
Chapter 9
Solving the Discretizable Molecular
Distance Geometry Problem by Multiple
Realization Trees

Pedro Nucci, Loana Tito Nogueira, and Carlile Lavor

Abstract The discretizable molecular distance geometry problem (DMDGP) is a
subclass of the MDGP, where instances can be solved using a discrete algorithm
called branch-and-prune (BP). We present an initial study showing that the BP
algorithm can be used differently from its original form, where the initial atoms are
fixed and the branches of the BP tree are generated until the last atom is reached.
Particularly, we show that the use of multiple BP trees may explore the search space
faster than the original BP.
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9.1 Introduction

The molecular distance geometry problem (MDGP) basically consists of obtaining
all feasible three-dimensional structures for a molecule when some of its interatomic
distances are given [2,4,6,8]. For the case when all interatomic distances are known,
the problem can be solved in linear time [3]. Otherwise, the problem is classified as
NP-hard [11].
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Fig. 9.1 F-type distances

Formally, the MDGP can be described as follows. Given an atomic sequence
1,2, . . . ,n, and a set S of all pairs of atoms (i, j) such that the distance di j is known,
find the feasible Cartesian coordinates x1, . . . ,xn ∈R3 of the atomic sequence (which
can be seen as a linear sequence of bonded atoms) so that

‖xi− x j‖= di j, ∀(i, j) ∈ S. (9.1)

By supposing the validity of some properties for the known interatomic distance set
(usually compatible with proteins, a very important class of macromolecules), the
problem has a discrete search space and is called discretizable molecular distance
geometry problem (DMDGP) [5].

The following assumptions turn the MDGP into a combinatorial problem
(DMDGP), for a given atomic ordering:

1. di j is known for all pairs of atoms (i, j), with 1≤ j− i≤ 3
2. Angles between vectors (xi+2− xi+1) and (xi+1− xi), where 1 ≤ i ≤ n− 2, are

never a multiple of π .

The set S of pair of atoms with known distances may be partitioned in two subsets:
the set E , corresponding to all pairs of atoms (i, j), where 1≤ j− i≤ 3, and the set
F of all pairs of atoms (i, j), where j− i > 3 (see Fig. 9.1).

In [7], a branch-and-prune (BP) algorithm has been proposed for solving the
DMDGP. In this chapter, we provide an alternative way for solving this problem,
making use of the BP algorithm.

The main idea in the BP algorithm is to explore the search space by using torsion
matrices of each atom and to eliminate the infeasible positions as soon as possible.
The torsion matrix Bi related to the atom i can be calculated as follows:

Bi =

⎡
⎢⎢⎣

−cosθi−2,i −sinθi−2,i 0 −di−1,i cosθi−2,i

sinθi−2,i cosωi−3,i −cosθi−2,i cosωi−3,i −sinωi−3,i di−1,i sinθi−2,i cosωi−3,i

sinθi−2,i sinωi−3,i −cosθi−2,i sinωi−3,i cosωi−3,i di−1,i sinθi−2,i sinωi−3,i

0 0 0 1

⎤
⎥⎥⎦ ,
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for i≥ 4, where ωi−3,i is a torsion angle, θi−2,i is a bond angle, and di−1,i is a bond
length. Matrices B1, B2, and B3 are given by

B1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

−1 0 0 −d1,2

0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

B3 =

⎡
⎢⎢⎣

−cosθ3 −sinθ3 0 −d2,3 cosθ3

sin θ3 −cosθ3 0 d2,3 cosθ3

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (9.2)

With the product B1B2 . . .Bi, one can easily obtain the positions for the atom i
which is consistent with all E-type distances. Each atom i ≥ 4 has two possible
torsion matrices Bi (calculated by using sinωi−3,i = +

√
(1− cos2 ωi−3,i)) or B′i

(calculated by using sinωi−3,i = −
√
(1− cos2 ωi−3,i)). The first three atoms have

only one torsion matrix, which implies that there are 2i−3 feasible coordinates, a
priori, for each atom i > 3. The BP algorithm behaves like a tree search algorithm
(such as depth or breadth-first search): at each level i, each torsion matrix Bi and B′i
is multiplied by the previous matrix product B1 . . .Bi−1, thus providing us with two
positions xi and x′i (branching), and positions that are not consistent (according to a
constant error tolerance ε) with the related F-type distances are discarded (pruning).

We introduce now some definitions. Let M be a molecule defined by a sequence
of n atoms 1,2, . . . ,n. An interval [a,b] of M is any subsequence {a, . . . ,b} of atoms
of M, with 1≤ a≤ b≤ n. The size of [a,b] is defined by b−a. A realization Ra,b is
a function Ra,b : [a,b] �→R

3 that associates each atom of an interval to a point in R
3.

We say that Ra,b is infeasible for a given instance of the DMDGP when ∃(i, j) ∈ S
such that i, j ∈ [a,b] and di j �= ||Ra,b( j)−Ra,b(i)||; otherwise, it is feasible. Ra,b is
complete if [a,b] = [1,n] otherwise, it is partial. The idea of working with partial
realizations was previously exploited in [10], for investigating a conjecture on the
DMDGP, and in [9], for the development of a parallel version of the BP algorithm,
even though no formal definitions were given in the latter.

A realization tree Ta,b is a rooted tree with two properties:

1. Each level k of Ta,b corresponds to one atom of the interval [a,b], given by
atom(k).

2. Each node at level k contains a coordinate vector for atom(k) corresponding to
the atom of the root node.

We use
∥∥Ta,b

∥∥ to denote the number of nodes in Ta,b. We also use T+
a,b and T−a,b to

denote, respectively, the tree growth direction from left to right and from right to
left. As it can be seen, the BP algorithm (given in Algorithm 2) yields a realization
tree containing all nodes visited by the algorithm.
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Algorithm 2 The Branch-and-Prune algorithm
1: Branch-And-Prune(T,node)
2: j← Level(n0)
3: if ( j < n) then
4: Compute torsion matrices Bj and B

′
j, by using 9.1

5: Obtain the accumulative torsion matrix Cj−1 of Father(node)

6: Cj ←Cj−1B j; C
′
j ←Cj−1B

′
j

7: x j ←Cj [0,0,0,1]T ; x
′
j←C

′
j[0,0,0,1]

T

8: // test F-type distances related to j
9: valid← true; valid′ ← true

10: for ((i, j) ∈ F) do
11: if ((‖x j − xi‖2−d2

i, j)
2 > ε) then

12: valid← false
13: end if
14: if ((‖x j

′ − xi‖2−d2
i, j)

2 > ε) then
15: valid’← false
16: end if
17: end for
18: // create node with valid positions
19: if (valid) then
20: create node z containing Cj and x j

21: mark z as son of node
22: mark node as father of z
23: T = T ∪{z}
24: BranchAndPrune(T, z)
25: end if
26: if (valid’) then
27: create node z′ obtaining Cj

′ and x j

28: mark z′ as son of node
29: mark node as father of z′
30: T = T ∪{z′}
31: BranchAndPrune(T, z′ )
32: end if
33: else
34: for (each leaf node of T ) do
35: solution stored in parent nodes from level n to 1, output by back-traversal
36: end for
37: end if

In the next sections, we will use more than one realization tree to solve the
DMDGP, showing that this strategy can improve the BP algorithm performance.
The rest of this work is structured as follows. In Sect. 9.2, we motivate alternative
uses of the BP algorithm through one simple theoretical example. In sects. 9.3
and 9.4, we present a technique for merging realization trees, which is the main
contribution of this work. Section 9.5 provides a heuristic method that controls the
growth of the realization trees. In Sect. 9.6, we describe a methodology and show
some computational experiments where the presented techniques are considered.
Section 9.7 provides our conclusions.
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9.2 BP May Be Used in Different Ways

One must notice that the BP algorithm may be used to explore the search space by
other means than the original procedure where the initial atoms of the sequence are
fixed and branching on the tree is performed until the last atom is positioned. We are
going to show that the BP algorithm presented in [7] actually provides a framework
for solving DMDGP instances in various ways. Despite DMDGP is already proven
to be NP-hard [5], it is still important to know how to solve its instances as fast as
possible, even if its asymptotic behavior does not change.

Let us first use a simple example as motivation, showing that we can use BP
in two ways with different performances for the same DMDGP instance. Let us
consider a DMDGP instance where n= 6 and F = {(2,6)}. When we execute the BP
as described in [7], the algorithm starts placing atoms 1, 2, and 3. Then, it branches
two possible positions for atom 4, and so on, until it reaches the last atom. At this
level, it must branch all eight possibilities in order to check the feasibility of each
one through the information provided by d2,6. Only at the last level the algorithm is
able to reject some atomic positions.

However, we could solve the considered instance in the opposite direction along
the sequence of atoms (for implementation purposes, without loss of generality, this
could also be seen as executing the same BP algorithm for an “inverted” instance,
where each atom label i is swapped by 7− i). In this alternative approach, BP starts
fixing atoms 6, 5, and 4, then branching two positions for atom 3. When atom 2 is
reached, four positions are computed, and the known distance d2,6 can be tested for
each of them. In case a node is pruned, this node will not have any child nodes on the
subsequent level. In this way, BP explores fewer nodes if compared to the classical
approach. In other words, the knowledge about d2,6 allows the second approach to
restrict its search space one level before the first approach, thus making the search
faster.

The presented example makes it clear that solving an instance with BP by the
usual way is not always the best approach—it mainly depends on the F distance set.
The same analysis may be applied to the concept of interval, introduced earlier, since
this can be seen as DMDGP instance as well. Each interval may be solved separately
by the BP algorithm, yielding multiple partial realization trees to be combined later,
forming complete realizations. Therefore, it is important to study the different ways
of solving the DMDGP instances with BP by dividing instances in intervals and,
then, by solving intervals in different directions.

9.3 Merging Two Partial Realizations

In order to solve DMDGP instances by using many intervals, we need to be able to
combine solutions associated to each interval. If Ra,x and Rb,y (a < b < x < y) are
two feasible realizations sharing three non-colinear atoms (the existence of these
atoms implies that x−b≥ 3), then we can combine them in order to obtain a single
realization Ra,y.
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Fig. 9.2 Translation of R′b,y for aligning atom i

Arbitrarily we choose Ra,x as a basis for constructing Ra,y. Thus, both realizations
will have the same reference system, and Ra,y will inherit all coordinates of Ra,x,
that is, ∀k ∈ [a,x], Ra,y(k) = Ra,x(k). In order to complete the coordinate sequence
of Ra,y, we still need to fill the remaining interval [x+ 1,y], which will be done by
applying Euclidean transformations over the coordinates of Rb,y.

Let i, j, and k be three atoms that belong to both realizations Ra,x and Rb,y. In
order to make the coordinates of interval [x+ 1,y] satisfy all E-type distances, we
must align Rb,y to Ra,x, that is, to find R

′
b,y such that

⎧⎪⎪⎨
⎪⎪⎩

Rb,y(i) = Ra,x(i),

Rb,y( j) = Ra,x( j),

Rb,y(k) = Ra,x(k).

(9.3)

Initially, we consider R
′
b,y as a copy of Rb,y. Then, the first equation in Eq. (9.3)

is achieved by applying a simple translation over R
′
b,y (Fig. 9.2), whose translation

vector v is given by

v = Ra,x(i)−Rb,y(i).

In order to satisfy the second equation in Eq. (9.3), after the translation, we need
to apply a rotation around the axis perpendicular to the two vectors connecting the
atoms i and j in each realization (Ra,x and R

′
b,y) (Fig. 9.3). These vectors are:

Lj = Ra,x( j)−Ra,x(i)

and

L
′
j = R

′
b,y( j)−R

′
b,y(i).
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Fig. 9.3 Rotation of R′by for aligning atom j

The rotation axis can be obtained through the cross product Lj × L
′
j. The rotation

angle is the one between the two vectors, and can be obtained by using the
cosine law:

φ1 = cos−1

⎛
⎜⎝

L2
j +L

′2
j −

∣∣∣Lj−L
′
j

∣∣∣
2

2LjL
′
j

⎞
⎟⎠ .

For aligning the atom k (satisfying the last equation in Eq. (9.3)) we need another
rotation. Atoms i and j—already aligned—determine the only possible rotation axis
for R

′
b,y in order to continue satisfying the first two equations. The rotation angle

around this axis is calculated by using the two vectors connecting the atoms j and k
in each realization, as follows:

Lk = Ra,x(k)−Ra,x( j)

and

L
′
k = R

′
b,y(k)−R

′
b,y( j).

However, we are not interested anymore in the angle formed by these two vectors,
as in the previous case. Now, what matters is the angle between their projections
over the perpendicular plane to the rotation axis (Fig. 9.4). For calculating these
projections, we use the projection matrix M, oriented by vector Lj:

M = LjL
T
j .
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Fig. 9.4 Rotation of R′by for aligning atom k

The projected vectors are given by:

Pk = MLk

and

P
′
k = ML

′
k,

and the angle between them may also be calculated by the cosine law:

φ2 = cos−1

⎛
⎜⎝

P2
k +P

′2
k −

∣∣∣Pk−P
′
k

∣∣∣
2

2PkP
′
k

⎞
⎟⎠ .

9.4 Merging Two Realization Trees

Once we know how to combine two feasible realizations sharing three non-colinear
atoms, we can combine two realization trees sharing three atoms, which cannot be
colinear by definition of DMDGP. If Ta,x and Tb,y are two realization trees sharing at
least three atoms, the realizations generated by their combination will fill the interval
[a,y].

According to the growth direction of the trees, different kinds of merging may
occur, described below. Algorithm 3, presented next, provides a way for merging
trees Ta,x and Tb,y, so yielding realizations for the interval [a,y], and is applicable to
all three kinds of merging.
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Algorithm 3 MergeTrees
1: MergeTrees(Ta,x ,Tb,y)
2: create an empty realization list La,y = {}
3: for (each realization Ra,x in Ta,x) do
4: for (each realization Rb,y in Tb,y) do
5: align Rb,y to Ra,x as described in Sect. 9.3
6: fail = false
7: for (each (i, j) ∈ F such that a≤ i≤ x and b≤ j ≤ y) do
8: if (

∣∣∥∥Rb,y( j)−Ra,x(i)
∥∥− ε

∣∣> di, j) then
9: fail = true

10: exit loop
11: end if
12: end for
13: if (not fail) then
14: create a realization Ra,y such that
15: Ra,y(i) = Ra,x(i) if i ∈ [a,x],
16: Ra,y(i) = Rb,y(i) otherwise
17: insert Ra,y into La,y

18: end if
19: end for
20: end for
21: return La,y

1 n

a b c

Fig. 9.5 Realization trees merging

Root–Root Merging. When two trees T+
a,x and T−b,y grow in opposite direction

and overlay their roots, satisfying x− b ≥ 3, they can be combined from their
initialization (Fig. 9.5c).

Leaf–Root Merging. This kind of merging occurs between trees T1 and T2 growing
in the same direction, when T1 reaches the atom related to the root of T2 (Fig. 9.5a).
In order to be able to merge them, it is necessary to expand T1 into two levels, so
that we have T1 = Ta,x and T2 = Tb,y, x− b≥ 3.

Leaf–Leaf Merging. This case happens when two trees grow one in direction of
the other (Fig. 9.5b). Let us suppose that at some point, two trees (one negative,
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the other positive) reach the same atom i. In order to share three atoms, they need
to grow at most two levels more. This can be done in three ways: the positive
tree growing two levels, the negative tree growing two levels, or both growing one
level. Thus, we will have T−a,x and T+

b,y, such that x− b ≥ 3. From the performance
point of view, the tree that is about to undergo more prunings should have higher
growth priority. Even though two levels may seem to not be significant, it is worth to
emphasize that, for big amounts of leafs, growing one level may be very expensive
(in the order of the total amount of nodes in the tree until the previous level).

In Algorithm 3, we initially combine each realization in Ta,x with each realization
in Tb,y. Clearly, the total amount of combinations is the product of the amount
of leaves in each tree. Considering that both trees share exactly three atoms (this
condition is enough for merging them), by naming n as y− a, the amount of leaves
for Ta,x and Tb,y is O(2x−a) and O(2n−(x−a)+3), respectively. Thus, the total amount
of combined realizations is O(2n). Then, each combined realization is verified
according to the F distance set, whose size is O(n2). Finally, the complexity of
the algorithm for combining Ta,x and Tb,y is O(n22n), which is greater than the
exponential complexity of the original BP algorithm. In Sect. 9.6, we will see that,
according to our computational results, this worst-case analysis does not seem to
entail practical significance.

9.5 Growth Control

When we solve one instance by using multiple realization trees T1,T2, . . . ,Tx, each
pair of subsequent trees will undergo one of the three kinds of merging described in
Sect. 9.4. In case of pairs (Ti,Ti+1) that undergo root–root merging, there is only one
way for performing the merging. The same happens in the case of pairs undergoing
root–leaf merging, since only the tree that undergoes the merging on its leaves can
grow inside the interval delimited by the roots (the tree which undergoes merging
on its leaves has to grow until it reaches the root of the other tree). However, in
leaf–leaf merging cases, the atom in which the merging will occur is not previously
known, and it depends on the growth of both trees.

Aiming at minimizing the algorithm’s execution time and the total amount of
nodes (of both trees), we may consider the following heuristic: we give growth
priority to the tree with fewer leaves. In other words, at each step, we verify which
tree has fewer leaves, and we let it grow by one level (changing its amount of
leaves for the next step). This procedure is repeated until their leaves reach the same
atom. However, this is a greedy method, which does not consider the possibility of
allowing the other tree to grow first. For example, it might be more convenient to
let a tree grow if it is about to apply a large pruning in a few steps. Algorithm 4
summarizes this approach.
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Algorithm 4 GrowthControl
1: GrowthControl(I)
2: initialize trees T+

a,x and T−b,y
3: while (atom(x) �= atom(b)) do
4: if (T+

a,x has more leaves than T−b,y) then
5: make T+

a,x to grow one level
6: else
7: make T−b,y to grow one level
8: end if
9: grow more 2 levels in T+

a,x or T−b,y to enable merging
10: end while
11: return MergeTrees(T+

a,x ,T−b,y)

9.6 Computational Experiments

In this section, we will consider some artificial instances, automatically generated by
computer programs, and real instances, produced from protein structures obtained
from the protein data bank (PDB) [1]. PDB is a public database where three-
dimensional conformations of proteins and nucleic acids are stored. We have
selected only structures generated by NMR. Our goal is to study in which cases the
use of multiple realization trees is more efficient than the original BP algorithm. For
accomplishing this, we have implemented two methods which use two realization
trees in a primitive way (without any previous analysis of the F set for determining
in which atom the trees start and in which directions they grow). Then, we have
compared both methods to the original BP algorithm, in positive and negative
directions. Our analysis did not consider the quality of the solutions which are
found, since all methods fully explore the search space of instances, thus reaching
the same set of solutions.

All algorithms were implemented in C++, using the standard template library
(STL). Experiments were executed on an Intel Core2Duo 2.2GHz, with 2GB RAM.

We introduce a graphical representation which allows us to view how the F set
pairs are distributed along the molecule. We do this through the plot of x×P(x),
where x is an atom of the molecule and P(x) is the function expressing the sum of
the interval lengths related to F-set pairs whose last atom to be reached by BP is
x. Considering F+

x = {(i,x) ∈ F} and F−x = {(x, j) ∈ F}, P(x) is defined, for each
direction, by the following formulae:

P+(x) = ∑
(i,x)∈F+

x

(x− i)

and

P−(x) = ∑
(x, j)∈F−x

( j− x).
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Figure 9.6 shows the F-set of tested artificial instances, described through an arc
representation (each pair (i, j) ∈ F is represented by an arc that connects atoms i
and j), their respective plots of P+(x) and P−(x), and the execution time for the
following methods (also listed in Table 9.1):

Method 1 One positive tree T+
1,n (original BP), implemented with breadth-first tree

search;
Method 2 One positive tree T+

1,n (original BP), implemented with depth-first tree
search;

Method 3 One negative tree T−1,n (original BP), implemented with breadth-first
tree search;

Method 4 One negative tree T−1,n (original BP), implemented with depth-first tree
search;

Method 5 Two trees in opposite directions, growing from their extremities to-
wards the center, with growth control (leaf–leaf merging);

Method 6 Two trees in opposite directions, growing from the center towards their
extremities (root–root merging).

From the test results with artificial instances, we can observe some facts. The
variability of instances has showed that different cases require different approaches,
where the direction and the amount of trees play an important role (see Fig. 9.6).
The bad performance of methods with two trees for instances (b) and (c) is not due
to the growth of trees, but to the merging process, since both trees have many leaves
in their merging point.

Method 5, which uses the growth control heuristic for two trees, behaves in a
versatile manner, allowing the tree with fewer leaves to traverse a greater part of the
molecule, and is not so sensitive to less uniform distributions of F-type distances
as the BP algorithm is, thus obtaining good performances for instances such as (f)
and (a).

The same methods have been tested in instances produced from real protein
data. For this, we created a DMDGP instance from a PDB file that contains a
known protein structure, by taking all atomic coordinates from the main chain
(protein backbone) for determining those inter-atomic distances that are inside a
cut-off radius of 5 Å. Figure 9.7 and Table 9.2 provide further details about the used
instances and the execution time of our methods (for instances generated from real
data, the arc representation is not clear, due to the big amount of atoms and F-type
distances, so it was not used).

In these tests, as in tests with artificial instances, the use of two trees has been
efficient in certain cases and has showed some advantages over the original BP.
However, in order to justify the use of more than one tree, due to its computational
cost, it is necessary that the trees are placed in strategic positions along the molecule
(as it happened for method 5 for instance 1SFV), so that F-type distances can
be used as soon as possible, causing prunings and having yielding few leaves in
the moment of merging. As it has been showed for artificial instances, the cases
where molecules have some interval with low amount of F-type distances to be
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Fig. 9.6 Tests with artificial instances
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Table 9.1 Tests with artificial instances

Execution time of each method (ms)

Instance n 1 2 3 4 5 6

a 16 94 94 281 266 93 140
b 16 94 94 109 94 438 312
c 35 1,141 1,171 1,125 1,172 8,485 13,391
d 35 7,203 6,672 8,079 8,203 16 3,719
e 35 922 844 1,031 1,609 1,906 15
f 35 594 953 156 172 93 718

traversed (as instances (1DFN-a) and (1DFN-b)) give greater growth priority for
one of the trees, what cannot be foreseen by the original BP. Method 5, whose trees
have controlled growth, has showed that it can deal better with this kind of F-set
topology.

9.7 Conclusions

We have presented some initial studies that enable solving the DMDGP with
multiple realization trees. Through Euclidean transformations as translations and
rotations, we discussed about possible ways for combining realizations of distinct
intervals that share at least three atoms. We studied the three possible cases for
merging realization trees, and, by using this technique, we presented an algorithm
that deals with these three cases. This algorithm is what actually allows the use of
multiple trees for solving the DMDGP. Moreover, we presented a heuristic for the
multiple tree strategy, consisting of regulating the growth of trees that will undergo
leaf–leaf merging.

We have made tests with artificial instances and instances generated from real
protein data, by comparing the BP algorithm, which produces one realization tree,
with two primitive methods using two realizations trees. For both artificial instances
and instances generated from proteins, the use of two trees (despite the simplicity
of the implemented methods) has showed good performance in comparison to the
original BP algorithm. For each instance, depending on the topology of the F set,
the methods that use only one tree had a high performance variability according
to the direction of growth along the molecule. However, the heuristic method that
consider two trees was not so sensitive to the F-set topology, having, most of the
time, a performance which is similar to the method of one tree in its most efficient
direction (with no need to detect which is the direction).

The results presented here reinforce the interest about studying alternative
solving approaches for the DMDGP. Our intention here was twofold: (1) to show
that the BP algorithm itself does not assure the best performance, depending on
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Fig. 9.7 Tests with instances generated from real protein data

the direction of its growth along the molecule and (2) it may be used by more
complex strategies, as solving the molecule with multiple realization trees, which
provide advantages over the traditional approach. The multiple trees strategy lets us
think about performance (not only completeness and correctness) when solving the
DMDGP, stimulating investigation of heuristics for the DMDGP.
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Table 9.2 Tests with instances generated from real protein data

Execution time for each method (ms)

Instance n 1 2 3 4 5 6

1T1K-a (Insulin) 63 1,250 1,391 2,688 3,437 1,281 1,641
2UUF-a (Thrombin) 84 141 156 109 141 391 109
1DFN-a (Human defensin) 90 45,500 52,031 78 94 328 922
1DFN-b (Human defensin) 90 * * 969 1,172 8,453 141,672
1HPY (PTH hormone ) 102 172 219 78 94 234 110
1SFV (Phospholipase A2) 372 343 453 20,985 25,328 2,109 6,234

* not concluded, due to memory allocation demands
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