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Abstract Most world cities are now planned in one way or another. Through
the deliberate positioning of activity and transportation facilities, urban authorities
hope to ensure the success of their cities in economic, social and environmental
terms. Urban planning models are an important tool to help them in this task,
and in this chapter, we examine the use of optimization techniques in urban
planning modelling. Through a broad review of the field, we highlight the distinction
between single-goal urban-environment models and multi-objective land use and
transportation models. While it is shown that optimization no longer plays a
stand-alone role in land use and transportation modelling, it does contribute to
the overall modelling workflow. Furthermore, optimization forms the basis of two
niche applications: excess commuting and sketch modelling. This last field holds
the most promise for the future, enabling planners to establish minimum resource
consumption benchmarks for their city as a means of comparison with other cities
and to evaluate the ambition and feasibility of new plans.

Key words Cities • Urban planning • Mixed integer linear programming •
Review

J. Keirstead
Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ,
London, UK
e-mail: j.keirstead@imperial.ac.uk

N. Shah (�)
Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College
London, SW7 2AZ, London, UK
e-mail: n.shah@imperial.ac.uk

A. Chinchuluun et al. (eds.), Optimization, Simulation, and Control, Springer
Optimization and Its Applications 76, DOI 10.1007/978-1-4614-5131-0 11,
© Springer Science+Business Media New York 2013

175



176 J. Keirstead and N. Shah

1 Introduction

A city’s character is greatly shaped by the organization of space and activities within
its boundaries. This sense of place is partly an aesthetic attribute: by invoking the
name of major world cities, we can quickly picture their structure and form such
as the grid-iron streets and high-rises of New York or the hillside favelas of Rio
de Janeiro. However, the city’s social, economic and environmental performance is
arguably the more important consequence of urban form.

For much of human history, cities evolved in an organic fashion “without
preconceived planned intervention” [39, p. 10]. Natural determinants such as
topography, climate and the availability of construction materials were major driving
forces, shaping both architectural styles and activity location. The requirements of
religion, politics, defence and logistics also played a role [39]. While the resultant
forms may look random and uncoordinated, research has demonstrated a number
of possible organic growth mechanisms including “preferential attachment” to
existing settlements and transport networks [1, 14], economic processes (such as
von Thünen’s 1826 model of land rents) or analogies with physical processes such
as diffusion-limited aggregation and dielectric breakdown [5].

The shift towards a more active form of urban planning often arose in response
to the limitations imposed by haphazard urban growth. In Renaissance Rome for
example, the tightly woven medieval structure of the city began to place significant
constraints on the health and mobility of citizens and visitors. One of a number of
planning popes, Sixtus V (1585–1590) located four major obelisks throughout the
city to guide future planners in the construction of major thoroughfares that could
connect prominent piazzas and churches. Similarly Haussmann’s boulevards were
an intentional effort to reshape Paris in response to changing defence requirements,
inadequate sanitation and other factors [39]. While the specific constraints may vary
over time and by location, the planning departments of modern cities essentially
fulfil the same function: to create vibrant thriving urban areas subject to limitations
of land, resources, finance and time. It is worth noting however that planned urban
forms cannot be divorced from organic growth processes. Planned activity and
transportation developments create opportunities for new patterns of urban living,
which in turn need to be accommodated by new plans and construction. This cycle
can be seen as the feedback loop which drives the growth of urban systems [52].

For the purpose of this chapter, we can broadly define urban planning as the
policies that configure patterns of land use, associated activities and transportation.
Urban planning is an interdisciplinary field, incorporating the expertise of architects,
engineers, economists, sociologists and others. The planning process is necessarily a
compromise between competing interests and multiple stakeholders, each of which
may hold very different views about what constitutes a liveable neighbourhood or an
effective strategic plan. In this context, it may seem that a technique as deterministic
as optimization (or mathematical programming) has little to offer. However, this
chapter will demonstrate that optimization techniques have been widely used in
urban planning, although their precise contributions have shifted as other modelling
techniques and the needs of analysts have changed.
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This chapter is organized as follows. In Sect. 2, we provide an overview of
the major uses of optimization modelling in urban planning over the past 50
years. The aim is not to provide a comprehensive review but to illustrate the
range of applications, the specific techniques used, and to identify the reasons
why mainstream urban planning analyses tend not to use these techniques now
(or rather, do so indirectly). Section 3 then considers two current urban planning
applications where optimization models are more commonly used, the fields of
“excess commuting” and sketch planning. We review the structure of these models
and offer comment on their formulation and applicability in various circumstances.
Section 4 concludes by considering how optimization techniques for urban planning
might evolve in future, concentrating on their use in the design of eco-cities.

2 Past Applications of Optimization in Urban Planning

The modern history of optimization might be said to begin with Dantzig’s 1947
simplex algorithm for linear programming. Since then, advances in algorithms
and computing technology have helped the field to expand, and mathematical
programming models are now used in a variety of disciplines and formulations. This
section provides an overview of the use of optimization in urban planning. First, we
present a top-down review to identify major categories of practice and the types of
optimization techniques employed. We then narrow the scope and work from key
review articles to describe the major trends in the specific area of urban land use
and transportation (LUT) planning.

2.1 Top-Down Review

We began our review by considering which general urban planning fields employ
optimization techniques. To do this, we searched the ISI Web of Knowledge
index1 for the terms “(optimization OR optimisation) AND (urban
OR cities OR city) AND (planning)” in both the topic and title fields.
This led to 581 results, broken down into the subject areas shown in Table 1. While
there is clearly a bias towards the more numerate subjects, the list of disciplines
is very diverse. As noted in the introduction, the urban context attracts researchers
from a wide variety of fields, and it is interesting to see that optimization offers at
least some insight within all of these disciplines.

After inspecting the results, the query was further limited by adding “AND land
use” to the search terms. This avoids a large number of papers that focus on topics
not directly related to the question of urban land use. This includes work on the

1www.isiknowledge.com.

www.isiknowledge.com
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Table 1 Top ten subject areas for urban planning and optimization
papers, as found by an ISI Web of Knowledge query

Subject area Number of papers

Engineering 229
Environmental sciences and ecology 222
Computer science 123
Business and economics 110
Water resources 105
Mathematics 101
Public administration 69
Transportation 56
Public, environmental and occupational health 52
Agriculture 46

Total 581

See text for query phrasing

Table 2 Cross-tabulated categorization of selected urban planning
and optimization papers; values indicate number of papers

Optimization method
Topic LP NLP MOO Other Unknown Total

Land use 4 2 13 4 6 29
Transport 2 0 2 1 2 7
Ecology 4 2 1 0 4 11
Water 0 2 3 2 1 8

Total 10 6 19 7 13 55

LP linear programming (including mixed-integer variants), NLP
non-linear programming (including mixed-integer variants), MOO
multi-objective optimization, Other hybrid methods such as cellular
automata or agent-based simulation with an optimization compo-
nent, as well as random and grey optimization, Unknown studies
which do not specify the technique used

planning of large infrastructure systems without an explicit land use component
(e.g. ant colony optimization applied to electricity networks, [16] or long-term water
supply portfolio planning, [26]) and detailed operational optimization and control
problems (e.g. for traffic light timing, [44]). The narrower search terms resulted in a
more manageable 61 unique records. These papers were then categorized according
to the optimization techniques used and the field of application. The cross-tabulated
results shown in Table 2 therefore provide an indication of practice in this area.
Six studies from the original sample were removed as they did not actually apply
mathematical programming techniques, but rather referred to “optimization” in a
non-technical manner (often as a synonym for improvement). From a method-
ological perspective, the table shows a mix of linear and non-linear, single and
multi-objective formulations. The formulations are often, but not always, of mixed-
integer form where integer variables are typically used to represent the classification
of a discrete land use parcel [e.g. 10,15]. Multi-objective approaches are commonly
used as well and are typically solved by genetic algorithm [e.g. 3, 43], simulated
annealing [e.g. 11] and to a lesser extent single aggregate objectives [e.g. 29].
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Although the data set is diverse, a rough split in problem type can be seen.
First, there are those studies which apply optimization techniques to examine the
ecological impacts of urban development (the “ecology” and “water” categories
above). In these cases, the natural environment imposes constraints on a city’s
growth and so might be called urban-environment planning models. For example,
[10] describe how the growth of urban areas and pressures from agriculture can
lead to fragmentation and degradation of nearby habitats, with negative impacts
on biodiversity. They therefore use spatial optimization, based on an mixed-integer
linear programming formulation, to allocate land function so that the minimum
number of locations need to be actively restored after development. Constraints on
the problem include overall areal targets for intact habitats and restrictions imposed
by the local geography (e.g. soil types, vegetation). A similar approach is adopted
by [38], who use non-linear programming to minimize impacts on water resources
from urban growth policies.

The second set of problems focuses on urban planning in a more traditional
economic or social context (the “land use” and “transportation” (LUT) categories);
[2] is a typical example. Here a genetic algorithm is applied to determine future
land-use and transportation provision for a growing city, subject to constraints on
housing provision. The problem is one with multiple objectives such as minimizing
cost, disruption, and traffic congestion. Multi-objective frameworks are significantly
more common in this category, compared to urban-environment models that may
have a narrower focus (42% of LUT models, 21% of urban-environment models,
χ2 = 5.55, p = 0.018).

Two final points from this brief survey. First, researchers often combine optimiza-
tion with other techniques, particularly for spatial analyses with cellular automata
(e.g. for forestry planning, [37]) or agent-based models (e.g. for biodiversity
planning involving multiple stakeholders, [27]). In these cases, the optimization
routines can be embedded within heterogeneous agents to simulate the behaviour
of individuals within a more complex interactive system. The second issue is that
the selected papers span from 1979 to 2010 (a limitation of the ISI data set) and are
therefore likely to be missing some of the early applications of these techniques to
urban planning. The second part of this review will therefore provide more detailed
perspective on the evolution of the field.

2.2 Optimization in LUT Models

For this second review, we limit our definition of urban planning to incorporate only
the LUT sectors. Although environmental motivations are increasingly important,
urban planning is still primarily concerned with creating economic and social
opportunities [for an overview, see 41]. Quantitative work on the relationship
between urban form and function typically falls under the general title of LUT
modelling.
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Review studies identify four major urban modelling approaches—regression,
optimization, aggregate spatial models, and disaggregate individual models
(including both random utility frameworks and activity-based models) [9, 20, 35].
Over time, the field has trended towards increasing behavioural realism and
disaggregation. That is, whereas earlier studies could only simulate a few districts
and had to aggregate all activity supply and demand within that zone, advances in
computing power and model formulations mean that behaviours at the level of the
individual or household can now be simulated (e.g. by modelling individual choices
within an econometric random utility choice framework). The motivation for this
shift can be explained by the operational use of these models, i.e. their deployment
in real cities to answer policy questions such as how a city might expand over time
[51], where people choose to live and work within cities [50], and which modes
of transportation will be used to facilitate urban travel [20]. Greater behavioural
fidelity allows these models to test sophisticated policy interventions and increases
confidence that the salient processes have been effectively represented: “the
value of more complex, behaviourally valid, microscopic models is not that one
obtains microscopic forecasts, but that one obtains macroscopic forecasts based on
microscopic principles” [48, p. 239].

However, this trend has meant that optimization has, over time, taken on a
secondary role within urban LUT modelling. Several early studies used optimization
as the primary technique to determine activity location and traffic flows within
a city. For example, the earliest operational LUT optimization model appears to
be TOPAZ from Australia [12, 46]. This model sought to allocate activities to
discrete zones minimizing total cost from construction and travel. However, even
in its early stages, limitations on data inputs and computational ability made
these models impractical for everyday use [18, 32, 35]. Yet while optimization
models have “all but disappeared” as stand-alone tools [52, p. 7], the techniques
are still used in conjunction with more mainstream LUT modelling approaches,
as so-called “combined” models [e.g. 9, 33, 42]. These tools use optimization to
determine transportation costs endogenously, capturing spatial interactions and user
behaviour in a more realistic fashion. More generally, optimization remains a useful
technique within LUT models, for example to perform mean square error fitting of
econometric models as a preliminary step in random utility choice modelling or to
calculate market clearing equilibrium prices for land and transportation [52].

3 Present Applications: Excess Commuting and Sketch
Planning

There are urban modelling niches within which optimization remains a valuable
primary modelling methodology. It has been acknowledged that optimization
techniques have the potential to find “extreme solutions” and to meet a specific
objective during the “preparation of plans” (i.e. to be used in a normative fashion)
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rather than forecasting detailed descriptive behavioural patterns over time [35,
p. 330-331]. The use of optimization models for designing hypothetical optimal
configurations, but not necessarily in assessments of existing cities, is also supported
by [20]. Two such applications which will be discussed here are excess commuting
and sketch layout modelling.

3.1 Excess Commuting

Excess commuting can be defined as commuting longer or further than suggested
by the actual spatial layout of a city and assumptions about rational commuter be-
haviour [19]. Metrics based on this concept help analysts to compare the efficiency
of urban layouts and suggest strategies for re-development and rationalization of
spatial activity patterns. To estimate the level of excess commuting, original work
in this field assumed a stylized monocentric city and found that, for a range of US
and Japanese cities, average commuting journey distances were approximately 8
times greater than might be expected if commuters tried to minimize their average
commute [17]. However, [53] reinterpreted this issue as a linear programming
problem showing the level of excess commuting to be on the order of 11%.
Research since 2000 has resulted in average estimates of excess commuting in
the range of 50–70%, and the optimization framework is now the most common
method of calculating benchmark minimum and maximum commutes for a given
spatial layout [34].

The basic formulation of the problem, based on White’s paper [53], is as follows:

Minimize 1
N ∑

i
∑
j

ci, jn∗i, j

subject to ∑
i

ni, j = ∑
i

n∗i, j = D j

∑
j

ni, j = ∑
j

n∗i, j = Oi,

where ci, j is the cost of commuting from zone i to j (e.g. distance or time), ni, j is
the existing (exogenous) number of commuters travelling between zones i and j,
n∗i, j is the optimized (endogenous) number of commuters, N is the total number of
commuters, Oi is the number of workers living at zone i, and D j is the number
of workers employed in zone j. Readers familiar with operations research will
recognize this as an example of the transportation problem, wherein the goal is
to connect suppliers and customers with a network at minimum cost, subject to
constraints on customer demand and supplier capacity [see 55]. It assumed that
network capacities and transport requirements are specified at the outset. In the
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urban context, this is analogous to knowing where people live and work and trying
to determine the lowest cost routing for customers, i.e. the minimum flow of visits
from home to each activity over the course of a year. This therefore results in an
idealized measure of commuting flows that can be compared with observed flows
and normalized to calculate the excess commuting statistic.

Optimization-based excess commuting has been applied in a variety of locations,
but [34] highlight some common themes and outstanding questions. First there are
methodological questions regarding biases in the calculation of the excess commute
statistic. For example, measured data may need to be aggregated at different scales
depending on availability and tractability. However the value of excess commute
statistic depends on the chosen scale, with more aggregated spatial data resulting in
a smaller estimate of excess commuting. This suggests that for accurate estimates,
highly disaggregated data is preferred; however, this may create computational
difficulties. A second issue is contextual, i.e. is the estimate a meaningful indicator
of possible commuter flows? The technique described here relies upon an aggregate
approach, i.e. considering travel to and from given urban areas for a particular
activity class as a single homogeneous flow. However, more recent studies have
looked to disaggregate individuals and households within these calculations, for
example, to account for households with two working persons who need to live
together but work in separate locations [7, 40]. Finally there are questions about the
suitability of the measure for policy decisions, for example, on zoning regulations,
housing policy, and road pricing.

The use of optimization modelling for the calculation of excess commuting is
therefore an important application of the technique, even if theoretical and practical
questions remain about its validity. However, a key point is that excess commuting
measures are focused primarily on explaining observed behaviour in existing cities,
where the locations of work, residence and other activities are exogenous inputs to
the benchmark calculation. When considering new cities, these activity locations
can be endogenous to the model so that transportation requirements are jointly
determined with the location of individuals and activities. For this problem, we turn
to a second current application of optimization: sketch models.

3.2 Sketch Models

Sketch models assess both activity location and transportation flows within an
optimization framework; Fig. 1 provides a schematic overview of the technique.
Clearly when compared with most operational urban planning models, sketch
models provide an incomplete representation of LUT dynamics. When used in the
context of master planning and benchmarking processes however, their reduced data
requirements enables models to be tested quickly against multiple scenarios. The
results can be then tested within a more rigorous LUT modelling framework as
required.
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Fig. 1 A schematic description of a sketch model, based on [30]. The various combinations of
land uses and transportation flows are assessed within an optimization framework according to
objective functions which vary with the chosen application

Although [4] was not the first to use these techniques, his paper provides an
excellent overview of the approach and illustrates a typical application wherein
three goals are pursued in a multi-objective framework: minimization of land
development costs, maximization of residential accessibility, and minimization of
transportation energy costs. This work has been extended and revised by others,
most notably in the sketch layout model [13, 30]. In its various incarnations,
this model seeks to generate alternative master plan sketches as an input to
participatory planning processes. Again a multi-objective approach is adopted and
the model considers “harmony” (the similarity of adjacent land uses), “relevance”
(the compatibility of adjacent land uses), and “traffic accessibility” (the shortest
path between two cells). Related work in this area has examined the positioning of
individual facilities within a city [e.g. shopping malls, 56], layout of space within
buildings [47], the planning of development densities around transit stations [31],
and the use of multi-objective optimization to generate a range of Pareto optimal
layouts for discussion with planners [22].

The general formulation for sketch models is essentially a hybrid of two
canonical operations research problems [see 55]. The first is the transportation
problem discussed above. The second problem is the assignment problem, i.e.
finding an optimal combination of tasks and agents where each pairing incurs a
given cost. This problem can be formulated as follows:

Minimize ∑
i, j

ti, jxi, j

subject to ∑
i

xi, j = 1 ∀ j

∑
j

xi, j = 1 ∀ i,
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where xi, j equals 1 if person i is assigned to job j, else 0, and ti, j is the cost of
the assignment. Although it appears to be a mixed-integer problem, it can in fact
be solved as an LP owing to the “integer-in-integer-out” properties of a network
model [55]. In an urban context, the assignment problem can be seen as the task
of allocating activity provision to different land areas, where “activity” might be
interpreted variously as work, schools, residential housing and so on. The model
can also be split so that building and activity types are assigned separately. In the
case below for example, which focuses on minimizing urban energy consumption,
there might be two building types that can support a single activity category.

The hybrid formulation is known as the facility layout problem, and while there
are multiple forms of the problem’s definition, the general aim is to determine the
position of processes within a factory so that the combined costs of performing a
task at a given work station and moving materials between each work station are
minimized. Recent examples of this literature include [8, 28, 49]. As noted above,
when planning a new city, there is no a priori reason for taking the location of
housing and activities as fixed. Therefore a joint problem can be constructed which
seeks to minimize the cost of assignment both function to land plots, and the travel
required to move between those two locations.

The general formulation can be adapted with many application specific con-
straints. For example, in a factory layout problem, each piece of equipment might
have a certain footprint and therefore require a certain amount of space. An
analogous situation exists in the sketch planning case, where certain activities might
require a minimum site area (e.g. for a school with a playground) or minimum total
area (e.g. sufficient green space is provided for the whole city). An optimization-
based sketch model can also handle constraints such as the capacity of transportation
network links, housing requirements for the population, or prohibiting certain kinds
of development on particular land plots.

3.3 An Example: Calculating a Minimum Energy
Urban Layout

In our own work we have applied sketch models to the question of eco-cities, focus-
ing particularly on urban energy consumption. Cities are major energy consumers,
accounting for an estimated 67 % of global primary energy demand and 71 % of
energy-related greenhouse gas emissions [21]. While there is some dispute about
the precise allocation [45], it is clear that urban energy efficiency must be improved
if economic and cultural opportunities are to be maintained while avoiding the worst
environmental effects.

Urban energy consumption is the consequence of decisions taken at a variety of
spatial and temporal scales. Using domestic energy consumption as an example, the
temporal scale spans from short-term decisions such as when to use appliances (sec-
onds to days), medium-term choices about which appliances to purchase (months
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to years), and long-term decisions about the built fabric of the home (decades to
centuries). For example, [6] note that, at current rates, the UK’s housing stock could
take approximately 1,300 years to be replaced completely. Variations in spatial scale
also have a strong influence on energy consumption. End-use energy conversion
technologies such as household gas boilers may be relatively easy to reposition or
replace for improved efficiency but large infrastructure systems, such as resource
distribution and transportation networks or the location of buildings and activities,
are more persistent [e.g. 39]. Consequently the layout of urban environments is
perhaps the most difficult aspect of improving urban energy efficiency.

For existing cities, urban expansion and retrofit projects can lead to improve-
ments in energy consumption as seen in London’s Canary Wharf and La Défense
in Paris [54]. However, working within the constraints of existing infrastructures is
expensive and difficult and so new construction arguably offers the greatest oppor-
tunities to create energy-efficient cities. In recent years, the eco-cities movement,
both in the UK and abroad, has created visions of new sustainable urban areas [23],
such as Masdar, the world’s first “carbon-neutral zero-waste city” near Abu Dhabi
in the United Arab Emirates [36]. However, these ambitions raise serious questions
about the limits of low-energy urban forms, boundaries which must be identified if
new developments are to set realistic goals and existing cities are to understand their
improvement potential.

Not all of the energy issues listed above can be dealt with in an optimization
model, or if they can be addressed, they may impose significant computational costs.
However, a sketch model can be used to examine some key trade-offs such as the
balance between transport capacity (i.e. the maximum number of trips that can occur
on a route) and the maximum capacity of an activity site (i.e. the number of visitors
that can be satisfied at a given location).

Our sketch model is described in full in [24] and contains both the core elements
of an optimization-based sketch model, as described above, as well as some energy-
specific features. As input, users provide information about:

• The population of the city
• The generic housing and transportation types that are available
• The spatial layout of the city (i.e. the location and size of the empty zones to be

populated)
• The activities to be performed by the population

With the objective of minimizing “cost” (in this case, annual energy consumption),
the model will then determine:

• The location of buildings and activities
• The location of network connections
• The number of daily trips from zone z to z′ by mode m
• Other summary information (e.g. passenger km by mode)

Constraints on the problem generally fall into two categories: feasibility constraints
(i.e. those that are necessary to obtain a valid solution, for example, that all
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a b

Fig. 2 Minimum energy layouts for the provision of work and housing under different assump-
tions. Light grey cells represent domestic housing, blue work locations. Transport links are
shown in black arrows, with width proportional to the flows. Population of 100,000 in all cases.
(a) Residential housing 60 dw/ha, each work site offers 3,200 jobs (b) Residential housing 130
dw/ha, each work site offers 48,000 jobs

citizens must be housed) and context constraints (i.e. additional restrictions to reflect
planning laws or other user-specified concerns).

In this particular problem, the goal is to house 100,000 citizens and provide them
with sufficient work. Each cell is 16 hectares and from UK statistics, it is assumed
that 48 % of the population works. Figure 2a shows the results when we assume
that the housing density is low (approximately 60 dwellings per hectare) and each
work site can provide only 3,200 jobs (equivalent to a small office). However, in
Figure 2b, higher-density housing is used (130 dwellings per hectare), and a single
work site can employ 48,000 people (roughly equivalent to a dense central business
district). In both cases, we have not added any binding constraints on transportation
flows. The high-density case delivers an energy saving of approximately 15 %,
accounting for both building and transport demands.

A closer inspection of these figures reveals the stylized nature of the analysis. In
the low-density case, each work cluster is completely isolated; there are no traffic
flows between centres as the model is able to satisfy work demand through these
local “village” offices. Even in the high-density case, a clear divide between the two
halves of the city can be seen. However, if one adds further activities besides work,
the structure begins to change. In Fig. 3, a shopping activity is added and, when a
single site is large enough to satisfy the city’s resultant demand (e.g. a shopping
mall), it is centrally located by the model so that all citizens can access it with
minimal travel requirements.

The distributed structure of these results matches well with the predictions of
Christaller’s 1933 central place theory, which suggests that, for an unobstructed
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Fig. 3 A low-density layout
for a hypothetical city with a
central shop

landscape with an evenly distributed population, activity clusters should emerge at
the centre of population areas subject to constraints on minimum market (threshold)
and maximum distance (range) [41]. However, central place theory also predicts
that individual local activity clusters feed into the demands for similar clusters
at larger scales, in a hierarchical fashion. For example, a city may have distinct
entertainment and business districts, but within each of these larger clusters, there
will also be smaller local provision of these activities. Such a comparison therefore
highlights the lack of multiple spatial scales within a simplified sketch model. To
date, sketch models have tended to focus on a single spatial scale as the initial
problem specification is built around discrete plots with an intended homogeneous
purpose. This limitation is one reason why the results of such models are best
used to inform planning discussion of smaller developments, where each zone
contains a discrete activity, rather than to provide definitive plans or for the
analysis of larger systems. Finally, a note about the optimization process itself. As
a combinatorial optimization, the tractability of a sketch layout model is limited
by the number of cells and activities to be positioned. Table 3 compares the
capabilities of historic sketch models but note that these figures do not represent
the limits of performance but the application size used for each study. While
the table does show improvements over time, the problem remains fundamentally
difficult. Looking at the solution in Fig. 2a for example, it can clearly be seen
that a number of rotational and translational symmetries exist within the resulting
structure. Therefore to improve performance and reduce degeneracy, it is useful for
the user to provide some sensible constraints on the problem. This may include
fixing an “anchor” activity at a given location within the model, in addition to
using standard termination criteria for mixed-integer models such as a timeout or
optimality gap.
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Table 3 Comparison of previous urban layout optimization studies

Study Case study Computer set-up Formulation nc na

[4] Germantown,
WI, USA
(7,000
people)

– LP 9 11

[13] Tanhai, Taiwan
(300k people)

IBM/PC 486–33
with Turbo
Pascal 6.0

MINLP 13 10

[30] – IBM Pentium II
300 MHz
with Turbo
Pascal 6.0

MINLP 13 7

[31] Taipei central
business
district

– LP – –

[56] Dalian, China
(2.23 million)

8 CPU cluster
with C++

NLP 300 2

This paper Generic UK 500 CPU cluster
with
GAMS/CPLEX
9.0 (though
run on one
core)

MILP 400 3

Other variables are used in these models, but only the core assignment problem variables, i.e. the
number of cells (i.e. discrete zones within the model, nc) and number of activities (i.e. land use
categories, na) are shown here for an indicative comparison
Model formulations: LP linear programming, NLP non-linear programming, MILP mixed-integer
linear programming, MINLP mixed-integer non-linear programming

4 Future Applications and Conclusions

This chapter has shown that optimization is a widely used technique in the urban
modelling community. While in the past it was used on its own to determine LUT
patterns, it has now fallen out of favour as a stand-alone technique with more
behaviourally realistic models based on a disaggregated view of urban activities
dominating current practice. As [9, p. 345] notes in his review, mathematical
programming models have the advantage of “a simple mathematical form linked
to system efficiency; however, the aggregate nature of the model means that there
are inherent difficulties in representing the systematic properties of locations and
the behavioural context of decision-makers.” However, even in these problems,
optimization is used to fit statistical models and in hybrid modelling applications,
e.g. in conjunction with agent-based modelling.

Chang also observes that LUT modellers have focused “too much detail of the
issues rather than the refinement of the foundational relationship.” (p. 346). This
suggests that a new look at the role of optimization modelling in urban planning
might be in order. In Sect. 3, we showed that optimization remains a popular
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technique in two niche applications: the determination of minimum commuting
configurations and the rapid creation of sketch layouts early in the planning process.
With the excess commuting literature pushing towards increased disaggregation
and behavioural realism, sketch modelling seems like the most promising area for
continued work on a purely optimization-based form of aggregate urban planning.

Early sketch modelling applications sought to contribute to the planning process
by generating alternative plan ideas early in the planning process. This is still the
general goal of such models, but the specific objective should be reworked slightly.
Instead of focusing on realistic looking alternative plans that “rationally” balance
multi-objectives, we would argue that there is significant scope for using sketch
models to develop extreme scenarios with a specific goal in mind. In particular,
the eco-cities movement has grand visions of low-impact urban settlements, driven
by concerns over specific issues like carbon emissions. A resource-based sketch
model could therefore be used to establish minimum benchmark values, i.e. patterns
of development that meet basic goals of activity provision and housing with the
lowest possible resource consumption. It is not envisioned that such plans would be
built directly, but that by establishing a minimum benchmark, stakeholders could
evaluate the ambition and difficulty of their actual designs in a more quantitative
manner. In many ways, this application is similar to the urban-environment models
highlighted in the review above. The emphasis is not on necessarily on multi-
objective optimization, but on the pursuit of a single goal with the aim of identifying
the limits of practice (although multi-objective optimization might still have a role
as a goal like a “low-energy” city might have multiple energy-specific objectives
such as carbon emissions and security of supply).

However, there appears to be at least three major obstacles or challenges in this
field. First there is a question of scale, both spatial and temporal. Our analysis
to date has focused on snapshot optimizations, as would be required to inform a
single planning decision. However, resource infrastructure systems take decades
to develop and must continually adapt to the needs of an evolving city. Multi-
period optimization to look at minimum resource development pathways over time
is therefore a promising area of research. The appropriate spatial scale, is also
an issue. As identified above, most sketch models have tended to focus on a
single spatial scale whereas the structure of cities consists of nested spatial scales.
Hierarchical optimization methods might offer valuable insights here. This could
offer performance improvements as well, for example, by solving a simplified
relaxed version of the problem at a coarse spatial scale and then introducing integer
variables to allocate homogeneous land functions at a local level.

The second major question is model fidelity. If sketch modelling is to be used
to estimate the minimum resource consumption layouts for a city, what level of
detail is needed by decision makers and can the models provide this? Taking the
decision-makers perspective first of all, we can imagine a scenario where the goal
is to establish a minimum energy baseline for a city. In such a scenario, building
energy demands might be parameterized by means of normalized benchmarks (e.g.
in kWh per square metre). However, the decision-maker may want to know if these
demands can be reduced through demand side measures, such as flexible pricing,
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or if higher per square demands are even relevant if the primary fuel source is
low carbon. Clearly the more factors that become endogenous to the model, the
more difficult it will be to construct and validate. The corollary to this problem
is one of computational ability. Ideally, because sketch models represent a single
optimized solution, they should be run multiple times to capture the uncertainty
of input parameters and the range of possible outcomes; the goal should be to
deliver a distribution of minimum resource benchmarks, not a single value [as in
29]. However, such a goal is in conflict with the use of a sketch model as a tool
to quickly inform planning at an early stage. Multiple model runs will need to
be solved and the mixed-integer formulation used here can result in slow solve
times if not properly formulated. This can be partly resolved by parallel computing,
but improved knowledge of the problem description and relevant heuristics will be
valuable.

The third question is whether optimization is indeed the most effective technique
for identifying the limits of feasible urban performance. Certainly its use in excess
commuting and the simple examples shown here demonstrate that the basic idea
is feasible, but it is uncertain what other techniques might be used to the same
purpose. A specific question is whether or not the method works for existing cities.
In new cities, a relatively unconstrained optimization makes sense; however in a city
with substantial existing infrastructure, it is not clear whether the city has sufficient
degrees of freedom to make a sketch model optimization meaningful. A more
sensible approach in this case might be data envelopment analysis (which of course
is also based on optimization) to identify the relative efficiency and performance of
other cities.

Future research in this area should develop the concept of resource-based mini-
mum benchmark urban plans and critically assess them in a variety of contexts (both
locations and resource categories). One example is to combine these benchmark
models with optimization-based models of resource supply systems. In [25], we
examined the design of an eco-town by considering the layout and energy supply
systems as separate optimization problems; however, the models could be combined
to offer minimum energy benchmarks that consider both the supply and demand
sides. While ultimately it may be found that a pure optimization-based approach
is insufficient to capture the complexities of the urban environment, the history of
the field suggests that optimization will continue to have an important role to play
within the implementation of other techniques.
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