, t) =−H
j
u(Φ j,x,u, t,τ), t0 ≤ τ ≤ t ≤ t1, (7)

where H
j
u(Φ j,x,u, t,τ) = Φ ′

j(t,τ) f (x,u,τ), Φ j(t,τ), j = 1,s are the solutions of the
conjugate system

∂Φ j(t,τ)
∂τ

=−∂ f (x,u,τ)
∂x

Φ j(t,τ), τ ∈ T,

with the boundary conditions Φ j(t, t) =−∂g j(x(t))
∂x

, j = 1,s.
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2.1 Application of Gradient Methods

Gradient procedure of the minimization of the functional (4) without taking into
account the constraints (2) and (3) is given through relation

uk+1 = uk −αk∇I0(u
k),

where αk are chosen, for example, from condition of fastest decrease of the
functional I0(u). The solution of the problem with terminal conditions (2) without
constraints (3) can be obtained by parallel application of the linearization and
penalization methods given, for example, in [7]. When using penalization method,
penalty functional which consists of the functions (2) and (4) is minimized with the
help of gradient procedure. Making use of the multimethod technology, one can also
simplify each iteration of the linearization method in such a way that its working
time will be close to the one of the penalization method. Then the algorithm will be
as follows:

1. For given uk(t), t ∈ T , system (1) is integrated; in the integration points, the phase
coordinates of trajectory xk(t) are memorized.

2. m + 1 flows are organized, for parallel integration of adjoint system provided
by different initial conditions ψ j(t1) = −ψ j

x (x(t1)), j = 0,m. In the process of
integration, the solutions ψ j(t) are used to construct a linear system of algebraic
equations

m

∑
i=1

⎛
⎝

t1∫

t0

H j
u
′
Hi

u dt

⎞
⎠λi = I j(u

k)−
t1∫

t0

H j
u
′
H0

u dt, j = 1,m.

3. After solving this system, the values of variables λi, i = 1,m are found.
4. A new approximation of the control

uk+1 = uk +αkδu, δu = H0
u +

m

∑
i=1

λiH
i
u,

is constructed, where the parameters αk satisfy inequality

I0(u
k +αkδu)+β I j0(u

k +αkδu)≤ I0(u
k)+β I j0(u

k)− ε
t1∫

t0

δu′δudt,

0 < ε < 1, j0 = argmax
1≤ j≤m

∣∣∣I j(u
k)
∣∣∣ , β =

m

∑
i=1

|λi| .

From this algorithm, as particular case (for m = 0), we obtain the ordinary gradient
method.
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2.2 The Methods for Solving Problem with Constraints
on Control

Let us focus on the algorithms intended for solving the problems provided by
constraints on control, but with free right end. Suppose that for some uk(t) ∈ U ,
t ∈ T , one finds any solution to the system (1) xk(t), t ∈ T . Setting in (5) j = 0,
integrate adjoint system from t = t1 to t = t0 when u = uk(t), x = xk(t). Calculate on
its solution ψk = ψ0(t) the control using the maximum principle:

ūk(t) = argmax
u∈U

H(ψk,xk,u, t), t ∈ T,

and find the value of scalar function

wk(ū(t), t) = H(ψk,xk, ū, t)−H(ψk,xk,uk, t), t ∈ T.

Let t = τk the maximum point of this function being on T . Then, the necessary
optimum condition of the control uk will be

wk(ū
k(τk),τk) = 0.

In the case when for given uk and obtained xk, ψk, ūk, the maximum principle

wk(ū
k(τk),τk)> 0

does not hold; iteration of the method [12] can be made to improve uk.
Denote the point set, where maximum principle is broken by

Tε =
{

t ∈ T : wk(ū
k(t), t)≥ εwk(ū

k(τk),τk)
}
, ε ∈ [0,1].

Observe that at ε = 0, we have T k
ε = T , while at ε = 1, the set T k

ε consists of the
maximum points of the function wk(u(t), t).

By varying ε , we can find such value for which the control

uk
ε =

{
ūk(t), t ∈ Tε ,

uk(t), t ∈ T \Tε
(8)

provides the least value of the objective functional I0(u), i.e.,

εk = argmin
ε∈[0,1]

I0(u
k
ε).

When searching for εk, several flows can be used for simultaneous integration
of system (1) with controls (8), corresponding to different values of ε ∈ [0,1]. In
addition, at t = t1, we have different phase space points xk

ε (t1) and pertinent values
I0(uk

ε) = ϕ(xk
ε(t1)). After the smallest value of the functional I0(uk

ε) is chosen,
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we verify the inequality I0(uk
ε) < I0(uk), and if it holds, we assume uk+1 = uk

ε .
Otherwise, the subdivision of ε can be continued, and the values of functional for
the following values can be found.

By virtue of structure of the controls generated by the iteration formula (8),
the relaxation of an algorithm can be impaired even before the control satisfying
the maximum principle is obtained. Therefore, to continue optimization process,
it is necessary to apply another algorithm, in iteration of which the controls are
constructed not only with boundary points but also with interior ones w.r.t. the set
U as well. For example, the convergence can be restored by constructing a convex
combination of two controls

uk+1(t) = uk(t)+α
[
ūk(t)− uk(t)

]
, α ∈ [0,1]. (9)

The calculations by the formulas (8) and (9) can be made simultaneously by
choosing from the obtained approximations such uk+1 to which the smallest value
of the functional corresponds. In the case, where the functional values are compared
within several iterations, the values of increase in the functional, obtained in the
neighboring iterations of each method, should be used as a criterion to compare the
efficiency of the methods (8) and (9).

In practice, it is established that the application of the variations of two types,
namely, “horizontal” (8) and “vertical” (9), allows us to avoid the effect of “control
sticking to the boundaries” which is inherent in the algorithms based on the
maximum principle [5, 12].

In the case in the iteration equation (9), the control ūk(t) is derived from the
linearized maximum principle

ūk(t) = argmax
u∈U

Hu(ψk,xk,u, t)′u(t), t ∈ T ; (10)

we obtain the iterations of the conditional gradient method. It is evident that for the
systems which are linear in control, the control function (10) coincides with that
deduced from the maximum principle. Another algorithm of control improvement
can be obtained by substituting, in the iteration formula (8), the interval Tε for the
following one:

T k
ε =

[
τk − ε(τk − tk

0), τk + ε(tk
1 − τk)

]
, ε ∈ [0,1], (11)

where tk
0, tk

1 are the nearest left and right discontinuity points of the function
w(ūk(t), t).

In the process of finding the value of parameter εk providing convergence of the
algorithm, we can apply the above procedure along with parallel computations. This
way of constructing the interval provides blowing down of its ends towards the point
τk, in the case, if the function w(ūk(t), t) is constant within some neighborhood of
the point τk, thus maintaining the convergence of the algorithm [12].
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2.3 Linearization Method for Solving Problems
with Phase Constraints

Let uk(t) be a current approximation of the control, and let xk(t) be the phase
trajectory, corresponding to uk(t), t ∈ T . Using the gradients (6) and (7) we linearize
the conditions (2) and (3) in the neighborhood of uk:

IL
i (u

k,u) = Ii(u
k)+

T1∫

T0

∇Ii(u
k, t)′

(
u(t)− uk(t)

)
dt = 0, i = 1,m, (12)

JL
j (u

k,u,τ) = Jj(u
k,τ)+

τ∫

t0

∇Jj(u
k, t)′

(
u(t)− uk(t)

)
dt = 0, (13)

j = 1,s, τ ∈ T.

Construct a modified Lagrange function for the problem (1)–(5) in the form:

L(u,uk,λ k,μk) = I0(u)−λ k′(I(u)− IL(uk,u)
)

−
t1∫

t0

μk(t)
′(

J(u, t)− JL(uk,u, t)
)
dt

+
ρ
2

(
I(u)− IL(uk,u)

)′(
I(u)− IL(uk,u)

)

+
ρ
2

t1∫

t0

(
J(u, t)− JL(uk,u, t)

)′(
J(u, t)− JL(uk,u, t)

)
dt,

(14)

where I, IL — m-vectors; J, JL — s-vectors; λ k, μk are m- and s-dimensional
Lagrange factors; ρ ≥ 0 is a penalty coefficient.

In the k + 1− st iteration of the considered method we solve the minimization
problem of functional (14) on the solutions of the system (1) with the linear
constraints (12), (13), and (4). By solving the problem, we determine new values
of the Lagrange factors λ k+1

i , i = 1,m, μk+1
i (t), i = 1,s, t ∈ T .

After determining uk+1, λ k+1, and μk+1, we again linearize constraints (2), and
(3) in the neighborhood of uk+1, construct the functional L(u,uk+1,λ k+1,μk+1,ρ),
and repeat the iteration.

Thus, the algorithm for solving the formulated problem consists of the following
main operations:
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Fig. 2 The scheme of realization of (k + 1)-th iteration by multimethod algorithm using three
methods M1, M2, and M3

1. Linearizing the constraints and solving the auxiliary problem (1), (4), and
(12)–(14). Calculating the Jacobian of the linear system (13) is computationally
very expensive.

2. Verifying the optimal conditions for the solution obtained on the kth iteration.

When solving the problems with linear constraints the application of this algo-
rithm is greatly simplified because it is not necessary to calculate the constrained
Jacobian.

2.4 The Block Scheme of Multimethod Algorithm Operation

Summarizing the above said we see that by applying various iteration procedures
and making use of different rules to construct the sets of varying controls, we
obtain the collection of algorithm, each working effectively enough only in a certain
situation. Thus, in the process of finding the optimal control, it is necessary to
include several algorithms.

By organizing parallel computations to realize some collection of algorithms and
applying the selection procedure to take the best approximation after simultaneous
iterations by all methods, we are able to find effectively optimal control by the
multimethod algorithm.

Figure 2 demonstrates how the multimethod algorithm works in the case when
three methods are used. The block of selection of the best approximation finds ui0
from a largest value of increment of the functional obtained in the (k+1)-th iteration

ui0 = argmax
i∈(1,2,3)

(
I(uk)− I(uk+1

i )
)
.

This approximation is passed to all methods uk+1
i = ui0 , i = 1, 2, 3, to perform

the next iteration.
It should be noted that another multimethod algorithm can be generated from

the collection of methods for solving another problem. The algorithm can be more
adequate because of taking into account the specific features of this problem.
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3 Implementation of Multimethod Algorithm

3.1 Solving the Adjoint Problem

The most labor-consuming operation performed at each step of all first-order
algorithms is numerical integration of original and adjoint system of differential
equations provided by some control. The solving of adjoint system in the iterations
is used to find either the value of Hamiltonian or both to perform the calculation
of gradients of functionals. Thus, the numerical integration of this system is
accomplished at each step of any of the first-order methods. Since the multimethod
technology enables the steps to be made simultaneously by all methods, the solution
of adjoint system, which is obtained by single integration, is used in all iteration
formulas simultaneously.

3.2 Computation of the Method Step

Realization of each step of the first-order method needs to find the value of
method’s step α or ε , for which new obtained approximation provides the smallest
value of objective functional. The search for such a value of α requires multiple
integration of initial system (1). By constructing control uα by given iteration
formula at different values of α , and integrating initial system, at u = uα , we
obtain various trajectories xα(t), t ∈ T and find pertinent values of the functional
I(uα). By applying the one-dimensional search method it is possible by several such
recalculations to find the approximate value of α = αksuch that the minimum of
I(uα) w.r.t. parameter α is provided. If, in the process, the inequality I(uαk)< I(uk)
holds, the control uαk is taken as new approximation uk+1. Otherwise, iteration
process, using this method, comes to an end.

To recover the method convergence it is necessary to correct calculations,
namely, diminish the integration step, increase the accuracy of one-dimensional
search, and so on. The multimethod algorithm can be used to continue the process
of control improvement by switching to another method, while the condition for
termination of its work is impossibility to guarantee relaxation by none of the
methods entering in the given collection.

Another scheme of search can also be used to find the value of αk while using
the multimethod algorithm. Its essence consists in the fact that in the process of
subdivision of α , for example, by cutting in two, with each its value, it accomplishes
test step by all methods. Since, in many algorithms, for finding αk, it accomplishes
subsequent subdivision in two until the inequality I(uαk)< I(uk) holds, then, for any
fixed α , the validity of this inequality is checked simultaneously for all methods.
In addition, with given value of α , in correspondence with iteration formula of each
method, it is constructed the control uα integrated the system (1). Its solution is used
to calculate the functional I(uα). If, in the process, for some value of parameter α ,
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for some of the methods, the required inequality holds, then uαk , obtained by this
method, should be taken as a new approximation to be passed to all methods for
continuation of iteration process.

3.3 Choice of Optimization Methods

For parameters to be used to estimate the efficiency of iteration process, one
can take, for instance, the velocity of reduction of the residuals in optimization
conditions, the value of increment of the objective functional, or the extent of
violation of some important, for example, in the physical sense, constraints.
The accuracy of calculations of these parameters provides the proper choice of the
method and opportune transition to another optimization method.

3.4 The Methods of Approximation of Control

The principal error in modeling the control problem arising in the process of
numerical solving is due to discrete approximation of controlled dynamic system
and tabular representation of control function.

The methods of numerical integration allow for discretization of the system with
given accuracy but provided that control functions are continuous and their values
can be determined for arbitrary t ∈ T . However, in practice, piecewise constant
approximation of control functions is often applied, and its values are defined only
in given sites of the temporal network. These values are changed in iteration process,
depending on optimization method to decrease minimized functional or to reduce
the residuals for given terminal conditions. The values of control functions between
the points, which are necessary, for example, to apply the numerical methods of
Runge–Kutta type, as usual are taken to be equal either the value in the nearest left
point or both are defined by linear interpolation by the values in left and right points.
In this process, the error of numerical integration can be considerably extended.
Then, on the obtained numerical solution of the system, the values of parameters,
which are used to choose the method, could be incorrect.

To diminish the errors of calculation of trajectory, one can condense the temporal
network in order to increase the number of desired values of control which implies
to solve optimization problem of a big size. In the case if required control is
smooth enough, then, with some number of points and with the help of interpolation
formulas, the admissible accuracy of its approximation can be provided. However,
in general case, if control functions are discontinuous, for example, of relay type,
this approach may turn out to be inefficient, since, in this case, the condensation
of network affects the approximation accuracy only in the neighborhood of the
switching points. Therefore, in the process of solving the bang–bang optimal control
problems, it is necessary to use the procedure of switching times correction to
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provide the approximation for control functions with prescribed accuracy. In the
absence of this procedure, the control is found in the form of the array of numbers
defined on temporal network. Such a control may differ in significantly from the
optimal one both by the value of objective functional and by the accuracy of optimal
conditions fulfillment.

3.5 The Estimation of Accuracy of a Chosen Method

The application of multimethod algorithm is correct only if all methods use the
same approximation of the control and provide the same accuracy of integration of
the systems. In this case, all optimization methods are used to solve the same finite
dimensional problem obtained by discretization, while the values of parameters used
to choose the method give a more correct estimate of the algorithm efficiency,
providing thus a correct choice of the method to continue iteration process. As
a result, the approximate solution is obtained in a lesser number of iterations,
in comparison to individual use of each method from a given collection. This is
because at each stage of solving the considered problem, a more effective algorithm
is applied to be more adequate in this situation.

4 The Numerical Experiments

Let us present the results of the numerical experiments to demonstrate application
of the multimethod technology. Two examples are considered: a test problem of the
Rosenbrock function minimization and the problem of optimal control of the rocket
flight.

4.1 Example 1

It is required to find the minimum of Rosenbrock function f (x1,x2) = 100(x2 −
x2

1)
2 +(1− x1)

2 with constraint (x1 − 2)2 +(x2 − 2)2 ≤ 1 and initial approximation
x0 = (2,1).

It is known that the absolute minimum of this function is achieved at the point
(1,1). It is equal to 0. In the problem under consideration, the point (1,1) is not
feasible. Therefore the zero value of objective functional is not attained.

This problem was solved numerically by the method of conditional gradient, by
the method of gradient projection, and also by the multimethod algorithm which
contains these two methods. The smallest value of the function equal to 0.0358,
for prescribed accuracy ε = 10−4, was attained using 240, 341, and 170 iterations,
respectively. Minimum point is x∗ = (1.189,1.415).
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4.2 Example 2

In this case, controlled process is described by the system

ẋ1 =−cpx2
1[1.174− 0.9cosu1]− gsinx2

/
(1+ x3)

2,

ẋ2 = 0.6cpx2
1 sinu1 + x1 cosx2

/
[R(1+ x3)]− gcosx2

/
[x1(1+ x3)

2],

ẋ3 = x1 sinx2
/

R,

ẋ4 = x1 cosx2
/
[1+ x3],

where ρ = 0.002704exp(−4.26Rx3), R = 209, g = 0.00032172, and c = 26600.
The initial data x(0) = (0.36,−0.141372,0.019139,0.0) and terminal conditions

x(tk) = (0.27,0.0,0.011962, unbounded)are given, while the parameter tk is not
fixed. It is required to find such control u(t), t ∈ [0, tk] and such smallest value
of parameter tk that the fulfillment of terminal conditions is guaranteed, while the
functional

I(u) =

tk∫

0

x1[exp(−4.26Rx3)]
1/3 dt

should attain the smallest value.
This problem was solved by the above linearization method and also by the

projected Lagrangian method, in iteration of which the nonlinear Lagrangian with
linearizable constraints is minimized [11]. Approximate solution (the accuracy w.r.t.
boundary conditions is 10−3) was found in 282 and 215 iterations, respectively.
The solution with the same accuracy, that was obtained with the multimethod
algorithm including these two methods, was found in 164 iterations. The value of
parameter tk equals 72.412, while the functional I(u) attains the value equal to 24.59.

5 Conclusion

Thus, we can conclude that for each problem under consideration there exists
an appropriate sequence of steps based on different methods which provides
more effective search for the optimal control. In the multimethod algorithms the
construction of such a sequence is accomplished automatically according to some
given criterion estimating the efficiency of optimization process at each stage of
the problem solving. The use of the technology described above is based on the
application software, for example, [5–11, 14], which includes the methods of first
and second order for solving the optimal control problems with constraints of
different types.
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